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Abstract 

Over the past few years, a mounting alarm regarding the rising fatalities attributed to driver 
distraction-related car accidents has been highlighted the urgency of developing advanced ac­
tion recognition systems wi th in the car interior. This master thesis addresses the pressing issue 
of the need for advanced action recognition systems in the car interior emphasizing the poten­
tial of examining human behavior in the vehicle's interior i n light of the increasing adoption 
of automation for better driver adaptation, human-vehicle communication, and safety. We in­
vestigate two self-supervised learning approaches, DINO wi th STTFormer and PSTL wi th ST-
G C N , using 3D human skeleton representations on N T U RGB+D and Dr ive&Act datasets. Ex­
tensive experiments and evaluations, including linear and k - N N assessments, demonstrate the 
competitive performance of PSTL wi th S T - G C N , while revealing challenges in the Drive&Act 
dataset and the complexities of self-supervised learning convergence. This research not only 
contributes to the advancement of action recognition systems for safer driving and dynamic 
adaptation but also underscores the significance of self-supervised learning i n interpreting and 
improving human activities inside vehicles, facilitating the development of more intuitive and 
responsive autonomous driving systems. 

Keywords: Self-Supervised Learning, Act ion Recognition, Contrastive Learning, 3D Skeleton 
Representations. 
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1 Introduction 

In recent years, there has been a growing concern about the increasing number of fatalities 
caused by car accidents resulting from driver distraction. According to the W H O , driver dis­
traction is a major contributing factor to road traffic accidents worldwide. Globally, it's esti­
mated that 20-30% of all road traffic accidents are caused by driver distraction (World Health 
Organization, 2011), In the European Union, it's estimated that driver distraction is a contribut­
ing factor in 10-30% of all road accidents (European Transport Safety Council , 2020). Therefore 
distracted driving has become a leading cause of accidents, accounting for a significant portion 
of road fatalities worldwide. This alarming trend has necessitated the development of advanced 
algorithms capable of recognizing driver actions and behaviors to prevent such accidents and 
promote road safety. 

To address this critical issue, there has been a surge in the development of action recognition 
systems specifically tailored for the car interior. These systems aim to identify and analyze 
various driver actions, such as hand gestures, head movements, and body postures, in real­
time. By accurately recognizing these actions, potential distractions and unsafe behaviors can 
be identified, allowing for timely intervention and accident prevention. 

Traditional supervised learning methods have been widely employed for action recognition 
tasks. However, they heavily rely on annotated datasets, which are costly and time-consuming 
to produce. Annotated datasets require manual labeling of each action instance, posing prac­
tical limitations when it comes to scaling up the training process. 

To overcome these challenges, self-supervised learning has emerged as a promising alterna­
tive approach. Unlike traditional supervised learning, self-supervised learning leverages unan-
notated data to learn useful representations. By formulating the learning task as a pretext task, 
such as predicting missing parts or ordering sequences, self-supervised learning allows the 
model to learn meaningful representations without the need for explicit annotations. This ap­
proach has gained significant attention due to its ability to utilize large amounts of readily 
available unannotated data. 

Furthermore, the increasing development of autonomous vehicles has amplified the demand 
for accurate and robust human action recognition systems. As autonomous cars become more 
prevalent, it becomes crucial to understand and interpret human actions wi th in the vehicle en­
vironment. Accurate recognition of driver actions and behaviors enables autonomous systems 
to respond appropriately, ensuring passenger safety and efficient vehicle control. 

In light of these challenges and opportunities, this master thesis aims to enhance vehicle 
interior action recognition by leveraging contrastive self-supervised learning techniques wi th 
3D human skeleton representations. By utilizing unannotated data, this approach can effec­
tively learn informative representations that capture the nuances of driver actions in the car 
interior. The proposed method w i l l contribute to advancing the field of action recognition by 
providing a scalable and efficient solution to enhance driver safety in both conventional and 
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1 Introduction 

autonomous vehicles. 

Through extensive experimentation and evaluation, this thesis seeks to demonstrate the ef­
fectiveness of contrastive self-supervised learning wi th 3D human skeleton representations in 
improving the accuracy and robustness of vehicle interior action recognition systems. The find­
ings of this research w i l l not only contribute to the development of safer driving environments 
but also provide valuable insights into the application of self-supervised learning techniques 
in the context of using sequence data as human skeleton data. 

Overall, this master thesis addresses the need for accurate and efficient action recognition 
systems in the car interior to prevent accidents caused by driver distraction. The adoption 
of contrastive self-supervised learning wi th 3D human skeleton representations represents a 
novel and promising approach to achieving this objective. By combining the advancements in 
self-supervised learning and human action recognition, this research aims to enhance driver 
safety and realize reliable autonomous vehicle systems. 

1.1 Problem Statement 

Human action recognition has been extensively studied using different modalities, such as RGB 
videos or depth cameras. However, these modalities often come wi th significant computational 
costs, making them less suitable for resource-constrained environments. In response to this 
challenge, human skeleton data has emerged as a promising alternative. Skeleton data offers 
a more efficient representation of human actions, reducing the computational complexity and 
storage requirements, and also they provide a lightweight and efficient alternative that not only 
reduces computational overhead but also offers the potential to generalize across domains, en­
abling broader applicability in real-world scenarios, as explained i n [14]. By focusing on the 
underlying structure and motion of the human body, skeleton data provides a compact repre­
sentation that is computationally less expensive while still capturing the essential information 
for action recognition. 

Traditional supervised techniques for action recognition heavily rely on annotated datasets. 
However, the process of manually annotating data for action recognition is time-consuming 
and labor-intensive, l imiting its scalability for large-scale applications. In this context, self-
supervised learning has gained traction as a promising solution. It enables models to learn 
meaningful representations without the need for explicit annotations. This approach addresses 
the challenge of costly and time-consuming data annotation, making it a more efficient and 
scalable solution for action recognition. 

While self-supervised learning has shown promise i n various domains, its application to 
skeleton data for action recognition is still in its early stages. Further research and investi­
gation are necessary to explore the full potential of self-supervised learning in this context. 
The thesis aims to bridge this gap by investigating the effectiveness of self-supervised learn­
ing techniques for action recognition using human skeleton data. By leveraging the inherent 
structure and motion information in the skeleton data, the thesis seeks to enhance the accuracy 
and robustness of action recognition models, even wi th limited or no labeled data. 

Furthermore, the lack of action recognition datasets specifically dedicated to driver behav­
ior inside the car presents another challenge. Existing datasets often focus on general action 
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recognition but fail to capture the nuanced actions and behaviors specific to drivers wi th in the 
vehicle environment. To address this gap, the thesis w i l l focus on the test and evaluation of an 
action recognition dataset tailored specifically to driver behavior inside the car. This dedicated 
dataset w i l l incorporate a wide range of driver actions and behaviors, providing a realistic and 
comprehensive evaluation platform for action recognition algorithms in the automotive con­
text. 

In summary, this master thesis aims to tackle the challenges associated wi th human action 
recognition by leveraging the benefits of skeleton data and self-supervised learning. The re­
search w i l l investigate the feasibility and effectiveness of self-supervised learning techniques 
for action recognition using skeleton data. Additionally, the thesis w i l l contribute to domain 
adaptation from traditional human action recognition to driver action recognition inside the 
car, enabling accurate evaluation and benchmarking of action recognition algorithms i n the 
automotive domain. 

1.2 Research Objectives 

The first research objective is to design and develop a contrastive self-supervised learning ap­
proach specifically tailored for action recognition on 3D human skeleton data. The focus w i l l be 
on leveraging the benefits of contrastive learning to learn r ich and discriminative representa­
tions from unannotated skeleton data. The proposed approach w i l l explore different contrastive 
learning strategies i n which it relies on relevant data augmentations that can optimize the ac­
tion recognition performance. The effectiveness of the developed approach w i l l be rigorously 
evaluated and benchmarked against state-of-the-art methods in the field of action recognition 
on skeleton data. 

The second research objective is to evaluate the proposed contrastive self-supervised learn­
ing approach on datasets dedicated to capturing driver behavior inside the car, encompassing a 
comprehensive range of driver actions and behaviors, i n which these datasets were created and 
developed by Fraunhofer IOSB - where the master thesis is conducted -and K I T The evalua­
tion w i l l focus on assessing the performance of the proposed method in accurately recognizing 
driver actions wi th in the unique context of the vehicle environment. The evaluation process 
w i l l involve extensive quantitative analysis and comparison against existing approaches, pro­
viding insights into the effectiveness of the proposed method for driver behavior recognition 
in practical applications. 

The third research objective aims to delve deeper into the landscape of contrastive self-
supervised learning techniques. This involves investigating the strengths and limitations of 
various techniques, analyzing their effects on different aspects of action recognition, and iden­
tifying potential areas of improvement. 

By achieving these research objectives, this master thesis aims to contribute to the advance­
ment of action recognition techniques on 3D human skeleton data and the evaluation on ded­
icated driver behavior datasets w i l l provide valuable insights for real-world deployment in 
automotive applications. The results obtained from this research w i l l help pave the way for 
improved driver safety and facilitate the development of intelligent systems in autonomous 
driving and driver assistance technologies. 
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1 Introduction 

In summary, the research objectives of the master thesis can be defined as follows: 

• Design and implementation of a contrastive self-supervised learning approach for action 
recognition using 3D human skeleton representations. 

• Training and evaluating of the approach on publicly available datasets for 3D skeleton 
data-based action recognition (e.g. N T U RGB+D, Drive&Act). 

• Analyze the impact of different contrastive self-supervised learning techniques on vari­
ous evaluation protocols of action recognition. . 

1.3 Thesis Outline 

The master thesis w i l l follow a structured approach to address the research objectives outlined 
in the previous sections. The thesis w i l l be organized into the following chapters: 

Chapter 1: Literature review w i l l provide a comprehensive review of the relevant literature 
in the field of action recognition using different modalities. The review w i l l delve into action 
recognition wi th R G B data, and action recognition wi th a skeleton data highlighting the vari­
ous approaches employed, including RNNs, CNNs, GCNs, and transformers based. The chap­
ter w i l l also focus on the concept of self-supervised learning (SSL) and its relevance in action 
recognition tasks. Specifically, it w i l l discuss the pretext tasks and contrastive learning meth­
ods commonly used in self-supervised learning approaches. The literature review w i l l offer a 
theoretical foundation and critical analysis of existing methods and highlight their strengths, 
weaknesses, and limitations. 

Chapter 2: The methodology chapter w i l l detail the proposed approach for self-supervised 
action recognition on skeleton data. It w i l l cover the preparation and processing of skeleton 
data, including any required normalization or data augmentation techniques. The chapter w i l l 
present an overview of different approaches and architectures considered for the task, incor­
porating insights from the literature review. The training strategy, including the choice of a 
specific SSL and contrastive learning frameworks, w i l l be described. 

Chapter 3: Experiments chapter w i l l showcase the experimental design and evaluation pro­
tocols for assessing the performance of the model w i l l also be presented. The datasets used in 
the experiments, including any data preprocessing specific to each dataset, w i l l be discussed. 

Chapter 4: Results and Evaluation w i l l present the results of the experiments conducted 
to evaluate the proposed contrastive self-supervised learning approach. The evaluation met­
rics used to measure the performance of the model w i l l be discussed, highlighting the chosen 
metrics and their relevance to action recognition tasks. Ablat ion studies w i l l be conducted to 
analyze the contribution of different components or variations of the proposed approach. The 
chapter w i l l also include a comprehensive comparison wi th state-of-the-art methods, show­
casing the strengths and advantages of the proposed approach. 

Chapter 5: The final chapter w i l l summarize the findings and contributions of the master 
thesis. It w i l l provide a concise overview of the research objectives, methodology, and the key 
results obtained. The chapter w i l l discuss the implications and significance of the findings in 
the context of action recognition on 3D human skeleton data. Additionally, any limitations 
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or potential areas for future research w i l l be highlighted. The conclusion chapter w i l l serve 
as a reflection on the achievements of the thesis and provide closure to the overall research 
journey. 
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2 Literature Review 

Action recognition, a pivotal task i n computer vision, involves identifying and categorizing 
human actions from video or image sequences. As a fundamental component in various ap­
plications, such as surveillance, human-computer interaction, and autonomous systems, ac­
tion recognition has garnered substantial research attention. The history of action recognition 
traces back to early works focused on handcrafted features and shallow classifiers. Pioneering 
studies, such as those by [15] and [16], explored the extraction of local spatiotemporal features 
and their aggregation using bag-of-words or temporal pyramids. These methods, although 
significant at the time, were limited i n their ability to capture complex and dynamic human 
actions. 

W i t h the advent of deep learning, action recognition witnessed a paradigm shift, achieving 
remarkable performance improvements. Convolutional Neural Networks (CNNs) emerged as 
a dominant approach in image-based action recognition. Notable works by [17] wi th Two-
Stream C N N s and [1] using 3D C N N s played a pivotal role in driving this progress. These 
methods effectively learned hierarchical representations from raw pixel inputs, enabling more 
accurate recognition of complex actions. 

