
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT O F INTELLIGENT S Y S T E M S

A CONTROL SYSTEM FOR APPLICATION TESTING
IN LINUX

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. EDUARD BENEŠ
AUTHOR

BRNO 2009

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT O F INTELLIGENT S Y S T E M S

RIDICI SYSTEM PRO TESTOVANÍ LINUXOVYCH
APLIKACÍ
A CONTROL SYSTEM FOR APPLICATION TESTING IN LINUX

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. EDUARD BENEŠ
AUTHOR

VEDOUCÍ PRÁCE Ing. ALEŠ SMRČKA
SUPERVISOR

BRNO 2009

Abstrakt
T á t o práca sa zaoberá problematikou riadiaceho systému pre testovanie linuxových apl i

kácií. Práca poukazuje na dôležitosť testovania software a jeho kval i ty pomocou automa
tizovaných softwarových nástrojov. R e d Hat Test System (R H T S) je jedným z mnohých
testovacích nástrojov. Predstavené sú rozdielne prístupy k ich klasifikácii a vyhodnocova
n iu . Vybrané nástroje sú vyhodnotené a porovnané so systémom R H T S . V tejto práci je
navrhnutý systém pre neinteraktívne testovanie linuxových aplikácií s podporou pre R H T S
testy a s dôrazom na budúce rozšírenia. Implementovaný systém je následne otestovaný
pomocou navrhnutých testov a popísaných je niekoľko príkladov použitia.

Klíčová slova
test, testování, kval i ta , software, nástroj , vyhodnocení, porovnání, C A S T , L i n u x , P y t h o n ,
R H T S

Abstract
This thesis discusses the area of a control system for applicat ion testing i n L i n u x . There

is a need for testing software and its quali ty using automated software tools. Huge number
of testing tools is available, R e d Hat Test System (R H T S) being one of them. Different
approaches to classification and evaluation of a testing tools are presented. Selected software
testing tools were evaluated and compared w i t h R H T S . The thesis then presents a design of
a system for non-interactive applicat ion testing i n L i n u x w i t h support for R H T S tests and
w i t h focus on future enhancements. Implemented system is f inally tested using proposed
set of tests and several usage examples are described.

Keywords
test, testing, quality, software, tool , evaluation, comparison, C A S T , L i n u x , P y t h o n , R H T S

Citace
E d u a r d Beneš: A C o n t r o l System for A p p l i c a t i o n Testing i n L i n u x , diplomová práce, Brno ,
F I T V U T v Brně, 2009

A Control System for Application Testing in Linux

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně p o d vedením pana
Ing. Aleše Smrčky. Další informace m i poskyt l pan Ondřej Hudlický ze společnosti R e d H a t .
U v e d l jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

E d u a r d Beneš
M a y 19, 2009

Poděkování
Děkuji vedoucímu diplomové práce, panu Ing. Aleši Smrčkoví, za cenné rady poskytnuté
při vytváření této práce. Rovněž bych chtěl poděkovat panu Ondřeji Hudlickému a všem,
co m i poskyt l i odborné rady. V neposlední řadě chci poděkovat rodině a všem blízkým
za podporu .

© E d u a r d Beneš, 2009.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

Contents 1

1 Introduction 3

2 Software Testing 5

2.1 Introduct ion to Theory of Software Testing 5
2.1.1 Software Testing Techniques and Methods 5

2.2 A u t o m a t e d Software Testing and Test A u t o m a t i o n 7
2.3 Evaluat ion and Classif ication of Software Testing Tools 8

2.3.1 Approaches to Eva luat ion and Classif ication C r i t e r i a 8
2.3.2 Compar ison of R e d Hat Test System and Selected Test Tools 14

3 R e d H a t Test System 16
3.1 Overview 16
3.2 Architecture and Funct ional i ty 16
3.3 R e d H a t Test System Framework 18

3.3.1 W r i t i n g Tests 18
3.3.2 W o r k Descr ipt ion 19

3.4 Related Projects 19
3.4.1 Beaker 20
3.4.2 Table C l o t h 20

4 Specification and Requirements 22
4.1 Requirements on the System 22
4.2 Funct ional i ty Requirements 23

4.2.1 Server 23
4.2.2 Cl ient Workers 23

4.3 Classif ication and Requirements on Software Testing 24
4.3.1 Specification of Testing Techniques and Possible Restrictions 24

4.4 Tests and Execut ion Environment 25

5 Design of a Contro l System for Appl ica t ion Testing 27
5.1 Overview of the System 27
5.2 Detai led System Design 29

5.2.1 W o r k Descr ipt ion and C o n t r o l 29
5.2.2 Watchdog and Heartbeat 31
5.2.3 M a n a g i n g Avai lable Systems i n a Test Laboratory 31

5.3 Server 32

1

5.3.1 Scheduler 34
5.3.2 Database 35
5.3.3 Test Repository 35

5.4 Worker Systems R u n n i n g Tests 36
5.4.1 Test Environment 37

5.5 User Cl ient Too l 38
5.5.1 V i e w i n g Test Results 39

6 Implementation 44
6.1 Overview of Used Technologies 44
6.2 Server 46
6.3 Worker 47

6.3.1 Test Environment Plugins 47
6.3.2 Test Environment Isolation 48
6.3.3 R u n n i n g i n a Daemon M o d e 48
6.3.4 R H T S Framework i n A u t o m a t e d M o d e 48

6.4 Cl ient 49
6.5 Proposed Possible Future Enhancements 49

7 Testing and Experiments 51
7.1 Testing the System 51

7.1.1 Testing the Funct ional i ty 52
7.1.2 L o a d and L o n g Sequence Testing of the Server 59
7.1.3 Testing P y t h o n Source Code 60

7.2 Possible Usage Examples 60
7.2.1 G e t t i n g the C o m m u n i t y Involved 61
7.2.2 Creat ing R H T S Tests for Wireshark 61
7.2.3 Eva luat ing Student Projects 61

7.2.4 Support ing Col laborat ive Testing i n O p e n Source Project 62

8 Conclusion 64

Bibliography 66

A Cri ter ia for Software Testing Tool Evaluation 70

B Quick Start Instructions 74

B . l Server 74
B.2 Cl ient 75
B .3 Worker 76

C A d d i t i o n a l and C u s t o m Evaluation Cri ter ia 77

2

Chapter 1

Introduction

G o a l of this work is to design and implement a control system for applicat ion testing i n
L i n u x compatible w i t h a R e d H a t Test System (R H T S for short) test format and w i t h pos
sible future enhancements. R H T S has many hardware and software requirements i n order
to be successfully deployed i n a target test environment. Therefore one of the goals is to
design a system, that does not have such restrict ing requirements and allows easier instal
lat ion and deployment for normal users. It is important to get the community involved
i n a testing process, these days. A l l o w i n g it to enhance, customize, and contribute to the
project seems to be the most efficient way to accomplish this. Current ly there is a huge
number of software testing tools f rom different categories available. Unfortunately none of
them supports execution of R H T S tests.

Before doing so, we have to get famil iar w i t h software testing which is discussed i n the
next chapter. The control system is closely related to the R e d Hat Test System which
has to be evaluated and compared w i t h selected software testing tools. M a n y different
tools are available. A n evaluation and classification criteria are needed i n order to compare
and categorize them. It is not possible to use a single approach, because the tools can be
so diverse. We conduct research into this area and selected several different approaches,
each having its advantages depending on the applicat ion. N a m e l y we present superficial
classification proving that it is not sufficient and we can end up w i t h feature r ich tools i n
one category w i t h those having just few key features placing it into that category. Most
interesting approach is Task Oriented View presented i n [23], which we apply on R H T S .
A d d i t i o n a l criteria should be defined and applied for proper too l evaluation or comparison.
These custom criteria w i l l help to select the f inal too l if we end up w i t h several candi
dates. Another approach is based on Testing Maturity Model and categorizes tools based
on supported testing matur i ty model . A l s o many commercial evaluations and comparisons
are available, targeting large companies looking for the most appropriate solution. O n the
basis of gained knowledge about evaluation and selection we select software testing tools
and subsequently compare them w i t h R H T S .

Desired f inal system has to be compatible w i t h R H T S i n a some way. M o r e specifically
it has to be possible to use tests available for R H T S . In order to fulf i l l this key requirement
we have to get famil iar w i t h R H T S . It is an internal tool used by R e d H a t . We can not use
any part that is not publ ic ly available. R e d Hat released some parts of the system i n open
source projects called Table C l o t h and Beaker. We w i l l focus on R H T S Framework that
provides support for creation of R H T S tests and local execution. R e d H a t Test System is

3

described i n Chapter 3.

The next part the work focuses on designing the system. In Chapter 4 and Chapter 5 we
present specification, requirements, and design of the lightweight system for non-interactive
applicat ion testing i n L i n u x .

F i n a l part of the work continues w i t h implementat ion and testing of the system designed
during the term project. T h e system consists of three parts: server, worker daemon and
client C L I applicat ion. Server is based on TurboGears P y t h o n framework using C h e r r y P y
as a web server providing W e b U I , X M L - R P C server, and y u m repository providing test
packages. Role of the worker daemon is to get work description and execute tests i n speci
fied test environment. A new custom environment can be created easily. Users can submit
new test jobs and query for reports i n X M L format using a C L I client applicat ion. Creat ion
of new commands for comfortable customization is also supported. A t the end of Chapter
6 many possible future enhancements are proposed. Testing of the system and possible
usage examples are described i n the Chapter 7. F ina l ly , Chapter 8 concludes the work and
several appendixes cover topics like addit ional evaluation criteria, quick start instructions
and breakdown of a software testing.

4

Chapter 2

Software Testing

Before we start to gather requirements on the system and design it , we w i l l discuss an
area of software testing. It is not a goal of this work to provide comprehensive description
of software testing i n a such short t ime. Rather than that, we present brief overview of
selected topics w i t h focus on giving references to the reader interested i n deeper knowledge
i n software testing.

The first and the most important consideration i n software testing is the definit ion of
testing as it can affect the entire testing process. Testing is an act ivi ty performed for eval
uat ing product quality, and for improving it , by identifying defects and problems [9].

2.1 In t rod uct ion to T h e o r y of Software Test ing

2.1.1 Software T e s t i n g T e c h n i q u e s a n d M e t h o d s

There are many different possible classifications of software testing techniques and meth
ods. In this section, we w i l l t ry to present classical approaches. The m a i n problem w i t h
the classification is that some k i n d of tests do not fit exactly into one category. We suggest
[31], [24], [18], and [13] for detailed definitions of software testing techniques and methods.
Lis t of recommended reference materials related to software testing can be also found i n [9].

Classic framework as presented i n [29] recognizes four m a i n testing techniques:

M a n u a l Th is is the oldest software testing technique. The basis is that manual techniques
are carried out by people without the help of test automation. Despite the spread
of automated testing, manual testing s t i l l dominates. M a n u a l tests can be replaced
by test automation, but automation can only be justif ied where repeatable consistent
tests can be r u n over a stable environment [45]. Examples of manual testing techniques
are walkthroughs, inspections, desk checking, etc.

A u t o m a t e d A u t o m a t e d software testing technique is implemented by the computer, and
often automates established manual process. Us ing automated technique w i l l increase
the rel iabi l i ty of test results, and i n a long r u n saves t ime and money. Examples of
automated techniques are syntax checking, unit testing, integration testing, system
testing, etc.

5

Static Static technique is t ime independent. Static refers to something that is not running,
meaning that the actual software is not used. These techniques check main ly for the
sanity of the code, a lgori thm, or document and can be manual or automated. E x
amples of static testing are syntax checking, code reviews, inspections, walkthroughs,
code analysis, etc. Static testing is widely known as static code analysis

D y n a m i c D y n a m i c technique requires execution of the software. It is t ime depending and
focuses on examination of the physical response from the system to variables that are
not constant and change w i t h t ime [46]. Examples are walkthroughs, unit testing,
integration testing, system testing and so on.

In addit ion to the above classification it is important to introduce test case design
strategies. Testing techniques for test case design can be separated into two categories
based on perspective used to create test cases [29].

Black Box Testing Tested software is treated as a black box without any knowledge of
internal implementat ion. Sometimes referred to as functional or behavior testing. The
tester is t ry ing to discover under which conditions does the software react differently
as it should based on known specification. Test cases are designed only w i t h the
knowledge of the inputs and what the expected outcomes should be. Examples of
black box testing are equivalence part i t ioning, boundary values analysis, decision
tables, and state transi t ion testing.

W h i t e Box Testing In contrast to black box testing test cases are based on the knowledge
of internal structure or implementat ion of the software. The tester has an access to
the code and internal logic. Its analysis drives the selection of test data and steps to
reveal bugs i n the internal logic. Examples of white box testing are decision coverage
operation coverage, pa th coverage, statement testing, decision (branch) testing, and
condit ion testing.

For a complete software examination, bo th white box and black box tests are required.
Some sources (for example [46]) recognize also grey box testing [46] internet and web testing.

Partitioning

Equivalence Boundary
Partitioning Values

Visibility

Manual Automatic

Coverage

1
Black Box White Box

-
Black Box White Box

1
Black Box White Box

i

Operation
Coverage

Path
Coverage

Regression Exercising

Automation Scripting

Figure 2.1: Br ief overview of testing techniques as presented i n [25]

Slightly different approach is presented i n [24]. A u t h o r presents classification system for
testing techniques based on five dimensions. Techniques based on 1) who does the testing

Ü

(people-based), 2) what gets tested (coverage-based), 3) how is it tested (activity-based),
4) evaluation of whether the test passed or failed (evaluation-based), and 5) the risks or
potential problems you are testing for (problems-based).

Examples of testing techniques for each category are l isted below. Note that the classifi
cation depends on how y o u look at the category. Some might be placed i n different category
depending on focus of the expert. Fol lowing list provides categorization of software testing
techniques from [24]. The book provides also more or less detailed definitions of listed
terms. Another useful categorization can be found i n [18].

People-based User testing, a lpha testing, beta testing, bug bashes, subject-matter expert
testing, paired testing, and eat your own dogfood testing.

Coverage-based Funct ion testing, feature or funct ion integration testing, manual tour,
domain testing, equivalence class analysis, boundary testing, best representative test
ing, input field test catalogs or matrices, map and test a l l the ways to edit a field,
logic testing, state-based testing, pa th testing, statement and branch coverage, con
figuration coverage, specification-based testing, requirements-based testing, and com
binat ion testing.

Problems-based Input constrains, output constrains, computat ion constrains, and stor
age (or data) constraints.

Activi ty-based Regression testing, scripted testing, smoke testing, exploratory testing,
guerril la testing, scenario testing, instal lat ion testing, load testing, long sequence
testing, and performance testing.

Evaluation-based Self-verifying data, comparison w i t h saved results, comparison w i t h a
specification or other authoritative document, heuristic consistency, and oracle-based
testing.

Software Engineering B o d y of Knowledge

A s a part of theory of software testing one source worth looking at is The Software En
gineering Body of Knowledge (S W E B O K) . S W E B O K is a project of the I E E E Computer
Society Professional Practices Commit tee that establishes a baseline for the body of knowl
edge for the field of software engineering. Its goal is to serve as a guide, rather than str ict ly
focusing on defining the body of knowledge.

S W E B O K guide provides ten knowledge areas w i t h i n the field of software engineering:
Software Requirements, Software design, Software Construct ion, Software testing, Software
maintenance, Software configuration management, Software Engineering management, Soft
ware Engineering Process, Software Engineering Tools A n d Methods , Software Processes
and P r o d u c t Qual i ty . F igure A . l shows breakdown of topics discussed i n knowledge area
dedicated to software testing.

2.2 A u t o m a t e d Software Test ing and Test A u t o m a t i o n

In this section we provide a brief overview of test tools w i t h the focus on automated software
testing. Test tools w i l l be analyzed i n more detai l later i n a chapter dedicated to evaluation

7

and classification of software testing tools.

W h a t is automated testing? One of many possible explanations is: automated testing
is a testing employing software tools, which execute tests without manual intervention.

A u t o m a t e d testing provides many advantages. The pr imary two are: increased effective
ness and increased efficiency [21]. Today it is recognized as a cost-efficient way to increase
applicat ion reliability, while reducing the t ime and cost of software qual i ty programs. Some
of the common reasons for automating are reducing testing t ime, reducing testing costs,
replicating testing across different platforms, repeatabil i ty and control , and applicat ion cov
erage and results reporting. [24]

Not a l l tests can and should be automated. A u t o m a t i n g without good test design may
result i n a lot of activity, but l i t t le value. Designing tests without a good understanding of
automation possibilities may overlook some of the most valuable opportunities for automa
t ion [24].

2.3 E v a l u a t i o n and Class i f icat ion of Software Test ing Tools

2.3.1 A p p r o a c h e s to E v a l u a t i o n a n d C l a s s i f i c a t i o n C r i t e r i a

In this section, we present several different approaches to evaluation and classification of
software testing tools. A u t h o r s of [23] c la im that no single approach exists for classifying
test tools. We have found it to be right i n a sense that it is not possible to use a single ap
proach for al l the tools available. Therefore, we present different approaches, each of them
having its advantages depending on its applicat ion. Consider a scenario where we want to
select a too l to improve the testing process. Classif ication should divide the tools into dif
ferent classes and thus help to focus on a specific category we need to evaluate. Eva luat ion
of i n d i v i d u a l tools should provide enough information to select the f inal candidates.

Superficial Classification

Very superficial categorization presented i n [23] divides tools into test planning, test design,
test execution, defect tracking and configuration management. M o r e detailed categorization
is presented i n [27]. A t first author mentions that broad categorization divides automation
tools into three classes: unit test tools, capture-replay, and load test tools. Then , tools are
categorized according to software development phase while they are being used using more
specific categories (highlighted using i tal ic) :

Designing a system This category contains requirements capture and analysis tools and
visual modeling tools. F o r m a l models created using model ing tools can be i n many
cases converted into code structures, tests, and data schemes.

C o d i n g a system These tools are working w i t h the code and its internal structure and are
often called white box testing tools. T w o m a i n types are static test tools examining
the code without actually running i t , and unit test automation tools al lowing to test
isolated components of the system (for example using stubs and drivers).

8

Testing a system Since this group of tools does not depend on knowing internal structure
of the tested system, they are often called black box tools. T y p i c a l representative are
capture-replay automation tools used for G U I testing. Load test automation tools are
usually used to perform many simultaneous actions while monitor ing 'reactions' and
responses of the system to this load. Overa l l properties of the system and environment
is measured using monitoring tools which become really handy i n conjunction w i t h
fault injection tools.

