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Abstract

In recent years deep learning has become one of the most popular machine
learning techniques for a vast variety of complex problems. An example for
such a task is to mirror the human auditory system to classify audio recordings
according to the location they were recorded in. This work focuses mainly on
the Acoustic Scene Classification task proposed by the IEEE DCASE Chal-
lenge. The dataset for Acoustic Scene Classification consists of recordings
from distinct recording locations. The aim of the challenge is to classify an
unseen test set of recordings. In the challenge of 2016 the training and test
set did not differ significantly. In the challenge of 2017, however, the test set
originated from a different distribution, implying a strong need for general-
ization. In the course of this work, the initial implementation consisting of
a Deep Convolutional Neural Network for the DCASE 2016 challenge sub-
mission (done in Lasagne) was re-implemented in Keras. An extension of the
ADAM optimizer (AMSGrad) was investigated for improvement in generaliza-
tion. Other submissions to the DCASE 2017 challenge suggest that different
types of spectrograms might be key for better generalization. Therefore exper-
iments utilizing different kinds of spectrograms were conducted. Furthermore,
different interpolation algorithms were used for data augmentation, with some
of them yielding significant improvements in classification accuracy and gen-
eralization. For different spectrogram dimensions, slight adjustments in the
network architecture also resulted in a performance gain. To better under-
stand what different models “see” and what they focus on, their filters, and
activations were visualized and compared for differences. Finally the adjust-
ments which led to better generalization on the dataset of the DCASE 2016
challenge were tested on the dataset of the DCASE 2017 challenge, leading to
an improvement over all submissions to the DCASE 2017 challenge from the
Institute of Computational Perception.
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2 Introduction

Humans are effortlessly able to immediately distinguish between different kinds of audio
recordings from the environment and classify them according to the location where they
have been recorded, such as beach or park. The structure of such recordings is rather
complex with the occurrence of different sound events or changes in the pitch. Such sound
events may be people talking, cars passing by, or the sound of glass breaking.

To realize a Machine Learning approach for Acoustic Scene Classification we are forced
to exploit our knowledge on how recordings of different locations are produced and struc-
tured for being able to design algorithms that can learn from audio and produce reasonable
results. A possibility of extracting information out of audio recordings is to create audio
spectrograms. These spectrograms can be utilized as input for various Machine Learning
algorithms.

Deep Learning is a branch of machine learning which has proven its effectiveness on
different sources of data in recent years and is yet to be fully explored. However it is
applicable to a wide range of complex problems. One such problem is proposed by the
IEEE Dcase Challenge. DCASE is shorthand for Detection and Classification of Acoustic

Scenes and Events.

The DCASE Community [I] is a community of researchers from various groups focused
on tackling challenging audio-related problems. They already organized three challenges,
which took place in 2013, 2016, and 2017, respectively. The last DCASE challange con-
sisted of four tasks, involving Acoustic Scene Classification, detection of rare sound events,
sound event detection in real life audio, and large-scale weakly supervised sound event
detection for smart cars.

The dataset for the Acoustic Scene Classification task consists of 15 predefined classes
({beach, bus, cafe/restaurant, car, city center, forest path, grocery store, home, library,
metro station, office, park, residential area, train, tram}), characterizing the location
in which the audio samples have been recorded. In the DCASE 2016 challenge, the 3-5
minute recordings were split into 30 second frames, whereas in the DCASE 2017 challenge
they were split into 10 second frames. At the beginning of every challenge, a development
dataset [2] 4] including a cross-validation setup was published on which the models should
be trained and evaluated. Finally an evaluation dataset [3, 5] was published on which
the final predictions had to be made and submitted. In 2016 the development and the
evaluation dataset were rather similar. In the 2017 challenge the datasets were differently
distributed, making the prediction process on the evaluation dataset much more difficult.

In 2016 and 2017 the Institute of Computational Perception of the Johannes Kepler
University participated in the Acoustic Scene Classification task. The submission for the
DCASE 2016 challenge [6] consisted in a late fusion approach combining binaural i-vectors
and deep convolutional neural networks, and got ranked at first place. The same method
was used to prepare a submission for the DCASE 2017 challenge [7], however failing to
achieve the success of the DCASE 2016 challenge. The reason for that was that the sub-
mitted models apparently overfitted on the training data and were not able to generalize
into the unseen test set, which had a different distribution than the training and validation
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set. Although this problem appeared in the majority of the deep learning based methods
participating in the challenge, a similar approach [8] managed to generalize much better
on the evaluation dataset using the exact architecture designed by CP-JKU.

The evaluation datasets of both years are publicly available, therefore in this thesis, we
will investigate the difference in generalization of the submitted models. Also differences
and improvements in generalization for different data preprocessing steps and recently
developed optimization algorithms will be studied in the conducted experiments. Finally
we will get an insight of which models are able to better generalize on the unseen test set.

3 Audio Signal Processing

The audio recordings have to be preprocessed in a way that machine learning algorithms
are actually able to learn from the data. We aim to extract abstract information out of
audio recordings by computing different types of spectrograms. Even a short recording
would yield a lot of data points which are not independent from each other. To get a
compact representation of the oscillations over time, sinusoids can be used as prototypical
oscillations. The time domain of an audio excerpt is multiplied by all sine and cosine func-
tions which have a complete number of oscillations over the recording. Summing up these
products over time yield spectral bins [9]. Computing spectrograms with differing number
of spectral bins leads to different sizes in the frequency domain of the final spectrogram.

3.1 Raw Spectrograms

Usually the spectrograms are generated by a discrete fourier transform (DFT) or a short
term fourier transform (STFT). The DFT applies the fourier transformation on a time
dependent signal consisting of complex values. The original input is transformed into a
frequency domain representation over time. Usually applying the DFT on audio recordings
results in three dimensional surfaces, where the three dimensions consist of time, frequency
and amplitude. We can use these three dimensional surfaces as 2D images of frequency
over time with the amplitude being depicted in different colors on a dB scale. The STFT
is a variant of the DF'T using a sliding window over the time domain to extract the final
spectrogram. For the creation of audio spectrograms mainly the python package madmom
[10] was used.

3.2 Constant Q Transform

The Constant-(Q Transform is related to the Fourier Transform. It uses an additional
parameter, the “quality factor”, which is calculated by frequency over bandwidth. In
general this transformation method is very well suited for music processing, because it
reduces the frequency resolution for higher frequency bins while increasing the resolution
for lower frequencies.
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Figure 1: 24 Bin Spectrogram Figure 2: 84 Bin CQT Spectrogram

Figure 1 shows a sample spectrogram using 24 frequency bins for creation. Figure 2
shows a CQT spectrogram which was created using 84 frequency bins. By taking a look at
the scaling of the dB colorbar we can observe the difference in frequency resolution between
the spectrograms. This shows that the frequency resolution of the CQT spectrogram is
higher for lower frequencies. The CQT spectrograms were extracted using the python
package Librosa [11].

4 Interpolation Algorithms

As mentioned above the submission of [8] managed to generalize much better on the unseen
test set of the DCASE 2017 challenge than the one from the Institute of Computational
Perception [7]. A possible reason for this outcome could be the resizing of the spectrograms
as they reported in the paper. According to [§], the CQT spectrograms were extracted
using 84 bins resulting in a frequency domain of size 84 while the CP-JKU submission did
only utilize raw spectrograms. For fitting the data into the input of the deep convolutional
neural network an upsampling step might have been performed. Usually interpolation
algorithms are used for images, but can also be applied to spectrograms. Hence, we
investigate various interpolation algorithms as explained in the following sections.

4.1 Nearest Neighbour Interpolation

For interpolating a discrete pixel in an image, the nearest neighbor interpolation selects
the value of the nearest neighbor and fills the area around the pixel with the exact same
value. In figure 3 the principle of the nearest neighbor algorithm is depicted.
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Figure 3: Nearest Neighbor Interpolation

4.2 Bilinear Interpolation

The bilinear interpolation is the two dimensional variant of linear interpolation. Linear
interpolation fits a line to existing data points to infer new data points. In the bilinear
interpolation this is done in 2D space, therefore a new data point is dependent on close
data points in x and y direction.
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Figure 4: Linear Interpolation Figure 5: Bilinear Interpolation

Figure 4 depicts a simple linear interpolation, where the red points are given and the blue
point is inferred by the linear interpolant. Figure 5 shows the same task in 2D space.
Both figures were taken from Wikipedia.

4.3 Cubic Interpolation

Rather than fitting a linear curve onto the pixels of an image, the cubic interpolation fits
a third degree polynomial across a set of data points. In figure 6 the fitting of a cubic
interpolant is depicted.
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Figure 6: Cubic Interpolation

4.4 Bicubic Interpolation

The bicubic interpolation is a variant of the cubic interpolation and was designed for two
dimensional data. In figure 7 the application of bicubic interpolation can be seen.

X1

Figure 7: Bicubic Interpolation

4.5 Lanczos

The most recently developed method for interpolation is the Lanczos interpolation [12].
It makes use of the so-called Lanczos kernel, which is a cardinal sine function. This kernel
is windowed over a second and longer cardinal sine function and the sum of the windows
is evaluated at the newly created points. Figure 8 depicts a discrete signal (black dots)
onto which the kernel is fitted. The red and green sine function show the cardinal sine
for the creation of novel data points.

Figure 8: Lanczos Interpolation, source: Wikipedia

10
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5 Machine Learning

As mentioned in [9], the process of machine learning can be split up into two general
parts:

o Formulize a complex problem such that its solution can be represented as a mathe-
matical function.

o adjusting parameters of this function by looking at the data.
Furthermore there are two key concepts for machine learning:

o Optimization

» Regularization

In recent years a variety of novel optimization algorithms and regularization techniques
have been developed. The development of multi-layer perceptrons [13] opened the path
to deep learning, which became more and more popular over the last few years. One type
of deep learning are Convolutional Neural Networks [14].

5.1 Convolutional Neural Networks

Although designed for image recognition and classification, Convolutional Neural Net-
works have also proven their effectiveness when it comes to Acoustic Scene Classification.
A convolutional neural network consists of convolutional layers. Figure 9 depicts such
a layer. These layers contain filters with a particular kernel size that are slid over the
input image to extract information. An activation function is applied to the extracted
information leading to the final output. Usually rectified linear units (ReL.Us) are used
as activation function for convolutional layers.

