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Abstrakt
V mojej práci sa zaoberám úlohou rozpoznania ©udskej dúhovky zo snímku za pomoci pouºi-
tia evolu£ných algoritmov. Práca sa v úvode zaoberá otázkou biometrie, jej významom a
základnými pojmami, s ktorými sa v texte neskor stretávam. Následne popisujem proces
rozpoznania dúhovky ako aj teóriu evolu£ných algoritmov. V implementa£nej £asti popisu-
jem návrh a implementáciu rie²enia detekcie dúhovky za pomoci evolu£ných algoritmov,
pri£om kladiem doraz na detekciu okrajov zreni£ky a dúhovky.

Abstract
In my thesis, I focus on the task of recognizing human iris from an image.In the beginning,
the work deals with a question of biometrics, its importance and basic concepts, which are
necessary for use in following text. Subsequently process of human Iris detection is described
together with theory of evolution algorithms. In the implementation part, is described the
design of implemented solution, which uses evolution algorithms, where is emphasis on
correct pupil and iris boundary detection.
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Chapter 1

Introduction

In my thesis I covered the topic of detection of a human iris. I focused on identi�cation of
human eye pupil and iris boundaries using evolution algorithms.

The detection of human iris is very powerful and reliable person identi�cation method.
It can be used in many commercial sectors to protect malicious access, identify right per-
sons, or other not expected use, like it was done in the year 2002, when Afghan girl was
identi�ed by her Iris Patterns by John Daugmans Iris recognition algorithm. 1.

Currently there exists lot of convention solutions of human iris detection and recognition.
These algorithms detects pupil and iris boundary with relative high accuracy (approx. 99%)
and in reasonable amount of time. [23]
However, when we focus on area of evolution algorithms, there are not so many reliable
methods as it is in area of convention solutions. Therefore my main motivation and aim of
this thesis was to cover this topic and try to answer the question, whether soft computing
and especially evolution algorithms, can acquire similar results in acceptable amount of time
as it is by using convention solutions.

In the beginning of my thesis, in chapter Theoretical basis I cover the necessary theo-
retical background, which is core for understanding the whole process of iris recognition.

In section Biometrics I specify the meaning of biometrics in today's world, the �eld of
interest in biometrics, and main components used in other part of thesis.
In section Human Iris I brie�y describe the main parts of human Iris, its meaning and unique
patterns which are used in detection.

In next chapters I focus on individual parts of the human iris recognition process. These
are Segmentation, Normalisation, Feature Encoding and Matching.

Every of these chapters contains explanation of this process, review of available literature,
algorithms and it's description.

In chapter Evolution algorithms I describe in detail the area of evolution algorithms. I
focused mainly on two sectors of evolution algorithms, namely Genetic algorithms and Evo-

1http://www.cl.cam.ac.uk/ jgd1000/afghan.html
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lution strategies, ES which are used in evolution algorithm design used in eye iris segmenta-
tion. Also in section Multimodal functions i'm describing the methods of solving multimodal
functions, which are causing the evolution algorithm stuck in local minimum.

In chapter Implementation I'm describing the process of solution implementation and its
three main parts, namely Graphical user interface (GUI), Convention solution and Solution
with the use of evolution algorithms

In the chapter Testing I'm describing the test results and how the tests were performed.
Also I'm brie�y describing the database of which tested images were acquired.

In the chapter Conclusion I'm trying to summarize the recognition results and make con-
clusion with emphasis on possible future work.
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Chapter 2

Theoretical basis

2.1 Biometrics

Biometrics is the science and technology of measuring and analysing biological data. In
information technology, biometrics refers to technologies that measure and analyse human
body characteristics, such as DNA, �ngerprints, eye retinas and irises, voice patterns, facial
patterns, hand measurements and other features for authentication purposes.[3]

The advantages of biometrics are:

• highly resistant to fraud

• increases safety

• can't be easily removed or transferred

• can't be lossed

• increases comfort

Disadvantages are:

• output is matching score

• can't be revoked

• biometric system itself could be countervail-able

• doesn't keep privacy

The reason why is biometrics so di�cult, is in processing of biological information. This
process has to be resistant to interclass and intraclass variability, segmentation problems,
performance issues, the uniqueness of processed biological feature, fusion of several biometric
features etc.
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2.1.1 Identi�cation and Veri�cation

People automatically recognize faces, body shape, voice, signature etc. This recognition is
done by subliminal process in our brain, which is developed through our childhood.

The recognition of other person is based on unique identity of a human being.
Identity is unique characteristic of every human. However it's necessary to distinguish
between physical and digital identity. For one individual, there exists only one physical
identity. On the other hand, one individual can have many digital identities (mail accounts
etc.).

Identity is related to two processes - Identi�cation and Veri�cation.
Identi�cation detects the identity of a given object, in our case some human. In situa-
tion, when person gives his/her own biometric information, but not his/her own Identity to
system, system compares the input with all records from database and in output returns
whether the given input matches some record in database, or not.
This process is very time-consuming, especially when it's used in large systems, which con-
tain many registered persons. In this case, the database could be divided into subcategories.
For example the database of �ngerprints could be divided into several subclasses and the
search algorithm could run only against speci�c subclass for a given input. Identi�cation
is also called 1:MANY comparison. The example of the system for Identi�cation could be
dactyloscopic system(AFIS), database of refugees etc.

Di�erent approach is Veri�cation. In this case the user provides to the system his/her
own digital identity and then is his/her own biometric data searched across the database.
If the record doesn't exist, the access is refused.
If the record is found, then is compared. If both records match to some degree, speci�ed by
threshold value, then system consider both identities as equal.
Veri�cation is also called 1:1 comparison, because there are compared single data from input
with single data from a database. The example of such system could be access restriction
system in banks, or e-mail services.

Sometimes we can encounter the term authentication. This term is used in access con-
trol systems. By authentication the system con�rms the authenticity (credibility) of given
person. The decision about person credibility is running mostly against some threshold,
which is computed by the system.

From a certain point of view, biometrics o�ers best level of security and comfort, i.e. who
we are. The idea is, that we are on our own, the holders of identi�cation key.
Despite all, there is still a chance that our own identity will be misused. For example, we
leave our �ngerprints all over the places, and also our photography can be used to overcome
2D face-recognition system. The misuse of identity is called Identity theft and it's com-
mon problem all over the world.

2.1.2 Biometric systems

The biometric system consists of several parts which are shown in Figure 2.1.
In the enrolment sub-process, when the user use biometric system for �rst time, biomet-
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Figure 2.1: Biometric system diagram [1]

ric information from an individual is captured and stored. In subsequent uses, biometric
information is detected and compared with the information stored at the time of enrollment.
Note that it is crucial that storage and retrieval of such systems themselves are secure if the
biometric system is robust.
Sensor is an interface between the real world and the system. It has to acquire all the
necessary data. Most of the time it is an image acquisition system, but it vary according to
the characteristics desired.
In the pre-processing have to be removed artefacts from the sensor, to enhance the input
(e.g. removing background noise, re�ection from camera etc.), to use some of many ways of
normalization, etc. In the feature extraction process, there has to be implemented a proper
way to extract only necessary information from input.
This is an important step, because the correct features need to be extracted in the optimal
way. A vector of numbers or an image with particular properties is used to create a tem-
plate. A template is a synthesis of the relevant characteristics extracted from the source.
Elements of the biometric measurement that are not used in the comparison algorithm are
discarded in the template to reduce the �lesize and to protect the identity of the enrollee.

If enrollment is being performed, the template is simply stored in some place (on a card or
within a database or both). If a matching phase is being performed, the obtained template
is passed to a matcher that compares it with other existing templates, estimating the dis-
tance between them using any algorithm (e.g. Hamming distance).
The matching program will analyze the template with the input. This will be then output
for any speci�ed use or purpose (e.g. entrance in a restricted area). Selection of biometrics
in any practical application depending upon the characteristic measurements and user re-
quirements. [1]

Every biometric system can have its weak spot.
As it can be seen on Figure 2.2, right on the input (type 1) could be the sensor manipulated
by incorrect biometric feature(e.g. arti�cial �ngertip). The comunication between sensor
and feature extractor (type 2) can attacked using old data replication method. Also, feature
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Figure 2.2: Biometric attacks[2]

extractor (type 3) can be attacked by injecting Trojan horse programm into its code. Real
features can be replaced by synthetic features and modi�ed in database of stored templates
(type 4). Also Matchers (Type 5) programm can be modi�ed. The communication between
database(type 6) can be blocked, or the record in database replaced by false one. And last
but not least, the results, which are transfered into application could be overriden (type 7).

The biometric features can be devided into two categories: physical and behavioral.
Physical features are: �ngerprint, face, eye iris, eye retina, hand geometry, palm etc.
Behavioral features are: voice, face gestures, signature, keystroke dynamic, walk.
By physical features, there is one stable characteristic of biometric feature(e.g. �ngerprint).
This feature is always available and it's not easily in�uenced by di�erent circumstancies.
The method of physical features analysis is called static method.
Behavioral features are connected with some user action. The method of behavioral features
analysis is called dynamic method.

In context of biometric features, we distungiush unimodal and multimodal biometric system.
Unimodal biometric system use only one biometric characteristic. Unimodal systems are
highly used in commercial enviroment. Multimodal biometric system, on the other hand,
uses more characteristics of one biometric feature (e.g. static and dynamic attributes of
signature) or uses more biometric features (e.g. facial recognition with �ngerprint recogni-
tion). These systems have increased reliability, but also incresead acquisition costs.

