
PALACKÝ UNIVERSITY OLOMOUC

Faculty of Science

Department of Biochemistry

Performance evaluation of Machine Learning approaches

for identifying parts of scientific affiliations.

DIPLOMA THESIS

Author: Bc. Jan Macháň

Study Program: N0512A130013 Biochemistry

Study Branch: Bioinformatics

Form of Study: Full-time

Supervisor: doc. RNDr. Karel Berka, Ph.D.

Year: 2023

Prohlašuji, že jsem diplomovou práci vypracoval/a samostatně s vyznačením všech použitých

pramenů a spoluautorství. Souhlasím se zveřejněním diplomové práce podle zákona

č. 111/1998 Sb., o vysokých školách, ve znění pozdějších předpisů. Byl/a jsem seznámen/a s

tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb.,

autorský zákon, ve znění pozdějších předpisů.

V Olomouci dne
Podpis studenta

Acknowledgments

I would especially like to thank my diploma thesis supervisor, doc. RNDr. Karel Berka, Ph.D.

for his warm approach, the time he devoted to me, and for the opportunity to work on

the project. My thanks also go to researchers from Department of Computer Science

and Laboratory for Inherited Metabolic Disorders for their guidance and insightful advice

during consultations over statistical parts of this work.

Bibliografická identifikace

Jméno a příjmení autora Bc. Jan Macháň

Název práce Hodnocení výkonnosti metod strojového učení pro

identifikaci částí vědeckých afiliací.

Typ práce Diplomová

Pracoviště Katedra biochemie

Vedoucí práce doc. RNDr. Karel Berka, Ph.D.

Rok obhajoby práce 2023

Abstrakt

Tato diplomová práce zkoumá vhodnost několika volně dostupných natrénovaných

modelů ke tvorbě word embeddings pro úlohu geolokalizace částí vědeckých afiliací.

Analýza využívá statistické metody, jako jsou PCA a ANOVA, k určení nejvhodnějšího

embeddings modelu. Tyto modely se používají v kombinaci s modely strojového učení,

jako jsou neuronové sítě a další klasifikátory. Jako nejvýkonnější se ukazuje kombinace

modelů neuronové sítě + uncsd-BERT embeddings. Jeho přesnost a průběh procesu

učení jsou dále prozkoumány. Práce je případovou studií ilustrující možný postup

výběru nejlepšího modelu pro konkrétní klasifikační úlohu a poskytuje pohled na

současný stav výkonnosti vybraných embeddings modelů v této úloze. Primárním cílem

je vyvinout model strojového učení pro geolokalizaci afiliací, bez nutnosti spoléhat na

komerční nástroje.

Klíčová slova afiliace, geolokalizace, embeddings, pre-trained word

embeddings modely, modely strojového učení,

klasifikace, statistické vyhodnocení, výběr vhodného

modelu, analýza dat

Počet stran 46

Počet příloh 0

Jazyk Anglický

Bibliographical identification

Author’s first name and surname Bc. Jan Macháň

Title Performance evaluation of Machine Learning

approaches for identifying parts of scientific

affiliations.

Type of thesis Diploma thesis

Department Department of Biochemistry

Supervisor doc. RNDr. Karel Berka, Ph.D.

The year of presentation 2023

Abstract

This diploma thesis investigates the suitability of multiple freely available pre-trained

word embeddings (PWE) models for the task of geo-localizing parts of affiliations. The

analysis employs statistical methods, such as PCA and ANOVA, to identify the most

suitable PWE model. PWE models are used in combination with ML classifiers such as

Neural Networks, Random Forests, Support Vector Classifier, and K-Nearest

Neighbors. The Neural Networks together with uncsd-BERT embeddings model

emerges as the best performing combination. Its classification performance and learning

process are further evaluated. The thesis serves as a case study illustrating the selection

of the best model for a specific classification task, and it provides insights into the

state-of-the-art performance of selected embeddings models on this task. The primary

goal is to develop a ML model for geo-localizing affiliations without commercial tools.

Keywords affiliations, geo-localization, embeddings,

pre-trained word embeddings, machine learning

models, classification, statistical evaluation,

model selection, data analysis

Number of pages 46

Number of appendices 0

Language English

CONTENTS

1 INTRODUCTION 1

2 THEORETICAL PART 3

2.1 Solving Problems by Means of Machine Learning ... 3
2.1.1 Supervised vs Unsupervised Learning 3
2.1.2 Regression vs Classification 4
2.1.3 Typical Learning Issues 4

2.2 Problem of Vectorization ... 5
2.2.1 Why BOW and TF-IDF do not work here. 5
2.2.2 Word Embeddings and Transformers 7

2.3 Used Pretrained Word Embeddings Models ... 9
2.3.1 Bidirectional Encoder Representations from Transformers (BERT) 9
2.3.2 Doc2Vec 10
2.3.3 Universal Sentence Encoder 10
2.3.4 InferSent 10
2.3.5 MiniLM 11

2.4 Used Supervised Learning Models .. 12
2.4.1 Multilayer Perceptron and Neural Networks 12
2.4.2 Random Forests 12
2.4.3 Support Vector Machines 13
2.4.4 K Nearest Neighbors 13

3 EXPERIMENTAL PART 14

3.1 Training-set and test-set ... 15

4 RESULTS 17

4.1 Suitability of Pretrained Embeddings Models .. 17
4.1.1 BERT 17
4.1.2 Doc2Vec 19
4.1.3 Universal Sentence Encoder (USE) 21
4.1.4 InferSent (IS) 23
4.1.5 MiniLM 25

4.2 Performance of Pretrained Embeddings Models .. 27

4.3 Performance of ML Models on Candidates .. 31

4.4 Validation via Test-set .. 35

5 DISCUSSION 36

5.1 Pipeline inclusion. ... 36

5.2 Typical Performance Measures (Confusion Matrix, F1-score, …)... 37

5.3 Learning and Speed of Convergence. .. 39

5.4 Reflecting on predicted potential of respective PWE models. .. 40

5.5 Comparison with naïve use of GPT3 ... 40

6 CONCLUSION 41

7 REFERENCES 42

7.1 Literature.. 42

7.2 Software, repositories, hubs, and documentations .. 45

8 LIST OF ABBREVIATIONS 46

OBJECTIVES OF THE WORK

Goals in the theoretical part the goals are as follows:

• describing the advantages, disadvantages, and difficulties of solving problems by means

of machine learning approaches,

• summarizing existing models and approaches for text vectorization.

Main goals of the practical part of this works are:

• the preparation of training and test sets,

• the deployment of various pre-trained embeddings models,

• analysis of performance of said models in combination with machine learning models,

• evaluation of the results and indicating the best performing model combination,

• discussion of the implementation of selected model into the pipeline for

geo-localization.

1

1 INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) have become widely

recognized and frequently discussed concepts in the public recently. Notably, their versatility

and ability to tackle complex problems that defy simplistic "If A, then B" descriptions render

them inherently advantageous.

Machine learning (ML) relies on procedures where the program learns to solve a given

problem. This learning occurs mostly through adjusting the system's state to accept input

and generate an output as a response. If the answers are incorrect, the state is modified, and the

process is repeated on a training dataset until a system setting is achieved that yields reliable

results for most data. With sufficient training data and validation process, the trained program

can be expected to provide reasonably accurate outcomes.

For instance, the AlphaFold2 AI, which utilizes deep learning (DL) to predict protein

folding with accuracy comparable to physical methods, like X-ray crystallography, has gained

significant attention (Jumper et al., 2021; Skolnick et al., 2021). Similarly, image generation

models based on verbal descriptions, often indistinguishable from the work of skilled graphic

artists, have gained renown (Borji, 2022).

However, a main drawback of neural networks (NN) is that they lack transparency

in their problem-solving approach. While this may not be problematic in some cases, it can be

critical in others. The ethical implications and rate of progress also raise concerns among

scientists.

A significant breakthrough has been made in the field of natural language processing

(NLP), with the emergence of models that can learn to understand the meanings of the words

through so called embeddings. Among these, ChatGPT stands out as one of the most prominent,

owing to its use of the latest third-generation transformer neural network, known as GPT3

(Brown et al., 2020). This chatbot is easily accessible online and has already proven useful

in performing practical tasks. Its capabilities extend beyond mere text generation, with recent

reports indicating that it can also help programmers by writing and correcting code, thereby

increasing their efficiency and productivity (Narasimhan et al., 2021). With GPT4 becoming

available for users via ChatGPT Plus and its predecessor gaining more widespread use, its

impact on various fields cannot be ignored.