[ 32
S E—
1x1x1
5x5x3
32
3 32x32x1 32
3 10

Figure 9: A (1x1) filter is applied onto an RGB image of dimension (32x32x3). The kernel slides
over the image and extracts (1x1x1) pixels. After applying the activation function the original
dimension of (32x32) is regained. In this example 10 filters are applied to the image, leading to
a total output of 10 activations. Therefore the overall output is of dimension (32x32x10). Figure
was taken from: Convolutional Neural Network, May 29 2018, https://brilliant.org/wiki/
convolutional-neural-network/

11
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With an increasing filter size, the resulting activations decrease in size. Figure 10 shows
the effect of bigger kernel sizes.
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Figure 10: The effect of bigger kernel sizes

CNNs learn kernels that reflect specific aspects of the inputs such as edges. Usually
pooling layers [15] are added between convolutional layers to further extract features that
are relevant to the task at hand. This type of layer is a common practice for gaining
invariant features. It aims to aggregate multiple features over a specific neighborhood.
A maximum pooling layer for example extracts the highest value within a certain neigh-
borhood, while an average pooling layer extracts the mean of the pixels within this area.
For a more thorough comparison of the pooling techniques, see [16]. The following figure
depicts the effect of a max pooling layer.

12 { 20 | 30 | O

8 |12 | 2 | O 2 x 2 Max-Pool 20 | 30

34 | 70 | 37 | 4 112 | 37

112|100 | 25 | 12

Figure 11: Max Pooling Layer

The last step before being able to classify the inputs is to feed the output of the final
convolutional layer into dense layers and apply a softmax activation to get the probabili-
ties for each class with respect to a certain input image. To transform the convolutional
output in a way that it can be fed into the dense layers usually a Flatten layer or a
Global Average Pooling layer is added. A flatten layer transforms each filter into a vector
by simply concatenating all the rows of an activation. These vectors are then further
concatenated to the total feature vector which can then be fed into the input of a dense
layer. The Global Average Pooling layer computes the global average of each filter and
concatenates the averages into a feature vector, such that the length of the resulting fea-
ture vector is equal to the number of the filters of the last convolutional layer. Therefore
usually the number of filters of the last convolutional layer is designed to be equal to the

12
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number of classes.

The main difference between those two layers is that the output of a flatten layer has to
be fed into a fully connected layer, before applying a softmax activation for classification,
whereas the softmax activation can be directly applied to the output of the global average
pooling layer as the resulting feature vector is already of desired dimension. This point can
be crucial in terms of generalization, as the additional dense layer adds a certain number
of parameters and therefore increases the model complexity and the degree of overfitting.

Therefore we avoid using any dense layers and replace them with global average pooling
followed by a softmax.

Fully Connected Layer Global Average Pooling
flatten output averaging output
fully
M I connected ,,...-"“*
R

Figure 12: Difference Flatten Layer and Global Average Pooling Layer

Figure 13 depicts an example architecture of a DCNN. The most popular architectures
of DCNNs are VGG-Style neural networks [17], AlexNet [18], GoogleNet [19], and ResNet

[20].
I:I

D BICYCLE
FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATIEN U Fcrep SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 13: Architecture of a DCNN, taken from: [21]

5.2 Optimization and AMSGrad

After designing the network architecture, it is crucial to select an efficient training method
and an appropriate optimizer. The most used optimizers for neural networks are SGD
(Stochastic Gradient Descent [22]) and ADAM [23], which is an adaptive version of SGD.

13
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The purpose of optimizers is to update the weights of the model by the gradients calcu-
lated based on the loss, and converge to a minimum in the loss function.

For large-scale machine learning approaches usually ADAM is the widely used opti-
mizer as it requires less tuning and can be used out-of-the-box. However it appears that
for some nonconvex optimization problems ADAM fails to converge to a minimum. To
solve this problem a new variant of ADAM called AMSGRAD [23] has been developed.
The paper [24] proves that the AMSGRAD optimizer manages to converge to a minimum
for problems where ADAM does not converge. We compare both optimization methods
applied on the data of the DCASE challenge.

5.3 Regularization

Overfitting on the training data leads to bad generalization. To avoid learning the training
data by heart, additional regularization techniques can be included into the network,
helping it to generalize better.

5.3.1 Dropout

The dropout technique shuts down specific nodes of a network according to a predefined
rate. The dropped neurons can vary with each training epoch or in different layers. This
introduces randomness in the layers and forces the network to not only rely on specific
neighboring nodes for prediction. Figure 14 depicts a fully connected network to which
dropout is applied.
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Figure 14: Dropout applied to dense layers, taken from [25]

tandard Neural Net (b) After applying dropout.

5.3.2 Batch Normalisation

Another method for helping the network to generalize is Batch Normalisation [26]. For
training the data is divided into mini-batches. In the batch normalisation the mean and
standard deviation of the mini batch is calculated and used for normalizing the output
of a previous layer. As a consequence of that the weights of the next layer would not
be optimal anymore and be adjusted by the optimizer. To prevent the change of all the
weights due to that shift, two additional trainable parameters v and beta are added to
each batch normalization layer (depicted in Figure 15). This maintains the stability of
the network and even improves generalization. A batch normalization is usually inserted

14
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Input: Values of » overa mini-batch: B = {x, . }
Parameters to be leamed: +, 3
Output: {yi = BN'\ﬂ{x:}}

1 i
1B = ; T /f mini-batch mean
2 e _— 2 - ._ -
op = ;[x, ng) / mini-batch variance
T = S8 /! normalize
\m'BE +€
y; +— 4 + 8 = BN, 5(x;) /f scale and shift

Figure 15: Batch Normalization algorithm, taken from [27]

either before or after the activation function of a layer.

5.4 Late Fusion

Late fusion is an approach to combine the predictions of several trained networks into one
final prediction. The predictions of all the trained classifiers are concatenated to a score
matrix and fed into the input of a simple network consisting of a single fully connected
layer, thus a logistic regression. After cross-validation training of the models the logistic
regression is trained on the validation set with the predictions of the trained models as
input. This usually leads to an improvement in the classification accuracy. Figure 16
shows the idea of the late fusion of three classifiers.

Feature Classification Step Confidence Scores
extraction Normalization

Figure 16: Late Fusion, taken from [28]

The normalization step shown in the figure above is not necessary as in our case, the
output of the classifiers are vectors containing class probabilities, thus they are already
normalized.

5.5 Keras and Lasagne

Keras [29] is a high-level API created for deep learning, written in python and can be
run on top of Theano [30], Tensorflow [31], or CNTK [32]. In this work, Tensorflow with

15
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GPU support was used. The initial implementation for the DCASE 2016 challenge [6] was
done using the Lasagne framework [33]. Therefore the Lasagne code had to be rewritten
in Keras, which showed some differences between the two APIs.

Lasagne is rather low-level, thus showing more similarities to Tensorflow than to Keras.
Keras provides the Sequential API with which it is simple to create a deep learning model
and to modify the training method. However to be able to access the model during
training, specific callbacks have to be implemented. Also some default parameters in
Keras differ from those in Lasagne. Those specifically being different are:

o Initialization:
The Lasagne implementation for the DCASE 2016 challenge uses the HeNormal
[34] initializer. This initializer is particularly suited for the ReLu activation. The
weights are assigned a sample value of a truncated normal distribution. However
the parameters of the distribution differ in both frameworks. Equation 1 shows
the parameters of the initializer in Keras and equation 2 shows the parameters in
Lasagne.

Keras implementation: Lasagne implementation:

2 1
pw=0,0= (1) w=0,0 = gain (2)
fan,, fan;,

where fan;, is the amount of input units in the weight vector and gain is a scaling
factor. Usually for ReLu this factor is set to v/2. Indeed the initialization of the
convolutional layers led to changes in the performance of the model.

« Batch Normalization:

The batch normalization can be easily added between layers, but it needs to be con-
sidered that the default parameters in Keras differ from those in Lasagne. Lasagne
uses a parameter alpha which is initialized with 0.1, whereas Keras uses a parameter
momentum which is set to 0.99. Although being named differently, those two param-
eters describe the fraction of the batch being used for calculation of the exponential
moving average. In the backend of Keras the momentum parameter is assigned to
(1 - momentum), therefore it is set to 0.99. To adjust the Keras implementation
to the implementation of Lasagne the momentum parameter needs to be set to 0.9.
Also the default values of the epsilon parameter differ in both frameworks.

o Padding:

Padding is used to retain the size of the input of a convolutional layer by filling up
the missing space with zeros. In both frameworks there are different modes which
can be assigned to the padding parameter. In Keras, the parameter has to be one of
valid or same, where valid means no padding at all, and same means preserving the
input size of the layer by zero padding. In Lasagne padding can be one of full, same,
valid, or an integer, where full means zero padding with one less than the filter size,
same means padding with half of the filter size, valid means no padding at all, and
if a single integer is supplied then a symmetric zero-padding corresponding to the
integer size is performed.

Besides those three points, most of the other parameters can simply be taken from
the Lasagne implementation and plugged in to the Keras implementation. However after

16
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adjusting all the parameters there might still be differences in the training procedure
performed by Keras.

5.6 Final Architecture

The network architecture used in this work (Figure 17) follows a VGG-style architecture
proposed for object recognition. A modified version of VGG, adapted for audio applica-
tions was developed by the Institute of Computational Perception of the Johannes Kepler
University in Linz and used for their submission for the DCASE 2016 and 2017 challenges
[6, [7]. This architecture is further used in the submission which generalized much better
on the unseen test set [§] in the DCASE 2017 challenge. This group reported improved
results when exchanging the global average pooling layer to a flatten layer, although the
increasing number of parameters due to the additional fully connected layer contradicts
the assumption to reach better generalization. Moreover they used a late fusion approach
of two models, one being trained on raw spectrograms and the other on CQT spectro-
grams, and obtained an increase of approx. 10 percentage points in classification accuracy
on the unseen test set. In the following chapter the reason for this drastic improvement
is investigated.