Attributes of biometric features belong to very important criteria when we are deciding
which speci�c system we should use. Base attributes are:

• Universality - means that every person using a system should possess the trait

• Uniqueness - means the trait should be su�ciently di�erent for individuals in the
relevant population such that they can be distinguished from one another

• Permanence - relates to the manner in which a trait varies over time. More speci�cally,
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a trait with 'good' permanence will be reasonably invariant over time with respect to
the speci�c matching algorithm

• Measurability - (collectability) relates to the ease of acquisition or measurement of
the trait. In addition, acquired data should be in a form that permits subsequent
processing and extraction of the relevant feature sets

• Performance - relates to the accuracy, speed, and robustness of the used technology

• Acceptability - relates to how well individuals in the relevant population accept the
technology such that they are willing to have their biometric trait captured and as-
sessed

• Circumvention - relates to the ease with which a trait might be imitated using an
artifact or substitute

2.1.3 Performance metrics

Overall performance of the biometric system is given by properties like universality, preci-
sion, speed and memory requirements. Biometric systems aren't perfect, they can accept
attacker (false accept), or reject valid user (false reject).

By data processing (e.g. �ltration) we are passing through extraction process, when signif-
icant features are extracted from input data. This extracted sample is then compared with
template and the result is matching score, i.e. degree of consensus.

The comparison inside biometric system is based on a threshold, when for given input
and threshold value, systems accept user, when match score is above threshold, or reject
user otherwise. Therefore biometric system may come to the following error states:

• Two samples from two di�erent persons are classi�ed as equal, what is called False
Match.

• Two samples from same person are classi�ed as mismatched, what is called False
Non-Match

For proper performance measurement, there are derived following performance metrics for
biometric systems:

False accept rate or false match rate (FAR or FMR)
The probability that the system incorrectly matches the input pattern to a non-matching
template in the database. It measures the percent of invalid inputs which are incorrectly
accepted. In case of similarity scale, if the person is imposter in real, but the matching score
is higher than the threshold, then he is treated as genuine that increase the FAR and hence
performance also depends upon the selection of threshold value.

False reject rate or false non-match rate (FRR or FNMR)
The probability that the system fails to detect a match between the input pattern and a
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matching template in the database. It measures the percent of valid inputs which are in-
correctly rejected.

Receiver operating characteristic or relative operating characteristic (ROC)
The ROC plot is a visual characterization of the trade-o� between the FAR and the FRR.
In general, the matching algorithm performs a decision based on a threshold which deter-
mines how close to a template the input needs to be for it to be considered a match. If the
threshold is reduced, there will be fewer false non-matches but more false accepts. Corre-
spondingly, a higher threshold will reduce the FAR but increase the FRR.

Equal error rate or crossover error rate (EER or CER)
The rate at which both accept and reject errors are equal. The value of the EER can be
easily obtained from the ROC curve. The EER is a quick way to compare the accuracy
of devices with di�erent ROC curves. In general, the device with the lowest EER is most
accurate.

Failure to enroll rate (FTE or FER)
The rate at which attempts to create a template from an input is unsuccessful. This is most
commonly caused by low quality inputs.

Failure to capture(acquire) rate (FTC or FTA)
Within automatic systems, the probability that the system fails to detect a biometric input
when presented correctly.

2.2 Human Iris

The iris is a protected internal organ of the eye, located behind the cornea and the aqueous
humour, but in front of the lens. A visible property of the iris and the �ngerprint is the
random morphogenesis of their minutiae. The phenotypic expression even of two irises with
the same genetic genotype (as in identical twins, or the pair possessed by one individual)
have uncorrelated minutiae. The iris texture has no genetic penetrance in the expression
and is chaotic. In these respects the uniqueness of every iris parallels the uniqueness of
every Fingerprint, common genotype or not.

The most important function of the iris is controlling the size of the pupil. Illumination,
which enters the pupil and falls on the retina of the eye, is controlled by muscles in the iris.
They regulate the size of the pupil and this is what permits the iris to control the amount
of light entering the pupil. The change in the size results from involuntary re�exes and is
not under conscious control. The tissue of the iris is soft and loosely woven and it is called
stroma.

A section through the human iris is shown in Figure 2.4. In this �gure, we can see the
layers of the human iris. The layers of the iris have both ectodermal and mesodermal em-
bryological origin. The visible one is the anterior layer, which bears the gaily-coloured relief
and it is very lightly pigmented due to genetically determined density of melanin pigment
granules. The invisible one is the posterior layer, which is very darkly pigmented, contrary
to the anterior layer. The surface of this layer is �nely radiantly and concentrically furrowed
with dark brown colour. Muscles and the vascularized stroma are found between these lay-
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ers from back to front. The surface of the anterior layer is shown in Figure 2.5. Pigment
frill is the boundary between the pupil and the human iris. It is a visible section of the
posterior layer and looks like a curling edge of the pupil. The whole anterior layer consists
of the pupillary area and the ciliary area and their boundary is called collarette. The ciliary
area is divided into the inner area, which is relatively smooth and bears radial furrows, the
middle area, heavily furrowed in all directions and with pigment piles on the ridges, and the
outer marginal area bearing numerous periphery crypts. [18]

Figure 2.3: Eye structure[4]

Among the pigment related features belong the crypts and the pigment spots. The crypts,
in the are the areas in which the iris is relatively thin. They have very dark color due to
dark color of the posterior layer. They appear near the collarette, or on the periphery of
the iris. They look like sharply demarcated excavations. The pigment spots, are random
concentrations of pigment cells in the visible surface of the iris and generally appear in
the ciliary area. They are known as moles and freckles with nearly black color. Features
controlling the size of the pupil are radial and concentric furrows. They are called contraction
furrows and control the size of the pupil. Extending radially in relation to the center of
the pupil are radial furrows. The typical radial furrows may begin near the pupil and
extend through the collarette. The radial furrows are creased in the anterior layer of the
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iris, from which loose tissue may bulge outward and this is what permits the iris to change
the size of the pupil. The concentric furrows, are generally circular and concentric with the
pupil. They typically appear in the ciliary area, near the periphery of the iris and permit
to bulge the loose tissue outward in di�erent direction than the radial furrows. Collarette,
mentioned brie�y above, is the boundary between the ciliary area and the pupillary area.
It is a sinuous line, which forms an elevated ridge running parallel with the margin of the
pupil. The collarette is the thickest part of the human iris. The human iris may have some
of the rare anomalous visible features. Due to aging or trauma, atrophic areas may appear
on the iris, resulting in a

�
moth-eaten� texture.

Finally, the most striking visible feature of the eye is typically the pupil. The pupil may
not be exactly circular in shape and its deviation from the circle is a visible characteristics.
Centers of the iris and the pupil are di�erent and they can di�er from each other of about
20 %.

Figure 2.4: Section through the human iris (1-anterior layer, 2-stroma, 3-posterior layer,
4-pigment frill, 5-lens)[18]
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Figure 2.5: Detailed view of anterior surface of the human iris (1-pigment frill, 2-pupillary
area, 3-collarette, 4-ciliary area, 5-crypts, 6-pigment spot)[18]
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Chapter 3

Segmentation

3.1 Overview

The �rst subprocess in iris recognition process is segmentation.
Segmentation isolates the actual iris region in a digital eye image.
The iris region can be distinguished easily, by human eye, because the transition between
pupil and iris and transition between iris and sclera, contains relatively high contrast.
In computer vision we need to extract our region of interest with more complex image anal-
ysis. It has to deal with eyebrows and small noise in the picture. Also it has to deal with
fact, that circles, which represents pupil, or iris aren't cocentric. This whole process could
be done with morphological methods in hand with working alghorithms, which I describe
in following sections.

The success of segmentation and therefore whole recognition process, highly depends on
image quality. Images used for this thesis were taken in high quality, but contained minor
re�ections from camera in pupil area.

3.2 Review of available alghorithms

3.2.1 Hough transformation

The Hough transformation is a standard computer vision algorithm that can be used to
determine the parameters of simple geometric objects, such as lines and circles, present in
an image. The circular Hough transformation can be employed to deduce the radius and
centre coordinates of the pupil and iris regions.
Firstly, an edge map is generated by calculating the �rst derivatives of intensity values in
an eye image and then thresholding the result. From the edge map, votes are cast in Hough
space for the parameters of circles passing through each edge point. These parameters
are the centre coordinates xc and yc, and the radius r, which are able to de�ne any circle
according to the equation:

x2c + y2c − r = 0 (3.1)

A maximum point in the Hough space will correspond to the radius and centre coordi-
nates of the circle best de�ned by the edge points.
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There are a number of problems with the Hough transformation method. First of all,
it requires threshold values to be chosen for edge detection, and this may result in critical
edge points being removed, resulting in failure to detect circles/arcs. Secondly, the Hough
transform is computationally intensive due to its 'brute-force' approach, and thus may not
be suitable for real time applications. [17]

3.2.2 Integro-di�erential operator

Currently the most used alghorithm for Iris segmentiation is Integro-di�erential operator
implemented by John Daugman.[19]

This operator is de�ned as:

max(r, x0, y0)

∣∣∣∣Gσ(r) ∗ ∂

∂x

∮
r,x0,y0

I (x, y)

2πr
ds

∣∣∣∣ (3.2)

Integro-di�erential operator

Where I(x; y) is an image containing an eye. The operator searches over the image domain
(x; y) for the maximum in the blurred partial derivative with respect to increasing radius r,
of the normalized contour integral of I(x, y) along a circular arc ds of radius r and center
coordinates x0, y0.
The symbol * denotes convolution and Gσ(r) is a smoothing function such as a Gaussian
of scale σ. The complete operator behaves in e�ect as a circular edge detector, blurred at
a scale set by σ, which searches iteratively for a maximum contour integral derivative with
increasing radius at successively �ner scales of analysis through the three parameter space
of center coordinates and radius (x0; y0; r0) de�ning a path of contour integration.
The operator in equation 3.2 serves to �nd both the pupillary boundary and the outer
(limbus) boundary of the iris, although the initial search for the limbus also incorporates
evidence of an interior pupil to improve its robustness since the limbic boundary itself usu-
ally has extremely soft contrast when long wavelength NIR illumination is used.
Once the coarse-to-�ne iterative searches for both these boundaries have reached single pixel
precision, then a similar approach to detecting curvilinear edges is used to localize both the
upper and lower eyelid boundaries.
The path of contour integration in 3.2 is changed from circular to arcuate, with spline param-
eters �tted by standard statistical estimation methods to describe optimally the available
evidence for each eyelid boundary.
The result of all these localization operations is the isolation of iris tissue from other image
regions. [19]

The integro-di�erential can be seen as a variation of the Hough transform, since it too
makes use of �rst derivatives of the image and performs a search to �nd geometric parame-
ters. Since it works with raw derivative information, it does not su�er from the thresholding
problems of the Hough transform. However, the algorithm can fail where there is noise in
the eye image, such as from re�ections, since it works only on a local scale. [17]
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3.2.3 Discrete Circular Active Contours

The model detects pupil and limbus by activating and controlling the active contour using
two de�ned forces: internal and external forces. The internal forces are responsible to ex-
pand the contour into a perfect polygon with a radius Cr larger than the contour average
radius.
The internal forces are designed to expand the contour and keep it circular. The force model
assumes that pupil and limbus are globally circular, rather than locally, to minimize the
undesired deformations due to specular re�ections and dark patches near the pupil boundary.