Beyond R G B data, researchers explored the potential of skeleton data for action recognition. 
Skeleton-based action recognition, popularized by [18], represents human movements as a set 
of joint coordinates, capturing the underlying structural and temporal information. Techniques 
such as Graph Convolutional Networks (GCNs) introduced by [19] further leveraged the graph 
structure of human skeletons for enhanced representation learning. 

Moreover, the exploration of self-supervised learning i n action recognition gained traction, 
addressing the challenges of data annotation and scalability. Works by [20] demonstrated the 
effectiveness of pretext tasks, such as predicting temporal order or solving jigsaw puzzles, in 
learning meaningful representations from unannotated data. 

In this literature review, we survey the key advancements in action recognition by briefly 
going through the literature of action recognition wi th RGB modality and then we w i l l focus 
on skeleton data modality. We investigate historical progress, influential methodologies, and 
the transition toward deep learning. Additionally, we examine foundational works in skeleton-
based action recognition, emphasizing the role of graph-based and attention mechanism-based 
approaches. Furthermore, we explore the emergence of self-supervised learning in the context 
of action recognition, highlighting its potential to alleviate data annotation challenges and 
facilitate scalable learning. By synthesizing and analyzing these works, we lay the groundwork 
for proposing a contrastive self-supervised learning approach for action recognition on 3D 
human skeleton data in the subsequent chapters of this master thesis. 
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2.1 Action Recognition with RGB Data 

Action 

Figure 2.1: Example from of previous R G B action recognition architectures, source from [1]. 
(a) 3D-ConvNet. (b) Two-Stream, (c) 3D-Fused Two Stream, (d) Two-Stream 3D-
ConvNet. K stands for the total number of frames in a video, whereas N stands for 
a subset of neighboring frames of the video. 

2.1 Action Recognition with RGB Data 

A key challenge in computer vision is action recognition using RGB data, which includes iden­
tifying and categorizing human activities from video sequences represented by red, green, and 
blue color channels. R G B data is captured using conventional cameras, making it readily avail­
able and widely used in various real-world applications. The introduction of R G B action recog­
nition datasets has been instrumental in advancing the field. One of the pioneering datasets 
in this domain is the "UCF101" dataset introduced by [21]. It comprises 101 action classes, 
covering diverse activities, and has played a vital role i n benchmarking RGB action recogni­
tion methods. Another wel l-known dataset, the " H M D B 5 1 " dataset by [22], contains 51 action 
classes and serves as another widely used benchmark for RGB action recognition. 

Several recent research papers have made significant contributions to the field. For instance, 
[23] proposed the "Two-Stream Convolutional Networks" that integrated spatial and temporal 
streams to capture static appearance and motion information, respectively. This work demon­
strated the efficacy of fusing R G B data wi th optical flow information for action recognition, 
achieving state-of-the-art performance on benchmark datasets. Furthermore, the introduction 
of "3D Convolutional Neural Networks" (C3D) by [24] revolutionized the field. C3D leverages 
3D convolutions to capture spatio-temporal patterns directly from R G B videos, demonstrating 
superior performance in action recognition compared to traditional 2D CNNs . 

Since the introduction of I3D [1], 3 D - C N N has emerged as the standard method for action 
recognition. Since then, the action recognition community has put out several cutting-edge 3D-
C N N designs as [25], [26] that exceed I3D in accuracy and efficiency, as architectures examples 
shown in 2.1. 

Moreover, several recent approaches have explored multi-modal fusion for enhanced ac­
tion recognition. Methods combining R G B data wi th depth information or pose estimations 
have shown improved performance. For instance, [27], [23] proposed a novel activity encod­
ing method using temporal images from R G B video sequences and the integration of comple­
mentary information from a skeleton and temporal data. The proposed method outperforms 
state-of-the-art methods on public datasets. The challenges addressed i n this paper include 
the difficulty of recognizing complex activities wi th high intra-class variability and the need 
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for robustness to occlusions and noise. These challenges were addressed by using a multi­
modal approach that combines R G B and skeleton data, as wel l as a novel activity encoding 
method that uses temporal images. The limitations of this paper include the use of only two 
modalities (RGB and skeleton data) and the focus on recognizing activities i n controlled envi­
ronments. The proposed method may not generalize wel l to real-world scenarios wi th more 
complex backgrounds and lighting conditions. 

RGB-based action recognition has witnessed remarkable progress, fueled by influential datasets 
and research papers. Despite these advancements, RGB-based action recognition still faces 
challenges. One major limitation is significant computational costs, making them less suitable 
for resource-constrained environments. However, ongoing research in the field aims to explore 
more efficient ways to handle large-scale labeled data and further improve the accuracy and 
robustness of RGB-based action recognition models. 

W i t h the advancements in pose estimation algorithms and models, annotating human pose 
estimation data wi th respective actions on a large scale has become more feasible. The avail­
ability of datasets containing 2D and 3D human skeleton information has significantly facil­
itated action recognition research. Human skeleton data provides a powerful representation 
that captures the essential structural and temporal information of actions while being resilient 
to environmental variations and occlusions. As a result, researchers have increasingly turned 
their attention to studying action recognition based on human skeletons. The benefits offered 
by skeleton-based action recognition methods, including improved robustness, reduced com­
putational complexity, and better generalization across diverse scenarios, have led to a conver­
gence of research efforts i n this direction. In the next section, we w i l l delve deeper into the 
advantages of using human skeleton representations for action recognition and explore the 
latest developments and methodologies in this rapidly evolving field. 

2.2 Action Recognition with Skeleton Data 

Action recognition wi th skeleton data is a crucial task in computer vision that involves identi­
fying and categorizing human actions based on skeletal joint positions and temporal dynamics. 
Skeleton data is typically captured using depth sensors, motion capture systems, or pose esti­
mation algorithms. Recent research has shown an increasing interest in skeleton-based action 
recognition due to its distinct advantages over other modalities, such as RGB data and depth 
sensors. 

Skeleton data offers a compact and informative representation of human actions, focusing 
on the spatial arrangement and temporal dynamics of joints. Unlike R G B data, which requires 
complex processing to handle appearance changes and occlusions, skeleton data is inherently 
resilient to environmental variations, providing a robust representation for action recognition 
tasks. Additionally, compared to depth sensors, which can be sensitive to lighting conditions 
and limited in accuracy, skeleton data offers more precise and reliable joint information. One 
of the early skeleton action recognition datasets is the " N T U RGB+D" dataset introduced by 
[28]. This dataset contains 3D skeleton data captured by depth sensors, covering a diverse 
range of action classes and complex scenarios. Another notable dataset, the "Kinetics-Skeleton" 
dataset by [29], provides 2D skeleton data extracted from videos in the Kinetics dataset, en-
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2.2 Action Recognition with Skeleton Data 

abling a large-scale evaluation of skeleton-based action recognition models. Before the advent 
of deep learning, early methods of action recognition wi th skeleton data primarily relied on 
handcrafted features and traditional machine learning algorithms. These methods focused on 
extracting relevant information from the skeletal joint positions and designing effective clas­
sifiers to recognize actions. Major contributions during this era included the introduction of 
effective feature descriptors and the design of efficient classifiers. 

One of the early approaches involved the use of histograms of joint angles or velocities as 
feature representations (e.g.,[30]). By quantizing joint angles or velocities into bins and con­
structing histograms, these methods attempted to capture the spatial and temporal dynamics 
of actions. [31] is another approach involved the representation of actions as sequences of key 
poses or motion primitives. These key poses were identified based on keyframes or impor­
tant points in the action sequences, providing a concise representation for recognition. Early 
methods also explored the application of traditional machine learning algorithms, such as Sup­
port Vector Machines (SVMs) and Hidden Markov Models (HMMs) , to classify actions based on 
handcrafted features. These classifiers aimed to learn discriminative patterns from the extracted 
features and make predictions on new unseen sequences. However, these early methods had 
several limitations. Handcrafted feature engineering required domain expertise and manual 
design, making the process labor-intensive and potentially l imiting the representation power 
of the features. Furthermore, these approaches struggled to successfully capture complicated 
spatio-temporal patterns, l imiting their capacity to recognize actions wi th high accuracy. The 
lack of scalability and adaptability to large-scale datasets and diverse action scenarios posed 
challenges for real-world applications. 

W i t h the arrival of deep learning, there was a paradigm shift i n skeleton-based action recog­
nition, as an example shown in 2.2. Deep learning models, particularly recurrent and convo-
lutional neural networks, revolutionized the field by automatically learning hierarchical and 
discriminative representations directly from skeleton data. These new approaches achieved 
remarkable performance improvements and demonstrated strong generalization capabilities 
across diverse action classes and scenarios. Recurrent Neural Networks (RNNs) enabled the 
modeling of temporal dependencies i n action sequences, capturing the dynamics of actions over 
time. Convolutional Neural Networks (CNNs) were adapted to handle skeleton data by treat­
ing joint coordinates as image-like representations. Graph Convolutional Networks (GCNs) 
emerged to exploit the graph structure of skeleton data, effectively capturing spatial relation­
ships between joints. Additionally, the introduction of attention mechanisms further enhanced 
the ability to focus on informative joints or temporal regions in the skeleton sequences. The 
integration of deep learning wi th skeleton-based action recognition has significantly improved 
accuracy, robustness, and scalability. These new approaches have sparked a surge of interest 
in the research community, leading to ongoing advancements and novel methodologies to ex­
plore the potential of deep learning in making use of the r ich information present in skeleton 
data for action recognition tasks. 

2.2.1 RNN-Based Methods 

Recurrent Neural Networks as 2.3, have been widely adopted to capture temporal dependen­
cies i n skeleton sequences. Specifically, in [32] the result of the prior time step is used as the 
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Figure 2.2: Example from [2] the general pipeline of skeleton-based action recognition using 
deep learning methods. In the beginning, the skeleton data was gathered i n two 
ways: directly from depth sensors or through pose estimate techniques. The skele­
ton w i l l be fed into neural networks based on R N N , C N N , or G C N . Finally, we get 
to the action category. 

input for the current time step to create a recursive connection inside an R N N structure. A 
novel approach to adding attentiveness to R N N neurons. The proposed method is a simple 
yet effective way to adaptively weight the input elements of an R N N block at each time step. 
Moreover, the proposed method reduces computational overhead compared to existing atten­
tion mechanisms and is flexible in adapting to different types of RNNs, such as L S T M or GRU. 
The proposed method called EleAt t -RNN block addresses the challenges of modeling complex 
sequential information wi th fixed-weight RNNs and the limitation of existing attention mech­
anisms that require additional parameters and computational overhead. However, The perfor­
mance of various related methods (e.g., [33], [34]) often was unable to achieve a competitive 
outcome due to the RNN-based architecture's poor spatial modeling capability. 

2.2.2 CNN-Based Methods 

Convolutional Neural Networks have been extended to handle skeleton data by treating joint 
coordinates as image-like representations. Unlike RNNs, which explicitly model temporal de­
pendencies in sequences, C N N s were originally designed for image-based tasks and lacked 
inherent temporal modeling capabilities. However, researchers have creatively adapted C N N 
architectures to effectively handle skeleton data by exploiting skeleton sequence data from 
vector sequence to pseudo-image. The main benefit of CNN-based methods over RNNs lies in 
their ability to efficiently capture spatial relationships among joints. C N N s are adept at learn­
ing hierarchical representations from image data, effectively recognizing local patterns and 
capturing spatial dependencies. This property aligns well wi th the inherent structural infor­
mation in skeleton data, where each joint's position relies on its relationship wi th neighboring 
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Figure 2.3: Example of R N N pipeline from [3] demonstrates how each joint has a distinct level 
of necessity for a specific skeleton action. 

joints. This spatial awareness allows C N N s to learn discriminative features from skeleton se­
quences and recognize actions based on joint configurations and their temporal dynamics. [35] 
investigate encoding richer spatial features into texture color images or 2D pseudo-images for 
3D human action recognition using a CNN-based approach. Each type of feature is encoded 
into images in two or more ways to further explore the spatio-temporal information. The pro­
posed method consists of five main components: spatial feature extraction from input skeleton 
sequences, key feature selection, texture color image encoding from key features, C N N model 
training based on images, and score fusion. One of the challenges that this paper solves is 
the limitation of using only joint positions for skeleton-based action recognition. By encoding 
richer spatial features into texture color images, the proposed method is able to capture more 
detailed information about the motion and shape of the human body, leading to improved 
recognition accuracy. 

