
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Bachelor Thesis

Developing and Implementing a Health Care System in
.NET

Mohammad Zabadi

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Mohammad Zabadi

Informatics

Thesis title

Developing and Implementing a Health Care System in .NET

Objectives of thesis
The thesis aims to analyse the capability and the advantages of developing a health care system unified in
a .NET platform, defining methods, functions, frameworks, and platforms within the .NET platform
needed for implementing such a system. The project will consist of a mobile application, a database
deployed on a web server and a web application.

Methodology

The first section of the theoretical part of the thesis will concern the project description, technologies, and
frameworks associated with the project based on the synthesis of the gained knowledge. The second part
will touch on the necessity of such a system and further enhancements reinforcing the system functionality.

The practical part will comprise the design and implementation of the project prototype, followed by de­
ploying, testing, and evaluating the system.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdo

The proposed extent of the thesis
35-40 pages

Keywords

.NET, Xamarin, ASP.NET, Blazor, SQL server, Q.R Code, Health care, Unified

Recommended information sources
Bilgin, Can. Mobile Development With . NET : Build Cross-Platform Mobile Applications with Xamarin.

Forms 5 and ASP. NET Core 5, 2nd Edition, Packt Publishing, Limited, 2021.
Himschoot, Peter. Blazor Revealed : Building Web Applications In . NET, Apress L. P., 2019.
".NET: Free. Cross-Platform. Open Source." Microsoft, dotnet.microsoft.com/.
Price, Mark J.. C# 9 and . NET 5 - Modern Cross-Platform Development - Fifth Edition ; Build Intelligent

Apps, Websites, and Services with Blazor, ASP. NET Core, and Entity Framework Core Using Visual
Studio Code, Packt Publishing, Limited, 2020.

Expected date of thesis defence
2021/22 S S - F E M

The Bachelor Thesis Supervisor

Ing. Jiří Brožek, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 1. 11. 2021 Electronic approval: 23.11. 2021

Ing. Martin Pelikan, Ph.D. Ing. Martin Pelikan, Ph.D.

Head of department Dean

Prague on 15. 03. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

http://ASP.NET
http://dotnet.microsoft.com/

Declaration

I declare that I have worked on my bachelor thesis titled " Developing and

Implementing a Health Care System in . N E T " by myself and I have used only the sources

mentioned at the end of the thesis. As the author of the bachelor thesis, I declare that the

thesis does not break any copyrights.

In Prague on March 15th Zabadi Mohammad

Acknowledgement

I would like to express my deep and sincere gratitude to my supervisor Ing. Jiří

Brožek, Ph.D., for giving me the opportunity to do my work under his supervision and for

providing invaluable guidance throughout this work. M y completion of this work could not

have been accomplished without his advice and encouragement.

Developing and Implementing a Health Care System in
.NET

Abstract

This bachelor thesis focuses on using the . N E T platform for developing and

implementing a healthcare system that allows the patient's medical data to be stored and

retrieved from a database. This system consists of a mobile application implemented using

the Xamarin platform, a web application implemented using Blazor WebAssembly, and a

server implemented in A S P . N E T core connected to a database built using S Q L server. The

thesis also introduces WebAssembly technology and demonstrates the newly introduced

.NET framework Blazor WebAssembly.

This work also includes implementing a proposed approach of passing data access

permission using a digital key transformed into a Q R code.

The frameworks and technologies used for implementing the system are defined in

the first part of this work, including an amply description of WebAssembly and Blazor

technologies. The second part of the thesis covers the system development phases, including

the structure of the implemented system and examples of relevant source codes to illustrate

the system implementation phase. The last section of this work discusses some proposed

improvements and the benefits of using the presented system.

Keywords: Healthcare, .Net, C#, WebAssembly, Blazor WebAssembly, ASP.Net Core,

S Q L Server, Xamarin, Q R Code.

6

http://ASP.NET

Vývoj a implementace zdravotnického informačního
systému v .NET

Abstrakt

Tato bakalářská práce se zaměřuje na využití platformy .NET pro vývoj

zdravotnického informačního systému umožňujícího ukládat a načítat zdravotní

dokumentaci pacienta v databázi. Systém se skládá z mobilní aplikace implementované s

použitím platformy Xamarin, webové aplikace implementované pomocí Blazor

WebAssembly, a serverové části implementované s pomocí A S P . N E T Core a využívající

databázi S Q L Server. Bakalářská práce taktéž představuje technologii WebAssembly a

demonstruje technologii Blazor WebAssembly, nově zahrnutou v .NET Frameworku.

Tato práce také zahrnuje implementaci navrhovaného přístupu předávání oprávnění

k datovému přístupu pomocí digitálního klíče transformovaného do Q R kódu.

V první částí práce jsou definovány frameworky a technologie použité při

implementaci systému, včetně popisu technologií WebAssembly a Blazor. Druhá část práce

pokrývá všechny fáze vývoje, včetně popisu struktury implementovaného systému a

relevantních příkladů zdrojového kódu, které ilustrují implementační fázi. Poslední část

práce se pak zabývá návrhem dalších vylepšení a přínosy prezentovaného systému.

Klíčová slova: Healthcare, .Net, C#, WebAssembly, Blazor WebAssembly, ASP.Net Core,

S Q L Server, Xamarin, Q R Code.

7

http://ASP.NET

Table of contents
1 Introduction 12

2 Objectives And Methodology 13
2.1 Objectives 13

2.2 Methodology 13

3 Literature Overview 14
3.1 Client-side 14

3.1.1 WebAssembly 14

3.1.2 Blazor 16

3.1.2.1 Razor components 16

3.1.2.2 Blazor hosting models 17

3.2 Server-side 21

3.2.1 ASP.NET Core 21

3.2.2 API 22

3.2.3 M V C 23

3.2.4 Repository pattern 23

3.2.5 Entity Framework Core 23

3.2.6 SQLServer 24

3.3 Mobi l e application 24

3.3.1 Xamarin 24

3.3.2 M V V M pattern 25

3.4 Shared concepts 25

3.4.1 NET 25

3.4.2 C# 26

3.4.3 HTTPS 26

3.4.4 ZXing 27

4 Practical part 28
4.1 Motivation and planning 28

4.2 Analysis 28

4.2.1 Functional requirements 29

4.2.2 Non-Functional requirements 29

4.3 Design 30

4.3.1 Name and logo 30

4.3.2 Communication model 30

8

http://ASP.NET

4.3.3 Data model 31

4.3.4 Wireframe 33

4.4 Implementation 34

4.4.1 Server-side 35

4.4.1.1 Data access layer 35

4.4.1.2 Repository layer 38

4.4.1.3 Controller layer 39

4.4.1.4 Access to patient's data 40

4.4.2 Mobile application 42

4.4.2.1 Models 42

4.4.2.2 View Models 44

4.4.2.3 Views 45

4.4.2.4 Requesting a key 46

4.4.3 Client-side 48

4.4.3.1 Project structure 48

4.4.3.2 QR scan page 49

4.4.3.3 Patient page 52

4.5 Testing 54

4.5.1 System testing 54

4.5.2 Usability testing 55

5 Results and discussion 56
5.1 Test results 56

5.2 Discussion 57

5.2.1 System usability 57

5.2.2 Proposed improvements 57

5.2.3 Benefits of the system 58

6 Conclusion 59

7 Bibliography 60

9

List of figures

Figure 1: JavaScript versus WebAssembly execution process 15

Figure 2: Blazor Server 18

Figure 3 Blazor WebAssembly hosting model 19

Figure 4: A S P . N E T vs. A S P . N E T Core 22

Figure 5: A S P . N E T core web A P I design 22

Figure 6: Relationships between M V V M components 25

Figure 7: QR Care logo 30

Figure 8: Communication diagram for accessing a patient's data 31

Figure 9: Database model 32

Figure 10: Patient page wireframe 33

Figure 11: Mobi le application wireframes 34

Figure 12: Solution structure 34

List of tables

Table 1: Comparison between Blazor Server and Blazor WebAssembly 21

List of abbreviations

A O T - Ahead-of-Time

A P I - Application Programming Interface

A S P - Active Server Pages

CSS - Cascading Style Sheet

D O M - Document Object Model

E F - Entity Framework

H T M L - Hypertext Markup Language

H T T P S - Hypertext Transfer Protocol Secure

IL - Intermediate Language

JIT - Just-in-Time

M V C - Model-View-Controller

M V V M - Model -View-ViewModel

10

http://ASP.NET
http://ASP.NET
http://ASP.NET

Q R - Quick Response

R E S T - Representational State Transfer

S P A - Single Page Application

S Q L - Structured Query Language

U I - User Interface

U R L - Uniform Resource Locator

W 3 C - World Wide Web Consortium

W A S M - WebAssembly

X A M L - Extensible Application Markup Language

11

1 Introduction

A patient's medical record is one of the essential elements in the healthcare system;

it helps evaluate the patient's health status and accurately determine the diagnosis and

treatment. A well-developed system managing the patient's medical records serves the

interest of both health institutions and patients.

Based on personal experience, many healthcare institutions in Prague, Czech

Republic, are using a poorly developed healthcare system, or in the best case, a system that

stores their patients' data only. The idea of developing a shared healthcare system emerged

from this experience, allowing several healthcare institutions to share the same system with

the same database for retrieving and manipulating the patients' medical records, where the

patient data can be accessed only by the patient's permission.

In M a y 2021, Microsoft released Blazor Web Assembly, giving the possibility to

implement a web application in the . N E T platform. The chance presented itself to introduce

Blazor Web Assembly and implement a health care system in the . N E T platform with Blazor

Web Assembly as part of it.

This work w i l l describe the mentioned system implementation, alongside a theory

description of WebAssembly, Blazor, and other frameworks and technologies used for

system implementation.

12

2 Objectives And Methodology

2.1 Objectives

The thesis analysis the capability and the advantages of developing a healthcare

system unified in a . N E T platform, defining methods, functions, frameworks, and platforms

within the . N E T platform needed for implementing such a system. The project w i l l consist

of a mobile application, a database deployed on a web server, and a web application. The

thesis also introduces WebAssembly and Blazor WebAssembly technologies and describes

their part of the implemented system. The system is implemented in the . N E T platform.

Therefore, Blazor WebAssembly, A S P . N E T core, and Xamarin platform are used to

implement the three sides of the system. This work proposes using a digital key to pass the

data access permission from a patient to medical personnel in an easy and secure approach

by displaying the key as a Q R code.

2.2 Methodology

The methodology of the thesis is based on studying relevant and reliable scientific

sources of information concerning the . N E T platform. The primary and most reliable source

of knowledge is Microsoft documentation; other sources are books related to the

technologies and concepts used.

This work divides into theoretical and practical parts; both parts examine the

system's three sides individually. Based on the synthesis of gained knowledge, the

technologies and frameworks used are described in the theoretical part of the work. The

system's main structure is defined for implementation in the practical part.

The practical part of the thesis concerns the system development phases. The

implementation phase illustrates the general structure of the solution and the implementation

of the three sides of the system using the frameworks and technologies mentioned in the

thesis objectives and several other technologies covered in the theoretical part. The

implementation is illustrated by snippet source codes from the work solution.

This work also discusses the benefits and advantages of the proposed system

implementation, including proposed improvements that can be applied to the system.

13

http://ASP.NET

3 Literature Overview

3.1 Client-side

Before diving into the concepts of both Blazor and WebAssembly, a brief recall on

web development from a pre-Blazor time w i l l help illustrate these two technologies.

JavaScript might be the first word that comes to a developer's mind when speaking

of web development. The reason is that 97.8% of all the websites are using JavaScript as a

client-side programming language, according to the latest w3techs report (1). Many libraries

and frameworks using JavaScript were developed throughout the years, allowing us to build

faster and richer web apps, such as Angular, React, and Vue.js. Such frameworks can also

use a higher-level like TypeScript, which later is transpiled into JavaScript that w i l l run the

actual code on the browser. (2)

A big side of the competition between modern browsers was focused on JavaScript

performance, using various JavaScript engines, with different optimization features like just-

in-time (JIT) compilation. For JavaScript code to be executed, JS file (or inline) needs to be

downloaded into the browser, parsed, then passed through a compiler (since JavaScript is an

interpreted language), which translates the source code into a bytecode for the machine to

understand and execute it, with JIT compilation, JavaScript is compiled to executable

bytecode at run time. (3)

Since March 2017, when WebAssembly was first released, other programming

languages could run within the browser, which led to JavaScript not being the only language

to do so.