Figure 3.1: The internal forces of the Discrete Circular Active Contour [20]

The contour detection process of the model is based on the equilibrium of the de�ned
internal forces with the external forces. The external forces are obtained from the grey level
intensity values of the image and are designed to push the vertices inward.
The �nal equilibrium is achieved when the average radius and center of the contour becomes
the same as the one in m iterations ago.

3.2.4 Other Segmentation Methods

Other researchers use methods similar to the described segmentation methods. For in-
stance, the iris localization proposed by Tisse et al. [21] is a combination of the Integro-
di�erential and the Hough transform. The Hough transform is used for a quick guess of the
pupil center and then the Integro-di�erential is used to accurately locate pupil and limbus
using a smaller search space.

Lim et al. [22] localize pupil and limbus by providing an edge map of the intensity values
of the image. The center of pupil is then chosen using a bisection method that passes per-
pendicular lines from every two points on the edge map. The center point is then obtained
by voting the point that has the largest number of line crossovers. The pupil and limbus
boundaries are then selected by increasing the radius of a virtual circle with the selected
center point and choosing the two radii that have the maximum number of edge crosses by
the virtual circle as the pupil and limbus radii . [20]
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Figure 3.2: The external forces of the Discrete Circular Active Contour[20]
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Chapter 4

Normalisation

4.1 Overview

Once the iris region is successfully segmented from an eye image, the next stage is to trans-
form the iris region so that it has �xed dimensions in order to allow comparisons.
The dimensional inconsistencies among eye images are mainly due to the stretching of the
iris caused by pupil dilation from varying levels of illumination.
Other sources of inconsistency include, varying imaging distance, rotation of the camera,
head tilt, and rotation of the eye within the eye socket.
The normalisation process will produce iris regions, which have the same constant dimen-
sions, so that two photographs of the same iris under di�erent conditions will have charac-
teristic features at the same spatial location. [17]
We must take in note, that pupil region is not always concentric within the iris region, and is
usually slightly nasal. This must be taken into account if trying to normalise the 'doughnut'
shaped iris region to have constant radius.

4.2 Review of available alghorithms

4.2.1 Daugman's Rubber Sheet Model

Most used model for normalisation is Daugman's rubber sheet model. [19] This model
remaps each pixel within iris region to a pair of polar coordinates (r, θ) where r is on
interval [0,1] and θ is angle <0,2π>.

Figure 4.1: Daugman's rubber sheet model [19]
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The remapping of the iris region from (x, y) Cartesian coordinates to the normalised
non-concentric polar representation is modelled as I(x(r, θ), y(r, θ)) −→ I(r, θ)
with

x(r, θ) = (1− r)xp(θ) + rxl(θ)

y(r, θ) = (1− r)yp(θ) + ryl(θ) (4.1)

where I(x, y) is the original image within segmented space, (x, y) are the original Care-
sian coordinates, (r, θ) are the corresponding normalised polar coordinates, xp, yp and xl,
yl are the coordinates of the pupil and iris boundaries along the θ direction.
The rubber sheet model takes into account pupil dilation and size inconsistencies in order
to produce a normalised representation with constant dimensions. In this way the iris re-
gion is modelled as a �exible rubber sheet anchored at the iris boundary with the pupil
centre as the reference point. Even though the homogenous rubber sheet model accounts
for pupil dilation, imaging distance and non-concentric pupil displacement, it does not com-
pensate for rotational inconsistencies. In the Daugman system, rotation is accounted for
during matching by shifting the iris templates in the θ direction until two iris templates are
aligned.

4.2.2 Non-linear Normalization Model

The unwrapping method proposed by Daugman assumes that iris patterns are linearly
distributed in the radial direction, which allows the mapping procedure into the interval
[0 1]. The technique relies on two main factors:

• The image acquisition process adjusts the pupil size to a proper radius range by
adjusting the illumination.

• The feature extraction process is locally applied to many di�erent positions of the iris
texture, which would compensate the local nonlinear variations.

The proposed non-linear normalization method, considers a nonlinear behavior of iris pat-
terns due to changes of pupil size. In order to unwrap an iris region properly, a non-linear
model and a linear normalization model are combined. The non-linear method, which is
�rst applied to an iris image, is based on three assumptions:

• The pupil margin and iris root (which correspond to the inner and outer boundaries
of the iris) are concentric circles.

• The margin of the pupil does not rotate signi�cantly during pupil size changes.

• The pupil shape does not change and remain circular when pupil size changes.

The non-linear model is de�ned by virtual arcs, which are named
�
�bers� following

Wyatts work, that connect a point on the pupil border to a point on the limbus. The polar
angle traversed by the arcs between these two points is π/2. The virtual arcs are de�ned
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based on normalized pupil sizes to a �xed value using a prede�ned λref , which is obtained
by the mean of all λ values de�ned as λ = r/R in the iris database. The r and R represent
the radius of pupil and limbus respectively. The reference annular zone with ref is then
linearly mapped into a �xed-size rectangle zone of m × n by equally sampling m points in
each virtual concentric sampling circle with a �xed radial resolution.
It is concluded by the authors of the presented approach that the non-linear model still
simpli�es the real physiological mechanism of iris deformation and some more assumptions
and approximations are required to support the model. The model is also believed to
explicitly show the non-linear behavior of iris textures due to the improvements obtained in
the experiments.[20]

4.2.3 Other Normalization Methods

Also exists a method very similar to the pseudo polar transform of Daugman. [19] In
this method, after �nding the center of pupil and the inner and outer boundaries of iris,
the texture is transformed into polar coordinates with a �xed resolution. In the radial
direction, the texture is normalized from the inner boundary to the outer boundary into 60
pixels which is �xed throughout all iris images.
The angular resolution is also �xed to a 0.8 degree over the 360 degree which produces 450
pixels in the angular direction.
Another normalization technique is also similar to Daugman's method with the di�erence
that it is performed at the time of matching. The method is based on the diameter of the
two matching irises. The ratio of the diameters are calculated and the diameter of irises are
adjusted to have the same diameters. The number of samples is also �xed and it is set to a
power-of-two integer in order to be suitable for the dyadic wavelet transform.
In addition, there has been some research on the pseudo polar transform in order to optimize
its performance.
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Chapter 5

Feature Encoding

5.1 Overview

In order to provide accurate recognition of individuals, the most discriminating information
present in an iris pattern must be extracted. Only the signi�cant features of the iris must be
encoded so that comparisons between templates can be made. Most iris recognition systems
make use of a band pass decomposition of the iris image to create a biometric template.

5.2 Wavelet encoding

Wavelets can be used to decompose the data in the iris region into components that appear
at di�erent resolutions. Wavelets have the advantage over traditional Fourier transform in
that the frequency data is localised, allowing features which occur at the same position and
resolution to be matched up. A number of wavelet �lters, also called a bank of wavelets,
is applied to the 2D iris region, one for each resolution with each wavelet a scaled version
of some basis function. The output of applying the wavelets is then encoded in order to
provide a compact and discriminating representation of the iris pattern. [17]

5.3 Gabor Filters

Gabor �lters are able to provide optimum conjoint representation of a signal in space and
spatial frequency. A Gabor �lter is constructed by modulating a sine/cosine wave with
a Gaussian. This is able to provide the optimum conjoint localisation in both space and
frequency, since a sine wave is perfectly localised in frequency, but not localised in space.
Modulation of the sine with a Gaussian provides localisation in space, though with loss
of localisation in frequency. Decomposition of a signal is accomplished using a quadrature
pair of Gabor �lters, with a real part speci�ed by a cosine modulated by a Gaussian, and
an imaginary part speci�ed by a sine modulated by a Gaussian. The real and imaginary
�lters are also known as the even symmetric and odd symmetric components respectively.[17]

The centre frequency of the �lter is speci�ed by the frequency of the sine/cosine wave,
and the bandwidth of the �lter is speci�ed by the width of the Gaussian.
Daugman uses 2D versions of Gabor �lters in order to encode iris pattern data. A 2D Gabor
�lter over the an image domain (x, y) is represented as

G(x, y) = e−π[(x−x0)
2/α2+(y−y0)2/β2] e−2πi[(u0(x−x0)+v0(y−y0)] (5.1)
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where (x0, y0) specify position in the image, (α, β) specify the e�ective width and length,
and (u0, v0) specify modulation, which has spatial frequency ω0 =

√
u20 + v20

Figure 5.1: 2D Gabor wavelets[19]

In Figure 5.1 are shown 2D Gabor wavelets. Local regions of an iris are projected onto
quadrature 2D Gabor wavelets, generating complex-valued coe�ccients whose real and imag-
inary parts specify the coordinates of phasor in the complex plane. The angle of each phasor
is quantized to one of four quadrants, setting two bits of phase information. This processs
is repeated all accross the iris with many wavelet sizes, frequencies, and orientations, to
extract 2 048 bits.