Tools used for managing testing Tools i n this category are called test management
tools. T h e y allow various grouping, sorting, pr ior i t iz ing , and assigning of tests. Sup
ported is also management of test results, histories, moni tor ing and comparison of
metrics. Test generation tools are being effectively used i n connection w i t h manage
ment and automation tools. Problems are managed using defect tracker tools (for
example Bugzi l la) . Data manipulation tools work w i t h bulk data sets and databases.
Environment management tools are usually used to manage systems i n a test labora
tory. They provide comfortable instal lat ion and configuration of a test environment
and system monitor ing.

Evaluation Using Task Oriented V i e w

In [23] authors applied Task and Object-oriented Requirements Engineering (T O R E) metho
dology to identify activities that could be automated or supported by test tool . Us ing this
approach, authors present cri teria for classification and tool evaluation. They were system
atical ly derived using the proposed methodology. Detai led evaluation requires instal lat ion
and use of the test tools. In a real life scenario, evaluation criteria should help to select
the final candidates (pre-selection). They would be installed and used for some t ime before
being integrated into the testing process. Presented work focuses on coarse-grained criteria
enabling an effective test tool pre-selection.

Cr i te r ia for test tools are d iv ided into two classes: quali ty and functional . A s a base for
the qual i ty cri teria served standard I S O / I E C 9126 extended by criteria related to vendor
qualif ication. Defined qual i ty cri teria for testing tools are l isted i n A p p e n d i x A .

Funct ional cri teria were derived using T O R E methodology designed to give guidance
to the specification of user requirements on different abstraction level. Test process was
analyzed from a task oriented view. Tasks and user roles were identified at task level and
later redefined by activities at domain level.

M a i n tasks and corresponding roles involved i n a test process as identified i n [23]:

I D Tasks Role(s)
A Test planning and monitor ing Test manager
B Designing Test Cases Test designer
C Construct ing Test Cases Test automator, test designer
D Execut ing test cases Tester
E C a p t u r i n g and comparing test results Tester
F R e p o r t i n g test results Tester
G Tracking Software problem reports/defects Tester, test manager, developer
H M a n a g i n g the test ware Test configuration manager,

test administrator

9

Evaluation of R e d Hat Test System

In this section, we present evaluation of R e d H a t Test System (R H T S) using presented
task oriented view. E a c h evaluated category is marked w i t h yes or no value i n parentheses,
and followed by addit ional comments to provide more accuracy. We start w i t h evaluation
of qual i ty cri teria and follow w i t h funct ional cri teria . Eva luat ion is based on experience
working w i t h the system. Detai led list of cri teria and numbering can be found i n A p p e n d i x
A .

Q l Functionality (Yes) Internally developed tool , has positive evaluation i n a l l marks.
Security is preserved using user authentication (Kerberos). Interoperability w i t h other
tools is not supported by default, but w o u l d be possible if necessary. M a n y t h i r d party
tools can be incorporated into actual tests.

Q2 Reliability (Yes) System (product) is mature, currently being reimplemented as a new
open-source project called Beaker. System is able to detect certain types of failure, it
evaluated to be fault tolerant and recoverable. R u n n i n g test jobs are fault tolerant,
systems under test can be recovered automatically.

Q3 Usabili ty (Yes) Easy to learn and understand. Users w i t h basic knowledge i n wr i t ing
bash scripts and/or other programming language should be able to develop new tests
w i t h i n a short t ime. Knowledge of any other programming language is a plus. System
can be used using C L I or Web G U I . K e y parts of the system and test skeleton are
wri t ten i n script ing languages.

Q4 Efficiency (Yes) T i m e and resource behavior is supported by R H T S Scheduler that is
coordinating i n cooperation w i t h lab managers running test jobs, system instal lat ion,
setup and more.

Q5 Maintainabil i ty (Yes) Mainta inab i l i ty is ful ly supported. System is implemented
using script ing languages (Bash, P y t h o n , P e r l , ...) and could be div ided into several
independent parts.

Q6 Portability (No) System uses tests stored i n R P M packages and uses many other
features specific to R e d Hat distr ibutions. Therefore it is not designed to support
other distributions by default. We believe it would be possible to accomplish. The
system is hard to replace as it provides many special features related to testing R e d
Hat L i n u x distr ibutions. Other platforms are not supported.

Q 7 General vendor qualifications (Yes) Despite the fact that the system is not avail
able to the public , vendor evaluated to be mature w i t h strong market share and
financial stability.

Q8 Vendor support (Yes) This category evaluated positively. N e w releases are preserv
ing compat ibi l i ty w i t h previous releases. Tra in ing materials, documentat ion and help
from well trained users is available.

Q9 Licensing and pricing (Yes) Current version is for internal use only. N e w version
(Beaker) w i t h many new features should be available as a new open-source project.
M a n y parts of the system are under G P L incense, while some are only for internal
use.

10

Funct ional cr i ter ia were evaluated using three value scale. Possible values were: no
support (negative), par t ia l support (positive), fu l l support (positive). M a r k s that evaluated
to be non-negative are l isted at the beginning of each category w i t h i n parentheses. F u l l list
of cri teria and numbering can be found i n A p p e n d i x A .

A : Test planning and monitoring. (1,2,3,4,6)
R H T S allows tests to be created using almost any programming language that can
be wrapped/incorporated into R H T S test wri t ten i n Bash . Supported are L i n u x
operating systems (Red H a t distr ibutions: R H E L , Fedora). Web G U I is supported i n
al l major graphical web browsers (e.g.. Firefox, Opera) . System is designed to allow
testing 'almost any' appl icat ion specific characteristics at lower levels for example
using t h i r d party tools (G U I testing, performance, ...). It is used to test a l l parts
of R e d H a t Enterprise L i n u x distributions, and therefore cri teria three and four are
supported. There is also basic support for moni tor ing test activities, for example,
by providing dashboard for each test job, durat ion t ime, current status and more.
Integration w i t h other tools is supported at level that the t h i r d party tools can be
incorporated into i n d i v i d u a l tests. Integration w i t h other tools is not required, but
would be possible if necessary (Bugzi l la , Testopia, ...).

B : Designing Test Cases. (7,8)
Test case designing is supported only part ia l ly by providing different workflows for
test execution. Workf low describes how w i l l be the selected tests executed. It sup
ports running synchronized tests on different systems (for client—server testing), and
creation of custom workflows. This approach allows to use desired testing technique
to design the test cases.

C : Construct ing Test Cases. (17,18)
Construct ing test cases is supported i n R H T S by R H T S Framework (in standalone
environment). It is described i n more detai l i n Chapter 3. C a p t u r i n g of executable
test cases, generation of (semi)formal models, inval id data generation, stubs, drivers,
mock object creation or s imulat ion of faulty system components is not supported.

D : Executing Test Cases. (24,25,26)
Execut ion of test cases is the most supported category. Setting up and cleaning down
of the test environment is ful ly supported by the R H T S lab. It allows to select desired
distr ibut ion, architecture, package versions, and many other system and dis tr ibut ion
specific parameters. System configuration can be easily set up i n the actual test case
or as a separated test (and executed before running any other test cases). Tests can
be executed on any available bare metal i n the test laboratory. Th is allows testing
on desired architecture and hardware configuration. Besides execution of automated
test cases, manual testing is also possible. R H T S can setup (install) required testing
environment for the tester automatical ly and inform h i m that the environment is
ready to start manual testing.

E : C a p t u r i n g and comparing test results. (29)
Test results, log files and other logging informat ion are being stored and can be
accessed using Web G U I . Test tool provides good support for logging information on
executed test cases and they are available v ia Web G U I . Compar ison facilities are not
supported by default (should be possible to incorporate).

11

F : Repor t ing test results. (31,32)
Test tool provides fu l l support for both cri teria : aggregation of logged test results
(and any test results) and customizable (role specific) amount of information. A l l
results are accessible v i a Web G U I . Avai lable are also e-mail notifications on different
event types (e.g.. finished test job).

G : Tracking Software problem reports/defects. (38)
O n l y regression testing is part ia l ly supported. Regression tests can be used to specify
B u g z i l l a bug numbers they are supposed to test. The problem can be described i n
the test case documentation, but pr imar i ly it is kept separately i n B u g z i l l a . N e w
problems are also filed into separate defect t racking tool .

H : M a n a g i n g the test ware. (39,43)
Test ware management is supported by repository of a l l available tests. F r o m here
they can be installed on any system i n the test lab upon request. Th is makes (re)use of
automated tests for regression testing comfortable and efficient. Trac ing modifications
on tests and maintenance of a test data is done by external (standalone) revision
control system.

R e d Hat Test System is designed to provide f lexibil i ty and allow to create new tests
using required testing technique without dic tat ing the test design. Th is gives the advan
tage to use the most appropriate too l (or technique) at lower level (test). Rather than
having a l l functionali ty i n one test tool , separate test tools should be used to support other
requirements. For example for defect t racking can be used successfully Bugz i l la , and for
test case management Testopia.

Classification of Testing Tools in Testing M a t u r i t y M o d e l

Another possible approach to classification and categorization of testing tools is to use Test
ing M a t u r i t y M o d e l (T M M for short) presented i n book [13]. A n a l y z i n g this book helped
us to classify test tools into categories by supported testing matur i ty level. We suggest [13]
for better understanding of the testing matur i ty model .

Presented test tool evaluation criteria can help us to select the most appropriate tool
from desired category. They are similar to qual i ty cri teria presented i n [23], but being less
formal and requiring more actual experience using evaluated tool . Eva luat ion criteria are:

• ease of use

• power

• robustness

• functionali ty

• ease of insertion

• quali ty of support

• cost

• organizational fit

12

Detai led explanation of each criterion can be found i n [13]. In order to have the greatest
benefit f rom using the selected tools dur ing evaluation, we would suggest to define custom
criteria for them. E x a m p l e of such addit ional criteria is i n A p p e n d i x C

Tool categorization i n T M M is based on testing matur i ty level supported by the tool .
Th is is new approach compared to other possible classifications focusing on functionality,
testing phase, or testing activity.

Lis t of test too l classification based on supported level i n testing matur i ty model :

T M M Level 1 - debuggers, configuration builders, L O C counters,

T M M Level 2 - test/project planners, run-t ime error checkers, test preparation tools,
coverage analyzers, cross-reference tools,

T M M Level 3 - configuration, management tools, requirements recorder, requirements
verifiers, requirements tracer, capture-replay tools, comparator, defect tracker, com
plexity measure, load generators,

T M M Level 4 - code checkers, auditors, code comprehension tools, test harness gener
ators, performance analyzers, network analyzers, simulators/emulators, web testing
tools, test management tools,

T M M Level 5 - process asset l ibrary support tools, advanced test script ing tools, as
sertion checkers, advanced test data generators, advanced test management systems,
usabil i ty measurement tools.

Other Evaluations of Software Testing Tools

Evaluat ing tools without experience of working w i t h tools that are being evaluated is hard,
inaccurate, and t ime consuming. Therefore nowadays exist several commercial evaluators of
software testing tools that have experience w i t h evaluated tools. They target on companies
that are looking for a solution to their software testing but do not have their own resources
or expertise to perform the evaluation and comparison of latest solutions.

B loor Research G r o u p published an evaluation of several commercial tools i n [33]. Tools
are evaluated i n four categories: dynamic testing- client/server, dynamic-test ing - character
based, dynamic testing - G U I tools, static testing tools. Another example of commercial
evaluation of leading testing tools is O v u m . They are evaluating software testing tools
from market leaders like Compuware, I B M , M e r c u r y Interactive, R a t i o n a l Software, Sun
Microsystems. We do not have access to any of commercial evaluation.

M a j o r too l vendors represented by Compuware, E m p r i x / R S W , Mercury, Ra t iona l , and
Segue (as it was back i n year 2001) are evaluated i n [17].

There are three automated testing tools selected and compared i n [42]: Compuware's
Q A R u n n , M e r c u r y Interactive's W i n R u n n e r and Rat ional ' s Team Test. Th is work presents
real-life s i tuat ion when company has to evaluate and select the most appropriate tool .

13

2.3.2 C o m p a r i s o n of R e d H a t Test S y s t e m a n d Selected Test T o o l s

In this section we present comparison of selected tools and R H T S . M a n y tools are available
for software testers, both , commercial and open-source. We decided to focus on open-source
solutions. Before doing so, we present brief overview of several commercial solutions from
various vendors. R a t i o n a l Testing Products (I B M) can provide complex solution using
several products: R a t i o n a l Test Manager, R a t i o n a l Robot , R a t i o n a l Performance Tester,
R a t i o n a l Q u a l i t y Manager, R a t i o n a l Funct ional or M a n u a l Tester, and many plugins and
extensions covering a l l aspects of testing. Another complex solutions are available from
B o r l a n d (Gauntlet , Si lkPerformer, SilkTest, S i l k C e n t r a l Test Manager) . H P offers solu
tions b u i l d using H P Q u a l i t y Center, H P Funct ional Testing, H P QuickTest Professional,
H P W i n R u n n e r and many more tools covering almost a l l parts of testing are available.
Detai led evaluations of there tools are available from several commercial evaluators. These
evaluations and comparisons are targeted on large customers looking for testing solutions.

In the rest of this section, informal comparison and discussion of selected tools and
R e d H a t Test System is provided. N o part icular evaluation criteria is used. We focus on
following subset of supported features based on different methodologies presented above:
license, maturity, pr imary programming language, project community, supported O S plat
forms and system architectures. Next we compare features related to handl ing tests and
reports, different testing modes (manual, automated, interactive), support for tests wri t ten
i n different programming languages. Support of these features i n R H T S is described i n
section 2.3.1, and by providing evaluation for selected test tools w i t h addit ional comments
comparison is achieved. We focus on open-source solutions. Valuable collection of different
open-source testing tools, together w i t h basic categorization and description, is available at
opensourcetesting.org.

Salome Test Management Framework

Salome Test Management Framework (S a l o m e - T M F for short) is intended to be an open-
source solution alternative to Qual i tyCenter [16]. It is feature-rich framework wri t ten purely
i n Java, which makes it m u l t i - O S . Supports creation of tests, automatic or manual test
execution, t racking results, managing requirements and defects, producing H T M L docu
mentation. S a l o m e - T M F supports several types of test automation: Selenium can be also
used for G U I W e b testing, Beanshell for Java scripted tests, and other tools like Juni t
or A b b o t . Defect tracking is accomplished by supported interoperabil i ty w i t h B u g z i l l a or
M a n t i s . W h a t makes S a l o m e - T M F unique, is its support for a l l testing activities (prepare,
design, execute, analyze). Furthermore other existing tools can be easily integrated thanks
to its p lugin architecture, import/export of X M L and to Qual i tyCenter .

It is licensed under G N U G P L and pr imary programming language is Java. Project
does not seem to be under active development at the t ime of w r i t i n g (since 2007). A b i l i t y
to r u n on several platforms is a plus. It is reported to work on Windows , M a c O S X , and
L i n u x . Supports pr imar i ly tests wri t ten i n Java language only. This seems to be really
restricting and makes it usable only for projects i n Java. Despite r ich set of features, it
cannot be used as a general tool for testing l inux applications as R H T S does.

14

Software Testing A u t o m a t i o n Framework

Software Test A u t o m a t i o n Framework (S T A F for short) has been developed by I B M [35].
Current ly it is an open-source framework designed considering an idea of reusable compo
nents (called services i n S T A F terminology). S imi lar ly as R H T S it tends to remove the
necessity of bui ld ing an automation infrastructure [6]. It provides a pluggable approach
supported across a large variety of platforms and languages. S T A F operates i n a peer-to-
peer environment and externalizes its capabilities through already mentioned services, that
encapsulate certain set of funct ional i ty (logging, process invocation, and so on). Creat ion
of custom services is supported.

One important part of S T A F became later S T A X , which is an execution engine based
on X M L language and implemented as S T A F service (in Java Language). Its purpose is to
allow easy automation of tests and test environments through workflow execution. A c c o r d
ing to documentat ion [6], S T A X can be used to automate any task. R H T S also uses X M L
to describe test jobs and other activities, but when compared to S T A X it provides less func
t ional i ty and flexibil ity. S T A X uses P y t h o n language to evaluate variables and expressions.
The X M L document is b u i l d of S T A X Elements which can represent data , commands or
processes, logic and job (test) control, exceptions, signals, functions and so on [6]. This
makes it flexible and powerful. G U I moni tor ing applicat ion could be also considered as a
plus i n some situations.

S T A F is licensed under Ecl ipse P u b l i c License (E P L) . Some packages distr ibuted w i t h
S T A F are licensed under their own licenses (Apache Software License, z l ib License, J y t h o n
License). P r i m a r y programming languages for S T A F are C / C + + and Java (S T A X) . It has
a good community support and active development. It is reported to work several O S plat
forms: various L i n u x distr ibutions, F r e e B S D , M a c O S X , and W i n d o w s versions, and many
system architectures. S T A F was designed to be easily usable from a variety of programming
languages (e.g. Java, C / C + + , Rexx , P e r l , Shell , and so on) and extensible. It supports
local and distr ibuted streamed results, live test monitor ing. A l s o a l l three testing modes
are possible (manual, automated, interactive). Avai lable services are: C r o n , E m a i l , Event ,
EventManager , F S E x t , F T P , H T T P , NamedCounter , Namespace, S X E , T i m e and more
(detailed description can be found i n [6] and [22]). S imi lar ly as R H T S , S T A F does not pro
vide support for defect tracking, G U I or performance testing and other testing techniques
one needs to use tools like SilkTest, W i n R u n n e r and so on. Compared to R H T S , S T A F
has advantage i n being mul t i -p la t form and providing many addit ional services (reusable
components i n S T A F terminology).

Other open-source test tools are for example Accerciser [44], D o g t a i l [14], S A F S [2] for
G U I testing L i n u x applications. A s already mentioned for defect t racking we would prefer
B u g z i l l a . For test case management is suitable B u g z i l l a p lugin called Testopia. Sun devel
ops interesting too l for managing performance testing called Faban. Creat ing a collection
of test tools for testing L i n u x kernel and other features is a pr imary goal of L i n u x Test
Project [1].

15

Chapter 3

Red Hat Test System

R e d H a t Test System (R H T S) is an automated test system used by R e d Hat ' s quali ty
engineering department for qual i fying releases of R e d H a t Enterprise L i n u x (R H E L) . This
chapter describes its architecture and i n d i v i d u a l parts that had to be understood i n order
to successfully design control system for testing l inux applications compatible w i t h R H T S
tests. R H T S documentat ion is not available to the publ ic . A t first, we present overview
of R H T S and its architecture. Later we focus on R H T S tests and jobs through related
projects that provide publ ic ly available information about R H T S - Beaker [38] and Table
C l o t h [3]. Beaker is intended to be an open-source version of R H T S being developed from
the ground up.