2

In the experimental part of this thesis, I aim to prepare a training dataset and train various

ML models, including Neural Networks (NN), Random Forest (RF), Support Vector Machine

(SVM), and K-Nearest Neighbors (KNN), to identify the names of institutions, states, or cities.

An important aspect of this process is selecting the appropriate vectorization approach for

affiliations, which will be used across all models. By doing so, I hope to determine the optimal

combination pre-trained word embedding (PWE) model and machine learning (ML) model

to achieve the best results. This research builds on my bachelor's thesis, where I was able

to identify the countries in information related to molecules from the ChEMBL and PubMed

databases (Macháň, 2021). However, brute force identification would be highly impractical for

detailed geo-localization down to the level of cities and institutions due to the size of the

datasets spanning millions of affiliations. Hence, I intend to utilize machine learning methods

to tackle this challenge.

My goal is to present my master's thesis as a case study that showcases several machine

learning models in combination with embeddings models and evaluates their performance

in solving the geo-localization of textual data. After assessing their effectiveness, I will select

the most suitable model pairing for processing large amounts of data. These models will be

trained to recognize the parts of the text that correspond to the names of countries, cities,

or institutions.

Although this topic may not be strictly considered as a bioinformatics research area,

it is worth noting that the geo-localization of affiliations was initially motivated by the desire

to create a web application highlighting region-specific chemical research on biological targets.

Moreover, the study of embeddings is becoming increasingly popular and applicable in various

domains beyond natural language processing (NLP). For instance, embeddings have shown

their usefulness in chemical structure representation (Coley et al., 2017; Morris et al., 2020),

and are likely to find application in other fields as well. Thus, gaining knowledge about

embeddings can be highly beneficial in a broader scientific context.

3

2 THEORETICAL PART

2.1 Solving Problems by Means of Machine Learning

In this chapter, I aim to explore some of the challenges one may encounter when solving tasks

using machine learning, as well as categorize the typical approaches employed by numerous

ML models. These models utilize large datasets to discover hidden patterns, enabling them

to make informed decisions over time through the learning process. The model's learning

is typically expressed through its ability to gradually change its state to make statistically better

predictions.

2.1.1 Supervised vs Unsupervised Learning

Typically, machine learning approaches are categorized into two main types: supervised

and unsupervised learning. Supervised learning involves a training-set with N objects

represented by vector x of their features and crucially, y representing the class or value that the

model should learn to predict. In contrast, unsupervised learning has no y, and the task

is descriptive. The objective of unsupervised learning is often to recognize interesting patterns

in the data, making it a form of knowledge discovery (Murphy, 2012). Importantly, both

approaches can learn advantageous data representations as a side effect of solving specific tasks

(Goodfellow et al., 2016).

Some consider a third type of machine learning, reinforcement learning, which learns

on the basis of occasional positive or negative feedback (Murphy 2012). However, as this

approach is not used in this thesis, it is unnecessary to delve into more details.

The primary type of machine learning employed in this work is supervised learning.

Thus, obtaining a training-set that consists of both vector x and desired y is essential.

In addition, to evaluate performance, it is necessary to create a similarly defined test-set.

Lastly, the creators of freely available embeddings models performed unsupervised

learning, yielded advantageous data representation, as previously mentioned. These pretrained

models were utilized as generators of features for vectors x since their representation, also

known as embedding, behaves in a beneficial manner, as described in subsequent chapter.

4

2.1.2 Regression vs Classification

Supervised learning problems are typically divided into regression and classification tasks

based on the predicted y. If y is categorical, the task is referred to as classification,

and the predicted category is often considered the label or class. On the other hand, if y is

real-valued, the problem is known as regression. (Murphy 2012)

Despite the apparent differences, both regression and classification require the ML

model to approximate a function - in regression, the regression function, and in classification,

the function representing probabilities of memberships of different classes. (Bishop 1995)

This is why ML models can perform both regression and classification tasks, and why

the preparation of data or performance estimation differs only slightly.

The goal of the experimental part is to label different parts of affiliations, which

categorizes it as a classification problem.

2.1.3 Typical Learning Issues

When using supervised learning, common problems that one may encounter are underfitting

and overfitting.

Underfitting refers to the inability to capture the relationship between inputs (vectors x)

and outputs (y), resulting in the model approximating a complex function by a simpler one

(Kruse et al., 2016). In other words, underfitting occurs when the model is too simple to capture

the patterns in the data. This may be caused by using an inadequate model or inappropriate

settings of hyperparameters, such as setting the number of neurons in a neural network too low.

Underfitting is not a major issue since it is easy to detect and typically fixable with relative

ease.

Conversely, overfitting is often more challenging to detect and fix. It occurs when

the model approximates a simple function with a way too complex one. This is a common

occurrence, as data frequently includes noise, making it easy to focus on wrong features.

Another reason for overfitting is relatively small size of the training set, which can describe

the relationship between inputs and outputs in a restricted manner, resulting in a possibly

distorted reflection of reality. Therefore, the model may inadvertently learn specific

5

characteristics of the training set, including errors, noise, and deviations, instead of revealing

the true underlying relationship, which may be much simpler. (Kruse et al., 2016)

Other aspects that require attention include class balancing within the training-set,

dimensionality reduction of input vectors, and various other considerations that may impact

the learning process. These considerations are highly dependent on the nature of the data being

used.

2.2 Problem of Vectorization

Before cleaning, normalizing, encoding categorical attributes, or filtering for relevant attributes,

it is necessary to first vectorize any data that is not already represented by numerical vectors.

This can be a challenge in the case of text or image data, which require special treatment, and

which is the point of interest in this thesis. The issue of vectorizing text data for Natural

Language Processing (NLP) tasks will be discussed in this chapter.

2.2.1 Why BOW and TF-IDF do not work here.

The simplest vectorization techniques include Bag of Words (BoW) and Term Frequency –

Inverse Document Frequency (TF-IDF). Although not directly relevant to this thesis, they

form the basis of text vectorization approaches and are therefore worth mentioning. However,

these techniques have a significant limitation in that they do not consider the context of words

well enough, resulting in a narrow and limited representation of the text or document.

The BoW method counts the number of occurrences of each instance of the word

overlooking the order, grammar, or context. This enables the classification of texts and coming

from the number of occurrences then calculating weights for each word. (Qader, 2019)

However, the apparent difficulties with using this method are the size of the created vectors,

which increases with every new word and the sparsity of such vectors. Furthermore, since BoW

approach by definition ignores the context of the words, it may not be suitable for certain

applications, such as this one.

Secondly, TF-IDF is an approach of text vectorization that calculates the weights

of terms based on their frequency in a document. The calculation involves the intuitive term

6

frequency (TF) and the inverse document frequency (IDF), which is the logarithm of the ratio

of documents in the corpus to the number of documents where term occurred.

(Sammut and Webb, 2011) This method allows for filtering of words specific to certain

documents and avoids the use of frequently occurring words in all documents. Consequently,

describing these documents by vectors with increased weights for those specific and relevant

words. Again, this approach considers context of the words in a limited document-wise way.

7

2.2.2 Word Embeddings and Transformers

As previously discussed, models can often learn useful data representations while solving other

tasks. These representations can then be utilized for more complex tasks.

The curse of dimensionality is a fundamental problem in language modeling. If the goal

is to solve a problem on large training data, the resulting corpus will include large number

of words which will be represented by discrete vectors, which will inevitably complicate

the learning process. This can consume a significant portion of the model's learning capacity

just to understand the data, since every answer can be either correct or incorrect. However,

representing words with continuous vectors where distance represents level of dissimilarity can

result in a smoother learning process and better performance. These models can learn from large

textual datasets to comprehend the typical context of a word, which is then expressed in its

continuous vector representation. (Bengio, 2003)

N-gram models create conditional probabilities for the next word given some history

or context (Bengio, 2003). Specifically, they calculate the frequency of a particular word

following a given history of words in the corpus. Unsupervised training of a neural network

on large text data can produce projection of words into a continuous space, such that

the distance of the word vectors reflects on similarity/dissimilarity of the words. (Jurafsky and

Martin, 2023) These real-valued vectors that encode the meanings of words with such quality

are known as word embeddings.

The effectiveness of word embeddings is not only influenced by the training data but also

by the task being tackled by the ML model. Additionally, since the embedding vector length

derives from the number of neurons in the hidden layer the sufficiency is also directly

influenced by architecture of the model, besides other architectural factors that influence

it as well.

Various other models have been developed based on the idea of projecting words into

continuous vector space. Tomáš Mikolov’s earlier works (Mikolov, 2008, 2009) stemmed from

the need for better language models for highly inflective languages such as Czech and laid

the foundation for his later creation of the Word2Vec model.