Taking only the phase will allow encoding of discriminating information in the iris, while
discarding redundant information such as illumination, which is represented by the ampli-
tude component.

These four levels are represented using two bits of data, so each pixel in the normalised
iris pattern corresponds to two bits of data in the iris template. A total of 2 048 bits are
calculated for the template, and an equal number of masking bits are generated in order
to mask out corrupted regions within the iris. This creates a compact 256-byte template,
which allows for e�cient storage and comparison of irises. The Daugman system takes polar
coordinates for normalisation, therefore in polar form the �lters are given as: [19]

H(r, θ) = e−iω(θ−θ0) e−(r−r0)
2/α2

e−i(θ−θ0)
2/β2

(5.2)

where (α, β) are specify the e�ective width and length and (r0, θ0) specify the centre
frequency of the �lter.

The demodulation and phase quantisation process can be represented as [19]

hRe,Im = sgn{Re,Im}

∫∫
ρ φ

I(ρ, φ) e−iω(θ−θ0) e−(r−r0)
2/α2

e−i(θ−θ0)
2/β2

ρdρdφ (5.3)

where hRe,Im can be regarded as a complex valued bit whose real and imaginary com-
ponents are dependent on the sign of the 2D integral, and I(ρ, φ) is the raw iris image in a
dimensionless polar coordinate system. [17]
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5.4 Other methods

Currently, there exists more feature extracting methods, mostly based on wavelet �ltering.
These are using di�erent wavelet �ltering from Gabor wavelet �lter, or some slightly modi-
�cation of it.
For example I can mention Log-Gabor Filters, Haar wavelet, which uses only 87 bits instead
of 2048, Laplacian of Gaussian Filters[10], Zero-crossings of the 1D wavelet etc.[10]

For detailed understanding mentioned methods, please refer to adequate literature [9]
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Chapter 6

Matching

We need to have some measerument for comparing template with input. The output from
feature extracting process is stored in byte code and so it's the template. Therefore we need
metric, which is able to measure similarities between two byte codes.

6.1 Hamming distance

The Hamming distance [11] determines how many bits, compare to whole �le are di�erent.
So when we are comparing two identical iris codes, the Hamming distance should be equal
to 0.

In comparing the bit patterns X and Y , the Hamming distance, HD, is de�ned as the
sum of disagreeing bits (sum of the XOR between X and Y ) over N , the total number of
bits in the bit pattern.

HD =
1

N

N∑
j=1

Xj ⊕ Yj (6.1)

Since an individual iris region contains features with high degrees of freedom, each iris
region will produce a bit-pattern which is independent to that produced by another iris, on
the other hand, two iris codes produced from the same iris will be highly correlated.

If two bits patterns are completely independent, such as iris templates generated from
di�erent irises, the Hamming distance between the two patterns should equal 0.5. This
occurs because independence implies the two bit patterns will be totally random, so there is
0.5 chance of setting any bit to 1, and vice versa. Therefore, half of the bits will agree and
half will disagree between the two patterns. If two patterns are derived from the same iris,
the Hamming distance between them will be close to 0.0, since they are highly correlated
and the bits should agree between the two iris codes.

The Hamming distance is the matching metric employed by Daugman, and calculation
of the Hamming distance is taken only with bits that are generated from the actual iris
region. [17]
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6.2 Other matching alghorithms

There exist other techniques for proper measurement similarities, or di�erencies between
two iris templates. For purpouse of this thesis are these not relevant, as Hamming distance
is used widely in almost every work, which is dealing with human iris recognition.

These methods are for example: Normalised Correlation, Weighted euclidean distance
etc. For more detailed information please refer to adequate literature.[12]
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Chapter 7

Evolution algorithms

7.1 Evolution algorithms

7.1.1 Introduction into evolution algorithms

Evolution algorithms is common expression for class of modern mathematic procedures,
which uses models of evolution processes in nature. All of these models have common fea-
tures. These mostly work with set of feasible outcomes of given task/problem. The results
are being continuosly improved by prefering better solutions, which came out of original
solutions by applying combination and mutation, which eliminates weak/worse solutions.

7.1.2 Darwin evolution

With �rst evolution theory came Jean Baptiste de Lamarck. He was explaining evolution
as the ability of living organism to change, speci�cally by continuous process of evolving
and inheritance, when structures which are being used are for next generations strengthen,
and those which are not are weaken. According to todays �ndings most of the evolution
changes was not reproduced by this mechanism, however, there exists indirect possibility,
that evolution was evolved by applying secondary mutation.
According to Darwin theory, which is based on natural selection, has the higher number
of newborn individuals, than the environment can support, direct impact on creation of
concurrency and

�
survival �ght� .

In the population will then survive individuals with advantageous deviations acquired dur-
ing the evolution process. According to this fact, only the �ttest individuals will survive.
Therefore given biological kind will adapt on its environment and also to its changes.

Basic signs of classic darwinism are:

• Populations are genetically variable, mutability is random in respect of environment

• Populations have in�nite possibility to grow, but food and spatial resources are limited
and therefore only part of population grows into individuals capable of reproduction
- among the individuals has to exist

�
survival �ght�

• Only �ttest individuals are able to beget o�springs and therefore move theirs unique
genetic dispositions at higher rate into following generations - the presence of suitable
properties is continuously growing.

26



• Thanks to this natural selection have species adapted to environment and by longterm
e�ect of selection is possible to explain all evolution

In other words we can say, that biologic evolution, the progressive change of genetic
content of population among many generations, contains these three main components:

1. Natural selection, process in which high �tness individuals enters the reproduction
process with higher probability than other individuals

2. Random genetic drift, in which random events in life of individuals in�uence whole
population. Such events are for example random mutation of genetic material, or
random death of individual with high �tness value before he/she could enter the
reproduction process. Random events of genetic drift are signi�cant especially for
small population

3. Reproduction process, within which are o�springs created from their parents. O�-
springs genetic information is being formed by mutual change of parents genetic in-
formation. Most often proceeds this process as combination of random parts of par-
ents chromosome, from which is formed new genetic information of newborn individ-
ual(called sexual reproduction)

In biology is the
�
�tness� de�ned as the ability to survive and reproduce in a given

environment and given population. It can be understood as holistic property genotype -
genetic information materially realized by individuals chromosome in population.

Missing link in Darwin's theory added Gregor Mendel, who published his own work in
the same year as Darwin's

�
Origin of spieces� was published. Genetic determinism (Neodar-

winism) is derived from the combination of Darwinism and Mendel's genetics. According to
him, progress of evolution runs through natural selection and random genetic mutations.

7.1.3 Evolution process simulation

Evolution algorithms are based on metaphor of evolution. Solving a task is transferred to
the evolution process of the population of the randomly generated solutions. Every solu-
tion is encoded into a string of symbols (parameters) and evaluated by �tness function that
expresses the quality of the solution - higher value means that given solution is more per-
spective and therefore enters the reproduction process more often. Population of solutions
is commonly called a population of individuals or chromosomes. The reproduction process
is based on two driving forces:

• Various operators of crossover and mutation, which brings in population diversity

• Selection, which prioritize better individuals

The combination of variation and selection generally contributes to improving the �tness
function of individuals in the newly formed population. In the process of crossing individ-
uals, as well as in living nature, the new individuals/o�springs are obtained by crossing
parental individuals. All of the components are stochastic - e.g. pairs with better �tness
value enters reproduction process more often, but also weak individuals have chance to enter
the reproduction process.
In the �gure 7.1 is shown general schema of evolution algorithm
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Figure 7.1: Flowchart of evolution algorithm

7.1.4 Components of evolution algorithm

Evolution algorithms conists of following components:

• Representation of solutions - encoding

• Function of evaluation the quality of solutions - �tness function

• Population

• Techniques for selecting parent individuals

• Variation of selection and mutation operators

• Renewal of the population

Speci�cation of individual components is diverse for various types of evolution algo-
rithms. The method of encoding is called genotype, for instance integers can be encoded
in binary format. By phenotype we then mean the value of binary string, e.g., string 1010
corresponds to phenotype 12 in decadic format.

7.1.5 Application of evolution algorithm

Evolution algorithms are applicable in all those �elds of computation, where classic ana-
lytical and convention methods fail, thus especially when dealing with complex nonlinear
NP-complete problems. They are used in many �elds of engineering design and arti�cial
intelligence:

• Numeric, combinatorial optimization
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• Modeling and identi�cation of a model

• Management and planning

• Engineering design

• Data mining

• Machine learning and arti�cial intelligence

A well-known problem is �nding the shortest Hamiltionian path in graph. In practice,
this could be a solution to the logistical task of travelling salesman, known under acronym
TSP. Encoding is mostly permutation. Also is known binary encoding, but it's rarely used.

7.1.6 Robustness of evolution algorithm

Evolution algorithms(EA) are typical by its robustness, the ability to solve di�cult optimal-
ization and decision tasks, which can be characterized by properties such as multimodality,
multicriteriality and various types of restrictive conditions.
Its deployment is e�ective in tasks, which can be characterized as follows:

• The solutions space is to wide and expert knowledge is missing, which could stretch
the space of feasible solutions

• It's not possible to execute mathematical analysis of given problem

• Traditional approaches fails

• It's a task with multiple extremes, criteria and constraints conditions

Evolution algorithms are being used for numerical and combinatorial optimalization,
in circuits design, managing and planning the production, machine learning, creation of
economic, social and ecological models etc.
It's necessary to show some certain disadvantages of evolution algorithms:

• The quality of solutions can be evaluated only relatively. It's unable to test, whether
the result is global optimum

• Many tasks are very time-consuming

• For very large problems, EA provides solution, which is too far from optimum

• Completion of optimization is based on an explicit time limit or stagnation objective
function

For the evolution algorithms design, there are many commercial products, which provide
rapid application design. The key step is the choice of encoding a problem, which should
take into consideration used genetic operators and the di�culty of �tness function compu-
tation.