Input 1 x 149 = 149
5 x 5 Conv(pad-2, stride-2)-32-BN-ReLu
3 x 3 Conv(pad-1, stride-1)-32-BN-ReLu
2 x 2 Max-Pooling 4+ Drop-Out(().3)

3 » 3 Conv({pad-1. stride-1}-64-BN-ReLu
3 x 3 Conv(pad-1. stride-1)-64-BN-ReLu
2 x 2 Max-Pooling 4 Drop-Out(().3)

3 x 3 Conv(pad-1, stride-1)-128-BN-ReLu
3 » 3 Conv(pad-1, stride-1)-128-BN-ReLu
3 x 3 Conv(pad-1, stride-1)-128-BN-ReLu
3 » 3 Conv(pad-1, stride-1)-128-BN-ReLu
2 x 2 Max-Pooling 4 Drop-Out(().3)

3 x 3 Conv(pad-0, stride-1)-512-BN-ReLu
Drop-Out(0.5)

1 = 1 Conv(pad-0, stride-1)-512-BN-ReLu
Drop-Out(0).5)

1 »x 1 Conv(pad-0, stride-1}-15-BN-ReLu
Global-Average-Pooling
15-way Soft-Max

Figure 17: Network Architecture used in this work - (5x5) describes the kernel size, (pad,
stride) describes padding and striding used, 32 is the number of filters of this layer, BN stands
for Batch Normalization, which is applied after the activation of the layer, and ReL.u describes
the Rectified Linear Unit is used as activation

All of the convolutional layers of the final architecture are initialized by the HeNormal
initializer [34]. The striding describes by how much the kernels overlap when sliding over
the image. Also the input size of the model is set to 149x149. Usually the extracted
spectrograms are much larger, therefore a sliding window approach is applied to the
spectrogram, which divides the whole spectrograms into 149x149 patches. Afterwards
these patches are used as training data. ADAM was used as optimizer with a learning
rate set to 0.001. Also patience of 20 is applied, which means that if after 20 epochs the
categorical cross-entropy loss did not decrease, the learning rate is halved. The cross-
validation setup supplied by the DCASE challenge was used for training.
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6 Results

The models were trained with the above mentioned training procedure. The cross-
validation setup of the DCASE Challenge splits the development dataset into training
and validation setup for each fold. For each epoch a model is trained on the training
set and evaluated on the validation set. The measurement of the classification accuracy
on the validation set is referred to as Frame Validation Accuracy. As we are interested
to classify whole audio recordings we need to average the predictions of a model over all
frames belonging to one recording. The final prediction is the highest averaged proba-
bility over all frames. The classification accuracy of entire recordings is referred to as
File Validation Accuracy. Finally as the test set for the challenges is available we can
also measure the classification accuracy for each test recording, which is referred to as
File Test Accuracy. Figure 18 depicts the procedure of data preprocessing to training,
hyperparameter tuning and collecting the results. After splitting the spectrograms into
frames we split these frames up into training and validation set. In each epoch the model
is trained on the training set and valiadated on the validation set. After training we can
look at the file wise validation accuracies (in our case we can also look at the file-wise
test accuracies) of the best model and tune the hyperparameters or adjust the network
architecture and train a new model in order to be able to compare the trained models.

Development Dataset l

Hyper-
parameler€
e tuning
oot i g Spm Dataset

- Bmld ini
Sliding split Spectrogram Training
Wwindow into frames M0d6|5 results

Training

Frame Validation Accuracy ]

i Validati Average over Frames
‘ I alidation File Validation
M M M M M -- Models resuilts r Accuracy
Validation ——— e - - ——
Evaluation Dataset @

Average over Frames

——— File Test

Frame Wise Results

\
|
|
|
|
|

ol i g

. results Accuracy
Sliding Split Spectrogram Test set
Window into frames

Figure 18: The spectrograms are split into frames, the frames are split into training and
validation set, a new model is trained, results are collected

After training models on all 4 folds we need to fuse their predictions together to get an
overall prediction of the model. In this work two different methods were compared, Frame
Wise Averaging and File Wise Averaging. In the Frame Wise Averaging the average of the
predictions of all 4 models is taken for each frame. Then a majority voting is conducted
over all averaged frames to get the overall prediction of the model. On the other side for
File Wise Averaging the average over all frames for each model is taken and after that a
majority voting is conducted. This means that for File Wise Averaging the majority voting
is conducted for 4 predictions, mainly the file wise prediction of each model. For Frame
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Wise Awveraging the majority voting is conducted for a vector containing the averaged
predictions of 4 models for each frame, with the length of the vector being equal to the
number of frames.

6.1 DCASE 2016

The first step was to recreate the results from [6] by using the Keras implementation.

6.1.1 Spectrograms
6.1.1.1 24 Bin Spectrograms

Using raw spectrograms as features, led to the following results:

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7436 0.8034 0.7692
2 0.6944 0.73 0.80
3 0.7309 0.80 0.80
4 0.7419 0.83 0.78

Frame Wise Averaged Test accuracy: 0.8538
File Wise Averaged Test accuracy: 0.8435

Table 1: Classification Accuracies using raw spectrograms as features

Two methods for averaging over the models of the 4 folds were compared for higher
classification accuracy. The first method averages the predictions of the four models of
each frame and conducts majority voting to get the final prediction. The second method
firstly averages the frame wise predictions for each file and then conducts majority voting
to get the final prediction. As we can see the final classification accuracies differ depending
on which method we choose. To get an impression of the learning process, the learning
curves have been plotted:

model accuracy model loss
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Figure 19: Accuracy Learning Curve Fold 1 Figure 20: Loss Curve Fold 1
As the labels of the unseen test set of the challenge were made available we can even

include the learning process with respect to the test set. As we can see in figure 19, the
training accuracy converges to 100% as expected. The validation accuracy converges to
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approximately 75%. Also the accuracy on the test set is slightly higher which implies
that there is no overfitting of the training data. The file wise validation accuracy of fold
1 is slightly lower than the one stated in [6]. The model loss for fold 1 (Figure 20) also
converges to its minimum. The learning curves for folds 2 to 4 can be seen in figure 21-26.

Although the file wise validation accuracies all differ from those stated in [6], the
averaged accuracy over the four folds is higher than the one reached by the submitted
model (83.3%). This might be due to differences in the training process in Keras, or
another source of randomisation which might have been introduced by the GPU.

model accuracy model loss
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Figure 21: Accuracy Learning Curve Fold 2 Figure 22: Loss Curve Fold 2
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Figure 23: Accuracy Learning Curve Fold 3 Figure 24: Loss Curve Fold 3
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Figure 25: Accuracy Learning Curve Fold 4 Figure 26: Loss Curve Fold 4

The learning curves for the other folds show that the models are generalizing very well.
The accuracy on the test set is always higher than the validation accuracy. Generally the
learning and loss curves for the other experiments are rather similar, therefore they are
not depicted for further experiments.

6.1.1.2 24 Bin Spectrogram with AMSGRAD

As mentioned in section 4.2 a variant of the ADAM optimizer has been developed recently.
In some experiments the use of this variant led to lower cross-entropy loss. To verify
if that is the case on the DCASE data an experiment has been conducted utilizing the
AMSGRAD optimizer. In Keras this can be easily implemented by setting the AMSGRAD
option in the ADAM optimizer to true. The following results have been collected:

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7445 0.82 0.76
2 0.6799 0.71 0.80
3 0.7413 0.78 0.81
4 0.7413 0.80 0.81

Frame Wise Averaged Test accuracy: 0.8461
File Wise Averaged Test accuracy: 0.8487

Table 2: Classification Accuracies using raw spectrograms as features and AMSGRAD

The file-wise test accuracies are slightly higher than in table 1. This implies that the
model might be able to generalize better using the AMSGRAD optimizer. However the
final classification accuracies are slightly lower than those when simply using ADAM as
optimizer. Therefore the AMSGRAD variant of ADAM might be better for cases where
ADAM does not converge, though it did not lead to a better generalization.

6.1.1.3 24 Bin Spectrogram with Random Normal Initialization

As the HeNormal initialization in Keras differs from the one in Lasagne, another experi-
ment has been conducted using an initialization from a normal distribution with p = 0.0
and o = 0.02. Table 3 shows the results for this experiment.
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7367 0.82 0.77
2 0.6759 0.71 0.80
3 0.7511 0.79 0.80
4 0.7472 0.81 0.76

Frame Wise Averaged Test accuracy: 0.8384
File Wise Averaged Test accuracy: 0.8487

Table 3: Classification Accuracies using raw spectrograms as features and Random Normal
Initialization

The accuracies slightly differ from the previous experiments, but there is no improve-
ment in generalization. It is however noticeable that the file wise averaging of the models
in this case leads to a higher classification accuracy. This was not the case in the previous
experiments and shows that this method might also be a good choice in some cases. Also
the HeNormal initialization seems to work better than the Random Normal initialization.

6.1.2 Constant Q Transform Spectrograms

In [§8], different CQT spectrograms have been used and the submission performed better
on the unseen test set than [7]. To find out on which spectrogram type the network
performs better and if the CQT spectrograms lead to an improvement in generalization,
experiments with 80 bin, 84 bin, and 149 bin CQTs have been conducted. For training
models on 80, and 84 bins the input of the model was adjusted to (80x149), and (84x149),
respectively. Also the CQT spectrograms are much larger than the raw spectrograms,
meaning that there is more data to train on.