Word2Vec is a predictive model that can be realized by two different models: Continuous

Bag of Words (CBOW) and Continuous Skip-Gram. (Mars, 2022; Mikolov et al., 2013a)

8

The neural networks of CBOW and Skip-Gram models have opposing objectives: while

CBOW predicts the current word given its context, Skip-Gram predicts the context given

a target word. Thus, their architectures mirror each other. Without going into too much detail,

these and other related models use architecture of an input layer, a hidden layer that describes

embeddings, and an output layer. Each model has advantages and disadvantages during

the learning process, and while their derived embeddings are similar, they may exhibit slightly

different levels of accuracy across various tasks. Nevertheless, the resulting embeddings

for different words display even very subtle syntactic and semantic relationships.

(Mikolov et al., 2013a) Their practicality is further evidenced by their ability to organize

concepts and learn relationship among words, despite using unsupervised data. For example,

if one finds a vector representation of x (vec(x)) that is the closest to the result of the equation

vec(“Berlin”) - vec(“Germany”) + vec(“France”), the resulting embedding will be the closest

to that of “Paris”. (Mikolov et al., 2013b)

In addition to Word2Vec, other popular word embedding models include GloVe: Global

Vectors for Word Representation (Pennington et al., 2014) and FastText

(Mikolov et al., 2017), the latter can be perceived as successor of Word2Vec (Mars, 2022).

These ideas were further explored, and the field of Natural Language Processing (NLP)

saw a breakthrough when the Transformer model surpassed all previous models in terms

of accuracy and training speed, setting a new state-of-the-art. (Vaswani et al., 2017)

The simplified architecture of Transformers, which relies solely on the attention mechanism,

seems to significantly quicken the learning process. This mechanism emulates the attention

function by assigning weights to values based on a given key and query (Vaswani et al., 2017),

and can also be found in other modern systems like the aforementioned AlphaFold2

(Jumper et al., 2021).

Pretrained Language Models (PLMs) that are based on the Transformer architecture, such

as BERT and GPT, have proven to be highly successful and have become the mainstream

approach for solving various NLP tasks (Mars, 2022). Their usability is derived from their

training data, which proves valuable in instructing models to comprehend distinct text types,

such as scientific papers. This is presented in the works of Tshitoyan et al. (2019)

or Meijer & Truong & Karimi (2021), for instance.

9

2.3 Used Pretrained Word Embeddings Models

In the next chapter, I will briefly describe the different models that were selected for

the experimental part of this work. The objective was to compare multiple models from various

sources. The models were chosen based on their availability and my ability to configure and run

them successfully within python environment.

 It is also worth acknowledging that the models being used in this context often generate

embeddings for larger text units beyond individual words. Despite this, I will continue to use

the abbreviation PWE (pre-trained word embeddings) for convenience, even though it may not

be entirely accurate. Ultimately, the final embeddings are often derived from the word

embeddings.

2.3.1 Bidirectional Encoder Representations from Transformers (BERT)

Three BERT models were selected from TensorFlow Hub repository (https://tfhub.dev)

to represent this family of models. They are based on Transformer architecture and were trained

on Wikipedia and BooksCorpus dataset. First two use settings of L=12 transformer blocks,

a hidden size of H=768 that corresponds with the length of embeddings and A=12 attention

heads. Only difference being if they use cased or uncased input text. Last of the BERT models

was chosen to be an uncased and bigger version with L=24, H=1024 and A=16.

 The fundamental idea behind BERT's creation is to surpass models like GPT or ELMo

by overcoming their unidirectional constraint during the learning process, which is caused

by their left-to-right approach. BERT accomplishes this through the utilization of a Masked

Language Model (MLM) objective, which randomly masks some parts of the text,

and the objective is to guess the original masked word from its context. BERT's notable

performance can be attributed to the utilization of this bidirectional pre-training for language

representations, which is also the source of its name. (Devlin et al., 2018)

 It should be noted that BERT has gained significant attention in the research community,

leading to the development of various iterations that have been trained with slightly different

architectures or on data specific to certain fields of interest. These include RoBERTa, ALBERT,

DeBERT, and SciBERT, among others (Mars, 2022; Beltagy et al., 2019).

https://tfhub.dev/
https://tfhub.dev/

10

2.3.2 Doc2Vec

I also decided to try a model that was created with longer texts in mind and test his performance

on much shorter parts of the affiliations, in a hope that this more complex model will have

bigger capacity to store more information communicated in affiliation.

Doc2Vec is a model build upon the basis of Word2Vec model described earlier.

The main addition is a paragraph vector that in combination with word vectors contributes

on preserving the information. Paragraph vector is in a way another word vector, that

remembers what is missing from the current context or what is the topic of current paragraph.

(Le and Mikolov, 2014) The model was used via Gensim library

(https://github.com/RaRe-Technologies/gensim) with default inference hyper-parameters

and in two settings based on the two original training datasets: English Wikipedia DBOW

and Associated Press News DBOW (Distributed Bag-of-Words).

2.3.3 Universal Sentence Encoder

The Universal Sentence Encoder (USE) model is one of two models described in the paper

and it is based on Transformer architecture. The training of the model was performed on dataset

consisting of multiple web sources such as Wikipedia, web news, etc. and was later improved

by multiple supervised corpora. USE is available on the TensorFlow Hub repository website,

as was BERT. The universal-sentence-encoder-large in version 5 was used. This model can

encode input of variable length into a 512-dimensional embedding vector. (Cer et al., 2018)

2.3.4 InferSent

InferSent model stems from natural language inference (NLI) task. NLI task tries

to determine whether a hypothesis sentence is true, false, or neutral given a premise sentence.

The main distinction of InferSent model being that NLI task requires annotated data and thus

is a representative of supervised learning. (Conneau et al., 2017) This layer of training is added

on already unsupervised models of GloVe and FastText. InferSent was downloaded from its

GitHub repository (https://github.com/facebookresearch/InferSent). Two versions of the model

https://github.com/RaRe-Technologies/gensim
https://github.com/RaReTechnologies/gensim
https://tfhub.dev/
https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/InferSent

11

are presented with one being trained with GloVe (Pennington et al., 2014) and one with

FastText (Mikolov et al., 2017).

 InferSent was used with the same parameters as was suggested by the authors in their

GitHub repository examples (Conneau, n.d.).

2.3.5 MiniLM

The authors were concerned about the sizes of models like BERT and proposed

a deep self-attention distillation approach. Knowledge distillation (KD) approach is to use

a pre-trained large model as a teacher to help student model to tackle the same task with fewer

parameters (Hinton et al., 2015). With MiniLM, the student model focuses on the last layer

of the Transformer model, which serves as its teacher. This strategy allows for the compression

of a strong but sizable model into a MiniLM model that is much quicker to deploy, while still

achieving comparable results. (Wang et al., 2020, 2021)

I decided to use two variants of MiniLM model, All-MiniLM-L6-v2

and All-MiniLM-L12-v2. The prefix All- meaning that they were trained on all available

training data authors had and suffix -v2 stating their version. These models are available at

sbert.net website or on their GitHub (https://github.com/UKPLab/sentence-transformers).

https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained_models.md

12

2.4 Used Supervised Learning Models

This section serves as a connection between the theoretical and experimental parts of this thesis,

as it briefly summarizes the machine learning (ML) models and their hyperparameters used in

the experimental part.

 All the models used originate in the scikit-learn library (https://scikit-learn.org/stable),

which is an open-source software for tackling both supervised and unsupervised learning.

It is built in Python and utilizes other scientific libraries such as NumPy and SciPy. Scikit-learn

provides a wide range of popular ML models. Additionally, some of them, like Support Vector

Machine (SVM), are written in Cython to achieve C-like performance. (Jolly, 2018)

 I installed this library via Anaconda environment in version 1.2.1 of scikit-learn.

2.4.1 Multilayer Perceptron and Neural Networks

Multilayer Perceptron Classifier (MLPClassifier) model can learn a non-linear function

to approximate given task. MLPClassifier uses numerous perceptrons in multiple layers

to model network-like structure. For purposes of reproducibility, it is important to use specified

random seeds, since different weights on initiation can cause different local minima found.

In order to perform multi-class classification softmax function is applied on output layer, which

normalizes the output values that their sum is one. I used MLPClassifier with default hyper-

parameters except maximum of iterations, which I set to 300. (scikit-learn, n.d.)

2.4.2 Random Forests

Random Forest Classifier (RFClassifier) is an estimator that fits multiple decision trees

on sub-samples of the training dataset. This process as well as the selection of features

in decision trees nodes is dependent on random seed. The settings used for RFClassifier was

number of estimators equal to 1000 and maximal depth of decision tree equal to 20.