3.1.1 WebAssembly

Webassembly.org, the official site, defines WebAssembly as: "WebAssembly

(abbreviated Wasm) is a binary instruction format for a stack-based virtual machine. WASM

is designed as a portable compilation target for programming languages, enabling

deployment on the web for client and server applications. " (4)

Simply put, WebAssembly is a new technology providing a way for a code written

in other programming languages than JavaScript, such as C++ and C#, to run in the modern

browsers near-native speed.

14

http://Webassembly.org

As mentioned before, for JavaScript code to be executed, the code file needs to be

downloaded into the browser. The browser then takes care of parsing, optimizing, and JIT

compiling of the code, but when it comes to WebAssembly, parsing and compiling is done

on the server, where the code is compiled in a format called W A S M , the compiled file is

then downloaded into the browser, where it gets just-in-time compiled. (2) The difference

between JavaScript and WebAssembly execution processes is illustrated in Figure 1.

•JS

code

Compiler

.wasm

Browser
JavaScript Engine

Parser

i

Compiler

, > 1 s

JIT Compiler

HTML
Local storage

Figure 1: JavaScript versus WebAssembly execution process (2)

W 3 C Community Groupe develops the open standards for WebAssembly; it was first

introduced in 2015, the first official release of WebAssembly was in March 2017 by Firefox,

making it the first major browser to support WebAssembly, followed by chrome and opera

in the same month, and today, 94.7% of all browsers support WebAssembly (5). Nowadays,

WebAssembly is co-developed in coordination between W 3 C , and major IT companies, like

Microsoft, Google, Apple, and many others. In addition, many individual developers from

all around the globe are contributing to WebAssembly every day. (4)

It is crucial to understand that WebAssembly is not intended to replace JavaScript.

Instead, WebAssembly is designed to complement JavaScript and work in conjunction with

it. Combining JavaScript and WebAssembly's strong points allows developers to build better

performance and faster web apps. (6)

WebAssembly technology is currently being designed as an open standard inside the

W 3 C WebAssembly Community Group, including engineers from all major browsers.

During its design, W 3 C focuses on achieving four main goals: (4)

15

• Efficient and fast: Web Assembly is designed to allow code written in any language

to run within the browser and be executed at near-native speed by taking advantage

of common hardware capabilities common to all contemporary hardware; it decodes,

validate, and compile the code file so efficiently, equally to JIT or A O T compilation.

• Safe: WebAssembly code executes within a memory-safe, sandboxed execution

environment. WebAssembly models enforce the web browser same-origin,

permissions, and security policies when embedded in the web. Additionally,

WebAssembly allows no direct interaction between the module and browser's D O M ;

the only way to do so is by using JavaScript interop.

• Open and debuggable: even though it is a low-level assembly language,

WebAssembly text format is pretty printed in a human-readable way, allowing

developers to write, view, optimize, and debug the code by hand.

• Part of the open platform: WebAssembly is designed in a way not to break the web

but to interoperate with other web technologies and maintain the versionless, feature-

tested, and backwords-compatible nature of the web. WebAssembly modules can

communicate with JavaScript context, same as JavaScript; these modules, through

the web APIs, can access the browser functionality.

3.1.2 Blazor

"Blazor is a framework for building interactive client-side Web UI with .Net. " (7).

The word Blazor is a combination of words Browser and Razor. With Blazor, we can create

rich interactive UIs in C# instead of being forced to use JavaScript, in other words, develop

a web app front-end logic using C#, H T M L , and CSS using Razor syntax that supports

binding, events, dependency injection, and many more techniques for building robust web

apps. Also , Blazor allows us to share the server-side and client-side app logic written in

.NET. (7)

3.1.2.1 Razor components

Blazor apps are component-driven apps; they are built using components known as

Razor components, informally referred to as Blazor components. Components are . N E T C#

classes implemented using Razor syntax, which is a combination of C#, H T M L , and Razor

markup in the same file. "A component is a self-contained portion of user interface (UI) with

16

processing logic to enable dynamic behavior. Components can be nested, reused, shared

among projects, and used in MVC and Razor Pages apps. " (8) Razor components are the

base element of U I in Blazor apps, defining flexible U I rendering logic and handling user

events. (8)

Razor components can be nested, meaning that a child component can be used in a

parent component using H T M L syntax, where the component name is used as an H T M L tag,

allowing a component to be reused within Blazor application or even be shared and

distributed as Razor class libraries or NuGet packages. (7)

Razor components are defined using Razor syntax, dividing the component into

markup and code blocks. The markup block determines how the component and component

elements are parsed or functions, providing a way to bind data and events, nest child

components, define routing, and many more. The code block allows specifying components

state by handling events, data, and customizing components logic. (8)

3.1.2.2 Blazor hosting models

Currently, Blazor has two hosting models; the first one is Blazor Server, which was

the first to release by Microsoft in September 2019, the second is Blazor WebAssembly,

released in May 2020.

Blazor Server

As the name implies, in the Blazor Server hosting model, the web app (Razor

components specifically) is executed on the server built within an A S P . N E T Core. The

server communicates with the browser over SignalR Connection, sending U I updates, event

handling, and JavaScript calls between the server and the browser. (9)

A S P . N E T Core SignalR is an open-source library adding real-time web functionality

to apps (10). In our case, it enables Blazor Server to receive U I events from the browser and

send back U I updates from the server to the browser instantly. Real-time communication is

handled using WebSockets, Server-Sent Events, or Long Polling, and depending on the

capabilities of both server and clients, SignalR automatically chooses the best transport

technique. SignalR connection is established on the client-side by Blazor Script

(blazor.server.js). (11) Blazor Server hosting model is illustrated in Figure 2.

17

http://ASP.NET
http://ASP.NET

Figure 2: Blazor Server (7)

In traditional A S P . N E T core apps that use Razor views or Razor pages, the entire

page is rendered on client request, meaning that every line of Razor code in Razor page or

view emits H T M L in text form. When the client sends a request to the server, the server

renders the entire page to H T M L again and sends it back to the client. However, Blazor

server apps render the page more efficient. Since Blazor apps are based on Razor

components, a Blazor server app renders the page by components, not the entire page. (7)

The components are rendered into a so-called render tree, which is a binary

representation of Document Object Model (D O M) , which includes sate held in properties

and fields. After the components are rendered on the client, the components can be updated

by app events and user interaction, and when the update occurs, the render tree calculates

the U I difference, the difference is sent to the client over SignalR in a binary format to update

the D O M , where the browser updates the page accordingly. (3)

Benefits of Blazor Server hosting model: (9) (11)

• The initial load time for a Blazor Server app can be much less than a Blazor

Web Assembly app due to the smaller download size of Blazor Server apps.

• Blazor Server apps can run in browsers that don't support Web Assembly.

• Since the app is running on the server, the app can take full advantage of server

capabilities.

• The Blazor server app's code stays on the server and is not served to the client,

preventing decompilation of the code.

Limitation of Blazor Server hosting model: (9) (11)

18

http://ASP.NET

• The app must be hosted on an A S P . N E T core server.

• Blazor Server apps do not support offline mode.

• Usually, Blazor Server apps have higher latency since every U I update requires a

network roundtrip to the server.

• Since Blazor Server apps rely on SignalR for every U I update, the scaling might be

challenging and requires more server resources.

Blazor WebAssembly

In Blazor WebAssembly hosting model, the Blazor app runs in the browser on a

WebAssembly-based, meaning that the browser must support WebAssembly, and since

Blazor WebAssembly uses open web standards, no plugins are required for it to run in the

browser. (7) Blazor WebAssembly hosting model is illustrated in Figure 3.

blazor
Razor Components

.NET

WebAssembly

Figure 3 Blazor WebAssembly hosting model (7)

Blazor WebAssembly is a single-page application (SPA) framework. A single-page

application is a web application design that allows dynamically rewriting and updating the

body content of a web page in response to user interactions, eliminating the need to load the

entire new page, which results in enhanced app performance and faster transitions, and

allowing the app to run at native speed. (9)

When a Blazor WebAssembly application is built and run in a browser, the Blazor

app, its dependencies, and the .Net runtime are downloaded to the browser (this is handled

by blazor.weassembly.js script), the app is then executed on the browser U I thread, and the

19

http://ASP.NET

U I updates and app events are handled within the same process. Blazor Web Assembly does

not access D O M directly and can only update the D O M via JavaScript interop. (11)

Blazor WebAssembly does not necessarily require a server and can be deployed

without it. If the app is deployed without an A S P . N E T core server, it is called a standalone

Blazor WebAssembly app. However, some web apps may require one for data access and

authentication. If the Blazor WebAssembly app is deployed with an A S P . N E T core server,

it is called a hosted Blazor WebAssembly app. "Using hosted Blazor WebAssembly, you get

a full-stack web development experience with .NET, including the ability to share code

between the client and server apps, support for prerendering, and integration with MVC and

Razor Pages. "(11)

The big concern here is the size of the published Blazor WebAssembly app, which

is significantly bigger when compared to a Blazor Server app. Keep in mind here that Blazor

WebAssembly is a single-page app, meaning that the whole site is downloaded to the client.

This negatively affects Blazor WebAssembly performance since it takes longer to download

it into the browser. To reduce the download size and speed up the load time, Blazor

WebAssembly uses the following strategies: (7) (11)

• Intermediate Language (IL) trimming is performed on the published app to strip out

the unused code, reducing the published output's size.

• H T T P responses are compressed.

• Cashing .NET runtime and assemblies (the compiled C# and Razor files) in the

browser.

• Support ahead-of-time (AOT) compilation, where the . N E T code is compiled directly

into WebAssembly.

Benefits of Blazor Server hosting model: (9) (11)

• Blazor WebAssembly apps rely on the client resources and capabilities, resulting in

less load on the server.

• Supports offline mode. If the server goes offline, the app remains functional.

• Hosting a Blazor WebAssembly app without an A S P . N E T core web server is

possible.

Limitation of Blazor Server hosting model: (9) (11)

20

http://ASP.NET
http://ASP.NET
http://ASP.NET

• The large download size of Blazor WebAssembly apps means a longer time for the

initial load of the app.

• Browser capabilities can limit the Blazor WebAssembly app's performance.

• A browser supporting WebAssembly is required to run Blazor WebAssembly app.

Table 1: Comparison between Blazor Server and Blazor WebAssembly (7)

Feature Blazor Server Blazor WebAssembly
Complete . N E T A P I compatibility Yes N o
Direct Access to sever source Yes No
Small payload size with fast initial load Yes No
time
App code secure and private on the Yes No
server
Static site hosting No Yes
Run apps offline once downloaded No Yes
Offloads processing to clients No Yes

3.2 Server-side

3.2.1 ASP.NET Core

A S P . N E T Core is an open-source framework developed by Microsoft for building

modern, cloud-enable, and internet-connected applications designed for high performance

and that run across platforms on Windows, Mac, and Linux. Using A S P . N E T Core, we can

build web applications and services, internet of things (IoT) apps, and mobile backends.

A S P . N E T Core apps run on . N E T Core runtime. (12)

It is essential to differentiate A S P . N E T Core from A S P . N E T . A S P . N E T Core is a

redesign of A S P . N E T ; it includes better support of modular architecture. While A S P . N E T

runs only on the . N E T framework, therefore, runs on Windows only, A S P . N E T Core can

run on both .Net Core and . N E T framework, and it runs cross-platform. (13) This is

illustrated in Figure 4.

21

http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

f \

ASP.NET

r \

ASP.NET Core
^-)

.NET framework

f \

.NET Core
^)

r ~\

Windows
Cross-platform(Windows. Mac. and

Linux)

Figure 4: ASP.NET vs. ASP.NET Core (13)

3.2.2 API

Application Programming Interface is a set of protocols and rules that allows

applications to communicate with each other for data exchange purposes.

Web APIs are remote APIs for applications to communicate over the internet

network using H T T P protocols. In other words, a mobile application can communicate with

a web application using web APIs implemented in a web server.

A R E S T A P I or RESTful A P I is the architectural implementation of the A P I in an

application (mobile app or a Web app) that allows the applications to send H T T P requests

over the internet for data exchange. (14)

Figure 5 illustrates the design of a web A P I implementation with A S P . N E T Core.

M V C and its pattern w i l l be demonstrated in the following section.