6.1.2.1 80 Bin CQT Spectrogram

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6426 0.76 0.65
2 0.5258 0.57 0.67
3 0.6287 0.67 0.66
4 0.5855 0.67 0.72

Frame Wise Averaged Test accuracy: 0.7512
File Wise Averaged Test accuracy: 0.7358

Table 4: Classification Accuracies using CQT spectrograms and HeNormal Initialization

The frame - and file wise validation accuracy is much lower than the one compared to
raw spectrograms. Also the performance on the unseen test set was rather bad. The file
wise validation accuracy on fold 1 is much higher than the file wise test accuracy, implying
overfitting on the training data. However the models of the remaining folds managed to
generalize very well. The convergence to a minimum loss for CQT spectrograms takes
place in the early epochs. This is due to the big amount of training data, therefore the
number of epochs was reduced to 100 for experiments utilizing CQT spectrograms.
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6.1.2.2 84 Bin CQT Spectrogram

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6332 0.74 0.70
2 0.5682 0.62 0.66
3 0.6519 0.75 0.73
4 0.5446 0.61 0.69

Frame Wise Averaged Test accuracy: 0.7743
File Wise Averaged Test accuracy: 0.7769

Table 5: Classification Accuracies using CQT spectrograms and Random Normal Initialization

Using the 84 bin CQTs shows an improvement in the performance by almost 3 per-
centage points.

6.1.2.3 149 Bin CQT Spectrogram

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6628 0.77 0.72
2 0.6562 0.76 0.74
3 0.7068 0.78 0.75
4 0.5801 0.65 0.74

Frame Wise Averaged Test accuracy: 0.7743
File Wise Averaged Test accuracy: 0.7897

Table 6: Classification Accuracies using CQT spectrograms and Random Normal Initialization

Again an improvement in the performance can be observed in table 6. Extracting
spectrograms with more frequency bins leads to more information in the spectrogram.
This might be an explanation for the improved classification accuracy.

Overall the raw spectrograms clearly outperformed the CQT spectrograms and there
was no improvement in generalization observed. However as this work [8] was submitted
to the challenge of 2017, this might be different for the dataset of the DCASE 2017
challenge.

6.1.3 Interpolation Algorithms

The next thing we are interested in, is how the interpolation algorithms (explained in
section 3) influence the performance of the models. [8] stated that they resized the
spectrograms to fit the input of the network, all of the interpolation algorithms mentioned
in section 3 were applied to the CQT spectrograms to reshape them from (80x149), or
(84x149) to (149x149).
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6.1.3.1 Nearest Neighbor Interpolation
6.1.3.1.1 CQT 80 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6550 0.73 0.77
2 0.5707 0.62 0.67
3 0.6358 0.72 0.68
4 0.6253 0.70 0.74
Frame Wise Averaged Test accuracy: 0.81025
File Wise Averaged Test accuracy: 0.8051

Table 7: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Comparing table 7 to table 4 (80 bin CQTs) we can already observe a difference in
performance. Although the interpolation does not directly introduce new information
into the spectrogram as it just repeats the nearest neighbors, it seems to perform better
by even 6 percentage points.

6.1.3.1.2 CQT 84 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6557 0.75 0.74
2 0.5960 0.65 0.75
3 0.6648 0.74 0.73
4 0.5956 0.70 0.70
Frame Wise Averaged Test accuracy: 0.7974
File Wise Averaged Test accuracy: 0.80

Table 8: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Also the performance of the 84 bin CQT improved (comparing table 8 and table 5)
by approximately 3 percentage points.

6.1.3.2 Bilinear Interpolation
6.1.3.2.1 CQT 80 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6625 0.77 0.72
2 0.5884 0.66 0.67
3 0.6195 0.69 0.70
4 0.6036 0.68 0.78
Frame Wise Averaged Test accuracy: 0.8051
File Wise Averaged Test accuracy: 0.782

Table 9: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

The bilinear interpolation also improves the performance (compared to table 4) by
around 5 percentage points.
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6.1.3.2.2 CQT 84 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6646 0.77 0.74
2 0.6425 0.73 0.74
3 0.6634 0.73 0.72
4 0.6335 0.72 0.74
Frame Wise Averaged Test accuracy: 0.8282
File Wise Averaged Test accuracy: 0.8358

Table 10: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Compared to table 5 the bilinear interpolation improved the performance of the 84
bin CQT by almost 7 percentage points.

6.1.3.3 Cubic Interpolation
6.1.3.3.1 CQT 80 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6470 0.75 0.74
2 0.5948 0.68 0.66
3 0.6996 0.79 0.75
4 0.5969 0.68 0.73
Frame Wise Averaged Test accuracy: 0.7974
File Wise Averaged Test accuracy: 0.782

Table 11: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

6.1.3.3.2 CQT 84 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6743 0.76 0.76
2 0.6004 0.66 0.72
3 0.7066 0.80 0.76
4 0.6262 0.72 0.73
Frame Wise Averaged Test accuracy: 0.81025
File Wise Averaged Test accuracy: 0.81025

Table 12: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Also the cubic interpolation led to an improvement in generalization in both types of
spectrograms.
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6.1.3.4

Bicubic Interpolation

6.1.3.4.1 CQT 80 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6512 0.74 0.74
2 0.5877 0.66 0.70
3 0.6940 0.79 0.76
4 0.6079 0.70 0.75
Frame Wise Averaged Test accuracy: 0.8128
File Wise Averaged Test accuracy: 0.81025

Table 13: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

6.1.3.4.2 CQT 84 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6447 0.78 0.64
2 0.6278 0.69 0.71
3 0.6794 0.76 0.76
4 0.6673 0.76 0.76
Frame Wise Averaged Test accuracy: 0.82051
File Wise Averaged Test accuracy: 0.81025

Table 14: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Bicubic interpolation made the models perform better than the cubic interpolation.
This might be due to the fact that the cubic interpolation is originally designed for 1D
sequences and not for 2D images.

6.1.3.5 Lanczos Interpolation

6.1.3.5.1 CQT 80 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6232 0.69 0.73
2 0.6449 0.73 0.74
3 0.7002 0.76 0.76
4 0.5971 0.68 0.69
Frame Wise Averaged Test accuracy: 0.7846
File Wise Averaged Test accuracy: 0.7897

Table 15: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization
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6.1.3.5.2 CQT 84 bins

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6298 0.72 0.65
2 0.5825 0.65 0.73
3 0.6681 0.74 0.72
4 0.6586 0.77 0.78

Frame Wise Averaged Test accuracy: 0.8153
File Wise Averaged Test accuracy: 0.7923

Table 16: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Remarkably all of the interpolated CQT spectrograms led to an improvement in per-
formance and a better generalization. Also almost all of them performed better than the
149 bin CQT spectrogram (table 6), which proves that the size is not the decisive factor,
but rather the application of the interpolation algorithm to the spectrogram. A possible
reason for that might be a priori estimation via the interpolation.

6.1.3.6 Interpolated Spectrograms

The bilinear interpolation showed the best improvement, therefore this interpolation al-
gorithm was also applied to the raw spectrograms, interpolating the frequency dimension
from (149x149) to (175x149), and from (149x149) to (300x149). Again to prove that the
size of the spectrogram is not the decisive factor for the improvement, raw spectrograms
with dimension (298x149) using 60 frequency bins have been extracted and used as fea-
tures. As we apply the sliding window over the time domain the input dimension of the
model for the frequency has to be adjusted to the interpolated frequency dimension.

6.1.3.6.1 Spectrograms Stretched to 175

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7483 0.81 0.78
2 0.6853 0.72 0.80
3 0.7578 0.82 0.83
4 0.7774 0.85 0.82

Frame Wise Averaged Test accuracy: 0.8589
File Wise Averaged Test accuracy: 0.8589

Table 17: Classification Accuracies using upsampled spectrograms and Random Normal Ini-
tialization

Again the results show an improvement in generalization compared to table 1.
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6.1.3.6.2 Spectrograms Stretched to 300

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7567 0.80 0.80
2 0.7291 0.78 0.79
3 0.7666 0.82 0.82
4 0.7689 0.83 0.80

Frame Wise Averaged Test accuracy: 0.8461
File Wise Averaged Test accuracy: 0.8384

Table 18: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

Although the stretched spectrogram to 175 frequency dimension showed a slight im-
provement, the models trained on spectrograms stretched to 300 frequency dimension
actually performed even worse than the original extracted spectrograms.

6.1.3.6.3 Spectrograms using 60 Frequency Bins

Table 19 shows the results for the spectrograms which were extracted using a higher
number of frequency bins. Extracting spectrograms using 60 frequency bins results in a
frequency dimension of 298, which is comparable to the 300 frequency dimension of in-
terpolated spectrograms. Remarkably the spectrograms stretched to the same dimension
managed to generalize better. Therefore it might be that the interpolation works as noise
removal or prior estimation.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.771 0.85 0.78
2 0.713 0.76 0.82
3 0.747 0.79 0.77
4 0.795 0.85 0.81

Frame Wise Averaged Test accuracy: 0.8359
File Wise Averaged Test accuracy: 0.8333

Table 19: Classification Accuracies using upsampled CQT spectrograms and Random Normal
Initialization

6.1.4 Network Architecture Adjustments

The model architecture depicted in figure 17 was originally designed for an input of
(149x149). However using standard CQT spectrograms we needed to change the input
dimensions. Therefore it might be the case that the kernel sizes and the striding do not
fit the data anymore. Thus additional experiments in terms of architecture changes have
been performed.

