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OBJECTIVES OF THE WORK 

 

Goals in the theoretical part the goals are as follows: 

• describing the advantages, disadvantages, and difficulties of solving problems by means 

of machine learning approaches, 

• summarizing existing models and approaches for text vectorization. 

 

Main goals of the practical part of this works are: 

• the preparation of training and test sets, 

• the deployment of various pre-trained embeddings models, 

• analysis of performance of said models in combination with machine learning models, 

• evaluation of the results and indicating the best performing model combination, 

• discussion of the implementation of selected model into the pipeline for 

geo-localization. 
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1 INTRODUCTION 
 

Artificial Intelligence (AI) and Machine Learning (ML) have become widely 

recognized and frequently discussed concepts in the public recently. Notably, their versatility 

and ability to tackle complex problems that defy simplistic "If A, then B" descriptions render 

them inherently advantageous.  

Machine learning (ML) relies on procedures where the program learns to solve a given 

problem. This learning occurs mostly through adjusting the system's state to accept input 

and generate an output as a response. If the answers are incorrect, the state is modified, and the 

process is repeated on a training dataset until a system setting is achieved that yields reliable 

results for most data. With sufficient training data and validation process, the trained program 

can be expected to provide reasonably accurate outcomes. 

For instance, the AlphaFold2 AI, which utilizes deep learning (DL) to predict protein 

folding with accuracy comparable to physical methods, like X-ray crystallography, has gained 

significant attention (Jumper et al., 2021; Skolnick et al., 2021). Similarly, image generation 

models based on verbal descriptions, often indistinguishable from the work of skilled graphic 

artists, have gained renown (Borji, 2022).  

However, a main drawback of neural networks (NN) is that they lack transparency 

in their problem-solving approach. While this may not be problematic in some cases, it can be 

critical in others. The ethical implications and rate of progress also raise concerns among 

scientists. 

A significant breakthrough has been made in the field of natural language processing 

(NLP), with the emergence of models that can learn to understand the meanings of the words 

through so called embeddings. Among these, ChatGPT stands out as one of the most prominent, 

owing to its use of the latest third-generation transformer neural network, known as GPT3 

(Brown et al., 2020). This chatbot is easily accessible online and has already proven useful 

in performing practical tasks. Its capabilities extend beyond mere text generation, with recent 

reports indicating that it can also help programmers by writing and correcting code, thereby 

increasing their efficiency and productivity (Narasimhan et al., 2021). With GPT4 becoming 

available for users via ChatGPT Plus and its predecessor gaining more widespread use, its 

impact on various fields cannot be ignored.  
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In the experimental part of this thesis, I aim to prepare a training dataset and train various 

ML models, including Neural Networks (NN), Random Forest (RF), Support Vector Machine 

(SVM), and K-Nearest Neighbors (KNN), to identify the names of institutions, states, or cities. 

An important aspect of this process is selecting the appropriate vectorization approach for 

affiliations, which will be used across all models. By doing so, I hope to determine the optimal 

combination pre-trained word embedding (PWE) model and machine learning (ML) model 

to achieve the best results. This research builds on my bachelor's thesis, where I was able 

to identify the countries in information related to molecules from the ChEMBL and PubMed 

databases (Macháň, 2021). However, brute force identification would be highly impractical for 

detailed geo-localization down to the level of cities and institutions due to the size of the 

datasets spanning millions of affiliations. Hence, I intend to utilize machine learning methods 

to tackle this challenge. 

My goal is to present my master's thesis as a case study that showcases several machine 

learning models in combination with embeddings models and evaluates their performance 

in solving the geo-localization of textual data. After assessing their effectiveness, I will select 

the most suitable model pairing for processing large amounts of data. These models will be 

trained to recognize the parts of the text that correspond to the names of countries, cities, 

or institutions. 

Although this topic may not be strictly considered as a bioinformatics research area, 

it is worth noting that the geo-localization of affiliations was initially motivated by the desire 

to create a web application highlighting region-specific chemical research on biological targets. 

Moreover, the study of embeddings is becoming increasingly popular and applicable in various 

domains beyond natural language processing (NLP). For instance, embeddings have shown 

their usefulness in chemical structure representation (Coley et al., 2017; Morris et al., 2020), 

and are likely to find application in other fields as well. Thus, gaining knowledge about 

embeddings can be highly beneficial in a broader scientific context. 
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2 THEORETICAL PART 

 

2.1 Solving Problems by Means of Machine Learning 

 

In this chapter, I aim to explore some of the challenges one may encounter when solving tasks 

using machine learning, as well as categorize the typical approaches employed by numerous 

ML models. These models utilize large datasets to discover hidden patterns, enabling them 

to make informed decisions over time through the learning process. The model's learning 

is typically expressed through its ability to gradually change its state to make statistically better 

predictions. 

 

2.1.1 Supervised vs Unsupervised Learning 

 

Typically, machine learning approaches are categorized into two main types: supervised 

and unsupervised learning. Supervised learning involves a training-set with N objects 

represented by vector x of their features and crucially, y representing the class or value that the 

model should learn to predict. In contrast, unsupervised learning has no y, and the task 

is descriptive. The objective of unsupervised learning is often to recognize interesting patterns 

in the data, making it a form of knowledge discovery (Murphy, 2012). Importantly, both 

approaches can learn advantageous data representations as a side effect of solving specific tasks 

(Goodfellow et al., 2016). 

Some consider a third type of machine learning, reinforcement learning, which learns 

on the basis of occasional positive or negative feedback (Murphy 2012). However, as this 

approach is not used in this thesis, it is unnecessary to delve into more details.  

The primary type of machine learning employed in this work is supervised learning. 

Thus, obtaining a training-set that consists of both vector x and desired y is essential. 

In addition, to evaluate performance, it is necessary to create a similarly defined test-set.  

Lastly, the creators of freely available embeddings models performed unsupervised 

learning, yielded advantageous data representation, as previously mentioned. These pretrained 

models were utilized as generators of features for vectors x since their representation, also 

known as embedding, behaves in a beneficial manner, as described in subsequent chapter.  
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2.1.2 Regression vs Classification 

 

Supervised learning problems are typically divided into regression and classification tasks 

based on the predicted y. If y is categorical, the task is referred to as classification, 

and the predicted category is often considered the label or class. On the other hand, if y is 

real-valued, the problem is known as regression. (Murphy 2012)  

Despite the apparent differences, both regression and classification require the ML 

model to approximate a function - in regression, the regression function, and in classification, 

the function representing probabilities of memberships of different classes. (Bishop 1995)  

This is why ML models can perform both regression and classification tasks, and why 

the preparation of data or performance estimation differs only slightly.  

The goal of the experimental part is to label different parts of affiliations, which 

categorizes it as a classification problem.      