Still, this type of approach is a little complex and also misses out on crucial data through­
out the mapping process. To address this problem, [36] propose a translation-scale invariant 
transformation approach to map 3D skeleton videos to color images wi th enhanced temporal 
frequency adjustment capabilities, using a multi-scale deep C N N . Each frame's human skele­
ton joints were initially divided into five main sections in accordance wi th human physical 
structure, and those sections were then transferred to 2D form. W i t h this technique, the skele­
ton picture is created using both spatial and temporal information. In addition, they employ 
various data augmentation methods specifically designed for 3D skeleton data to improve the 
generalization ability of the network. Still, even though the way it performed was enhanced, 
there is still no reason for treating the skeleton's joints as isolated entities since in the real 
world, our bodies are highly interconnected. For instance, when walking, other body parts 
like the hands and the hip should also be taken into consideration i n addition to the joints 
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Figure 2.4: Demonstration of the shape-motion representation given out by [4]. 

directly wi th in the legs. The shape-motion representation derived from geometric algebra was 
presented by [4], addressed the significance of both joints and bones, and completely utilized 
the data offered by the skeleton sequence, as shown in 2.4. 

In this context, each skeleton joint is treated as a row and column in an image, and tem­
poral dynamics are encoded through convolutional operations. However, this approach l im­
its the consideration of co-occurrence features among all joints, as only neighboring joints 
within the convolutional kernel are considered. As a result, crucial correlations that may be 
related to the entire skeleton structure might be overlooked, preventing C N N s from learning 
comprehensive and useful features. Researchers have attempted to tackle this issue and en­
hance the representation capabilities of C N N s for skeleton data. [37] proposed an innovative 
end-to-end framework that employs a hierarchical approach to aggregate different levels of 
contextual information gradually. Firstly, point-level information is independently encoded, 
and then it is assembled into a semantic representation i n both the temporal and spatial do­
mains. By learning co-occurrence features wi th this approach, the model gains a more com­
prehensive understanding of the relationships among skeleton joints, improving its ability to 
recognize complex actions. Other challenges persist in these methods as the size and speed of 
the model, which can hinder real-time applications and require substantial computational re­
sources. [38] delves into techniques for optimizing C N N architectures to achieve more efficient 
models without sacrificing accuracy. Moreover, CNN-based methods can be sensitive to occlu­
sions, viewpoint changes, and other variations i n action sequences. Researchers have explored 
solutions to improve the robustness of C N N s in handling these challenges. For instance, [39] 
investigates methods to enhance skeleton visualization for improved action recognition under 
varying viewpoints. 

In summary, while CNN-based methods have shown promising results i n skeleton action 
recognition, they face unique challenges related to co-occurrence feature learning, model effi­
ciency, and robustness. Researchers continue to explore novel architectures, aggregation tech­
niques, and optimization strategies to address these issues and advance the capabilities of CNNs 
in effectively recognizing actions from skeleton data. As an ongoing open problem, further in ­
vestigation and innovation in CNN-based techniques hold the potential to unlock even more 
robust and accurate skeleton action recognition models. 
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2.2.3 GCN-Based Methods 

The inherent topological graph structure of human 3D-skeleton data sets it apart from tradi­
tional sequence vectors or pseudo-images typically used i n RNN-based or CNN-based meth­
ods. In recent years, Graph Convolutional Networks (GCNs) have emerged as a popular choice 
for effectively representing and processing graph-structured data, including skeleton graphs. 
There are two main types of graph-related neural networks: Graph and Recurrent Neural Net­
works (GNN) and Graph and Convolutional Neural Networks (GCN), research was focused pr i ­
marily on the latter. The application of GCNs to skeleton-based action recognition has shown 
promising results, displaying convincing performance on various benchmarks. Unlike sim­
ply encoding skeleton sequences into sequence vectors or 2D grids, GCNs offer the ability to 
fully express dependencies between correlated joints. These networks, as a generalization of 
CNNs , can be applied to arbitrary structures, making them suitable for modeling the complex 
connectivity i n skeleton graphs. 

One notable model that utilizes GCNs for skeleton-based action recognition is the "Spatial 
Temporal Graph Convolutional Networks" (ST-GCN) presented in [19]. This novel approach 
constructs a spatial-temporal graph wi th joints as graph vertices and natural connectivities 
in both human body structures and time as graph edges. The S T - G C N model learns higher-
level feature maps on the graph and subsequently classifies them using a standard Softmax 
classifier to predict the corresponding action category. Since the introduction of S T - G C N , the 
use of GCNs for skeleton-based action recognition has garnered significant attention, leading 
to various related works. Researchers have focused on efficiently utilizing skeleton data and 
exploring richer dependencies among joints. For instance, "Actional-Structural Graph Convo­
lutional Networks" (AS-GCN), proposed in [5], not only recognizes a person's action but also 
employs a multi-task learning strategy to predict the subject's next possible pose. The con­
structed graph i n A S - G C N captures richer dependencies through two modules: Actional Links 
and Structural Links, as shown in 2.5. 

However, the most common concern across GCN-based action recognition studies remains 
data-driven, aiming to uncover the latent information hidden wi thin 3D skeleton sequence 
data. The challenge lies i n acquiring and transforming the skeleton data into a graph represen­
tation while preserving its temporal-spatial coupling and considering the connections among 
joints and bones. Another significant concern and challenge in GCN-based action recognition 
lies in effectively handling temporal dependencies wi th in skeleton sequences. While GCNs are 
adept at capturing spatial relationships among joints in a single frame, they may struggle to 
explicitly model long-range temporal dependencies that span multiple frames. This limitation 
can impact the model's ability to recognize complex actions that involve intricate temporal 
dynamics. 

2.2.4 Self-Attention Mechanism-Based Methods 

The revolutionary Transformer model, as introduced i n [40] has made significant strides i n nat­
ural language processing and has since been adopted in various domains, including computer 
vision. A t the core of the Transformer's success lies its self-attention mechanism, which al­
lows it to learn relationships between elements wi th in a sequence effectively. This key feature 
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Figure 2.5: Demonstration of the feature learning in A S - G C N [5] wi th generalized skeleton 
graphs. The actional links and structural links capture dependencies between joints. 
Compared to S T - G C N , A S - G C N obtains responses on collaborative moving joints 
(redboxes). 

enables Transformers to handle long sequences, a limitation that GCNs face as we mentioned 
before, and also traditional L S T M and R N N networks struggle with. The multi-headed self-
attention mechanism further boosts efficiency by processing sequences i n parallel, departing 
from the recursive word-by-word approach of L S T M and R N N networks. The advantages of 
self-attention have paved the way for its application i n computer vision tasks, such as image 
classification and recognition, as demonstrated in [41]. This work combines the strengths of 
C N N s and self-attention to model both local and global dependencies in images, resulting in 
improved performance for image classification tasks. Similarly, in [42] self-attention was ap­
plied to learn spatio-temporal features from sequences of frame-level patches for video action 
recognition. The method effectively captured both spatial and temporal relationships, enhanc­
ing the model's ability to understand complex actions in videos. 

Inspired by the success of Transformers and self-attention i n computer vision, researchers 
have extended these principles to skeleton action recognition. In [43] the authors introduced a 
novel approach that utilizes self-attention instead of regular graph convolutions i n both spatial 
and temporal dimensions. This extension of self-attention into the graph structure of skeleton 
data allowed the model to effectively capture dependencies between joints in space and time, 
leading to improved action recognition performance. By incorporating self-attention into the 
G C N framework, this method enables more comprehensive modeling of the complex inter­
actions among skeleton joints, addressing the challenge of effectively capturing long-range 
temporal dependencies. Since distinct body components (such the arms and legs i n "walking") 
between adjacent frames move simultaneously, the correlation of different joints across frames, 
which the previous Transformer-based approaches cannot capture, is particularly useful. The 
STTFormer is an approach in [8], which is a novel spatio-temporal tuples transformer, where 
the skeleton sequence is broken up into multiple sections, and each portion has numerous con­
secutive frames that are encoded. The l ink between various joints' non-consecutive frames is 
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then captured by a spatio-temporal tuples self-attention module (STTA). In order to improve 
the capacity to differentiate identical activities, a feature aggregation module (IFFA) was also 
included between non-adjacent frames. This model has shown better performance on bench­
mark datasets when compared to state-of-the-art methods. In this study, we w i l l use ST-GCN, 
and the self-attention mechanism wi th the STTFormer model to investigate the capabilities of 
both techniques on different frameworks and learning strategies such as self-supervised learn­
ing which w i l l discuss in the following section. 

2.3 Self-Supervised Learning 

Traditional supervised learning methods for computer vision tasks require large annotated 
datasets, which can be time-consuming and expensive to produce. Additionally, unsuper­
vised learning methods lack guidance and may not generate meaningful representations. Self-
Supervised Learning (SSL) offers a compelling solution to these challenges by leveraging un­
labeled data to learn useful representations without the need for external annotations. Self-
Supervised Learning is a branch of machine learning where a model learns to predict or re­
construct certain parts of its input data without explicit supervision. The model is trained to 
solve pretext tasks, which are constructed from the data itself, rather than relying on externally 
labeled datasets. 

By employing pretext tasks, the model learns to capture meaningful features from the data, 
which can then be transferred to downstream tasks, as shown i n 2.6. In supervised learning, 
the model is trained on labeled data wi th input-output pairs, whereas in unsupervised learning, 
the model aims to discover underlying patterns i n unlabeled data. SSL falls between these 
two paradigms, utilizing unlabeled data and transforming it into labeled-like data by creating 
pretext tasks that serve as supervisory signals for training. 

2.3.1 SSL: Pretext Tasks 

Early research i n SSL explored various pretext tasks to effectively exploit unlabeled data. A 
common approach involved training models to predict missing parts of an input image, such 
as inpainting or image completion tasks. By predicting masked-out regions, the model learned 
to understand contextual relationships wi th in the image. Papers such as [44] and [45] delved 
into this area. In [46] contributed to the development of another prevalent pretext task was 
image rotation, where the model learned to predict the rotation angle applied to an image. This 
task encouraged the model to capture semantic information and invariant features in different 
orientations. Recent advancements in SSL have explored novel approaches, including pretext 
tasks and contrastive learning methods. One notable research direction focuses on pretext 
tasks, where the model learns from multiple transformations of the same input data, such as 
jigsaw puzzles in [47], colorization [48]. These pretext tasks offer diverse learning signals, 
leading to more robust feature representations, is a pioneering work in this area. 
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Figure 2.6: The general pipeline for SSL from pre-training the model wi th a pretext task then 
transferring to a downstream task, source from [6]. 

2.3.2 SSL: Contrastive Learning 

On the other hand, contrastive learning has gained popularity, where the model is trained to 
pull similar instances closer in the embedding space while pushing dissimilar instances apart, 
as shown i n 2.7. This method enables the model to learn high-level feature representations 
that effectively capture the inherent structure of the data. One of the pioneering works in 
contrastive learning is (CPC) [49]. C P C formulates a pretext task where the model predicts 
future audio segments given past segments. The key insight behind C P C is to contrast the 
predictions of true future segments wi th other negative samples, forcing the model to learn 
representations that capture relevant information for future prediction. Papers such as [50] and 
[51] have significantly contributed to the advancements in contrastive learning. [50] leveraged 
momentum contrast to create a contrastive loss. The model uses a moving average of the 
model's weights, known as the momentum encoder, to generate a key representation for each 
data sample. The main encoder then generates a query representation, and the contrastive loss 
encourages the model to maximize agreement between the query and key representations for 
positive samples while minimizing agreement for negative samples. 

One of the primary challenges i n early contrastive learning methods was the choice of neg­
ative samples. In the C P C method, selecting negative samples from the same audio sequence 
resulted in the model learning trivial solutions. To overcome this, researchers introduced more 
sophisticated strategies to create informative negative samples, such as using samples from 
other data instances or different time steps. Additionally, contrastive learning was computa­
tionally demanding as it required comparing each positive sample wi th all possible negative 
samples. Early research explored techniques to speed up the process, such as using large mem­
ory banks for negative samples and employing batch normalization for efficiency. 

Recent research as [51] introduced the SimCLR framework, which demonstrated the effec­
tiveness of large-batch contrastive learning and data augmentation plays a critical role in defin­
ing effective predictive tasks. However, a limitation of S imCLR lies in its reliance on large batch 
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Figure 2.7: Demonstration i n [7] of contrastive learning by minimizing the similarity function 
between the anchor and the positive sample, and maximizing the distance between 
the anchor and the negative sample. 

sizes, which might not be practical for all hardware configurations. Another notable work is 
(SwAV) [52], which proposed a novel clustering-based approach for contrastive learning. While 
SwAV achieved impressive results, its success relies on having a large number of data samples, 
which might pose challenges for small-scale datasets. 

In [53], the authors introduced (BYOL) an innovative approach to self-supervised learning 
that are negative-sample-free and not relying on negative pairs, which solves the issue of min­
ing the relevant negative pairs and it doesn't need the explicit generation of negative sample 
pairs. In [54] (DINO) they were inspired by (BYOL) and they proposed an asymmetric network 
based only on positive pairs to prevent feature collapse. This recent research achieved state-of-
the-art results by leveraging an ensemble of neural networks to learn and bootstrap their own 
unsupervised representations. 