(scikit-learn, n.d.)

https://scikit-learn.org/stable/
https://scikit-learn.org/stable

13

2.4.3 Support Vector Machines

Support Vector Classifier (SVC) finds the best decision boundary in the vector space

to separate desired classes. SVC model is in scikit-learn implemented based on libsvm and is

advised not to use this implementation for datasets with large numbers of samples. However,

this is not a concern for this work as the dataset is not large. The only parameter that was

changed from its default value was gamma that is set to ‘auto’. (scikit-learn, n.d.)

2.4.4 K Nearest Neighbors

For the last model, K-Nearest Neighbors (KNN) was used, which classifies new inputs by

the majority class of the nearest neighbors. This means that it is not necessary to change this

model in any way for multiclass classification. This approach also needs no training, since

it only stores the training set instances and then classifies all new inputs based on those samples.

Finally, various k values, including 1, 3, 5, 7, and 9, were tested, and k=3 was chosen due to its

superior performance. (scikit-learn, n.d.)

14

3 EXPERIMENTAL PART

The goal of the experimental part of this work is to evaluate performance of several freely

available PWE models on given task, which is a classification of parts of paper affiliations.

Identify models which are statistically significant candidates for further analyses

and additionally test these candidates in combination with ML models to evaluate which pair

outperforms others and thus forms the best combination of models to be used in pipeline

for process of geo-localization.

Both training-set and test-set were manually created from affiliations retrieved from

PubMed (https://pubmed.ncbi.nlm.nih.gov/) for articles mentioning chemical structures and

further refined. Embeddings for the annotated parts were created using several free PWE

models. Suitability of embeddings was inspected through PCA and then statistically evaluated

using ANOVA from K-fold Cross-Validation data over multiple supervised ML models.

Candidate embedding models (cPWE) were chosen on which other ANOVA was performed to

determine best performing ML model (cML). Candidate pairs (cP) of PWE and ML model were

chosen and the confirmation of the results via test-set was performed to determine best

performing pair (Figure 1). The performance of chosen combination was further investigated

and described using confusion matrix and related measures typically used for evaluating

machine learning models.

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/

15

Figure 1: Diagram of the intended flow of work for experimental part of this thesis.

All workflows (written in python, specifically jupyter notebook), all datasets,

graphs, Statistica workbooks and excel sheets with results and analyses are shared

on GitHub (https://github.com/Najlaron/Diploma-Thesis) to ensure reproducibility and full

transparency of this work.

3.1 Training-set and test-set

To get curated training and test-set, I created script that runs through affiliations and lets me

label its parts manually. The affiliations were randomly shuffled to prevent any biases towards

specific years, countries, or institutions. Contentious parts were removed or altered to refer to

only one specific label to not compromise further analysis. Non-specific and vague terms such

as ‘Department of Biochemistry’, ‘College of Pharmacy’, etc. were labeled ‘None’ to increase

specificity of identified institutions, since highlighting said parts would not lead to their

https://github.com/Najlaron/Diploma-Thesis
https://github.com/Najlaron/Diploma-Thesis

16

localization. Lastly, during this whole process each label was assigned in even amounts, usually

once per affiliation, if possible, to guarantee roughly balanced composition. Along those lines,

as a means to preserve this balance, some redundant and often repeated parts were removed

from training and test-set.

Created training-set comprises of total 2997 parts of 602 affiliations. Out of these,

746 were labeled as ’None’, 704 as ‘Institution’, 642 was the number of both ‘City’

and ‘Country’ labels and the remaining 263 were classified as ‘State’. ‘State’ label was used

mainly for states of US and then provinces or other parts of specific countries. This label is

naturally not that prevalent in dataset and thus it is imbalanced regarding the other labels. Since

it is not necessary for localization it is often omitted from affiliations, more importantly this

also means that the precision of its identification should not have such impact on the precision

of the whole model for geo-localization. Other classes seem to be balanced enough to prevent

biases during training.

Test-set counts for 316 parts from 60 affiliations and hence it is roughly tenth of the

training-set size. Numbers of instances of labels are as follows: ‘None’: 97, ‘Institution’: 77,

‘Country’: 65, ‘City’: 59, and then ‘State’: 18. This distribution follows the trend of training

set, this means being mostly balanced for all labels except ‘State’ which is less frequent

and ‘None’ slightly outperforming. This similarity should help with guaranteeing reliable

performance measures.

17

4 RESULTS

4.1 Suitability of Pretrained Embeddings Models

In this part I present how well different PWE models cluster vectors based on their assigned

label. The task is to successfully classify embedding vectors, which solely depends on their

location in n-dimensional space, or in other words their n values, where n is determined

by the PWE model architecture. Considering our classes consist of geographic terms

and therefore occur in similar context, it is not necessarily true, that they will be clearly

separated in this space. Also, one cannot expect increasing distinction of clusters for larger n,

since the embedding vectors depend mainly on training data of said PWE model. To get

an insight into the clustering of such multidimensional data Principal Component Analysis

(PCA) was performed and data was displayed in form of 3D and 2D graphs. PCA was

performed both with and without vectors classified as ‘None’ to highlight important differences.

All graphs can be found also in GitHub repository

(https://github.com/Najlaron/Diploma-Thesis). I decided to present mainly results of PCA

realized on data without ‘None’ vectors, for the sake of clarity of graphs.

4.1.1 BERT

Three embedding models based on BERT were included in experimental part, namely

cased-BERT-726, uncased-BERT-726 and uncased-BERT-1024. Values 726 and 1024

represent number n of the dimensions of embedding space. It can be seen on the following

graphs, that all three models cluster data quite similarly, but not very noticeably (Figures 2-4).

There are visible signs of clusters, which are potentially more distinctly separated in higher

dimensions, but it must be notted, that first 3 components account for 0.80, 0.85, and 0.74

of the total variance of said models in order. Additionally, suggesting that such difference in

remaining dimensions may not be substantial enough. Exact percentages can be seen in axis

descriptions in forms of explained variance ratios. It would certainly be desirable to see these

models exhibit clearer data clustering already in these lower dimensions.

https://github.com/Najlaron/Diploma-Thesis
https://github.com/Najlaron/DiplomaThesis

18

Figures 2-3: Results of PCA shown as 3-Dimensional graphs (from 2 angles) depicting clustering of

embeddings vectors from csd-BERT-726 and uncsd-BERT-726 models colored by their designated

class (excluding None). The axes belong to the first 3 components from PCA and describe total

variance explained by said components.

19

Figure 4: Result of PCA shown as 3-Dimensional graph (from 2 angles) depicting clustering of

embeddings vectors from uncsd-BERT-1024 model colored by their designated class (excluding

None). The axes belong to the first 3 components from PCA and describe total variance explained by

said components.

4.1.2 Doc2Vec

Despite describing approximately 70 percent of total variance for both Doc2Vec-enwiki

and Doc2Vec-apnews, the following 3D graphs do not exhibit any clustering, except for a single

cluster that encompasses all the data points (Figures 5-6). It is now obvious, that the attempt

to use model for embedding whole documents for only small parts of affiliations did not yield

favorable results.

While the unsuitability of the model for this task may be a possible explanation, it is

also plausible that the model is simply impractical for this particular approach to the problem

and may perform better under a different perspective. Furthermore, it cannot be discounted that

my potential misuse of the model or suboptimal settings may be the root cause of the lackluster

outcomes, since the model is expected to yield results comparable or better than Word2Vec

embeddings (Lau and Baldwin, 2016). Consequently, the ensuing analyses are likely to suffer

from very poor results.

20

Figures 5-6: Results of PCA shown as 3-Dimensional graphs (from 2 angles) depicting clustering of

embeddings vectors from both Doc2Vec models colored by their designated class (excluding None).

The axes belong to the first 3 components from PCA and describe total variance explained by said

components. Most points are indistinguishable as they seem to be projected into very similar areas,

this clusters all data to one cluster instead of showing some class-wise clustering.

21

4.1.3 Universal Sentence Encoder (USE)

Right from the start, the capacity of USE model to effectively cluster vectors with matching

labels appears to be very potent. While describing only around 20 % of total variance, this

model clearly separates ‘Institution’ class. Albeit closely, USE groups the rest of the classes

into recognizable tight spatial patterns (Figure 7). Undoubtedly there is a great potential for this

model to pronounce edges of these subspaces and it is worth to acknowledge its apparent

suitability for this task. On the contrary as is shown in 2D plot, if we do PCA including

‘None’-labeled data, ‘Institution’ class is not so isolated, and it is blending with ‘None’

(Figure 8). This will certainly not help with the classification task, but at least ‘None’ class is

not entirely joined into the bundle of remaining classes to hinder their chances of separation.