3.1 Overv iew

R H T S provides a standardized way to write and r u n automated tests on packages contained
i n a R e d H a t d is t r ibut ion . Besides that it allows to use almost any testing technique by
al lowing it to use R H T S only for the control part , environment instal lat ion and setup, and
following execution of specified test. R H T S focuses on a system level commands and opera
tions [3]. It is wri t ten as a mixture of several scr ipt ing languages, mostly Bash, P y t h o n , Per l .

A s we already mentioned it is designed for R e d Hat distr ibutions m a k i n g it highly effi
cient, but hard to replace or port to different p lat form. W h e n it comes to testing R e d Hat
distributions, R H T S provides support for developing automated unit tests, bug reproduc
ers, hardware enablement, regression testing and other types [3]. Users are released from
the necessity to insta l l and setup desired system dis tr ibut ion and architecture manually.
R H T S does a l l of this automatical ly based on user provided parameters.

3.2 A r c h i t e c t u r e and Funct iona l i ty

Architecture of R e d Hat Test System consists of several components. N a m e l y it is:

• Scheduler

• Repository

16

• Database

• Test Laboratory Control ler

• Systems i n a Test Laboratory

• R H T S Framework

• R H T S Tests

The m a i n important parts are the scheduler and individual tests. R H T S scheduler is
responsible for managing activities relates to test execution based on user requirements
by determining what, where and how should be launched. Another server part is a test
repository holding i n d i v i d u a l tests and providing them to the systems under test. Database
stores test jobs, results and log files. M a i n purpose of a test laboratory controller is to pro
vide system provisioning. It manages a l l hardware i n a laboratory and provides watchdog
functionality for test jobs running on a systems i n the test laboratory. Another part, and
the only one that is currently publ ic ly available, is R H T S Framework [3], which w i l l be
described later. The last part are i n d i v i d u a l R H T S tests.

There are certain specific requirements on this system, that make it different from
commonly known automation tools. Its purpose is to support testing R e d H a t L i n u x dis tr i
butions. System has to be general enough to allow executing tests designed to use almost
any testing technique. Therefore specialized testing techniques as G U I testing, performance
and load testing are done at lower levels are using other test tools like Dogta i l .

System functionali ty is i n detai l presented i n section 2.3 using task oriented approach.
Here we describe only functionali ty available from user perspective. C o m m a n d line inter
face allows submit t ing test and test jobs, creating and managing different workflows i n a
X M L files. Th is functionali ty is provided by R H T S framework described i n next section.
Scheduling jobs is also available using Web G U I . V i e w i n g job status, test results, log files,
searching available tests, systems i n a part icular laboratory, o ld jobs, v iewing reports i n
different formats, monitor ing jobs based on different criteria, and other s imilar functionali ty
are available using R H T S Web G U I . Funct ional i ty for instal lat ion and setting up of system
under test is provided by test laboratory controller. It is a system capable of managing
system provisioning according to test job requirements (e.g., d is tr ibut ion, architecture).

Funct ional i ty of target hosts executing tests is main ly wri t ten as a set of cooperating
Bash and P y t h o n scripts. This provides an abi l i ty to have strong control (over the system)
and easy access to shell commands. Close coupling to functionali ty specific to R e d Hat
distributions makes it efficient, but unfortunately not portable to different platforms.

For system instal lat ion and setup i n test laboratory environment, systems are installed
and setup up using kickstarts (network instal lat ion too l set used by R e d H a t distr ibutions) .
Kickstar ts are generated based on X M L document generated based on user requirements
and describing the test job.

17

3.3 R e d H a t Test System Framework

R e d H a t Test System framework (R H T S framework for short) was released as a part of
Table C l o t h project [3]. Tests developed using R H T S framework can r u n on developers
workstat ion i n a standalone mode, or i n a laboratory environment. It defines test A P I and
format of metadata files. B y providing this users have everything that is required to create,
test, pack and submit new tests. It should be noted that developing and executing more
complex or distr ibuted tests might get complicated outside R H T S laboratory environment.

The R H T S framework provides everything necessary to start developing new tests:
tools, A P I libraries, and template files. Propoer test development environemnt can be set
up using following R P M s : rhts-devel, rhts-devel-test-env, rhts-devel-python. A l l
packages are available for download f rom y u m repository at following U R L :
http://people.redhat.com/dmalcolm/tablecloth/tools/.

Package rhts-devel-test-env provides components of the test system used when run
ning tests i n a standalone mode or w i t h i n a R H T S laboratory, rhts-devel package is for
creating and mainta ining R H T S tests. It direct ly provides or pulls i n through package de
pendencies runtime components of the test system for instal lat ion on a workstat ion. P y t h o n
modules for handl ing R H T S test metadata are provided by package rhts-devel-python.

3.3.1 W r i t i n g Tests

R H T S test is a program performing sequence of tasks. Success or failure is determined by
the test logic and results are reported using hooks i n an A P I . The responsibil ity for report
ing results is on the test itself. Test can consist of code, data , metadata, and dependencies
to other program or test packages.

R H T S framework allows tests to r u n i n two modes: developer and automated. Devel
oper mode means that the test is running i n standalone environment, usually on developers
workstat ion while he is creating the R H T S test. W h e n it is later executed i n automated
mode, it is able to detect laboratory environment and required variables that are available
only i n a laboratory environment. We found out this to be especially useful dur ing in i t i a l
development of new tests locally. It should be noted that R H T S tests by default (and
design) r u n under superuser privileges.

R H T S test has three m a i n components. T w o source files (runtest. sh, Makefile) and
a documentat ion file (PURPOSE). W h a t makes R H T S tests flexible is the abi l i ty to add and
use other scripts and source files to the test. Th is can be used to create complex test logic,
incorporate t h i r d party tools, generate test data specific for different architectures, etc.

runtest.sh A shell script responsible for performing the test case and reporting the results.
It is quite common to use it for delegating work to other, more complex, scripts or
executables i n other languages. The most simple way to create a R H T S test is to
use already existing single test executable, i n the example below called my-test, and
execute it f rom the runtest .sh:

18

http://people.redhat.com/dmalcolm/tablecloth/tools/

#!/bin/bash

rhts-run-simple-test $TEST ./my-test

Results w i l l be reported together w i t h log file containing captured stdout and stderr
to the server based on the exit code from the executable. Variable TEST i n the script
above reveals that the test environment has to provide certain variables expected by
the test script and its helpers. C u s t o m test logic can be created i n runt est. sh by
sourcing /usr/bin/rhts-environment. sh file provided by the framework.

Makefile Purpose of this file is to coordinate developing and running R H T S tests. It
handles compilat ion of executables, creating R P M containing al l test files, instal l ing
test files to expected location, and most of a l l running the test. It is also responsible for
defining mentioned environment variables necessary for running tests and reporting
results.

P U R P O S E Th is is a pla in text file, intended to be read by human only, providing informa
t ion about the test such as its description, known issues, and other useful information
to help anyone not famil iar w i t h the test to understand and r u n i t .

To start creating a new m i n i m a l test skeleton one can use R H T S framework tool
rhts-create-new-test. R u n n i n g test i n developer mode is done by running a make tool
i n the directory containing tests Makefile:

$ make run

R u n n i n g it i n automated mode is more complicated and w i l l not be discussed here. Th is
w i l l be described i n the Chapter 5 dedicated to system design as it w i l l be necessary for
running R H T S tests i n our system. M o r e detailed documentat ion on R H T S tests can be
found i n [5]. It describes test components and how to create them, running tests, report ing
results, packaging test and tools available i n R H T S framework.

3.3.2 W o r k D e s c r i p t i o n

R H T S jobs are described using X M L files. Usual ly they are created using command line
tools designed to generate X M L for selected workflow (e.g. for running multihost tests).
Figure 3.1 shows simple representation of R H T S test job. Specific example of X M L files
representing R H T S job and recipe are recipe .xml and nfsvirtual .xml that can be found
i n [38].

3.4 Re la ted Pro jec ts

There are two open-source projects directly related to R H T S . A r o u n d year 2006 R e d Hat
came w i t h ini t iat ive to involve open source community (not only around Fedora Project) i n
testing w i t h the goal to improve the qual i ty and speed of open source software development
[3]. In this section, we give a short overview of the two projects, Beaker and Table C l o t h .

19

3.4.1 B e a k e r

Accord ing to project pages [38] Beaker is an adaptat ion of R e d Hat ' s R H T S automated test
system for Fedora (and the Free Software community i n general). A t the t ime of wr i t ing
this is a new project. It w i l l be entirely automated testing framework. A c t u a l status is
available at dedicated Trac page [37]. The project is under slow development. A t the
beginning these parts of R H T S were made available [38]:

• Documentat ion and A P I for tests, test running, test result reporting, etc.

• A u t o m a t e d tests which use those A P I

• A personal test execution engine (allowing i n d i v i d u a l testers to r u n tests on their
systems)

Beaker consists of several components. It uses several other Fedora projects to provide
required functionality. Here is a list w i t h short description based on information available
at [37]:

Logan System scheduler accepting jobs upon request, provides repository of tests and
database.

M e d u s a Laboratory Controller , designed to be b u i l d using other Fedora projects to provide
specific tasks. They can be used separately. Namely it is:

• Cobbler - system provisioning

• Conserver - console logging

• Fenced - power-cycling machines (P X E installs and recovery)

• Smolt - inventory data

It should be noted that the only parts being developed as separate fFedora project
are working at the t ime of wr i t ing , but separately. The system as a whole is s t i l l under
gathering a l l requirements and development. Server (Logan) is being developed using Tur-
boGears P y t h o n web framework. One of the goal is to take more modular approach which
is being accomplished for example by using cobbler for provisioning and Smolt for inventory.

3.4.2 T a b l e C l o t h

A new testing project that turned into 'Table C l o t h Pro ject ' was announced at R e d Hat
Summit i n 2006. A s part of this project R e d Hat contributed several internally developed
tests, R H T S testing A P I , test reviewing policies, test w r i t i n g guide, and automated G U I test
tool called D o g t a i l [3]. Unfortunately, this project wasn't accepted well by the community
is not active anymore.

20

Recipe 1

A

1) rest /X/Y/Z

2) Test /X/Y/Z

1.1) Resu l t for sub- tes t 1

1 .M) Resul t for sub- tes t M

Resul t for test 1

N) Test /X/Y/Z Resul t for test N

Recipe w

T

I
I
I

Recipe 1 S ta tus /Resu l t

1) Test /X/Y/Z

1.1) Resul t for sub- tes t 1

1.M) Resul t for sub- tes t M

2) Test /X/Y/Z Resul t for test 1

N) Test /X/Y/Z Resul t for test N

Recipe N Sta tus /Resu l t

Figure 3.1: A n example of possible visual representation of a test job i n R e d H a t Test
System. The test job is identified by ID number. It contains several recipes generated for
each system matching requested configuration. E a c h recipe can consist of one or more tests.
E a c h test can hold results for several sub-tests and together w i t h its own result or current
status of execution.

21

Chapter 4

Specification and Requirements

In this chapter, we discuss specification and requirements on the control system for appl i
cation testing i n L i n u x . We present requirements on the system, functionali ty requirements
on the system components, system classification, test requirements and ideas on possible
future enhancements.

4.1 Requirements on the System

A u t o m a t e d test cases are currently managed and scheduled i n R e d H a t internal system
called R e d Hat Test System (R H T S) . Th is system is i n more detai l described i n Chapter
3. It is large and complex system, therefore implemented system should be lightweight and
allow straight-forward deployment. This w i l l allow it to be used by arbitrary S W projects
on O S L i n u x . B u i l d i n g shared database of tests w i t h the support from community should
have essential effect on software quality. Follows a list of the m a i n requirements on the
system.

• Tests compatible w i t h R H T S format, which is i n fact a R P M package, and it is referred
to as R H T S test i n further text.

• For test creation can be used R H T S framework described i n Chapter 3.

• It should be possible to execute R H T S tests on local and remote systems. System
should allow to manage and schedule automated test cases.

• E a c h executed test produces and reports some results.

• Test results should be stored and provided upon request.

• Architecture of the system should be based on client-server model . Server is respon
sible for test job management, test management, client management and preventing
possible inval id runs.

• Cl ient (also called worker to dist inguish from client side provided to the user) is
pr imar i ly responsible for provisioning test execution environment, test execution and
reporting results.

22

4.2 Funct iona l i ty Requirements

4.2.1 Server

This is the part of system users w i l l be interacting w i t h . The pr imary component, it is
composed of, is a test scheduler. A n y request from user w i l l process through the server
u n t i l being served by a client (worker). M a i n functionali ty requirements on server part are:

• schedule test job (CLI)

• store tests

• manage test job results

• receive test job results from client (worker)

• dispatch test job to client (worker)

• accept request to r u n test job

• provide test job results (C L I and WebUI)

Users of the system are creating tests. Af ter placing the tests into test repository on the
server, system should allow to request execution of those tests on client system(s). Clients
can have different characteristics like architecture, installed O S , etc. Therefore server should
be able to i n a simple way watch available clients and report if specific request is not pos
sible to satisfy.

Server should be able to pass execution of a test job to client matching characteristics
requested by user of the system. Scheduler w i l l be responsible for this . A f t e r a client exe
cutes the test job, it reports results and log files to the server.

Test results should be stored i n local database. It should be possible to access test
results using command line interface (C L I) or W e b U I . S u b m i t t i n g tests to the server is not
defined and is up to the deployment of the system how to submit new tests to the server.
Server is only responsible for providing dedicated storage for the test repository. Ideally
this could be provided by helper scripts available to the user.

4.2.2 C l i e n t W o r k e r s

M a i n responsibil ity of a client workers is to execute test job and report results to the server.
Client systems are installed and configured manually. R u n n i n g dedicated daemon w i l l
show client and its configuration characteristics to the server. Succeeding this w i l l make it
available to r u n test jobs matching configuration requirements. Funct ional i ty requirements
on client system are:

• test environment provisioning

• test installation/setup

• execute test job

23

• provide test watchdog

• report test job results

• accept/request new test jobs

• report presence of a client to the server

• environment configuration

Client works on job assigned to it by a server. To achieve this, server needs to know
the state and configuration of its clients. Th is information are reported to the server by
each client. Cl ient is responsible for provisioning environment suitable for executing the
test job. Provis ioning options should be discussed i n more detai l i n Chapter 5 dedicated to
system design. Required parts of the test should be installed and also executed by the client.

In R H T S test, results are reported to the server by the test itself and the client is only re
sponsible for providing required resources and environment (packages, libraries etc.). E a c h
test job has defined m a x i m a l execution time, if it exceeds it , it should be terminated by
watchdog.

Test environment provisioning, test installation/setup, watchdog, accepting new test
jobs from server is i n R H T S done by dedicated system called laboratory controller respon
sible for managing al l hardware i n a test laboratory. The process is i n R H T S driven by a
generated kickstart, and shell script using several helper tools.

Fol lowing U M L Use-Case diagram 4.1 depicts overview of the functionali ty that should
be provided by the system for three roles: user, server and worker (client).

4.3 Class i f icat ion and Requirements on Software Test ing

E a c h software testing tool can be characterized using different criteria as we present i n
section 2.3. M a i n responsibil ity of this tool is to server as (lightweight) control system for
automated testing. It w i l l provide less funct ional i ty but ideally w i l l be more flexible and
extensible than R H T S .

The system w i l l provide support for constructing test cases, using the R H T S framework
which is described i n [5], executing tests, aggregating results and log files. B y default there
w i l l be no support for defect tracking, capturing, formalized test case design, comparing
test results, test revision control, statistics and other advanced features.

4.3.1 S p e c i f i c a t i o n of T e s t i n g T e c h n i q u e s a n d Possible R e s t r i c t i o n s

Examples of various test types and techniques that should be supported directly by the
system or using t h i r d party test tools: regression testing, smoke testing, instal lat ion testing,
configuration coverage, unit tests, endurance testing, manual testing on reserved system
(possible future enhancement), long sequenc testing, load testing, performance testing, and
any other test type that can be turned into R H T S test

24

A l l these testing techniques are possible to use i n R H T S . Definitions of l isted testing
techniques can be found i n [18] and [24].

O n the other side, there are test types and techniques that are not supported or not
possible to implement and execute. Some tests are considered to be destructive and unless
executed i n a properly isolated environment, they might break the worker system. It would
have to be fixed manually, before being able to r u n another job. For example testing net
work, rebooting system, or testing other parts that are used by the worker to communicate
w i t h server or execute tests has to considered vulnerable to be broken by the test. A use
of appropriate test environment should prevent such a vulnerabil i ty.

4.4 Tests and E x e c u t i o n E n v i r o n m e n t

One of the most important requirements is to preserve compat ibi l i ty w i t h R H T S tests. A s
presented i n [38], R e d H a t Q E has released automated tests, A P I they are using and its
documentation. Therefore R H T S test format w i l l be used by default. Detai led information
about R H T S tests can be found i n [3].

It should be possible to use R H T S Framework to develop new R H T S tests. R H T S
Framework is already available as a part of Beaker and Table C l o t h project. Th is would
also allow to execute (and debug) tests local ly i n developers mode or automatical ly i n test
environment.

25

Figure 4.1: D i a g r a m depict ing functional decomposit ion of specified requirements
on the system.

2(3

Chapter 5

Design of a Control System for
Application Testing

In this chapter, we present proposed design of a control system for testing applications
i n l inux. R H T S has many hardware requirements on target hosts, laboratory controller,
and server. Therefore one of our goals was to create a system, that would not have such
restricting hardware requirements and would allow much more straight forward instal lat ion
and deployment for normal users. Another goal was to make it flexible and extensible by
new features i n the future.

5.1 Overv iew of the System

The system consists of a three m a i n parts: user client (helper) tool , server, and worker.
Us ing command line interface (C L I) client tool , users of the system can scheduler new test
jobs (create and submit job X M L) , access test repository and request for reports. Server
accommodates much more functionali ty: scheduler (stateless), database (for results, jobs,
test laboratory, log files), test repository (R P M) , job parser and validator, recipe generator,
worker system manager (laboratory inventory). Workers are client systems registered at
server and pol l ing it for work (test execution). Worker components are daemon, recipe
controller and parser, plugins A P I , plugins, watchdog, and test runner. Here is a list of key
points providing overview of the system:

• user side C L I commands to communicate w i t h server implemented i n P y t h o n

• work (test job) and parameters described by a X M L document, derived f rom Beaker
(R H T S) , and called test jobs and recipes

• server operates on a test job upon user request

• workers p o l l server for work, server is stateless

• server dispatches work described by recipe, which is a X M L document created by
server f rom workflow

• server b u i l d using P y t h o n web framework supports adding new features (e.g. W e b U I
enhancements)

27

• server designed using M o d e l - V i e w - C o n t r o l l e r design pattern and b u i l d using P y t h o n
web framework

• worker receives recipe and parses it to execute requested work

• worker plugins allow adding support for new test execution environments, test formats
and test environment isolation

• uses R H T S framework for executing and developing new (R H T S) tests

• test results are accessible v i a C L I or W e b U I

• ideally the implemented system should be extensible, pluginable, configurable

• no user input is currently planned for the W e b U I

The system components should be b u i l d on top of existing technologies: X M L , X M L -
R P C , P y t h o n , R H T S Framework, P y t h o n web framework (Django or TurboGears) .