2.3.3 Evaluating SSL models 

Evaluating the performance of SSL methods requires careful consideration due to the absence 
of traditional supervised labels. Researchers have devised various evaluation techniques to 
assess the quality of learned representations and the effectiveness of pretext tasks i n capturing 
meaningful features. 

One common evaluation metric i n SSL is the "linear evaluation protocol," where the learned 
representations are fine-tuned on downstream tasks using simple linear classifiers. By using 
linear classifiers, researchers can measure the quality of the learned features without intro­
ducing additional complexity from complex classifiers or fine-tuning the entire model. The 
performance of these linear classifiers on downstream tasks serves as a proxy for evaluating 
the generalization capability of the learned representations. Another crucial aspect of SSL eval­
uation involves assessing how wel l the learned representations transfer to downstream tasks. 
SSL models aim to capture high-level features, which should be transferable to various com-
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puter vision tasks. Transfer learning to tasks such as image classification, object detection, and 
semantic segmentation can be employed to evaluate the effectiveness of learned representa­
tions in real-world applications. 

A key evaluation consideration in SSL is the comparison between fine-tuning the entire 
model and using a linear classifier on top of the frozen backbone. Fine-tuning the entire model 
on downstream tasks allows for further adaptation to specific task domains, potentially achiev­
ing higher task-specific performance. However, fine-tuning may lead to overfitting or require 
a substantial amount of labeled data, which defeats the purpose of SSL. On the other hand, us­
ing linear classifiers on top of the frozen SSL backbone is computationally efficient and avoids 
overfitting issues. This approach allows researchers to evaluate the transferability of learned 
representations without requiring additional labeled data for fine-tuning. Although fine-tuning 
may yield better results on task-specific metrics, linear evaluation provides valuable insights 
into the generalization capabilities of the SSL model across different tasks. 

The success of SSL lies in its ability to learn generic feature representations, which can be 
transferred to a wide range of downstream computer vision tasks. Some common downstream 
tasks include: 

• Classification: Evaluating the SSL model's ability to classify objects on the learned 
features. This is one of the most common and widely used downstream tasks for SSL 
evaluation. 

• Object Detection: Assessing the performance of the SSL model on detecting and localiz­
ing objects wi th in an image. This task evaluates the representations' capacity to capture 
object-level information. 

• Semantic Segmentation: Evaluating the model's ability to segment an image into dif­
ferent object categories or regions. This task tests the model's capability to understand 
spatial relationships wi th in an image. 

• Action Recognition: Assessing the model's performance on recognizing and classi­
fying actions from video sequences. This task examines the representation's ability to 
capture temporal dynamics. 

• Domain Adaptation: Evaluating the transferability of learned representations across 
different domains or datasets. This task is critical for assessing SSL models' generaliza­
tion across various real-world scenarios. 

In conclusion, Self-Supervised Learning presents a compelling alternative to traditional su­
pervised and unsupervised learning approaches, harnessing the potential of unlabeled data to 
learn informative representations. Through pretext tasks and contrastive learning, SSL has 
demonstrated remarkable success i n solving computer vision tasks and continues to be an ac­
tive area of research in the field of machine learning. 
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2.4 Self-supervised skeleton-based action recognition 

Self-supervised learning has emerged as a promising approach for learning informative repre­
sentations from unlabeled data in the context of skeleton-based action recognition. Researchers 
have explored various self-supervised techniques to leverage the temporal dynamics and spatial 
information present in skeleton data. In the paper [55] the authors proposed a method based on 
a recurrent encoder-decoder G A N to reconstruct the input skeleton sequence. By learning to 
reconstruct the input sequence, the model can capture long-term temporal dynamics and subtle 
motion patterns essential for action recognition. Building on the ideas of reconstruction, the 
research (Predict&Cluster) in [56] introduced a decoder to improve the representation ability 
of the encoder. The method leverages both prediction and clustering to encourage the model 
to learn more discriminative and compact representations. 

In [57] authors proposed (MS2L) a multi-task framework, including motion prediction and 
jigsaw puzzle tasks, to enhance the model's understanding of motion and spatial relationships 
among joints. By jointly solving multiple tasks, the model can capture richer information from 
the skeleton sequences. (AS-CAL) was introduced in [58] as an approach that utilizes momen­
tum L S T M to regularize the feature space. A long wi th various skeleton augmentation strate­
gies, this method aims to enhance the model's robustness and generalization capability. In [59] 
proposed SkeletonCLR, which applies a memory bank to store negative samples and employs 
a cross-view knowledge mining strategy. By leveraging the memory bank and cross-view con­
sistency, the model can capture more comprehensive and discriminative representations. In 
order to add movement patterns and compel the encoder to acquire broader representations, 
(AimCLR) proposes to make extensive use of augmentation. The amount of redundant infor­
mation wi th in the spatial joints and temporal frames, which might increase the strength of 3D 
visual representation and are crucial for downstream tasks, has not been taken into account. 
These contrastive learning approaches, on the other hand, significantly rely on powerful data 
augmentation procedures. 

The Partial Spatio-Temporal Learning (PSTL) is a recent research published in 2023 i n [9] 
proposed to address the limitations of existing methods in skeleton-based action recognition. 
While current approaches focus on a global perspective to discriminate different skeletons, 
PSTL aims to leverage the local relationship between various skeleton joints and video frames, 
which is crucial for real-world applications. PSTL adopts a unique spatio-temporal masking 
strategy to construct partial skeleton sequences, allowing the model to focus on specific regions 
of interest. The framework utilizes a negative-sample-free triplet stream structure, comprising 
an anchor stream without any masking, a spatial masking stream wi th Central Spatial Masking 
(CSM), and a temporal masking stream wi th Mot ion Attention Temporal Masking (MATM) . 
These innovative components facilitate the exploitation of local dependencies and cues wi th in 
the skeleton sequences, ultimately leading to improved action recognition performance. As 
part of this research, we w i l l further investigate the efficacy of PSTL wi th different settings and 
diverse datasets to comprehensively validate its potential in advancing skeleton-based action 
recognition. 
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In this section, we present the methodology for self-supervised skeleton-based action recog­
nition, exploring two distinct approaches to leverage the benefits of self-supervised learning: 
DINO wi th STTFormer and PSTL wi th ST-GCN. We w i l l compare their performance on bench­
mark datasets, highlighting learning strategies, and data preprocessing. First we propose an 
approach inspired by the DINO framework introduced in [54]. Unlike the original DINO, which 
focuses on image data, our adaptation is designed explicitly for 3D skeleton data. In the DINO 
framework, the self-distillation technique is applied, wherein a vision transformer is used as 
the teacher network. In our context, we leverage the momentum encoder of STTFormer as 
the teacher network, predicting its output directly. We use a standard cross-entropy loss to 
align the student and teacher predictions, effectively learning meaningful representations with­
out the need for labeled data. The core idea is to utilize the STTFormer, a spatio-temporal 
transformer-based network, as the encoder for our self-supervised learning. The second ap­
proach we explore is the Partial Spatio-Temporal Learning (PSTL) framework, a method explic­
itly designed for skeleton-based action recognition. In this approach, we employ the S T - G C N 
architecture as the backbone. 

For our experiments, we w i l l employ the existing PSTL framework and compare it wi th the 
DINO approach. The first approach utilizes the combination of PSTL wi th S T - G C N as the en­
coder. Our second approach, which is our contribution, employs a new combination of DINO 
and STTFormer as an encoder. For both approaches, we adopt self-supervised learning strate­
gies, where the model learns to make meaningful predictions from the unlabeled skeleton data. 
This allows us to overcome the limitations of traditional supervised methods, which rely on 
costly and time-consuming data annotation. During training, we employ data preprocessing 
techniques to prepare the skeleton data for learning. This includes normalization, joint align­
ment, and temporal synchronization. Additionally, we apply data augmentation to increase 
the diversity of the training set and enhance the robustness of the learned representations. The 
goal is to identify the strengths and weaknesses of each method, providing valuable insights 
into the application of self-supervised learning for skeleton-based action recognition. 

3.1 First Approach Overview: DINO & STTFormer 

The success of the DINO framework i n self-supervised learning for images, where a transformer 
serves as the backbone, has motivated us to explore its potential for skeleton-based action 
recognition. Transformers have demonstrated remarkable capabilities in learning meaningful 
representations from data, especially in self-supervised learning tasks. Leveraging the success 
of transformers in SSL, we propose to use the STTFormer as the backbone i n our DINO-inspired 
approach. In our DINO-inspired approach, we employ two streams wi th the same encoder, the 
STTFormer. As shown in 3.lThe architecture consists of an upper stream, representing the 
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x' 

Figure 3.1: Illustration of the DINO framework where The model passes two different random 
transformations (x,x') of an input image s to the student and teacher networks. 

student, and a lower stream, acting as the teacher. The primary objective is for the student to 
learn good representations from the teacher. The key feature is the self-distillation technique, 
where the teacher network guides the learning of a student network through cross-entropy 
loss. The student learns from the gradients backpropagated through the loss function during 
training. However, there is a stop gradient applied to the teacher to prevent direct influence 
from the student's updates. Instead, the teacher learns from the exponential moving average 
of the student's weights, creating a smoother and more stable learning process. 

The encoder in our approach utilizes spatio-temporal tuples encoding to capture both spa­
tial and temporal relationships wi th in the skeleton data. This encoding strategy allows the 
model to extract meaningful joint interactions and motion patterns essential for accurate ac­
tion recognition. 

In the following section, we provide a comprehensive breakdown of each component wi th in 
the Spatio-Temporal Tuples Transformer. This includes detailed descriptions of self-attention 
mechanisms wi th (STTA) blocks, and Inter-Frame Feature Aggregation (IFFA). We also elab­
orate on positional encoding and its significance i n capturing the sequential dependencies of 
skeleton data. 

3.1.1 Backbone Encoder: STTFormer 

Spatio-Temporal Tuples Transformer (STTFormer) is a novel method for skeleton-based action 
recognition that captures the dependencies between joints and achieves better performance 
on large-scale datasets. The overall architecture of STTFormer is shown i n 3.2. The input is 
a skeleton sequence wi th VQ joints and To frames. The sequence is divided into T parts, each 
containing n consecutive frames, for a total of V = n * VQ joints. Then, a tuple encoding layer 
is utilized to encode each tuple data. A total of L layers are stacked i n the spatio-temporal 
tuples Transformer, and each layer is composed of Spatio-Temporal Tuples Attention (STTA) 
and Inter-Frame Feature Aggregation (IFFA). Finally, the obtained features are input into a 
global average pooling layer and a fully connected layer to obtain classification scores. 

A t the beginning of the Spatio-Temporal Tuples Encoding phase, each tuple is flattened into 
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Figure 3.2: Illustration from [8] shows the overall architecture of the STTFormer. It consists 
of two main blocks: the spatio-temporal tuples encoding and spatio-temporal tuple 
Transformer. 

a short sequence, as the raw skeleton sequence X0 g rGoxJo* v 0 is fed to a feature mapping 
layer to expand the input channel to a set number C\. Subsequently, the skeleton sequence is 
divided into T non-overlapping tuples: 

X = [x1,x2,...,xT},xi G WSptxnxVo 

Then the tuples sequence goes through a flattening layer: 

X G JjCixTxraxVo jg>CixTxV 

where T = To/n, V = n x VQ. Then a positional encoding strategy is used to encode the 
temporal and spatial information of each joint in the tuple. Specifically, each joint is repre­
sented by a vector of its 3D coordinates, and the temporal information is represented by a 
vector of its frame index. Then, the positional encoding is applied to each vector to capture the 
relative position of each joint i n the tuple, as shown in 3.3. The positional encoding is defined 
as follows: 

PEipos,2i) = sin(pos/ 1 0 0 0 0 2 i / C i » ) 

PEipos,2i+1) = cos{pos/100002i/Ci") 

where pos is the position of the joint i n the tuple, i is the index dimension of the position 
encoding vector, and Citi is the dimension of the joint vector. The output of the encoding is 
defined as X{n 

In the Spatio-Temporal Tuples Attention phase, a self-attention mechanism is used to capture 
the relationship between joints in each tuple. Specifically, a spatio-temporal tuple self-attention 
(STTA) module is used to extract the related features of joints i n each short sequence. The S T T A 
module is defined as follows, the encoded sequence Xin is projected into the query Q, key K 

and value V: 

Q,K,V = Conv2D(ixi)(xin) 

Like the standard Transformer, the dot-product is used as the similarity function, the Tanh 

function is utilized to normalize the obtained weights. 
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Figure 3.3: Transformation of the input data through the spatio-temporal tuples encoding. 

Xattn(Q,K, V) Tanh{C^)V 
C 

Where C denotes the number of channels of the key K, which can avoid excessive inner 
product to increase gradients stability during training. The output of the S T T A module is a 
weighted sum of the value matrix V, where the weights are determined by the final attention. 

To fuse the output, a feed-forward layer using 1 x 1 2D convolution is added, resembling 
the transformer, as shown in 3.4. 