Figure 7: Result of PCA for USE model shown as 3-Dimensional graph (from 2 angles) depicting

clustering of its embeddings vectors colored by their designated class (excluding None). The axes

belong to the first 3 components from PCA and describe total variance explained by said components.

22

Figure 8: Result of PCA for USE model shown as 2-Dimensional graph depicting clustering of its

embeddings vectors colored by their designated class including None in transparent grey. The axes

belong to the first 2 components from PCA and describe total variance explained by said components.

23

4.1.4 InferSent (IS)

As in the previous case, IS models separate majority of ‘Institution’ labels and additionally

‘Country’ (Figures 9-10). Whereas not exactly evident in 3D plots, it is clear from 2D versions

that ‘City’ and ‘State’ classes are hard to differentiate (Figures 11-12). However, in comparison

with USE model, IS models are more extensively described by first 3 calculated components,

reaching 45 % of total variance described by both GloVe and FastText version. It will be seen

in further analysis if this makes a difference or proves insignificant in the end.

Figures 9-10: Results of PCA for both IS models shown as 3-Dimensional graphs (2 views) depicting

clustering of their embeddings vectors colored by their designated class (excluding None). The axes

belong to the first 3 components from PCA and describe total variance explained by said components.

24

Figure 11: Results of PCA for IS-GloVe model presented as 2-Dimensional graph depicting clustering

of its embeddings vectors colored by their designated (excluding None). The axes belong to the first

2 components from PCA and describe total variance explained by said components.

Figure 12: Results of PCA for IS-FastText model presented as 2-Dimensional graph depicting

clustering of its embeddings vectors colored by their designated (excluding None). The axes belong to

the first 2 components from PCA and describe total variance explained by said components.

25

4.1.5 MiniLM

Both MiniLM models exhibit distinct clusters in 3D PCA graphs (Figures 13-14) and crucially

already for the first two components (Figrues 15-16). Additionally this clustering does not

distinguish ‘City’ and ‘State’ classes very well, while ‘Institution’ and ‘Country’ clusters are

well pronounced (Figures 13-16), similarly to clustering of last models. It can be seen on plot

of PCA done with points labeled ‘None’, that these clusters remain to be distinguishable and

that ‘None’ class is predominantly on the negative side of first component axis, which helps

with separating vectors labeled as ‘Country’ (Figures 15-16). The same can be said for both

MiniLM-6 and MiniLM-12. What seems to be an advantage of these models over the previously

described clustering is the fact, that first two components acount for under 20 % of total variance

which leaves enough room for other dimensions to distinctly separate desired classes. Therefore

these models seem to be suitable for given task and one can expect them to perform well

in following analyses.

Figures 13-14: Results of PCA for both MiniLM-6 model, and MiniLM-12 model shown as

3-Dimensional graphs (2 views) depicting clustering of their embeddings vectors colored by their

designated class (excluding None). The axes belong to the first 3 components from PCA and describe

total variance explained by said components.

26

Figure 15: Results of PCA for MiniLM-6 model presented as 2-Dimensional graph depicting

clustering of its embeddings vectors colored by their designated including None in transparent grey.

The axes belong to the first 2 components from PCA and describe total variance explained by said

components.

Figure 16: Results of PCA for MiniLM-12 model presented as 2-Dimensional graph depicting

clustering of its embeddings vectors colored by their designated including None in transparent grey.

The axes belong to the first 2 components from PCA and describe total variance explained by said

components.

27

4.2 Performance of Pretrained Embeddings Models

With an idea about the potential suitability of different models, I performed Analysis

of variance (ANOVA) to inspect the real performance of embedding models on the data.

Concerning statistical significance, it was needed to create enough data to analyze. This

was achieved by K-fold Cross-Validation with k = 5 performed on training-set 5 times with

different random states. This means that for every ML model used, 25 accuracy measurements

were performed. Four ML classifiers were used, namely Neural Networks (NN) in form

of Multilayer perceptron, Random Forest classifier (RF), Support Vector classifier (SV)

and lastly K Nearest Neighbors (KNN). Therefore 100 scores were measured for every

embedding model.

Nonparametric Kruskal-Wallis one-way ANOVA was performed due to the distribution

of analyzed data not being normal, which is arguably a by-product of using 4 different

ML models.

All models used were drawn from scikit-learn library for python and the scripts

are shared via GitHub repository. Eventually ANOVA itself was performed on generated data

in software Statistica in version 14.0.0. In following table p-values rounded to 4 digits

after the decimal are presented (Table 1). Highlighted in red are p-values lower than 0.05, which

shows the result being statistically significant, meaning that the performance of those two

models is significantly different. On the other hand, p-values with changed background color

ranging from yellow to blue emphasize that the similarity in performance cannot be denied with

enough statistical evidence, suggesting their alikeness.

It is necessary to combine this information with the view of boxplots for the same

accuracy data. As can be clearly seen in the first boxplot, both Doc2Vec models perform way

worse than other models (Figure 17). This was expected from problems identified for them

in previous section. This is obviously reflected also in the p-value matrix, where it is evident,

that this couple of models is significantly different then remaining eight. Let’s remove these

two and continue to investigate the remaining models.

https://github.com/Najlaron/Diploma-Thesis

28

Table 1: Results of Analysis of Variance (ANOVA) for all used pre-trained word embeddings models

(PWE). Input data for ANOVA were accuracies achieved for different machine learning (ML) models

trying to perform classification task with embeddings vectors from said PWE models.

P-values depicted in table represent how significant the difference in performance between PWE

models is. Statistically significant difference (p-value ≤ 0.05) is highlighted with red color while for

higher p-values, where one cannot deny the similarity of their performance from yellow to blue.

p-values
csd-

BERT

uncsd-

BERT

uncsd-

BERT

-1024

Doc2Vec

-enwiki

Doc2Vec

-apnews

IS-

GloVe

IS-

FastTex

t

USE
MiniLM

-6

MiniLM

-12

csd-BERT 1.000 1.000 0.000 0.000 0.000 1.000 0.833 1.000 0.107 0.001

uncsd-BERT 1.000 1.000 0.000 0.000 0.000 1.000 0.181 1.000 0.533 0.007

uncsd-

BERT-1024
0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Doc2Vec-

enwiki
0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000

Doc2Vec-

apnews
0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000

IS-GloVe 1.000 1.000 0.000 0.000 0.000 1.000 0.357 1.000 0.277 0.003

IS-FastText 0.833 0.181 1.000 0.000 0.000 0.357 1.000 0.000 0.000 0.000

USE 1.000 1.000 0.000 0.000 0.000 1.000 0.000 1.000 1.000 1.000

MiniLM-6 0.107 0.533 0.000 0.000 0.000 0.277 0.000 1.000 1.000 1.000

MiniLM-12 0.001 0.007 0.000 0.000 0.000 0.003 0.000 1.000 1.000 1.000

Figure 17: Boxplot of accuracies achieved by all 10 pre-trained word embeddings (PWE) models over

multiple machine learning (ML) models. Models highlighted in green were deemed better for the task

and eventually labelled as candidates (cPWE) while (depicted in dark red) both Doc2Vec models were

omitted for their lackluster performance for this task.

29

If we look in more detail into the performances of remaining eight models in next

boxplot, two models seem to achieve lower average accuracy (Figure 18).

Model uncsd-BERT-1024 behaves like almost no other model and this is supported by p-values,

where it is statistically different then every other model, expect IS-FastText.

For IS-FastText the results are that it is significantly distinctive from only USE and

MiniLM models. While for BERT models and IS-GloVe no existing difference can be

concluded, or else null hypothesis cannot be rejected.

Nevertheless, this does not disprove its possibility to be grouped with

uncsd-BERT-1024. Based on their shared worse average accuracies and ANOVA data

(Table 1) it can still be insisted, that both uncsd-BERT-1024 and IS-FastText should be omitted

from the pool of candidate models.

Figure 18: Boxplot of accuracies achieved by 8 better performing pre-trained word embeddings (PWE)

models over multiple machine learning (ML) models. Models highlighted in green were deemed better

for the task and labelled as candidates (cPWE). Additionally red-colored models were left out.