Figure 5: ASP.NET core web API design (15)

22

http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

3.2.3 MVC

A S P . N E T Core uses M V C architectural pattern to separate the server-side

application into Models, Views, and Controllers, thus allowing a better division of the code

and application functions to help with testing, maintaining, and evolving the application.

(16)

The Controller is responsible for receiving requests and sending responses by

working with the model component to perform actions and retrieve the data. The Models

manage the data structure and business logic, while the View defines how the data received

from the Controller is displayed to the user. (16)

In the implemented system, the views w i l l be handled by the client-side. Therefore,

this work w i l l not include this component in the M V C pattern.

3.2.4 Repository pattern

One of the popular patterns used in A S P . N E T M V C . The repository pattern creates

an abstraction layer that mediates between the data source and the business layers.

Repositories are C# classes that encapsulate the logic that retrieves the data from the data

source and separate the business logic from direct interaction with the underlying data

source. This pattern is implemented in the practical part providing a better illustration of its

structure and functions. (17)

3.2.5 Entity Framework Core

Entity Framework Core (EF Core) is a modern object-relational database mapper for

.NET. E F Core can work with several databases, like S Q L Server, M y S Q L , PostgreSQL,

and many more. E F Core and E F are not the same; E F Core is a lightweight, extensible,

open-source, and cross-platform version of E F data access technology. Some features are

implemented in E F Core but not in E F , and vice versa. However, Microsoft recommends

using E F Core on . N E T Core for developing new applications. E F Core, in most scenarios,

has better performance than E F , including the support for data access code evolvement and

implementing new features. (18) (19)

23

http://ASP.NET
http://ASP.NET

E F Core allows us to work with a database using . N E T objects, eliminating the need

to write most of the data-access code manually. For data access, E F Core uses models

consisting of entity classes and a context object that allows querying and saving data. E F

Core could generate a model from an existing database or create a database from a model

using E F Migration. When a model changes, Migrations can evolve the database

accordingly. (20)

3.2.6 SQLServer

S Q L Server is developed, maintained, and marketed by Microsoft; it is a relational

database management system (R D B M S) . It has the primary function of storing and giving

access to the data stored when requested by other software applications on the same

computer or over a network. It is built based on S Q L and is tied to Transact-SQL (T-SQL).

S Q L Server has the advantage over other databases in high performance and enhanced

security. (21)

3.3 Mobile application

3.3.1 Xamarin

Xamarin is an open-source platform developed by Microsoft for building cross-

platform mobile and Windows applications with .NET. Xamarin apps are cross-platform

because Xamarin allows us to share about 90% of the application business logic written in

C# across platforms. Since Xamarin is built on top of .NET, it allows us to build the

application in a managed environment that handles garbage collection and memory

allocation with underlying platforms. (22)

It is essential to mention Xamarin.Essentials, which is a library that provides

developers with single cross-platform APIs and allows us to access native functionalities

such as permissions, device info, file system, and many more. (23)

Xamarin.Forms allow us to create application UI . It is an open-source U I framework

for building applications with a single shared codebase across the three major platforms of

iOS, Android, and Windows. The user interface is created in X A M L with C# in the backend.

U I elements are rendered into native controls on each platform. Xamarin.Forms provides

24

many features for building robust applications, such as X A M L user-interface language,

Databinding, effects, and styling. (24)

X A M L stands for extensible Application Markup Language; it is based on X M L .

Therefore, the structure of X A M L files comprises elements, attributes, and namespaces.

X A M L is used for creating an application UI , mainly in Xamarin apps and W P F . (25)

3.3.2 MVVM pattern

M V V M (Model-View-ViewModel) is an architectural pattern that separates an

application business and presentation logic from its UI . Simply put, the M V V M pattern

extracts the code-behind of an implemented user interface in the view component to a

different component called View Model , thus making the application easier to test, maintain,

and evolve. The general structure of the software consists of View, View Models, and

Models components. (26) Figure 6 illustrate the relationships between M V V M components.

View

Data Binding
and Commands

View Model

ViewModel updates
the model

Model View View Model Model

•

Send notifications Send notifications

Figure 6: Relationships between MVVM components (26)

The implementation of the pattern is illustrated later in the practical part, giving a

better understanding of how the components communicate with each other.

3.4 Shared concepts

3.4.1 .NET

.NET is an open-source development platform for developing and building cross-

platform apps using various platforms and frameworks within .NET. . N E T allows sharing

codes, logic, and functionalities among different apps, making it easier to build an entire

system unified in .NET. (27)

The presented work is built in . N E T 5, which is an implementation of . N E T and the

last released version of . N E T Core. The word "Core" is not part of the name to emphasize

that this is the leading implementation of . N E T going forward. . N E T Core is the successor

25

of the . N E T Framework. However, it does not replace it. The key difference between . N E T

and . N E T framework is the supported platforms. As illustrated in figure 4, the .NET

framework supports only windows apps, while . N E T supports cross-platform apps. (28)

3.4.2 C#

C# is one of three programming languages supported by . N E T and a C family of

languages child. It is a modern, object-oriented, and type-safe programming language.

C# supports the four basic principles of object-oriented programming: abstraction,

encapsulation, inheritance, and polymorphism. (29) C# also includes the support for

component-oriented programming. Modern applications such as Blazor applications are

built based on components. Components can be described as packages of functionalities

presented as models with properties, methods, and events. C# provides language constructs

to support using and building software components. C# supports type safety; it does not

allow uninitialized variables in the code to perform unchecked type casts or arrays indexed

beyond their identified bounds. (30)

C# offers several features that aid in constructing powerful and robust applications,

such as nullable types, lambda expression, L I N Q , asynchronous operations, and many more.

Programs and libraries written in C# can be maintained and evolve in a compatible manner

due to the versioning that C# emphasizes. (31)

3.4.3 HTTPS

Hypertext Transfer Protocol (HTTP) is the foundation of the modern global internet,

providing software with a common language to talk and communicate between each other

and exchange data in the form of requests and responses. The " S " in H T T P S stands for

"Secure." H T T P S is an extension of H T T P that uses S S L protocol to encrypt H T T P requests

and responses, making it more secure than traditional H T T P . (32)

The client requests a web resource hosted on a specified web server using an H T T P

request message containing a request command called method, and the server performs the

actions needed based on the method received and sends an H T T P response message to the

client with a status code indicating the status of the client request. (32)

26

The client using H T T P methods can retrieve or manipulate the data in the web

resource. The most used methods are: G E T (retrieve data), P U T (update data), POST

(retrieve sensitive data or add data), and D E L E T E (delete data). H T T P status code is a three-

digit numeric code informing the client i f the request was successful or not, and in most

cases, the reason for failure. Some well-known status codes are: '200' for a successful

request, '404' for not found, and '401' unauthorized. (32)

U R L (uniform resource locator) is used to specify the location of a web resource on

a specified server. U R L is used by the client to address the H T T P request; it consists of a

scheme, address, and resource name. The schema describes the protocol used to access the

resource (like HTTP) , the address part contains the server internet address, and the resource

name specifies the resource requested on the server. (32)

3.4.4 ZXing

"ZXing ("zebra crossing") is an open-source, multi-format 1D/2D barcode image

processing library implemented in Java, with ports to other languages. " (33)

ZXing.Net is a port of the Z X i n g library. ZXing.Net is a library allowing .Net

developers to decode and generate various barcodes, including Q R Codes, it is supported on

many .Net platforms, and the Xamarin platform is one of them.

27

4 Practical part
This chapter w i l l describe the process of planning, analyzing, designing,

implementing, and finally testing the healthcare system software. This approach was inspired

by system development life cycle (S D L C) management. (34)

4.1 Motivation and planning

The idea of developing a healthcare system was based on personal experiences. A

couple of years ago, I had a health condition, where I had to visit several health institutions,

and I had this pile of medical reports that I carried when going to a different institution. Also,

in every institution, I was asked to provide the same data I already provided in the previous

institution I had been to. I also had a similar experience when I needed to fix a tooth.

A couple of years later, Blazor WebAssembly was released, and since I had a

background in C# (all thanks to Czech University of Life Sciences Prague (CZU) and

particularly M r . Ing. Jiří Brožek, Ph.D.), I started thinking about developing and

implementing a prototype of this system in . N E T . After researching, I found out that it is

possible to implement such a system with:

• Xamarin for the mobile application. The mobile application allows patients to grant

medical personnel access to their data.

• A S P . N E T Core for the server-side for data and access management.

• Blazor WebAssembly for the client-side for medical personnel to access, display,

and modify the patient data.

A l l I needed was some effort to gain the knowledge required to implement the

system's prototype.

4.2 Analysis

In this stage, a general analysis of the project is performed, defining the requirements,

user goals, and limitations for implementing the system. Requirements w i l l be divided into

functional and non-functional. Functional requirements specify what the system should do,

while non-functional specify how the system performs a specific function. The functional

requirements are then split into mobile application, server-side, and client-side. The general

shape of the system w i l l be defined according to these requirements.

28

http://ASP.NET

4.2.1 Functional requirements
• Authentication

This prototype w i l l not cover the registration of users into the system, and only

sign-in operations w i l l be implemented to bring the system closer to reality, where

patients and medical personnel are registered into the system by the system admins

(health ministry or health institution administration for instance). This work w i l l include

the implementation of authentication functionality only on the mobile application.

Patients w i l l be authenticated by the mobile application to access their profile on the

server.

• Data access

For data access, the author decided to choose a digital key approach. This key is

to be generated on patient request and given to medical personnel to grant them access

to patient data. The requirements for this approach are:

Requesting a key. The patient using the mobile application w i l l request a one-time-

key from the server.

Generating a key. The server w i l l generate the key on request and send it back to the

patient.

Using the key. The medical personnel using the client-side web app wi l l receive the

key from the patient and use it to access the patient's data.

• Data retrieval

After the patient is authenticated to the mobile application, selected personal data

wi l l be displayed on the profile view. On the client-side, when the patient gives the

medical personnel access, the system w i l l retrieve and display the patient medical records

and data.

• Data manipulation

On the client-side of the system, the medical personnel w i l l be able to:

A d d new medical records to the patient medical history.

Modify patient medical data known as "Anamnesis." This part is different from the

medical record.

4.2.2 Non-Functional requirements

• Database

S Q L Server w i l l be the database used to save the system data.

29

• Q R code key

As mentioned before, the key w i l l be in a digital form. Therefore, for the client-

side to receive the key easily and efficiently, the key w i l l be converted by the mobile

application to a Q R code, where it w i l l be scanned on the client-side.

• Publishing

Both server-side and client-side w i l l be published on the Azure portal.

4.3 Design

This phase defines the system's architecture, which is built based on the requirements

provided in the analysis phase. This includes the design of the logo, communication model,

data model, and wireframes for both mobile and client-side.

4.3.1 Name and logo
The auth named the system " Q R C A R E , " the name is a combination of Q R code and

healthcare. The same combination is used for designing the system logo; the logo is a

combination of a Q R code and a red cross that stands for healthcare.

The two logos designed are visible in Figure 7.

IE
: m CAR P Q R C A R E

Figure 7: QRCare logo (By author)

4.3.2 Communication model
Data access is granted to medical personnel by patients using a one-time, on-request

digital key presented as a Q R code; This process is managed through a server. Figure 8

illustrates the communication model for the data access process, followed by an explanation

of the process steps. For simplicity, this communication model w i l l only cover data access

management.

30

S N

3 Display
the key in
QR Code

2.1 Generate
and store the key

1 Request
a key

2.2 Respond
with the key

7 Retrive
patient
data

23
6 Search for the key

5 Request
patient data

8 Respond with
patient data

9 Display
patient data

4 Scan the key

Figure 8: Communication diagram for accessing a patient's data (By author)

1. A Patient sends a request for the key to the server via a mobile app.

2. The server receives the request, generates the key, stores it in the database, and then

sends the key back to the patient as a response.

3. The mobile application receives the digital key and displays it in the view as a QR

code.

4. A patient presents the code to medical personnel; the code is then scanned on the

web app.

5. Web app sends the decoded key to the server and requests to access the patient's

data.

6. The server searches through the database for the key received.

7. If the database holds the key, the server retrieves the patient's data holding the key.

8. The server sends back the patient's data to the client.

9. The client displays the data on the browser for medical personnel to examine and

manipulate the data.

4.3.3 Data model
A medical background is required to build a healthcare data model close to the real

world. The author consulted a health professional and was advised to build the data model

based on information provided by the trusted Czech WikiSkripta (35).