Classi�cation of individual evolution algorithms into �eld of softcomputing is shown on
Figure 7.2. The oldest techniques are genetic algorithms and evolution strategies. Evolu-
tion programming and genetic programming were developed later.
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Figure 7.2: Review of evolution algorithm types

7.2 Genetic algorithms

7.2.1 Introduction

Genetic algorithms(GA) are the most widespread types of evolution algorithms. The �rst
person, who formulated the idea of genetic algorithm was J. Holland, who used GA for study
of adaptive behavior. J. Holland presented genetic algorithms �rstly as search algorithms
for adaptive systems of arti�cial intelligence. He de�ned crossover operator and inversion
operator. Crossover operator is considered as the main distinctive factor of genetic algo-
rithms, which uses this recombination operator primarly. In the book Genetic Algorithms in

Search, Optimization, and Machine Learning from David Goldberg is detailed description of
standard GA, including examples of implementation. This book is considered as

�
bible� of

genetic algorithms. After its release in 1989 there was signi�cant growth of interest of this
science �eld called evolutionary computing, which is now part of soft computing(extended
to fuzzy logic, neural networks and fractals). After 1989 also grows interest of publications,
which are dealing with problems solved by genetic optimization.

The main application, however, have found genetic algorithms in optimization problems,
especially in the search for the global extreme of single and multi-dimensional functions.
In this context we talk about classic/simple/canonical genetic algorithm (SGA), which is
clearly speci�ed in Table 7.1

Reprezentation Binary string

Recombination Single-point crossover

Mutation One bit mutation

Parents selection Proportional selection based on �tness value

Renewal of population Generative - with full replacement of previous population

Table 7.1: Speci�cation of genetic operators
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7.2.2 Canonical scheme of genetic algorithm activity

Firstly, we need to declare notions, which we will use in following text.
Chromosome (individual) which codes solution is represented by binary vector (string) of
constant legth n:

X = (X0, X1, ..., Xn−1), where Xi is the i-th variable of given string

x = (x0, x1, ..., xn−1) is string of speci�c variable instancies

Xi = xi, xi ∈ {0, 1}

D = (X1, X2, ..., XN ), Xj ∈ D is set of N strings, which speci�es populaton D

D ⊆ {0, 1}n

Let f be the payo� function de�ned uppon set of binary strings of length n

f : {0, 1}n → R (7.1)

which evaluates every binary vector x by real number. The goal is to �nd the global
extreme of the function f. In the case of minimization function its about �nding vector:

xopt = argmin f(x)
x∈{0,1}n

(7.2)

The function f is usually transformed into a function of expediency F (�tness function)
in a way, that the original optimization problem was transferred to maximizing task and
appropriate scale �tness was achieved. Use of this transformation helps also to change the
selection pressure, which signi�cantly a�ects evolution process convergation.

The activity of standard GA algorithm can be described by following pseudocode:

1. Set variable t = 0, generate initial population D(0) randomly with mightiness N ,

2. Perform evaluation of population of individuals D(t) by �tness function F (X),

3. Generate population of o�springs O(t) with mightiness M ≤ N using crossover and
mutation operators

4. Create new population D(t+1) by substiting part of population D(t) with individuals
from O(t)

5. Set t← t+ 1

6. If stop condition is not satis�ed go to (2)

Phases of GA design

When dealing with genetic algorithm design is necessary to solve following phases:

• Problem representation
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• Initial population

• Evaluation of individuals

• Selection operators

• Recombination operators

• Mutation operators

• Population renewal

• Size of population

• Algorithm termination

7.2.3 Selection

The selection operator creates new population P (t+1) by choosing among individuals with
possible repetition from old population P (t). Selection can be done by several options. The
most common is random selection using roulette (roulette wheel selection) [5], where the
probability of individual selection ps(xi) each individual is proportional to its �tness.
The selection process is an important part of genetic algorithms. On one hand, it must favor
individuals with higher �tness value, on the other must choose a new population which
is su�ciently diversi�ed. If selection algorithm doesn't meet this expectations, it leads
in �rst case to slow convergation of the algorithm, in second case to so called premature
convergation(into local optimum). Selection intensity or also selection pressure is expressed
by following equation:

I =
M∗ −M

σ
(7.3)

where M∗ denotes average value of �tness function in the population before selection,
M denotes average value of �tness function after selection and σ is the variance of �tness
values before selection.
The higher the selection pressure is, the faster the algorithm converges - population after
selection contains more individuals with higher �tness. Together however danger of pre-
mature convergation grows. For this situation was introduced the notion of takeover time,
which denotes the count of generations, which are necessary for selection to �ll whole popu-
lotion of N individuals by the best chromosome, by absence of recombination and crossover
operator.
The loss of diversity is a measure of

�
genetic material� . During selection process, some part

of chromosome is not selected. However these chromosomes also contains some information.
Because of that, their loss increases the danger of premature convergation of genetic algo-
rithm. The loss of diversity pd is the ratio of chromosomes, which weren't selected to overall
count of chromosomes in population.
There are lot of variations of selection algorithms and its modi�cations. The most commonly
used algorithms that provide useful results are as follows:

• Proportionate selection (Roulette wheel selection)

• Residual selection (truncation)

32



• Linear ordering (ranking)

• Exponential ordering (ranking)

• Tournament selection

Proportionate selection

Proportionate selection was �rst algorithm for individuals selection. The selection proba-
bility i-th individual is given by following equation:

pi =
fi
N∑
j=0

fj

(7.4)

The aim of parent-chromosome selection is to give bigger chance to those individuals,
who are achieving better results. This can be done several ways. The simplest method is
Roulette wheel selection. There can also appear negative in�uence of proportional selection.
If there will be individual with relatively high �tness value, the population is being gradually
replaced by its chromosome. To overcome this trend is suitable to adjust original �tness
value (scaling process) so that the di�erence between quality of best and worst individual
will be reduced.

The most commonly used techniques are:

1. Comprimation of �tness function (windowing):
f

′
(i) = f(i) + βt, where β is the worst �tness value in current t-generation

2. Sigma scaling:
f

′
(i) = max(f(i)− (< f > −c ∗ σf ), 0.0), where c is constant, mostly 2.0 and < f >

is mean �tness value

Even though Roulette wheel selection method is based on random selection, the chance
of each parent to be in next generation is directly proportional its evaluation(�tness). The
name is derived from its similarity with the shape of roulette wheel. It can be also interpreted
as wheel of fortune. The only di�erence is that the individual slices are not the same, but
their size(angle) is proportional to chromosome evaluation. Take in note, that individual
payo� have to be positive number. In Figure 7.3 is shown the principle of Roulette wheel
selection and its scaling by constant number 10.

Linear ordering (ranking)

Linear ordering requires ranked population so that the worst individual had index 1 and
best N . The selection probability value is then given by equation:

Pin−rank(i) =
2− s
N

+
2i(s− 1)

N(N − 1)
i ∈ {1, 2, ..., N} (7.5)

In Table 7.2 is example of the computation of selection for selected �tness function values
and two values of selection pressure [5].
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Figure 7.3: Roulette wheel selection[5]

Fitness Rank PselFP PselLR(s = 2) PselLR(s = 1.5)

A 1 1 0.1 0 0.167

B 5 2 0.5 0.67 0.5

C 4 2 0.4 0.33 0.33

SUM 10 1.0 1.0 1.0

Table 7.2: Linear ranking example [5]

Exponential ordering

Exponential ordering di�ers from linear only so, that the selection probability in population
is not spread lineary, but with exponential addiction. Again index N denotes the index of
best individual in population. The selection probability i-th individual is given by equation:

Pexp−rank(i) =
1− exp−i

exp
(7.6)

We can summarize the properties of each approach:

• Linear ordering has limited selection pressure

• Exponential ordering may allocate more than 2 copies of best individual and normal-
ization constant c re�ects the size of population

Parameter c is selected in range of 0 < c < 1. This selection algorithm is best out of men-
tioned group. With the change of parameter c is possible to get suitable selection pressure
together with little variability loss. The time complexity of this algorithm is O(N ln(N)).

Tournament selection

This algorithm achieves results that are very similar to the previous method. His biggest
advantage is absence of ranked population requirement and the simplicity of own selection.
According to this is tournament selection often used. Precisely in this spirit that selection
takes place - from N population individuals are t individuals selected. In next generation
goes only the best one from t individuals. Whole process is being repeated as many times
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as is the count of o�springs in next generation. The bigger the t parameter is, the higher
the selection pressure is.

7.2.4 Crossover

The crossover operator (crossing-over) is charateristic for genetic algorithms and represents
for them the basic operator of population evolution. This operator is often subject of con-
�icting opinions, and whether it should be even used, because it has, among some scientists,
inappropriate biological basis. Proponents of genetic algorithms highlight the ability to ex-
change information between individuals. Opponents of GA contrariwise consider crossover
operator as

�
breaking up the building blocks of bits� and applies this together with mutation

operator with very small probability.
Theory of building blocks explains convergation of genetic algorithms. Genetic algorithms
are, according to this theory, able to identify quality gene blocks (bits) and with help of
recombination operator (crossover) build up blocks with growing size. This growth is mani-
fested externally as the convergation of algorithm to maximum �tness value. The crossover
operator applies with probability pc.
There exists whole set of variations. The basis of it is random pair selection of individu-
als, in which exchange of genetic information (recombination) occurs so, that from point of
crossover genetic information will be exchanged. Very often is this operation performed not
with 100%, but for instance with 70% probability. With this approach is reproduced only
part of the population.