A single action can be broken down into numerous smaller ones, such as the "long jump" 
which includes the "run-up," "take-off," and "landing" motions. Each tuple i n the STTFormer 
contains a sub-action that was created by modeling a number of consecutive n frames using 
STTA. The construction of a correlation between various sub-actions, such as "run-up," "take­
off," and "landing," w i l l aid in action recognition and aid i n separating similar acts, such as high 
jump and long jump. In the Inter-Frame Feature Aggregation phase, a convolution operation 
wi th &2 x 1 kernel size is used to realize inter-frame feature aggregation i n the temporal dimen­
sion. Specifically, the output of the S T T A module is fed into a convolutional layer to aggregate 
the features of each joint across different frames. The IFFA operation is defined as follows: 

XlFFA = ConV2D(k2xl){XSTTA) 

where XgTTA is the output of the S T T A module, and ki is the kernel size. A t last, the residual 
connections are used to stabilize network training as shown in 3.4. A l l outputs connected to 
the rest are regularized to prevent overfitting. 

3.1.2 Learning Strategy: DINO 

In the DINO framework, the model processes two different random transformations of an input, 
in our method, we w i l l pass two skeleton sequences. These transformations are passed through 
the student network, denoted as ggs, and the teacher network denoted as get- Both the student 
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Figure 3.4: A n example of the suggested spatio-temporal tuples L of these layers make up the 
transformer layer, which is the whole STTFormer. 

and teacher networks have identical architectures but differ in their parameters. The output 
of the teacher network is centered wi th a mean computed over the batch, resulting i n a more 
stable and robust representation. Each network, i.e., the student and the teacher, produces a K-
dimensional feature representation, denoted as Ps and Pt, respectively, as shown in 3.1. These 
feature representations are then normalized using a softmax operation wi th a temperature 
TS over the feature dimension. This normalization step ensures that the features remain in a 
suitable range for learning and generalization: 

p _ exp(g 9 s (x)( i ) / r 3 ) 
S { > ~ E f ^ e x p ^ W W / r , ) ' 

The core of the DINO framework lies in the self-distillation process. W i t h a fixed teacher, 
the similarity between the student and teacher features is measured using a cross-entropy loss: 

mmgsH(Pt(x),Ps(x)) 

where: 

H(a, b) = —a log b 

More precisely, from a given skeleton sequence, a set V of different skeleton augmenta­
tions is generated. This set contains two weak augmentations, xg\ and x92 and several strong 
augmentations. A l l augmentations are passed through the student while only the weak aug­
mentations are passed through the teacher, therefore we mimic the strategy of encouraging 
"local-to-global" correspondences used in images from the DINO paper. The loss then is mini­
mized as: 
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Figure 3.5: The output h of the encoder / go through a projection head g to get embeddings z 

and z' for the student and the teacher, respectively . 
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This loss function drives the student to learn meaningful and discriminative representations 
by mimicking the knowledge present in the teacher's feature space. A crucial aspect of DINO 
is the use of exponential moving average to update the teacher network's weights. The teacher 
network learns from the moving average of the student network's parameters, resulting in 
smoother and more consistent updates. This technique stabilizes the learning process and helps 
the student converge to better representations. 

The neural network g is composed of a backbone / which is the STTFormer, and a projec­
tion head h: g = h o f. The features used in downstream tasks are the backbone / outputs. 
The projection head comprises of two layers of a multi-layer perceptron (MLP) wi th a hidden 
dimension of 512, 12 normalization, and a fully connected layer (Weight Norm) wi th weight 
normalization and K dimensions, as shown in 3.5. 

Centering and sharpening are used so that the first prevents one dimension from dominating 
while encouraging collapse to a uniform distribution, whereas sharpening does the reverse. The 
use of both processes balances the impact they have. Output sharpening is carried out by setting 
the temperature r% to a low value in the teacher's softmax normalization. This mechanism has 
been proven to make a similar impact as the negative samples in which it makes the system 
learn meaningful representations and prevent collapse to a uniform distribution, which makes 
the system negative-sample-free. 

3.2 Second Approach Overview: PSTL & ST-GCN 

The second approach in this study involves combining the "Partial Spatio-Temporal Learning" 
(PSTL) framework wi th the "Spatial Temporal Graph Convolutional Networks" (ST-GCN) as a 
backbone. This approach is motivated by the limitations of current contrastive learning-based 
methods in effectively leveraging the r ich action clues stored i n skeleton sequences. Current 
contrastive learning-based methods focus on finding effective global data augmentations to 
create various views of the skeleton. However, this global perspective may limit the model's 

25 



3 Methodology 

Figure 3.6: The general structure of PSTL representation in [9]. Red, blue, dark gray, and light 
gray are the degrees for Central Spatial Masking (CSM). Mot ion Attention Temporal 
Mask ( M A T M ) uses m to represent motion density and t to represent time. 

ability to fully exploit the local relationships between different skeleton joints and video frames, 
especially in real-world scenarios. Moreover, these methods often require a large batch size or 
memory bank, making them unsuitable for scenarios wi th limited skeleton data. PSTL draws 
inspiration from the "Skeleton Barlow Twins" (SkeletonBT) method [60], which is known for 
its effective utilization of local relationships in skeleton sequences. Building on this idea, PSTL 
adopts a triple stream architecture, as shown in 3.6. It applies Central Spatial Masking (CSM) on 
the spatial masking stream and Mot ion Attention Temporal Masking ( M A T M ) on the temporal 
masking stream. Additionally, an extra anchor stream is included to retain the original semantic 
information. 

Graph Convolution Networks (GCN) have demonstrated considerable success in the field 
of human action recognition. GCNs excel at processing data wi th graph structures, making 
them a suitable choice for handling skeleton-based action recognition tasks. The Spatial Tem­
poral Graph Convolutional Networks (ST-GCN) model serves as the backbone for the PSTL 
framework. S T - G C N is capable of capturing both spatial and temporal dependencies wi th in 
the skeleton sequences, and moreover, its stable results on different datasets make it wel l -
suited for our study. The PSTL approach adopts a triple stream architecture, wi th all three 
streams util izing the same encoder, which is the S T - G C N model. In the following section, each 
component of the S T - G C N model is described in detail. This includes a comprehensive expla­
nation of how S T - G C N captures spatial and temporal information, processes graph structures, 
and extracts relevant features from skeleton sequences. By integrating the PSTL framework 
with the S T - G C N backbone, the second approach aims to overcome the limitations of current 
contrastive learning-based methods and enhance the model's performance and robustness in 
skeleton-based action recognition tasks. 

3.2.1 Backbone Encoder: ST-GCN 

The Spatial Temporal Graph Convolutional Networks (ST-GCN) is a powerful model designed 
for action recognition tasks, specifically tailored for skeleton-based data. The motivation be­
hind using graph convolution networks arises from the fact that skeletons are inherently rep­
resented in the form of graphs, where each node corresponds to a joint of the human body. 
This graph representation makes it challenging to utilize traditional models like convolutional 
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networks, which are designed for 2D or 3D grids. The S T - G C N model is formulated on top 
of a sequence of skeleton graphs, where each graph represents a single frame of the action 
sequence. The graph nodes represent the joints of the human body, while the edges can be of 
two types: spatial edges that encode the natural connectivity of joints wi th in the human body 
structure, and temporal edges that connect the same joints across consecutive timesteps in the 
action sequence, as shown in 3.7. The core of the S T - G C N model lies i n the construction of 
multiple layers of spatial temporal graph convolution. These layers enable the integration of 
information along both the spatial and temporal dimensions of the skeleton data. This integra­
tion allows the model to capture the spatial relationships between joints in a single frame as 
well as the temporal dependencies between corresponding joints across consecutive frames in 
the action sequence. 

In S T - G C N , the graph denoted as G = (V, E) is formed on a skeleton sequence wi th iV 
joints and T frames, capturing both intra-body and inter-frame connections. The node set 
V = {vu\\t = l,...,T,i = 1 , i V } includes all the joints in the skeleton sequence. The 
input to the S T - G C N model is represented by the feature vector on each node F{vu), which 
comprises the coordinate vectors and estimation confidence of the i- th joint on frame t. To 
construct the spatial temporal graph, the model perform the process i n two steps: 

Intra-Skeleton Connection (Spatial Edges): W i t h i n each frame, the joints are connected 
based on the natural connectivity of the human body structure. These connections, denoted as 
Eg = {vtiVtj\\(i, j) £ H}, are established using the set H, which specifies the naturally con­
nected human body joints. This automatic assignment of connections ensures that the network 
architecture can handle datasets wi th varying numbers of joints or joint connectivities. 

Inter-Frame Connection (Temporal Edges): Each joint is connected to the corresponding 
joint in the consecutive frame, forming inter-frame edges denoted as Ep = {vtiVtt+i\j}. These 
inter-frame edges capture the temporal relationships and represent the trajectories of each joint 
over time. Thus, for a given joint i, all edges i n Ep w i l l indicate its trajectory through time. 

Spatial Graph Convolution allows the model to perform convolutional operations on the 
spatial graph, treating each frame independently and encoding the relationships between joints 
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within a single frame. Let's delve into the details of the Spatial Graph Convolution. In this case, 
on a single frame at time r , we have iV joint nodes Vt, and the skeleton edges E$ = {vuvtj\\t = 

t, £ i 7 represent the connectivity between joints based on the human body structure. The 
convolution operation on graphs is an extension of the traditional 2D convolution on regular 
grids. Let's denote the input feature map on the spatial graph as f\n : Vt —>• M c , where c is 
the number of channels or dimensions of the feature vectors on each node. The output feature 
map font is computed by summing over the sampled input features from neighboring nodes 
on the graph, multiplied by learnable weight vectors w(lu{vtj associated wi th each sampled 
input feature: 

font (Vti) = Yl -^—7 sfon (Vtj) " W (lti (vtj)) 
TT, . ^ti (Vtj) 

vtjeB(vti) 

• fout(vu) is the output feature at node vu 

• B{vti) is the set of neighboring nodes of vt% 

• Ztiivtj) is a normalization factor for the sampled features, and 

• w(ki(vtj)) is a learnable weight vector associated wi th each sampled input feature. 

This formulation allows the S T - G C N model to perform graph convolutions efficiently on 
spatial graphs, treating each frame independently and considering the spatial relationships 
between different joints wi th in a single frame. It provides a graph-based alternative to standard 
2D convolutions and enables the model to effectively handle skeletal data for action recognition 
tasks. 

3.2.2 Learning Strategy: PSTL 

The Partial Spatio-Temporal Learning (PSTL) framework presents an innovative approach to 
exploit local relationships from a partial skeleton sequence using a unique spatio-temporal 
masking strategy. The motivation behind PSTL is to address the limitations of existing con-
trastive learning-based methods that often rely heavily on strong data augmentation strategies, 
which may neglect the r ich action clues stored i n the skeleton sequences. The PSTL framework 
is built upon a triplet stream structure, which includes an anchor stream, a spatial masking 
stream wi th Central Spatial Masking (CSM), and a temporal masking stream wi th Mot ion A t ­
tention Temporal Masking ( M A T M ) , as shown in 3.6. In each stream, ordinary augmentations 
are initially applied to enhance the diversity of input samples. 

A 3D human skeleton sequence is denoted as s £ M.CxTxV, where T represents the number 
of frames and V denotes the number of joints. The channel dimension C represents the 3D 
position of the skeleton. To start the self-supervised learning process, the input skeletons are 
first augmented using an ordinary augmentation function T to obtain diverse views x and x'. 

Next, an encoder / is utilized to extract features h = f(x;9) and h! = f(x';9), where 
h, h! G U°h, and 9 represents the encoder's parameters. Following the feature extraction, a 
projector g maps each feature to a higher-dimensional space, generating embeddings z = g(h) 

and z' = g(h'), where z, z' G RCz. 

28 



3.2 Second Approach Overview. PSTL & ST-GCN 

The core objective of PSTL is to encourage the empirical cross-correlation matrix C between 
embeddings z and z' to approximate an identity matrix, thereby capturing the relationship 
between the two streams. To achieve this, PSTL employs the following loss function: 

where C is the cross-correlation matrix computed between embeddings z and z' along the 
batch dimension b: 

In this loss function, the first term encourages the diagonal elements of C to be close to 1, 
making the embeddings invariant to the applied augmentation. The second term forces the off-
diagonal elements of C to be close to 0, effectively decoupling different embedding components 
to minimize redundancy wi th in the representation. The trade-off parameter A balances the 
contribution of the two terms. 

By minimizing the loss C, PSTL encourages the encoder to capture meaningful relationships 
between different streams of the augmented skeletons, resulting in discriminative and robust 
representations that can be effectively used for downstream tasks like action recognition. 