Fitting the input dimension of the model to the dimensions of the 84 bin CQT spec-
trograms requires a change from (149x149) to (84x149). Thus an input kernel of size
(5x5) does not fit the dimension of the spectrogram anymore. However changing the
input kernel to (4x4) or (3x3) would fit the frequency dimension of the CQT and might
improve the overall performance of the model. Table 20 shows the results for an adjusted
input kernel to (4x4) and table 21 for a (3x3) input kernel.
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6160 0.73 0.68
2 0.5692 0.61 0.68
3 0.6687 0.76 0.71
4 0.5866 0.68 0.72
Frame Wise Averaged Test accuracy: 0.7846
File Wise Averaged Test accuracy: 0.7641

Table 20: Classification Accuracies using CQT 84 bin spectrograms, Random Normal Initial-
ization, and an adjusted input kernel

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6393 0.73 0.69
2 0.5332 0.58 0.68
3 0.6616 0.77 0.71
4 0.5999 0.67 0.70
Frame Wise Averaged Test accuracy: 0.7667
File Wise Averaged Test accuracy: 0.7564

Table 21: Classification Accuracies using CQT 84 bin spectrograms and Random Normal
Initialization

Comparing the two tables above with table 5 we can see that reducing the input kernel
from (5x5) to (4x4) results in an improvement, although if the input kernel gets smaller
(3x3) the model performs worse than with a (5x5) input kernel. Also as the architecture
uses padding to the original size the deeper kernels still fit the activations of the previous
layers. Further, actually just the frequency dimension of the input dimension is changed
and the time dimension stayed the same, therefore it makes sense to only adjust the
frequency dimension of the input dimension of the model. Table 22 shows the results for
a model with an input kernel of (3x5) and all other deeper kernels of size (2x3). We can
observe that there is a slight improvement compared to when only adjusting the input
kernel.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.63 0.75 0.70
2 0.5915 0.64 0.71
3 0.6967 0.77 0.74
4 0.6370 0.76 0.76
Frame Wise Averaged Test accuracy: 0.7794
File Wise Averaged Test accuracy: 0.7871

Table 22: Classification Accuracies using CQT 84 bin spectrograms, Random Normal Initial-
ization, and adjusted kernels

6.1.5 Additional Experiments

As the mentioned in section 5.1.1.3 the HeNormal initialization might lead to improve-
ments in performance. Therefore the fundamental and best performing models have been
selected and tested for improvement with the changed initialization.
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The performances of the 149 bin CQT, bilinearly stretched 84 bin CQT, and 84 bin
CQT with adjusted network structure using HeNormal initialization is shown in table 23,
24, and 25, respectively.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6878 0.81 0.79
2 0.6679 0.70 0.71
3 0.7132 0.78 0.74
4 0.6297 0.72 0.80
Frame Wise Averaged Test accuracy: 0.8076
File Wise Averaged Test accuracy: 0.81025

Table 23: Classification Accuracies using 149 bin CQT spectrograms and HeNormal Initializa-

tion
Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6972 0.80 0.77
2 0.6485 0.70 0.76
3 0.7035 0.75 0.76
4 0.6516 0.77 0.77
Frame Wise Averaged Test accuracy: 0.8153
File Wise Averaged Test accuracy: 0.8230

Table 24: Classification Accuracies using bilinearly stretched CQT spectrograms and HeNormal

Initialization
Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6845 0.77 0.74
2 0.5885 0.64 0.69
3 0.677 0.77 0.77
4 0.6384 0.71 0.71

Frame Wise Averaged Test accuracy: 0.7871
File Wise Averaged Test accuracy: 0.7974

Table 25: Classification Accuracies using 84 bin CQT spectrograms, HeNormal Initialization,
and adjusted architecture

Comparing the three tables to the previous experiments using random normal initial-
ization we can see that in case of the standard extracted spectrograms the performance
did improve. However the classification accuracy decreased for the bilinearly stretched
spectrogram. The reason for this might be that the random normal initializer better
approximates the real distribution of the interpolated spectrograms. To further inves-
tigate this assumption the HeNormal initializer was tested on the bilinearly stretched

spectrograms to 175 in frequency dimension (Table 26).

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7297 0.79 0.77
2 0.6855 0.68 0.78
3 0.7461 0.76 0.81
4 0.7618 0.82 0.80
Frame Wise Averaged Test accuracy: 0.8589
File Wise Averaged Test accuracy: 0.8461
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Table 26: Classification Accuracies using bilinearly stretched spectrograms and HeNormal
Initialization

The above table shows that for raw bilinearly stretched spectrograms no improvement
is seen, but rather equals the accuracy when using random normal initializtaion. However
because of the fact that network architecture changes improved generalization in previous
experiments, more additional experiments with different network architectures on CQT
spectrograms as well as on raw spectrograms have been carried out.

It is noticeable that if the raw spectrograms are stretched to 175 frequency dimension
an improvement is observed, but this does not hold for spectrograms stretched to 300
frequency dimension. This implies that the network architecture again may not fit the
input, therefore a change was made in the kernel sizes and the model was tested.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7646 0.82 0.80
2 0.7103 0.74 0.79
3 0.7273 0.76 0.81
4 0.783 0.86 0.80

Frame Wise Averaged Test accuracy: 0.8487
File Wise Averaged Test accuracy: 0.8410

Table 27: Classification Accuracies using bilinearly stretched spectrograms, HeNormal Initial-
ization, and adjusted kernel

Table 27 shows the results for increasing the size of the input kernel to (6x5) and
increasing all deeper kernels to (4x3). A slight improvement of classification accuracy
can be observed. Changing the kernel sizes however does not change the activation sizes
as the padding mode same is used and thus the input size is preserved by zero-padding.
Therefore by changing the striding we would not need to explicitly change the deeper
kernels as the activations sizes would be back to the sizes they were designed for. The
following table shows the performance of a model trained on the spectrograms bilinearly
stretched to 300 in frequency domain with adjusted striding of (4x2), meaning the striding
is doubled in the frequency axis.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7636 0.81 0.77
2 0.6674 0.69 0.80
3 0.745 0.81 0.74
4 0.7677 0.80 0.82

Frame Wise Averaged Test accuracy: 0.8410
File Wise Averaged Test accuracy: 0.8359

Table 28: Classification Accuracies using bilinearly stretched spectrograms, HeNormal Initial-
ization, and adjusted striding

Compared to table 26 the performance did not improve. As the input kernel of the
network still has to slide over a bigger size than it was designed for, keeping striding and
additionally adjusting the input kernel to fit the input shape of the spectrogram might
lead to improvements.
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7432 0.79 0.75
2 0.7319 0.77 0.79
3 0.7318 0.78 0.80
4 0.7562 0.82 0.81
Frame Wise Averaged Test accuracy: 0.8256
File Wise Averaged Test accuracy: 0.8307

Table 29: Classification Accuracies using bilinearly stretched spectrograms, HeNormal Initial-
ization, adjusted striding, and adjusted input kernel of (8x5)

Looking at the table above we can see that the classification accuracy dropped even
below those of table 28, where only striding was used. Therefore using a bigger striding
does not positively affect the results for spectrograms of size (300x149). However this
might not be the case for lowering the striding. The following table shows the performance
of a model trained on 84 bin CQT spectrograms using adjusted striding and adjusted
kernels.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.6953 0.74 0.76
2 0.6126 0.69 0.74
3 0.7194 0.78 0.77
4 0.6651 0.74 0.78
Frame Wise Averaged Test accuracy: 0.8282
File Wise Averaged Test accuracy: 0.8333

Table 30: Classification Accuracies using 84 bin CQT spectrograms, HeNormal Initialization,
and adjusted kernels, and striding

On the CQT spectrograms the adjusted striding improved the performance of the best
84 bin CWQT model so far (table 25). As the spectrograms bilenearly stretched to 175
dimension in frequency is the overall best performing model it might be possible to further
improve this model by also applying architecture changes. The following two tables show
experiments using once adjusted kernels with the HeNormal initializer (table 30) and once

adjusted kernels with the random normal initializer (table 31).

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7661 0.82 0.78
2 0.7043 0.74 0.80
3 0.7309 0.76 0.80
4 0.7683 0.82 0.78
Frame Wise Averaged Test accuracy: 0.8307
File Wise Averaged Test accuracy: 0.8282

Table 31: Classification Accuracies using bilinearly stretched spectrograms, HeNormal Initial-
ization, and adjusted kernels
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7461 0.79 0.78
2 0.6962 0.74 0.81
3 0.719 0.77 0.82
4 0.7677 0.81 0.81

Frame Wise Averaged Test accuracy: 0.8410
File Wise Averaged Test accuracy: 0.8487

Table 32: Classification Accuracies using bilinearly stretched spectrograms, HeNormal Initial-
ization, and adjusted kernels

Looking at the above tables we can see that the random normal initializer works better
for stretched spectrograms and also adjusting the kernel sizes does not positively influence
the results.

6.1.6 Overview

After conducting all of the above experiments we can summarize the results and pick the
best performing model. This can be done by looking at the mean and variance of the
predictions on the unseen test set of the models. The best model is the one with the least
variance and the highest mean. Figure 27 shows the means and variances over the 4 folds of
the accuracies of the test set of the models trained on the CQT spectrgorams. Remarkably,
the bilinearly stretched spectrograms show the least variance and high means. The worst
performing model is the one trained on 80 bin CQT spectrograms.

Mean & Stddev of all models

80 4

Mean of Test Accuracy
N w F) w (=) -~
o o [=] o o Q
| | L |

=
o
L

o
I

M

£
=]
o
=]
=
o
[¥)

CQT 84 bins RandomNormal
CQT 149 bins RandomNormal
CQT Bilinear RandomNormal
CQT 84 bins HeNormal

CQT 149 bins HeNormal

CQT Bilinear HeNormal

Figure 27: Error Plot showing the mean of the classification accuracies of the test set as bars
and the standard deviation as error. The shown models are trained on CQT spectrograms.

Figure 28 depicts the means and variances of the models trained on raw spectrograms.
The models trained on raw spectrograms are all performing almost equally well. The best
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model however is trained on spectrograms bilinearly stretched to 175 in frequency dimen-
sion. Also noticeable is that the random normal initialization improved the performance
in this model whereas in the models trained on the CQT spectrograms the HeNormal
initialization led to improvements. Figure 29 shows the models trained on CQT spectro-
grams as well as those trained on raw spectrograms. Overall the best performance on the
unseen test set was achieved by the bilinearly stretched spectrograms.
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Figure 28: Error Plot showing the models which are trained on raw spectrograms.
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Figure 29: Error Plot of all models.

However in reality we obviously do not have the measure on the unseen test set.
Therefore we have to consider the measures on the validation set. The next figure shows
the performance of the best models on the validation set. Again the models trained on
raw spectrograms outperform the models trained on CQT spectrograms. Also the best
model on the unseen test set is one of the best performing models on the validation set.
Table 33 shows the averaged final performance of all the models.
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Figure 30: Error Plot showing the performance of all models on the validation set.