Single and multi point crossover

Single and multi point crossover is the simplest way of chromosome recombination. It
is based on biologic analogy, when the recombination may appear in one or many points
of chromosome. In single-point crossing exchange are in selected place, parts of parents
interchanged. Two o�springs will be created, each of which contains part of the genetic
information from both parents. In multi-point crossing exchange occurs the interchange
of several parts of both parents chromosomes. Some descendants may occur with higher
�tness value. These individuals are thanks to its quality selected into new population with
increased frequency.
On Figure 7.5 is shown three point crossover example

Figure 7.4: Example of three point crossover [5]
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Uniform crossover

Uniform crossover represents another alternative to recombination operators. This oper-
ator scans pair 0 and 1 valued chromosome and performs interchange speci�c genes with
probability pu. Uniform crossover was avoided for too much

�
code destroying� according to

the theory of building blocks. On the other hand, the single crossbreeding can bring in the
desired population diversity and the genetic algorithm is useful in solving complex multidi-
mensional functions with many local extremes. Uniform crossover is a powerful weapon in
the �ght against premature algorithm convergence. Space of potential solutions is scanned
more intensively than in case of single-point crossover.

Figure 7.5: Example of uniform crossover [5]

7.2.5 Mutation

Mutation is the reproductive operator with a small frequency of occurrence but is very
signi�cant. Standard operator mutation modi�es (creating mutant) genes with probability
pm. The most common is the negation bit, which is used with probability 0.0005 to 0.01.
Mutations are for genetic algorithms source of new information. E�ect of mutation can
be completely negligible or vice versa, with fatal consequences for individuals (typically
a mutation in the exponent when encoding real numbers). Too big mutation probability
pm causes instability of the population development, and vice versa too small mutation
probability can not produce enough of new information for further development.
There are a number of special mutation operators for speci�c tasks. E.g. inversion operator.
This operator inverts the order of the single elements (bits) between two randomly selected
points within the chromosome.

7.2.6 Population renewal

Population recovery method determines the dynamics of state space search. There are two
basic ways: a) the generative GA with complete recovery (parents extinction) when the old
o�spring population is completely replaced, b) partial renewal (steady state) where only
one o�spring replaces the weakest individual of original population. Very often are used
mixed variants, when is replaced 20-50% of original population with new o�springs. There
are used various techniques of substitution by partial renewal:

• According to quality: P (t+ 1) = (P (t) υO(t))
(P (t) υO(t))worst

while preserving population size

• Tournament

• Elitism
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• Factor of overcrowding. Subset of parents is randomly selected, o�spring replaces
individual with similar genotype

7.2.7 Schema theorem

Evolution process, speci�ed by the operators of selection, crossover and mutation, leading to
�nding the optimum or suboptima was formalized by J. Holland with use of scheme theory,
which was elaborated later by other authors [Goldberg 1986]. From the theory and practice
of genetic algorithms, it is still known current problem of suitable problem encoding and
suitable assortment of genetic operators selection, which greatly a�ects solution convergence.
Most GA models is based on the theory of building blocks (schemes). Scheme is similarity
template de�ned over the alphabet {0, 1, ∗}. Symbol ∗ denotes, that on respective place
of binary string may appear arbitrary value 0 or 1. We say that a string r ∈ {0, 1}n, is
an example/model of scheme t ∈ {0, 1, ∗}n, if in any scheme position with other character
than ∗ is the value of the character in string same as character value in scheme. For more
information on this area refer to relevant literature [5] [24]

7.2.8 Deceptive problems

Deceptive problems are characterized by the so-called nonlinear interaction parameters /
genes, when best rated solution is composed of under-rated schemes of lower order. Minimal
deceptive problem (MDP):
Let assume binary chromosomes of length = 2: {00, 01, 10, 11} and �tness function f().
MDP has a global optimum f(11), but is considered as deceptive, because some sub-optimal
1. order schemes have greater value of payo� function, than other 1. order schemes: f(0∗) >
f(1∗) > f(∗0) > f(∗1),
so schemes 0∗ and ∗0 are being spread, which are composed into 00 individual, while for
the creation of optimal individual 11 should be schemes 1∗ and ∗1 propagated.
MDP is an abstract example (when the length of chromosome is 2), because there is no such
evaluation for individuals 00, 01, 10, 11, in order that average evaluation of 1. order schemes
could satisfy described relationships.
There are two types of minimal deceptive problem: MDPI and MDPII, which are shown in
Figures

Figure 7.6: type I (MDPI)[5]

Figure 7.7: type II (MDPII)[5]

On longer chromosomes then we work with schemes of type f(∗ ∗ 0 ∗ ∗ ∗ ∗1∗), etc.
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7.3 Evolution strategies, ES

7.3.1 Introduction

In 1963 began, in those time still students, Hans-Paul Schwefel and Ingo Rechenberg at the
Technical University of Berlin, with mimicking evolution in nature to be able to optimize the
shape of objects in order to decrease the turbulation in wind tunnel. They were obviously
convinced, that their method mimics best continuous changes in natural processes.
Therefore called their method generally - evolution strategies. Over time, although had been
shown, that the method is convenient only for solutions of certain type problems, mostly
engineering, but the name remained. According to practical methods focus on engineering
problems solving, became this method popular, especially between construction and ma-
chine engineers.

As with many other scienti�c approaches, also in optimization of one method and its supe-
riority competing methods(e.g. genetic algorithms) are decisive emotion rather than blunt
scienti�c argumentation. As genetic algorithms as evolutionary strategies or perhaps sim-
ulated annealing1 contains enough parameters to setup little di�erencies in procedures. If
it happens then, that somebody proves, that with his/her favourite algorithm got better
results, or achieved results faster, you can always say, that it's based on parameters settings,
that can be always adjusted in order to get with another technique/algorithm better results.
When selecting algorithms for problem solving, to a great extent depends on solver's per-
sonal choice. There exists also evolution programming, which also as evolution strategies

puts more emphasis on similarities in parents and theirs o�springs behavior, rather than
mimickig the genegic operators, as we can observe in processes at molecular level.
Although evolution programming is similar to evolution strategies, both procedures were
developed independently. Evolution programming was designed near the year 1960 by
Lawrence Fogel.
Fogel, with evolution programming, began with forecast of symbocic strings generated by
�nite automatas from so-called Markow processes and unsteady time series, in an e�ort to
predict events, which is basic condition of organism's arti�cial intelligence, who, based on
forecast adjust its behavior.
From practical point of view is evolution programming in optimization used as successfully
as in evolution strategies.

7.3.2 Main characteristicds in Evolution strategies

Evolution srategies, as well as evolution programming and genetic algorithms(including
other optimization techniques) are suitable especially for functions optimization, where is
unable to �nd analytic solution and classic techniques like gradient methods fail. The main
domain of these methods is function optimization, whether with discrete or real variables,
which are

�
spread� accross search space (like wildly rugged mountains), and therefore have

lot of local optimas and is di�cult to �nd the best one.
Although both, evolution programming and evolution strategies exists independently on
each other more than 30 years, only few years ago theirs proponents admited, that these
methods are in fact very similar. Principles of those methods, i.e. optimization set of in-
dividuals in population, inheritance of most individual properties while transitioning from

1http://katrinaeg.com/simulated-annealing.html
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one population into following, and better individuals based on theirs �tness value are in
evolution strategies and evolution programming equal with genetic algorithms. If, however,
evolution strategy and evolution programming are trying to optimize their functions of real
variable, they truly operate with values of real variables (unlike genetic algorithms, which
operates with strings of bits and these converts to real numbers only when it's necessary).

Representation Real encoding (x1, x2, ..., xn), xi is real number

Recombination Discrete or aritmetic

Mutation Gaussian probability distribution

Parents selection Random - with uniform distribution

Renewal of population (µ, λ) or (µ+ λ)

Special procedures Autoadaptation of mutation size

Table 7.3: Speci�cation of evolution strategies operators

7.3.3 Mutation in evolution strategies

The important part which drives evolution process in evolution strategies is mutation, which
is applied on each target parameter/element of solution vector (x1, x2, ..., xn). It uses Gaus-
sian probability distribution with 0 mean value and σ variance. Often it's used normalized
distribution with denotation N(0, 1).

Figure 7.8: Mutation in evolution strategies

In Figure 7.8 is displayed representation of Gaussian normal distribution with mean
variance value σ = 1 and 4 randomly generated values. These values after its random
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mixing, form mutation vector.
These values are then added to vector values of parent and form new o�spring vector of
values.

7.3.4 Crossover

Evolution strategies mimics evolution of individuals in species, and therefore crossover op-
eration began to be used also in evolution strategies.
According to, that individuals represents directly encoded problem solutions, i.e. a mixture
of real numbers, integers and other parameters, crossover is speci�cally de�ned for each type
of problem.
Suppose, that we have picked two individuals characterized by two vectors of real numbers.
Discrete crossover creates new individual, whose vectore is formed by the values, that were
taken either from one, or from another vector.
Crossover

�
average� forms individual, whose elementary values of vector are always created

as average value of its parents.

Figure 7.9: Discrete crossover

Figure 7.10:
�
Average� crossover

In Figure 7.9 is shown example of discrete crossover in evolution strategies. In Figure
7.10 is shown example of

�
average� crossover in evolution strategies.

These are two of many variations of crossover in evolution strategies.

7.3.5 Population renewal

In the original implementation, better o�spring simply displaces worse parent, who is then
removed from the population. If parent is still better than o�spring, then parent stays in
population. We call this variant plus strategy (µ+ λ) (size of parents population + size of
o�springs population, originally variant 1 + 1).
For an instance let's say that later algorithms generate from 10 parents 100 o�springs, then
ranks parents and o�springs according to theirs �tness value and pickup 10 best into next
generation. It's actually an application of elitism principle.
Another strategy is strategy (µ, λ), in which could be individuals of parent population
replaced by inferior o�springs. This techique is often used for di�cult optimization tasks
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and allows to leave local optimum. The selection pressure is high, often is used constant
λ ≈ 7µ.

7.3.6 Basic strategy 1+1

In this variation is population formed by single individual, who is represented only by
vector of search parameters (x1, x2, ..., xn). To individual parameters is applied mutation
from Gaussian distribution. Parameter σ is modi�ed in order to let approximately 1

5 of
mutations be successful, i.e. to let 20% of o�springs be better than parents. If there is
less amount of successful o�springs, the number of mutations will decrease, if more, it will
increase.
We can formalize this approach with following equations [5]:

σ =
σ

c
; pu > 1/5

σ = σ ∗ c; pu < 1/5

σ = σ; pu = 1/5

(7.7)

where pu stands for % of successful mutations, 0.8 ≤ c ≤ 1
You can refer, for an algorithm, which uses these conditional expressions, to relevant

literature [5].

