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Abstract
In this thesis, we designed and implemented a tool that is able to process intracranial
EEG signals in real-time. That is done by applying functions for computing various iEEG
biomarkers implemented in python library Epycom on the incoming data stream and storing
the results into the database. We compared results computed by our tool against the offline
computations and evaluated if real-time signal processing is suitable for clinical practice.

Abstrakt
V této práci jsme navrhli a implementovali nástroj, který je schopen zpracovávat intrakraniální
EEG signály v reálném čase. To se provádí aplikací funkcí pro výpočet různých iEEG
biomarkerů implementovaných v python knihovně Epycom na příchozí datový tok a uložením
výsledků do databáze. Porovnali jsme výsledky vypočítané naším nástrojem s offline
výpočty a vyhodnotili, zda je zpracování signálu v reálném čase vhodné pro klinickou praxi.
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Rozšířený abstrakt
Tato práce vychází z potřeby vývoje nových nástrojů v oblasti farmakorezistentní léčby
epilepsie. Pacienti trpící tímto typem epilepsie nereagují na běžná antiepileptika a ve většině
případů je jediným způsobem, jak dosáhnout bezzáchvatového stavu, resekce epileptogenní
mozkové tkáně. Přesná lokalizace epileptogenní zóny (EZ) je proto nezbytná. V rámci
tohoto úkonu musí být pacientovi implantovány intrakraniální EEG elektrody po dobu až
čtyř týdnů, přičemž čekání na výskyt záchvatu je dodnes jediným způsobem lokalizace EZ.
V některých případech ani tento proces nestačí k označení části mozku pro resekci (tato
označená část se také nazývá zóna nástupu záchvatu nebo SOZ) s dostatečnou jistotou k
provedení operace. V takovém případě se předoperační posouzení ukazuje jako zbytečné.
Proto je vynaloženo velké úsilí na zlepšení tohoto procesu. Klíčovými parametry jsou čas a
přesnost. Tato diplomová práce, vytvořená ve spolupráci s FNUSA-ICRC, pokládá základ
pro řešení obou zmíněných aspektů. Implementovali jsme nástroj v Pythonu, který dokáže
zpracovat příchozí proud iEEG signálů a extrahovat z něj požadované vlastnosti iEEG v
reálném čase. Vzhledem k tomu, že kombinace různých iEEG biomarkerů přináší lepší
výsledky při lokalizaci SOZ [4], lze přesnost této úlohy zlepšit pomocí našeho nástroje v
kombinaci se strojovým učením nebo jiným rozhodovacím algoritmem. Zpracování v reál-
ném čase zajišťuje, že výsledky jsou k dispozici okamžitě a neurologové se mohou rozhodovat
přímo během nahrávání. Na rozdíl od offline zpracování jsou při online zpracování data uk-
ládána do databáze dobře strukturovaná pro další vyhodnocování. Náš nástroj byl testován
na datech od čtyř pacientů. Tři datové sady byly dlouhé záznamy trvající několik hodin
a pacienti se během doby nahrávání mohli volně pohybovat po nemocnici. Jeden byl 30
minutový záznam pacienta ležícího na lůžku. Abychom náš nástroj vyhodnotili, položili
jsme čtyři otázky:

1. Zpracovává náš nástroj data stejným způsobem, jako když jsou zpracovávána offline?

2. Je nástroj dostatečně robustní pro zpracování dlouhodobých signálů?

3. Dosahuje nástroj podobného výkonu jako referenční 30 min. nahrávání v leže během
uvolněném stavu?

4. Mění se schopnost lokalizovat SOZ pomocí biomarkerů v čase a může překonat refer-
enční záznam v některých segmentech?

Vypočítané výsledky byly statisticky porovnány a vyneseny do grafů. V krátkém záz-
namu byly rozdíly mezi offline a online vypočítanými daty malé (otázka 1). Nástroj zpraco-
val všechny datové sady bez selhání nebo jiného neočekávaného chování (otázka 2). Funkce
pro výpočet relativní entropie a detekci HFO byli aplikované na dlouhé datové sady proudící
do našeho programu. Pro srovnání s offline výpočty bylo jako reference k dispozici pouze
30 min. offline vypočítaných dat. Výsledky byly porovnány s daty zpracovanými v reálném
čase rozdělenými do 30 min dlouhých časových segmentů. Hodnoty REN po výpočtu ROC
se statisticky rovnaly referenčním výsledkům z 30 min relaxovaného záznamu. Z toho vy-
plývá, že náš nástroj je vhodný pro analýzu dlouhodobých nahrávek s podobným výkonem
jako offline analýza krátkých nahrávek (otázka 3). Hodnoty ROC HFO byly statisticky
horší než referenční ROC. To může být způsobeno nižší kvalitou dlouhodobých nahrávek,
které jsou vystaveny mnohem většímu šumu. Potenciální výhody našeho nástroje stále
převyšují jeho nižší výkon v detekci HFO. Je to i kvůli zjištěním po analýze statistick-
ých rozdílů v jednotlivých segmentech. Navzdory celkovému výsledku byl výkon našeho



nástroje podobný offline analýze v některých saostatných segmentech při detekci HFO. To
naznačuje existenci časově proměnných epileptických cyklů v mozku a nabízí možnost lepší
lokalizace SOZ díky této znalosti (otázka 4).

Přestože na celém světě probíhá v oblasti EEG a epilepsie mnoho výzkumů a vývoje,
zatím není na mnoha institucích plně implementováno online zpracování EEG. Náš pro-
jekt může dále poskytnout pevný základ pro další rozvoj lepších mechanismů lokalizace a
predikce záchvatů v Nemocnici u sv. Anny v Brně. Navíc díky okamžitým výsledkům mo-
hou lékaři učinit rozhodnutí pro zajištění lepšího komfortu pacienta přímo během snímání
iEEG. Projekt může také pomoci s výběrem správného času pro 30 min nahrávání, kdy
pacient jenom leží, což může dále usnadnit další lokalizaci. Přestože je náš nástroj ve svém
současném stavu plně funkční, aby byl uveden do praxe, je třeba jěšte vynaložit úsilý pro
jeho vývoj.
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Glossary

Most commonly used shortcuts and abbreviations in this thesis.

AUC area under the curve
BME department of biomediccal engineering at St Anne’s Hospital Brno
CS (detector) Cimbálník-Stead detector; algorithm for detecting high-frequency oscillations
EEG electroencephalogram, electroencephalograph (depending on context)
EoCG electrocorticography
EZ epileptogenic zone
FNUSA Fakultní Nemocnice u Sv. Anny (St Anne’s Hospital Brno)
FNUSA-ICRC The International Clinical Research Centre
HFO high-frequency oscillations
ictal during epileptic seizure
iEEG intracranial EEG
IED interictal epileptiform discharges (also referred to as spikes)
interictal in between of epileptic seizures
KL (divergence) Kullback-Leibler divergence
MI modulation index
MVL mean vector length
PAC phase-amplitude coupling
REN relative entropy
ROC receiver operating characteristic (curve)
sEEG stereotactic EEG
SOS second-order series (in relation to filtering)
SOZ seizure onset zone
SVM support vector machine
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Chapter 1

Introduction

1.1 Motivation
Epilepsy is a disease that affects about 1 % people worldwide. Many of those people can be
treated pharmacologically, yet about 30 % of epilepsy patients do not respond to any kind
of conventional epileptic drug [30]. In such a case, the best option for a patient is to undergo
surgical treatment, which focuses on the epileptogenic zone (EZ) resection [31]. However,
only about 60% of patients remain seizure-free after administering it [9]. Pre-surgical as-
sessment of EZ plays a key role in the outcome of surgery and much effort is being put into
developing more accurate and automatized methods for localization of these zones by ana-
lyzing electroencephalographic (EEG) signals of the brain. Several EEG biomarkers can be
used for the diagnosis of epilepsy, some of which are visually observable on EEG recordings,
yet many others require further processing and analysis. The period of presurgical analysis,
together with the EZ localization, is on average two weeks long [4] where most of the time
is spent by waiting for patient’s seizure. During this time, the patient’s skull is penetrated
with electrodes, and the patient is exposed to the risk of infection or further deterioration.
Besides that, a week spent in the intensive care unit costs about 150 thousand Czech crowns.

Figure 1.1: Golden standard of pre-surgical analysis.

The motivation for this thesis lies in the need for developing algorithmic tools for efficient
analysis of non-observable properties of EEG signals and offering real-time data that can
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be used for EZ diagnosis and speeding up the whole pre-operation process. Developing
a tool that could analyze intracranial signals coming in real-time, right from the inside
of the head of a patient, could potentially speed up the whole process and by combining
various bio-markers also improve the precision of the EZ localization, thus enhancing the
overall probability for the seizure-free outcome of the surgery. Although the current golden
standard – visual assessment of EEG recording, captured during the seizure (figure 1.1), is
most likely not going to change during the following years, with more research on biomarkers
computed from the recordings between the seizures and development of tools like the one
described in this thesis, we might reach a point in the future where seizure recording will
not be needed for an accurate pre-surgical evaluation and the whole process would be done
under 24 hours, or even in the operating room. The thesis is based on ongoing research at
The International Clinical Research Centre of St. Anne‘s University Hospital Brno (FNUSA
ICRC) 1 in cooperation with the Institute of Scientific Instruments of The Czech Academy
of Sciences (ISI-CAS) 2 focused on the analysis of high-frequency intracerebral EEG signals.