F igure 5.1 depicts simplif ied architecture and chronological overview of the control sys
tem for l inux applicat ion testing. Fol lowing ordered list describes possible chronological
order of step depicted i n the figure:

1. Server provides Worker Manager responsible for keeping track of available worker
systems that w i l l serve the systems under test. A f t e r configuration and start of
dedicated daemon/service, worker w i l l t r y to register/report to configured server.
Worker Manager records provided configuration of the worker.

2. User of the system submits test to the test repository.

3. Us ing command line interface, user can request execution of selected tests on systems
matching given cri teria . Scheduler evaluates the request, aborts a l l unrealizable parts
and adds new jobs to the queue.

4. Worker systems po l l the scheduler for work.

5. Scheduler checks the queue and assigns work to those, matching requested configura
t ion (arch, family, ...) through test job dispatcher.

6. P r o v i d i n g test data to clients. A l s o provide access to some shared storage.

7. Worker system reports results and log files to the database. Scheduler w i l l need access
to the database i n order to file results for aborted jobs.

8. User can review current results using C L I . (This would be most l ikely some simple or
batched form).

9. Server provides W W W server for reviewing the results using web browser.

28

a

User
Helper w e b

Tools browser

CLI

FTP client, scp,
NFS mount, ...

CLI

Legend

XML^RPc" _

Local Interaction

Other Interaction

Server

web server
td

.^fest Job Results DFJ*

g . / : . _ .

. / ' Test Repository

Scheduled s « .

\ Test Job DB

Worker DB Worker Manager

v 7.

. . 6 .

. 4 _ 5 . _

Worker Systems

client-l.mydomain

client-2.mydomain

client-N.mydomain

Figure 5.1: Chronological overview of designed system.

5.2 Deta i l ed System Des ign

5.2.1 W o r k D e s c r i p t i o n a n d C o n t r o l

After evaluating requirements on the system and approaches i n different tools (e.g. S T A F)
we came to conclusion that most appropriate to use the idea of X M L document to describe
the work and requirements on test job requested by the user, s imi lar ly as it is done i n
R H T S and w i l l be done i n Beaker project. This could provide easier compat ibi l i ty w i t h
these systems i n the future.

There w i l l be two pr imary kinds of X M L documents passed between user, server and
worker: test job and recipe. Rather than reinventing the wheel we decided to use this con
cept that has been working i n R H T S for many years and customize it for our needs. We
preserved naming similar to the one used i n R H T S , because structure of both documents
w i l l be based on i t . F i rs t type of the X M L document calls test job. M o r e precisely it
is a test job description document. It is a X M L describing the job request from user to
server. T h e second one calls recipe, and is generated by the server for each worker system
indiv idual ly from the test job. Its purpose is to serve as a control file for systems under test.

Workflow (Job) Recipe

User > Server > Worker

Example of proposed pla in test job skeleton without addit ional attributes and values:

<job>

<workflow> </workflow>

<owner> </owner>

<comment> </comment>

29

<recipeSet>

<recipe>

<uorkerProperties>

<worker name="" value="" />

</workerProperties>

<distroProperties>

<distro name="" value=""/>

</distroProperties>

<envProperties>

<env name="" value=""/>

</envProperties>

<test role="" name=""/>

<test role="" name=""/>

<params>

<param name="" value=""/>

<param name="" value=""/>

</params>

</test>

</recipe>

<recipe>

... second recipe in a job ...

</recipe>

</recipeSet>

</job>

E x a m p l e of proposed pla in recipe skeleton without addit ional attributes and values:

<recipe id="" job_id="" recipe_set_id="" status="">

<workerProperties>

<worker name="" value="" />

</workerProperties>

<distroProperties>

<distro name="" value=""/>

</distroProperties>

<envProperties>

<env name="" value=""/>

</envProperties>

<test avg_time="" id="" name="" result="" role="" status="">

</test>

<test avg_time="" id="" name="" result="" role="" status="">
<params>

30

<param name="" value=""/>

</params>

</test>

<test avg_time="" id="" name="" result="" role="" status="">

<paxams>

<param name="" value=""/
>

<param name="" value=""/
>

</params>

</test>

</recipe>

5.2.2 W a t c h d o g a n d H e a r t b e a t

The system w i l l be equipped w i t h two watchdog mechanisms, one on workers and second
on the server. L o c a l guard at the client worker system making sure tests do not exceed
assigned execution t ime. Test r u n t ime is specified i n the recipe. In case it exceeds assigned
t ime quantum it has to be terminated and the action w i l l be reported to the server. L o g
files w i l l be collected from the system fro later analysis.

Another watchdog should be at the server side. Its purpose is to watch for broken/dead
clients i n case some test breaks the worker system i n a way that it becomes irresponsive.
Ideally this should never happen. Server is stateless. For this purpose we propose to use
idea of heartbeats. E a c h worker w i l l be assigned unique identifier dur ing in i t i a l registration
phase. Heartbeat holds, besides the identifier, data describing current state of the system.

EventScheduler WorkerDaemon SystemController

heart beat()

WorkerSystem Recipe

update_heartbeat()

Event scheduler
wakes up j
system controller
to check for dead
worker systems
in a given timfc
period.

checkworkf r_systems()

check_dead()

disableO

worker bied()
=1 update()

Figure 5.2: U M L sequential d iagram depict ing the heartbeat between worker system (here
represented by WorkerDaemon) and server.

5.2.3 M a n a g i n g A v a i l a b l e S y s t e m s i n a Test L a b o r a t o r y

Systems i n a test laboratory, called worker systems or workers for short have to be installed
and configured manually. T h a n the worker has to be registered on the server. R u n n i n g
a worker daemon on a correctly configured and registered system w i l l trigger periodical

31

pol l ing of the server for work.

Avai lable systems can be searched using Web G U I provided by the server or l isted i n
the shell console using command line client tool provided to users.

5.3 Server

Analys is of the requirements on the system results i n a conclusion that the most appropriate
architecture design pattern to use for the server would be Model -View-Contro l l e r (M V C) .
T w o P y t h o n web frameworks were being considered: Django and TurboGears . B o t h are
quite s imilar i n functionality. TurboGears has better solutions to problems we experienced
while exploring features of bo th frameworks (most important were X M L - R P C , scheduler,
database models). Greatest downside of TurboGears are too many dependencies and re
quirements for instal lat ion. Django framework comes hand i n hand w i t h the requirement on
the system to be lightweight from the view-point of instal lat ion, appl icat ion dependencies,
and deployment. F igure 5.3 depicts i n d i v i d u a l parts involved i n TurboGears applicat ion
and matching the M V C design pattern. TurboGears glues together database models i n
S Q L A l c h e m y (or S Q L O b j e c t by default), templates or also called view using Genshi (or
K i d by default), web handl ing controller is C h e r r y P y , and JavaScr ipt/Ajax can be handled
w i t h M o c h i K i t .

F igure 5.3: D i a g r a m depict ing core parts of a TurboGears applicat ion following the M V C
design pattern. Model Objects represent applicat ion data, Controller Code accesses data
i n database using model's A P I and provides output to the templates and template engine
(here Genshi) . Incoming requests are processed through C h e r r y P y (object-oriented web
applicat ion framework).

Figure 5.4 depicts designed server classes. Complete database model can be found
i n F igure 5.5. Containment to M o d e l - V i e w - C o n t r o l l e r design pattern is following. M o d e l
classes represent the applicat ion data that are stored i n server's database. Control ler classes
operate on these data . Follows is a list w i t h short description referring to the Figure 5.5:

32

Root Results

Report

EnvType

Scheduler

1 *

Figure 5.4: U M L class diagram depict ing designed server classes.

Job Highest test work unit . Consists of a recipe set and some addit ional information (e.g.
job owner).

RecipeSet Serves as a v i r t u a l container for several recipes requested i n a single test job.

Recipe U n i t of work that can be assigned to single worker system at once. Composed of
recipe tests, requirements on the test execution environment. Recipe has to have at
least one test.

RecipeTest Representation of test on a recipe that should be executed on a worker system.
It is composed of reported recipe test results and requested test parameters. It has
to be associated w i t h a test package represented by a Test class i n the figure.

RecipeTestResult Test can have mult iple results. Simplif ied mechanism for providing
several sub-results for a single test r u n . E a c h can have associated a log file w i t h i t .

RecipeTestParameter Tests can be executed w i t h arbi trary number of custom test pa
rameters.

LogFile Provides some metadata for submitted log file.

Test Represents information about test available i n a test repository. For example users
can request or view (Web G U I) a list of available tests.

Worker System Information about system available i n a test laboratory. Managed by a
System Control ler .

E n v T y p e Systems can provide different test execution environments requested for a test
job (more precisely recipe).

TestEnv For each recipe is created TestEnv object w i t h purpose to enclose data describing
test environment.

Result and Status Provide unified result and status values preserving consistency among
objects involved i n the testing.

33

Control ler classes are:

R P C R o o t This is a base class al lowing other classes to export their methods v ia X M L -
R P C provided by C h e r r y P y by inheri t ing it .

Scheduler The m a i n part of the server side. Responsible for receiving, updat ing and
providing test results. Po l led by worker systems for work. Operates on almost a l l
database model objects. Creates them based on X M L description, updates their
status and evaluates complex results. N o t a l l database models are depicted i n the
figure, because of readability.

SystemManager Manages worker systems i n the test laboratory. Worker systems register
to it , report heartbeats, provide their configuration and so on.

Results Provides custom X M L - R P C A P I expected by R H T S tests running i n automated
mode and w i l l i n g to submit test results and log files.

Report Its purpose it to provide access to textual representation of current status and
test results for job, recipe, test, worker system. The reports are a X M L documents.

TaskScheduler There is a need to register and execute custom periodic tasks i n a t ime.
Different tasks can be registered to be scheduled for execution i n given interval.

Root The m a i n controller class used by C h e r r y P y , to serve access to other pages, and
other objects w i t h registered X M L - R P C methods.

Search Provide support for W e b U I search functionality.

Details Provide control, logic, for web pages providing details about given model objects.

Viewer In M V C design pattern this would reside i n the view. Provides templates present
ing output information that is provided by the controller.

5.3.1 Scheduler

One of the most important component of the server is a scheduler. It provides the function
ality that manages executing tests on worker systems satisfying given requirements on the
architecture, d is tr ibut ion, test environment, and so on. Scheduler is visible to the worker
systems which have to be configured to communicate w i t h the desired scheduler.

Worker systems are pol l ing the scheduler for work. The scheduler is most of the time
not working and it is state-less. W h e n worker polls it for work, scheduler searches the
database for jobs/recipes i n queued state wai t ing to be dispatched for execution. B y i n
specting worker's configuration it assigns the recipe to it i n an atomic operation to prevent
possible interaction w i t h some other pol l ing worker. The recipe holds a l l the information
necessary for the testing as it is described i n section 5.2.1.

It is important to point out that the scheduler does nothing unless pol led for a work.
A l l information needed to manage the scheduling are stored i n a persistent form i n the
database. Unexpected or planned restart of the server does not affect the testing unless
some test results were reported dur ing the outage. Results and status changes are reported
to the scheduler by cal l ing provided X M L - R P C methods.

34

5.3.2 D a t a b a s e

In the M o d e l - V i e w - C o n t r o l l e r design pattern, models represent the data the system w i l l
work w i t h . B o t h P y t h o n web frameworks that were evaluated support several database
backends (PostreSQL, M y S Q L , S Q L i t e) . F igure 5.5 depicts class diagram for applicat ion
models. In most cases removing records f rom the database is not desired. T h e y should be
stored for future analysis

T w o options are for storing log files: i n a database or i n a dedicated directory. We would
prefer storing log files i n a database and providing opt ional shared storage configured for
storing large files or tarballs containing several i n d i v i d u a l logs gathered by a test.

5.3.3 Test R e p o s i t o r y

Test R P M packages w i l l be stored i n a Y u m repository on the server. T h i s w i l l allow
worker systems to download (and install) the test packages using yum package manager.
Y u m is not available for older R e d Hat Enterprise L i n u x releases (older than R H E L 5). We
suppose that it is available at the system, or it has to be installed manually. A n example
configuration of a local y u m repository for bo th sides, client and server (tested on a Fedora):

Server side configuration example:

1. Create destination directory for packages (check your basearch and releasever):

$ mkdir -p /var/www/html/yum/tests

2. C o p y desired packages to the created test directory

3. Create repomd (xml-rpm-metadata) repository

$ cd /var/www/html/yum/tests

$ createrepo .

4. Configure httpd.conf

5. Supposing h t t p d to be configured for v i r t u a l hosts, add following to httpd.conf file:

<VirtualHost *:80>

ServerName 192.168.100.100

<Directory "/var/www/html/yum/base">

Options Indexes Includes FollowSymLinks

AllowOverride A l l

Order allow,deny

Allow from a l l

</Directory>

</VirtualHost>

Client side configuration example:

1. Create new repository configuration file:

35

$ cat « _EOT » /etc/yum.repos.d/test.repo

[my-local-test-directory]

name=My Test Repository

baseurl=http://192.168.100.100/yum/tests

enabled=l

gpgcheck=0

_E0T

2. Smoketest the repo, for example using following command:

$ yum repolist —disablerepo='*' —enablerepo=my-local-test-directory

A s an future enhancement we were investigating other possibilities that could be used
instead of Y u m and R P M for a test package format. Interesting solution might be using
P y t h o n easy_install and custom web-base repository of P y t h o n packages (called eggs i n
this case) as a replacement for a R P M package format. Th is might be an interesting future
enhancement.

5.4 W o r k e r Systems R u n n i n g Tests

Tests are being executed i n a test environment on a worker systems located i n a test
laboratory. Worker systems are managed by the server i n a sense that it keeps track of
available systems, their features and status. F igure 5.6 depicts class diagram of a worker
system.

Register Before a new worker system can be used for testing it has to report its presence
to the server (test laboratory manager). Th is step also involves providing system
description and configuration to the server al lowing h i m to reject test jobs that are
not possible to be completed (requested configuration is not available).

WorkerManager Responsible for managing system status and configuration. C o m m u n i
cates w i t h server's System Control ler . Provides functionali ty for pol l ing server for a
new work using provided X M L - R P C methods. A s a response server can assign work
to the worker (in a form of recipe). Status of the worker w i l l change. It w i l l stop
pol l ing u n t i l assigned work is done. Has Recipe Control ler to check the recipe and
then hands it over to process i t .

Heartbeat Worker system registered on the server reports its presence by sending peri
odical heart-beats. T i m e per iod can be configured. If worker system stops sending
heart-beats, it indicates that the system is not working properly most l ikely due to
executing a test.

RecipeController Purpose of a recipe controller is to validate and check received recipes
(X M L document) . T h e n it parses the recipe and creates corresponding recipe and
test objects. Invokes Test Runner to handle the testing.

TestRunner K e y component responsible for running tests i n the recipe. Based on recipe
requirements creates environment and uses it to handle the test i n the environment.

36

http://192.168.100.100/yum/tests

Figure 5.7 depicts the interaction w i t h Environment . Before running the test process
watchdog is set for the test and if it does not finish w i t h i n assigned t ime quantum,
k i l l method provided by E n v class is called.

E n v Th is class provides access to the test environment used for test execution. Its purpose
is to create and remove the test environment. Indiv idual tests specified i n the recipe
(this is a X M L document) are r u n using r u n and k i l l methods. The idea for such
plugins was inspired by the Bazaar p lugin architecture, f r e e l P A plugin architecture,
and P u b project. T w o environment plugins should be implemented. Simple providing
no test env. isolation and thus executing the test directly on the host system. Crutch
plugin should investigate possibilities for using change root environment and L V M
snapshots for creation of a desired test environment.

Recipe, Test, Parameters At t r ibutes of database model classes Recipe, Test, TestParam,
TestResult are subset of here shown classes which hold also temporary information
(e.g. pid) .

We w i l l need also to trigger actions i n a configured periodic t ime intervals. Th is is needed
for pol l ing server for a new work, report ing heartbeats, and for watchdog functionality. One
possibil i ty is to set a system cron daemon for this purpose, or create separate class to provide
required functionality, since test might be messing up w i t h the cron's daemon scheduler.
O r provide both approaches. Classes: Watchdog, Pol ler , HeartBeat would inherit i t . The
test might be also changing the system time, and requires proper test environment isolation.

5.4.1 Test E n v i r o n m e n t

The purpose of test environment is to establish and mainta in an adequate environment,
inc luding test data, i n which it is possible to execute the tests ideally i n a manageable and
repeatable way. Problemat ic part is proper test environment isolation.

The intention is to have physical systems (under test) without the need to be (re) installed
after running each test job. In Beaker this is designed to be performed by cobbler and
machines are physical ly (re)installed. This puts many hardware requirements on the labo
ratory environment. D u r i n g specification phase it was decided to create lightweight system
released that would be possible to use i n shorter t ime, paying the price for possible v u l
nerabil i ty to be harmed by the running test (unless properly isolated test environment is
used). Especial ly when the R H T S tests are by default running under root (superuser).

Proper isolation of a test environment can be cr i t ica l for test execution. Execut ing a
test i n unpredictable/unknown environment is undesired, as it might be almost impossible
to r u n the test under s imilar conditions, and do the analysis of results i n future. Several
possible solutions to the test environment isolation problem were evaluated:

• N o change to the worker system (default option)

• Change root environment.

• L i n u x Logica l Volume Management using read-write snapshots.

• U s i n g v i r tual ized guests provided by X e n or K V M .

37

R H T S test running i n an automated environment expects requires several environment
variables to be set. Namely they are: JOBID, RECIPESEETID, RECIPEID, HOSTNAME,
RESULT_SERVER, TESTID, TEST, TESTPATH, OUTPUTFILE, TESTVERSION, AVCLERROR,

RECIPETESTID.

There should be defined some consistent way for report ing hardware and system pro
files for systems under test and report it for each executed recipe. Th is information w i l l
be stored w i t h the recipe for later result analysis. S imi lar s i tuat ion applies for collecting
system log files (e.g. /var/log/messages) f rom the system under test, after the test was
forced to terminate by watchdog. Collected log files and profiles can be copied i n a tarbal l
(having unique name) to a shared N F S (Network F i l e System) mount point w i t h a reference
to it i n server's database.