Spectrogram | Bins | Interpolation Initializer Validation Test
Accuracy | Accuracy
cQT 80 None RandomNormal 70% 80.51%
cQT 84 None RandomNormal 73% 78.71%
cQT 149 None RandomNormal 74% 78.97%
cQT 84 Bilinear RandomNormal | 73.75% 83.58%
cQT 84 None HeNormal 72.5% 83.33%
CQT 149 None HeNormal 75.25% | 81.025%
cQT 84 Bilinear HeNormal 75.5% 82.3%
STET 24 None RandomNormal 78.25% 83.84%
STET 24 None HeNormal 79% 85.38%
STFT 24 Bilinear RandomNormal 80% 85.89%
STFT 24 Bilinear HeNormal 76.25% 85.89%
STFT 24 Bilinear HeNormal 79.5% 84.87%
STFT 60 None HeNormal 81.25% 83.59%

Table 33: Overall Accuracies

In the above table we can see that the model with the highest accuracy on the valida-
tion set did not yield the best performance on the unseen test set. However it also shows
that applying interpolation algorithms to spectrograms leads to better generalization.

6.2 DCASE 2017

In the DCASE 2017 challenge the training and the test set originated from different dis-
tributions. Therefore the need for generalization was much stronger. The best performing
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models on the DCASE 2016 challenge were also tested on the DCASE 2017 challenge.
As a measure of comparison the initial implementation 7] consisting of the late fusion of
multiple DCNNs trained on raw spectrograms reached a file-wise accuracy of 64.8% on
the unseen test set.

6.2.1 Constant Q Transform Spectrograms

The best performing CQT model on the DCASE 2016 challenge was the 84 bin CQT
with adjusted network structure. The following table shows the performance of this

model trained on the training set of the DCASE 2017.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.75 0.79 0.58
2 0.7341 0.78 0.61
3 0.7626 0.81 0.61
4 0.7595 0.83 0.61
Frame Wise Averaged Test accuracy: 0.658
File Wise Averaged Test accuracy: 0.6475

Table 34: Classification Accuracies using 84 bin CQT spectrograms, HeNormal Initialization,
and adjusted kernels

The above table shows that the model performs well on the validation set, but the
accuracy drastically dropped on the test set. This implies that the model overfits the
training data and fails to generalize. The next tables show the performance of the 149

bin CQT model and the bilinearly stretched CQT model.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7361 0.78 0.59
2 0.7367 0.78 0.59
3 0.7484 0.79 0.62
4 0.7474 0.80 0.63
Frame Wise Averaged Test accuracy: 0.6321
File Wise Averaged Test accuracy: 0.6382

Table 35: Classification Accuracies using 149 bin spectrograms, HeNormal Initialization

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7491 0.80 0.60
2 0.7380 0.76 0.60
3 0.7389 0.79 0.58
4 0.7572 0.83 0.59
Frame Wise Averaged Test accuracy: 0.6105
File Wise Averaged Test accuracy: 0.6253

Table 36: Classification Accuracies using bilinearly stretched CQT spectrograms, HeNormal
Initialization

The same overfitting pattern appears for the other models trained on CQT spectro-
grams.
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6.2.2 Spectrograms

Table 37 and 38 show the performances of models trained on raw spectrograms and
bilinearly stretched spectrograms.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8045 0.80 0.61
2 0.8064 0.81 0.65
3 0.8118 0.81 0.67
4 0.841 0.85 0.68
Frame Wise Averaged Test accuracy: 0.6895
File Wise Averaged Test accuracy: 0.6882

Table 37: Classification Accuracies using spectrograms, HeNormal Initialization

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8174 0.83 0.63
2 0.8121 0.82 0.63
3 0.8028 0.81 0.63
4 0.836 0.86 0.63
Frame Wise Averaged Test accuracy: 0.6654
File Wise Averaged Test accuracy: 0.67037

Table 38: Classification Accuracies using bilinearly stretched spectrograms, RandomNormal
Initialization

The models trained on raw spectrograms showed an improved performance compared
to those trained on CQT spectrograms, although they are still overfitting heavily.

6.2.3 No Sliding Window

As the audio excerpts of the DCASE 2017 datasets are only 10 seconds long the sliding
window over the spectrogram produces only 3 windows. Therefore omitting the sliding
window and feeding the whole spectrograms into the network might help the model to
generalize better. This was only done for raw spectrograms as the CQT spectrograms are
much larger in the time domain.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.826 0.81 0.62
2 0.829 0.81 0.66
3 0.813 0.79 0.64
4 0.891 0.89 0.68
Frame Wise Averaged Test accuracy: 0.6846
File Wise Averaged Test accuracy: 0.6784

Table 39: Classification Accuracies using raw spectrograms without sliding window and HeNor-
mal Initialization

Using the whole spectrograms without the sliding window approach showed a slight
difference in the performance.
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8427 0.83 0.63
2 0.825 0.81 0.66
3 0.827 0.82 0.65
4 0.878 0.87 0.67
Frame Wise Averaged Test accuracy: 0.6938
File Wise Averaged Test accuracy: 0.6827

Table 40: Classification Accuracies using bilinearly stretched spectrograms without sliding
window, and Random Normal Initialization

Models trained on bilinearly stretched spectrograms to 175 in the frequency dimension
again performed slightly better. Table 41 shows the results of spectrograms stretched to
300 in the frequency dimension.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.856 0.85 0.67
2 0.86 0.85 0.66
3 0.8414 0.82 0.70
4 0.8863 0.88 0.70
Frame Wise Averaged Test accuracy: 0.7148
File Wise Averaged Test accuracy: 0.7092

Table 41: Classification Accuracies using bilinearly stretched spectrograms without sliding
window, and HeNormal Initialization

The stretching to 300 in the frequency domain led to even better results. To find out

whether it is the interpolation that improved the results or if it was only the bigger fre-
quency domain, another experiment using raw spectrograms with 60 frequency bins was
conducted (Table 42). The 60 frequency bins led to a dimension of 298 in the frequency
domain.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8521 0.84 0.69
2 0.8619 0.86 0.65
3 0.852 0.84 0.66
4 0.8692 0.86 0.69
Frame Wise Averaged Test accuracy: 0.7154
File Wise Averaged Test accuracy: 0.70061

Table 42: Classification Accuracies using bilinearly stretched spectrograms without sliding
window, and Random Normal Initialization

The bigger spectrograms led to almost the same results as the bilinearly stretched
spectrograms to equal size. Thus, bigger spectrograms help the model to generalize.
6.2.4 Additional Experiments

As stated in [§] they replaced the Global Average Pooling Layer with a Flatten Layer.
Table 43 shows the results of using a flatten layer instead of the global average pooling
layer and shows that this did not lead to any improvement.
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.7867 0.80 0.57
2 0.7732 0.72 0.58
3 0.76 0.76 0.61
4 0.8075 0.81 0.59
Frame Wise Averaged Test accuracy: 0.6352
File Wise Averaged Test accuracy: 0.64136

Table 43: Classification Accuracies using bilinearly stretched spectrograms, Random Normal
Initialization, and a Flatten layer

When using bigger spectrograms it might be the case that the network architecture is

inappropriate for that size. The best performing model so far was trained on interpolated
spectrograms. By increasing the striding of the first layer in the frequency domain the
original size of the activations is preserved for deeper layers. However this did not yield
improvements (see table 44).

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8145 0.80 0.60
2 0.8065 0.80 0.64
3 0.8065 0.80 0.61
4 0.857 0.85 0.64
Frame Wise Averaged Test accuracy: 0.6784
File Wise Averaged Test accuracy: 0.6697

Table 44: Classification Accuracies using bilinearly stretched spectrograms, Random Normal
Initialization, and adjusted striding (4,2)

Another option to preserve the activation sizes in the deeper layers is to adjust the
max pooling filter. By only slightly increasing the striding and the max pooling filter
in the frequency domain the kernels of the deeper layers fit the input activations again.

However this constellation did not lead to any improvements (table 45).

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8128 0.80 0.63
2 0.7792 0.77 0.65
3 0.797 0.78 0.61
4 0.846 0.84 0.66
Frame Wise Averaged Test accuracy: 0.6877
File Wise Averaged Test accuracy: 0.666

Table 45: Classification Accuracies using bilinearly stretched spectrograms, Random Normal
Initialization, adjusted striding (3, 2), and adjusted max pooling (3,2)

The max pooling layer usually results in the network focusing on significant details
on an image. An average pooling layer does not extract the highest pixel of an activation
but rather averages over the pixels. It could be the case that this helps the network to
improve the ability to generalize. However table 46 denies that assumption.
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8328 0.83 0.62
2 0.8398 0.84 0.62
3 0.8155 0.82 0.64
4 0.856 0.85 0.64
Frame Wise Averaged Test accuracy: 0.6777
File Wise Averaged Test accuracy: 0.6598

Table 46: Classification Accuracies using bilinearly stretched spectrograms, Random Normal
Initialization, and average pooling

Omitting the sliding window approach leads to less training data as the whole spec-
trogram is used instead of cutting it into smaller patches. Therefore when less training
data is available decreasing the batch size would make sense. The next 4 tables show the
classification accuracies of models trained on differently sized spectrograms with a batch

size of 50 instead of the initially used 100.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.827 0.82 0.63
2 0.851 0.84 0.65
3 0.819 0.81 0.64
4 0.873 0.87 0.65
Frame Wise Averaged Test accuracy: 0.70
File Wise Averaged Test accuracy: 0.6827

Table 47: Classification Accuracies using standard spectrograms, HeNormal Initialization, and

a batch size of 50

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8377 0.83 0.62
2 0.844 0.84 0.65
3 0.84 0.82 0.67
4 0.847 0.84 0.66
Frame Wise Averaged Test accuracy: 0.6987
File Wise Averaged Test accuracy: 0.6944

Table 48: Classification Accuracies using bilinearly stretched spectrograms to 175, Random

Normal Initialization, and a batch size of 50

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.864 0.85 0.66
2 0.861 0.85 0.65
3 0.8329 0.82 0.70
4 0.8821 0.88 0.69
Frame Wise Averaged Test accuracy: 0.7185
File Wise Averaged Test accuracy: 0.7123

Table 49: Classification Accuracies using bilinearly stretched spectrograms to 300, Random

Normal Initialization, and a batch size of 50
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Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.813 0.82 0.66
2 0.832 0.83 0.65
3 0.8396 0.84 0.69
4 0.8621 0.86 0.72
Frame Wise Averaged Test accuracy: 0.7216
File Wise Averaged Test accuracy: 0.7111

Table 50: Classification Accuracies using standard spectrograms with 60 frequency bins,
HeNormal Initialization, and a batch size of 50

Comparing these constellations with the previous ones where a batch size of 100 was
used, all of the models trained on a smaller batch size generalized better. This implies
that also the batch size contributes to the ability of generalization of the model. [35]
confirms this assumption.