31

This data model describes the entities and relationships between them, alongside the

attributes for each entity. The model represents the structure of the database of the system.

Based on it, the database w i l l be implemented later in the implementation phase based on

this model. Figure 9 illustrates the data model designed.

li li Patient Personal Profile li li Patient Personal Profile

PK Anainnesisld

li li

PK Patientld

FK P ati ent An arn nss is FK FirstMarne

FamilyAnarnnesis LastName

P h armaco lo g ica 1 Anam nesis DateOfBirht

Toxicolog icalAndAbuseAr a nines is Gender

AllergicAn arn nesis Email

WorkAnamnesis Phon e Nu m ber

Social Anam nesis Insurance Number

Gyn ecol ogica 1 An a mnes is Insurance Kod

-ex Patient Diagnose

PK Diaanoseld

FK PatientPre-seitFK

DiagnoseDate

MinimumAnann nesis

Presentlllness

Description

CAVE

User Login

PK Userld

UserNarne

Password

Role

QR Code Key

PK PatientKevID

QRKey

Figure 9: Database model (By author)

It is essential to point out the following:

This model covers only a tiny part of the real-world healthcare system. Many entities

and attributes needed are missing, like treatments and dental records.

Data normalization is not fully applied for the introduced data model. In particular,

the attribute "InsuranceKod" in the "Patient Personal Profile" table should be

separated into a different table for a more accurate model. The same applies to "Role"

in "User Login ."

"User Log in" and " Q R Code K e y " entities have no direct relationship with the

"Patient Personal Profile" entity. This approach is not based on any scientific

resource; it was elicited from personal reasoning. This approach aims to improve the

system's safety by isolating the sensitive data and separating it from the retrieved

data based on a client request. The primary key in all three entities is the same,

meaning that a patient w i l l have the same Id in all of them, which defines a 1:1

relationship implicitly. The identical primary key in all three tables can be ensured

32

by implementing the functionality of creating a new record in the

"PatientPersonalProfile" table in a way that new records with the same Id are inserted

automatically in the "UserLogin" and "QRCodeKey" tables.

4.3.4 Wireframe
Wireframe creation took part in the design phase. The web application and mobile

application layout are visualized using wireframes; this includes the interaction elements

placement in the pages and views. This work wi l l only illustrate the patient page in the web

application and the "Home view" and " Q R Code view" for the mobile application. The

patient page of the web app consists of 3 main components: patient personal information,

diagnoses, and anamnesis. The button "Show" in the table in the diagnosis's component w i l l

open a modal dialog containing additional information for the selected diagnosis. The other

page in the web application is the " Q R key reader page." A s for the mobile application, the

patient can ask for a key using a password or via fingerprint authentication on the main page.

Other views include the login view and the profile view. The wireframe is illustrated in

Figures 10 and 11.

QRcare

^ ^ Q J Q https://www.QRcare.com/patient

insurance number

D i a g n o s e

C A d d ~)

data diagnose

Value 1 Value 2 £ S h o w y

Value 4 Values (S h o w)

Value 7 values £ S t o w)

Value 10 Value 11 (S h o w)

A n a m n e s i s

Family Anamnesis

Lorem ipsum dolor sil annel, consecteturadipisicing elit, sed do eiusmod tempor incidiúunt ut labore et dolore magna aliqua. Ut enim ad minim
veniarn, qui& nostrud exercitation ullamco laboris nisi ut aliquip ex ea c;n -n -cd; ;-;nsequat. Duis aule irure dolor in reprehenderit in voluptate velit
esse dllum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cjpidatat non proident sunt in culpa qui onlcia deserunt mollit artim id est
laborum.

Work Anamnesis

Lorem ipsum dolor si: ans:, -ccnssssx' a-iip siting el: sed dc eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud ex.ercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore en fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollil aiim id est
aborurn

o o o

Figure 10: Patient page wireframe (By author)

33

https://www.QRcare.com/patient

QR Care

Loren ipsutm dolor sil amet, consectelur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

generate j j fingerprint |

< •

• •

j cancel j

< •
Figure 11: Mobile application wireframes (By author)

4.4 Implementation

The implementation of the healthcare system prototype w i l l be split into three parts.

The first part focuses on developing the server-side of the system handling web A P I and

database connection. The second part covers the mobile application, and the last part

describes the implementation of the client-side of the system.

The solution w i l l be split into six main projects, as shown in Figure 12. Note that 3

of these projects belong to the mobile application part of the system, while QRcare.API

project is the server-side, QRcare. Models project is the data models and QRcare. WebApp

project is the client-side of the system.

3 ^ Solution 'QRcare' [6 of 5 projects]
J b QRcare.Mobile

^ a ^ § QRcare
t> a 0 QRcare.Android
> a [*] QRcare.iOS

t> a SgT] QRcare.API
> a H*] QRcare.Models
> a ^3 QRcare.WebApp

Figure 12: Solution structure (By author)

34

Microsoft Visual Studio Community Edition 2019 development environment is used

for developing all three parts of the system.

4.4.1 Server-side

A S P . N E T Core M V C framework is used for building the RESTfu l A P I server-side

of the system. The pattern used for implementing the server-side is Repository Patterns, so

the server-side consists of three layers, data access layer, repositories layer, and controller

layer. The three layers w i l l be described in the following sections.

4.4.1.1 Data access layer

The data model was designed to define entities, attributes, and relationships in the

analysis phase. The designed data model w i l l be implemented in this phase using the "Code

First" approach to Entity Framework. With this approach, we write C# classes that

correspond to data model entities, and E F w i l l handle the creation of the database. C# classes

represent the model entities, classes properties represent the attributes, and navigation

properties define the relationships between entities.

Source code 1 is the P a t i e n t P e r s o n a l P r o f i l e class source code that w i l l serve

as an example of how the classes are built. The class name w i l l be assigned later as the table

name in the database by E F . This class contains several properties, and each property wi l l

be translated to a table column in the database. RequiredAttribute attribute is used for

all string properties to override the database schema rule that allows a data field to be empty.

The first relationship here is between the P a t i e n t P e r s o n a l P r o f i l e entity and the

Anamnesis entity is 1:1. For this, a property of type Anamnesis is used in the

P a t i e n t P e r s o n a l P r o f i l e class, and vice versa Anamnesis class w i l l contain a property

of type P a t i e n t P e r s o n a l P r o f i l e . The second relationship is 1:N between the

P a t i e n t P e r s o n a l P r o f i l e entity and the PresentDiagnose entity; that is why the

property PresentDiagnoses is defined as I C o l l e c t i o n of type PresentDiagnose.

p u b l i c c l a s s P a t i e n t P e r s o n a l P r o f i l e
{

[R e q u i r e d]
p u b l i c s t r i n g P a t i e n t l d { g e t ; s e t ; }
[Re q u i r e d]
p u b l i c s t r i n g FirstName { g e t ; s e t ; }
[Re q u i r e d]
p u b l i c s t r i n g LastName { g e t ; s e t ; }

35

http://ASP.NET

[R e q u i r e d]
p u b l i c DateTime D a t e O f B i r h t { g e t ; s e t ; }
[R e q u i r e d]
p u b l i c s t r i n g Gender { g e t ; s e t ; }
[R e q u i r e d]
[E m a i l A d d r e s s]
p u b l i c s t r i n g E m a i l { g e t ; s e t ; }
[R e q u i r e d]
p u b l i c s t r i n g PhoneNumber { g e t ; s e t ; }
[R e q u i r e d]
p u b l i c s t r i n g InsuranceNumber { g e t ; s e t ; }
[R e q u i r e d]
p u b l i c s t r i n g InsuranceKod { g e t ; s e t ; }
p u b l i c Anamnesis Anamnesis { g e t ; s e t ; }
p u b l i c I C o l l e c t i o n < P r e s e n t D i a g n o s e > P r e s e n t D i a g n o s e s { g e t ; s e t ; }

}
Source code 1: PatientPersonalProfile model class

The model classes are built in a separate project to improve the code's maintainability

and readability. To be able to use these classes, QRca re. Models project must be referenced

in QRcare.API.

The next step is to add database support on the server-side; this is done by creating a

class that inherits from the E F built-in class DbContext, which is used to retrieve and

manipulate the data in the database. Source code 2 includes the part of QRcareDbContext

class handling the P a t i e n t P e r s o n a l P r o f i l e entity only since this is a 130-line class.

For that, we first define a DpSet property of P a t i e n t P e r s o n a l P r o f i l e , and by

overriding the OnModelCreating method, we can configure relationships and properties

to be the key to an entity. Also , we can provide seed data for the database as an initial set of

data. Note here that the QRcareDbContext class includes an instance of

DbContextOptions; this instance handles the configuration for the database and its

connections.

p u b l i c c l a s s QRcareDbContext : DbContext
{

p u b l i c QRcareDbContext(DbContextOptions<QRcareDbContext> o p t i o n s)
: b a s e (o p t i o n s)

{
}
p u b l i c D b S e t < P a t i e n t P e r s o n a l P r o f i l e > P a t i e n t P e r s o n a l P r o f i l e s { g e t ; s e t ; }
p r o t e c t e d o v e r r i d e v o i d O n M o d e l C r e a t i n g (M o d e l B u i l d e r m o d e l B u i l d e r)
{

b a s e . O n M o d e l C r e a t i n g (m o d e l B u i l d e r) ;
m o d e l B u i l d e r . E n t i t y < P a t i e n t P e r s o n a l P r o f i l e > ()

.HasKey(p => p . P a t i e n t l d) ;
m o d e l B u i l d e r . E n t i t y < P a t i e n t P e r s o n a l P r o f i l e > ()

.HasOne(p=>p.Anamnesis)

.WithOne(a => a . P a t i e n t P e r s o n a l P r o f i l e)

36

.HasForeignKey<Anamnesis>(p=>p.PatientAnamnesisFK);
m o d e l B u i l d e r . E n t i t y < P a t i e n t P e r s o n a l P r o f i l e > ()

.HasMany(p => p.P r e s e n t D i a g n o s e s)

.WithOne(a => a . P a t i e n t P e r s o n a l P r o f i l e)

. H a s F o r e i g n K e y (p = > p . P a t i e n t P r e s e n t F K) ;
m o d e l B u i l d e r . E n t i t y < P a t i e n t P e r s o n a l P r o f i l e > ()

.HasData(new P a t i e n t P e r s o n a l P r o f i l e
{

P a t i e n t l d = "100",
FirstName = "Mohammad",
LastName = "Z a b a d i " ,
D a t e O f B i r h t = new DateTime(1995, 8, 16),
Gender = "Male",
E m a i l = "zabadi@gmail.com",
PhoneNumber = "+470775421255",
InsuranceNumber="3015558077",
InsuranceKod="777",

});
}

}
Source code 2: QRcareDbContext class - partial

The database connection string must be included in the appsetting. json file,

and this is done as in source code 3.

" C o n n e c t i o n S t r i n g s " : {
"DBConnection":

" S e r v e r = (l o c a l d b) \ \ m s s q l l o c a l d b ; D a t a b a s e = Q R c a r e D B ; T r u s t e d _ C o n n e c t i o n = T r u e "
h

Source code 3: Configuring database connection in appsetting.json file

Next is the startup.cs class, it must be modified as in source code 4 for S Q L

Server configuration.

p u b l i c v o i d C o n f i g u r , e S e r , v i c e s (I S e r ' v i c e C o l l e c t i o n s e r v i c e s)
{

services.AddDbContext<QRcar ,eDbContext>(options =>
o p t i o n s . UseSqlSer ,ver ,(C o n f i g u r a t i o n . G e t C o n n e c t i o n S t r i n g (" D B C o n n e c t i o n "))) ;
}

Source code 4: Configuring database connection in startup.cs class

The last thing to do is to add a migration, and E F Core does this by instructing it

using the two commands in PowerShell commands 1. Add-Migration command wi l l

create a directory called Migrations in the project with the migration class in it. It w i l l also

generate other configuration files. The Update-Database command w i l l have E F Core

create the database based on the schema from the migration.

Add-Migration Ini t i a l Q R c a r e
Update-Database

PowerShell commands 1: EF commands for creating/adding migration and creating/updating database

37

mailto:zabadi@gmail.com

B y applying the previous steps, the application is now ready to run and operate on

the database without the need to write any line of S Q L , all handled by E F Core.