Change Root Environment Using Logical Volume Management Snapshots

One of possible types of environment for testing is involving change rooted environment
and L V M version 2. L V M version 2 supports a creation of snapshot logical volumes which
keep the contents of the original logical volume for backup purposes, i n our case for test
isolation. Follows a list of possible steps how to use such an environment for testing. Th is
could be done by a worker capable of creating it and started based on an attr ibute i n a
recipe.

1. Create snapshot(lvcreate -s -n RECIPE-ID /dev/VolGroupOO/desired-test-fs)

2. M o u n t snapshot (/my/snaps/RECIPE-ID)

3. B i n d mount /proc /dev /sys and perhaps other pseudo filesystems i n snapshot root
(/my/snaps/RECIPE-ID/{proc,dev,sys})

4. Change root to the snapshot (chroot /my/snaps/RECIPE-ID)

5. Environment is ready to perform the testing (install and execute tests)

6. Leave the change root environment

7. Unmount mounted filesystems

8. Destroy the snapshot (lvremove /dev/VolGroupOO/RECIPE-ID)

5.5 User Cl ient T o o l

User has to interact w i t h the system using command line interface. For this purpose, the
system w i l l provide a single user too l providing a l l the required functionality. The tool w i l l
provide commands that are i n fact plugins. Advantage of this approach is easy addit ion
of new commands as plugins. Class name w i l l be automatical ly converted to a command
name (e.g. Submit Job, Results classes i n a Figure 5.8).

User can cal l the command using following scheme (where late-client is the provided
C L I tool) :

38

$ late-client <command> [parameters]

Basic helper script commands provided by the user tool :

submit Submit t ing a test job to given scheduler involves creation of a workflow (X M L
document describing request work) and sending it over to the server. Th is command
provides the required functionality. Us ing command parameters user can specify, test,
scheduler, environment type, requirements on the worker systems, and so on.

repo Provide support for accessing test repository and querying it using yum C L I tool .

report This command provides access to a job, recipe and test results. Us ing provided
command parameters can be requested a list of tests i n a recipe and using its unique
identification results can be listed i n the terminal . Avai lable is also a list of worker
systems or description for a worker using its I D . Complete and short reports w i l l be
available.

New tests w i l l be developed using R H T S Framework. This framework w i l l allow running
tests local ly i n development mode. Introduct ion to development of new tests using R H T S
framework can be found i n Chapter 3 and i n [5].

5.5.1 V i e w i n g Test R e s u l t s

Results w i l l be accessible i n two ways: (1) using provided commands i n the C L I client tool ,
and (2) using web browser. C o m m a n d line version is represented by the report command
i n user client tool late-client described i n previous section. Requested results are i n a
textual form sent to terminal 's standard output . X M L is the most suitable data format
for the output . It can be easily transformed into different formats for output or processing
the data. Brief list of information provided for different components i n both , C L I and Web
G U I variant are:

• Job - i d , date, owner, status, result

• Recipe - i d , run , t ime,

• Test - i d , recipe-id, start-t ime, finish-time, status, result, fail-logs, list of test's results

• Test results - i d , path , result, score, log, log-file

The other way how to access job and test results is using Web G U I provided by the
server. O n l y basic features (compared to R H T S) w i l l be possible: list jobs, view recipes i n
a job, view test, sub-results for tests, view log files. Purpose of a W e b G U I is to provide the
same amount of information but i n a more user-friendly way than w i t h C L I . It should also
allow searching jobs, recipes, tests and workers using I D , status, result or name (similar
attribute) if appropriate.

39

(from late)
RecipeSet

+ id
+ job
+ queuet ime
+ result
+ status

I

1..*

(from late)
Job

+ id
+ recipeset
+ owner
+ comment
+ creationtime
+ custom_tag

All objects with attribute names
'results' or 'status' are also associated
with Result and Status.

This is not shown for better readibility.

(from late)
Status

+ id
+ status

(from late)
Result

+ id
+ result

(from late)
Test

+ id
+ name
+ packagename
+ package
+ committer
+ description
+ summary
+ version
+ license
+ avg t ime
+ type
+ destructive
+ valid
+ creationdate
+ lastupdate
+ format

(from late)
Recipe

+ id
+ job
+ recipeset
+ arch
+ distro
+ family
+ variant
+ release
+ envtype
+ workerhostname
+ worker
+ result
+ status
+ start_time
+ f in isht ime
+ m a x r u n t i m e
+ test_env
+ resultserver
+ rec ipetest l is t
+ log
+ lock

0..1

(from late)
Worker

+ id
+ hostname
+ name
+ arch
+ distro
+ family
+ release
+ variant
+ env t ype l i s t
+ registrationdate
+ heartbeatt ime
+ status
+ enabled
+ description
+ location
+ info

(from late)
RecipeTest

+ id
+ recipe
+ test
+ star t t ime
+ f in isht ime
+ result
+ status
+ role
+ rec ipe tes tparaml is t
+ rec ipetest resu l t l i s t
+ consolelog
+ seqnumber
+ f a i l l ogpa th

9-

(from late)
EnvType

+ id
+ name
+ workeMist
+ description

(from late)
Tes tEnv

+ id
+ recipe
+ createresult
+ removeresult
+ status
+ createconsolelog
+ removeconsolelog

(from late)
Ree i peTest Res u It

+ id
+ recipetest
+ testname
+ parentstring
+ testversion
+ result
+ score
+ log f i l e l i s t
+ logroot

(from late)
Ree i peTest Pa ra r

+ id
+ recipetest
+ name
+ value

9-
(from late)
Log File
(from late)
Log File

+ id
+ name
+ creationt ime
+ rec ipetestresul t

(f rom late)
Heartbeat

- servername
- period
- workerjd
- logger
- pidfile
- server

PluginContainer

I
(f rom worker)

EnvContainer

(f rom late)
Wo rke rM a n age r

- config
- schedule
- pollperiod
- servername
- workerjd
- lock
- logger
- _ in i t _ ()
- shutdownO
- run()
- pollserverO
- _poll()
- check_response()

_ in i t_ ()
run()
hea rtbeatj nthread ()
hea rtbeatj nprocess ()
loopforeverO
_fork()
kill_me()

(f rom late)
Register

- config
- logger

- _ in i t _ ()
- check_registration()
- register()
- registerpluginsO
- registersystemO
- updatesystemjnfoO
- clearenvtypel istO
- _register_env_type()
- removesystemO

(f rom late)
Rec i peCont roller

- config
- envcontainer
- server
- recipexml
- testenv
- packagedir
- resultserver
- logger

+ init ()
+ sendrecipestatusresultO
+ _update_recipe_status()
+ submitreciperesultO
+ executerecipeO
+ cleanupafterrecipeO
+ setrecipexmlO
+ create_package_dir()
+ downloadalltestpackagesO
+ setup_recipe_test_repo()
+ getpkgnamel is tO
+ processrecipexmlO
+ get_test_env()

+ env
+ server
+ recipe
+ packagedir
+ sleeptime
+ stop
+ logger

+ init ()
+ run()
+ set_stop()
+ run_test()
+ gettestvariablesO
+ run_env_test()
+ _update_env_status()
+ submitenvresultO
+ forkptytestO
+ _update_test_status()
+ submittestresultO
+ submittestconsoleoutO
+ getconsoleoutO
+ testwatchdogO

(f rom late)
Plugin

- author
- version

(f rom late)
Env

- maxcreateenvt ime
- maxremoveenvt ime
- version
- author
- name
- createenvO
- removeenvO
- run_test()
- kill_test()

serverurl
transport

Jogger
cl ientauthmethod
cl ientretrycount
server
autologout
clienttype

_ in i t _ ()
de l ()
_login()
JogoutO

- id
- job id
- recipesetjd
- test l ist
- envtype
- tes tenv jd
- log
- resultserver
- test repour l

init()

(f rom late)
Test

name
packagename
package
destructive

- avgtime
- version
- format

id
recipejd
role
pa rams

- fd
- pid

console out

• init ()
- addpara meter ()

Simple

WorkerDaemon RecipeController

(j gda tesys tems ta tus j)

Reply f ram a server's scheduler
that has been polled for a work.

update_recipe_status()

enable_polling()

;_pollingQ |

process_recipe()
<crea te>> ;etup()

<<creafe"=|
IfJit

< < c r e a t e > > s;

update_recipe_status()

upda tesys tems ta tus l)

checkpkg l) J

TestRunner

— > — <create>> c rea teenv

Watchdog
< < c rea te i >set_watc hdog()

If test run
t ime Is put

a update_test_statusQ |

set_env_variables()

test finished

-update_test_status() |

1

run_test() 1

F
terminate_test()

col lect jogsl) i
—

Figure 5.7: U M L sequential diagram depict ing running a single test described by a recipe
(X M L document) received i n a reply from a server based on a worker's request for a work.
Server classes are not shown and the act ivi ty starts w i t h the reply. The recipe contains only
one test without any test parameters. D i a g r a m also depicts i n a frame element possible
terminat ion of the test process invoked by the watchdog.

42

Plugin

+ author
+ version

Command

+ options))
+ run()

R e p o

Submit

Report

PluginContainer

+ getpluginO
+ getpluginsO
+ checkpluginO
+ registerpluginO
+ normalizenameO

I
CommandContainer

Comma ndOptionParser

+ container
+ defaultcommand
+ command
+ formathelpcommandsO
+ parseargsO
+ run()
+ options))

Figure 5.8: U M L class diagram depict ing design of client tool provided to users. Class names
of classes that are inherited from C o m m a n d are automatical ly converted to a command
name.

43

Chapter 6

Implementation

This chapter deals w i t h implementat ion specific problems, possible solutions, decisions that
were made and reasoning. The final implementat ion of the system is quite complex peace
of code, despite the fact that it is quite lightweight compared to a l l possible features, i n
volving many non- t r iv ia l technologies. A l l planned, designed, features were implemented.
Besides that, another new features showed to be a "must have" th ing, to get a system
usable by an average user. Others are left to be implemented as future enhancements. It
should be noted that the p lan is to submit the implemented system into Fedora dis tr ibut ion.

6.1 Overv iew of U s e d Technologies

The system is implemented entirely i n a P y t h o n programming language. P y t h o n evaluated
to be the most appropriate to fulf i l l a l l the requirements on the system described i n Chapter
4. Especial ly the requirement on extensibil ity i n the future, and allow to b u i l d on top of it .
The f inal system is supposed to be customizable and should allow easy addi t ion of a new
future enhancements. Fol lowing list provides short overview technologies that were used, or
considered. Most important representatives f rom the list are described later i n this chapter.

• Cherrypy [12] is a lightweight H T T P framework serving us a web server as a part
of the TurboGears framework. Apache is not required, but it 's possible to r u n a
C h e r r y P y applications behind i t .

• TurboGears (T G for short), rap id development web framework i n P y t h o n , is used as
the m a i n part for the server applicat ion. Current ly the latest version is 2, but we had
to go w i t h version 1 that is currently available i n both , Fedora and R H E L . (More
precisely i n E P E L repositories.) Transi t ion to newer version is possible i n the future.

• K i d and Genshi are two templat ing mechanism that can be used by server applicat ion
using TurboGears framework. B y default we are using K i d , while Genshi can be used
just by changing appropriate configuration files. It should be noted, that Genshi has
much better performance than K i d , while K i d is the default templat ing mechanism
used by T G .

• C o m m u n i c a t i o n among different distr ibuted parts of the system is done using X M L -
R P C , a remote procedure cal l protocol using X M L to encode its calls and H T T P as a

44

transport mechanism. This fits well w i t h the server b u i l d on top of TurboGears web
framework. X M L - R P C A P I provides easy integration w i t h other tools .

L i n u x Logica l Volume Manager (L V M for short) supports since version 2 (L V M 2) read-
write snapshots of logical volumes. Th is technology was used to create an environment
plugin we named crutch. It is introduced i n 5.

Database and S Q L is handled w i t h S Q L A l c h e m y and E l i x i r . S Q L A l c h e m y [10] is a
P y t h o n S Q L toolkit and Object Rela t ional M a p p e r . E l i x i r is a declarative layer on
top of the S Q L A l c h e m y l ibrary [15].

A s an under lying database we use by default M y S Q L for product ion and S Q L i t e i n
a development mode. This is possible due to S Q L A l c h e m y providing support for
S Q L i t e , Postgres, M y S Q L , Oracle and others.

There is no restriction on a method that should be used for uploading new test pack
ages to the server. Tests are expected i n a dedicated directory, /mnt/late/test_repo
by default, and can be uploaded there for example over N F S , S S H , H T T P , or any
other custom, user specific, configuration.

Y u m package manager [43] together w i t h createrepo u t i l i ty is used to handle man
agement of test packages and provide a test repository.

Inotify and pyinoti fy [28] were considered to be used for watching filesystem evens,
specifically to watch modifications on a directory holding test packages. Unfor tu
nately this package is not yet available i n a standard R H E L repositories or E P E L [19]
repositories. A l s o it requires L i n u x K e r n e l feature (merged i n kernel 2.6.13) called i n
otify. Therefore decision to implement own directory watch has been made. Solut ion
using inotify could be cleaner and is left to be one of a future enhancements.

E x t r a Packages for Enterprise L i n u x (E P E L) repositories [19] are required i n order to
instal l and r u n the system on a R H E L 5 system. E P E L provides Fedora packages for
R H E L .

Logging for a l l components of the system is provided using P y t h o n logging facil i ty (so
named module) . Logs should be available i n a files /var/log/late-<component>. log.

Configurat ion w i t h is handled w i t h Conf igOb j , a powerful configuration file reader
and writer w i t h in i file format [20].

For a proper and standard way of handl ing worker daemon and server applicat ion
S y s V init scripts were wri t ten for them.

Hardware profile of the test environment is obtained w i t h smolt [39].

F i n a l l y an R P M and S R P M packages were created for the applicat ion according to
Fedora packaging guidelines, to support instal lat ion on latest Fedora and R H E L sys
tems.

45

6.2 Server

Server appl icat ion is b u i l d as a TurboGears applicat ion and uses C h e r r y P y as a web server.
It can be used w i t h or without Apache. F r o m various possible setups, we prefer and use
running it standalone, or using Apache as a reverse proxy for the server appl icat ion i n
TurboGears . T h i s offers to take advantage of Apache's H T T P S abilities or have let it to
serve custom static files. There are several problems that require periodic execution of some
functions at specific intervals. Th is is accomplished using cron-like scheduler provided by
TurboGears [47].

Server applicat ion provides access to a X M L - R P C methods using the C h e r r y P y . There
is no other communicat ion mechanism involved (excluding uploading data files or tests).
Us ing this approach, the X M L - R P C A P I aims to provide easy integration w i t h other tools.

W o r k to be executed by a worker is described i n a X M L document, generated by the
server and handed over to the worker i n a response to cal l ing poll method. Follows example
of a server response to a worker system, assigning h i m some work:

<?xml version="l.0" ?>

<recipe id="l" job_id="l" recipe_set_id="l"

test_repo_url="http://tarragon.englab.brq.redhat.com/test_repo/">

<workerProperties>

<worker name="ARCH" value="x86_64"/>

<worker name="ID" value="l"/>

<worker name="HOSTNAME" value="ibm-e326m.rhts.bos.redhat.com"/>

</workerProperties>

<distroProperties>

<distro name="VARIANT" value="any"/>

</distroProperties>

<envProperties test_env_id="1" type="simple"/>

<test avg_time="120" id="l" name="/examples/late/Sanity/basic-pass"

package="tmp-examples-late-Sanity-basic-pass-l.1-0.noarch.rpm"

package_name="tmp-examples-late-Sanity-basic-pass" role="STANDALONE"/>

</recipe>

A s it is mentioned at the beginning of this chapter, to work w i t h a database the ap
pl icat ion uses S Q L A l c h e m y and E l i x i r . The m a i n reason to choose this combination over
using S Q L O b j e c t is that it is going to be the recommended package for TurboGears 2.0.
S Q L O b j e c t was recommended for T G 1.1. S L Q A l c h e m y supports many databases. We de
cided to go w i t h two relational database management systems to be supported by default
i n the applicat ion: M y S Q L and S Q L i t e . Support for others, like Postgre is possible to be
added i n the future.

Status and Result values were identified as the most cr i t ica l to preserve integrity of
test results. Values for other attributes, like architecture, custom tag, d is tr ibut ion, family,
variant, release, could be also implemented as a separate tables. B u t to allow users of
the system to use their own naming conventions, we decided not to apply this restrictions
and follow the goal of having a light version of a control system, rather than adding more
complexity. Several database model (model.py) classes are used to generate X M L reports

46

http://tarragon.englab.brq.redhat.com/test_repo/

or other X M L documents. Therefore they implement get_xml_element () method using
lightweight D O M implementat ion xml.dom.minidom to generate X M L elements represent
ing the object.

It should be noted that the server applicat ion and its scheduler part is meant to be
state-less. M e a n i n g that a l l required data and states are stored i n the database and the
scheduler operates on a top of i t . Us ing this approach makes it easier and safer to restart
it , for example for maintenance, upgrade, etc.

D u r i n g an execution of a recipe, several textual or binary log files are being generated
by the worker system or by R H T S test. These files are uploaded to the server and stored
i n a dedicated directory.

Current ly the server does not provide identity management, but the project is pre-
configured to provide easier integration i n the future. Detai ls about identity support i n
TurboGears can be found i n [36].

There is also a plan to add support for authentication using Kerberos X M L - R P C login
methods. E x a m p l e of a possible implementat ion can be found i n a K o j i project [11]. U n
fortunately this was not possible to accomplish before the deadline set for this paper.

M o n i t o r i n g availabil i ty and status of the worker systems is done by accepting simple
heartbeats sent by i n d i v i d u a l systems. They are sent by simple agent r u n on the worker
system together w i t h the daemon. Further improvements are planned for future releases,
but were not implemented yet due to l imi ted t ime for this phase of the project.

There are two m a i n approaches towards moni tor ing availabil i ty of worker systems (sta
tions): (1) monitor ing f rom the m a i n stat ion (e.g. ping, ssh, H T T P , and so on), (2) i n
cooperation w i t h an agent on monitored station. We can monitor availabil i ty (currently
done only by watching heartbeats from worker systems), direct or indirect information
about the load (ping round-tr ip t ime, system load, memory usage, number of executed
jobs, running processes, and so on). There is also a risk of evaluating the system as not
available, while executing a test that actually created a high load and makes the system
to act as not available. Therefore, a proper monitor ing of not only the worker systems but
also the possibly vir tual ized testing environments i n the future w i l l be quite complex task.
One of solutions is to integrate support for exist ing moni tor ing systems like Nagios, B i g
Sister, or Zabbix .