Figure 1.2: Future prospects on the process of presurgical analysis, that could be far less
costly and more efficient than current golden standard.

1.2 Collaboration

This project is part of a larger cooperation between several institutions around the globe.
I have been cooperating with the Computational Neuroscience research group at ISI-CAS
together with The Biomedical Engineering research team (BME) from FNUSA ICRC in
Brno 3 since autumn 2020 by making contributions to the python library Epycom 4, which
contains functions for calculation of various EEG biomarkers and is also used in this project.
Later, I signed a contract with ISI-CAS and started working on the already initiated, but
at the time stagnating project and library Mepior. The knowledge base for the implemen-

1https://www.fnusa.cz/en/hp/
2http://www.isibrno.cz/en
3https://www.fnusa-icrc.org/en/research/research-teams/clinical-research/biomedical-

engineering/
4https://gitlab.com/icrc-bme/epycom
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tation comes from several studies published by the institutions mentioned above in further
cooperation with the Mayo Clinic Department of Neurology5, such as [4]. Therefore this
work represents results coming from the cooperation of several departments across multiple
institutions, rather than as a single person solution.

1.2.1 Co-workers

During the writing and implementation, I could always rely on the advice of my external
supervisor Ing. Ján Cimbálník, Ph.D. 6 who has many years of experience in the research of
electrophysiological signals and has worked with EEG data from epileptic patients directly.
Besides, he abounds with deep technical knowledge of programming signal processing scripts
and libraries. He originally initiated the whole project and introduced me to it. At the same
time, he provided me with support programs and data from his lab. The second important
person participating in this project is Ing. Petr Klimeš, Ph.D. 7, with many publications
and rich experience in the field of EEG signals. Besides deepening my understanding of
the topic and offering consulting about brain electrophysiology and epilepsy, he took care
of the formal part of our collaboration, giving me a contract.

1.3 Work progress
Because of the project complexity, work was progressing through the several stages. First,
I had to get familiar with project in the state as it was. That was the phase of studying all
the tools, doing configurations and solving dependency problems as well as learning about
the already existing architecture. Next, I started implementing my adjustments in order to
make the pipeline work as expected. Together with Ján Cimbálník and Petr Klimeš, we were
having regular meetings every two weeks in order to discuss the project progress, emerging
questions and possible improvements. In the following phase, after the functionality of the
pipeline on a single core of single machine has been tested, I implemented multi-process
pipeline with the use of the tools for managing distributed nodes, described in Chapter 4.
Later, I ran this enhanced pipeline on multiple CPUs at St. Anne’s Hospital and performed
the tool evaluation which was the last phase of the development. The distribution of work
is displayed in figure 1.3.

1.4 Claims
We implemented tool processing EEG signals in real time which is processing the signals
comparably well with the offline processing. Our tool is suitable for clinical use and will be
put into practical use at St. Anne’s Hospital Brno.

5https://www.mayoclinic.org/
6https://scholar.google.com/citations?hl=en&user=jrlYK1EAAAAJ
7https://scholar.google.com/citations?user=x7Iu8KoAAAAJ&hl=en&oi=sra
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Figure 1.3: Approximate contribution to the project. On the top, pyacq is the library which
was initially forked from GitHub and by building up on it, mepior library was created. The
classes from mepior used in our pipeline implementation are displayed in the figure. Note,
that there are other classes in mepior implemented by Ján Cimbálník, but they were not
used in this project.
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Chapter 2

EEG and Epilepsy

The journal Epilepsia introduced, in its ILAE Official Report [8], a conceptual definition
for epilepsy, stating that it is

a disorder of the brain characterized by an enduring predisposition to generate
epileptic seizures, and by the neurobiological, cognitive, psychological, and social
consequences of this condition. The definition of epilepsy requires the occurrence
of at least one epileptic seizure.

Whereas seizure was defined in the same paper as

a transient occurrence of signs and/or symptoms due to abnormal excessive or
synchronous neuronal activity in the brain.

Usually, epilepsy can be treated with either one or a combination of more anti-seizure
medication currently available on the market. Despite the high number of these agents
currently available (>25 according to the journal Epilepsia [30]) a significant portion of
the patients with epilepsy seem to not respond to any kind of medication. As stated
in Chapter 1, a possible solution for these people is to undergo surgery to remove the
epileptogenic zone which is causing seizures.

2.1 Inside the brain

Neurons inside the brain communicate through electrical impulses. When a neuron sends
an impulse, it creates a certain amount of electricity of which the magnitude determines the
strength of the impulse. This strength, also referred to as voltage or amplitude is mea-
sured in microvolts. Neurons of a healthy brain are generating impulses with the voltage in
the range of 0 − 200𝜇𝑉 when measured on the scalp [32]. In the terms of frequency, its
value represents how many times did neuron send an impulse to other neurons. The elec-
trical activity of neurons can be measured by a non-invasive electroencephalograph (EEG).
Various EEG electrodes are placed at standardized locations on the patient’s head. Such
electrodes are displayed in figure 2.1.

Scalp EEG is capturing a summarized activity of big assemblies of neurons on the sur-
face of the patient’s head. Based on frequency, we can classify brain waves as alpha, beta,
delta, theta and gamma. These categories are described in detail in table 2.1. In general,

8



Figure 2.1: Scalp EEG [25].

electrophysiological signals have 1/𝑓 characterisation, meaning, the higher the frequency,
the lower the amplitude. In the context of the amount of information that is being pro-
cessed in a given state, the more awake the state is, the more information is being processed
at once, which results in the higher frequency of brain waves (beta, alpha), whereas the
strength of impulses is lower. The opposite applies to the relaxed states (delta, theta).

Type Frequency State Figure

Delta 0-4 Hz deep sleep

Theta 4-8 HZ deep relaxation, REM sleep

Alpha 8-13 Hz day dreaming, calm

Beta 13-30 Hz alert, active thinking, anxiety

Gamma 30-100 Hz high levels of thought and focus

Table 2.1: Classification of brain waves based on frequency [22].

Classic scalp EEG is used for the diagnosis of epilepsy by capturing the electrical activity
of the brain and revealing abnormal patterns compared to its normal function [17]. Results
are represented on a graph as signals assigned to a particular EEG channel. Channels are
created as the subtraction of the voltage on the reference electrode from an input electrode.
Book Practical approach to electroencephalography [24] has a whole chapter dedicated to
problematics of choosing a reference electrode. Finding a good reference electrode is a
difficult task – it cannot be connected it to the ground due to the noise from other electrical
devices in hospitals. At the same time, the input electrode would always be a subject of
“body noise“ (eye movement, muscle movement, ECG. . . ), which would not be present on
a ground electrode and therefore would appear on the graph. Part of the body would be
a better choice because the body noises from both of the electrodes would cancel out each
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other. However, placing electrodes too close to each other also poses certain risks. If there
was a brain activity common for the reference electrode and for the observed electrode,
this activity would be canceled out during the subtraction which would result in a flat
signal. Hence placing a reference electrode is a compromise between a location that would
cancel out most of the noise, yet would not cancel too much of the brain activity. In general
practice, the most commonly used electrode montages are so-called Bipolar Montages where
electrodes are connected sequentially. The channels then result from the subtraction of
neighboring electrodes. Another commonly used reference is an average signal calculated
from all EEG contacts. This average signal is then subtracted from individual signals [33].

Unfortunately, epileptogenic zone (EZ) often lies deep within the brain tissue, which
means that epileptogenic signals may not reach the scalp, thus the non-invasive measures are
usually not adequate for precise localization of seizure onset zone (SOZ) – part of the brain
marked for further resection (ideally the same part as EZ). Therefore, implanting electrodes
either deep inside the brain tissue or, on the brain surface is necessary. A standard invasive
method in clinical routine is an intracranial electroencephalogram, commonly referred to
as an iEEG. Moreover, iEEG recordings are subject to artifacts caused by muscle and eye
movement to a far lesser extent than normal scalp EEG.

2.2 iEEG

EEG recordings obtained in an invasive way are referred to as an intracranial EEG or iEEG.
An article by Josef Parvizi [29] provides a good overview of the intracranial EEG, which is
summarized in this section. There are two main categories of iEEG (see figure 2.2): Those
recorded with the strips or grids of electrodes implanted on the brain surface (i. e. subdural
space), and the ones recorded using electrodes penetrating the brain and targeting its spe-
cific, pre-defined parts (depth electrode is displayed in figure 2.3). The data from the latter
method are the subject of interest of St Anne’s Hospital Brno research, same as of this thesis.