 

2.1.3 Typical Learning Issues 

 

When using supervised learning, common problems that one may encounter are underfitting 

and overfitting.  

Underfitting refers to the inability to capture the relationship between inputs (vectors x) 

and outputs (y), resulting in the model approximating a complex function by a simpler one 

(Kruse et al., 2016). In other words, underfitting occurs when the model is too simple to capture 

the patterns in the data. This may be caused by using an inadequate model or inappropriate 

settings of hyperparameters, such as setting the number of neurons in a neural network too low. 

Underfitting is not a major issue since it is easy to detect and typically fixable with relative 

ease. 

Conversely, overfitting is often more challenging to detect and fix. It occurs when 

the model approximates a simple function with a way too complex one. This is a common 

occurrence, as data frequently includes noise, making it easy to focus on wrong features. 

Another reason for overfitting is relatively small size of the training set, which can describe 

the relationship between inputs and outputs in a restricted manner, resulting in a possibly 

distorted reflection of reality. Therefore, the model may inadvertently learn specific 
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characteristics of the training set, including errors, noise, and deviations, instead of revealing 

the true underlying relationship, which may be much simpler. (Kruse et al., 2016) 

Other aspects that require attention include class balancing within the training-set, 

dimensionality reduction of input vectors, and various other considerations that may impact 

the learning process. These considerations are highly dependent on the nature of the data being 

used. 

 

2.2 Problem of Vectorization  

 

Before cleaning, normalizing, encoding categorical attributes, or filtering for relevant attributes, 

it is necessary to first vectorize any data that is not already represented by numerical vectors. 

This can be a challenge in the case of text or image data, which require special treatment, and 

which is the point of interest in this thesis. The issue of vectorizing text data for Natural 

Language Processing (NLP) tasks will be discussed in this chapter.  

 

2.2.1 Why BOW and TF-IDF do not work here. 

 

The simplest vectorization techniques include Bag of Words (BoW) and Term Frequency – 

Inverse Document Frequency (TF-IDF). Although not directly relevant to this thesis, they 

form the basis of text vectorization approaches and are therefore worth mentioning. However, 

these techniques have a significant limitation in that they do not consider the context of words 

well enough, resulting in a narrow and limited representation of the text or document. 

The BoW method counts the number of occurrences of each instance of the word 

overlooking the order, grammar, or context. This enables the classification of texts and coming 

from the number of occurrences then calculating weights for each word. (Qader, 2019) 

However, the apparent difficulties with using this method are the size of the created vectors, 

which increases with every new word and the sparsity of such vectors. Furthermore, since BoW 

approach by definition ignores the context of the words, it may not be suitable for certain 

applications, such as this one. 

Secondly, TF-IDF is an approach of text vectorization that calculates the weights 

of terms based on their frequency in a document. The calculation involves the intuitive term 
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frequency (TF) and the inverse document frequency (IDF), which is the logarithm of the ratio 

of documents in the corpus to the number of documents where term occurred. 

(Sammut and Webb, 2011) This method allows for filtering of words specific to certain 

documents and avoids the use of frequently occurring words in all documents. Consequently, 

describing these documents by vectors with increased weights for those specific and relevant 

words. Again, this approach considers context of the words in a limited document-wise way.  
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2.2.2 Word Embeddings and Transformers  

 

As previously discussed, models can often learn useful data representations while solving other 

tasks. These representations can then be utilized for more complex tasks.  

The curse of dimensionality is a fundamental problem in language modeling. If the goal 

is to solve a problem on large training data, the resulting corpus will include large number 

of words which will be represented by discrete vectors, which will inevitably complicate 

the learning process. This can consume a significant portion of the model's learning capacity 

just to understand the data, since every answer can be either correct or incorrect. However, 

representing words with continuous vectors where distance represents level of dissimilarity can 

result in a smoother learning process and better performance. These models can learn from large 

textual datasets to comprehend the typical context of a word, which is then expressed in its 

continuous vector representation. (Bengio, 2003) 

N-gram models create conditional probabilities for the next word given some history 

or context (Bengio, 2003). Specifically, they calculate the frequency of a particular word 

following a given history of words in the corpus. Unsupervised training of a neural network 

on large text data can produce projection of words into a continuous space, such that 

the distance of the word vectors reflects on similarity/dissimilarity of the words. (Jurafsky and 

Martin, 2023) These real-valued vectors that encode the meanings of words with such quality 

are known as word embeddings.  

The effectiveness of word embeddings is not only influenced by the training data but also 

by the task being tackled by the ML model. Additionally, since the embedding vector length 

derives from the number of neurons in the hidden layer the sufficiency is also directly 

influenced by architecture of the model, besides other architectural factors that influence 

it as well. 

Various other models have been developed based on the idea of projecting words into 

continuous vector space. Tomáš Mikolov’s earlier works (Mikolov, 2008, 2009) stemmed from 

the need for better language models for highly inflective languages such as Czech and laid 

the foundation for his later creation of the Word2Vec model. 

Word2Vec is a predictive model that can be realized by two different models: Continuous 

Bag of Words (CBOW) and Continuous Skip-Gram. (Mars, 2022; Mikolov et al., 2013a) 
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The neural networks of CBOW and Skip-Gram models have opposing objectives: while 

CBOW predicts the current word given its context, Skip-Gram predicts the context given 

a target word. Thus, their architectures mirror each other. Without going into too much detail, 

these and other related models use architecture of an input layer, a hidden layer that describes 

embeddings, and an output layer. Each model has advantages and disadvantages during 

the learning process, and while their derived embeddings are similar, they may exhibit slightly 

different levels of accuracy across various tasks. Nevertheless, the resulting embeddings 

for different words display even very subtle syntactic and semantic relationships. 

(Mikolov et al., 2013a) Their practicality is further evidenced by their ability to organize 

concepts and learn relationship among words, despite using unsupervised data. For example, 

if one finds a vector representation of x (vec(x)) that is the closest to the result of the equation 

vec(“Berlin”) - vec(“Germany”) + vec(“France”), the resulting embedding will be the closest 

to that of “Paris”. (Mikolov et al., 2013b) 

In addition to Word2Vec, other popular word embedding models include GloVe: Global 

Vectors for Word Representation (Pennington et al., 2014) and FastText 

(Mikolov et al., 2017), the latter can be perceived as successor of Word2Vec (Mars, 2022). 

These ideas were further explored, and the field of Natural Language Processing (NLP) 

saw a breakthrough when the Transformer model surpassed all previous models in terms 

of accuracy and training speed, setting a new state-of-the-art. (Vaswani et al., 2017) 

The simplified architecture of Transformers, which relies solely on the attention mechanism, 

seems to significantly quicken the learning process. This mechanism emulates the attention 

function by assigning weights to values based on a given key and query (Vaswani et al., 2017), 

and can also be found in other modern systems like the aforementioned AlphaFold2 

(Jumper et al., 2021). 