In [§] it was mentioned that for the raw spectrograms they extracted big spectrograms,
but then resized them to fit them into the network. This also might be a data prepro-
cessing step leading to a better generalization. Table 51, and 52 show the performance on
models trained on spectrograms extracted with 60 frequency bins and then resized to 149,
and spectrograms extracted with 60 frequency bins and resampled to half of the sample
rate, respectively. Both of the experiments did not imply that this preprocessing has any
positive effect on the performance of the model.

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.8333 0.82 0.65
2 0.825 0.81 0.66
3 0.829 0.80 0.61
4 0.868 0.85 0.65
Frame Wise Averaged Test accuracy: 0.6815
File Wise Averaged Test accuracy: 0.67098

Table 51: Classification Accuracies using spectrograms resized to 149, HeNormal Initialization,
and a batch size of 50

Fold | Frame Validation Accuracy | File Validation Accuracy | File Test Accuracy
1 0.826 0.81 0.63
2 0.847 0.82 0.63
3 0.841 0.83 0.64
4 0.87 0.86 0.65
Frame Wise Averaged Test accuracy: 0.6747
File Wise Averaged Test accuracy: 0.66049

Table 52: Classification Accuracies using spectrograms resampled to 149, HeNormal Initializa-
tion, and a batch size of 50

6.2.5 Late Fusion

The classification accuracy reached by [§] was 74.8% on the unseen test set. The model
yielding this result consisted of a late fusion of two models, one of them trained on raw
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spectrograms and the second one trained on CQT 84 bin spectrograms. To investigate if
the predictions of the model trained on the CQTs influenced the final prediction to gener-
alize better, an experiment was conducted fusing a model trained on bilinearly stretched
spectrograms, and a model trained on CQT 84 bin spectrograms (Table 53). The re-
sults of this experiment suggest that the model trained on the CQT spectrograms did
not significantly improve the generalization. In fact simply extracting raw spectrograms
with more frequency bins yields higher accuracy (71.54%). The late fusions conducted in
this work used the Stochastic Gradient Descent optimizer with an initial learning rate of
0.2 which is halfed every 50 epochs. The fusion layer is initialized with Random Normal
initialization. During training a batch size of 50 is used and the model is trained for 500
epochs.

We always fuse predictions of models for the same fold together, thus in the end we
get a fusion model for each fold. Again two methods for getting the final prediction over
all 4 folds were compared: Averaging Accuracy and Majority Voting. The predictions of
the fusion models are vectors containing probabilities for each class. Therefore the first
method is to simply average over the predictions of the 4 folds of the fusion models. The
second method is to conduct majority voting.

Fold | File Validation Accuracy | File Test Accuracy
1 0.894 0.6611
2 0.8883 0.6741
3 0.8986 0.6605
4 0.9154 0.6815

Averaged Accuracy over 4 folds of test set: 0.7105
Majority Voting over 4 folds of test set: 0.70

Table 53: Late Fusion Accuracies of two models trained on bilinearly stretched spectrograms
and 84 bin CQT spectrograms

As the models trained on the raw spectrograms in general performed better in all
of the previous experiments, an approach was made fusing only two models trained on
bilinearly stretched spectrograms (Table 54). In this case adding a third model to the
fusion trained on 84 bin CQT spectrograms does improve performance (Table 55).

Fold | File Validation Accuracy | File Test Accuracy
1 0.8829 0.6777
2 0.8908 0.6870
3 0.8777 0.6938
4 0.918 0.7018

Averaged Accuracy over 4 folds of test set: 0.7265
Majority Voting over 4 folds of test set: 0.7117

Table 54: Late Fusion Accuracies of two models trained on bilinearly stretched spectrograms
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Fold | File Validation Accuracy | File Test Accuracy
1 0.9214 0.6827
2 0.9156 0.7068
3 0.919 0.7043
4 0.9307 0.7074

Averaged Accuracy over 4 folds of test set: 0.7358
Majority Voting over 4 folds of test set: 0.7246

Table 55: Late Fusion Accuracies of models trained on bilinearly stretched spectrograms and
84 bin CQT spectrograms

Models trained on a batch size of 50 managed to generalize better. Therefore an-
other late fusion approach was made fusing two models trained on bilinearly stretched
spectrograms and a model trained on 84 bin CQT spectrograms. The accuracies of this

experiment can be observed in table 56.

Fold | File Validation Accuracy | File Test Accuracy
1 0.913 0.6728
2 0.9187 0.6883
3 0.9204 0.7185
4 0.9358 0.7111
Averaged Accuracy over 4 folds of test set: 0.7364
Majority Voting over 4 folds of test set: 0.7247

Table 56: Late Fusion Accuracies of bilinearly stretched spectrograms and 84 bin CQT spec-

trograms

Again the performance slightly improved. Table 57 shows the results of fusing models
trained on bilinearly stretched spectrograms with batch size of 50 and 100 with a model
trained on CQT spectrograms.

Fold | File Validation Accuracy | File Test Accuracy
1 0.9197 0.6777
2 0.9216 0.70
3 0.9241 0.72098
4 0.9368 0.72098

Averaged Accuracy over 4 folds of test set: 0.74074
Majority Voting over 4 folds of test set: 0.7315

Table 57: Late Fusion Accuracies of bilinearly stretched spectrograms with different batch size
and 84 bin CQT spectrograms

To finally resolve the question if fusing models trained on CQT spectrograms lead to
an improvement in generalization, another three experiments were conducted. In the first
experiment (table 58) models trained on raw spectrograms extracted with 60 frequency
bins, bilinearly stretched spectrograms, standard spectrograms, spectrograms using a slid-
ing window, and 84 bin CQT spectrograms were fused. Table 59 shows the results of a
fusion of models trained on spectrograms extracted with 60 frequency bins, spectrograms
bilinearly stretched to 300 and 175, and standard spectrograms with a batch size of 50.
And the last experiment fused the same models as mentioned for table 59, but additionally
adds another model trained on 84 bin CQT spectrograms.
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Table 58: Late Fusion Accuracies of multiple types of raw spectrograms and 84 bin CQT

Fold | File Validation Accuracy | File Test Accuracy
1 0.9231 0.6772
2 0.9258 0.6988
3 0.925 0.6963
4 0.94103 0.7136

Averaged Accuracy over 4 folds of test set: 0.7247
Majority Voting over 4 folds of test set: 0.7123

spectrograms
Fold | File Validation Accuracy | File Test Accuracy
1 0.91453 0.6765
2 0.9284 0.7019
3 0.9224 0.7173
4 0.9368 0.7216

Table 59: Late Fusion Accuracies of multiple types of raw spectrograms

Averaged Accuracy over 4 folds of test set: 0.7475
Majority Voting over 4 folds of test set: 0.7377

Fold | File Validation Accuracy | File Test Accuracy
1 0.9368 0.6852
2 0.9344 0.7019
3 0.9446 0.7105
4 0.9487 0.7228

Averaged Accuracy over 4 folds of test set: 0.7457
Majority Voting over 4 folds of test set: 0.7346

Table 60: Late Fusion Accuracies of bilinearly stretched spectrograms and 84 bin CQT spec-
trograms

In the last experiments the addition of the model trained on 84 bin CQT spectrograms
did not improve the accuracies. The best performing fusion contained only models trained
on raw spectrograms, therefore the inclusion of CQT spectrograms does not improve
generalization.

6.2.6 Overview

Again to choose the best performing model we have a look at the means and variances of
the predictions of the models for all folds. Figure 31 shows the means and variances of
the best performing models on the test set.
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Figure 31: Means and Standard Deviations of the best models on the test set

As in section 5.1.6 the models trained on CQT spectrograms are outperformed by
the models trained on raw spectrogram. Also the bigger the spectrograms the better the
generalization ability of the network. The best performing model according to figure 32
would be the one trained on raw spectrograms bilinearly stretched to 300 in the frequency
dimension. However as we do not have the measure on the unseen test set we have choose
the best model according to the performance on the validation set (Figure 33).
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Figure 32: Means and Standard Deviations of the best models on the validation set

According to the performance on the validation set, the chosen model would be trained
on raw spectrograms being extracted with 60 frequency bins which also performed very
well on the unseen test set. As we use a late fusion approach we can choose some of the
best performing models and fuse their predictions together. Table 61 depicts the different
fusion approaches, their averaged validation accuracy, and the final accuracy on the test
set. Here the fusion approach which yielded the highest validation accuracy was not
the one to yield the highest accuracy on the test set. From the conducted experiments
we know that including a model being trained on CQT spectrograms would not yield
to improvements in the late fusion, therefore we would rather choose fusion approaches
excluding CQT spectrograms in the future. The late fusion of models trained on multiple
spectrograms did only yield a slight improvement of approximately 2 percentage points.
This implies that in some cases it might be better to stick with simple model predictions.

6.3 Conclusion of Results

The experiments conducted on the DCASE 2016 challenge implied that interpolation al-
gorithms lead to a better ability for the model to generalize. However according to the
validation accuracies we would have chosen the model trained on spectrograms extracted
using 60 frequency bins. This was also the best performing model in the DCASE 2017 on
the validation and the test set implying that the size of the spectrograms in fact leads to
better generalization. There was only a slight difference to the performance of the model
trained on bilinearly stretched spectrograms, which again shows that models trained on
interpolated spectrograms generalized very well in both competitions. In some cases also
the adjustment of the network architecture showed an improvement in generalization.
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Further the CQT spectrograms were outperformed by the raw spectrograms in both chal-
lenges. Also the inclusion of models trained on CQT spectrograms into the late fusion did
not improve generalization as well as the resizing methods stated in [8]. Overall the best
performing models showed a considerable improvement compared to the initial submission

7.