Figure 2.2: Two types of iEEG: Electrocorticography (EoCG) [6] on the left, using grids
of electrodes, and stereotactic electroencephalogaphy (sEEG) [12] on the right, using depth
electrodes penetrating the brain.
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iEEG plays an important role in the pre-surgical evaluation of epilepsy patients. Yet
before the patient is implanted, a hypothesis about the approximate origin of his seizures
must be formed with the use of non-invasive diagnostic tools. That implies that only pa-
tients with focal epilepsy (i. e. seizures arising from a specific part of the brain) are suitable
for invasive screening. Therefore, iEEG is only chosen if the clinicians have high confidence
about this condition (referred to as focality), and the preoperative work suggests a high
chance of finding the SOZ. Usually, 5-15 depth electrodes are implanted, each consisting of
10-14 recording contacts as displayed in figure 2.3. With these electrodes implanted, the
patient is admitted to the operating room, subjected to continuous recording and stream-
ing of raw electrophysiological data from the electrodes. Often, several seizures have to be
captured to determine their source. This process, as mentioned in Chapter 1, can take up
to two weeks. When comparing classical scalp EEG and iEEG, probably the most notable
difference is the resolution. A study comparing the two [2] proved that a signal-to-noise
ratio of iEEG could be as high as 100 times higher than the scalp EEG. That can be par-
tially caused by the amplitude of iEEG, which is 10× higher than scalp EEG, and partially
because of significantly reduced noise from the recording room, and the physiological noise
from eye blinks, eye movements, heartbeat, and muscle movements. Another important
differentiator of scalp EEG and iEEG is the sampling frequency used for the signal record-
ing. Scalp EEG is usually recorded, taking into account the Nyquist theorem, with the
frequency of hundreds Hz, whereas iEEG with thousands. For example, the testing signal
we were processing throughout the project development was sampled at 5000Hz.

Figure 2.3: An electrode used for iEEG measures at St. Anne’s Hospital Brno. Part
implanted inside the brain tissue is marked with a red oval. Each metal plate is a contact
for the recording of one channel.

2.3 (i)EEG signal processing
The first stage of processing EEG signals, as displayed in figure 2.4, is the removal of ar-
tifacts. Several types of artifacts may occur in the EEG recording. Those which fall into
the extrinsic category are easier to detect and filter out. Extrinsic artifacts are caused by
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external sources, such as electrode misplacement and cable movements. These artifacts can
be eliminated, at least to a certain extent, by strict recording procedures and a cautious
approach during the recording. In some cases, the whole part of the signal, which is faulty,
is removed. Electromagnetic interference emitted from surroundings is another external
source of artifacts in the EEG signal. Artifacts caused by this interference can be easily fil-
tered out because of their distinguishable frequency band using a band-pass filter. A bigger
problem is intrinsic artifacts that occur due to eye movements, eye blinks, muscle activity,
and cardiac activity. Although there is no consensus on an ideal method for removing all
types of artifacts, regression methods are the golden standard in this domain. Regression
analysis uses a reference channel to estimate the relation between the amplitude of the
reference channel and the amplitude of an EEG channel and then subtracts estimated arti-
facts from EEG. All types of artifacts, as well as artifact removal methods, are described in
depth in [16]. The pipeline used at St Anne’s Hospital Brno contains a method for labeling
faulty parts of the signal, which are not further analyzed.

Figure 2.4: Typical EEG processing pipeline [23]

A standard method of analyzing signals – time-frequency analysis can be fruitful in the
domain of biomedical signals, particularly EEG signals. At the same time, it can also be
incomplete for EEGs. The book Advanced Biosignal Processing [26] discusses problems of
such analysis. Typical EEG signal consists of multiple frequency components of different
magnitudes competing with each other over time, whereas time-frequency analysis only
focuses on detecting time-varying spectral power. This analysis may also ignore changes
in oscillations and thus fail to provide an accurate description of evolving oscillations. An-
other problem is transitions in mental state and reactions to external stimuli, which are
difficult to track and do not always appear clearly in time-frequency representations. The
shortcomings of time-frequency analysis are displayed in figure 2.5. Although we can ob-
serve an increase of power in the time-frequency domain (fourth row), it does not say
anything about the appearance of the oscillation we are trying to observe. The solution
for this is to decompose the EEG signal into separate frequency bands, as shown on the
second and third rows of figure 2.5 and to perform time-frequency analysis on each of them
separately. However, this approach also comes with a drawback. Cut-off frequencies of
every bandpass filter are assumed to remain constant during the whole neurophysiologi-
cal process under investigation, which can be misleading when the oscillatory component
is crossing the cut-off frequency limit. This issue is discussed more in detail in the book [26].

After the artifact removal and data filtering, the post-processing stage follows in the
typical EEG processing pipeline. During the feature extraction phase, relevant EEG fea-
tures are extracted from the signal and later used to derive target observations in the
classification stage.
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Figure 2.5: Time-frequency analysis (fourth row) applied on raw EEG signal (first row).
Although change in the power at 0.5s is observable, the nature of the oscillations cannot
be seen. Second row: one second of 80–200Hz filtered data. Third row: one second of
200–500Hz filtered data. Fourth row: Time-frequency analysis of raw data [34].

2.4 Localization of epileptogenic tissue

Since epileptic surgery is a major and irreversible intervention in the patient’s brain, ac-
curate localization of the SOZ must be ensured. The clinical gold standard for the SOZ
localization and outcome prognostication is based on recording of epileptic seizures and
approximation of their origin and spread. To obtain enough data, it takes up to 4 weeks
of invasive EEG (iEEG) recordings with reduced patient’s medication, which might cause
additional side effects, risks and unnecessary costs. The clinical gold standard has not sig-
nificantly changed over the last 50 years [4]. However, the field of iEEG signal processing
has undergone rapid development in recent decades, providing novel, interictal (seizure-
independent) iEEG biomarkers of the SOZ, which can improve and significantly accelerate
the presurgical evaluation.

The most commonly used interictal markers are Interictal epileptiform discharges, also
known as spikes, and high frequency oscillations. Spikes are clinically defined as sharp
jumps in the signal, with the duration between 20 and 70ms, that are easy to differentiate
from the background activity. In the frequency domain, spike is a local energy increase
in the 14.3 − 50Hz frequency band [15]. A study made by joined forces of Czech and
American researchers [15] has proposed an automatic evaluation of spikes as a necessity in
the field, since visual analysis of the long-term signals, coming from dozens of channels,

13



is extremely error-prone. Especially when it comes to intracranial EEGs, which come in
massive amounts of data, manual analysis is almost impossible.

Another promising interictal biomarker of the epileptogenic zone is EEG activity in
higher frequencies, also called high-frequency oscillations (HFO: 65 - 600Hz). Jan Cim-
bálník in cooperation with researchers from the Mayo Clinic has published a review of
current evidence on the interictal (between seizures) HFO and their association with the
epileptic brain [5]. According to this paper, HFO are strong evidence of epileptogenic
tissues, yet not sufficient to recommend a single patient resection, since they can occur
in a healthy brain as well [20]. This fact raises the need to differentiate between their
pathological and normal form. Review further states that most of the time, HFOs were
shown to be a reliable marker of SOZ only in a group analysis of data summed across
SOZ of all patients. Another study found that epileptic cortex may demonstrate atypical
cross-frequency interactions [14]. According to the study findings, ictal (during seizure)
modulation of pathological HFO (pHFO) by the phase of slow oscillations during seizures
is concentrated in the epileptogenic cortex. Slow rhythms happen to co-exist with patholog-
ical HFOs and this relationship can be evaluated by computing modulation index (MI), in
order to assess the strength of the cross-frequency coupling. The stronger the relationship
between amplitude and frequency, the higher probability of the SOZ occurrence.

A relatively novel approach is to measure interactions between different frequency bands
of the EEG signal. Montreal Neurological Institute conducted a study in 2016 which evalu-
ated a particular form of these interactions – Phase-amplitude coupling (PAC), in patients
with focal epilepsy during different stages of sleep [1]. Results have shown that PAC be-
tween high and low-frequency bands was stronger in the SOZ regions than in the healthy
ones. PAC may thus play a significant role in the localization of SOZ.

Jan Cimbálník’s study of multi-feature SOZ localization [4] has proven that using sev-
eral biomarkers to train a support vector machine (SVM) classification is superior to using
a single one. The study further argues that due to the nature of brain electrophysiological
activity, which is hardly consistent within a time, no single biomarker can be used to effec-
tively localize SOZ in the majority of patients. There are EEG features, whose combination
can improve overall SOZ localization by SVM. The study evaluated several of these features.
Among the best performing ones was Local Field Potential, which is a good indicator of
electrophysiological activity. It is also used for studying brain waves during the high-level
cognitive functions of a healthy brain (memory, decision making, etc.) [19]. Another one was
Relative entropy, which evaluates the randomness and spectral richness of two signals, de-
termining how much the entropy of one diverges from the other one. This high performance
of entropy feature can be explained by the statistically higher occurrence of spectrally rich
events (such as HFO or spikes) in the epileptogenic brain tissue, compared to a healthy one.