Whenever the models are modified, it w i l l be enough to apply the same commands

in PowerShell commands 1 with a different migration name to apply the changes to the

database.

4.4.1.2 Repository layer

Repository pattern intends to create an abstraction layer between the data access layer

and the controller layer of an application. The repository separates the code responsible for

database operations from the controller layer. This is achieved by building a repository

interface for each entity and a repository class that implements the interface. Source codes 5

and 6 are examples of repository implementation.

p u b l i c i n t e r f a c e I PresentDiagnoseRep
{

Task<IEnumerable<PresentDiagnose>> G e t P r e s e n t D i a g n o s e s (s t r i n g p a t i e n t l d) ;
Task C r e a t e P r e s e n t D i a g n o s e (P r e s e n t D i a g n o s e p r e s e n t D i a g n o s e) ;

}
Source code 5: IPresentDiagnoseRep interface for implementing the repository layer

This code declares the set of C R U D methods in the PresentDiagnose repository,

one that returns all diagnoses for a single patient and one that creates a new diagnosis.

p u b l i c c l a s s PresentDiagnoseRep : IPresentDiagnoseRep
{

p r i v a t e r e a d o n l y QRcareDbContext q r c a r e D b C o n t e x t ;
p u b l i c PresentDiagnoseRep(QRcareDbContext q r c a r e D b C o n t e x t)
{

t h i s . q r c a r e D b C o n t e x t = qrc a r e D b C o n t e x t ;
}
p u b l i c async Task<IEnumerable<PresentDiagnose>>
G e t P r e s e n t D i a g n o s e s (s t r i n g p a t i e n t l d)
{

IQueryable<PresentDiagnose>
d i a g n o s e s = q r c a r e D b C o n t e x t . P r e s e n t D i a g n o s e s ;
i f (! s t r i n g . I s N u l l O r E m p t y (p a t i e n t I d))
{

d i a g n o s e s = diagnoses.Where
(e => e . P a t i e n t P r e s e n t F K == p a t i e n t l d) ;

}
r e t u r n a w a i t d i a g n o s e s . T o L i s t A s y n c Q ;

}
}

Source code 6: PresentDiagnoseRep repository class derived from the corresponding repository interface - partial

38

In the repository class, we first implement the corresponding interface, then the

created DbContext class is injected through a constructor, and last, all C R U D methods are

implemented. In Source code 6, only one of the one method w i l l be shown.

4.4.1.3 Controller layer

This layer is responsible for responding to requests made against an A S P . N E T Core

M V C server. A controller is a C# class that derives from a base controller class, allowing it

to inherit several useful methods. Controller actions are methods in the controller class that

gets called when a particular U R L is entered in the browser. (36) Source code 7 contains part

of the PresentDiagnoseController class.

[A p i C o n t r o l l e r]
[R o u t e (" / d i a g n o s e ")]
p u b l i c c l a s s P r e s e n t D i a g n o s e C o n t r o l l e r : C o n t r o l l e r B a s e

{
p r i v a t e r e a d o n l y I P r e s e n t D i agnoseRep presentDiagnoseRep;
p u b l i c P r e s e n t D i a g n o s e C o n t r o l l e r (I P r e s e n t D i a g n o s e R e p presentDiagnoseRep)
{

t h i s . p r e s e n t D i a g n o s e R e p = presentDiagnoseRep;
}
[H t t p G e t (" { p a t i e n t l d } ")]
p u b l i c async Task<ActionResult<IEnumerable<PresentDiagnose>>>
G e t P a t i e n t D i a g n o s e s (s t r i n g p a t i e n t l d)
{

t r y

{
v a r r e s u l t
= a w a i t p r e s e n t D i a g n o s e R e p . G e t P r e s e n t D i a g n o s e s (p a t i e n t l d) ;
i f (r e s u l t . A n y ())
{

r e t u r n O k (r e s u l t) ;
}
r e t u r n NotFoundQ;

}
c a t c h (E x c e p t i o n)

{
r e t u r n BadRequest();

}
}

J
Source code 7: PresentDiagnoseController class for implementing the controller layer - partial

This Controller class is derived from the base class ControllerBase. Note that the

correspondent repository is injected through a constructor. [A p i C o n t r o l l e r] attribute

indicates that the controller class is used to serve H T T P A P I responses, while [Route]

attribute specifies the U R L pattern. The method implemented here is a G E T method, and the

39

http://ASP.NET

action here must be identified using the attribute [HttpGet]. Note that { p a t i e n t l d } is

not a string but a reference to the variable p a t i e n t l d .

4.4.1.4 Access to patient's data

The section w i l l describe the implementation of the server-side role in passing the

permission to access the patient data from a patient to medical personnel. As described in

the communication model in section 4.3.2, the mobile application w i l l send an H T T P request

for a key, and medical personnel w i l l Send an H T T P request for the patient data using that

key. The server-side is responsible for processing and responding to these two requests.

Processing key request

The first step for passing access permission is sending a request for a key from the

mobile application to the server-side. The mobile application sends a P O S T request with the

username and password of the patient to a specified U R L , the server-side upon receiving the

request, checks the user login received details i f they match those on the database, i f it passes,

the server-side generates the key and saves it in the database for the user Id received in the

request. The key generated is then serialized and sent back to the mobile application as a

response. Source code 8 illustrates this process.

p u b l i c async Task<st ring> GetQRcodeKey(UserLogin u s e r)

{
v a r checkPassword = aw a i t q r c a r e D b C o n t e x t . U s e r L o g i n s .

F i r s t O r D e f a u l t A s y n c
(e => e.UserName == user.UserName);

i f (checkPassword i s not n u l l
&& checkPassword.Password == user.Password)

{
v a r r e s u l t = aw a i t q r c a r e D b C o n t e x t . Q R C o d e K e y s . F i r s t O r D e f a u l t A s y n c

(e => e . P a t i e n t K e y l d == u s e r . U s e r l d) ;
i f (r e s u l t != n u l l)

{
s t r i n g key = QRKeyGenerator.GetUniqueKey();
r e s u l t . Q r K e y = key;
awai t qrcareDbContext.SaveChangesAsync();
s t r i n g jsonKey = D s o n S e r i a l i z e r . S e r i a l i z e (k e y) ;
r e t u r n jsonKey;

}
e l s e

r e t u r n n u l l ;
}
r e t u r n n u l l ;

}
Source code 8: GetQRcodeKey method in QRKeyRep class that checks for authentication and generate a digital key

40

The code above is from the QRKeyRep. cs in the repository folder. Note that this

code calls for the method GetUniqueKey in QRKeyGenenaton.es. This method is

responsible for generating a unique key every time it is called, meaning that this key is an

on-request, one-time-use key, leading to this approach to be more secure. Source code 9 is

the code responsible for generating the key.

p u b l i c c l a s s QRKeyGenerator
{

i n t e r n a l s t a t i c r e a d o n l y c h a r [] c h a r s =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIDKLMNOPQRSTUVWXYZ1234567890".ToCharArray();

p u b l i c s t a t i c s t r i n g GetUniqueKey()
{

b y t e [] d a t a = new b y t e [8 0] ;
u s i n g (v a r c r y p t o = RandomNumberGenerator.Create())
{

c r y p t o . G e t B y t e s (d a t a) ;
}
S t r i n g B u i l d e r r e s u l t = new S t r i n g B u i l d e r (2 0) ;
f o r (i n t i = 0; i < 20; i++)
{

v a r rnd = B i t C o n v e r t e r . T o U I n t 3 2 (d a t a J i * 4) ;
v a r i d x = rnd % c h a r s . L e n g t h ;
r e s u l t . A p p e n d (c h a r s [i d x]) ;

}
r e t u r n r e s u l t . T o S t r i n g Q ;

}
}

Source code 9: QRKeyGenerator class responsible for generating the digital key

Processing patient's data request

Upon receiving the key, the patient can permit medical personnel to access the data

simply by passing the key to the medical personnel in a Q R code form. This w i l l be illustrated

later when describing the mobile application implementation. The medical personnel using

the client-side sends the key to the server and requests the patient data; the server-side then

looks for the key in the database and sends back the patient Id holding that key.

After receiving the patient Id on the client-side, it navigates to the patient page with

the received Id as a route parameter in the U R L , which leads to the client-side sending an

H T T P G E T request to the server for the patient data. The controller receives the request and

passes it to the repository, where it processes it as illustrated in Source code 10.

p u b l i c async T a s k < P a t i e n t P e r s o n a l P r o f i l e > G e t P a t i e n t (s t r i n g p a t i e n t l d)
{

v a r key = q r c a r e D b C o n t e x t . Q R C o d e K e y s . F i r s t O r D e f a u l t
(e => e . P a t i e n t K e y l d == p a t i e n t l d) ;

i f (key.QrKey i s not n u l l)
{

key.QrKey = n u l l ;

41

http://QRKeyGenenaton.es

a w a i t qrcareDbContext.SaveChangesAsync();
r e t u r n a w a i t q r c a r e D b C o n t e x t . P a t i e n t P e r s o n a l P r o f i l e s

. F i r s t O r D e f a u l t A s y n c (e => e . P a t i e n t l d == p a t i e n t l d) ;
}
r e t u r n n u l l ;

}
Source code 10: GetPatient method in PatientRep class that returns patient personal data after checking for a key

As seen above, the server first checks i f there is a key stored with a P a t i e n t K e y l d

same as the p a t i e n t l d received in the request; i f so, the server deletes the key, which

emphasize that the key is a one-time-key, allowing only one access per key. The system then

checks for the patient profile with the patient Id received in the request and sends it back to

the client-side as a response.

Above was the implementation of the server-side of the application; the source codes

captioned are just part of the whole server-side source code, the rest of the source code is

similar in the structure, only differs in the way of data processing. The rest of the source

code w i l l be attached to the thesis.

4.4.2 Mobile application

The mobile application side of the project is implemented in Xamarin; this part of

the solution consists of three different projects. The first project is the shared project; the

author names it QRcare, where the collection of classes, models, services, views, and view

models are located. This project allows sharing code across both .Android and .iOS

projects, most of the application logic and coding w i l l be implemented in this project. The

other two projects are QRcare .Android and QRcare. iOS, they are named automatically

by V S after the first project. Android and iOS applications are built differently, so before

deploying the mobile application on either of them, some configurations must be done,

which is the purpose of QRcare. Android and QRcare. iOS projects.

The application architecture is built in an M V V M architectural pattern; therefore, the

application wi l l be split into models, views, and view models. The implementation of the

M V V M pattern w i l l be discussed in the following sections.

4.4.2.1 Models

This is the part where business logic and data objects are implemented, and it also

covers the interaction with web services for data retrieval and on-device data storing.

42

Same as the server-side, the data in the mobile application is modelled as classes with

properties; these models w i l l serve as data mapping from the server to the mobile application.

This application w i l l contain three models: QRKeyModel for key mapping, UserLogin for

login data mapping, and UserModel for patient data mapping. This work w i l l not include

the source code for the models.

The service layer is included in this part of the application; this layer is responsible

for requesting data from the server-side; the requested data is then cashed and mapped to the

U I elements through view models.