Pretrained Language Models (PLMs) that are based on the Transformer architecture, such 

as BERT and GPT, have proven to be highly successful and have become the mainstream 

approach for solving various NLP tasks (Mars, 2022). Their usability is derived from their 

training data, which proves valuable in instructing models to comprehend distinct text types, 

such as scientific papers. This is presented in the works of Tshitoyan et al. (2019) 

or Meijer & Truong & Karimi (2021), for instance. 
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2.3 Used Pretrained Word Embeddings Models  

 

In the next chapter, I will briefly describe the different models that were selected for 

the experimental part of this work. The objective was to compare multiple models from various 

sources. The models were chosen based on their availability and my ability to configure and run 

them successfully within python environment.  

 It is also worth acknowledging that the models being used in this context often generate 

embeddings for larger text units beyond individual words. Despite this, I will continue to use 

the abbreviation PWE (pre-trained word embeddings) for convenience, even though it may not 

be entirely accurate. Ultimately, the final embeddings are often derived from the word 

embeddings. 

 

2.3.1 Bidirectional Encoder Representations from Transformers (BERT) 

 

Three BERT models were selected from TensorFlow Hub repository (https://tfhub.dev) 

to represent this family of models. They are based on Transformer architecture and were trained 

on Wikipedia and BooksCorpus dataset. First two use settings of L=12 transformer blocks, 

a hidden size of H=768 that corresponds with the length of embeddings and A=12 attention 

heads. Only difference being if they use cased or uncased input text. Last of the BERT models 

was chosen to be an uncased and bigger version with L=24, H=1024 and A=16. 

 The fundamental idea behind BERT's creation is to surpass models like GPT or ELMo 

by overcoming their unidirectional constraint during the learning process, which is caused 

by their left-to-right approach. BERT accomplishes this through the utilization of a Masked 

Language Model (MLM) objective, which randomly masks some parts of the text, 

and the objective is to guess the original masked word from its context. BERT's notable 

performance can be attributed to the utilization of this bidirectional pre-training for language 

representations, which is also the source of its name. (Devlin et al., 2018) 

 It should be noted that BERT has gained significant attention in the research community, 

leading to the development of various iterations that have been trained with slightly different 

architectures or on data specific to certain fields of interest. These include RoBERTa, ALBERT, 

DeBERT, and SciBERT, among others (Mars, 2022; Beltagy et al., 2019).   

https://tfhub.dev/
https://tfhub.dev/
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2.3.2 Doc2Vec 

 

I also decided to try a model that was created with longer texts in mind and test his performance 

on much shorter parts of the affiliations, in a hope that this more complex model will have 

bigger capacity to store more information communicated in affiliation.  

Doc2Vec is a model build upon the basis of Word2Vec model described earlier. 

The main addition is a paragraph vector that in combination with word vectors contributes 

on preserving the information. Paragraph vector is in a way another word vector, that 

remembers what is missing from the current context or what is the topic of current paragraph. 

(Le and Mikolov, 2014) The model was used via Gensim library 

(https://github.com/RaRe-Technologies/gensim) with default inference hyper-parameters 

and in two settings based on the two original training datasets: English Wikipedia DBOW 

and Associated Press News DBOW (Distributed Bag-of-Words).  

 

2.3.3 Universal Sentence Encoder 

 

The Universal Sentence Encoder (USE) model is one of two models described in the paper 

and it is based on Transformer architecture. The training of the model was performed on dataset 

consisting of multiple web sources such as Wikipedia, web news, etc. and was later improved 

by multiple supervised corpora. USE is available on the TensorFlow Hub repository website, 

as was BERT. The universal-sentence-encoder-large in version 5 was used. This model can 

encode input of variable length into a 512-dimensional embedding vector. (Cer et al., 2018) 

 

2.3.4 InferSent 

 

InferSent model stems from natural language inference (NLI) task. NLI task tries 

to determine whether a hypothesis sentence is true, false, or neutral given a premise sentence. 

The main distinction of InferSent model being that NLI task requires annotated data and thus 

is a representative of supervised learning. (Conneau et al., 2017) This layer of training is added 

on already unsupervised models of GloVe and FastText. InferSent was downloaded from its 

GitHub repository (https://github.com/facebookresearch/InferSent). Two versions of the model 

https://github.com/RaRe-Technologies/gensim
https://github.com/RaReTechnologies/gensim
https://tfhub.dev/
https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/InferSent
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are presented with one being trained with GloVe (Pennington et al., 2014) and one with 

FastText (Mikolov et al., 2017).  

 InferSent was used with the same parameters as was suggested by the authors in their 

GitHub repository examples (Conneau, n.d.).  

 

2.3.5 MiniLM 

 

The authors were concerned about the sizes of models like BERT and proposed 

a deep self-attention distillation approach. Knowledge distillation (KD) approach is to use 

a pre-trained large model as a teacher to help student model to tackle the same task with fewer 

parameters (Hinton et al., 2015). With MiniLM, the student model focuses on the last layer 

of the Transformer model, which serves as its teacher. This strategy allows for the compression 

of a strong but sizable model into a MiniLM model that is much quicker to deploy, while still 

achieving comparable results. (Wang et al., 2020, 2021)  

I decided to use two variants of MiniLM model, All-MiniLM-L6-v2 

and All-MiniLM-L12-v2. The prefix All- meaning that they were trained on all available 

training data authors had and suffix -v2 stating their version. These models are available at 

sbert.net website or on their GitHub (https://github.com/UKPLab/sentence-transformers). 

  

https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained_models.md
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2.4 Used Supervised Learning Models  

 

This section serves as a connection between the theoretical and experimental parts of this thesis, 

as it briefly summarizes the machine learning (ML) models and their hyperparameters used in 

the experimental part. 

 All the models used originate in the scikit-learn library (https://scikit-learn.org/stable), 

which is an open-source software for tackling both supervised and unsupervised learning. 

It is built in Python and utilizes other scientific libraries such as NumPy and SciPy. Scikit-learn 

provides a wide range of popular ML models. Additionally, some of them, like Support Vector 

Machine (SVM), are written in Cython to achieve C-like performance. (Jolly, 2018)  

 I installed this library via Anaconda environment in version 1.2.1 of scikit-learn.  

 

2.4.1 Multilayer Perceptron and Neural Networks 

 

Multilayer Perceptron Classifier (MLPClassifier) model can learn a non-linear function 

to approximate given task. MLPClassifier uses numerous perceptrons in multiple layers 

to model network-like structure. For purposes of reproducibility, it is important to use specified 

random seeds, since different weights on initiation can cause different local minima found. 

In order to perform multi-class classification softmax function is applied on output layer, which 

normalizes the output values that their sum is one. I used MLPClassifier with default hyper-

parameters except maximum of iterations, which I set to 300. (scikit-learn, n.d.) 