The traditional approach of directly setting the values of masked joints to zero is unreason­
able for skeleton data, as it removes the joint semantic information, which is critical for action 
recognition. In the spatial masking stream, Central Spatial Masking (CSM) is used to filter out 
selected joints from the feature calculation process. Instead of setting the selected joint posi­
tions to zeros, which may not be suitable for skeleton data, the approach considers the topology 
of the human skeleton as a predefined graph. By filtering out joints wi th higher probabilities 
of centrality, the encoder can focus more on less explored skeletons, enhancing the model's 
understanding of the joints' connectivity. 

To further improve the strategy, the concept of degree centrality in the human skeleton 
graph topology is leveraged. It is observed that joints wi th higher degrees (more connected) 
can acquire richer neighborhood information. Thus, C S M assigns higher probabilities to mask 
joints that have more connectivity. By masking such connected joints, the encoder can capture 
relationships between a wider range of joint information. 

The process of assigning masked probabilities is as follows: Let Vi denote the i- th joint in 
the skeleton, where i G ( 1 , 2 , n ) , and n is the total number of joints in the skeleton. There 
are four types of joints: light gray joints located at the margin of the graph have a degree of 1, 
dark gray joints have a degree of 2 (more connective and the majority in the graph), blue joints 
have a degree of 3, and red joints have a degree of 4, as shown in 3.6. 

To calculate the masked probability for each joint Vi, the degree di of each joint is first 
computed, and then the probability pi is set as follows: 

Pi = 
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where di represents the degree of the i- th joint, and the denominator Y^=i &j ensures that 
the probabilities sum up to 1. By using this strategy, C S M focuses on masking joints based 
on their degree centrality, enhancing the encoder's ability to capture a broader range of joint 
relationships. 

In the temporal masking stream, the Motion Attention Temporal Masking (MATM) strategy is 
introduced to prioritize frames that change quickly. These frames often contain more semantic 
information about the actions, making them more valuable for learning meaningful represen­
tations. To compute the motion m G j ^ C x T x V 0 f ^ e s e q U e n c e S ; t n e temporal displacement 
between frames is calculated as m-.j,-. = £ : , t+i , : — £:,*,:> where x is the input skeleton sequence 
with T frames and V joints. 

Next, M A T M calculates the overall motion rate of a frame, which serves as the attention 
weight. The motion rate at for frame t is computed as follows: 

{mtf 
at ~ 

E i = i ( ^ i ) 2 

where at represents the motion rate of frame t, and the denominator Yli=i(.mi)2 ensures 
that the attention weights sum up to 1. 

Once the attention weights are computed, the top-K attention weights an, atK are se­
lected, and the corresponding frames x^, •••,xtK serve as the key-frames that contain more 
semantic information about the actions. These key-frames are then masked, and the encoder 
is encouraged to capture the relationship between the feature from the masked sequence and 
the anchor feature, which contains the total semantic information. 

To capture the relationship between masked joints and unmasked ones, two cross-correlation 
matrices C and C are computed between embeddings z and z'c, and between z and zm, respec­
tively. These cross-correlation matrices are used to formulate the loss functions C\ and C2, 

which help i n guiding the encoder to learn meaningful and discriminative representations. 
The loss function C\ is formulated as follows: 

A = £ ( I - 4 ) 2
 + A £ £ ( ^ ) 2 

i i jjti 

The first term of C\ encourages the diagonal elements of C to be close to 1, forcing the 
representation of the partial data to be similar to that of the total data. The second term pro­
motes the decoupling of different embedding components, minimizing redundancy wi thin the 
representation and preventing it from becoming a constant. 

Similarly, the cross-correlation matrix C between z and zm is used to formulate the loss 
function £2: 

£2 = £ ( i - 4 ) + A £ £ ( C . 

i i j^i 
The loss £2 captures the relationship between masked and unmasked frames. The trade-off 

parameter A is used to balance the dimension difference between the first and second terms, 
keeping the same weight on both losses. 
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The total loss C for PSTL is then given by: 

C = d+C2 

By optimizing this total loss, PSTL encourages the encoder to learn meaningful and robust 
representations that capture both spatial and temporal relationships wi th in the skeleton se­
quences, leading to improved performance on downstream action recognition tasks. 

A t the conclusion of this chapter, we presented two different approaches as our method­
ology to address the challenge of recognizing human actions based on skeleton data using 
self-supervised learning. The first approach utilizes the DINO framework, originally designed 
for images, and adapts it to skeleton data by employing the STTFormer as the backbone. The 
DINO approach employs self-distillation wi th no labels, enabling the student network to learn 
from the teacher network's predictions. On the other hand, the second approach leverages the 
Partial Spatio-Temporal Learning (PSTL) framework in combination wi th the S T - G C N back­
bone. PSTL employs a unique spatio-temporal masking strategy to exploit the local relation­
ships between skeleton joints and frames. By investigating these two distinct solutions, we aim 
to tackle the research question of recognizing human actions from skeleton data through self-
supervised learning. The comparison between DINO wi th STTFormer and S T - G C N wi th PSTL 
w i l l provide valuable insights into the efficacy and suitability of each approach for skeleton-
based action recognition, paving the way for further advancements in self-supervised learning 
in the context of human action understanding. 
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In this chapter, we evaluate the performance of the proposed approaches for skeleton-based 
action recognition using self-supervised learning. We start by describing the datasets used in 
our experiments, followed by the data preparation and processing steps. We then provide im­
plementation details, including the architecture configurations and hyperparameters. Finally, 
we outline the experimental settings used for evaluation. 

4.1 Datasets 

For our experiments, we w i l l evaluate our methods on two different datasets we primarily 
use the N T U RGB+D dataset [12], a large-scale benchmark for 3D human action recognition 
for the purpose of achieving the first research objective which is developing and evaluating a 
contrastive self-supervised approach for action recognition on 3D human skeleton data. Then 
we w i l l investigate and evaluate the proposed methods on the Dr ive&Act dataset [13] dedicated 
for driver behavior inside the car. 

4.1.1 NTU RGB+D Dataset 

N T U RGB+D dataset proposed i n 2016, was captured simultaneously using three Microsoft 
Kinect V2 sensors. It comprises 56,000 action sequences in 60 action classes, including 40 daily 
actions, 9 health-related actions, and 11 mutual actions. The data was collected from 40 vol­
unteers, and each action sequence contains the three-dimensional positions of 25 body joints 
per frame, as shown i n 4.1. The dataset is divided into training and test sets using two differ-
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Figure 4.1: Illustration in [11] showing the 25 joints of the human body based on N T U RGB+D. 
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Figure 4.2: N T U RGB+D dataset [12] illustration of skeleton data. 

ent standards: Cross-Subject (X-Sub) and Cross-View (X-View). In the Cross-Subject setting, 
the dataset which contains 40320 samples and 16560 samples for training and evaluation, is 
split based on the person ID, resulting i n 20 subsets for both the training and test sets. On the 
other hand, the Cross-View setting containing 37920 and 18960 samples for training and eval­
uation, divides the dataset according to camera ID. The samples collected by cameras 2 and 3 
are used for training, while those collected by camera 1 are used for testing. Notably, the three 
cameras have horizontal angles differing by 45° each, ensuring diverse perspectives for robust 
evaluation. 

4.1.2 Drive&Act Dataset 

The second dataset is the Dr ive&Act dataset which is a significant benchmark for driver ac­
tivity recognition, capturing activities in both manual and autonomous driving modes. This 
dataset offers a comprehensive collection of driver actions and interactions inside the vehi­
cle cabin, providing valuable insights for driver monitoring and autonomous driving systems. 
The dataset consists of over 9.6 mil l ion frames, recorded from six different camera views and 
three modalities, collected by five Near-Infrared (NIR) and three R G B - D cameras. The data was 
recorded using a specially equipped vehicle that was driven on public roads i n Germany. The 
vehicle was outfitted wi th six synchronized cameras placed i n various positions. Three NIR 
cameras were utilized to capture images in low-light conditions, while three R G B - D cameras 
were used to capture color images and depth information. The synchronization ensured that all 
data streams were aligned i n time, providing coherent multi-modal information for each frame. 
It includes skeleton data as one of its modalities. Specifically, the dataset includes 3D body and 
head pose data, which is represented as a time series of 3D rotation matrices. The skeleton 
data is captured using the OpenPose neural architecture, which is applied to each frame of the 
dataset that contains the driver's body or head. 

The dataset comprises a hierarchical annotation scheme, offering rich semantic information 
about the driver's behavior. The annotations are organized into three levels: 

• Coarse Tasks: These represent high-level activities the drivers perform, such as "driving 
straight" or "turning left." These coarse tasks provide a broader context for understanding 
the driver's overall behavior. 

• Fine-Grained Activities: These include more specific actions inside the vehicle cabin, 
such as "adjusting the radio" or "checking the rearview mirror." Fine-grained activities 
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Figure 4.3: Examples from Drive&Act dataset [13], the "working on laptop" activity for differ­
ent views and modalities. 

offer detailed insights into the driver's interactions and behaviors. 

• Atomic Action Units: This level provides detailed triplets of annotations, including the 
driver's current action, the object they interact with, and the location of the object. This 
level of granularity allows for a deep analysis of the driver's actions and intentions. 

The Dr ive&Act dataset includes an extensive set of 83 fine-grained activity classes, surpass­
ing previous driver activity recognition datasets by 62 additional activities. This broad range 
of actions enables a more comprehensive understanding of driver behavior. The dataset's size, 
wi th over 9.6 mil l ion frames, provides ample data for training and evaluation, making it one of 
the largest and most diverse datasets for driver activity recognition. 

4.2 Data Preparation and Processing 

Preprocessing 3D skeleton data is a crucial step, considering its distinct nature compared to 2D 
images. In our experiments wi th both the N T U RGB+D and Dr ive&Act datasets, we performed 
an in-depth analysis to gain a deeper understanding of the data and make informed decisions 
during preprocessing. Before diving into the preprocessing, a comprehensive visualization and 
analysis of the 3D skeleton data were performed. To gain a better understanding of the data, the 
3D coordinates were projected onto 2 axes, allowing us to visualize the skeleton's movements 
and patterns, as shown i n 4.4. This visualization helped i n identifying any potential noise or 
inconsistencies in the data. 

To improve model convergence and stability, data normalization was applied to both datasets. 
Normalization ensures that all 3D joint coordinates are wi th in a consistent range, which is es­
sential for the model's learning process. Specifically, each coordinate value was scaled to be 
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Figure 4.4: Visualisations of the skeleton data from N T U RGB+D dataset plotted on x and y 
axes, showing the total frame of the sequence, the plotted frame, and the class label. 

between 0 and 1 by dividing it by the maximum value in the corresponding dimension across 
the entire dataset. 

Data augmentation is a fundamental aspect of contrastive learning, and it plays a crucial 
role i n generating diverse views of the input skeleton sequences to enhance the model's ability 
to learn meaningful representations. In our preprocessing pipeline, we applied various spatial 
and temporal augmentations, including: 

• Rotation: A n efficient spatial augmentation that randomly selected an axis (X, Y, or Z) 
as the main axis and applied a random rotation angle in the range [0, tt/6] to it. The other 
two axes were also rotated wi th random angles in the range [0,7r/180]. 

• Crop: As a temporal augmentation, Crop involved padding part of the frames in the 
original sequence and then randomly cropping it back to the original length. The padding 
ratio 7 was set to 1/6. 

• Spatial Flip: Another spatial augmentation that swapped the left and right sides of the 
skeleton data wi th a probability of p=0.5, introducing additional variations i n the data. 

• Shear: A linear transformation was applied to the 3D coordinates using a shear matrix. 
The shear factors were randomly sampled from the range [-/?, /?], wi th j3 set to 1 to 
control the augmentation strength. 

These augmentations were applied to create different views of the skeleton sequences, en­
abling the model to capture diverse perspectives of the actions, leading to more robust and 
generalized representations. In addition to the ordinary augmentations described earlier, the 
second approach, PSTL, utilized specific masking strategies mentioned before i n the Methodol­
ogy chapter such as "Central Spatial Masking (CSM)" and "Motion Attention Temporal Masking 
(MATM)." 

The data preprocessing and augmentation pipeline played a crucial role in preparing the 
N T U RGB+D and Dr ive&Act datasets for training wi th the DINO and PSTL frameworks, re­
spectively. Through visualization and analysis, normalization, and various data augmentations, 
we enhanced the datasets' quality and diversity, facilitating the models' ability to learn mean­
ingful representations for effective human action recognition 
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Figure 4.5: (a) Example of the rotation augmentation applied to the data, (b) Example shows a 
skeleton plot on the x and z axes, (c) Example shows samples wi th different subjects 
in the same frame. 

Figure 4.6: Bar plot describing the class distribution of the Dr ive&Act dataset. 