30

Table 2: Description of the performance of all pre-trained word embeddings (PWE) models via mean

and median accuracies, standard deviation and finally minimal and maximal accuracy achieved.

 model mean median std min max

csd-BERT 0.883 0.884 0.027 0.838 0.932

uncsd-BERT 0.885 0.886 0.031 0.833 0.943

uncsd-BERT-

1024
0.854 0.855 0.034 0.78 0.923

Doc2Vec-enwiki 0.466 0.49 0.085 0.321 0.597

Doc2Vec-apnews 0.46 0.469 0.082 0.324 0.597

IS-GloVe 0.886 0.884 0.013 0.858 0.905

IS-FastText 0.873 0.873 0.019 0.838 0.903

USE 0.893 0.891 0.017 0.852 0.927

MiniLM-6 0.898 0.902 0.026 0.843 0.942

MiniLM-12 0.905 0.911 0.025 0.852 0.955

In summary, I opted to keep 6 models highlighted in green as candidates (cPWE) owing

to their high average accuracy. Their accuracy means and medians all exceed 0.88 (Table 2).

Standard deviation ranging from 0.013 for IS-GloVe to 0.031 for uncsd-BERT. These models

provide convenient accuracy while not being distinguishable with enough statistical evidence

from one another. Candidates will help to determine which ML models achieve best results

regarding their pairing with said candidate PWE models (cPWE).

31

4.3 Performance of ML Models on Candidates

After the evaluation of the data from the perspective of ML models, it became apparent that

the distributions deviated significantly from the normal distribution. This means that, it was

necessary to utilize a nonparametric version of ANOVA once again. However, given that only

four ML models were involved, the use of ANOVA may have been unnecessary in this

situation, as the results were not particularly interesting or surprising. In fact, a simple

inspection of boxplots would have sufficed to identify that the NN and SV models outperformed

the RF and KNN models (Figure 19).

Figure 19: Boxplot of accuracies achieved by all machine learning (ML) models over chosen

candidate pre-trained word embeddings (cPWE) models. ML models highlighted in green were

deemed better for the task and labelled as candidates (cML). Additionally red-colored ML models

were left out in further analyses.

Let’s begin by discussing poorly performing ML models. Although KNN performed slightly

worse than RF, its advantage lies in the fact that it does not require any training time, unlike RF

which takes an extensive amount of time, increasing with the number of trees built. Results for

KNN with k = 3 are presented, which yielded the best results for this setting. Additionally,

results for k = 1 and k = 5 were also quite good, but performance declined for higher k values.

The RF model was configured with hyperparameters that specified the number of estimators

to be 1000 and maximum depth of trees to be 20. This was the best performing setting from

a few tested, but it cannot be denied, that both models could potentially perform better with

an extensive search for hyperparameters. Different models with various settings can be utilized,

and ANOVA can be performed on multiple settings of the same model to make this analysis

32

more robust. This study intentionally limits its scope to this narrow set of hyperparameters,

given that its intended goal is to find only one adequate model.

It is important to note, that SV and KNN models do not rely on random seeding while training,

this means, that the number of unique measured accuracies is 5 times smaller, than for NN

and RF, which are dependent on random seeds. The random seeds in this case influence only

the process of Cross-Validation. Additionally, it should be emphasized that the accuracy was

calculated 5 times as for NN and RF to preserve the balance of the data in creation of previous

statistics, especially the earlier table presenting values such as mean or median. For following

analyses, the data could be reduced into its fifth since we are comparing each ML model

separately.

Finally, both the NN and SV models achieved an accuracy rate of over 90% in terms of both

median and mean (Figure 20). Upon closer examination, it is evident that the difference between

them is statistically insignificant and the slight overperformance of SV is likely due to the lack

of measurements for this model. This indicates that NN and SV are the models that should

be continued with. The combination of the two candidate ML models (cML) with cPWE models

creates candidate pairs (cP), which must be investigated to determine the best combination

to solve the given task.

Figure 20: Detailed view of accuracies achieved by selected candidate machine learning (cML) models

over candidate pre-trained word embeddings (cPWE) models in form of a boxplot.

33

Since the goal is to choose model combination to use in the final pipeline for classifying

parts of the affiliations and finally geo-localizing the affiliation, it is necessary to pick single

pair from the available cP. As one can see in the following table and boxplot (Table 3;

Figure 21), there is a compelling argument for choosing almost any pair. For example,

combining SV with any MiniLM model could be the first idea, as the accuracy of both PWE

models is notably high, with one combination, SV+MiniLM-12, even scoring as high as 0.955

once. However, it is important to note that the data for SV is limited, and the maximum score

achieved is even considered to be an outlier in the default boxplot graph produced

in Statistica. This suggests that the promised accuracy may, in fact, be much lower than

what the median of only 5 values promises.

To assure sufficient accuracy I decided to go with NN as the ML model of choice.

Specifically in combination with uncsd-BERT, where, as can be seen in table and boxplot,

the median accuracy is 0.920 and mean 0.919 with standard deviation being only 0.012. For one

iteration the accuracy went down to 0.890 which seems to be an outlier. Although only slightly,

this appears to be the best performing cP, furthermore, supported by 25 measurements.

Table 3: Description of the performance of selected candidate machine learning models (cML)

in relation to the candidate pre-trained word embeddings (cPWE) models via means and medians

of accuracies and standard deviations. The combination of cPWE and cML model was labelled as

candidate pair (cP). Outlined in bold font is the best performing cP (NN+uncsd-BERT) which was

selected to be used in a pipeline.

 NN SV

model n mean median std.dev. n mean median std.dev.

csd-BERT 25 0.907 0.902 0.017 5 0.897 0.893 0.018

uncsd-BERT 25 0.919 0.920 0.012 5 0.902 0.903 0.015

IS-GloVe 25 0.890 0.893 0.011 5 0.894 0.892 0.010

USE 25 0.895 0.898 0.010 5 0.911 0.910 0.009

MiniLM-6 25 0.914 0.917 0.013 5 0.924 0.920 0.014

MiniLM-12 25 0.918 0.915 0.013 5 0.927 0.918 0.016

34

Figure 21: Detailed view of accuracies achieved by candidate pairs (cP), which is a combination

of candidate pre-trained word embeddings (cPWE) model and a candidate machine learning (cML)

model. Outlined cP was chosen as a best performing model combination.

35

4.4 Validation via Test-set

To confirm the desired accuracies achieved with the chosen cP, a final validation was performed

on an external test-set. Although this dataset may have some similarities with the training set

by the nature of the data, no specific part was used in the previous K-fold Cross-Validation.

The test-set consists of approximately one-tenth of the training set, with 316 parts from 60

affiliations. The table below shows the accuracies obtained by all candidate pairs (cP) (Table 4).

As observed earlier SV is not affected by random seedings, resulting in fewer measurements.

However, all results align with the trends observed during Cross-Validation, with an average

score of around 90%. Moreover, the chosen combination of SV+uncsd-BERT is one of the top

performers, even on the test-set, which further proves the decision.

Table 4: Inspection of the accuracies of selected candidate pairs (cP) on the test-set data. Outlined in

bold font is the best performing cP (NN+uncsd-BERT) which was selected to be used in a pipeline.

cP accuracy

on test-set avg_nn (5) sv (1)

csd-BERT 0.907 0.930

uncsd-BERT 0.929 0.902

IS-GloVe 0.890 0.896

USE 0.909 0.927

MiniLM-6 0.930 0.918

MiniLM-12 0.911 0.918

avg 0.913 0.915

std 0.015 0.014

36

5 DISCUSSION

After choosing the combination of NN+uncsd-BERT as the model to use in the annotation

pipeline, training on the whole training-set was performed and evaluated on test-set. In order to

describe the learning process in more detail Cross-Validation was performed as part of

validation_curve function. Heatmaps of confusion matrix were created as well as report table.

5.1 Pipeline inclusion.

This model will serve as a primary classification tool for identifying important parts

of affiliations. It is worth noting that the model’s implementation into the pipeline will most

likely improve its performance, as the performance was evaluated ignoring the position of the

identified part in the affiliation. This information was ignored to simplify the architecture of the

classification model. Furthermore, we only need to predict one of each label, excluding 'None',

which could simplify the problem and increase real accuracy. This means that the overall

accuracy of the final geo-localization might be even higher than the accuracy achieved

by NN+uncsd-BERT on its own. This is because the real task is in a way simpler than

the version model learnt to solve. With the added information of the order of the parts and with

the certainty of most classes appearing once in all correct affiliations, the final pipeline

or a model build upon the basis of NN+uncsd-BERT can perform very well for the affiliation

geo-localization task and thus its inclusion in the pipeline may fine-tune the model to correctly

geo-localize all typical affiliations.