The R E S T web requests are implemented in one class called QRKeyService in the

Service directory. In this class, we first need to specify the Web A P I U R L , where the request

wi l l be sent, followed by implementing C R U D operations. Note that the data sent to the

server must be serialized and encoded to an H T T P request format, then deserialize the data

in the H T T P response. Source code 11 illustrates configuring the web service layer and

requesting the patient personal data through a G E T request.

p u b l i c s t a t i c c l a s s QRKeyService
{

s t a t i c s t r i n g B a s e U r l = " h t t p s : / / q n c a n e a p i . a z u n e w e b s i t e s . n e t / " ;

s t a t i c H t t p C l i e n t c l i e n t ;

s t a t i c Q R K e y S e r v i c e Q
{

c l i e n t = new H t t p C l i e n t
{

BaseAddress = new U r i (B a s e U r l)
}J

}
p u b l i c s t a t i c async Task<UserModel>
G e t P a t i e n t P r o f i l e (U s e r L o g i n u s e r L o g i n)
{

van j s o n = D s o n C o n v e r t . S e r i a l i z e O b j e c t (u s e r L o g i n) ;
van c o n t e n t = new S t r i n g C o n t e n t
(json., Encoding.UTF8j " a p p l i c a t i o n / j s o n ") ;
van response = a w a i t c l i e n t . P o s t A s y n c (" / m o b i l e " , c o n t e n t) ;
DObject j s o n r e s p o n s e = DObject.Parse
(r e s p o n s e . C o n t e n t . R e a d A s S t r i n g A s y n c () . R e s u l t) ;
DToken to k e n = j s o n r e s p o n s e ;
UserModel user = token.ToObject<UserModel>();
r e t u r n u s e r ;

}
}

Source code 11: QRKeyService class, the implementation of web service layer and GetPatientProfile method - partial

43

http://qncaneapi.azunewebsites.net/

4.4.2.2 View Models

View models contain the code behind the views; it is separated from the views to

improve the readability and ease the unit testing. View models implement the properties and

commands to which the view can bind data to. It is also responsible for coordinating the data

between models and views. View model receives data and events from views based on user

interaction, then it retrieves the data from models and sends it back to the views in a form it

can easily consume. (37)

View models are connected to the views through X A M L or the view's code-behind

file. The second is used by the author as illustrated in source code 12.

p u b l i c p a r t i a l c l a s s HomePage : ContentPage
{

p u b l i c HomePage()
{

I n i t i a l i z e C o m p o n e n t () ;
t h i s . B i n d i n g C o n t e x t = new HomeViewModelQ;

}

Source code 12: the code-behind of the HomePage view

Source code 13 is a partial code implementation of the HomeViewModel; this view

model is responsible for authenticating the patient before requesting a key from the server.

c l a s s HomeViewModel : BaseViewModel
{

p u b l i c Command GeneretaCommand { g e t ; }
p u b l i c Command GeneretaFingerprintCommand { g e t ; }
p r i v a t e s t r i n g password;

p u b l i c HomeViewModel()
{

T i t l e = "QRcare";
GeneretaCommand = new Command(OnGenerateClicked);
GeneretaFingerprintCommand
= new Command(onGeneretaFingerprintCommand);

}
p u b l i c s t r i n g Password
{

get { r e t u r n password; }
s e t
{

S e t P r o p e r t y (r e f password, v a l u e) ;
}

}
p r i v a t e async v o i d O n G e n e r a t e C l i c k e d (o b j e c t o b j)

{
va r i s A u t h = a w a i t QRKeyService.Auth
(P r e f e r e n c e s . G e t (" U s e r n a m e " , s t r i n g . E m p t y) , Password);
i f (i s A u t h != n u l l)

44

a w a i t Shell.Current.GoToAsync($"//{nameof(QRCodePage)}");
}
e l s e
{

a w a i t A p p l i c a t i o n . C u r r e n t . M a i n P a g e . D i s p l a y A l e r t
(" U n a u t h o r i z e d " , "Wrong Password, p l e a s e t r y a g a i n . " , "OK");

}
}

}
Source code 13: HomeViewModel class - partial

The password property and one command are implemented in the above source code;

the complete source implements two commands, but only one command is covered in this

work. The implementation of GeneretaFingerprintCommand w i l l be available in the

complete source code attached to this work.

The password property is one-way bound to an entry element on the HomePage view,

as it w i l l be illustrated later in Source code 14. Pressing Generate button in the view w i l l fir

an event that triggers GenereteCommand, where the view model authenticates the user by

the password entered. When the user is authenticated, the shell w i l l display the QRCodePage

view. Otherwise, it w i l l display a dialog box with the alert provided above.

4.4.2.3 Views

This part is responsible for displaying the information to the user; this is where the

user interface is defined and implemented using X A M L . Views are also responsible for data

binding and sending events to the view models. Events are triggered by user interaction like

pressing a button; or self-triggered like setting a timer. When the user presses a button, this

fires an event that is sent to the view models, where a chain of actions is performed. Using

Two-Way binding, views can send data to view models and vice versa. (37) an example of

this is source code 14, which is a partial X A M L from the HomePage view.

<StackLayout O r i e n t a t i o n = " V e r t i c a l " Padding="20" Spacing="20">
<Label Text="Generate QR code u s i n g Password o r F i n g e r p r i n t "

T e x t C o l o r = " B l a c k "
F o n t S i z e = " L a r g e " H o r i z o n t a l T e x t A l i g n m e n t = " C e n t e r " / >

<Label Text="Password" Padding="0,20,0,0" T e x t C o l o r = " B l a c k " / >
<Entry IsPassword="True"

T e x t = " { B i n d i n g Password}"
T e x t C o l o r = " B l a c k "
B a c k g r o u n d C o l o r = " { S t a t i c R e s o u r c e Accent}"/>

<StackLayout B a c k g r o u n d C o l o r = " { S t a t i c R e s o u r c e P r i m a r y } "
O r i e n t a t i o n = " H o r i z o n t a l " >

<Button V e r t i c a l O p t i o n s = " C e n t e r "
ImageSource="icon_QR.png" Text="Generate"

45

Command="{Binding GeneretaCommand}"
H o r i z o n t a l O p t i o n s = " S t a r t A n d E x p a n d "
B a c k g r o u n d C o l o r = " { S t a t i c R e s o u r c e P r i m a r y } " />

<Button V e r t i c a l O p t i o n s = " C e n t e r "
I m a g e S o u r c e = " i c o n _ f i n g e r p r i n t l o g i n . png"
T e x t = " f i n g e r p r i n t "
Command="{Binding GeneretaFingerprintCommand}"
HorizontalOptions="EndAndExpand"
B a c k g r o u n d C o l o r = " { S t a t i c R e s o u r c e P r i m a r y } " />

</StackLayout>
</StackLayout>

Source code 14: XAML markup of the Home View - partial

Note in this example that using a One-Way binding, the element <Entry> is bound

to the property Password in HomeViewModel. When the user enters a value here, the

property gets updated in real-time. The element < Button > is bound to the

GenerateCommand command; pressing this button w i l l trigger this command on the view

model. The properties here define the design of X A M L elements. For instance, the horizontal

position of the element is defined using the HorizontalOptions property. Elements like

<StackLayout> define the layout of the view.

4.4.2.4 Requesting a key

The primary purpose of the mobile application is to allow the patient to grant medical

personnel access to the patient's data. Using the mobile app, the patient sends a request to

the server for a key displayed on the mobile as a Q R code. This section w i l l go through the

actions performed by the mobile application for requesting the key.

When the mobile application is launched, the patient w i l l be asked to log in using a

password or to be authenticated using a fingerprint. For the fingerprint authentication to be

available, the patient must use the correct password the first time he logs in, and the password

is then stored in the application to be used later for fingerprint authentication. This part

implementation w i l l not be covered in this work.

When the user is authenticated, the application wi l l display the HomePage view

where the patient can request a key; the patient here w i l l be authenticated again using a

password or fingerprint before requesting a key. This is illustrated in Source codes 13 and

14.

When the user is authenticated, the QRCodePage view is displayed, the view model

of this view wi l l send an A P I request to the server for requesting a key; i f the request is

46

successful, the key is sent back to view, where it w i l l be displayed as Q R code. Source code

15 is part of the view model code.

p u b l i c async v o i d LoadQRKeyQ
{

Key = a w a i t QRKeySenvice.GetQRKey(DataStone.GetUsen().Result);
}

p u b l i c v o i d OnAppeaningO
{

LoadQRKeyQ;
}

p r i v a t e async v o i d O n C l o s e C l i c k e d ()

{
a w a i t Q R K e y S e n v i c e . D e l e t e Q R K e y (D a t a S t o n e . G e t U s e n I d () . R e s u l t) ;
a w a i t Shell.Current.GoToAsync($"//{nameof(HomePage)}");

}
Source code 15: QRCodeViewModel code responsible for requesting, data binding, and deleting the key

The OnAppearing() method is overridden in the code-behind of the view, this

method w i l l be triggered when the view appears on the shell, where it calls LoadQRKey ()

method that calls GetQRKey method in QRKeyService class, GetQRKey method

implementation is shown in Source code 16, note that this method expects a UserLogin as

a parameter, which w i l l be provided by the data stored in the application. The

OnCloseClicked method is triggered by the CloseCommand that is bound to the close

button, and this method w i l l then send a D E L E T E request to the server to delete the key

from the database.

p u b l i c s t a t i c async Task<stning> GetQRKey(UsenLogin u s e r)
{

van j s o n = D s o n C o n v e n t . S e n i a l i z e O b j e c t (u s e n) ;
van c o n t e n t = new S t n i n g C o n t e n t

(json., Encoding.UTF8j " a p p l i c a t i o n / j s o n ") ;
van nesponse = a w a i t c l i e n t . PostAsync("/QRKey"., c o n t e n t) ;
i f (n e s p o n s e . I s S u c c e s s S t a t u s C o d e)
{

var n e s u l t = aw a i t nesponse.Content.ReadAsStningAsync();
retunn 3sonConvent.DesenializeObject<stning>(nesult);

}
retunn n u l l ;

Source code 16: GetQRKey method in QRKeyService class

Here, the GetQRKey method serializes the UserLogin parameter passed, encodes

it, and send it as an H T T P P O S T request to the server, the response which is the string key

is then deserialized and returned to the view model that passes it using data binding to the

view, the view then transforms it to a Q R code as shown in Source code 17.

<zxing:ZXingBancodeImageView BancodeValue="{Binding Key}"
HeightRequest="300"

47

WidthRequest="300"
Hor ,izontalOptions="Center ,AndExpand"
V e r , t i c a l O p t i o n s = " C e n t e r 1 And Expand ">

<zxing:ZXingBarcodeImageView.BarcodeOptions>
<zxingcommon:EncodingOptions Height="300" Width="300" />

</zxing:ZXingBarcodeImageView. BarcodeOptions>
Source code 17: implementing ZXing through XAML for generating the QR code

Z X i n g is the NuGet package that allows transforming a text (the binding key in this

case) into a Q R code. This view also implements a Cancel button that sends an H T T P

D E L E T E request to the server to delete the key from the database.

This section concludes the implementation of the mobile application. It is essential

to mention that this application is configured to run on Android but not iOS since iOS

applications can only be configured and tested in macOS. However, Windows OS was used

during the implementation of the system.

4.4.3 Client-side

The client-side of the application w i l l run on the browser, and it is the side of the

system that w i l l be used by medical personnel to access, view, and manipulate the patient's

data. The client-side wi l l be implemented in Blazor WebAssembly, chosen over Blazor

Server for its advantages, mainly its low latency compared to Blazor Server.

4.4.3.1 Project structure

Blazor WebAssembly's initial structure is defined on creating the project template,

and the structure wi l l be described starting from the project's entry point and continuing with

the app run life cycle. (38)

• Program.cs: This file is the app's entry point responsible for setting up the

WebAssembly host. The root component (App. Razor) for the app is defined here.

• Wwwroot: This folder contains the public static assets of the app, such as CSS files

and the app icon. But most importantly, index, html file, which is the root page of

the app, this H T M L file defines where the root component is rendered by specifying

an <div> element with the id 'app.'

• App. r a z o r : This is the app's root component that sets up client-side routing using

the built-in Router component. The root component also defines the layout

component, by default, its Main Layout. razor.

48

• MainLayout. razor: The application's main layout component, here the

navigation, main, and footer are defined. This component is placed in the Shared

folder alongside other components, such as NavMenu.

• NavMenu. razor: This component implements the sidebar navigation. The

NavLink component in NavMenu is responsible for rendering navigation links to

other Razor components.

• _Import. r a z o r : This is not a Razor component file; this file defines the common

Razor directives to import into the app's components, such as @using directives for

namespaces.

• Pages folder: This folder contains the routable pages (which are components with

.razor extension) rendered in the Blazor app's body. These pages are defined by

assigning a route for them using the directive @page.

• Components folder: This folder contains the reusable components that can be

rendered in other components. Unlike components in the pages folder, components

here have no specific route.

• Services folder: contains the collection of classes and interfaces responsible for

sending H T T P requests and receiving H T T P responses.

As mentioned before, Blazor apps are built using Razor components, consisting of

Razor markup, H T M L , and C#. C# code is written in @code block in Razor component.

However, this code can be separated into a class using the base class approach; the

component then specifies its base class using the @in her i t s directive. This can be noticed

in the Pages folder where PatientPage. razor inherits PatientPageBase.es class.

In the following sections, the process of scanning the Q R key and navigating to the

patient page w i l l be described. The Q R scan page w i l l cover the process of scanning the QR

key, while the patient page w i l l cover the process of retrieving the patient data and how the

H T T P request is sent to the server.