The Dr ive&Act dataset presented several challenges, especially when dealing wi th the skele­
ton modality. Unlike other modalities, such as R G B or NIR, only a few researchers have ex­
plored the skeleton data, making it an under-researched area. The skeleton data was extracted 
automatically from the N-IR modality using the OpenPose model for pose estimation. How­
ever, this led to a considerable number of errors in the annotation, including missing joints, 
shaded joints, and incorrect joint coordinates. Additionally, not all joints were consistently 
visible i n the camera frame, particularly in the lower body region. Moreover, the actions in the 
Dr ive&Act dataset exhibited similarity in terms of joint movements, making it challenging for 
the model to discriminate between action classes effectively. Furthermore, the dataset suffered 
from a significant class imbalance, wi th the class "sitting" being the most dominant among the 
34 classes, as shown in 4.6. 

To address some of these issues, we decided to reduce the number of joints used in the model 
from 25 to 11, retaining only the most meaningful joints for better representation learning, as 
shown in 4.7. This w i l l help the model focus on essential information and avoid redundancy 
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4.3 Experiment Settings 

Figure 4.7: Visualization of a skeleton sequence data from the Dr ive&Act dataset wi th 11 joints. 
We can clearly see missing values in different frames. 

in the data. Additionally, we employed the balanced accuracy metric during the evaluation 
phase to mitigate the impact of class imbalance, ensuring a fair assessment of the model's 
performance. 

Despite the challenges and issues, the Dr ive&Act dataset remains a valuable and challenging 
resource for driver activity recognition. Our comprehensive analysis and data preprocessing 
efforts aimed to create a meaningful and robust skeleton dataset, contributing to the exploration 
of self-supervised learning on this unique dataset. The findings from our experiments w i l l shed 
light on the potential of using self-supervised learning for driver activity recognition and pave 
the way for future research i n the Dr ive&Act dataset. 

4.3 Experiment Settings 

In our experimental settings, all experiments were conducted on a system equipped wi th 4 
R T X A6000 GPUs. For the first approach, we used the N T U RGB+D dataset and the Drive&Act 
dataset. To prepare the data for training, we padded the skeleton sequences to 120 frames 
for N T U RGB+D and 90 frames for Dr ive&Act dataset. We employed the Stochastic Gradient 
Descent (SGD) optimizer wi th Nesterov momentum set to 0.9 and weight decay set to 0.0005. 
The loss function used was the cross entropy. 

The training process for the first approach was performed over 90 epochs, wi th an initial 
learning rate of 0.3. To achieve better convergence, we used the CosineAnnealing scheduler 
for learning rate decay. The mini-batch size was set to 128 to balance computational efficiency 
and model performance. For the encoder architecture, we utilized STTFormer. In this approach, 
each tuple contained 6 consecutive frames, denoted as n=6. The STTFormer encoder comprised 
8 spatio-temporal self-attention layers, wi th the output channels set to 64, 64,128,128, 256, 256, 
256, and 256, respectively. The encoder network extracted 256-dimensional features from the 
skeleton sequences. To further refine the extracted features, two projectors were attached to 
the encoder network. Each projector consisted of 3 linear layers, wi th the first one followed by 
a batch normalization layer and leaky rectified linear units. The output size of the first linear 
layer was set to 512, while the final output dimension of the projector was 128. 

A crucial aspect of the self-supervised learning approach is the temperature parameter, 
which determines the sharpness of the probability distribution. For the student network, we 
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set the temperature parameter TS to 0.1, while for the teacher network, the temperature param­
eter T* was set to 0.03. This temperature scaling helped in fine-tuning the model's confidence 
during the contrastive learning process. 

For the second approach, our experimental settings were tailored to the S T - G C N backbone 
and the specific requirements of PSTL. We resized the skeleton sequences to 50 frames for the 
N T U RGB+D dataset and 90 frames for the Dr ive&Act dataset to create a suitable input length 
for the S T - G C N architecture.The S T - G C N backbone was configured wi th 16 hidden channels, 
which enabled the extraction of 256-dimensional features from the skeleton sequences. These 
features were further projected to 6144-dimensional embeddings to enhance the representation 
power of the model. 

In the loss function of each stream, we set the value of A to 2e-4, which played a critical role 
in balancing the different components of the loss and guiding the learning process.To stabilize 
the training process, we utilized a 10-epoch warm-up phase, and the weight decay was set to 
le-5 to control overfitting and enhance the generalization ability of the model. During the pre-
training and downstream tasks, we employed the Adam optimizer and the CosineAnnealing 
scheduler wi th 150 epochs. The mini-batch size was set to 128 for efficient computation. 

For the evaluation of self-supervised learning, we utilized two protocols: linear evaluation 
and k - N N evaluation. In the linear evaluation, we added a linear classifier on top of the frozen 
pre-trained encoder and then trained the recognizer on the target skeleton action recognition 
dataset wi th an initial learning rate of 0.01. In the k - N N evaluation, we assessed the quality 
of features using a simple weighted k-Nearest Neighbor classifier. The pretrained model was 
frozen to compute and store the features of the training data for the downstream task. To 
classify a test skeleton x, we computed its representation and compared it against all stored 
training features, where k was set to 1. This evaluation protocol eliminated the need for hy-
perparameter tuning and data augmentation and could be run wi th only one pass over the 
downstream dataset, making it efficient and effective in evaluating the model's performance. 
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5 Results 

In this section, we present the results of our experimental evaluations for both supervised and 
self-supervised learning approaches on the N T U RGB+D and Dr ive&Act datasets. We start by 
analyzing the performance of the encoders S T - G C N and STTFormer in the supervised learning 
setting on the N T U RGB+D Dataset using both Cross-Subject (X-Sub) and Cross-View (X-View) 
evaluation protocols, as wel l as on the Dr ive&Act dataset. 

5.1 Supervised Learning Results 

Table 5.1 summarizes the performance of the S T - G C N and STTFormer encoders in the super­
vised learning setting on the N T U RGB+D Dataset. The results are reported in terms of accuracy 
(%) for both X-Sub and X-View evaluation protocols. We can observe that the STTFormer en­
coder achieves an accuracy of 84.3% (X-Sub) and 94.3% (X-View) on the N T U RGB+D dataset, 
outperforming the S T - G C N encoder, which achieves an accuracy of 81.5% (X-Sub) and 88.3% 
(X-View). 

Table 5.1: Supervised Learning Results on N T U RGB+D Dataset 

Encoder N T U RGB+D (X-Sub) N T U RGB+D (X-View) 
S T - G C N 81.5% 88.3% 

STTFormer 84.3% 94.3% 

The learning curve of the STTFormer is depicted i n 5.1, illustrating the model's training 
progress in terms of both the loss function and accuracy. As training epochs increase, the loss 
function steadily decreases, indicating the model's improving ability to minimize the discrep­
ancy between predicted and actual labels. Concurrently, the accuracy curve demonstrates a 
consistent upward trend, reflecting the STTFormer's increasing proficiency i n correctly clas­
sifying action sequences. 

A visual representation of the model predictions on the N T U RGB+D dataset is depicted 
in 5.2, showcasing a 3 by 3 grid of action sequences. Each cell in the grid corresponds to a 
predicted action label, color-coded in red for false predictions and green for correct predictions. 
This illustrative example offers a snapshot of the model's performance in recognizing various 
human actions from the dataset. 

The evaluation of the STTFormer and S T - G C N encoders on the Dr ive&Act dataset yielded 
insightful results, shedding light on their performance in a car interior action recognition con­
text. W i t h a baseline accuracy of 2.9% for random results, the challenge of accurate driver 
behavior recognition becomes evident, as mentioned before in the previous chapter regard­
ing the challenges and issues of Dr ive&Act dataset. The obtained accuracies of 5.03% for the 
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Figure 5.1: STTFormer learning curve shows the loss function on the left and the accuracy 
metric on the right over the epochs. 

STTFormer and 9.05% for the S T - G C N are indicative of their ability to capture subtle cues and 
patterns i n driver actions wi th in the vehicle cabin. 5.2 presents a summary of the comparative 
performance of the two encoders on the Dr ive&Act dataset, providing a clear overview of their 
respective accuracy outcomes. 

Encoder Accuracy (%) 
Baseline 

STTFormer 
S T - G C N 

2.9 
5.03 
9.05 

Table 5.2: Comparison of STTFormer and S T - G C N on Dr ive&Act dataset 

The outcomes obtained from the supervised learning evaluation provide valuable insights 
into the potential performance of the subsequent self-supervised learning approach. By estab­
lishing a baseline of accuracy using traditional supervised methods, we gain a clearer under­
standing of the inherent challenges and intricacies of the action recognition task. This baseline 
performance serves as a benchmark against which the SSL approach can be measured, enabling 
us to gauge the extent to which self-supervised learning enhances recognition capabilities. The 
supervised learning results thus lay the foundation for assessing the efficacy and contributions 
of SSL i n capturing meaningful representations from unannotated skeleton data, ultimately 
informing our expectations and interpretations of the subsequent SSL results. 

5.2 Self-Supervised Learning Results 

The self-supervised learning results for the two approaches, PSTL & S T - G C N and DINO & 
STTFormer, on the N T U RGB+D dataset are presented i n the table 5.3, and result of SSL for the 
two approaches on the Dr ive&Act dataset, presented in 5.4: 

The second approach outperformed the first in terms of k - N N evaluation accuracy on the 
N T U RGB+D dataset. This difference i n performance could be attributed to several factors. 
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Pred: touch back (backache! Pred: walking apart from each other Pred: jump up 
Truth: touch back (backache) Truth: walking apart from each other Truth: jump up 

Sample total lengh: 120 frame: 32 Sample total lengh: 120 frame: 16 Sample total lengh: 120 frame: 22 

- 0 . 2 0.0 0.2 - 1 0 1 2 - 0 . 6 - 0 . 4 - 0 . 2 O.C 
Pred: touch other person's pocket Pred: standing up (from sitting position) Pred: pushing other person 
Truth: touch other person's pocket Truth: standing up (from sitting position) Truth: pushing other person 
Sample total lengh: 120 frame: 2 Sample total lengh: 120 frame: 44 Sample total lengh: 120 frame: 14 

Pred: jump up Pred: point finger at the other person Pred: punching/slapping other person 
Truth: jump up Truth: pat on back of other person Truth: punching^slapping other persor 

Sample total lengh: 120 frame: 17 Sample total lengh: 120 frame: 34 Sample total lengh: 120 frame: 34 

- 0 . 4 - 0 . 2 0.0 - 0 . 2 5 0.00 0.25 0.50 - 1 . 0 0 - 0 . 7 5 - 0 . 5 0 - 0 . 2 5 0.00 

Figure 5.2: Illustration showing STTFormer predictions on N T U RGB+D dataset. 

Table 5.3: SSL Results on N T U RGB+D Dataset wi th k - N N evaluation 

Approach Evaluation Type Accuracy (%) 
DINO & STTFormer 
DINO & STTFormer 

k - N N (X-sub) 
k - N N (X-view) 

23.02 
30.04 

PSTL & S T - G C N 
PSTL & S T - G C N 

k - N N (X-sub) 
k - N N (X-view) 

58.65 
66.06 

The PSTL strategy introduced in the second approach, which involves partial spatio-temporal 
learning and masking strategies, l ikely contributed to capturing more discriminative and rel­
evant information from the skeleton sequences. The utilization of the S T - G C N architecture 
as the backbone may have enabled better feature extraction from the skeleton data, leading 
to improved action recognition. Also, The observed difference in performance between the 
STTFormer and S T - G C N approaches could be influenced by the nature of transformer-based 
models like STTFormer, which typically require larger amounts of data in the DINO context 
to reach their full potential. In contrast, the S T - G C N model, being a graph convolutional net­
work, might exhibit relatively better performance wi th smaller datasets. This characteristic 
could have contributed to the superior performance of the S T - G C N approach, as the N T U 
RGB+D dataset, though sizable, may not fully satiate the data hunger of the STTFormer archi­
tecture. The interplay between model architecture and dataset size underscores the importance 
of matching the learning capacity of the model wi th the available data, potentially explaining 
part of the observed performance disparity. Furthermore, the PSTL strategy's focus on lever-
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Table 5.4: SSL Results on DriveAct Dataset 

Approach k - N N Evaluation Accuracy (%) 
DINO & STTFormer 

PSTL & S T - G C N 
2.94 
5.37 

aging the human skeleton graph's topological structure and motion patterns might have en­
hanced the model's ability to learn meaningful representations. In contrast, while the DINO & 
STTFormer approach harnessed the self-distillation technique and the STTFormer as the en­
coder, its performance might have been influenced by challenges such as convergence during 
training and limited capability to generalize across domains. These results collectively indicate 
that the PSTL & S T - G C N approach's design and features potentially align wel l wi th the spe­
cific characteristics of human action recognition tasks, contributing to its superior performance 
compared to the DINO & STTFormer approach. 