 

2.4.2 Random Forests 

 

Random Forest Classifier (RFClassifier) is an estimator that fits multiple decision trees 

on sub-samples of the training dataset. This process as well as the selection of features 

in decision trees nodes is dependent on random seed. The settings used for RFClassifier was 

number of estimators equal to 1000 and maximal depth of decision tree equal to 20. 

(scikit-learn, n.d.) 

 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable
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2.4.3 Support Vector Machines 

 

Support Vector Classifier (SVC) finds the best decision boundary in the vector space 

to separate desired classes. SVC model is in scikit-learn implemented based on libsvm and is 

advised not to use this implementation for datasets with large numbers of samples. However, 

this is not a concern for this work as the dataset is not large. The only parameter that was 

changed from its default value was gamma that is set to ‘auto’. (scikit-learn, n.d.) 

 

2.4.4 K Nearest Neighbors 

 

For the last model, K-Nearest Neighbors (KNN) was used, which classifies new inputs by 

the majority class of the nearest neighbors. This means that it is not necessary to change this 

model in any way for multiclass classification. This approach also needs no training, since 

it only stores the training set instances and then classifies all new inputs based on those samples. 

Finally, various k values, including 1, 3, 5, 7, and 9, were tested, and k=3 was chosen due to its 

superior performance. (scikit-learn, n.d.) 
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3 EXPERIMENTAL PART 
 

The goal of the experimental part of this work is to evaluate performance of several freely 

available PWE models on given task, which is a classification of parts of paper affiliations. 

Identify models which are statistically significant candidates for further analyses 

and additionally test these candidates in combination with ML models to evaluate which pair 

outperforms others and thus forms the best combination of models to be used in pipeline 

for process of geo-localization.  

Both training-set and test-set were manually created from affiliations retrieved from 

PubMed (https://pubmed.ncbi.nlm.nih.gov/) for articles mentioning chemical structures and 

further refined. Embeddings for the annotated parts were created using several free PWE 

models. Suitability of embeddings was inspected through PCA and then statistically evaluated 

using ANOVA from K-fold Cross-Validation data over multiple supervised ML models. 

Candidate embedding models (cPWE) were chosen on which other ANOVA was performed to 

determine best performing ML model (cML). Candidate pairs (cP) of PWE and ML model were 

chosen and the confirmation of the results via test-set was performed to determine best 

performing pair (Figure 1). The performance of chosen combination was further investigated 

and described using confusion matrix and related measures typically used for evaluating 

machine learning models. 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 1: Diagram of the intended flow of work for experimental part of this thesis. 

 

All workflows (written in python, specifically jupyter notebook), all datasets, 

graphs, Statistica workbooks and excel sheets with results and analyses are shared 

on GitHub (https://github.com/Najlaron/Diploma-Thesis) to ensure reproducibility and full 

transparency of this work. 

 

3.1 Training-set and test-set 

 

To get curated training and test-set, I created script that runs through affiliations and lets me 

label its parts manually. The affiliations were randomly shuffled to prevent any biases towards 

specific years, countries, or institutions. Contentious parts were removed or altered to refer to 

only one specific label to not compromise further analysis. Non-specific and vague terms such 

as ‘Department of Biochemistry’, ‘College of Pharmacy’, etc. were labeled ‘None’ to increase 

specificity of identified institutions, since highlighting said parts would not lead to their 

https://github.com/Najlaron/Diploma-Thesis
https://github.com/Najlaron/Diploma-Thesis
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localization. Lastly, during this whole process each label was assigned in even amounts, usually 

once per affiliation, if possible, to guarantee roughly balanced composition. Along those lines, 

as a means to preserve this balance, some redundant and often repeated parts were removed 

from training and test-set.  

Created training-set comprises of total 2997 parts of 602 affiliations. Out of these, 

746 were labeled as ’None’, 704 as ‘Institution’, 642 was the number of both ‘City’ 

and ‘Country’ labels and the remaining 263 were classified as ‘State’. ‘State’ label was used 

mainly for states of US and then provinces or other parts of specific countries. This label is 

naturally not that prevalent in dataset and thus it is imbalanced regarding the other labels. Since 

it is not necessary for localization it is often omitted from affiliations, more importantly this 

also means that the precision of its identification should not have such impact on the precision 

of the whole model for geo-localization. Other classes seem to be balanced enough to prevent 

biases during training.  

Test-set counts for 316 parts from 60 affiliations and hence it is roughly tenth of the 

training-set size. Numbers of instances of labels are as follows: ‘None’: 97, ‘Institution’: 77, 

‘Country’: 65, ‘City’: 59, and then ‘State’: 18. This distribution follows the trend of training 

set, this means being mostly balanced for all labels except ‘State’ which is less frequent 

and ‘None’ slightly outperforming. This similarity should help with guaranteeing reliable 

performance measures.   
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4 RESULTS  

 

4.1 Suitability of Pretrained Embeddings Models 
 

In this part I present how well different PWE models cluster vectors based on their assigned 

label. The task is to successfully classify embedding vectors, which solely depends on their 

location in n-dimensional space, or in other words their n values, where n is determined 

by the PWE model architecture. Considering our classes consist of geographic terms 

and therefore occur in similar context, it is not necessarily true, that they will be clearly 

separated in this space. Also, one cannot expect increasing distinction of clusters for larger n, 

since the embedding vectors depend mainly on training data of said PWE model. To get 

an insight into the clustering of such multidimensional data Principal Component Analysis 

(PCA) was performed and data was displayed in form of 3D and 2D graphs. PCA was 

performed both with and without vectors classified as ‘None’ to highlight important differences. 

All graphs can be found also in GitHub repository 

(https://github.com/Najlaron/Diploma-Thesis). I decided to present mainly results of PCA 

realized on data without ‘None’ vectors, for the sake of clarity of graphs.  

 

4.1.1 BERT 

 

Three embedding models based on BERT were included in experimental part, namely 

cased-BERT-726, uncased-BERT-726 and uncased-BERT-1024. Values 726 and 1024 

represent number n of the dimensions of embedding space. It can be seen on the following 

graphs, that all three models cluster data quite similarly, but not very noticeably (Figures 2-4). 

There are visible signs of clusters, which are potentially more distinctly separated in higher 

dimensions, but it must be notted, that first 3 components account for 0.80, 0.85, and  0.74 

of the total variance of said models in order. Additionally, suggesting that such difference in 

remaining dimensions may not be substantial enough. Exact percentages can be seen in axis 

descriptions in forms of explained variance ratios. It would certainly be desirable to see these 

models exhibit clearer data clustering already in these lower dimensions. 

https://github.com/Najlaron/Diploma-Thesis
https://github.com/Najlaron/DiplomaThesis
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Figures 2-3: Results of PCA shown as 3-Dimensional graphs (from 2 angles) depicting clustering of 

embeddings vectors from csd-BERT-726 and uncsd-BERT-726 models colored by their designated 

class (excluding None). The axes belong to the first 3 components from PCA and describe total 

variance explained by said components.  
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Figure 4: Result of PCA shown as 3-Dimensional graph (from 2 angles) depicting clustering of 

embeddings vectors from uncsd-BERT-1024 model colored by their designated class (excluding 

None). The axes belong to the first 3 components from PCA and describe total variance explained by 

said components.  