As we can see, there are several options for analyzing epileptic signals and localizing
pathological tissues in the brain. Novelty of some approaches and the lack of unified meth-
ods and codes have been the main drivers for starting the project of which this thesis is a
part. Even though automated approaches perform well in the studies, the golden standard
remains (and probably will remain for some time yet) identifying SOZ by neurologist over
using purely machine-based localization.
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2.5 Seizure prediction
One of the biggest hurdles of living life with epilepsy is the unpredictability of seizures. With
the knowledge of incoming seizures, patients would be able to take precautions to avoid
injuries. Accurate prediction of seizures would also enable a novel approach to epilepsy
treatment based on the control and prevention of seizures. Review from 2018 [21] evaluates
the current state of the art in this area. We know that seizures are not random and have
been shown to have short-range and long-range temporal dependencies. Most of the time,
they occur during the rising phase of multi-day rhythms of interictal epileptic activity.
However, the fact that there is no predictive characteristic or biomarker that could be used
to predict the seizure and would be universal throughout all the patients makes seizure
prediction a complicated domain.

Figure 2.6: An illustration of how seizure prediction system pipeline might look like [21].

Figure 2.7: Seizure prediction system il-
lustrated in 2018 seizure prediction re-
view [21].

Merely one clinical trial with a fully functioning
prediction system has been conducted so far [7].
The prediction system was based on intracranial
electrodes connected to a telemetry unit that was
sending data to the device. That was processing
them in real-time and displaying warning lights
to the implanted patient when the seizure was
impeding (prediction system is displayed in fig-
ure 2.7). It was portable, and patients participat-
ing in the study were implanted with it for several
months. Seizure prediction was excellent for three
out of nine patients. This study brings a new light
to the discipline by demonstrating that long-term
recordings are possible and that seizure prediction
is achievable, yet patient-specific. The tool that
we are implementing in this thesis highly overlaps
with this domain since real-time signal processing
is a significant part of successful seizure predic-
tion and might be of use in future research, that
is eagerly awaited by patients with epilepsy.
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Chapter 3

Data

We were working with the intracranial EEG data recorded at St Anne’s Hospital Brno
throughout the project development. Thanks to the treatment of the number of patients
with epilepsy and multiple studies conducted in this institution, we were able to work
with a data set of iEEG signals with labeled pathological channels and available results
of computed biomarkers. Data sets from four patients were used for a simulation of real-
time data flow, flowing into our implemented tool. All the data sets we used during the
development and testing were anonymized, and patients were assigned with IDs.

3.1 Short data

We used a ~30 min of relaxed stated iEEG recording to continuously test the functionality
and performance of our tool throughout its development. The data set was recorded by
a 150-channel research iEEG acquisition system (M&I; Brainscope, Czech Republic). The
sampling rate was 25 kHz during the recording. The iEEGs were then low-pass filtered
and down-sampled to 5 kHz for further processing. This sampling rate gives all-together
9, 491, 505 samples for a single channel.

Such short recordings are made while the patient is lying on the bed without exerting
any activity. This approach may be troublesome since the recordings may not always be
accurate. As the latest research suggests [18], the epileptic brain is active in cycles occurring
in different timescales, such as circadian (~24 h cycle), multidien (cycles lasting >2 days
up to several weeks), and circannual (1-year cycles). There is a high probability that
during the selected 30 min window, the electrophysiological activity of the epileptogenic
focus will be low. Due to this fact, much larger data sets were used for the evaluation of the
finished tool (see next section). The data were flowing to the tool in 5 s segments. Results
computed offline:relative entropy and signal statistics were available as a reference to the
data computed in ’real-time’.

3.2 Long data

Larger data sets were used for the final evaluation of the tool. The recordings were obtained
during the patient’s routine activities, such as eating, using the phone, or walking around
the hospital. All patients were implanted with depth electrodes as part of their pre-surgical
analysis for the treatment of pharmacoresistant focal epilepsy. Used electrodes were either
DIXI or ALCIS (diameter = 0.8𝑚𝑚; inter-contact distance = 1.5𝑚𝑚, contact surface
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area = 5𝑚𝑚2; contact length = 2𝑚𝑚). The acquired iEEG was low-pass filtered and
down-sampled from 25 kHz to 1,000 Hz for subsequent storage and analysis. The used
recording reference was the average of all intracranial signals.

3.2.1 Patient 95

The data set of patient 95 consisted of 172 channels and was ~13 hours long. Channels P’6
and P’7 were labeled as pathological by a neurologist, while channels P’1 to P’9 were all
exerting signs of epileptogenic activity based on the values of relative entropy and detected
HFO computed during the offline procedure. For the evaluation, real-time computed data
were pulled out of the database and separated into a segment of 30 min length. Channels
without offline computed reference results were excluded from the assessment. Furthermore,
channels that were out of the patient’s head during the recording were excluded as well.

3.2.2 Additional patients

The tests described in chapter 6 were performed on two additional patients. The results of
those patients are available in appendix A.

Patient 83

The data set of patient 83 consisted of 165 channels and was ~5 hours long. Channels L1
and L2 were labeled as pathological by neurologists. Channels without offline computed
reference results were excluded from the assessment. The relaxed iEEG of patient 83
without seizures is shown in figure 3.1. iEEG with an ongoing seizure on channels L2 and
L3f from the same patient is displayed in figure 3.2.

Patient 79

This data set was recorded with a 68-channel research iEEG acquisition system and the
recording was ~4 hours long. Channels B’1, B’2, and B’3 were labeled as pathological by
neurologists. Channels without offline computed reference results were excluded from the
assessment.
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Figure 3.1: A 30 s (axis 𝑥) of seizure-free iEEG record from patient 83. Axis 𝑦 displays
iEEG channels.

Figure 3.2: A 30 s (axis 𝑥) iEEG record with captured seizure from patient 83. Axis 𝑦
displays iEEG channels. Seizure is visible on channels L2 and L3 (red oval ).
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Chapter 4

Tools and algorithms

This chapter describes the three libraries, on which the whole project is based, together
with some other tools used for the implementation.

4.1 Epycom library
When I first started collaborating with BME ICRC at St. Anne’s University Hospital in
Brno, I joined the work on the python library named Epycom1 – ElectroPhYsiology COm-
putational Module, which was built considering novel approaches towards localization of
epileptogenic tissues combined with the traditional methods and algorithms. It implements
many of the promising iEEG biomarkers, such as phase-amplitude coupling [1]. Overall,
the package provides tools for the computation of various features of iEEG signals that can
be further analyzed by artificial intelligence or evaluated by physicians.

Epycom consists mainly of the three types of functions – univariate, bivariate and event
detection. The main differentiators between them are the input, output and nature of the
computation, which make a given function to fall into a particular category.

4.1.1 Univariate functions

These functions take as an input time series from a single channel and are usually returning
a single float value. As an example, we can mention the function for computing mean
vector length (MVL), which returns a value assessing the strength of the cross-frequency
coupling. I chose to describe this algorithm here because I implemented it as a part of
Epycom library prior to the start of this project. MVL is computed by averaging complex
numbers obtained from combining phase and amplitude extracted from different frequencies
of an analytic signal. Analytic signal is a complex-valued function that consists of the
original function as the real part and its Hilbert transform as the imaginary part2. Hilbert
transform can be understood as a phase shift of every frequency component of a function
by +𝜋

2 for negative frequencies and by −𝜋
2 for positive frequencies3. Therefore, the analytic

signal of 𝑥[𝑡] can be mathematicaly written as:

𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑖
[︁ 1

𝜋𝑡
* 𝑥(𝑡)

]︁
,

1https://gitlab.com/icrc-bme/epycom
2https://en.wikipedia.org/wiki/Analytic_signal
3https://en.wikipedia.org/wiki/Hilbert_transform
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where
[︁

1
𝜋𝑡 * 𝑥(𝑡)

]︁
is the Hilbert transform and sign * means convolution. Extracting the

amplitude from high-frequency filtered analytic signal and phase from the low-frequency
filtered analytic signal, we can compute mean vector length in the discrete domain as:

𝑀𝑉 𝐿 =

⃒⃒⃒⃒∑︀𝑚
𝑛=1 𝑎𝑛𝑒

𝑖𝜃𝑛

𝑚

⃒⃒⃒⃒
,

𝑚 is here the total number of data samples, 𝑎𝑛 is an amplitude extracted from high-
frequency filtered analytic signal at data point 𝑛 and 𝜃𝑛 is phase extracted from low-
frequency filtered analytic signal at data point 𝑛. Complex numbers represent vectors in
a polar plane. The result is a mean vector, whose length resembles the amount of phase-
amplitude coupling. If there is no phase-amplitude coupling present, all vectors cancel
out and the mean vector will be short, otherwise the vector will be of a significant length
(figure 4.1).