6.3 W o r k e r

6.3.1 Test E n v i r o n m e n t P l u g i n s

To create environment plugins there is an Env base class that is meant to be sub-classed
by the actual p lugin . It defines A P I methods required by the worker system (more pre
cisely TestRunner class) to interact w i t h the actual environment. Namely they are: (1)
create_env responsible for creation of a test environment, (2) remove_env responsible de
stroying and removing the environment, (3) run_test w i l l insta l l and r u n the test i n the

47

environment, and (4) kill_test provides a mechanism to watchdog to k i l l a misbehaved
test, exceeding dedicated t ime quantum. It should be also noted, that the creation and
removal process is also handled as some special k i n d of test and has result and m a x i m a l
run t ime. This can be set i n the plugin code.

Current ly there are implemented two environment plugins. E a c h of them provides
different level of test isolation f rom the host system (worker).

Simple plugin provides a simple environment w i t h no isolation of a running test from
the worker system. Its purpose is to demonstrate how to implement a plugin . It
is suitable for automated execution of tests that do not change configuration of an
underlying system i n a way that would destroy it , nor does it r u n or k i l l any processes
or services that would disable the worker. To collect and report information about
system hardware profile, smolt [39], hardware reporting too l for G N U / L i n u x based
system, is used to generate the report and include it the log.

C r u t c h P l u g i n uses idea of L V M 2 read-write snapshotting and chroot to provide file
system isolation of the running test from a worker. This level of v i r tual izat ion is s t i l l
not sufficient.

6.3.2 Test E n v i r o n m e n t Isolat ion

A s we already noted, there is a real need for proper isolation of a test environemt. There
is a high risk of system failure when running destructive tests on the worker. Ideal solution
is to use vir tual izat ion or direct provisioning of a real H W . B o t h of them have their pros
and cons, and are suitable for different test requirements. Provis ioning of H W leads to
another requirements i n order to deploy the systems successfully. The system would grow
i n complexity rapidly, not speaking about the t ime consumed dur ing instal lat ion and re
instal lat ion after each testing cycle. Another solution might be to use the snapshotting i n
connection w i t h v i r tual izat ion . Prepare several original volumes according to our testing
needs and create snapshot for each vir tual ized guest and r u n it on it .

6.3.3 R u n n i n g i n a D a e m o n M o d e

S y s V init script provides standard way for running the worker daemon. Most of the R H T S
tests are designed to r u n w i t h root privileges and modify the configuration of the underlying
system. Therefore, we had to preserve this bad habit , and the late-worker also runs under
w i t h root privileges. Th is is another sign for the need of proper test environment isolation.

6.3.4 R H T S F r a m e w o r k i n A u t o m a t e d M o d e

R H T S Framework is together w i t h test wrapper used to create i l lus ion of an automated
mode i n regular R H T S laboratory for the test using a l l the helper scripts. R H T S tests
executed by a TestRunner class behave like i n a regular R H T S laboratory. In order to able
to access our own server and its X M L - R P C interface from R H T S Framework, we had to
create simple patch to the rhts-devel package after instal l ing i t . Th is is done dur ing the
instal lat ion of worker package.

18

6.4 Cl ient

Client applicat ion late-client provides set of commands to interact w i t h the server. The
communicat ion w i t h the server is done v i a X M L - R P C . Cl ient provides simple p lugin archi
tecture al lowing to easily add new commands. T h i s way users of the system can create new
commands executing tasks that match their specific needs, and thus fulfills the requirement
on extensibil ity i n the future. Current ly late-client provides two commands:

submit Provides C L I for submit t ing test jobs to the server.

report A l lows to query server for reports about current status of job, recipe, recipe test,
and worker system. We decided to use reports i n X M L format. Th is allows to
manipulate easily w i t h the data and create other custom reports. T w o types of
reports are provided: short, and complete.

repo Simple helper command to generate content of a yum. repo file for given server. A l s o
provides some examples on how to query the repository.

Creat ing a new command is quite simple. A l l that has to be done is to create a new class
inherited from Command class, implement methods run(), options, and let the command
container know about the plugin by registering it using register_plugin() method. The
final required step is to place the class file into commands directory and it is ready to be
used.

6.5 P r o p o s e d Possible Future Enhancements

A l o n g w i t h the work on the thesis we come across many interesting projects and ideas, that
could improve and enhance the implemented system, or improve the qual i ty of using the
system for testing. Here is a brief list of possible future enhancements:

• Web G U I enhancements and new features: scheduling new jobs, statistics, different
reports providing results based on a user role (tester, developer, manager), and so on.

• User helper too l enhancements to provide more comfortable interaction w i t h the sys
tem by providing most frequently used activities as a new commands.

• Standardized X M L report using A T M L [4] or T R P I [40] standard.

• Design more general test description based on A T M L standard [4].

• Customized reports (for example using X S L T transformations), providing different
level of information based on user role or selection.

• Customizable e-mail notifications.

• A l l o w users to set up a periodical tasks on the scheduler, s imilar as executing cron
jobs. This would be useful for example to execute created test plan on some project
during its development and watch progress.

• Por t the system to different L i n u x distributions.

• SSL and Kerberos authentication for both , users and worker systems

49

R H T S Framework, test A P I , and framework helper scripts re-implemented i n P y t h o n .
M a n y possible, different, approaches dealing w i t h test automation, can be found for
example i n [6], [8].

M o r e universal test format based on R H T S but wrapped i n P y t h o n Eggs.

Different test environments as worker environment plugins. For example executing
tests i n a v ir tual ized environment, or providing interaction w i t h different platforms
(e.g. Windows) .

A d d support for G U I testing by integrating D o g t a i l [14] or Accerciser [44]. Support
for other t h i r d party tools could be also added.

Improve management of worker system. Better monitor ing, alarms and notifications
on email .

Integrate support for versioning control system, for example G i t . Tests i n the test
repository would automatical ly reflect changes on master branch.

50

Chapter 7

Testing and Experiments

This chapter describes testing of the implemented system and summarizes results obtained
during execution of proposed experiments on test the system. A t the end of this chapter
we present usage examples and possible applications of the system for example by creating
a R H T S tests for Wireshark, a popular network analyzer.

7.1 Test ing the System

Several black box testing techniques were applied on the system, after implementat ion and
integration testing. Follows an overview of tests that were executed dur ing the development,
w i t h simple, short, description. Not a l l tests were possible to be executed due to time
constrains of the project. In the rest of this chapter we used terminology used i n [18].

• Funct ional testing is the m a i n technique we used. It is described later i n this chapter,
and presents functionali ty of the system on executed tests.

• Regression testing to verify that found issues, which are supposed to be fixed already,
were successfully resolved or do not appear again after f ix ing another bug.

• R a n d o m testing of areas identified dur ing the development of the sample R H T S tests
and the system itself. Th is testing technique was applied throughout a l l development
and testing phases.

• For configuration testing of the system we used R H T S and it was tested on al l avail
able architectures for bo th R H E L and Fedora. N a m e l y the architectures were: i386,
x86_64, ia64, ppc, ppc64, and distr ibutions: R e d H a t Enterprise L i n u x 5 server U p
date 3, R e d H a t Enterprise L i n u x 5 client Update 3, Fedora 9, Fedora 10. Th is
act ivi ty focused on verifying instal lat ion dependencies and requirements on different
distributions and verifying proper operation on machines w i t h different hardware and
software configurations.

• L o n g sequence testing by s imulat ing concurrent user and worker system act ivi ty using
simple automated scripts.

• Stress testing was performed to test the database behavior under simultaneous access
from mult iple client systems. Script on a client side had to submit mult iple test jobs

51

i n a short t ime to the server. Testing pol l ing, heartbeat, and scheduler periods being
as long as one second long. This would fit into stress testing.

• Source codes i n P y t h o n were analyzed using following code analyzers: PyFlakes [7],
P y l i n t [41], and PyChecker [30].

• M a n y other testing techniques and activities could be executed besides those listed
above. Due to l imi ted t ime and people resources not a l l were possible to fulf i l l , and
we leave it as another possible future work on this project. U n i t testing being one
of the most desirable. It could be accomplished using P y U n i t , s tandard unit testing
framework for P y t h o n [34].

7.1.1 T e s t i n g the F u n c t i o n a l i t y

Set of R H T S Tests

To test the system, and verify the functionali ty set of simple tests was created. R u n n i n g
these tests i n various combinations exercises behavior of the system. Tests can be found i n
examples i n a provided S R P M package.

Basic pass - /examples/late/Sanity/basic-pass

Test to print environment info, sleep for 5 seconds and exit w i t h result P A S S and
score 0.

Basic fail - /examples/late/Sanity/basic-f a i l

Test is supposed to print environment info, sleep for 5 seconds and exit w i t h result
P A S S and score 1.

Watchdog pass - /examples/late/Sanity/watchdog-pass

Test should exceed assigned test r u n t ime (15 seconds) and should be ki l led by watch
dog. If the test does not get ki l led by watchdog, is w i l l report P A S S result.

Watchdog fail - /examples/late/Sanity/watchdog-fail

Test should exceed assigned test r u n t ime (15 seconds) and should be ki l led by watch
dog. If the test does not get ki l led by watchdog, is w i l l report F A I L result.

Subtests pass - /examples/late/Sanity/subtest-basic-pass

Test simulates four subtests report ing their own results. A l l reported results are P A S S
and the overall test result should be also P A S S .

Subtests pass - /examples/late/Sanity/subtest-basic-fail

Test simulates four subtests report ing their own results. A l l reported results are F A I L
and the overall test result should be also F A I L .

Subtests ppff - /examples/late/Sanity/subtest-basic-ppff

Test simulates four subtests report ing their own results. T w o subresults are P A S S ,
two subresults are F A I L and the overall test result is expected to be F A I L .

In order to r u n the tests local ly (or by the worker daemon) R H T S Framework is required.
R H T S Framework quick start guide can be found i n [32]. A l l l isted tests are available from
provided S R P M on attached C D disc i n directory examples.

52

Testing late-client Appl ica t ion

Client command line applicat ion allows user to submit new tests to the server and retrieve
reports. Here we present set of functionali ty tests executed on i t .

1. Submit 1
Description: Veri fy program start-up, and print help message.
Input: $ late-client submit -h
$ late-client report -h

$ late-client repo -h

$ late-client help

Expected result: P r o g r a m prints a help message.
Actual result: Pass

2. Submit 2
Description: Generate test job X M L without commit t ing a job. Exercise the -x op
t ion to print a X M L that would be sent to the server i n order to submit a test job.
Input: late-client submit -s <your-server> -x -T /aaa/bbb/ccc

Expected result: Correct structure of the X M L document printed into the console.
Actual result: Pass

3. Submit 3
Description: Submit one test and one recipe to the server.
Input: $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass

Expected result: Job accepted and its it printed out.
Actual result: Pass

4. Submit 4
Description: Submit one test mult iple times i n one recipe to the server.
Input: $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass \

-T /examples/late/Sanity/basic-fail \

-T /examples/late/Sanity/basic-pass

Expected result: Job accepted, its i d returned.
Actual result: Pass

5. Submit 5
Description: Submit mult iple tests i n one recipe to the server.
Input: $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass \

-T /examples/late/Sanity/basic-fail \

-T /examples/late/Sanity/subtest-basic-pass

Expected result: Job accepted, its i d returned.
Actual result: Pass

53

6. Submit 6
Description: Submit test w i t h custom test parameters to the server.
Input: $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass -P XLOGIN=xloginOO

Expected result: Job accepted, its i d returned.
Actual result: Pass

7. Submit 7
Description: Submit one test i n more recipes to the server.
Input: $ late-client submit -s <your-server> -w NAME=workerl \
-T /examples/late/Sanity/basic-pass -w NAME=worker2

Expected result: Job accepted, its i d returned.
Actual result: Pass

8. Submit 8
Description: Submit more tests i n more recipes to the server.
Input: $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass \

-T /examples/late/Sanity/basic-fail \

-T /examples/late/Sanity/subtest-basic-pass \

-w NAME=workerl -w NAME=worker2

Expected result: Job accepted, its i d returned.
Actual result: Pass

9. Submit 9
Description: Submit a test that is not available i n the repository.
Input: $ late-client submit -s <your-server> -T /aa/bb/cc
Expected result: Job rejected by the server.
Actual result: Pass

10. Submit 10
Description: Submit a correct custom X M L file using the ' - f option.
Input: $ late-client submit -s <your-server> -f good-custom-job.xml
Expected result: Job accepted by the server.
Actual result: Pass

11. Submit 11
Description: Submit a bad X M L file using the ' - f option.
Input: $ late-client submit -s <your-server> -f bad-custom-job.xml
Expected result: Get info about document being not well-formed. N o t h i n g gets sub
mit ted to the server
Actual result: Pass

12. Submit 11
Description: Submit a test job to be executed on worker w i t h bad hostname.

54

Input: $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass -w HOSTNAME=janedoe -e simple

Expected result: The test recipe should be rejected.
Actual result: Pass

13. Report 1
Description: Retrieve short X M L report for a given job, recipe and test I D .
Input: $ late-client report -s <your-server> \
-j 10 - j 9 -r 3 -r 4 -t 14 -t 15

Expected result: Short reports for requested job, recipe, and test IDs is printed into
console, and contains sane data.
Actual result: Pass

14. Report 2
Description: Retrieve complete X M L report for a given job, recipe and test I D .
Input: $ late-client report -s <your-server> -c \
-j 10 - j 9 -r 3 -r 4 -t 14 -t 15

Expected result: Complete reports for requested job, recipe, and test IDs is printed
into console, and contains sane data.
Actual result: Pass

15. Report 3
Description: Retrieve list of a l l available worker systems.
Input: $ late-client report -s <your-server> -W
Expected result: L i s t of available worker systems is printed out into the console.
Actual result: Pass

16. Report 4
Description: Retrieve report for a worker system using its I D .
Input: $ late-client report -s <your-server> -w 13
Expected result: Response is printed out into console.
Actual result: Pass

Testing Worker System

1. Worker Daemon 1
Description: Under root privileges verify start ing and stopping the service using S y s V
init scripts: start, stop, status. A l l distr ibutions.
Input: $ sudo /sbin/service start

$ sudo /sbin/service status

$ sudo /sbin/service stop

Expected result: A l l actions were successful and executed specified action.
Actual result: Pass

55

2. Worker Daemon 2
Description: Setup the configuration file 'worker.cfg' properly and register the worker
to given server. Verify a l l plugins were registered and the system is listed as available
on the server.
Input: $ late-worker -r
Expected result: Worker registered and listed on the server.
Actual result: Pass

3. Worker Daemon 3
Description: Display worker information while it is started as daemon.
Input: $ late-worker - i

Expected result: Information about worker inc luding configuration files and P I D s of
daemon, heartbeat, are printed out.
Actual result: Pass

4. Worker Daemon 4
Description: Deactivate one plugin f rom two, change system description and re
register the worker on the same server.
Input: E d i t worker configuration file /etc/late/worker/conf/worker.cfg and re
move one plugin from active_list i n plugin section (eg. to list active_list="simple").
Expected result: O n l y one plugin should be listed for this worker.
Actual result: Pass

5. Worker Daemon 5
Description: Submit a test job i n a way that w i l l lead to execution on specific worker
system. Test case Submit 8 can be modified for this. M a k e sure the test is executed
correctly.
Input: O n worker r u n $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass -w HOSTNAME=<worker-hostname>

Expected result: B y observing worker log files execution of the test is confirmed.
Actual result: Pass

6. Worker Daemon 6
Description: Submit a test job i n a way that w i l l lead to execution using given envi
ronment p lugin on this worker system.
Input: O n worker r u n $ late-client submit -s <your-server> \
-T /examples/late/Sanity/basic-pass -w H0STNAME='hostname' -e simple

Expected result: B y observing worker log files, proper execution of the test is con
firmed.
Actual result: Pass

7. Worker Daemon 7
Description: Submit a job that should be ki l led by a watchdog after exceeding as
signed t ime quantum.
Input: $ late-client submit -s <your-server> \

56

-T /examples/late/Sanity/watchdog-pass -w NAME=<worker-name>

Expected result: B y observing worker log files terminat ion of the test is confirmed.
Test status is W A T C H D O G and result W A R N .
Actual result: Pass

8. Worker Daemon 8
Description: Verify that a l l packages specified i n a recipe are downloaded correctly
into directory set i n a configuration file dur ing recipe execution,
(default is /mnt/late/local_pkgs/)
Input: D u r i n g recipe execution $ 11 /mnt/late/local_pkgs/
Expected result: A l l packages are downloaded successfully.
Actual result: Pass

9. Simple Plugin 1
Description: Verify that hardware profile and list of installed R P M s is included i n
the log from environment creation test.
Input: O n server view recipe details and follow 'Create Console L o g ' l ink.
Expected result: L o g lists output from smolt and list of packages.
Actual result: Pass

Testing Server

1. Server Start 1
Description: Setup database, and r u n the server as non-root and root user f rom con
sole. A l l distr ibutions.
Input: $ sudo start late

$ sudo start-late

Expected result: Server is successfully started i n both cases.
Actual result: Pass

2. Server Start 2
Description: W i t h superuser privileges r u n the server using S y s V init scripts: start,
stop, status.
Input: $ sudo /sbin/service late-server start

$ sudo /sbin/service late-server status

$ sudo /sbin/service late-server stop

Expected result: A l l scripts performed given action successfully.
Actual result: Pass

3. Server Repository 1
Description: O n a remote system add a new repository configuration file and verify
it . A l l packages i n a repository directory should be available. Install them locally.
Input: A d d new repository on remote system, could be generated using late-client
and its repo command. Execute examples printed by it into the console.
$ late-client repo -s <your-server>

57

$ yum install <list-of-test-packages>

Expected result: A l l test packages are listed, and were installed locally.
Actual result: Pass

4. Server Repository 2
Description: A d d new test to the repository directory. Veri fy it is made available.
Input: A d d new test
$ cp <new-test-rpm> /mnt/late/test_repo

Wait for few seconds and query the repository for a l l available tests as i n previous
test case. Expected result: N e w test is available.
Actual result: Pass

5. Server Repository 3
Description: U p l o a d new version of a test into the repository. The test info/metadata
should be updated.
Input: C o p y new version of a test that is already present i n the directory, but for
example has changed " Test T i m e " .
$ cp <new-test-version-package> /mnt/late/test_repo

Observe messages i n a log file /var/log/late-server.log about test being updated, and
check changes i n webUI tab "Test Reposi tory" by searching for given test name. W a i t
for a test repository refresh. Expected result: Test metadata are updated.
Actual result: Pass

6. Server Heartbeat 4
Description: Veri fy that server processes heartbeats from worker systems correctly.
Register a worker system and start its daemon. Observe status change of the worker
from N O _ H B - > R E A D Y .
Input: Setup the worker using test case Worker Daemon 2 and r u n it
$ sudo late-worker

Expected result: Short t ime after start ing worker daemon status change should hap
pen.
Actual result: Pass

7. Server WebUI 1
Description: Exercise functionali ty of a l l tabs i n a upper menu bar. N a m e l y they are:
Home, Test Jobs, Recipes, Test Runs , Test Repository, Worker Systems.
Input:
Expected result: Ind iv idua l pages for each tab should be displayed.
Actual result: Pass

8. Server WebUI 2
Description: Exercise functionali ty of search forms on pages access following tabs:
Test Jobs, Recipes, Test Runs , Test Repository, Worker Systems. T r y to open a l l
links available from each table displayed on i n d i v i d u a l pages.
Input:

58

Expected result: O n l y records matching given criteria should be listed, a l l l inks should
be correct.
Actual result: Pass

9. Server WebUI 3
Description: Display detailed information about Test Job, Recipe, Test R u n , Test i n
a repository, and worker system.
Input: Enter ID of the object to display into " G o t o I D " field from the search form
and click "Search" but ton . Veri fy functionali ty of a l l l inks i n detailed page.
Expected result: Correct detailed page for given I D should be display, w i t h a l l l inks.
Actual result: Pass

10. Server WebUI 4
Description: Exercise navigation of tables holding list of records (Test Jobs, Recipes,
Test Runs , Test Repository, Worker Systems) using simple navigation menu placed
above each table. G o to first, last, previous, next, specific page.
Input: None
Expected result: Works as expected from executed action.
Actual result: Pass, but there was an request improve usabil i ty by reversing order of
displayed records i n the tables, newest records first.