7.3.7 Autoevolution of control parameters

Besides the basic explicit rule for modifying 1/5 of the mutation size are using other three
techniques based on autoevolution of control parameters. That means, that chromosome
is formed by two sections: section of target parameters and section of control parameters.
Both sections are subject to evolutionary processes and changes their values during the
process of evolution. For more information refer to relevant literature [5].
To summary this evolution algorithms are used mainly for optimization problems with real
parameters(search for multi-value function extremes) or problems with mixed parameters
(real, integer, discrete parameters).
The variations of evolution strategies with autoevolution of control parameters are more
e�cient than variations with adaptation of mean distribution dispersion using rule 1:5.

7.4 Multimodal functions

Traditional genetic algorithms (GA's) with elitist selection are suitable for locating the op-
timum of unimodal functions as they converge to a single solution of the search space. Real
optimization problems, however, often lead to multimodal domains and so require the identi-
�cation of multiple optima, either global or local. For this purpose, niching methods extend
simple GA's by promoting the formation of stable subpopulations in the neighborhood of
optimal solutions.

Niching methods have been developed to reduce the e�ect of genetic drift resulting from
the selection operator in the standard GA. They maintain population diversity and permit
the GA to investigate many peaks in parallel. On the other hand, they prevent the GA from
being trapped in local optima of the search space. Niching GA's are based on the mechanics
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of natural ecosystems. In nature, animals compete to survive by hunting, feeding, grazing,
breeding, etc., and di�erent species evolve to �ll each role. A niche can be viewed as a
subspace in the environment that can support di�erent types of life. A species is de�ned
as a group of individuals with similar biological features capable of interbreeding among
themselves but that are unable to breed with individuals outside their group. For each
niche, the physical resources are �nite and must be shared among the population of that
niche. By analogy, niching methods tend to achieve a natural emergence of niches and
species in the environment (search space). A niche is commonly referred to as an optimum
of the domain, the �tness representing the resources of that niche. Species can be de�ned
as similar individuals in terms of similarity metrics.[15]

7.4.1 Techniques for multimodal functions solving

There are two basic explicit techniques for multimodal function solving:

• Fitness sharing

• Crowding

Fitness sharing

Fitness sharing modi�es the search landscape by reducing the payo� in densely populated
regions. It lowers each population element's �tness by an amount nearly equal to the number
of similar individuals in the population. Typically, the shared �tness f

′
i of an individual i

with �tness fi is shown in equation 7.8:

f
′
i =

fi
mi

(7.8)

where mi is the niche count which measures the approximate number of individuals with
whom the �tness fi is shared. The niche count is calculated by summing a sharing function
over all members of the population:

mi =
N∑
j=1

sh(dij) (7.9)

where N denotes the population size and dij represents the distance between the indi-
vidual i and the individual j. Thence, the sharing function (sh) measures the similarity level
between two population elements. It returns one if the elements are identical, zero if their
distance is higher than a threshold of dissimilarity, and an intermediate value at intermediate
level of dissimilarity. The most widely used sharing function is given as follows:

sh(dij) =

{
1− (dij/σs)

α if d < σs

0 otherwise
(7.10)

where σs denotes the threshold of dissimilarity (also the distance cuto� or the niche
radius) and α is a constant parameter which regulates the shape of the sharing function.
α is commonly set to one with the resulting sharing function referred to as the triangular
sharing function. The distance dij between two individuals i and j is characterized by a
similarity metric based on either genotypic or phenotypic similarity. Genotypic similarity
is related to bitstring representation and is generally the Hamming distance. Phenotypic
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similarity is directly linked to real parameters of the search space. It can be the Euclidian
distance for instance.[15]

Crowding

Crowding methods insert new elements in the population by replacing similar elements. We
distinguish deterministic and multimodal crowding.

Deterministic crowding

• Tries to distribute individuals evenly into niches

• Relies on assumption, that descendants are close (both phenotypic and genotypic) to
parents

• Uses genotypic and phenotypic distance

After crossover and eventually mutation, each child replaces the nearest parent if it
has a higher �tness. Thus deterministic crowding (DC) results in two sets of tournaments:
(parent 1 against child 1, and parent 2 against child 2) or (parent 1 against child 2, and
parent 2 against child 1). The set of tournament that yields the closest competitions is held.
Similarity is computed using preferably phenotypic distance. With two distance comparisons
per set of tournaments and N/2 sets of tournaments per generation, the resulting order of
complexity of deterministic crowding is O(N)./citeevolutionaryComputation

Multimodal crowding

• In the selection phase, are to each individual selected k individuals, i.e. each individual
will be parent

• Then as a second parent is to each individual selected the most similar one

• In the renewal phase, for each individual are S samples created, with Cf individuals in
each sample. From each sample is then the most similar to given individual selected,
who replaces the worst of them.

The most common parameter setup is: S ∈< 2, 4 >, Cf =< 1, 5 > % of population.
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Chapter 8

Implementation

For the purpose of the work, there was necessary to implement solution(algorithm), which
will be able to extract relevant features from human eye for further iris detection. To be ex-
act, mentioned algorithm should focus on pupil and iris boundary detection and this should
be done with usage of evolution algorithms, with the best possible accuracy and time min-
imization.
Also it was necessary to test mentioned algorithm, its time consumption and compare re-
sults with convention solutions.

As it was mentioned in the chapter Introduction, there already exists many convention
solutions which show good results[19][14][9]
Therefore arises question, why to implement algorithm, which overall already shows good
results.
Main motivation of this, was to compare results of solution, which uses evolution algorithm,
to convention solutions. Measure accuracy and time consumption in order to tell how dif-
ferent results give these di�erent approaches and whether evolution algorithms are suitable
for use in human eye iris processing.

I therefore divided implementation into three main parts:

• Graphical user interface (GUI)

• Convention solution

• Solution with the use of evolution algorithms

8.1 Graphical user interface (GUI)

GUI was implemented in JavaFX framework1, because of its ease of use and broad range of
tools.
I divided GUI into three main parts:

• Main panel

• Right panel

1https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm
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• Console output

User can easily switch between results as images, and results as evolution data as it is
shown in Figure 8.1 and Figure 8.2

Figure 8.1: Processed images with iris and pupil circles

Figure 8.2: Evolution data results

Main panel Main panel contains tabbed pane, which contains three tabs.
Two of them (session1 and session2) displays results from iris segmenation process (both
convention and evolution approach). Third tab - displays statistics from evolution process.
Statistics are displayed as charts, which contains data about progress of average and best
�tness function, obtained through generations. This is done for both, iris and pupil detection
process.
In bottom of Main panel are located three buttons with selfexplanatory labels:

• Load Image - loads image which is then used in evaluation process

• Load Person - loads all images for related person (for more info about image database
visit Data section)
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• Run detection - starts both types of detection - using evolution algorithms and con-
vention solution

Right panel Right panel consists of three
�
accordion� panels:

• Person info

• Evolution

• Processed images

Person info panel contains information regarding person, which is loaded (the informa-
tion is loaded from description �le, which is part of BioSecure(9.1) database).
Evolution panel contains user interface utilities for setting up evolution parameters. Cur-
rently is able to setup Generation size and Population size.
Panel Processed images displays images, which were processed during iris detection process.
For each subprocess its output is displayed as separate image in Processed images pane.

Figure 8.3: Main panel: 1)Tabs 2)buttons

Figure 8.4: Right panel

Console output Displays statistics acquired from last generation of evolution process.
The statistics contains:

• Evolution statistics: Number of generations, killed individuals and invalid individuals

• Fitness statistics: Age of oldest individual (with best �tness), minimal, mean and
maximal �tness value

• Time statistics: Time consumption of selection, altering, �tness calculation and overall
time of computation
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8.2 Convention solution

As it was already mentioned, currently exists broad variety of convention methods for iris
segmentation and detection.
For the purpose of this work I focused on proper iris and especially pupil detection using
convention method. This is then used, as it is described more speci�c in Solution with the
use of evolution algorithms, in evolution solution for �tness value evaluation.
For image processing was chosen OpenCV2 library, as this solution is implemented in Java
SE 3, and there already exists OpenCV wrapper for Java language, even though is primarily
designed for C++ language.
Also is necessary to mention, that all images were taken as grayscale images, therefore,
unless it was necessary to display iris, or pupil circle, no image color transformation on
obtained image was necessary.

8.2.1 Pupil detection

Pupil area is relatively easy to distinguish from another part of image. It is a dark area
and mostly its circular (more or less with little deviations). Therefore I considered these
approaches with following results:

• Circular Hough transformation

• Distance transformation

• Contour detection and its analysis

Image preprocess Before pupil segmentation process began, it was expected to prepro-
cess image, in order to remove re�ections from image, as it is mentioned in Data section, so
transformations (like Hough, or Distance) could work properly.
The whole preprocessing consisted of these parts:

• Tophat morphological operation

• Image thresholding

• Gaussian blur morphological operation

• Image dilation

• Subtraction from original image

Tophat operation is the di�erence between an input image and its opening - works as
follows:4

dst = tophat(src, element) = src− open(src, element) (8.1)

where dst is the destination image, src is the source image, element is the kernel over
which tophat is computed and open is an another morphological operation which simply
in binary image removes small objects. For more info regarding open operation refer to

2http://opencv.org/
3http://www.oracle.com/technetwork/java/javase/downloads/index.html
4http://docs.opencv.org/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.

html#top-hat
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available resources5.
In other words this transformation detects small re�ection in pupil area. This is not enough
becuase it still contains lot of noisy area. Therefore this need to be followed by image
thresholding, which remove non-continuous areas by setting each pixel to 0, or to 1, in case
when given pixel value is over or under threshold. Gausian blur removes very small areas
(less than 9x9 pixels - size of kernel) by setting given pixel value to mean of its neighbours.
Image dilation enlarges then camera re�ection in order to remove it when it is being sub-
tracted from original image.