 

4.1.2 Doc2Vec 
 

Despite describing approximately 70 percent of total variance for both Doc2Vec-enwiki 

and Doc2Vec-apnews, the following 3D graphs do not exhibit any clustering, except for a single 

cluster that encompasses all the data points (Figures 5-6). It is now obvious, that the attempt 

to use model for embedding whole documents for only small parts of affiliations did not yield 

favorable results.  

While the unsuitability of the model for this task may be a possible explanation, it is 

also plausible that the model is simply impractical for this particular approach to the problem 

and may perform better under a different perspective. Furthermore, it cannot be discounted that 

my potential misuse of the model or suboptimal settings may be the root cause of the lackluster 

outcomes, since the model is expected to yield results comparable or better than Word2Vec 

embeddings (Lau and Baldwin, 2016). Consequently, the ensuing analyses are likely to suffer 

from very poor results. 
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Figures 5-6: Results of PCA shown as 3-Dimensional graphs (from 2 angles) depicting clustering of 

embeddings vectors from both Doc2Vec models colored by their designated class (excluding None). 

The axes belong to the first 3 components from PCA and describe total variance explained by said 

components. Most points are indistinguishable as they seem to be projected into very similar areas, 

this clusters all data to one cluster instead of showing some class-wise clustering.   
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4.1.3 Universal Sentence Encoder (USE) 
 

Right from the start, the capacity of USE model to effectively cluster vectors with matching 

labels appears to be very potent. While describing only around 20 % of total variance, this 

model clearly separates ‘Institution’ class. Albeit closely, USE groups the rest of the classes 

into recognizable tight spatial patterns (Figure 7). Undoubtedly there is a great potential for this 

model to pronounce edges of these subspaces and it is worth to acknowledge its apparent 

suitability for this task. On the contrary as is shown in 2D plot, if we do PCA including 

‘None’-labeled data, ‘Institution’ class is not so isolated, and it is blending with ‘None’ 

(Figure 8). This will certainly not help with the classification task, but at least ‘None’ class is 

not entirely joined into the bundle of remaining classes to hinder their chances of separation. 

 

Figure 7: Result of PCA for USE model shown as 3-Dimensional graph (from 2 angles) depicting 

clustering of its embeddings vectors colored by their designated class (excluding None). The axes 

belong to the first 3 components from PCA and describe total variance explained by said components.  
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Figure 8: Result of PCA for USE model shown as 2-Dimensional graph depicting clustering of its 

embeddings vectors colored by their designated class including None in transparent grey. The axes 

belong to the first 2 components from PCA and describe total variance explained by said components.  
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4.1.4 InferSent (IS) 

 

As in the previous case, IS models separate majority of ‘Institution’ labels and additionally 

‘Country’ (Figures 9-10). Whereas not exactly evident in 3D plots, it is clear from 2D versions 

that ‘City’ and ‘State’ classes are hard to differentiate (Figures 11-12). However, in comparison 

with USE model, IS models are more extensively described by first 3 calculated components, 

reaching 45 % of total variance described by both GloVe and FastText version. It will be seen 

in further analysis if this makes a difference or proves insignificant in the end. 

 

Figures 9-10: Results of PCA for both IS models shown as 3-Dimensional graphs (2 views) depicting 

clustering of their embeddings vectors colored by their designated class (excluding None). The axes 

belong to the first 3 components from PCA and describe total variance explained by said components.  
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Figure 11: Results of PCA for IS-GloVe model presented as 2-Dimensional graph depicting clustering 

of its embeddings vectors colored by their designated (excluding None). The axes belong to the first 

2 components from PCA and describe total variance explained by said components.  

 

Figure 12: Results of PCA for IS-FastText model presented as 2-Dimensional graph depicting 

clustering of its embeddings vectors colored by their designated (excluding None). The axes belong to 

the first 2 components from PCA and describe total variance explained by said components.  
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4.1.5 MiniLM 

 

Both MiniLM models exhibit distinct clusters in 3D PCA graphs (Figures 13-14) and crucially 

already for the first two components (Figrues 15-16). Additionally this clustering does not 

distinguish ‘City’ and ‘State’ classes very well, while ‘Institution’ and ‘Country’ clusters are 

well pronounced (Figures 13-16), similarly to clustering of last models. It can be seen on plot 

of PCA done with points labeled ‘None’, that these clusters remain to be distinguishable and 

that ‘None’ class is predominantly on the negative side of first component axis, which helps 

with separating vectors labeled as ‘Country’ (Figures 15-16). The same can be said for both 

MiniLM-6 and MiniLM-12. What seems to be an advantage of these models over the previously 

described clustering is the fact, that first two components acount for under 20 % of total variance 

which leaves enough room for other dimensions to distinctly separate desired classes. Therefore 

these models seem to be suitable for given task and one can expect them to perform well 

in following analyses.  

 

Figures 13-14: Results of PCA for both MiniLM-6 model, and MiniLM-12 model shown as 

3-Dimensional graphs (2 views) depicting clustering of their embeddings vectors colored by their 

designated class (excluding None). The axes belong to the first 3 components from PCA and describe 

total variance explained by said components.  
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Figure 15: Results of PCA for MiniLM-6 model presented as 2-Dimensional graph depicting 

clustering of its embeddings vectors colored by their designated including None in transparent grey. 

The axes belong to the first 2 components from PCA and describe total variance explained by said 

components.  

 

Figure 16: Results of PCA for MiniLM-12 model presented as 2-Dimensional graph depicting 

clustering of its embeddings vectors colored by their designated including None in transparent grey. 

The axes belong to the first 2 components from PCA and describe total variance explained by said 

components.  
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4.2 Performance of Pretrained Embeddings Models 

 

With an idea about the potential suitability of different models, I performed Analysis 

of variance (ANOVA) to inspect the real performance of embedding models on the data.  

Concerning statistical significance, it was needed to create enough data to analyze. This 

was achieved by K-fold Cross-Validation with k = 5 performed on training-set 5 times with 

different random states. This means that for every ML model used, 25 accuracy measurements 

were performed. Four ML classifiers were used, namely Neural Networks (NN) in form 

of Multilayer perceptron, Random Forest classifier (RF), Support Vector classifier (SV) 

and lastly K Nearest Neighbors (KNN). Therefore 100 scores were measured for every 

embedding model.  