The second approach, employing the PSTL & S T - G C N framework, was further evaluated on 
both the N T U RGB+D and Dr ive&Act datasets, showcasing its adaptability and performance 
in various contexts, as shown in 5.5. The linear evaluation on the N T U RGB+D dataset yielded 
promising results, wi th accuracy values of 76.76% (X-Sub) and 82.56% (X-View), demonstrating 
the effectiveness of the approach in learning meaningful representations. Finetuning the model 
on this dataset further improved the performance, achieving accuracies of 84.2% (X-Sub) and 
91.6% (X-View) which is better by +2.7% and +3.3% respectively compared to training the model 
from scratch, validating the capacity of the learned features for downstream tasks. Addit ion­
ally, the linear evaluation on the Dr ive&Act dataset yielded an accuracy of 14.6%, indicating 
the potential of the model for recognizing driver actions wi th in the car interior. 

Cross-evaluation between datasets involves training a model on one dataset and evaluating 
it on a different, distinct dataset. This process assesses the model's ability to generalize its 
learned representations across domains and adapt to new and unseen data. In the context 
of action recognition, cross-evaluation helps validate the robustness and transferability of the 
learned features, enabling the model to recognize actions in diverse environments or scenarios. 
Notably, the cross-evaluation between the two datasets revealed an accuracy of 3.91%, where 
it was pretrained on N T U RGB+D and evaluated on Drive&Act . 

Table 5.5: Results of PSTL & S T - G C N Approach 

Dataset Evaluation Type Accuracy (%) 
N T U RGB+D Linear Evaluation (X-Sub) 76.76 
N T U RGB+D Linear Evaluation (X-View) 82.56 
N T U RGB+D Finetune (X-Sub) 84.2 
N T U RGB+D Finetune (X-View) 91.6 

Dr ive&Act Linear Evaluation 14.6 
Cross-Evaluation N T U RGB+D to Dr ive&Act 3.91 
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5.3 Ablation Studies on Drive&Act Dataset 

In pursuit of optimizing the performance of the Dr ive&Act dataset, several experiments were 
conducted, each aiming to uncover insights into the dataset's characteristics. The first set of 
experiments focused on varying the number of joints used for action recognition, as shown 
in 5.6. Interestingly, while reducing the number of joints to 11 initially seemed like a strategy 
to improve performance by filtering out potentially irrelevant data, the results demonstrated 
that further reduction below this threshold led to a decline in accuracy. This suggests that even 
seemingly minor joints contribute valuable information for accurate action recognition wi th in 
the car environment. 

Table 5.6: Joint Variation Experiment: 

Dataset Number of Joints k-NN Evaluation Accuracy 
Drive&Act 11 joints 5.37% 
Drive&Act 8 joints 4.3% 

In the second set of experiments, the number of frames i n the skeleton sequences was ad­
justed. Analyzing the dynamics of the Dr ive&Act dataset revealed that a significant portion 
of action-related movements occurred wi th in the final frames of the sequences, as shown in 
5.7. This is i n contrast to the N T U RGB+D dataset, where actions predominantly occur in the 
first 50 frames. The experiments validated this observation, as reducing the sequence length 
to 50 frames led to a dip i n performance. This finding underscores the importance of captur­
ing the complete temporal context of actions wi th in the car cabin, highlighting the distinct 
characteristics of the Dr ive&Act dataset compared to other datasets. 

Table 5.7: Sequence Length Experiment: 

Dataset Number of Frames k-NN Evaluation Accuracy 
Drive&Act 90 frames 5.37% 
Drive&Act 50 frames 3.98% 

The results of these experiments emphasize the intricacies of the Dr ive&Act dataset and shed 
light on the interplay between the number of joints and sequence length for effective action 
recognition. This understanding is crucial for fine-tuning model architectures and training 
strategies. 

5.4 Comparison with the State-of-the-Art Methods 

In the realm of human action recognition, comparing self-supervised learning approaches wi th 
state-of-the-art methods provides valuable insights into the advancements made in this field. 
In 5.8, we present the results of the linear evaluation on the N T U RGB+D dataset. The second 
approach PSTL [9] wi th S T - G C N , i n our implementation, achieves competitive performance, 
yielding 76.76% accuracy on the xsub evaluation and 82.56% accuracy on the xview evalua­
tion. This places the method among the top performers i n terms of accuracy, showcasing the 
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efficacy of self-supervised learning for skeleton-based action recognition. Notably, the PSTL 
with S T - G C N approach demonstrates a notable leap in accuracy over existing methods, such 
as A i m C L R , which achieved 74.3% and 79.7% accuracy on the xsub and xview evaluations, re­
spectively. These results underscore the potential of self-supervised learning, particularly the 
PSTL framework, in enhancing state-of-the-art performance i n human action recognition. 

Table 5.8: Linear evaluation results of state-of-the-art on N T U RGB+D dataset. * indicates our 
implementation of the approach. 

Method NTU-60 (%) 
xsub xview 

MS2L ( A C M M M 20) [57] 
P & C (CVPR 20) [56] 
A S - C A L ( I n f S c i 2 1 ) [58] 
A i m C L R ( A A A I 22) [61] 
PSTL & S T - G C N 
PSTL & S T - G C N * 

52.6 
50.7 76.3 
58.5 64.8 
74.3 79.7 
77.3 81.8 
76.8 82.6 

5.5 Discussion 

The results obtained through extensive evaluations shed light on various aspects of the pro­
posed self-supervised learning approaches for action recognition using 3D skeleton data. No­
tably, the comparison of the two approaches, DINO wi th STTFormer and PSTL wi th ST-GCN, 
underscores the potential benefits of self-supervised learning over traditional supervised learn­
ing paradigms. Self-supervised learning offers a pathway to harnessing unannotated data for 
representation learning, enhancing model performance i n downstream tasks. 

It is intriguing to observe that while k - N N evaluation often yields lower accuracy compared 
to Linear evaluation, k - N N evaluation possesses its own distinct advantages. The lower accu­
racy of k - N N evaluation can be attributed to the method's inherent simplicity and reliance on 
a smaller number of parameters, which might limit its adaptability to various scenarios. How­
ever, k - N N evaluation provides an insightful mechanism for probing the quality of learned 
representations. The nearest-neighbor approach tests the model's ability to map similar ac­
tions to neighboring points in the feature space, making it a valuable tool for assessing the 
model's capability to cluster semantically related actions. 

In the context of supervised learning, the linear evaluation of the PSTL & S T - G C N approach 
demonstrates substantial improvement over traditional S T - G C N on the N T U RGB+D dataset. 
The model's adaptability to different domains is exemplified by cross-evaluation, where the 
model pretrained on N T U RGB+D showcased a 3.91% accuracy when evaluated on the distinct 
Dr ive&Act dataset. This cross-evaluation can demonstrate the potential of the learned features 
if they can generalize across datasets and environments, a key aspect in ensuring the model's 
robustness. 

Furthermore, insights into the unique characteristics of the Dr ive&Act dataset were garnered 
through targeted experiments. Varying the number of joints for action recognition illustrated 
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that, contrary to initial assumptions, reducing the number of joints below 11 resulted in de­
creased accuracy. This emphasizes the importance of even seemingly minor joints in capturing 
essential information for accurate action recognition wi th in the car environment. Additionally, 
the impact of sequence length on model performance was revealed, showcasing the necessity 
of capturing complete temporal contexts in the Dr ive&Act dataset, which is distinct from other 
datasets like N T U RGB+D. 

Collectively, these discussions highlight the intricate interplay between self-supervised learn­
ing, evaluation methodologies, model architecture, and dataset characteristics. The findings 
underscore the potential of self-supervised learning for advancing action recognition in di­
verse environments and lay the groundwork for future research endeavors in this promising 
domain. 

In this section, we presented comprehensive results stemming from our exploration of self-
supervised learning for human action recognition using 3D skeleton representations. We began 
by evaluating the performance of two encoders, S T - G C N and STTFormer, through supervised 
learning on the N T U RGB+D and Dr ive&Act datasets. These supervised learning results pro­
vided valuable insights into the capabilities of the encoders and laid the foundation for our 
subsequent self-supervised learning experiments. We then delved into our self-supervised ap­
proach, DINO wi th STTFormer, and second approach PSTL wi th S T - G C N , showcasing their 
performance on both benchmark datasets. Through meticulous analysis, we observed that 
the PSTL wi th S T - G C N approach exhibited promising results, especially on the N T U RGB+D 
dataset, rivaling state-of-the-art methods. Our exploration of various parameters and tech­
niques, including data augmentation and model architecture, contributed to a deeper under­
standing of the potential of self-supervised learning for enhancing action recognition systems. 
The promising outcomes underscore the significance of self-supervised learning in advancing 
the field of human action recognition and lay the groundwork for future research and applica­
tions. 
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6 Conclusion 

This master thesis was motivated by the increasing concern over the rising number of car 
accidents caused by driver distraction and the need for advanced action recognition systems 
to promote road safety. The main purpose of this thesis was to enhance vehicle interior ac­
tion recognition using self-supervised learning wi th 3D human skeleton representations. By 
utilizing unannotated data, self-supervised learning offers a promising approach to learning 
meaningful representations for action recognition without the need for labor-intensive anno­
tations. 

To achieve our research objectives, we investigated two different approaches for SSL: DINO 
with STTFormer and PSTL wi th ST-GCN. The second approach showed promising results in 
extracting meaningful features from 3D human skeleton representations and demonstrated the 
potential of self-supervised learning for action recognition in the car interior. Throughout our 
investigation, we carefully selected evaluation protocols and conducted comprehensive com­
parisons to answer our research question about recognizing human action based on skeleton 
data using self-supervised learning. Our experimental results showed that PSTL wi th S T - G C N 
achieved competitive performance i n action recognition on the N T U RGB+D and the approach 
DINO wi th STTFormer has its limitations and needs further research. 

The application of DINO wi th STTFormer to the task of skeleton-based action recognition 
encountered certain limitations that hindered its performance. One possible reason for its 
suboptimal results lies i n the fact that the DINO framework has primarily showcased strong 
performance on image data, which inherently contains a vast amount of information due to the 
sheer number of pixels. In contrast, skeleton data represents a compressed form of human ac­
tion, encapsulating movement patterns wi th fewer dimensions. This limitation also extends to 
STTFormer, a variant of Transformers that may require a larger volume of data to achieve op­
timal performance. Additionally, the DINO framework was initially designed for static images, 
while our task involves sequential data i n the form of skeleton sequences. These factors collec­
tively suggest that DINO's efficacy may be hampered when applied directly to skeleton-based 
action recognition. To further validate the potential of DINO, future research could explore 
alternative encoders, such as S T - G C N , wi th in the DINO framework. This investigation would 
provide a more comprehensive understanding of DINO's adaptability and effectiveness for our 
specific task. 

During our exploration of the Dr ive&Act dataset, we encountered several challenges, in ­
cluding errors in annotating the dataset, issues wi th missing or incorrect joint coordinates, 
and the presence of highly unbalanced classes. To overcome these challenges and achieve bet­
ter results, future work is needed to develop improved techniques for dealing wi th the skeleton 
modality i n the Dr ive&Act dataset. Additionally, there is an urgent need to create more high-
quality datasets dedicated to human action recognition inside the car, which w i l l facilitate the 
development and evaluation of more accurate and robust action recognition systems. 
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Furthermore, an area of future research lies in improving the interpretability of self-supervised 
learning models. As these models learn representations in a self-supervised manner, under­
standing the learned features and how they correspond to specific human actions and behaviors 
remains a valuable avenue for exploration. 

Throughout the course of this master's thesis, I have delved into the realm of contrastive 
self-supervised learning for action recognition using 3D skeleton data, a topic that continues 
to be at the forefront of research and exploration. This endeavor has illuminated the promising 
potential of applying such techniques to diverse domains, including the recognition of human 
actions. As I delved into the intricacies of analyzing and evaluating skeleton data, I gained 
valuable insights into the nuances of this unique data type, which diverges from the more 
commonly encountered image data. Moreover, this thesis provided an invaluable opportunity 
to learn how to construct intricate models and architectures, harnessing the power of parallel 
GPUs to accelerate training processes on server setups. 

The journey through this research venture has been a master class in evaluation method­
ologies. The mastery of diverse evaluation techniques, ranging from k - N N and Linear eval­
uation to fmetuning and cross-evaluation, was particularly enlightening. Each of these ap­
proaches granted me a multifaceted perspective on the performance of the proposed methods, 
enabling comprehensive insights into their strengths and limitations.Another pivotal aspect 
of this master's thesis was the experience of dealing wi th various datasets, each accompanied 
by its distinct set of challenges. This hands-on experience underscored the importance of data 
preprocessing and augmentation, as wel l as the need to carefully design experiments to achieve 
meaningful and reliable results. 

In conclusion, this master thesis has provided valuable insights into the potential of self-
supervised learning for human action recognition in the car interior. By leveraging 3D human 
skeleton representations and employing contrastive learning techniques, our study contributes 
to the advancement of action recognition systems for improving road safety and driver assis­
tance in both manual and autonomous driving scenarios. The future of self-supervised learning 
in this domain looks promising, and continued research in this field is vital to unlocking the 
full potential of action recognition systems for enhanced vehicle safety. 
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