11. Server WebUI 5
Description: Disable and enable a registered worker system and change its info i n
detailed worker page.
Input: C l i c k " W o r k e r Systems" tab from m a i n menu, click on worker I D i n the table.
Detai led worker page w i l l be displayed. Set " E n a b l e d " radio but ton to " N o " and save
using " A p p l y changes". Next set Enabled to " Y e s " and save again.
Expected result: Worker system is enabled and disabled successfully, notes to info are
stored.
Actual result: Pass

7.1.2 L o a d a n d L o n g Sequence T e s t i n g of the Server

D u r i n g load testing the server, it was put under simulated work load f rom three different
client locations. A t the same time simple Bash scripts were executed on client systems
to simulate the work. D u r i n g the test each client submit ted 1000 test jobs and retrieved
complete job report for each submitted job, w i t h a sleep t ime 0.01 sec, i n first run , and
0.001 sec, i n second r u n , between i n d i v i d u a l actions on each client.

The configuration of a test environment was following. Host system w i t h C P U Intel(R)
C o r e (T M) 2 C P U T7200 @ 2 .00GHz, w i t h 2 G B R A M , running 2 vir tual ized K V M quests,
each w i t h 1 C P U and 5 1 2 M B of R A M assigned. One running server on Fedora 9, and other
running worker on Fedora 10. Base system was running Fedora 9. A l l systems were updated
to latest package versions available at the t ime of wr i t ing (A p r i l 2009). P o l l i n g period set
for worker system was 10 seconds, server heartbeat checking per iod for 15 seconds, and test

59

database update interval 15 seconds. A s a database M y S Q L was used.

A l l test jobs were successfully submitted and al l reports were retrieved. Worker system
was s t i l l po l l ing and executing assigned recipes. A f t e r the test, the webUI of system (now
w i t h several thousands of new records i n the database) performed notably slower, but s t i l l
acceptably, when displaying list of jobs, recipes, and test runs. B u t not while displaying
list of test i n the repository, where we had just seven examples of R H T S tests. Short i n
vestigation led to conclusion, that the slow-down is a known performance drawback of K i d
templat ing engine. It is the default templat ing engine i n TurboGears version 1.0. Solut ion
would be to convert f rom K i d to Genshi templat ing engine. Genshi is designed to address
this performance issues users experienced w i t h K i d . Th is is left as another future enhance
ment to the webUI part of the server i n later releases of the project.

Next we installed the worker and server on a workstat ion and r u n it for several days
under low load. Eva luat ion of the log files revealed unexpected Tracebacks generated
by TurboGears scheduler executing periodic tasks and most l ikely related to handl ing
Y u m repositories dur ing test database update. M o r e specifically the error message says:
Error accessing f i l e for config file:///etc/yum.conf, what leads us to conclusion
that it was caused by accessing the repository dur ing system update. The most important
issue was when the system is using S Q L i t e database. T h i s was expected and gathered log
files proved that there is a problem w i t h file locking mechanism and concurrency i n S Q L i t e
v3 . Therefore it is recommended only for development or m i n i m a l database load.

7.1.3 T e s t i n g P y t h o n Source C o d e

In order to help delivering a good quali ty of code we decided to r u n serveral P y t h o n source
code analysing tools: P y l i n t , Pychecker, and PyFlakes .

P y C h e c k e r system provides support for catching a large set of common errors. It finds
problems that are typical ly caught by a compiler for less dynamic languages. R u n n i n g
the source code through it prior to testing or delivery can catch any lurk ing potential
problems. It is also used for P y t h o n standard l ibrary. [26]

Pylint is s imilar to PyChecker i n functionali ty as y o u can perform the same test scenarios
w i t h it as w i t h Pychecker. B u t it is more feature rich, for example it provides check
ing line-code's length, checking if variable names are well-formed, provides better
customization and configuration options and more.

PyFlakes is the t h i r d source code analaysis tool we used. It is also a l int- l ike tool for
P y t h o n , s imilar to PyChecker . Its m a i n m a i n advantage against PyChecker is that it
is faster.

7.2 Possible Usage Examples

The system is pr imar i ly designed for automated test execution. B u t it can be used also for
other tasks. Modif icat ions and enhancements can make it ready for many usage scenarious
not only those described i n this section.

60

file:///etc/yum.conf

7.2.1 G e t t i n g the C o m m u n i t y I n v o l v e d

Developers of some software project create a set of R H T S tests for their project and make
them available throught the project internet pages to the community. Users can then instal l
our control system for applicat ion testing on Fedora system and r u n these R H T S tests i n
their own testing environment. The structure of results, reports, log files and test logic have
format created by the test developer. Users can submit obtained results and log files, back
to the developer. In addit ion to providing one's own test packages, developers can create
their own environment plugins. This allows them to modify or setup testing environment
i n user conditions i n a common way, but that is not suitable to be done i n an actual test.
These days it is imporant to get the community involved i n a testing process. A l l o w i n g
it to enhance, customize, and contribute to some project seems to be the most efficient way.

7.2.2 C r e a t i n g R H T S Tests for W i r e s h a r k

To support ideas presented i n previous paragraph discussing creation of a R H T S test for
part icular applicat ion, we developed two R H T S tests for a real-life software applicat ion
called wireshark. Wireshark (formerly known as ethereal) is a popular packet sniffer and
network analyzer. B y downloading the source tarba l l f rom project pages we obtained two
tests used by upstream to test the applicat ion: dfilter test, and fuzz test. B o t h can be found
i n tools directory after extract ing the source tarbal l . For detailed description of these
two tests, please refer to the sources. A f t e r minor modifications and wrapping some logic
into rhntest. sh new R H T S tests are ready to be used. Fuzz tests first generates packets
for different protocols, creates capture files and then fuzzes them before running tshark
on a l l of them (for example u n t i l an error is found). Dfi l ter test s imply wraps provided
test-suite to test wireshark's dfilter mechanism into R H T S test. Tests are placed under
/examples/wireshark/Regression/<test-name> namespace. A s the name suggests bo th
can be used as a regression tests to test new releases of Wireshark. F i n a l R H T S tests can be
found on the C D i n dfilter-test and fuzz-test directory under examples. B y running
these two tests, we can verify new releases of wireshark or disclose new bugs.

7.2.3 E v a l u a t i n g S t u d e n t P r o j e c t s

Another possible usage example offered by the universality of implemented system allows it
to be used for evaluation of student project i n a batch. Suppose we have hundred students
i n a course, and al l of them have the same assignement. The final hand over files is a
commad line applicat ion i n a tarba l l and can be b u i l d using provided Makefi le . For the
evaluation purpose instructor creates a R H T S test w i t h the evaluation logic. L i m i t e d part
of this test can be provided to students al lowing them to verify par t ia l correctness of their
solution locally on their desktops. A d d i t i o n a l l y intructor can create a custom command
for late-client tool that w i l l process a l l gathered results and create for h i m the most
appropriate report from the X M L .

F irs t we need to create a R H T S test w i t h the test logic. There are several possible
approaches to accomplish this. We can have a test that w i l l be r u n once for a l l projects,
and report a l l results as subresults. O r we can r u n a test indiv idual ly for each project. This
can be accomplished by creating a test job w i t h a single recipe, that w i l l r u n the same test
several times, but w i t h different parameters (e.g. login of the student). R u n n i n g i n d i v i d u a l

61

tests has some advantages. E a c h project w i l l be r u n individual ly , and i n case it exceeds
assigned r u n t ime, it can be terminated by the test watchdog. T h e former approach, allows
to set watchdog only for the test as a whole. Thus one misbehaved test i n the middle of
evaluation, can waste the remaining t ime quantum.

Here is an example of a simple test structure. We submit results of i n d i v i d u a l test
ing phases as subresults using following naming schema /xloginOO/<phase> [/<subtest>]
having a result (P A S S , F A I L) and score (integer value), that can represent points gained
for the task tested.

1. Download a project tarba l l f rom a shared locat ion. Report subresult for download
phase, e.g. /xloginOO/download. F i n i s h if failed.

2. Ex t rac t the tarbal l . Report subresult for extraction, e.g. /xloginOO/extract. F i n i s h
if failed.

3. B u i l d the project using provided Makefi le . Report success, e.g. /xlogin/build.

F i n i s h if failed.

4. R u n set of subtests to verify correctness of the solution. Report subresult i n form of
/xloginOO/correctness/subtest w i t h result and score for accomplishing i t .

5. Report final result and score and perform final cleanup after running another test
(e.g. /xloginOO).

A l o n g submit t ing an i n d i v i d u a l results using report-result function, the log file spec
ified by $OUTPUTFILE gets submitted to the server. Th is allows further analysis of the test
run.

Af ter creation of the test and testing it local ly on some sample data, we can setup
a server w i t h the R H T S tests i n its repository, setup worker systems, register them, and
submit the test job. O r use existing infrastructure.

Results and scores can be examined manual ly using the W e b U I , but w i t h many students
i n the course, this would be really incomfortable. Therefore, we would suggest to automate
this step using the report command (late-client report and parse the results from a
X M L reports. O b t a i n i n g the log files can be also automatized by composing its U R L from
attributes of the result element, and download it locally.

7.2.4 S u p p o r t i n g C o l l a b o r a t i v e T e s t i n g i n O p e n Source P r o j e c t

Open Source projects involving several developers and tester could benefit f rom using i m -
plemeted system as an ul t imate col laboration tool for testing their project. It is supposed to
be easily customizable and thus satisfy specific project requirements. Tests i n a repository
can be executed at predefined phases (dates) or periodical ly to track current and progress
of the project.

Results are available to a l l project members and can be stored for further result analysis
together w i t h log files. Here are several usage examples i n a development (or testing) lab:

62

• Create a test that w i l l download latest project source codes f rom different branches
and w i l l t ry to b u i l d them internally. This can be done every day, and results can be
presented on publ ic pages to inform whether it is suitable for download.

• Collect metrics of the project.

• R u n set of regression, sanity, functionality, performance, analysis, and other types of
testing techniques.

• Per form any other tasks that are suitable for automation.

B y default the system does not support G U I testing, but as already noted i n possible
future enhancements this would be accomplishable by adding other tools (e.g. Dogtai l) .
Support ing it by addit ion of a defect t racking too l (e.g. Bugzi l la) , version control system
(e.g. G i t , Svn), test management (e.g. Testopia), could lead to creation of a solid software
development infrastructure.

63

Chapter 8

Conclusion

In this work, we addressed the need for testing software and its qual i ty using automated
software tools and test automation. Implemented system allows controlled execution of
tests (in R H T S format) i n distr ibuted test laboratory. Another contr ibut ion of this work
is i n famil iar izat ion w i t h software testing. We gained knowledge of different approaches to
evaluating and comparing software testing tools. Th is knowledge was used to evaluate R e d
Hat Test System (R H T S) and to compare it w i t h other tools. A c c o r d i n g to our evaluation
most comparable tool to R H T S from available open-source projects is Software Testing A u
tomat ion Framework (S T A F) though it provides less functionality. R H T S is quite specific
tool , because it was designed to help R e d Hat ' s quali ty engineering department to qualify
releases of R e d Hat Enterprise L i n u x . Therefore, its functionali ty is hard to replace by some
other tool . Another important contr ibut ion of this work is the evaluation and comparison
of R H T S .

Test automation is quite popular today, but dur ing the work on this project we came to
a conclusion that before m a k i n g the decision to automate a test, the value of automating
it should be confronted w i t h the value and effort to develop the automated version.

Gather ing requirements of the system was more complicated than we expected. Espe
cial ly functionali ty requirements. A d d i t i o n of a l l useful features would lead to an extremely
complex system. It is quite difficult to define the boundary for the designed system to be
usable i n an efficient way, lightweight, easy to use, and extensible i n the future.

The project is implemented entirely i n P y t h o n programming language. W o r k descrip
t ion and control is done using X M L which seems to be today a standard way as it can be
seen i n [4] and [6]. We decided to use the concept that has been working i n R H T S for many
years and customize it for our needs. R e d Hat Test Framework providing R H T S test A P I
and some helper tools for test development, is publ ic ly available. A n a l y z i n g it revealed that
it can help to r u n R H T S tests i n our automated test environment, and provide documented
way to create new tests. Another key step was the decision to use P y t h o n web framework
for server side. It provides good database backend and many other useful features. This
w i l l support addi t ion of many future enhancements to the project.

Another area we addressed is a need for proper test environment isolation. For this
purpose, worker systems provide plugins capable of creation of a such environment. Imple
mentation of a p lugin capable of using Kernel-based V i r t u a l Machine to provide vir tual ized

64

guests or other v i r tual izat ion technology for isolated test execution is left as a future en
hancement.

There should be just one too l provided to the user instead of a bunch of different scripts
doing similar tasks. We decided to use single user helper tool which provides set of com
mands and supports easy creation of new ones.

The system consists of a set of components, which can be easily used, modified, and
extended. M a n y possible future enhancements were proposed. They prove the importance
and value of this project. L i s t of possible future enhancements can be found at the end of
Chapter 6. Af ter f inal , testing we proposed several possible usage examples. T h e project
was packaged into R P M packages and is planned for inclusion i n Fedora project.

F inal ly , several tests and experiments were executed on the system. For example cre
at ion of a R H T S tests for upstream tests used for Wireshark, or an example of possible
applicat ion for automated evaluation of student projects. Implemented system is not an
absolute too l for testing. It should be universal enough to be successfully integrated into
the whole testing life cycle together w i t h other tools that support test management, defect
tracking, test p lan support, and other t h i r d party tools.

65

Bibliography

[1] L i n u x Test Project . U R L : http://ltp.sourceforge.net. (Last vis i ted: December
2008).

[2] S A F S Software A u t o m a t i o n Framework Support . U R L :
http://safsdev.sourceforge.net. (Last vis i ted: December 2008).

[3] Table C l o t h . U R L : https://testing. 108.redhat. com. (Last vis i ted: November
2008) .

[4] A T M L . U R L : http://grouper.ieee.org/groups/scc20/tii/index.htm, 2007.
(Last vis i ted: December 2008).

[5] R H T S Test W r i t i n g . U R L :
https://testing.108.redhat.com/wiki/index.php/Rhts/Docs/TestWriting,

2007. (Last vis i ted: December 2008).

[6] Software Testing A u t o m a t i o n Framework (S T A F) . U R L :
http://staf . sourceforge .net, 2008. (Last vis i ted: December 2008).

[7] P y F l a k e s . U R L : http://freshmeat .net/projects/pyf lakes/, 2009. (Last visited:
A p r i l 2009).

[8] Robot Framework. U R L : http://code.google.eom/p/robotframework/, 2009.
(Last vis i ted: A p r i l 2009).

[9] A . A b r a n , J . W . Moore , P . Bourque, R . Dupuis , and L . T r i p p . Guide to the Software
Engineering Body of Knowledge (SWEBOK). I E E E , 2004. ISO Technical Report
I S O / I E C T R 19759.

[10] M . Bayer. The P y t h o n S Q L Toolki t and Object Rela t ional M a p p e r . U R L :
http://www.sqlalchemy.org/, 2009. (Last vis i ted: A p r i l 2009).

[11] M . Bonnet . K o j i - R P M bui ld ing and tracking system. U R L :
https://fedorahosted.org/koji/, 2009. (Last vis i ted: A p r i l 2009).

[12] R . Brewer. C h e r r y P y . U R L : http://www.cherrypy.org/, 2009. (Last vis i ted: A p r i l
2009) .

[13] I. Burnste in . Practical Software Testing: A Process-oriented Approach. Springer Inc.,
N e w York , N Y , U S A , 2003.

[14] Z . Cerza . Dogta i l . U R L : http://people .redhat. com/zcerza/dogtail/. (Last
vis i ted: December 2008).

66

http://ltp.sourceforge.net
http://safsdev.sourceforge.net
https://testing
http://grouper.ieee.org/groups/scc20/tii/index.htm
https://testing.108.redhat.com/wiki/index.php/Rhts/Docs/TestWriting
http://staf
http://freshmeat
http://code.google.eom/p/robotframework/
http://www.sqlalchemy.org/
https://fedorahosted.org/koji/
http://www.cherrypy.org/
http://people

[15] G . de Menten, J . L a C o u r , and D . Haus . E l i x i r . U R L :
http://elixir.ematia.de/trac/wiki, 2009. (Last vis i ted: A p r i l 2009).

[16] B . Dillenseger. Test management and load testing w i t h S a l o m e - T M F and C L I F is a
L o a d Injection. U R L : http://www.ow2.org/xwiki/bin/download/Events/
0W2QuarterlyMeetingGrenobleFrance/SalomeCLIF.pdf, M a y 2008. (Last vis i ted:
December 2008).

[17] E . D u s t i n . A u t o m a t e d Testing Too l Eva luat ion M a t r i x . U R L :
http://www.stickyminds.com/s.asp?F=S3100_ART_2, 2001. (Last visited:
November 2008).

[18] E . D u s t i n , J . Rashka, and J . P a u l . Automated software testing: introduction,
management, and performance. Addison-Wesley L o n g m a n P u b l i s h i n g C o . , Inc.,
Boston, M A , U S A , 1999.

[19] FedoraProject . E P E L . U R L : http: //f edoraproject. org/wiki/EPEL, 2009. (Last
vis i ted: A p r i l 2009).

[20] M . Foord and N . Larosa. Reading and W r i t i n g Conf ig Fi les . U R L :
http://www.voidspace.org.uk/python/configobj.html, 2009. (Last visited:
A p r i l 2009).