Nonparametric Kruskal-Wallis one-way ANOVA was performed due to the distribution 

of analyzed data not being normal, which is arguably a by-product of using 4 different 

ML models. 

All models used were drawn from scikit-learn library for python and the scripts 

are shared via GitHub repository. Eventually ANOVA itself was performed on generated data 

in software Statistica in version 14.0.0. In following table p-values rounded to 4 digits 

after the decimal are presented (Table 1). Highlighted in red are p-values lower than 0.05, which 

shows the result being statistically significant, meaning that the performance of those two 

models is significantly different. On the other hand, p-values with changed background color 

ranging from yellow to blue emphasize that the similarity in performance cannot be denied with 

enough statistical evidence, suggesting their alikeness.  

It is necessary to combine this information with the view of boxplots for the same 

accuracy data. As can be clearly seen in the first boxplot, both Doc2Vec models perform way 

worse than other models (Figure 17). This was expected from problems identified for them 

in previous section. This is obviously reflected also in the p-value matrix, where it is evident, 

that this couple of models is significantly different then remaining eight. Let’s remove these 

two and continue to investigate the remaining models. 

  

https://github.com/Najlaron/Diploma-Thesis
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Table 1: Results of Analysis of Variance (ANOVA) for all used pre-trained word embeddings models 

(PWE). Input data for ANOVA were accuracies achieved for different machine learning (ML) models 

trying to perform classification task with embeddings vectors from said PWE models.  

P-values depicted in table represent how significant the difference in performance between PWE 

models is. Statistically significant difference (p-value ≤ 0.05) is highlighted with red color while for 

higher p-values, where one cannot deny the similarity of their performance from yellow to blue.  

p-values 
csd-

BERT 

uncsd-

BERT 

uncsd-

BERT

-1024 

Doc2Vec

-enwiki 

Doc2Vec

-apnews 

IS-

GloVe 

IS-

FastTex

t 

USE 
MiniLM

-6 

MiniLM

-12 

csd-BERT 1.000 1.000 0.000 0.000 0.000 1.000 0.833 1.000 0.107 0.001 

uncsd-BERT 1.000 1.000 0.000 0.000 0.000 1.000 0.181 1.000 0.533 0.007 

uncsd-

BERT-1024 
0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

Doc2Vec-

enwiki 
0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 

Doc2Vec-

apnews 
0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 

IS-GloVe 1.000 1.000 0.000 0.000 0.000 1.000 0.357 1.000 0.277 0.003 

IS-FastText 0.833 0.181 1.000 0.000 0.000 0.357 1.000 0.000 0.000 0.000 

USE 1.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 1.000 1.000 

MiniLM-6 0.107 0.533 0.000 0.000 0.000 0.277 0.000 1.000 1.000 1.000 

MiniLM-12 0.001 0.007 0.000 0.000 0.000 0.003 0.000 1.000 1.000 1.000 

 

 

Figure 17: Boxplot of accuracies achieved by all 10 pre-trained word embeddings (PWE) models over 

multiple machine learning (ML) models. Models highlighted in green were deemed better for the task 

and eventually labelled as candidates (cPWE) while (depicted in dark red) both Doc2Vec models were 

omitted for their lackluster performance for this task. 
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If we look in more detail into the performances of remaining eight models in next 

boxplot, two models seem to achieve lower average accuracy (Figure 18).  

Model uncsd-BERT-1024 behaves like almost no other model and this is supported by p-values, 

where it is statistically different then every other model, expect IS-FastText.  

For IS-FastText the results are that it is significantly distinctive from only USE and 

MiniLM models. While for BERT models and IS-GloVe no existing difference can be 

concluded, or else null hypothesis cannot be rejected.  

Nevertheless, this does not disprove its possibility to be grouped with 

uncsd-BERT-1024. Based on their shared worse average accuracies and ANOVA data 

(Table 1) it can still be insisted, that both uncsd-BERT-1024 and IS-FastText should be omitted 

from the pool of candidate models.  

 

Figure 18: Boxplot of accuracies achieved by 8 better performing pre-trained word embeddings (PWE) 

models over multiple machine learning (ML) models. Models highlighted in green were deemed better 

for the task and labelled as candidates (cPWE). Additionally red-colored models were left out. 
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Table 2: Description of the performance of all pre-trained word embeddings (PWE) models via mean 

and median accuracies, standard deviation and finally minimal and maximal accuracy achieved.  

 model mean median std min max 

csd-BERT 0.883 0.884 0.027 0.838 0.932 

uncsd-BERT 0.885 0.886 0.031 0.833 0.943 

uncsd-BERT-

1024 
0.854 0.855 0.034 0.78 0.923 

Doc2Vec-enwiki 0.466 0.49 0.085 0.321 0.597 

Doc2Vec-apnews 0.46 0.469 0.082 0.324 0.597 

IS-GloVe 0.886 0.884 0.013 0.858 0.905 

IS-FastText 0.873 0.873 0.019 0.838 0.903 

USE 0.893 0.891 0.017 0.852 0.927 

MiniLM-6 0.898 0.902 0.026 0.843 0.942 

MiniLM-12 0.905 0.911 0.025 0.852 0.955 

 

In summary, I opted to keep 6 models highlighted in green as candidates (cPWE) owing 

to their high average accuracy. Their accuracy means and medians all exceed 0.88 (Table 2). 

Standard deviation ranging from 0.013 for IS-GloVe to 0.031 for uncsd-BERT. These models 

provide convenient accuracy while not being distinguishable with enough statistical evidence 

from one another. Candidates will help to determine which ML models achieve best results 

regarding their pairing with said candidate PWE models (cPWE). 
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4.3 Performance of ML Models on Candidates 
 

After the evaluation of the data from the perspective of ML models, it became apparent that 

the distributions deviated significantly from the normal distribution. This means that, it was 

necessary to utilize a nonparametric version of ANOVA once again. However, given that only 

four ML models were involved, the use of ANOVA may have been unnecessary in this 

situation, as the results were not particularly interesting or surprising. In fact, a simple 

inspection of boxplots would have sufficed to identify that the NN and SV models outperformed 

the RF and KNN models (Figure 19). 

 

 

Figure 19: Boxplot of accuracies achieved by all machine learning (ML) models over chosen 

candidate pre-trained word embeddings (cPWE) models. ML models highlighted in green were 

deemed better for the task and labelled as candidates (cML). Additionally red-colored ML models 

were left out in further analyses. 

 

Let’s begin by discussing poorly performing ML models. Although KNN performed slightly 

worse than RF, its advantage lies in the fact that it does not require any training time, unlike RF 

which takes an extensive amount of time, increasing with the number of trees built. Results for 

KNN with k = 3 are presented, which yielded the best results for this setting. Additionally, 

results for k = 1 and k = 5 were also quite good, but performance declined for higher k values. 