Ultimately, the goal is to prepare the important parts of the affiliation as an input to tools

like Here: Geocoder API (https://developer.here.com/). This API utilizes data to produce

geocoordinates and depends on annotated data to achieve optimal performance. However, it is

noticeably more cost-effective than Google's API, which performs better on more disorganized

data.

To reduce the number of queries for the geocoding API, clustering in the space

of identified classes may be necessary to receive groups of possible affiliations from the same

institution. This approach also enables projecting annotated affiliations into fewer dimensions.

https://developer.here.com/documentation/geocoder/dev_guide/topics/what-is.html

37

5.2 Performance Measures (Confusion Matrix, F1-score, …).

The overall accuracy of the NN+uncsd-BERT on the test is 93% in other words, it classified

93% of the instances in the dataset correctly. The confusion matrix and classification report

table summarize the model's performance (Figure 22; Table 5).

 Looking at the precision and recall scores for each label in the following table, it is

apparent that the model combination performs particularly well for ’Country’ and ‘Institution’,

specifically over 95 %. These two labels, together with ‘City’ are the most important for

geo-localization. The ‘City’ and ‘None’ labels also have relatively high precision and recall

scores, both above 90 %. Consequently, the identification of the 'State' class, where the model

struggles and scores worse, is not that problematic for the entire classification process.

In conclusion, the macro-averaged and weighted-average F1-scores both exceed 91 %,

indicating that the model is performing consistently across all labels.

Figure 22: Confusion matrix depicting the performance of NN+uncsd-BERT combination on

classification task. The heatmap shows the actual classes of the vectors in the dataset and which

classes were predicted for these vectors by the model.

38

Table 5: Performance report table for the NN+uncsd-BERT combination is presented. Typical

measures such as precision, recall, or F1-score are shown for each class. Support describes the number

of instances in the test-set for certain class or overall. Accuracy, macro-average, and weighted-average

F1-scores are included as well.

label precision recall f1-score support

City 0.87 0.92 0.89 59

Country 0.98 0.98 0.98 65

Institution 0.96 0.95 0.95 77

None 0.94 0.92 0.93 97

State 0.78 0.78 0.78 18

accuracy 0.93 316

macro avg 0.91 0.91 0.91 316

weighted avg 0.93 0.93 0.93 316

39

5.3 Learning and Speed of Convergence.

Validation curves were generated for an increasing number of epochs (iterations) and different

random seeds. None of the curves seemed to deviate from the overall trend. Neural network

scores around 90 % accuracy after first 50 epochs and then slowly converges reaches

the maximum. However, after 100 to 150 epochs its accuracy on omitted part of the set

decreases slightly, indicating possible overfitting. Decreasing the number of iterations

or neurons to avoid overfitting should be considered.

Figures 23-24: Validation curves of the learning process of NN+uncsd-BERT for two initial random

states. Unsurprisingly, both show steep progress for first 50 epochs and then mild increase in accuracy

in the following 50. After 100-150 epochs slight decrease in Cross-validation score can be observed

suggesting possible overfitting.

40

5.4 Reflecting on predicted potential of respective PWE models.

Based on the performance of ML models using various PWE models, it can be assumed that

the accuracy of classification reflects the predictions made about the usability and natural

clustering of embedding vectors. It was clear that Doc2Vec models were not suitable for this

task, as evidenced by their poor performance. Some models, such as uncsd-BERT-1024

and IS-FastText, performed slightly worse than expected, but further analysis would

be required to determine the reasons for this. The remaining models met the expectations made

about their suitability. It is safe to say, that the initial view through PCA or any other

multidimensional analysis offers highly valuable, yet not complete information about the

potential of embedding models, or any vectors for that matter.

5.5 Comparison with naïve use of GPT3

What seems like an interesting comparison to include is to relate the performance to the one

of GPT3. I used its API to perform the same classification task and measured the accuracy.

Importantly, the code used to perform this task was also written by GPT3 itself and only

necessary change was to add personal OpenAI API key. The performance was as follows:

Accuracy: 0.69; Precision: 0.78; Recall: 0.69; F1-score: 0.69.

Even though it can be argued that the prompt and parameters such as temperature, might

be adjusted to improve performance, each of my attempts ended in similar or worse

performance on test_data than the first script suggested by ChatGPT3 itself. I don't deny that

with more experience, understanding of mistakes the model makes and by using better prompts

its performance will increase, but such insight would require more time and the point was

to calculate performance of naive use of GPT3.

This result is somewhat impressive considering there was no added training performed

and was in fact unsupervised. Where GPT3 might have had problems are instances, where

mixed data like for example: “country name + email” in the same input occurred and since this

model had no information about correct labels, it might have predicted ‘None’, as it deemed

email to be more important. It is still encouraging to note that results of statistically chosen,

and extensively trained model is not outperformed by naïve version of GPT3 script.

41

6 CONCLUSION

Multiple freely available models for generating embeddings using pre-trained word

embeddings (PWE) were used in this study to analyze the suitability of the embeddings for

the task of classification. Statistical methods, such as PCA or ANOVA, were utilized to identify

the most suitable models. These models were combined with different machine learning (ML)

models, including Neural Networks, Random Forests, Support Vector Classifier, and K Nearest

Neighbors model. The NN+uncsd-BERT combination was found to be the best performing

model, and its learning process and classification performance were further evaluated.

This work is a case study that demonstrates how to choose a suitable model for a specific

goal and provides a modest insight into the state-of-the-art performance of such models.

The primary aim of this study was to develop a machine learning model for geo-localizing

affiliations without relying on any commercial tools.

In conclusion, this work presents a successful approach for identifying and geo-localizing

affiliations using only freely available tools. The developed model is a valuable addition

to the data-analysis pipeline for the prepared web-application. Although there may be larger

models or commercial tools that can achieve higher accuracy, the statistical evaluation

and careful selection of appropriate models for specific tasks emphasized in this work are

of a significant importance.

42

7 REFERENCES

7.1 Literature

• Beltagy, I., Lo, K., Cohan, A. (2019) SciBERT: A Pretrained Language Model for Scientific

Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), 3615–3620, Hong Kong, China. Association for Computational Linguistics.

doi: 10.18653/v1/D19-1371.

• Bengio, Y., Ducharme, R., Vincent, P. (2003) A neural probabilistic language model. Journal

of Machine Learning Research, 3:1137-1155. doi: 10.5555/944919.944966.

• Bishop, C. M. (1995) Neural Networks for Pattern Recognition, Oxford: Claredon Press.,

Available at: Book-Bishop-Neural Networks for Pattern Recognition.pdf (sabanciuniv.edu)

• Borji, A. (2022) Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion,

Midjourney and DALL-E, ArXiv. doi: 10.48550/arXiv.2210.00586.

• Brown, T.B. et al. (2020) Language Models are Few-Shot Learners, NIPS'20: Proceedings of

the 34th International Conference on Neural Information Processing Systems, 33(159),

1877-1901. Available at:

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f6

4a-Paper.pdf

• Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., et al. (2018) Universal Sentence Encoder,

ArXiv, 1803.11175. doi: 10.48550/arXiv.1803.11175.

• Coley, C. W., Barzilay, R., Green, W. H., Jaakkola, T. S., Jensen, K. F. (2017) Convolutional

Embedding of Attributed Molecular Graphs for Physical Property Prediction, Journal of

Chemical Information and Modeling, 57 (8), 1757-1772. doi: 10.1021/acs.jcim.6b00601.

• Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A. (2017) Supervised Learning of

Universal Sentence Representations from Natural Language Inference Data; ArXiv.

doi: 10.48550/arXiv.1705.02364.

• Devlin, J., Chang, M-W., Lee, K., Toutanova, K. (2018) BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding, ArXiv.

doi: 10.48550/arXiv.1810.04805.

• Goodfellow, I., Bengio, Y., Courville A. (2016) Deep Learning. Cambridge, MA: MIT Press.

Available at: https://www.deeplearningbook.org/.

• Hinton, G., Vinyals, O., Dean, J. (2015) Distilling the Knowledge in a Neural Network. ArXiv.

doi: 10.48550/arXiv.1503.02531.

• Jolly, K. (2018) Machine Learning with Scikit-Learn Quick Start Guide: Classification,

Regression, and Clustering Techniques in Python. Birmingham, UK: Packt Publishing.,

Available at:

https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,shib&db=e000xww&AN=

1936459&authtype=shib&site=eds-live&scope=site&authtype=shib&custid=s7108593.

(Accessed: 25.04.2023).

• Jumper, J., Evans, R., Pritzel, A. et al. (2021) Highly accurate protein structure prediction with

AlphaFold., Nature, 596, 583–589. doi: 10.1038/s41586-021-03819-2.