[21] E . H o x w o r t h and M . K h a n . Best Practices for A u t o m a t e d Enterprise Testing . U R L :
www.dell.com/downloads/global/power/psIq07-20060364-Hoxworth.pdf, 2007.

(Last vis i ted: December 2008).

[22] I B M Software G r o u p . P r a c t i c a l Approaches to E n d - t o - E n d A u t o m a t i o n w i t h S T A F
and S T A X . U R L :
http: //staf . sourcef orge .net/educ2x/practical/Practical .ppt. (Last vis i ted:
December 2008).

[23] Hies, Herrmann, Paech, and Ruckert . C r i t e r i a for Software Testing Too l Evaluat ion .
A Task Oriented V i e w . In 3rd World Congress for Software Quality 2005, M u n i c h ,
Germany, September 2005.

[24] C . Kaner , J . Bach, and B . Pet t ichord. Lessons Learned in Software Testing. John
W i l e y & Sons, Inc., N e w York, N Y , U S A , 2001.

[25] S. Květoňová. Lecture: Plánování a sledování softwarového pro jektu. U R L :
https://wis.fit.vutbr.cz/FIT/st/course-files-st.php/

course/AIS-IT/lectures/2_R izeni_SW_procesu.pdf, 2008.

[26] M . L u t z . Learning Python, 3rd edition. O 'Re i l ly , 2007.

[27] J . Lyndsay. A G u i d e to Software Test Tools. U R L :
http://www.ism.co.at/analyses/Program_Testing/Test_Tools.html, J u l y 2004.
(Last vis i ted: November 2008).

[28] S. M a r t i n i . P y i n o t i f y : monitor filesystem events w i t h P y t h o n under L i n u x . U R L :
http://pyinotify.sourceforge.net/, 2009. (Last vis i ted: A p r i l 2009).

67

http://elixir.ematia.de/trac/wiki
http://www.ow2.org/xwiki/bin/download/Events/
http://www.stickyminds.com/s.asp?F=S3100_ART_2
http://www.voidspace.org.uk/python/configobj.html
http://www.dell.com/downloads/global/power/psIq07-20060364-Hoxworth.pdf
https://wis.fit.vutbr.cz/FIT/st/course-files-st.php/
http://www.ism.co.at/analyses/Program_Testing/Test_Tools.html
http://pyinotify.sourceforge.net/

[29] D . J . Mosley. The Handbook of Testing MIS Application Software: Methods,
Techniques, and Tools for Assuring Quality Through Testing. Prent ice -Hal l/Yourdon
Press C o m p u t i n g Series, 1993.

[30] N . N o r w i t z . PyChecker , a python source code checking tool . U R L :

http://pychecker.sourceforge.net/, 2009. (Last vis i ted: A p r i l 2009).

[31] R . P a t t o n . Software Testing. Sams, Indianapolis, I N , U S A , 2000.

[32] J . Poelstra . R H T S Quick Start . U R L :

https://fedorahosted.org/beaker/wiki/QuickRhts, 2009. (Last vis i ted: A p r i l
2009).

[33] C . Pooter and T . Cory . C A S T Tools: A n Eva luat ion and Compar ison . U R L :
http://www.dpu.se/blott_e.html. (Last vis i ted: December 2008).

[34] S. P u r c e l l . P y U n i t - the standard unit testing framework for P y t h o n . U R L :
http://pyunit. sourceforge .net/, 2005. (Last vis i ted: A p r i l 2009).

[35] C . R a n k i n . The Software Testing A u t o m a t i o n Framework. U R L :
http://www.research.ibm.com/journal/sj/411/rankin.pdf, 2002. (Last vis i ted:
December 2008).

[36] F . Schwarz. Identity Management. U R L :
http://docs.turbogears.Org/l.0/Identity, 2009. (Last vis i ted: A p r i l 2009).

[37] O p e n source project. Beaker. U R L : https://fedorahosted.org/beaker/. (Last
vis i ted: November 2008).

[38] O p e n source project. Beaker - Fedora Project . U R L :
http://fedoraproject.org/wiki/QA/Beaker. (Last vis i ted: November 2008).

[39] O p e n source project. Smolt . U R L : http://smolts. org/, 2009. (Last vis i ted: A p r i l
2009).

[40] SpikeSource. Test Results P u b l i c a t i o n Interface. U R L :
http://developer.spikesource.com/wiki/index.php/

Test_Results_Publication_Interf ace, 2006. (Last vis i ted: December 2008).

[41] S. Thenaul t . P y l i n t , P y t h o n code static checker. U R L :
http://www.logilab.org/857, 2009. (Last vis i ted: A p r i l 2009).

[42] C . V a i l . A u t o m a t e d Testing T o o l Evaluat ion . U R L :
www.vcaa.com/tools/wsipc-automatedtestingtoolevaluation.pdf, 2002. (Last
vis i ted: December 2008).

[43] S. V i d a l . Y u m Package Manager. U R L : http://yum.baseurl.org/, 2009. (Last
vis i ted: A p r i l 2009).

[44] R . W a n g . Accerciser. U R L : http://live.gnome.org/Accerciser, 2008. (Last
vis i ted: December 2008).

[45] W i k i p e d i a . M a n u a l Testing. U R L :
http://en.wikipedia.org/wiki/Manual_testing. (Last vis i ted: November 2008).

68

http://pychecker.sourceforge.net/
https://fedorahosted.org/beaker/wiki/QuickRhts
http://www.dpu.se/blott_e.html
http://pyunit
http://www.research.ibm.com/journal/sj/411/rankin.pdf
http://docs.turbogears.Org/l.0/Identity
https://fedorahosted.org/beaker/
http://fedoraproject.org/wiki/QA/Beaker
http://smolts
http://developer.spikesource.com/wiki/index.php/
http://www.logilab.org/857
http://www.vcaa.com/tools/wsipc-automatedtestingtoolevaluation.pdf
http://yum.baseurl.org/
http://live.gnome.org/Accerciser
http://en.wikipedia.org/wiki/Manual_testing

[46] W i k i p e d i a . Software Testing. U R L :
http://en.wikipedia.org/uiki/Software_testing. (Last v is i ted: November
2008).

[47] C . Zwerschke. Scheduling Tasks w i t h TurboGears . U R L :
http://docs.turbogears.0rg/l.O/Scheduler, 2009. (Last vis i ted: A p r i l 2009).

69

http://en.wikipedia.org/uiki/Software_testing
http://docs.turbogears.0rg/l.O/Scheduler

Appendix A

Criteria for Software Testing Tool
Evaluation

M a i n tasks and corresponding roles involved i n a test process [23]:

I D Tasks Role(s)
A Test planning and monitor ing Test manager
B Designing Test Cases Test designer
C Construct ing Test Cases Test automator, test designer
D Execut ing test cases Tester
E C a p t u r i n g and comparing test results Tester
F R e p o r t i n g test results Tester
G Tracking Software problem reports/defects Tester, test manager, developer
H M a n a g i n g the test ware Test configuration manager,

test administrator

Quality criteria [23]

Q l Functionality suitabil i ty, accurateness, interoperability, compliance, security (1-5)

Q2 Reliability maturi ty , fault tolerance, recoverability (6-8)

Q3 Usabili ty understandability, learnability, operabil i ty (9-11)

Q4 Efficiency t ime behavior, resource behavior (12-13)

Q5 Maintainabil i ty analyzabil i ty, changeability, stability, testabil i ty (14-17)

Q6 Portability adaptabil i ty, instal labil i ty, conformance, replaceability (18-21)

Q 7 General vendor qualifications 22 matur i ty of the vendor, market share, financial
stabil i ty

Q8 Vendor support 23 warranty, maintenance and upgrade pol icy; 24 regularity of up
grades, defect list w i t h each release; 25 compat ib i l i ty of upgrades w i t h previous re
leases; 26 e-mail support, phone support, user groups; 27 availabil i ty of t ra ining,
recommended tra ining t ime, price

70

Q9 Licensing and pricing 28 open source or commercial ; 29 licensing used, r ig idi ty
(floating node-locking license); 30 price consistent w i t h estimated price range; 31
price consistent w i t h comparable vendor products

Functional criteria [23]

A : Test planning and monitoring. Test too l provides support for:
1. customization of the organizational test process
2. part icular programming paradigms and/or languages, operating systems, browser,
network configuration
3. appl icat ion specific characteristics, which require specific testing techniques
4. testing special appl icat ion domain (e.g. avionics, automotive, etc.)
5. p lanning of the test process (scheduling, project tracking, risk management)
6. moni tor ing test activities
• by tracking of the estimated and actual time/test case
• by providing coverage metrics to measure the progress of testing activities
• by providing metrics from different sources (e.g. requirements, test cases)
6. integration w i t h other tools

B : Designing Test Cases. Test too l provides support for:
7. designing test cases for the required test level (unit, integration, system)
8. selecting the test techniques
9. defining test conditions derived from the defined test techniques
10. defining templates for s tructur ing the information specifying test cases
11. generation of logical test cases from semi-formal models
12. generation of logical test cases from formal specifications (e.g. Z)
13. generation/derivation of test data layout
14. opt imiz ing the test case set
15. designing test cases to test qual i ty cri teria of the applicat ion
16. restrict ing the test case set (e.g. ranking by pr ior i t izat ion of the test cases, risks
assigned to test cases) i n case of deadline constraints

C : Construct ing Test Cases. Test too l provides support for:
17. edit ing test scripts
18. developing of test code conforming w i t h accepted software engineering practices
19. capturing of executable test cases
20. generation of concrete test cases from (semi-)formal models
21. generation of (in)valid test data
22. generation of stubs, test drivers, mock objects,
23. s imulat ing missing faulty system components

D : Executing Test Cases. Test too l provides support for:
24. setting-up and clearing-down of the test environment/pre condit ion and respec
tively the post conditions for a set of test cases
25. roll-back to i n i t i a l i n case of unexpected errors
26. execution of captured, captured & edited or manual ly implemented test cases for

71

functional testing.
27. execution of captured test cases for testing quali ty cri teria
28. stopping and continuation of the execution of a suspended test case

E : C a p t u r i n g and comparing test results. Test tool provides support for:
29. logging information on executed test cases
30. comparison facilities between specified and actual outcomes

F : Report ing test results. Test tool provides support for:
31. aggregation of logged test results
32. customizable, role specific amount of information

G : Tracking Software problem reports/defects. Test too l provides support for:
33. specifying problem reports/defects by using predefined templates
34. generating entries for recorded defects
35. pr ior i t iz ing defects
36. t racking change requests/defects and their current status
37. generating statist ical information
38. for regression testing

H : M a n a g i n g the test ware. Test too l provides support for:
39. management of the test ware
40. traceabil i ty between the elements of the test ware
41. by tracing modifications on a test object and communicat ing changes
42. the maintenance of the test data , of the test cases
43. for automated tests to be (re)used for regression testing/in other projects
44. snapshot facilities (by freeze a special state of the test ware)

72

Guide to the Software Engineering Body of Knowledge

Basic Concepts
and Definitions

Faults vs. Failures -
The Fault-Error-Failure

chain
Types, classification

and statistics of faults

Theoretical
Foundations

Definitions of testing
and related terminology

Test selection criteria /
Test adequacy criteria

Testing effectiveness /
Objectives for testing

Debug testing, or testing
for defect removal

The oracle problem -
Theoretical and practical

limitations of testing

Path sensitizing /
infeasible paths

Software testability -«

Laying down _
the KA

Testing vs. Static
Analysis Techniques

Testing vs.
Correctness Proofs

Testing vs. Debugging

Testing within SOA -4

Testing within CMM •*

Testing within Cleanroom <

Testing and Certification-*

Software Testing

Test Levels

Test Phases
Unit Testing

Module

Integration testing

System testing

Acceptance /
qualif ication testing

Installation testino

Alpha and Beta testing

Types of Testing •
Conformance testing /

Functional testing /
Correctness testing

Reliability achievment
and evaluation by

Regression testing

Performance testing

Stress testing

Volume testing

Back-to-back testing

Configuration testing

Usability testing

Test Techniques

»• Specification-based —

Boundary-value analysis-*

Fmiivalpnr^p nartitinninn A

Category-partition ->

Decision table -«

Finite-state
machine-based

Testing from formal ^
specifications

• Code-based — i
Reference models for

code-based testing

Control flow-based
criteria

Data flow-based criteria -

Fault-based
Error guessing

Fault seeding

Mutation

Usage-based
Operational profile

(Musa's) SR ET 3
Selecting and

Combining
Techniques

Functional and Strudural - <
Coverage and
operat ional/

Saturation effect

Test Related
Measures

Evaluation of
the Program
under Test

Remaining number of
defects / Fault Density

Life test,
reliabilitv evaluation

Reliability growth models *

Evaluation of the
Tests Performed

Comparison and relative
effectiveness of

different techniques

Specialized
Techniques

Object-oriented testing •
Component-based

GUI testing *
Testing of concurrent

programs
Protocol conformance

testing
Testing of distributed

systems
Testing of hard-real-time

systems

Organizing and
Controlling the
Test Process

Management _
Concerns

Attitudes / Egoless -
programming

Test process -

Test documentation -«

Internal vs. independent^
test team

Cost / effort estimation
and other process •*

metrics

Test Activities
Planning

Test case generation

Test environment
development

Execution

Test results evaluation
Trouble reporting/Test

Automated Testing

Testing Tool
Support

What can be automated ^
(and what cannot)

Tool selection criteria

Surveys of available
tools

Appendix B

Quick Start Instructions

Attached C D contains S R P M and R P M packages. Us ing S R P M package custom R P M
packages can be b u i l d for Fedora 9, Fedora 10, and R H E L 5 distr ibutions. They are already
prebui ld and available on the C D .

B . l Server

In this section are presented simple instal lat ion instructions on how to start the server.
B y default the configuration file for server is set to be used standalone running C h e r r y P y
without the need to use Apache (httpd) . A s a default database M y S Q L has to be configured.
Involved configuration files:
/etc/late/server/late.cfg

/etc/late/server/app.cfg

1. Install the server R P M package:

$ sudo rpm -Uvh late-server-0.1.0-1.fc9.noarch.rpm

2. Setup M y S Q L server.

3. Create database and add user:

mysql> create database latedb;

mysql> grant a l l privileges on latedb.* to late@"localhost" \

identified by 'pass41ate
)

;

4. Create tables:

$ mysql -u late -p latedb < \

/usr/share/late/server/latedb_create_mysql.sql

5. M o d i f y S E L i n u x into Permissive mode: $ sudo /usr/sbin/setenf orce 0

6. Start the server using provided S y s V init script:

$ sudo /sbin/service late-server start

74

7. O p e n web browser and go to U R L http://localhost: 8080

8. Place some R H T S tests into the repository directory. Th is is /mnt/late/test_repo
by default. They should appear i n the test repository available v i a W e b U I after few
seconds. Examples of R H T S tests are available from the source R P M package or on
the attached C D .

9. For troubleshooting start w i t h server log file: /var/log/late-server. log

B.2 Cl ient

N o configuration files are involved i n using late-client tool .

1. O n the same (or remote) system as server, insta l l the client R P M package:
$ sudo rpm -Uvh late-client-0.1.0-1.fc9.noarch.rpm

2. Create y u m repository config file using repo command, and follow instruct ion:

$ late-client repo -s localhost:8080

Save this into f i l e /etc/yum.repos.d/late-test.repo

[late-test-repo]

name=LATE RHTS test repository

baseurl=http://localhost:8080/yum/

enabled=0

gpgcheck=0

Usage examples on how to query the repository with yum

List a l l tests in the repository:

$ yum l i s t available —disablerepo=* —enablerepo=late-test-repo

Search for test (containing) basic-pass:

$ yum search —disablerepo=* —enablerepo=late-test-repo example

Display additional info about the tets package:

$ yum info —disablerepo=* —enablerepo=late-test-repo <your-test>

Y o u should be able to submit test jobs to the server using submit command.

Here is an example of response l is t ing a l l available tests i n the repository:

$ yum l i s t available —disablerepo=*

Loaded plugins: refresh-packagekit

late-test-repo

late-test-repo/primary

—enablerepo=test-repo

I 951 B 00:00

I 1.4 kB 00:00

75

http://localhost
http://localhost:8080/yum/

late-test-repo 7/7

Available Packages

tmp-examples-late-Sanity-basic-fail.noarch 1.1-0 test-repo

tmp-examples-late-Sanity-basic-pass.noarch 1.1-0 test-repo

tmp-examples-late-Sanity-subtest-basic-fail.noarch 1.1-0 test-repo

tmp-examples-late-Sanity-subtest-basic-pass.noarch 1.1-0 test-repo

tmp-examples-late-Sanity-subtest-basic-ppff.noarch 1.1-0 test-repo

tmp-examples-late-Sanity-watchdog-fail.noarch 1.1-0 test-repo

tmp-examples-late-Sanity-watchdog-pass.noarch 1.1-0 test-repo

B . 3 W o r k e r

B y default the worker daemon is (pre) configured to be started quickly local ly at the system
providing server. Involved configuration files:
/etc/late/worker/conf/worker.cfg

/etc/late/worker/conf/log.cfg

1. Install the worker R P M package:
$ sudo rpm -Uvh late-worker-0.1.0-1.fc9.noarch.rpm

2. E d i t worker configuration file /etc/late/worker/conf/worker.cfg and set a l l re
quired values (marked w i t h F I X M E i n a comment above them). P a y proper attention
to server names and U R L s . B y default it is set to localhost :8080 and should be
ready to use w i t h local server.

3. Check everything is set properly by registering the worker system to the server (lo
calhost :8080): $ sudo late-worker -r

4. Try to r u n the daemon i n foreground using command line tool . Issues can be i n
vestigated using log files located i n files matching pattern /var/log/late-worker*.
$ sudo late-worker

5. F i n a l l y start the daemon using S y s V init script, it should start sending heartbeats to
the server and status should change to R E A D Y after few seconds.
$ sudo /sbin/service late-worker start

76

Appendix C

Additional and Custom Evaluation
Criteria

Supplementary and custom evaluation criteria specific to desired test tool appl icat ion do
main should be specified, after pre-selection of the test tools. These w i l l help to narrow
down the final list and select the most appropriate too l no matter which evaluation strat
egy has been used for pre-selection. Th is topic is too specific to custom requirements and
therefore is not discussed here i n detai l .

Example of possible addit ional criteria:

• Support for tests wri t ten i n part icular programming languages (e.g., C , Bash, P y t h o n ,
Per l , Java).

• Instal lat ion automation.

• Support for variety of different system architectures (e.g., x86_64, IA64, P P C , S390).

• Support for variety of different O S and platforms (e.g., R H E L 5, F r e e B S D , Solaris,
H P - U X , A I X , Windows , M a c O S X , etc).

77