The RF model was configured with hyperparameters that specified the number of estimators 

to be 1000 and maximum depth of trees to be 20. This was the best performing setting from 

a few tested, but it cannot be denied, that both models could potentially perform better with 

an extensive search for hyperparameters. Different models with various settings can be utilized, 

and ANOVA can be performed on multiple settings of the same model to make this analysis 
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more robust. This study intentionally limits its scope to this narrow set of hyperparameters, 

given that its intended goal is to find only one adequate model.  

It is important to note, that SV and KNN models do not rely on random seeding while training, 

this means, that the number of unique measured accuracies is 5 times smaller, than for NN 

and RF, which are dependent on random seeds. The random seeds in this case influence only 

the process of Cross-Validation. Additionally, it should be emphasized that the accuracy was 

calculated 5 times as for NN and RF to preserve the balance of the data in creation of previous 

statistics, especially the earlier table presenting values such as mean or median. For following 

analyses, the data could be reduced into its fifth since we are comparing each ML model 

separately. 

Finally, both the NN and SV models achieved an accuracy rate of over 90% in terms of both 

median and mean (Figure 20). Upon closer examination, it is evident that the difference between 

them is statistically insignificant and the slight overperformance of SV is likely due to the lack 

of measurements for this model. This indicates that NN and SV are the models that should 

be continued with. The combination of the two candidate ML models (cML) with cPWE models 

creates candidate pairs (cP), which must be investigated to determine the best combination 

to solve the given task.  

 

 

Figure 20: Detailed view of accuracies achieved by selected candidate machine learning (cML) models 

over candidate pre-trained word embeddings (cPWE) models in form of a boxplot. 
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Since the goal is to choose model combination to use in the final pipeline for classifying 

parts of the affiliations and finally geo-localizing the affiliation, it is necessary to pick single 

pair from the available cP. As one can see in the following table and boxplot (Table 3; 

Figure 21), there is a compelling argument for choosing almost any pair. For example, 

combining SV with any MiniLM model could be the first idea, as the accuracy of both PWE 

models is notably high, with one combination, SV+MiniLM-12, even scoring as high as 0.955 

once. However, it is important to note that the data for SV is limited, and the maximum score 

achieved is even considered to be an outlier in the default boxplot graph produced 

in Statistica. This suggests that the promised accuracy may, in fact, be much lower than 

what the median of only 5 values promises.  

To assure sufficient accuracy I decided to go with NN as the ML model of choice. 

Specifically in combination with uncsd-BERT, where, as can be seen in table and boxplot, 

the median accuracy is 0.920 and mean 0.919 with standard deviation being only 0.012. For one 

iteration the accuracy went down to 0.890 which seems to be an outlier. Although only slightly, 

this appears to be the best performing cP, furthermore, supported by 25 measurements. 

 

Table 3: Description of the performance of selected candidate machine learning models (cML) 

in relation to the candidate pre-trained word embeddings (cPWE) models via means and medians 

of accuracies and standard deviations. The combination of cPWE and cML model was labelled as 

candidate pair (cP). Outlined in bold font is the best performing cP (NN+uncsd-BERT) which was 

selected to be used in a pipeline. 

 NN    SV    

model n mean median std.dev. n mean median std.dev. 

csd-BERT 25 0.907 0.902 0.017 5 0.897 0.893 0.018 

uncsd-BERT 25 0.919 0.920 0.012 5 0.902 0.903 0.015 

IS-GloVe 25 0.890 0.893 0.011 5 0.894 0.892 0.010 

USE 25 0.895 0.898 0.010 5 0.911 0.910 0.009 

MiniLM-6 25 0.914 0.917 0.013 5 0.924 0.920 0.014 

MiniLM-12 25 0.918 0.915 0.013 5 0.927 0.918 0.016 
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Figure 21: Detailed view of accuracies achieved by candidate pairs (cP), which is a combination 

of candidate pre-trained word embeddings (cPWE) model and a candidate machine learning (cML) 

model. Outlined cP was chosen as a best performing model combination. 
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4.4 Validation via Test-set 

 

To confirm the desired accuracies achieved with the chosen cP, a final validation was performed 

on an external test-set. Although this dataset may have some similarities with the training set 

by the nature of the data, no specific part was used in the previous K-fold Cross-Validation. 

The test-set consists of approximately one-tenth of the training set, with 316 parts from 60 

affiliations. The table below shows the accuracies obtained by all candidate pairs (cP) (Table 4). 

As observed earlier SV is not affected by random seedings, resulting in fewer measurements. 

However, all results align with the trends observed during Cross-Validation, with an average 

score of around 90%. Moreover, the chosen combination of SV+uncsd-BERT is one of the top 

performers, even on the test-set, which further proves the decision. 

 

Table 4: Inspection of the accuracies of selected candidate pairs (cP) on the test-set data. Outlined in 

bold font is the best performing cP (NN+uncsd-BERT) which was selected to be used in a pipeline. 

cP accuracy 

on test-set avg_nn (5) sv (1) 

csd-BERT 0.907 0.930 

uncsd-BERT 0.929 0.902 

IS-GloVe 0.890 0.896 

USE 0.909 0.927 

MiniLM-6 0.930 0.918 

MiniLM-12 0.911 0.918 

avg 0.913 0.915 

std 0.015 0.014 
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5 DISCUSSION 

 

After choosing the combination of NN+uncsd-BERT as the model to use in the annotation 

pipeline, training on the whole training-set was performed and evaluated on test-set. In order to 

describe the learning process in more detail Cross-Validation was performed as part of 

validation_curve function. Heatmaps of confusion matrix were created as well as report table.  

  

5.1 Pipeline inclusion. 

 

This model will serve as a primary classification tool for identifying important parts 

of affiliations. It is worth noting that the model’s implementation into the pipeline will most 

likely improve its performance, as the performance was evaluated ignoring the position of the 

identified part in the affiliation. This information was ignored to simplify the architecture of the 

classification model. Furthermore, we only need to predict one of each label, excluding 'None', 

which could simplify the problem and increase real accuracy. This means that the overall 

accuracy of the final geo-localization might be even higher than the accuracy achieved 

by NN+uncsd-BERT on its own. This is because the real task is in a way simpler than 

the version model learnt to solve. With the added information of the order of the parts and with 

the certainty of most classes appearing once in all correct affiliations, the final pipeline 

or a model build upon the basis of NN+uncsd-BERT can perform very well for the affiliation 

geo-localization task and thus its inclusion in the pipeline may fine-tune the model to correctly 

geo-localize all typical affiliations.  

Ultimately, the goal is to prepare the important parts of the affiliation as an input to tools 

like Here: Geocoder API (https://developer.here.com/). This API utilizes data to produce 

geocoordinates and depends on annotated data to achieve optimal performance. However, it is 

noticeably more cost-effective than Google's API, which performs better on more disorganized 

data. 