Figure 4.1: Illustration of mean vector length method used to asses phase-amplitude cou-
pling of the signal [13]. Signal, with no coupling is displayed on the left, signal with high
degree of coupling displayed on the right.

4.1.2 Bivariate functions

Functions from the Bivariate category take as input signals from the two adjacent channels
and compute relationships between them. An example from this category can be function
for computing relative entropy (REN) between the two signals. This function was also used
as a reference function for the evaluation of computations of our real-time EEG processing
tool. Relative entropy is computed as a Kullback-Leibler (KL) divergence of two input sig-
nals. In theory, KL divergence is computed from two probability distributions. If 𝑝(𝑥) and
𝑞(𝑥) are the probability distributions of a random variable 𝑥, KL divergence is computed as:

𝐷𝐾𝐿(𝑝(𝑥)||𝑞(𝑥)) =
∑︁
𝑥∈𝑋

𝑝(𝑥) ln
𝑝(𝑥)

𝑞(𝑥)
,

In the Epycom function compute_relative_entropy(), histograms ℎ1 and ℎ2 are created
to represent probability distribution of each of the two input signals across 10 equally wide
bins. In the next step, KL divergence of the histograms is computed from both sides (ℎ1
with respect to ℎ2, and ℎ2 with respect to ℎ1). The higher estimated entropy is returned.
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4.1.3 Events

Functions performing the event detection are the most complex. Two types of events are
implemented in Epycom – spikes and HFOs. They are the most commonly used epilepsy
biomarkers, both are discussed in Chapter 2. Several algorithms for detecting HFOs are
implemented here, as well as the function for detecting spikes. The input is a single sig-
nal, whereas the output is a tuple of several values containing information about the given
event, such as event start, event stop, duration, low and high frequencies, etc. Output in-
formation may vary with the used algorithm. From this category, we used implementation
of an algorithm for detecting HFOs, referred to as CS (Cimbálník-Stead) detector [3] for
validation of our real-time processing tool. This algorithm was designed with to respect to
efficiency to be suitable for real-time processing. Explaining in details is beyond the scope
of this thesis, but interested reader can read more in [3].

4.1.4 Organization of library

Each epycom function is wrapped in a class of the same name, inheriting from the class
Method implemented in this library. This class stores metadata about the particular func-
tion, such as algorithm, algorithm_type, or version. Moreover, class Method is imple-
menting methods for running the Epycom function stored as its class variable or running the
given function using a sliding window, where the analyzed signal is divided into windows of
a given size. The latter method, named run_windowed() is also used in the implementation
of EpycomNode in the Mepior library discussed further.

In this thesis, we were dealing with the challenge of the EEG signals delivery into
the interface, where multiple functions from the Epycom library can be applied to the
data at the same time. We created an infrastructure that works with signals in real-time,
computes their parameters and epileptic markers (using Epycom library), and stores them
in a database, from which they can be further extracted and processed. After the tool
is tested and evaluated, a server-based database will be used for storing the data. But
during the time of developing a tool for real-time signal processing, we were sending the
data to a locally created database. The details about the storing of data are described in
the Implementation section of Chapter 5.3.

4.2 Pyacq

The foundation of our project is Pyacq 4 – a python library implementing an API for the
processing of data streams. It provides an interface consisting of several types of nodes,
allowing to build data processing pipelines. Nodes can interact with devices, generate data,
store data, perform computations, or display user interfaces and send the data further in a
form of the output stream. Each node can have multiple inputs and outputs connected to
the other nodes.

The library is built in an object-oriented way, where each node is implemented as an
individual class inheriting from the abstract class Node. This class contains methods com-
mon for all the nodes, such as configure(), initialize(), start(), or stop(), which
are reimplemented by the subclass based on its specification. The Node class has also prop-
erties input and output, which are instances of classes InputStream and OutputStream

4https://github.com/pyacq/pyacq
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and both are instantiated when a particular node is created. They allow nodes (which may
exist on different threads, processes, or machines) to send and receive data to and from
other nodes. Schema of data flow in one instance of a node is displayed in figure 4.2.

Figure 4.2: Schema of relationships between the individua Pyacq classes

Most of the nodes create their own thread, stored as their class variable, instantiated
when a method initialize() is called from an instance of a node. The thread is an instance
of a class implemented exclusively as a thread for the given type of node. Thread classes are
usually inheriting from the another abstract class ThreadPollInput. The purpose of node
thread is polling an InputStream associated to that node in the background and emitting
a signal when data is received. ThreadPollInput contains method process_data() that
is called from the polling thread when a new data chunk has been received. By default,
this method only emits the signal new_data with the updated stream position, but most
of the time it is overridden and data are being processed here and sent further. Figure 4.3
illustrates example of class diagram for node ChunkResizer with selected parameters and
methods.

Data between nodes are transported through zmq.PUB sockets either directly or via
shared memory when only the index of a current frame is sent in the socket5. The great
advantage of pyacq lies in the ability to use several CPUs as well as remote machines and
process data in parallel. The library implements tools for managing multiple processes
through the class Manager. Single process, that consist of a group of nodes (gathered in
the object named NodeGroup), can be assigned to a remote machine that is running a host
server6. It can significantly speed up the computations that are mutually independent and
allows us to shorten the time needed for data processing.

Our project has been initiated by forking a Pyacq repository and building upon it our
own infrastructure for processing EEG data with the functions from Epycom library.

5https://pyacq.readthedocs.io/en/latest/apiref/core.html
6https://pyacq.readthedocs.io/en/latest/manager.html
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Figure 4.3: Reverse-engineered class diagram of an example Pyacq node ChunkResizer.
Classes InputStream and OutputStream are fully dependent on the node, that instantiates
them and stores them as its parameters. On contrary, there is a weak reference between the
streams and ThreadChunkResizer class which means that this reference is not enough to
keep the streams alive (even though they are stored as ThreadChunkResizer parameters),
unless there is other remaining reference (in this case reference to the node). Only selected
methods and parameters are displayed on the diagram.
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4.3 Mepior
By modifying the Pyacq library we created a new library called Mepior. The nodes not
needed for the EEG processing infrastructure were left out, while new nodes have been
implemented. These nodes include:

• EpycomNode exclusively for applying Epycom functions on the incoming data stream

• SQLitePusher node for pushing the data into the database

• EasysSocket node for establishing a connection throughout a BSD Socket with the
external data stream (using python library socket7)

Each of these nodes, same as the native pyacq nodes, is implemented as a class inheriting
from the abstract class Node. The operation for which a particular node is responsible (for
example, sending data into the database) is conducted within a node thread, a class variable
belonging to that node. This mechanism is described in details in section 4.2.

This library was used and specifically designed for building a pipeline that would satisfy
the requirements for real-time EEG processing.

4.4 Signal filtering
Pyacq implements node OverlapFiltfilt that allows filtering of the incoming signal
chunks. This node implements the forward-backward method using a second-order (sos)
coefficient and a sliding, overlapping window. Node applies externally provided sos coef-
ficients on incoming data chunks using scipy.signal function sosfilt 8. This function
implements series of second-order filters with transposed direct form 2. One series are
computed as:

𝑦[𝑛] = 𝑏0𝑥[𝑛] + 𝑠1[𝑛− 1],

𝑠1[𝑛] = 𝑠2[𝑛− 1] + 𝑏1𝑥[𝑛]− 𝑎1𝑦[𝑛],

𝑠2[𝑛] = 𝑏2𝑥[𝑛]− 𝑎2𝑦[𝑛],

Here, the 𝑎1, 𝑎2, 𝑏0, 𝑏1 and 𝑏2 are the supplied coefficients, 𝑥 is the raw signal and 𝑦 is
the new filtered signal. Flow diagram of this filter is displayed in figure 4.4.

The forward-backward method applies the filter twice. First, the filter is applied to the
signal (in our case chunk of the signal), then the result is reversed, the filter is applied for
the second time, and the result is reversed again. The reason for doing this is a zero phase
shift in the filtered signal.

In our pipeline, we used the 3rd order Butterworth bandpass filter for computing the
coefficients using scipy.signal function butter 10. Although the signal filtering plays a
significant role in the iEEG processing and thus in our pipeline as well, during the tool
evaluation, filtering node was omitted. This way, we wanted to avoid the possibility of
inaccurate computations caused by the differences between the filtered signals and focus

7https://docs.python.org/3/library/socket.html
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html
9https://en.wikipedia.org/wiki/Digital_biquad_filter

10https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
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Figure 4.4: Flow diagram of the transposed direct form 2 of the second-order series filter
used in the filtering node9

more on computing iEEG biomarkers. Therefore, we used computations from the unfiltered
signal as a reference. Moreover, some Epycom methods implement their filters or require
signal filtered in particular frequency bands, and the topic of future work will be to im-
plement a robust solution for the signal filtering, that would work for all of the Epycom
functions universally.
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Chapter 5

Implementation

Before the actual computation of the EEG features, signal has to be divided into chunks
and filtered to extract the features that reflect different electrophysiological phenomena
occurring in the brain. There is also a question of how and where to store a big amount
of computed data. All of these aspects have been taken into account while designing the
architecture of our real-time EEG processing tool.