Figure 8.5: Original image
before preprocessing Figure 8.6: Tophat opera-

tion
Figure 8.7: Result after
preprocessing

Circular Hough transformation Circular Hough transformation (CHT)3.2.1 is a tech-
nique for �nding a circle in 2-dimensional space. The circular Hough transform �rst gen-
erates two dimensional parameter space (xc, yc) using the gradient of grayscale. Then the
radius of circle r is determined for each local maximum in the (xc, yc) space. That means
that CHT counts pixels in image for given circle r =

√
(x− xc)2 + (y − yc)2 and for given

votes/threshold (number of pixels) is then decided, whether this set of pixels can be consid-
ered as circle or not.
From above it is clear, that the crucial factors for proper Hough transformation are: the
radius range, threshold value for canny edge detection and number of votes for candidate
circle.
According to fact, that thresholded image often contained eyebrow or eyelashes contours,
occasionaly happened that false circles were detected and this approach should then require
further image preprocessing.

Distance transformation To get more information from image and pupil area boundary,
I considered to use distance transformation 6 in order to obtain pupil center coordinates.
Distance transformation calculates the distance to the closest zero pixel for each pixel of
the source image. Therefore was necessary to obtain thresholded image where pupil area is
highlighted. After this was distance transformation, with normalization factor 1.0, applied.
Although in most of the pictures, center of the pupil was successfully founded, in pictures
where preprocessing didn't remove camera re�ection from pupil, it failed.

5http://docs.opencv.org/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.

html
6http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html#

distancetransform

48

http://docs.opencv.org/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.html
http://docs.opencv.org/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.html
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html##distancetransform
http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html##distancetransform


Figure 8.8: Thresholded image Figure 8.9: Distance transformation applied

Contour detection and its analysis As another approach was considered contour de-
tection.
Contour detection7 simply detects closed areas over binary image. Since in thresholded
image lot of false noisy objects are detected as contours, it needs to be analyzed, whether
given contour/area is searched pupil.
This can be done by iterating through contour collection, when every area is being checked
on its proportions e.g. width/height ratio, size etc.8

This approach with proper parameter settings showed best results.

8.2.2 Iris detection

For Iris detection using convention method, was Hough circle transformation chosen.
As this detection �nds circles in edge image, it was necessary to obtain proper parameters
for canny edge detector. After several attempts, for lower threshold value was set to 150 for
binary image conversion.
However with this method I didn't get any satisfying results and according to fact, that
this method detection wasn't used in further work, especially �tness function evaluation,
I haven't continued with further investigation. This should be then addressed in future work.

8.3 Solution with the use of evolution algorithms

The solution with the use of evolution algorithms is divided into 2 main parts:

• Pupil detection

• Iris detection

This is done because of fact, that both parts are independent on each other, and that
for each of them, need to be possible, to set di�erent evolution parameters and to provide
di�erent �tness function design.
However both of them share same basis idea:
Both, iris and pupil boundary(circle) is evaluated as number of pixels, which are common
with image, which contains highlighted pupil, respectively iris area. In other words the

7http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/find_contours/find_

contours.html
8http://opencv-code.com/tutorials/pupil-detection-from-an-eye-image/
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candidate circle is as good as many pixels has it common with input image with which is
evaluated.
Therefore the evolution algorithm design, to be more speci�c - in this case it's used evolution
strategy concept, consists of these main sections, which have to be solved:

• Problem encoding

• Design of �tness function

• Evolution constraints/parameters setup

8.3.1 Pupil detection

For proper pupil detection was necessary to have an input image with pupil area highlighted.
For this purpose is used thresholded image, which highlights very dark parts of image and
therefore also pupil area. This image is then converted to edge map(using canny edge
detector) and is further used as input for �tness function. Example of input image is shown
in Figure 8.10

Figure 8.10: Input image for evolutionary pupil detection

Problem encoding Because �tness function evaluates individuals, which are circles over
2-dimensional space, following encoding was implemented. The whole genotype consists of
these main parts, which are encoded into integer values:

• x-coordinate of the circle center

• y-coordinate of the circle center

• radius of circle

• number of pixels of which is circle shifted in x-direction

• number of pixels of which is circle shifted in y-direction

• radius adjust

Each of these values has its range set, which can be modi�ed, in order to reduce the
search space.

50



Design of �tness function Fitness function works in following steps:

• Obtains candidate circle parameter from genotype

• Computes common pixels with input image

• Computes �tness value

Fitness value is adjusted to extent, that also center point - obtained in distance trans-
formation enters the �tness computation process, when circles, which are far from possible
center are being penalized. The �nal �tness value is then computed as:

value = common_pixels− d(dist, center)2 (8.2)

where d(dist, center) denotes the distance between center obtained from distance trans-
formation and candidate circle center.

Evolution constraints/parameters setup The setup of evolution computation allows
to setup these parameters:

• Population size - number of candidate circles in each generations

• O�spring fraction - how many o�springs will be selected into next generation

• O�spring selector - which type of selection mechanism will be used for o�spring selec-
tion

• Survivors selector - which type of selection mechanism will be used for parents(survivors)
selection

• Mutator - which type of mutation will bye used

• Alterer - which type of Crossover technique will be used

8.3.2 Iris detection

For proper Iris detection was necessary to obtain image which highlights outer iris area.
Also as by pupil detection, as input image was selected binary image with proper threshold
setting. However, since Iris area is not as easy to be distinguished in image as pupil area,
lot of information in thresholding was lost. Therefore I recommend di�erent approach as
this depends heavily on light conditions in which was input image taken. In Figure 8.11 is
shown example of such an image.

Problem encoding Problem encoding is the same as by pupil detection, but with that
di�erence, that x and y coordinates of pupil circle are computed only in area, close to
candidate center, obtained from distance transformation 8.2.1.
The whole genotype consists though of these main parts, which are encoded into integer
values:

• radius of circle

• number of pixels of which is circle shifted in x-direction prior to candidate center
obtained from distance transformation
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Figure 8.11: Input image for evolutionary iris detection

• number of pixels of which is circle shifted in y-direction prior to candidate center
obtained from distance transformation

• radius adjust

Design of �tness function Design of �tness function is the same as in pupil boundary
detection process. 8.3.1

Evolution constraints/parameters setup Evolution parameters are the same as in
pupil boundary detection process. 8.3.1
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Chapter 9

Testing

9.1 Data

For purpose of this work was used the BioSecure Multimodal Database (BMDB)1. This
database consists inter alia, of iris database, against which was implemented algorithm
tested. The iris database corresponds to 210 users of desktop dataset. For each person and
for each session, 4 grey-level images of the 2 eyes (left and right) are available. In general,
the pupil and the iris of the eye are centered in the image. There are 2 sessions for each
person.
In the database, some images have an interlacing problem as visible on the Figure 9.1.

Figure 9.1: Original image presenting interlacing distorsions square

9.2 Results

9.2.1 Parameters setup

The testing of the algorithm was done with following parameters setup.

Pupil detection

1http://biosecure.it-sudparis.eu/AB/
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• Number of generations: 20

• Population size: 500

• O�spring fraction: 0.75

• O�spring selector: Tournament selector - size 3

• Survivors selector: Tournament selector - size 3

• Mutation - Gaussian mutation - probability 0.18

• Crossover operator : Mean crossover - probability 0.5

These parameters was selected after several test attempts. During the testing was found,
that in pupil detection process, lower size of tournament selector set leads to better results.
This is with high probability due to fact, that with this parameter setup is search space
examined more widely and doesn't stuck quickly in local maximum.
Also for accessing wide range of searched values, relative high crossover and mutation prob-
ability was set.

Iris detection

• Number of generations: 20

• Population size: 200

• O�spring fraction: 0.8

• O�spring selector: Tournament selector - size 10

• Survivors selector: Tournament selector - size 10

• Mutation - Gaussian mutation - probability 0.18

• Crossover operator : Mean crossover - probability 0.5

Parameters setup for Iris detection is based on previous testing of pupil boundary de-
tection. Therefore wide range of candidate circles are tested through evaluation process in
conjunction with small generations count, as evolution converges in relatively short amount
of generations.

9.2.2 Results

Overall results from test show that approximately 75% of tested images were properly
selected using evolution algorithm approach. This may di�er from parameters settings, as
for larger population are more candidate circles checked, but on the other hand, it consumes
lot of resources. For given parameters took evaluation of 1 image approx. 7 seconds and this
should be improved in future work. However its satisfying that in some cases, even when
there is small information, evolution algorithm can �nd better solution than implemented
convention method. On Figure 9.2 and Figure 9.3 is shown result from one single test
session. In table 9.1 are results compared to Wildes segmentation method[15]
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Proposed Method Wildes Method

Segmentation rate 75% 93.17%

Error rate 25% 6.83%

Table 9.1: Methods result comparison [15]

Figure 9.2: Result image - Green: convention solution, Red: evolutionary computed solution

Figure 9.3: Evolution results
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Chapter 10

Conclusion

10.1 Summary

The overall results from implemented solutions shows, that evolution algorithms can be
used, with considerable success, in �eld of human iris detection. However, what need to
be discussed is their use, due to their time complexity. It need to be said, according to
implemented solution , that this depends solely on input image i.e. some reference obtained
by convention methods, and therefor need to be reviewed, what are other options to obtain
input reference for evolution process. To summary this, evolution algorithms in conjunction
with convention methods are suitable for those problems solving, especially in cases, where
signi�cant part of information is missing, or is not clear.
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Appendix A

Obsah CD

• IrisDetectorFX / - contains source codes and runnable distribution archive. More info
in IrisDetectorFX/README �le

• results/ - Contains results from two test sessions

• projekt.pdf
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