4.4.3.2 QR scan page

This page is responsible for scanning the Q R code, which is the key given by the

patients to access their data. Note that a Q R scanner can be used for scanning the Q R code.

49

http://PatientPageBase.es

However, a webcam scanner was implemented as part of an improved independent system,

decreasing the need for external hardware for the system to function.

This page consists of an input text and two buttons, one that opens the webcam for

scanning the Q R key, and the other navigates to the patient page of the Q R key holder.

Source code 18 is a snippet code of the Razor component markup.

<div c l a s s = " f i e l d is-grouped">
<div c l a s s = " c o l - s m - l l " >

<EditForm Model="@Key">
<InputText i d = " P a t i e n t I d " c l a s s = " f o r m - c o n t r o l "

p l c e h o l d e r = " P a t i e n t ID" @bind-Value="Key" />
</EditForm>

</div>
<p c l a s s = " c o n t r o l " >

<a c l a s s = " b u t t o n " >
<span c l a s s = " o i o i - c a m e r a - s l r "

a r i a - h i d d e n = " t r u e " @onclick="OpenCamera"x/span>

</p>
</div>
<div class="col-sm-10">

<button c l a s s = " b u t t o n i s - p r i m a r y i s - l i g h t "
@onclick="ReadQRKey">Submit</button>

</div>
Source code 18: Razor markup part of QrScanPage page/component - partial

Note that EditForm and InputText are nested built-in Blazor components.

E d i t Form is used mainly for validation, where the Model attribute specifies the instance to

be validated. InputText is an input component for editing string value that binds it to a

specified property using the @bind-Value directive. In the above source code, the

InputText is bound to the Key property. Both components are helpful in handling events

such as onchange or onclick events, specifying the actions to be performed on such events.

When the button with the camera icon is pressed, this triggers the @on c l i c k event

that calls the OpenCamera method since it is bound to it. The code part of the Razor

components is placed in a base class. Source code 19 is the component code.

p u b l i c c l a s s QRScanPageBase : ComponentBase
{

[I n j e c t]
p u b l i c IQRKeySer QRKey { g e t ; s e t ; }
[I n j e c t]
NavigationManager NavigationManager { g et; s e t ; }
p u b l i c s t r i n g Key { g e t ; s e t ; } = s t r i n g . E m p t y ;
p u b l i c async Task ReadQRKeyQ
{

s t r i n g id= a w a i t Q R K e y . G e t P a t i e n t l d (K e y) ;
N a v i g a t i o n M a n a g e r . N a v i g a t e T o ($ " / p a t i e n t / { i d } ") ;

50

}
p u b l i c BarcodeReader Reader=new B a r c o d e R e a d e r Q ;
p u b l i c v o i d OpenCamera(MouseEventArgs a r g s)
{

i f (R e ader.IsDecoding)
Reader. S t o p D e c o d i n g Q ;

e l s e
R e a d e r . S t a r t D e c o d i n g () ;

}
p u b l i c v o i d L o c a l R e c e i v e d B a r c o d e T e x t (B a r c o d e R e c e i v e d E v e n t A r g s a r g s)
{

Key = a r g s . B a r c o d e T e x t ;
R e a d e r . S t o p D e c o d i n g () ;
R e a d e r . D i s p o s e () ;
StateHasChanged();

}
}

Source code 19: Razor code part of QrScanPage page/component

Starting from the top, this class is derived from ComponentBase built-in class,

allowing it to be inherited by the Razor component. [I n j e c t] attribute allows us to access

services using the dependency injection technique. In this example, we are injecting

IQRKeySen, which is an H T T P service, and NavigationManagen for managing U R L

navigation. Next, we have the property 'Key' bound to an InputText as shown in Source

code 18. The object Reader is an instance of a class from an installed Z X i n g NuGet package

responsible for scanning the Q R code.

To read the code, the user must press the camera-icon button to access the webcam

that acts as a scanner here; this calls the method 'OpenCamena,' which checks i f the

webcam is on and reverses its status.

<BlazorBarcodeScanner.ZXing.JS.BarcodeReader T i t l e = " "
@ref="Reader"
StartCameraAutomatically="false"
ShowStart="false"
ShowReset="false"
ShowToggleTorch="false"
ShowVideoDeviceList="false"
VideoWidth="3000"
OnBarcodeReceived=
" L o c a l R e c e i v e d B a r c o d e T e x t "
VideoHeight="2000"
ShowResult="false"/>

Source code 20: Nesting ZXing component in QrScanPage page/component

Source code 20 is the code nesting the Z X i n g component responsible for accessing

the webcam and scanning the Q R code. Note that the @nef directive references this

component to the defined object Reader. When the camera successfully scans the code and

51

receives a value, it calls the LocalRecivedBarcodeText method, assigning the value

received to the property ' Key.'

Finally, the submit button is bound to the method ReadQRKey, pressing it w i l l call

the method that sends a G E T request with the key as a parameter, the server checks for the

key in the database and responses with the patient id having the key, then on the client-side,

the component navigates to the patient page of the route ". / p a t i e n t / { i d } , " where {id}

is a variable, not a string. This is illustrated in Source code 19 above.

4.4.3.3 Patient page

This section w i l l use the patient page as an example of how Blazor is implemented

and how the app sends H T T P requests to the server.

The patient page is responsible for displaying the patient medical data retrieved from

the server, allowing authenticated medical personnel to add to/update the data retrieved and

send the changes back to the server to be saved on the database.

For that, the patient page w i l l implement the functionality for displaying the patient

personal data, displaying diagnoses with the ability to add new diagnoses, and displaying

the anamnesis with the ability to update them.

PatientPage. razor file is a Razor component itself, meaning that it is built on

Razor syntax, consisting of Razor markup, H T M L , and C#, the C# code is placed in a base

class. Using component nesting, we can include a component into another component, and

the nested components are declared using H T M L syntax, where the component name is used

as an H T M L tag name. Source code 21 is a snippet code from PatientPage. razor.

@page " / p a t i e n t / { P a t i e n t I d } "
(S i n h e r i t s P a t i e n t P a g e B a s e

@if (P a t i e n t P e r s o n a l P r o f i l e i s n u l l)
{

<SfSpinner Visible="tnue" Label="Loading"
Type="@SpinnerType.Fabric" Size="100"x/SfSpinner>

}
e l s e
{

<div c l a s s = " p a n e l " >
<div c l a s s = " p a t i e n t - s e c t i o n heading text-nowrap">

< l a b e l c l a s s = " p a n e l - t i t l e " > P a t i e n t < / l a b e l >
</div>

</div>
<div c l a s s = " f o r m - g r o u p ">

52

< l a b e l c l a s s = " c o l - s m - 2 c o l - f o r m - l a b e l " >
F i r s t Name

</label>
< l a b e l c l a s s = " c o l - s m - 2 c o l - f o r m - l a b e l " >

(S P a t i e n t P e r s o n a l P r o f i l e . F i r s t N a m e
</label>

</div>
J

Source code 21: Razor markup part of PatientPage page/component - partial

After scanning the Q R key, the client-side navigates to the patient page with the

patient Id as the route parameter; the route parameter is used to populate the corresponding

component parameter with the same name. Note the @page directive uses { P a t i e n t l d } as

a route parameter that assigns the value of the route segment to the property P a t i e n t l d

having the [Parameter] attribute as shown in Source code 22. (39)

[Parameter]
p u b l i c s t r i n g P a t i e n t l d { g e t ; s e t ; }
p r o t e c t e d async o v e r r i d e Task O n I n i t i a l i z e d A s y n c ()

{
P a t i e n t P e r s o n a l P r o f i l e = aw a i t P a t i e n t S e r . G e t P a t i e n t (P a t i e n t l d) ;
i f (P a t i e n t P e r s o n a l P r o f i l e i s n u l l)
{

N a v i g a t i o n M a n a g e r . N a v i g a t e T o (" 4 0 4 ") ;
}
e l s e
{

P r e s e n t D i a g n o s e s =(await P r e s e n t D i a g n o s e S e r . G e t P r e s e n t D i a g n o s e s
(P a t i e n t l d)) . T o L i s t () ;

Anamnesis = a w a i t A n a m n e s i s S e r . G e t A n a m n e s i s (P a t i e n t l d) ;
}

Source code 22: Razor code part of PatientPage page/component - partial

The P a t i e n t l d property is then used to send an H T T P G E T request for patient

data, including personal profile, diagnoses, and anamnesis. This H T T P request is sent when

the page is called using the overridden method O n I n i t i a l i z e d A s y n c () . Source code 23

is the implementation of the H T T P service responsible for sending the H T T P request and

receiving the H T T P response.

p u b l i c c l a s s P a t i e n t S e r : I P a t i e n t S e r

{
p r i v a t e r e a d o n l y H t t p C l i e n t h t t p C l i e n t ;
p u b l i c P a t i e n t S e r (H t t p C l i e n t h t t p C l i e n t)
{

t h i s . h t t p C l i e n t = h t t p C l i e n t ;
}

p u b l i c async T a s k < P a t i e n t P e r s o n a l P r o f i l e >
G e t P a t i e n t (s t r i n g p a t i e n t l d)

{
r e t u r n a w a i t h t t p C l i e n t . G e t F r o m 3 s o n A s y n c < P a t i e n t P e r s o n a l P r o f i l e >

53

($ " p a t i e n t / { p a t i e n t l d } ") ;
}

}
Source code 23: implementation of HTTP service for patient personal data

The patient page also allows the medical personnel to review the old diagnoses, add

a new one, and review and update the anamnesis. However, the implementation of those wi l l

not be covered in this work.

The event of adding a new diagnosis or updating the anamnesis causes the component

to be rendered again without the need to refresh the page. In other words, the medical

personnel w i l l still have access to manipulate the patient data as long as he does not navigate

out of the patient page. Once he does, the session is closed, and all access to patient data w i l l

be denied until the patient allows it by requesting a key again.

With that, we conclude the implementation phase of the three sides of the system,

noting that several functionalities of the system that are implemented were not covered in

this work. However, the implementation of these functionalities follows the general concept

of implementation that was described.

4.5 Testing

The final phase of the practical part is testing the software implemented. Typically,

several software tests are performed on the software before determining whether it is ready

to be used by public users. However, only system testing and usability testing w i l l be

performed on the implemented healthcare system.

4.5.1 System testing
This level of testing validates the integrated software application as a whole. The

purpose of this test is to evaluate the system's compliance with its specified requirements.

The author performed system testing during the implementation phase of the system upon

implementing each of the specified requirements in the analysis phase individually, i f the

system performs the tasks (like scanning the Q R code), retrieves the data (like displays the

correct patient data), and saves the changes of data on the database (like saving the new

added diagnose) correctly, the system passes the test. Otherwise, the system is debugged to

find the reason for fixing such an error.

54

After finishing the system implementation, the system was published on Microsoft

Azure to perform usability testing. The author applied the configuration needed for the

system's sides to communicate with each other over the internet instead of the local host

network; the author then deployed the system on Microsoft Azure and performed the system

test for one last time to validate all the system functionalities.

4.5.2 Usability testing
Users perform this system evaluation to evaluate how user-friendly the software is

by asking participants to perform multiple tasks while observing them and listening to their

feedback. (40) For the implemented system, 4 participants were asked to evaluate the system

usability by performing the following tasks:

• L o g in to the mobile application using the provided user login data.

• Request a key using the mobile application.

• Scan the key using the Blazor WebAssembly application on the browser.

• Review the patient's medical data.

• Manipulate the patient's data by adding new diagnoses and updating the anamnesis.

After performing these tasks, the participants were asked for feedback on the tasks

performed. They were also asked about likes, dislikes, and suggestions to improve the

system.

55

5 Results and discussion

5.1 Test results

The participants were asked to perform the five main tasks of the system. The first

two tasks were performed using the mobile application, where all 4 participants could finish

the given tasks successfully. The only issue they pointed out was that the application does

not show a loading screen indicating that the system is performing the login process; it takes

about 6 seconds for the system to perform this process. Also , 1 of the 4 participants did not

like the colours used in the application.

As for the next three tasks, the participants used the client-side (the Blazor

application) to perform them. The application starts at the login page, which is implemented

with a code-behind. However, the participants were informed that the login in page is not

functional, and pressing the login button is sufficient to navigate to the Q R scan page for the

participants to start performing the tasks.