To reduce the number of queries for the geocoding API, clustering in the space 

of identified classes may be necessary to receive groups of possible affiliations from the same 

institution. This approach also enables projecting annotated affiliations into fewer dimensions. 

  

https://developer.here.com/documentation/geocoder/dev_guide/topics/what-is.html
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5.2 Performance Measures (Confusion Matrix, F1-score, …). 

 

The overall accuracy of the NN+uncsd-BERT on the test is 93% in other words, it classified 

93% of the instances in the dataset correctly. The confusion matrix and classification report 

table summarize the model's performance (Figure 22; Table 5).   

 Looking at the precision and recall scores for each label in the following table, it is 

apparent that the model combination performs particularly well for ’Country’ and ‘Institution’, 

specifically over 95 %. These two labels, together with ‘City’ are the most important for 

geo-localization. The ‘City’ and ‘None’ labels also have relatively high precision and recall 

scores, both above 90 %. Consequently, the identification of the 'State' class, where the model 

struggles and scores worse, is not that problematic for the entire classification process. 

In conclusion, the macro-averaged and weighted-average F1-scores both exceed 91 %, 

indicating that the model is performing consistently across all labels.  

 

Figure 22: Confusion matrix depicting the performance of NN+uncsd-BERT combination on 

classification task. The heatmap shows the actual classes of the vectors in the dataset and which 

classes were predicted for these vectors by the model.  
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Table 5: Performance report table for the NN+uncsd-BERT combination is presented. Typical 

measures such as precision, recall, or F1-score are shown for each class. Support describes the number 

of instances in the test-set for certain class or overall. Accuracy, macro-average, and weighted-average 

F1-scores are included as well.  

label precision recall f1-score support 

City 0.87 0.92 0.89 59 

Country 0.98 0.98 0.98 65 

Institution 0.96 0.95 0.95 77 

None 0.94 0.92 0.93 97 

State 0.78 0.78 0.78 18 

accuracy   0.93 316 

macro avg 0.91 0.91 0.91 316 

weighted avg 0.93 0.93 0.93 316 
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5.3 Learning and Speed of Convergence. 

 

Validation curves were generated for an increasing number of epochs (iterations) and different 

random seeds. None of the curves seemed to deviate from the overall trend. Neural network 

scores around 90 % accuracy after first 50 epochs and then slowly converges reaches 

the maximum. However, after 100 to 150 epochs its accuracy on omitted part of the set 

decreases slightly, indicating possible overfitting. Decreasing the number of iterations 

or neurons to avoid overfitting should be considered.   

 

Figures 23-24: Validation curves of the learning process of NN+uncsd-BERT for two initial random 

states. Unsurprisingly, both show steep progress for first 50 epochs and then mild increase in accuracy 

in the following 50. After 100-150 epochs slight decrease in Cross-validation score can be observed 

suggesting possible overfitting.  
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5.4 Reflecting on predicted potential of respective PWE models. 

 

Based on the performance of ML models using various PWE models, it can be assumed that 

the accuracy of classification reflects the predictions made about the usability and natural 

clustering of embedding vectors. It was clear that Doc2Vec models were not suitable for this 

task, as evidenced by their poor performance. Some models, such as uncsd-BERT-1024 

and IS-FastText, performed slightly worse than expected, but further analysis would 

be required to determine the reasons for this. The remaining models met the expectations made 

about their suitability. It is safe to say, that the initial view through PCA or any other 

multidimensional analysis offers highly valuable, yet not complete information about the 

potential of embedding models, or any vectors for that matter.   

 

5.5 Comparison with naïve use of GPT3 

 

What seems like an interesting comparison to include is to relate the performance to the one 

of GPT3. I used its API to perform the same classification task and measured the accuracy. 

Importantly, the code used to perform this task was also written by GPT3 itself and only 

necessary change was to add personal OpenAI API key. The performance was as follows:  

Accuracy: 0.69; Precision: 0.78; Recall: 0.69; F1-score: 0.69. 

Even though it can be argued that the prompt and parameters such as temperature, might 

be adjusted to improve performance, each of my attempts ended in similar or worse 

performance on test_data than the first script suggested by ChatGPT3 itself. I don't deny that 

with more experience, understanding of mistakes the model makes and by using better prompts 

its performance will increase, but such insight would require more time and the point was 

to calculate performance of naive use of GPT3. 

This result is somewhat impressive considering there was no added training performed 

and was in fact unsupervised. Where GPT3 might have had problems are instances, where 

mixed data like for example: “country name + email” in the same input occurred and since this 

model had no information about correct labels, it might have predicted ‘None’, as it deemed 

email to be more important. It is still encouraging to note that results of statistically chosen, 

and extensively trained model is not outperformed by naïve version of GPT3 script.  
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6 CONCLUSION 

 

Multiple freely available models for generating embeddings using pre-trained word 

embeddings (PWE) were used in this study to analyze the suitability of the embeddings for 

the task of classification. Statistical methods, such as PCA or ANOVA, were utilized to identify 

the most suitable models. These models were combined with different machine learning (ML) 

models, including Neural Networks, Random Forests, Support Vector Classifier, and K Nearest 

Neighbors model. The NN+uncsd-BERT combination was found to be the best performing 

model, and its learning process and classification performance were further evaluated. 

This work is a case study that demonstrates how to choose a suitable model for a specific 

goal and provides a modest insight into the state-of-the-art performance of such models. 

The primary aim of this study was to develop a machine learning model for geo-localizing 

affiliations without relying on any commercial tools. 

In conclusion, this work presents a successful approach for identifying and geo-localizing 

affiliations using only freely available tools. The developed model is a valuable addition 

to the data-analysis pipeline for the prepared web-application. Although there may be larger 

models or commercial tools that can achieve higher accuracy, the statistical evaluation 

and careful selection of appropriate models for specific tasks emphasized in this work are 

of a significant importance.  
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8 LIST OF ABBREVIATIONS  

 

ML = Machine Learning 

AI = Artificial Intelligence 

NN = Neural Networks 

MLP = Multilayer Perceptron 

RF = Random Forests 

SV(M/C) = Support Vector (Machine/Classifier) 

KNN = K-Nearest Neighbors 

DL = Deep Learning 

PWE = pre-trained word embedding 

(C)BoW = (Continuous) Bag of Words 

TF-IDF = Term Frequency – Inverse Document Frequency  

NLP = Natural Language Processing 

BERT = Bidirectional Encoder Representations from Transformers  

USE = Universal Sentence Encoder 

PCA = Principal Component Analysis 

ANOVA = Analysis of Variance 

 

cPWE model = candidate pre-trained word embedding model 

cML model = candidate machine learning model 

cP = candidate pair (of models) 