The project is implemented in Python31, with the use of some additional tools, that are
exceeding this language (such as SQL engine).

5.1 What was working

As previously mentioned, my colleagues had initiated the project before the start of my
contract, but the project was later postponed until we re-opened it again as my next work
assignment. Nevertheless, many things were implemented during the initiation phase. For
the first couple of months, I had to study current architecture and proposed solutions. That
required reading the pyacq documentation and understanding the principles of its classes.
Mepior library, described in the previous chapter, was implemented by Jan Cimbálník to a
great extent, although class EpycomNode was not yet adjusted for processing various types
of the Epycom functions, same as class SqlitePusher, which is responsible for storing
computed data into the database. A program written in C, named Easys EEG Data Server
(eeds), was used to simulate a live data stream. It allows sending parts of an EEG recording
specified in a configuration file as UDP packets, which are received by the first node from
the class EasysSocket. This program was configured to send packets of 5000 samples for
each of 150 channels from the reference file on localhost. Jan Cimbálník also implemented
a prototype of a script with basic architecture of a real-time signal processing tool in a
sample script which was used as a baseline for my implementation. This architecture is
sketched in Figure 5.1 which also describes the flow of data throughout the pipeline. Such
architecture remains very flexible when it comes to adding or removing nodes (for example,
we can insert a node from class MefRecorder after the filtering node for capturing the
filtered signal into the .mefd file or visualize the filtered signal through the node from the
class QOscilloscope).

The data are flowing in the form of OutputStream, which is a class implemented in
the original pyacq library. The detailed description of the input and output stream can be
found in the section 4.2 of Chapter 4.

1https://www.python.org/
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5.2 Architecture
Our pipeline consists of multiple nodes as discussed in the previous sections. The process of
creating and initiating node is similar for all cases. First, an instance of a particular node
class is created. Then node.configure() function is called with parameters specific for the
given type of node (for example, for ChunkResizer a chunksize is passed as a parameter).
If the node input is supposed to be connected to the output of different node, it is ensured
by calling node.input.connect() function on the instance of that node passing the second
node output as a parameter. The output of this node has to be configured as well. That is
done by calling function node.output.configure() specifying protocol and interface used
for sending the data from it in the parameters. Finally, node thread is created by calling
node.initialize(). Thus, instantiating and configuring node can look like this:

# ----- Chunk resizer node -----
chunkresizer = ChunkResizer()
chunkresizer.configure(chunksize=50000)
chunkresizer.input.connect(dev.output) # connect to the output of node dev
chunkresizer.output.configure(protocol=’tcp’, interface=’127.0.0.1’)
chunkresizer.initialize()

Schema of the pipeline is displayed in figure 5.1. All nodes are configured to use TCP proto-
col and send the output to localhost interface. The first node is an instance of EasysSocket,
which is responsible for catching the incoming signal from an external source and sending
it further to the instance of a class ChunkResizer, which takes a multi-channel input signal
stream and ensures that the output is the same packet with the length of a chunksize. Next,
the data flows into the OverlapFiltFilt node which applies the filter on incoming chunks.
After that, output of filtering node can be connected to the input of various nodes com-
puting iEEG biomarkers (instance of class EpycomNode). Throughout the development, we
used only three such nodes, each carrying an Epycom function of one category. Ideally, most
of the Epycom functions will be used in practice, but it is not necessary to implement them
all for the prototyping and evaluation. Because if the representative of the particular cate-
gory proves to be accurate in comparison with the reference offline computations, we may
safely assume that the rest of the functions from the same category will also be accurate.
That is because the implementation of Epycom function remains the same and our main
concerns which may affect the results in real-time processing are phase shift and packet loss.
As a representative of univariate category, function SignalStats was used (function com-
putes simple statistic about the incoming signal, such as mean amplitude, maximum and
minimum amplitude, etc.), from bivariate category function RelativeEntropy was used
and for event computing we selected function CSdetector (functions RelativeEntropy and
CSdetector are described in details in chapter 4.1). Each of the Epycom nodes is connected
with its output to the instance of class SqlitePusher. This class sends the incoming data
to the database (details described in the following section).

5.3 Data storing
Initially, the output data was stored in a local database file. Data saving was imple-
mented with the use of python library sqlalchemy 2, which creates a SQLite engine, and

2https://www.sqlalchemy.org/
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Figure 5.1: Architecture of the protype pipeline for real-time EEG processing. Blue nodes
are from the original Pyacq library, green nodes are implemented in the Mepior library.

pandas.DataFrame 3, a class that enables pushing its data into the SQL database. The ta-
bles with the computed features are created and filled by the respective node from the class
SqlitePusher. Each EpycomNode output stream is assigned to a separate SqlitePusher
node, which stores the data flowing from it into the table exclusive to the given Epycom
function. Additionally to the tables with computed features, the database contains tables
with data about the functions, channels, algorithms, etc. ER diagram of these tables is in
the figure 5.2.

This solution is sufficient for evaluating the performance and functionality of the tool,
yet for practical implementation, a different database must be used. The database server
of FNUSA ICRC has been developed in parallel with this project by Ján Címbálník, and
in the future, it will serve as a proper data storage for the computed data.

3https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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5.4 My work

5.4.1 Class EpycomNode

The purpose of this node is to apply the Epycom library to an incoming input data stream.
As discussed previously, Epycom function may fall into one of three categories – univariate,
bivariate, or event. EpycomNode has also its thread – EpycomNodeThread and Epycom func-
tion is applied within the thread method process_data(). I implemented this method,
so it applies Epycom function based on its type throughout all the channels, concatenates
results into one array and sends it further. As the function loops through the channels, the
input data with the shape of buffer size * number of channels at the given channel index are
passed to the Epycom function in the case of event or univariate Epycom function. When
it comes to bivariate functions, data from neighbouring channels (channels at index 𝑖 and
𝑖+1) are passed to the function. The algorithm for main part of method process_data()
could be written in pseudocode as:

for channelIdx in channels do
if methodType is 'bivariate' then

if channelIdx is last(channels) then
𝑟𝑒𝑠𝑢𝑙𝑡 =
𝑒𝑝𝑦𝑐𝑜𝑚𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑑𝑎𝑡𝑎𝐴𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑𝑥), 𝑑𝑎𝑡𝑎𝐴𝑡(𝑓𝑖𝑟𝑠𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)))

else
𝑟𝑒𝑠𝑢𝑙𝑡 =
𝑒𝑝𝑦𝑐𝑜𝑚𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑑𝑎𝑡𝑎𝐴𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑𝑥), 𝑑𝑎𝑡𝑎𝐴𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑𝑥+ 1))

else
𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑒𝑝𝑦𝑐𝑜𝑚𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑑𝑎𝑡𝑎𝐴𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑𝑥))

append 𝑟𝑒𝑠𝑢𝑙𝑡 to 𝑎𝑙𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠

send 𝑎𝑙𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 to 𝑜𝑢𝑡𝑝𝑢𝑡

The channel names are stored as the class variable of InputStream connected to the
EpycomNode. EpycomNode has to be instantiated and configured with the appropriate Epy-
com function parameters, for example as:

# ----- Epycom node parameters -----
from epycom.univariate import SignalStats
sigStatsParams = EpycomNodeParams( compute_class=SignalStats,

win_size=5000,
epycom_module=’epycom.univariate’,
epycom_class=’SignalStats’,
db_table=’signal_stats’)

# ----- Epycom node -----
proc = EpycomNode(**sigStatsParams.get_node_params())
proc.configure(sigStatsParams.win_size)
proc.input.connect(chunkresizer.output)
proc.input.set_buffer(sigStatsParams.win_size)
proc.output.configure(protocol=’tcp’, interface=’127.0.0.1’)
proc.initialize()
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5.4.2 Class SQLitePusher

SQLitePusher is responsible for sending the data from its input stream into the database,
whereas the input stream of this class is connected to the output stream of the class
EpycomNode. Data are being processed and stored in database again from methode
process_data() belonging to the class ThreadPush. Similar to the EpycomNode, I imple-
mented different ways of storing the data, depending on the type of Epycom node function,
which is a variable of the input stream. Different EEG features require different informa-
tion about their data to be stored. Besides the nature of the computed data, the table of
the bivariate function contains columns for indexes of two channels. Event and univariate
tables have a column with only one channel. At the same time, tables of event functions
comprise additional columns event_start and event_stop with the time of the beginning
and end of the computed event. The mechanism of storing the data in the database is: first
converting data from the input stream into the pandas.DataFrame 4, then adjusting the
data frame to the requirements of Epycom function type, and last sending the data into
the database by applying function to_sql() on a given data frame. In order to do that,
SQL engine must be created within the thread. The main part of the algorithm could be
written in pseudocode as:

if methodType is not ’event’ then
throw away ’event_start’, ’event_stop’ from 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎
if methodType is ’bivariate’ then

map 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 to 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑1)
map (rotate 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 by +1) to 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑2)

else
map 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 to 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑)

send 𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎 to 𝐷𝐵

4https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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5.4.3 Pipeline implementation

The prototype of a pipeline (displayed in figure 5.1) was partially implemented by Jan
Cimbálník. I finished the implementation of the testing pipeline script by implementing
the function create_tables() and by implementing the three Epycom nodes, each for a
function of one of the categories. Function create_dables() creates initial tables described
in figure 5.2. Table relationships and data consistency is handled manually in this func-
tion, since sqlalchemy and pandas don’t implement advanced database operations (after
connecting the tool to proper FNUSA database, manual handling will not be needed).