3 out of the 4 participants managed to find out immediately how to start the webcam

to scan the Q R code. One participant pressed submit button on the first try and was directed

to the "404" page. However, he succeeded on the second try.

A l l participants recognized the data displayed on the patient page and displayed the

additional information for a specific diagnosis. However, only two of them noticed that the

anamnesis section was collapsible and pressing the Anamnesis panel w i l l show the patient's

anamnesis.

A l l participants successfully added new diagnoses and successfully updated the

anamnesis.

When the participants were asked for feedback on the client-side application, all

participants gave positive feedback regarding error prevention and visibility of system status

and that the system shows whether the diagnoses and anamnesis are updated or not.

Some suggestions given by participants to improve the system are:

• Implement a loading indicator for the login view of the mobile application.

• Display the patient personnel data on the patient page in a more readable and

user-friendly way.

56

• Implement a search function for the diagnoses section to ease finding the

related diagnoses when the patient has many.

• Implement a confirmation dialog where the user must confirm to apply the

changes performed.

5.2 Discussion

5.2.1 System usability

The system's main users are patients (the public users) and medical personnel. The

usability testing is focused on the system areas used by public users, which are the mobile

application, and the way the data is displayed on the patient page (this is a part of further

system improvements allowing patients to login using the client-side and review their own

data), the system passed the usability testing covering these areas. As for the medical

personnel, special training w i l l be provided to clarify the system functionalities. The

implemented prototype is not so complex to require training to be used, but i f the system is

to be further improved, the complexity w i l l grow, and the medical personnel must be trained

to use it.

5.2.2 Proposed improvements

This work is only a prototype of a real-world healthcare system; this prototype can

be further improved and developed to be used by the public. In the short run, the author is

proposing the following improvements:

• Implementation of authentication and authorization on the client-side,

allowing only authenticated users to use it, and based on the user role in the

system, only the needed data and functionalities w i l l be available.

• Extending the database and client-side to include other needed medical data

(like treatments) and other health institutions such as dentistry and pharmacy.

• Improving the mobile application and adding functionalities such as a

calendar for appointments and a notifications system for notifying the patient

of various events, such as a treatment reminder and notifying the patient when

the data is accessed or changed.

• Styling improvements on both client-side and mobile applications.

57

• Security improvements on the server-side.

5.2.3 Benefits of the system

In addition to the benefits brought by WebAssembly and Blazor WebAssembly that

were described in the literature overview, the implemented system brings major benefits for

both developers and the medical section. First, for developers, being able to work with .NET

environment and code in C# gives a developer a full-stack experience. It allows them to

implement native and cross-platform applications, especially with the . N E T new framework

M A U I that allows developing apps to run on both mobile and desktop using a single shared

codebase. Simply put, with Blazor WebAssembly and M A U I , an application can run on

more than %96 of all mobile and desktop devices.

On the other hand, the medical section and the healthcare institutions can benefit

from the system by providing a shared platform for all medical personnel, where all the

patient's medical record data are saved to and retrieved from one place securely and

efficiently and allows a patient to grant health institutions access to the patient's medical

data in the simplest and most secure way.

Another benefit is that a digital healthcare system allows automation to take place in

the medical section by using artificial intelligence and neural network in the healthcare

system, which wi l l help detect and reduce medical mistakes caused by the human factor,

such as prescription errors, and alerting medical personnel on error occurrence. Such a

system also helps detect genetic diseases and keep track of a patient's health condition. In

conclusion, a digital healthcare system benefits both patients and the medical section.

58

6 Conclusion

The goal of the thesis was to develop and implement a healthcare system in the .NET

platform and define the technologies, frameworks, platforms within . N E T needed to

implement the system. This was achieved by implementing a system that consisted of a

server-side, client-side, and mobile application. The system sides were implemented in

A S P . N E T Core, Blazor WebAssembly, and Xamarin. The system also includes a database

built in S Q L Server. Other technologies, frameworks, and patterns were used to build a

durable system, such as Entity Framework, M V V M , M V C , and more. The theoretical part

of the thesis describes all the concepts used during the system implementation. The

discussion section of this thesis discusses some advantages of the presented prototype and

proposed improvements that can be applied to the system.

Another goal was to introduce WebAssembly and Blazor WebAssembly

technologies, which was achieved in the theoretical part discussing both technologies in

detail alongside Blazor Server to differentiate it from Blazor WebAssembly.

This work proposes an approach for managing data access permission, where a

patient can grant permission to access the patient's data by passing a digital key in the form

of a Q R code generated by the server. This key is a one-time on-request key, meaning that a

new key is generated on the patient request and is deleted after it is used to access data.

59

http://ASP.NET

7 Bibliography

1. Usage Statistics of JavaScript as Client-side Programming Language on Websites,

February 2022. W3Techs - extensive and reliable web technology surveys. [Online] 2 12,

2022. https://w3techs.com/technologies/details/cp-javascript/.

2. Himschoot, Peter. Microsoft Blazor: Building Web Applications in .NET. Mel le , Belgium :

Apress, 2020. 9781484259276.

3. Engstrom, Jimmy. Web Development with Blazor and .NET: A hands-on guide to building

interactive web UIs with Blazor and C#. Birmingham, U K : Packt Publishing Ltd. , June

2021.978-1-80020-872-8.

4. WebAssembly. WebAssembly. [Online] https://webassembly.org/.

5. WebAssembly Support, caniuse. [Online] 29 1 2022. https://caniuse.com/wasm.

6. F A Q - WebAssembly. WebAssembly. [Online] https://webassembly.org/docs/faq/.

7. Introduction to A S P . N E T Core Blazor. Microsoft Docs. [Online]

https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-6.0.

8. A S P . N E T Core Razor components. Microsoft Docs. [Online] Microsoft.

https://docs.microsoft.com/en-us/aspnet/core/blazor/components/?view=aspnetcore-6.0.

9. Wright, Toi B . Blazor WebAssembly by Example: A project-based guide to building web

apps with .NET, Blazor WebAssembly, and C#. Birmingham U K : Packt Publishing, 2021.

9781800567511.

10. Introduction to A S P . N E T Core SignalR. Microsoft Docs. [Online]

https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-6.0.

11. A S P . N E T Core Blazor hosting models. Microsoft Docs. [Online]

https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-6.0.

12. Daniel Roth, Rick Anderson, Shaun Luttin. Overview of A S P . N E T Core. Microsoft

Docs. [Online] Microsoft , 3 4 2022. https://docs.microsoft.com/en-

us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-6.0.

13. L O C K , A N D R E W . ASP.NET Core in Action. Shelter Island, N Y : Manning

Publications, 2018. 9781617294617.

60

https://w3techs.com/technologies/details/cp-javascript/
https://webassembly.org/
https://caniuse.com/wasm
https://webassembly.org/docs/faq/
http://ASP.NET
https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-6.0
http://ASP.NET
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/?view=aspnetcore-6.0
http://ASP.NET
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-6.0
http://ASP.NET
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-6.0
http://ASP.NET
https://docs.microsoft.com/en-
http://ASP.NET

14. Lauret, Arnaud. The Design of Web APIs. s.l. : Manning, 2019. 9781617295102.

15. Larkin, Rick Anderson and Kirk . Create a web A P I with A S P . N E T Core. Microsoft

Docs. [Online] Microsoft . https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-

api?view=aspnetcore-6.0&tabs=visual-studio.

16. Smith, Steve. Overview of A S P . N E T Core M V C . Microsoft Docs. [Online] Microsoft .

https ://docs. microsoft.com/en-us/aspnet/core/mvc/overview ?WT.mc_id=dotnet-35129-

website&view=aspnetcore-6.0.

17. Dykstra, Tom. Implementing the Repository and Unit of Work Patterns in an A S P . N E T

M V C Application. Microsoft Docs. [Online] Microsoft . https://docs.microsoft.com/en-

us/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-

4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application.

18. Overview of Entity Framework Core - E F Core | Microsoft Docs. Microsoft Docs.

[Online] Microsoft . https://docs.microsoft.com/en-us/ef/core/.

19. Microsoft Docs. Compare EF6 and EF Core \ Microsoft Docs. [Online] Microsoft .

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/.

20. Migrations Overview - E F Core. Microsoft Docs. [Online] Microsoft, 27 10 2021.

https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-

cl i .

21. S Q L Server Tutorial. What is SQL Server. [Online]

https://www.sqlservertutorial.net/getting-started/what-is-sql-server/.

22. What is Xamarin? - Xamarin. Microsoft Docs. [Online] Microsoft .

https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin.

23. Xamarin.Essentials - Xamarin . Microsoft Docs. [Online] Microsoft .

https://docs.microsoft.com/en-us/xamarin/essentials/.

24. What is Xamarin.Forms? - Xamarin | Microsoft Docs. Microsoft Docs. [Online]

Microsoft . https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin-forms.

25. Mazloumi, Dan Hermes and D R . Nima. Building Xamarin.Forms Mobile Apps Using

XAML. s.l. : Apress, 2.2019. 9781484240304.

61

http://ASP.NET
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-
http://ASP.NET
http://microsoft.com/en-us/aspnet/core/mvc/overview
http://ASP.NET
https://docs.microsoft.com/en-
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin-forms

26. The Model -View-ViewModel Pattern - Xamarin . Microsoft Docs. [Online] Microsoft.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-

patterns/mvvm.

27. . N E T (and . N E T Core) - introduction and overview . Microsoft Docs. [Online] Microsoft

. https://docs.microsoft.com/en-us/dotnet/core/introduction#net-core-net-framework-mono-

uwp.

28. What's new in . N E T 5 . Microsoft Docs. [Online] Microsoft .

https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-5.

29. Object-Oriented Programming (C#) . Microsoft Docs. [Online] Microsoft.

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/oop.

30. by Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, Peter Golde. The C#

Programming Language (3rd Edition), s.l. : Addison-Wesley Professional, 2004. 978-

0321562999.

31. A Tour of C# - C# Guide. Microsoft Docs. [Online] Microsoft .

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/.

32. David Gourley, Brian Totty, Marjorie Sayer, Anshu Aggarwal, Sailu Reddy. HTTP: The

Definitive Guide: The Definitive Guide (Definitive Guides), s.l. : O'Reilly Media, 2002. 978-

1565925090.

33. GitHub - zxing/zxing: Z X i n g ("Zebra Crossing") barcode scanning library for Java,

Android. GitHub. [Online] zxing. https://github.com/zxing/zxing.

34. Software Development Life Cycle (S D L C) - B i g water Consulting. Big water

Consulting. [Online] 8 4 2019. https://bigwater.consulting/2019/04/08/software-

development-life-cycle-sdlc/.

35. ČR, síť lékařských fakult. Anamnéza - WikiSkripta. WikiSkripta. [Online]

https://www.wikiskripta.eu/w/Anamn%C3%A9za.

36. Walther, Stephen. A S P . N E T M V C Controller Overview (C#). Microsoft Docs. [Online]

Microsoft , 19 2 2020. https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-

versions-l/controllers-and-routing/aspnet-mvc-controllers-overview-cs.

62

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-
https://docs.microsoft.com/en-us/dotnet/core/introduction%23net-core-net-framework-mono-
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-5
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/oop
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://github.com/zxing/zxing
https://bigwater.consulting/2019/04/08/software-
https://www.wikiskripta.eu/w/Anamn%C3%A9za
http://ASP.NET
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-

37. Johnson, Paul. Using MWM Light with yourXamarin Apps. Merseyside, U K : Apress,

2018.9781484224748.

38. A S P . N E T Core Blazor project structure. Microsoft Docs. [Online] Microsoft.

https://docs. microsoft.com/en-us/aspnet/core/blazor/project-structure ?view=aspnetcore-

6.0.

39. A S P . N E T Core Blazor routing and navigation. Microsoft Docs. [Online] Microsoft .

https://docs.microsoft.com/en-

us/aspnet/core/blazor/fundamentals/routing?view=aspnetcore-6.0.

40. Petra Pavlíčková, Josef Pavlíček. Business Process Models (B P M N and D E M O

Notation) - Usability Study, [book auth.] Eduard Babkin, Russell Lock, Pavel Malyzhenkov,

and Vojtěch Meruňka Robert Pergl. Enterprise and Organizational Modeling and

Simulation. Prague, Czech Republic : Springer International Publishing A G , 2019.

63

http://ASP.NET
https://docs
http://microsoft.com/en-us/aspnet/core/blazor/project-structure
http://ASP.NET
https://docs.microsoft.com/en-