• Jurafsky, D., Martin, J. H. (2023) Speech and Language Processing (3rd ed. draft), Available

at: https://web.stanford.edu/~jurafsky/slp3/. (Accessed: 25.04.2023).

http://people.sabanciuniv.edu/berrin/cs512/lectures/Book-Bishop-Neural%20Networks%20for%20Pattern%20Recognition.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.1705.02364
https://www.deeplearningbook.org/
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,shib&db=e000xww&AN=1936459&authtype=shib&site=eds-live&scope=site&authtype=shib&custid=s7108593
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,shib&db=e000xww&AN=1936459&authtype=shib&site=eds-live&scope=site&authtype=shib&custid=s7108593
https://doi.org/10.1038/s41586-021-03819-2
https://web.stanford.edu/~jurafsky/slp3/

43

• Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., Steinbrecher, M. (2016) Computational

Intelligence A Methodological Introduction (Second Edition), London: Springer, doi:

https://doi.org/10.1007/978-1-4471-7296-3.

• Lau, J. H., Baldwin, T. (2016) An Empirical Evaluation of doc2vec with Practical Insights into

Document Embedding Generation. In Proceedings of the 1st Workshop on Representation

Learning for NLP, Available at: https://github.com/jhlau/doc2vec.

• Le, Q. V., Mikolov, T. (2014) Distributed Representations of Sentences and Documents,

Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):1188-

1196. Available at: https://proceedings.mlr.press/v32/le14.html.

• Macháň, J. (2021) Mapování struktur současných chemických látek., Bachelor‘s thesis (Bc.).

Olomouc, Palacký University Olomouc. Faculty of Science. Available at:

https://theses.cz/id/doscu6/?lang=cs.

• Mars, M. (2022) From Word Embeddings to Pre-Trained Language Models: A State-of-the-Art

Walkthrough. Appl. Sci., 12 (17), 8805. doi: 10.3390/ app12178805.

• Meijer, H. J., Truong, J., Karimi, R. (2021) Document Embedding for Scientific Articles:

Efficacy of Word Embeddings vs TFIDF. ArXiv Volume: 2107.05151.

doi: 10.48550/arXiv.2107.05151.

• Mikolov, T. (2008) Language models for automatic speech recognition of Czech lectures,

Master’s thesis, Brno University of Technology. Available at:

https://www.fit.vutbr.cz/research/groups/speech/publi/2008/mikolov_eeict2008.pdf

• Mikolov, T., Kopecký, J., Burget, L., Glembek, O., Černocký, J. (2009) Neural network-based

language models for highly inflective languages, In: Proc. ICASSP 2009, Available at:

http://www.fit.vutbr.cz/research/groups/speech/publi/2009/mikolov_ic2009_nnlm_4.pdf.

• Mikolov, T., Corrado, G., Chen, K. & Dean, J. (2013a) Efficient estimation of word

representations in vector space. ArXiv. doi: 10.48550/arXiv.1301.

• Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J. (2013b) Distributed Representations

of Words and Phrases and their Compositionality, ArXiv. doi: 10.48550/arXiv.1310.4546.

• Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A. (2017) Advances in Pre-Training

Distributed Word Representations. ArXiv. doi: 10.48550/arXiv.1712.09405.

• Morris, P., St. Clair, R., Hahn, W. E., Barenholtz, E. (2020) Predicting Binding from Screening

Assays with Transformer Network Embeddings; Journal of Chemical Information and

Modeling, 60 (9), 4191-4199; doi: 10.1021/acs.jcim.9b01212.

• Murphy, K. P. (2012) Machine Learning: A Probabilistic Perspective, Cambridge, MA: MIT

Press. Available at: noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf.

• Narasimhan, A. & Rao, K. & M.B, V. (2021). CGEMs: A Metric Model for Automatic Code

Generation using GPT-3., ArXiv. doi: 10.48550/arXiv.2108.10168.

• Pennington, J., Socher, R., Manning, C. D. (2014) GloVe: Global Vectors for Word

Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP). doi: 10.3115/v1/D14-1162.

• Sammut, C., Webb, G. I. (2011) Encyclopedia of Machine Learning, Boston, MA.: Springer,

doi: 10.1007/978-0-387-30164-8_832.

• Skolnick J., Gao M., Zhou H., Singh S. (2021) AlphaFold 2: Why It Works and Its Implications

for Understanding the Relationships of Protein Sequence, Structure, and Function., Journal of

Chemical Information and Modeling, 61(10), 4827-4831. doi: 10.1021/acs.jcim.1c01114.

https://github.com/jhlau/doc2vec
https://proceedings.mlr.press/v32/le14.html
https://theses.cz/id/doscu6/?lang=cs
https://www.fit.vutbr.cz/research/groups/speech/publi/2008/mikolov_eeict2008.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2009/mikolov_ic2009_nnlm_4.pdf
https://arxiv.org/pdf/1712.09405.pdf
http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf
https://doi.org/10.1007/978-0-387-30164-8_832

44

• Tshitoyan, V., Dagdelen, J., Weston, L. et al. (2019) Unsupervised word embeddings capture

latent knowledge from materials science literature. Nature 571, 95–98. doi: 10.1038/s41586-

019-1335-8.

• Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

Polosukhin, I. (2017) Attention is all you need, ArXiv. doi: 10.48550/arXiv.1706.03762.

• Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M. (2020) MiniLM: Deep Self-Attention

Distillation for Task-Agnostic Compression of Pre-Trained Transformers. ArXiv.

doi: 10.48550/arXiv.2002.10957.

• Wang, W., Bao, H., Huang, S., Dong, L., Wei, F. (2021) MiniLMv2: Multi-Head Self-Attention

Relation Distillation for Compressing Pretrained Transformers. ArXiv.

doi: 10.48550/arXiv.2012.15828.

• Wisam, A. Q., Ameen, M. M., Bilal, I. A. (2019) An Overview of Bag of Words;Importance,

Implementation, Applications, and Challenges. International Engineering Conference (IEC),

Erbil, Iraq, 2019, pp. 200-204, doi: 10.1109/IEC47844.2019.8950616.

https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1038/s41586-019-1335-8
file:///C:/Users/janna/Desktop/Skola/Mgr/DIPLOMKA/PSANÍ_DP/%20MiniLM:%20Deep%20SelfAttention%20Distillation%20for%20Task-Agnostic%20Compression%20of%20Pre-Trained%20Transformers
file:///C:/Users/janna/Desktop/Skola/Mgr/DIPLOMKA/PSANÍ_DP/%20MiniLM:%20Deep%20SelfAttention%20Distillation%20for%20Task-Agnostic%20Compression%20of%20Pre-Trained%20Transformers

45

7.2 Software, repositories, hubs, and documentations

The GitHub repository with my code, tables, and figures available at:

• https://github.com/Najlaron/Diploma-Thesis

Else:

• https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4

• https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/4

• https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/4

• https://github.com/RaRe-Technologies/gensim

• https://tfhub.dev/google/collections/universal-sentence-encoder/1

• https://github.com/facebookresearch/InferSent

• https://www.sbert.net/docs/pretrained_models.html

• https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained_models.md

• scikit-learn: machine learning in Python — scikit-learn 1.2.2 documentation

• https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-

perceptron

• https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neura

l_network.MLPClassifier

• https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-

perceptron

• https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.en

semble.RandomForestClassifier

• https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

• https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification

• https://pubmed.ncbi.nlm.nih.gov

• TIBCO Software Inc. (2020). Data Science Workbench, version 14. http://tibco.com.

https://github.com/Najlaron/Diploma-Thesis
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/4
https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/4
https://github.com/RaRe-Technologies/gensim
https://tfhub.dev/google/collections/universal-sentence-encoder/1
https://github.com/facebookresearch/InferSent
https://www.sbert.net/docs/pretrained_models.html
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained_models.md
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification
http://tibco.com/

46

8 LIST OF ABBREVIATIONS

ML = Machine Learning

AI = Artificial Intelligence

NN = Neural Networks

MLP = Multilayer Perceptron

RF = Random Forests

SV(M/C) = Support Vector (Machine/Classifier)

KNN = K-Nearest Neighbors

DL = Deep Learning

PWE = pre-trained word embedding

(C)BoW = (Continuous) Bag of Words

TF-IDF = Term Frequency – Inverse Document Frequency

NLP = Natural Language Processing

BERT = Bidirectional Encoder Representations from Transformers

USE = Universal Sentence Encoder

PCA = Principal Component Analysis

ANOVA = Analysis of Variance

cPWE model = candidate pre-trained word embedding model

cML model = candidate machine learning model

cP = candidate pair (of models)