After the testing pipeline was functional, I implemented a distributed pipeline – a high-
level implementation for running the original pipeline across multiple processes and possibly
using several machines at a time. Here, the non-working prototype of the script was done
already by Jan Cimbálník; I brought it into operation and adjusted according to the testing
pipeline. Schema of the distributed pipeline is shown in figure 5.3.

Figure 5.3: Architecture of the pipeline distributed across multiple processes (possibly
machines). The central point is the Manager, that is taking care of distributed processes
- NodeGroups (symbolized by red squares). NodeGroup can manage several nodes within
a single process. Nodes are created within a particular NodeGroup, to which they belong.
The instantiating of node is otherwise the same as in local, single-process implementation.
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Chapter 6

Testing

To appropriately evaluate our tool, we asked four questions:

Question 1 Does our tool process the data the same way as when they are processed offline?

Question 2 Is the tool robust enough to process long-term signals?

Question 3 Does the tool achieve similar performance as the reference 30 min. relaxed-
state recording?

Question 4 Does the ability to localize SOZ using biomarkers changes over time and can
it outperform referential recording in some segments?

Results of patient 95 recording have been used to evaluate questions 3 and 4 in this
chapter. Results calculated from recordings of patient 83 and 79 are available in the ap-
pendix A.

6.1 Methods

Question 1

Does our tool process the data same way as when they are processed offline?

A short, ~30 min recording (described in 3.1) was processed, and the results were used to
answer the first question. Data from 122 of 150 channels were selected for the evaluation
(reference and noisy channels were omitted). Reference results were available for Epycom
functions RelativeEntropy and SignalStats. The latter computes simple statistics about
the signal, such as standard deviation of signal power, maximum power of the signal, or
mean power of the signal. A mean value of each of these statistics, along with the relative
entropy, was computed for every channel in both reference and newly computed datasets.
The newly created datasets were then analytically compared.

The paired Student’s t-test1 was computed for the pairs of reference and newly calculated
results. The t-test can be used to estimate whether the means of two sets of data are different
from each other. The formula for computing statistics 𝑡 between two datasets with the same
number of samples 𝑛 is:

𝑡 =
𝑋𝐷

𝑠𝐷/
√
𝑛
,

1https://en.wikipedia.org/wiki/Student%27s_t-test#Dependent_t-test_for_paired_samples

33

https://en.wikipedia.org/wiki/Student%27s_t-test#Dependent_t-test_for_paired_samples


where 𝑋𝐷 is the average of the differences between all pairs and 𝑠𝐷 is the standard deviation
of the differences. After the 𝑡 value is computed, a p-value can be found in the table of
values from the Student’s t-distribution based on the estimated degrees of freedom (equal
to 𝑛− 1).

If the reference and online computed datasets differed significantly, it would mean that
the tool is not processing data the same way as when they are processed offline. Func-
tion scipy.stats.ttest_rel2 was used for estimating the statistical significance. To test
whether the results of our tool are significantly different from offline processing we chose
the commonly used alpha level 5%. The function calculates t-statistic for two paired sets
of data with the same number of samples together with the p-value. If the p-value is above
0.05, the two datasets are not differing with a statistical significance.

Question 2

Is the tool robust enough for processing long-term signals?

The tool was tested on processing datasets from three patients flowing into it in a simulated
real-time environment. Each of these datasets was several hours long, with the longest
(patient 95) having about 13 hours. Such input signals may be noisy, contain extreme values
or contain signals with dropped samples. Therefore, there was a risk of error occurrence
during their processing. The tool allows for specifying sampling frequency and length of time
windows in a number of samples passed into an Epycom function, which also determines an
overall number of results in the database. Different values of these parameters were applied
during the tests. We also tested processing large amounts of data when one of the datasets
was sent repeatedly in a loop for several days.

Question 3

Does the tool achieve similar performance as the referential 30 min. relaxed-
state recording?

The long-term recordings are currently not being processed in FNUSA because of the
technical demands. The iEEG epileptic biomarkers are derived from 30 min recordings
when the patient is lying relaxed in bed. This approach has the advantage of eliminating
movement artifacts, but such a strategy may not be sufficient since the latest research
suggests the existence of cycles of epileptogenic activity in the brain [18]. There is a risk that
the chosen time window for relaxed recording will fall into the period when the patient’s
brain shows only slight signs of epileptogenic activity. The assumption of epileptogenic
cycles is further discussed and verified as a part of answering the questing 6.1.

After the processing of long recordings, results were pulled from the database. The
following iEEG biomarkers were evaluated:

Relative entropy

The data initially stored in the database in 1 s time windows were divided into 30 min long
segments (there were altogether 25 segments).

One segment thus consisted of 1800 windows. 152 pairs of channels were selected for the
evaluation. The average REN was calculated for each of the pairs throughout all segments.
That gave, in the end, 25x152 data rows.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
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HFO

HFO waere detected on 10 s long time windows. Obtained data were again divided into
30 min segments. One time segment, therefore, consisted of 180 windows from the database.
HFO occurrence is not distributed evenly among the channels. In theory, pathological
channels should exert more HFO activity than non-pathological ones. Only HFO within
frequency band 80 − 250𝐻𝑧 (also referred to as ripples) were chosen for the test because
the lower frequencies are not considered epileptogenic and with higher frequencies, there is
a risk of violation of the Nyquist theorem for the sampling frequency of 1000 Hz. 161 out of
172 channels were selected for evaluation. HFO were counted for each channel throughout
all the segments.

Statistical evaluation

Channels P’6 and P’7 were labeled as pathological by the neurologist. The receiver oper-
ating characteristic (ROC) was computed for reference results, the as well as for individual
segments. ROC curve illustrates the diagnostic ability of a binary classifier system at differ-
ent threshold settings3. The graph is created by plotting the true positive rate (TPR) of the
confusion matrix on the y-axis and the false positive rate (FPR) on the x-axis, computed
as:

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
, 𝐹𝑃𝑅 =

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
,

TPR and FPR were computed by function
sklearn.metrics.roc_curve4. The function takes binary labels as the first argument and
target scores as the second, returning FPR, TPR, and calculated thresholds. In our case,
labels of individual channels (1 – pathological channel; 0 – non-pathological channel) were
passed as the first argument, and the mean RENs, or the number of detected HFO in a
given segment, were passed to the function as scores. Besides computing ROC for each
time segment, an average ROC curve was computed from ROC curves of individual 30 min
time segments.

The area under the curve (AUC) can be computed to represent ROC by a single number,
which allows to statistically estimate the difference between the particular ROC curves. For
calculating AUC, function sklearn.metrics.auc5 was used. The function takes previously
computed FPR and TPR and returns the area under the ROC curve. AUC of the ROC of
each segment was computed, the as well as of the reference ROC. In the next two steps

(a) The mean ROC curve was statistically compared to the reference ROC curve

(b) Individual ROC curves were statistically compared to the reference ROC curve

Hanley-McNeil test [11] can estimate, whether the particular ROC curves are statisti-
cally different. It is computed as [10]:

𝑧 =
𝐴1 −𝐴2√︁
𝑆𝐸2

1𝑆𝐸
2
2

,

3https://en.wikipedia.org/wiki/Receiver_operating_characteristic
4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
5https://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html
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where 𝐴1 and 𝐴2 represent values of AUC for the two compared ROC curves and 𝑆𝐸1

with 𝑆𝐸2 are the standard errors of the compared curves. The standard error of AUC is
computed as:

𝑆𝐸(𝐴) =

√︃
𝐴(1−𝐴) + (𝑛𝑃 − 1)(𝑄1 −𝐴2) + (𝑛𝑁 − 1)(𝑄2 −𝐴2)

𝑛𝑃𝑛𝑁
,

where 𝑛𝑃 is number of samples (in our case channels) labeled as positive, 𝑛𝑁 is number of
samples labeled as negative, 𝐴 represents AUC and

𝑄1 =
𝐴

2−𝐴
; 𝑄2 =

2𝐴2

1 +𝐴
,

Question 4

Does the ability to localize SOZ using biomarkers changes over time and can
it outperform referential recording in some segments?