Spectrograms | Bins | Interpolation Initializer Validation Test
Accuracy | Accuracy

STEFT 24 Bilinear 175 | RandomNormal

cQT 84 None HeNormal 0.89075 0.7105
STFT 24 Bilinear 300 | RandomNormal

STFT 24 Bilinear 175 | RandomNormal 0.89235 0.7265
STFT 24 Bilinear 175 | RandomNormal

STFT 24 Bilinear 300 | RandomNormal | 0.91675 0.7358
cQT 84 None HeNormal
STF 24 Bilinear 175 | RandomNormal
STFT* 24 Bilinear 300 | RandomNormal | 0.921975 0.7364
cQT 84 None HeNormal
STFT* 24 Bilinear 175 | RandomNormal
STET* 24 Bilinear 300 | RandomNormal

STFT 24 Bilinear 300 | RandomNormal | 0.9292555 | 0.74074
STFT 24 Bilinear 175 | RandomNormal

cQT 84 None HeNormal

STFT 24 None HeNormal

STFT 24 Bilinear 175 | RandomNormal

STFT 24 Bilinear 300 | RandomNormal | 0.92873 0.7247
STEFT 60 None RandomNormal

cQT 84 None HeNormal

STET* 24 Bilinear 175 | RandomNormal

STET* 24 Bilinear 300 | RandomNormal

STEFT* 24 None HeNormal 0.92553 0.7475
STEFT* 60 None HeNormal

STEFT* 24 Bilinear 175 | RandomNormal

STFT* 24 Bilinear 300 | RandomNormal

STFT* 24 None HeNormal 0.941125 0.7457
STET* 60 None HeNormal

cQT 84 None HeNormal

Table 61: Averaged Validation Accuracies and Test Accuracies of the Fusion approaches

7 Visualizations

There are several packages available with which filters and activations can be visualized
with Keras. As the only measure we have so far are the validation accuracies and the
learning curves, the visualizations might also help us to find better models and adjust
the network architecture appropriately. We can define a Keras backend function as a loss
function that focuses on maximizing the activation of certain filters in certain layers and

*For spectrograms marked with an asterisk a batch size of 50 was used for training.

48



Fabian Paischer Bachelor’s Thesis

returns the gradient with respect to the pixels of a input image. By normalizing this
gradient we avoid very small or very large gradients to assure a gentle gradient ascent
procedure. The defined function can further be used to perform gradient ascent in an
input space with respect to the filter activation loss. This particular algorithm is called
Activation Maximization [37].

Using the keras-vis package [36] even attention maps can be visualized to see on which
parts of the spectrogram the network focuses on, and how a perfect spectrogram for a
particular class looks like. For visualizing attention maps a similar approach to the one
of Activation Maximization is used. This time the gradient with respect to a particular
input image is calculated. This tells us the change of the output value with respect to a
change in the input and can be used to highlight regions in the input that most contribute
to changes in the output [38]. The attention maps are also referred to as heatmaps, or
saliency maps in the next sections. By utilizing the Activation maximization algorithm
for the last layer in our network with respect to a particular index (referring to a class)
we can visualize how a perfect image corresponding to this class would look like.

In the following sections models trained on CQT and raw spectrograms are compared
with models trained on the bilinearly stretched spectrograms. Inputs that maximize the
activations, saliency maps, and images that are considered to be perfect for a specific class
by the network are shown.

7.1 DCASE 2016 Challenge

7.1.1 CQT Spectrograms
7.1.1.1 CQT 84 Bins

First of all a random spectrogram from the training set was chosen as sample and com-
pared with a spectrogram of the test set (Figure 34). It can be observed that the spectro-
grams do not differ too much, at least to the human eye, hence the much better results
of the models for the DCASE 2016 challenge.

CQT 84 bins training

-10.000000 dB

-20.000000 dB

-30.000000 dB

-40.000000 dB

-50.000000 dB

0.000000 dB

-10.000000 dB

-20.000000 dB

-30.000000 dB

-40.000000 dB

Figure 33: Comparison of a spectrogram from the training set and from the test set
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Applying the Activation Maximization algorithm to the network we can extract for
each layer the inputs that maximize the activations. The first convolutional layer encodes
directions, colors, and rather simple patterns (Figure 35). Delving deeper into the network
leads to more and more complex patterns. Figure 36 shows the inputs that maximize the
filters in the third convolutional layer. Remarkably, already in the first layers a pattern can
be observed referring to the zero padding. Filters which show patterns at the edges seem
to focus heavily on the padding. Therefore it might be reasonable to neglect the padding
parameter for further experiments. Advancing to even deeper layers the inputs that
maximize the activations slowly begin to reconstruct patterns of a spectrogram (Figure
37). In the last layer of the convolutional network the complex patterns add up to what
seems to be reconstructed spectrograms (Figure 38).

Figure 35: Inputs that maximize activations in the third convolutional layer.
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Figure 36: Inputs that maximize activations in the 7th convolutional layer.

Figure 37: Inputs that maximize activations in the last convolutional layer.

As mentioned in section 2.2 the CQT spectrograms are extracted to have a higher
resolution for low frequencies. Therefore the network should rather focus on lower fre-
quencies of the spectrogram in order to take advantage of this property of the CQTs.
Comparing the heatmap in figure 39 to the sample spectrogram in figure 40, we can see
that the network rather focuses on the lower frequencies. This might be a possible reason
that the CQT spectrograms were outperformed by the raw spectrograms.

Figure 38: Attention Map of the sample CQT spectrogram of class beach
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Finally we can recreate how a perfect spectrogram of the class beach would look like
for the network (Figure 41).

Figure 39: Perfect spectrogram for the class beach

7.1.1.2 CQT 84 bins bilinearly stretched

The same procedure was conducted for the best model being trained on bilinearly stretched
CQT spectrograms. Figure 42 shows a comparison between a normally created 84 bin
CQT spectrogram and a bilinearly stretched CQT spectrogram. There is not much dif-
ference to be observed.

CQT 84 bins
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-15.000000 dB
-20.000000 dB
-25.000000 dB
-30.000000 dB
-35.000000 dB
-40.000000 dB
-45.000000 dB
-50.000000 dB

CQT 84 bins after bilinear upsampling
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-45.000000 dB
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Figure 40: Comparison of normally created CQT spectrogram and upsampled spectrogram.

The following figures depict the outputs of the activation maximization algorithm
applied to the first, third, 7th, and last convolutional layer of the network. Again some
filters rather focus on the padding than the rest of the activations. The heatmap (figure 45)
again shows that the network mainly focuses on the higher frequencies of the spectrogram.
Figure 46 depicts the perfect input for the network to classify the sample as of class beach.
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Figure 41: Inputs that maximize activations in the first convolutional layer.

Figure 42: Inputs that maximize activations in the third convolutional layer.

23



Fabian Paischer Bachelor’s Thesis

Figure 43: Inputs that maximize activations in the 7th convolutional layer.

Figure 44: Inputs that maximize activations in the last convolutional layer.
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Figure 45: Attention Map of the sample CQT spectrogram of class beach

Figure 46: Perfect spectrogram for the class beach

7.1.2 Raw Spectrograms

The comparison of the raw spectrogram and the upsampled spectrogram can be observed
in figure 47. For the raw spectrograms only the heatmap of the best performing spec-
trogram was visualized to see on what parts of the spectrogram the network focuses on
(Figure 48).
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Figure 47: Comparison of training sample and test sample of same class.
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Figure 48: Attention Map of the raw sample spectrogram of class beach

In the above attention map we can see that for the raw spectrogram the network
considers almost the whole frequency domain of the sample image.

7.2 Best Model of DCASE 2017 Challenge

The best performing model on the unseen test set of the DCASE 2017 challenge was
trained on spectrograms using 60 frequency bins for extraction and a batch size of 50.
In Figure 49 we can see the comparison of two spectrograms using 60 bins for extraction
with one of them originating from the training set and the other from the test set. We
can observe that there are big differences in the two spectrograms, especially in the higher
frequencies. The heatmap in figure 50 shows that the model focuses rather on the higher
frequencies.
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Figure 49: Comparison of training sample and test sample of same class.
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Figure 50: Attention Map of the raw sample spectrogram of class beach

7.3 Summary

In this section we gained a short insight into what a network sees and focuses on. Via the
Activation Maximization algorithm we can observe the more and more complex patterns of
the filters that maximize the activations as we delve deeper into the network. Some filters
strongly focused on the zero padding, therefore it might help the model to generalize when
omitting the padding. Further by looking at what parts of the spectrogram the network
focuses on we might be able to choose appropriate features as input, for example if a
model focuses rather on lower frequencies it might be better to choose CQT spectrograms
as features as they have higher resolution for lower frequencies.

8 Conclusion

Acoustic Scene Classification remain a very complex task with many approaches seeming
to be suitable. Deep Convolutional Neural Networks became one of the most popular of
such approaches recently. As it turned out at the DCASE 2016 challenge they can be
a very powerful tool, with the winner’s submission containing a late fusion of DCNNs
and binaural I-vectors [6]. However the submission that won the DCASE 2016 challenge
could not generalize as well in the challenge of the following year [7]. Most of Deep Learn-
ing approaches suffered from this issue since the distribution of the unseen test set was
different from training and validation set. Another submission [§] for the DCASE 2017
challenge however managed to generalize better although they used the same architec-
ture and similar fusion model proposed in[6] . This approach contained a fusion of two
models which were trained on different types of spectrograms. With the results collected
in this thesis we can deny that the used CQT spectrograms were the source of better
generalization. Although they have a higher resolution for lower frequencies, most of the
networks mainly focused on the higher frequencies in the spectrograms, as evaluated in
section 6. Also the exchange of the Global Average Pooling layer with a Flatten layer (as
stated in [8]) does not have any effect on the ability of the model to generalize. However
another approach, mainly applying interpolation algorithms onto the spectrograms, led
to a better generalization in all cases. Therefore this approach might be a consideration
for future tasks. Also extracting spectrograms of bigger size and adjusting the network
architecture to fit this size can lead to improvements. The late fusion of multiple DCNNs
mostly increased the classification accuracy slightly, however this might not always be the
case. In the end generalization remains to be one of the biggest challenges in machine
learning.
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