This question follows up the previous one, since the calculated statistics can tell if the results
are varying throughout the time segments. To better visualize the differences between
channels labeled as pathological and channels labeled as non-pathological, boxplot graph
was used.

Figure 6.1: Boxplot 6. The minimum is displayed in the graph as the first line of a left
whisker. The left edge of the box is the first quartile. The right edge of the box is the third
quartile. The line at the end of the right whisker is maximum.

A boxplot is a way of visualizing the distribution of the data within a five numbers
summary6. The numbers are respectively: minimum (not the smallest number), first quar-
tile – the middle number between the smallest number and the median, median, third quar-
tile –ṫhe middle value between the median and the highest value and maximum (not the
highest number). Figure 6.1 shows an illustration of the boxplot.

6https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
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6.2 Results

Question 1

Does our tool process the data same way as when they are processed offline?

The p-value of the difference between reference and online computed REN was 0.90, whereas
the p-values of mean signal power, a standard deviation of signal power, and maximum signal
power were all close to 1 by < 0.0001.

Figure 6.2: An average value of entropy per channel. Small differences between the datasets
could be caused by possible packet loss or phase shift of incoming signal.

Question 2

Is the tool robust enough for processing long-term signals?

No crashes or other unexpected behavior was observed during the processing of long term
signal. The tool performed well even after processing amounts of data for an extended
period of several days.

Question 3

Does the tool achieve similar performance as the referential 30 min. relaxed-
state recording?

Difference between mean ROC and refference ROC is not statistically significant in REN,
with p-value = 0.2586. However, reference ROC was significantly bigger for HFO, with p-
value < 0.001. ROC curves of individual segments were plotted in a single graph, together
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with ROC computed from the reference segment and mean ROC of all segments (figures 6.3
and 6.4).

Question 4

Does the ability to localize SOZ using biomarkers changes over time and can
it outperform referential recording in some segments?

Change of the AUC values in time is plotted in figures 6.5 and 6.6 together with one
reference AUC. Differences between values of pathological and non-pathological channels,
varying throughout the time, are displayed in figures 6.7 and 6.8. Table 6.1 shows p-values
of statistical comparison of ROC curves throughout individual segments.

REN
segment p-value conclusion

0 0.43022 equal
1 0.48739 equal
2 0.49045 equal
3 0.49837 equal
4 0.49286 equal
5 0.40636 equal
6 0.42012 equal
7 0.42012 equal
8 0.47334 equal
9 0.49045 equal
10 0.47909 equal
11 0.43768 equal
12 0.48480 equal
13 0.43154 equal
14 0.44376 equal
15 0.41908 equal
16 0.43768 equal
17 0.43768 equal
18 0.46167 equal
19 0.45576 equal
20 0.40636 equal
21 0.45576 equal
22 0.41521 equal
23 0.40070 equal
24 0.37719 equal

HFO
segment p-value conclusion

0 <0.0001 ref. ROC greater
1 0.1739 equal
2 0.3330 equal
3 0.2063 equal
4 0.2772 equal
5 0.0009 ref. ROC greater
6 0.4394 equal
7 0.3524 equal
8 0.0002 ref. ROC greater
9 <0.0001 ref. ROC greater
10 <0.0001 ref. ROC greater
11 <0.0001 ref. ROC greater
12 0.0005 ref. ROC greater
13 0.0058 ref. ROC greater
14 <0.0001 ref. ROC greater
15 <0.0001 ref. ROC greater
16 <0.0001 ref. ROC greater
17 <0.0001 ref. ROC greater
18 0.0001 ref. ROC greater
19 <0.0001 ref. ROC greater
20 <0.0001 ref. ROC greater
21 <0.0001 ref. ROC greater
22 <0.0001 ref. ROC greater

Table 6.1: p-values of statistical comparison between ROC of real-time computed results
and reference results for REN and HFO. Note, that there is less HFO segments than REN
time segments. That is because the occurrence of HFO is irregular in time.
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Figure 6.3: Entropy – ROC curves computed from the data pulled from the database in
the pale color, together with ROC curve of offline computed data and mean ROC curve.

Figure 6.4: HFO – ROC curves compute from the data pulled from the database in the
pale color, together with ROC curve of offline computed data and mean ROC curve.

39



Figure 6.5: Entropy – AUC values computed from the data pulled from the database,
together with one reference AUC of offline computed data.

Figure 6.6: HFO – AUC values computed from the data pulled from the database, together
with one reference AUC of offline computed data.

40



Figure 6.7: Entropy – Difference between values of relative entropy in pathological and
non-pathological channels. Outlier points are not displayed on the graph.

Figure 6.8: HFO – Difference between number of detected HFO in pathological and non-
pathological channels. Outlier points are not displayed on the graph.
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Chapter 7

Discussion

Answering the questions 1 and 2 from the previous Chapter was a straightforward task. We
have proven that our pipeline processes signals the same way as when they are processed
offline (question 1). Our tool is robust enough to be used in research and possibly in clinical
practice (question 2). Answering question 3 was more difficult. While the mean ROC of real-
time computed segments and ROC of reference results are statistically equal, which implies
that our tool performs similarly in processing long recordings as offline processing of 30 min
relaxed recordings, the mean ROC of HFO was statistically worse than the reference. It’s
important to point out, that long recordings are much noisier in comparison to the relaxed,
short recordings since the patient is engaging in activities like eating, walking, speaking,
etc. On the contrary, the patient is solely lying on a hospital bed during the making of the
relaxed recording. With a closer look at the statistical differences of individual segments in
table 6.1, we can see that HFO in segments 1, 2, 3, 4, 6, and 7 were, in fact, statistically
equal to the reference results (𝑝 > 0.05). This finding offers an answer to the further
question 4. Epileptogenic activity, but also artifacts and noise levels, seem to change in the
brain over time. It can be observed further in the graphs, which are part of question 4. An
estimation of the best moment for making a short relaxed recording based on a real-time
analysis would be of great benefit in clinical practice.

7.1 Summary of work done

This thesis comes out of a need for the development of new tools in the field of pharma-
coresistant epilepsy treatment. Patients suffering from this type of epilepsy do not respond
to common anti-epileptic drugs, and in most cases, the only way to achieve a seizure-free
state is resection of epileptogenic brain tissue. Precise localization of the epileptogenic zone
(EZ) is therefore essential. As a part of this procedure, the patient must be implanted with
intracranial EEG electrodes for up to four weeks, waiting for a seizure occurrence as the
only way of localizing EZ up to this day. In some cases, even this process is not adequate
to mark part of the brain for resection (this marked part is also called seizure onset zone,
or SOZ) with enough confidence to perform the surgery. In such a case, presurgical assess-
ment turns out to be wasteful. Therefore, a lot of effort is put into improving this process.
The key parameters of this are time and accuracy. This thesis, made in cooperation with
FNUSA-ICRC, lays a foundation for solving both mentioned aspects. We implemented a
tool in Python that can process an incoming stream of EEG signals and extract desired
EEG features from it in real-time. Since evaluating various EEG biomarkers turns out to
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bring better results in localizing SOZ [4], the precision of this task can be improved using
our tool in combination with machine learning, or another decision-making algorithm. The
real-time processing ensures that results are available immediately, and neurologists can
make decisions right from the operating room during the recording. Unlike offline pro-
cessing, during the online processing, data are stored in the database, well-structured for
further evaluation. Our tool was tested on data from four patients. Three datasets were
long recordings lasting for several hours, and one was a 30 min relaxed recording. To
evaluate our tool, we asked four questions.

Calculated results were statistically compared and plotted in graphs. In the short
recording, differences between offline and online computed data were minor (question 1).
The tool processed all the datasets without crashes or other unexpected behavior (ques-
tion 2). Functions for computing relative entropy and detecting HFO applied to the long
datasets within our pipeline. To compare with offline computations, only 30 min offline
computed relaxed recordings were available as a reference. The results were compared to
the real-time processed data separated into 30 min long time segments. The values of REN
after computing ROC were statistically equal to the reference results from 30 min relaxed
recording. It implies that our tool is suitable for analyzing long-term recordings with simi-
lar performance as the offline analysis of short recordings (question 3). The ROC values of
HFO were statistically worse than the reference ROC. That can be caused due to the lower
quality of long-term recordings, which are subject to much bigger noise. The potential ben-
efits of our tool still exceed its lower performance in HFO detection. That is also because
of the findings after analyzing statistical differences in the individual segments. Despite the
overall result, our tool performance was similar to the offline analysis in particular segments
in HFO detection. This suggests the existence of time-varying epileptic cycles in the brain
and offers a possibility of improved SOZ localization thanks to this knowledge (question 4).

Although there is a lot of ongoing research and development in the domains of EEGs and
epilepsy around the world, not many institutions fully implemented online EEG processing
yet. Our project can further provide a strong foundation for the further development of bet-
ter localization and seizure prediction mechanisms at St Anne’s Hospital Brno. Moreover,
thanks to the immediate results, physicians can make decisions to ensure better comfort for
the patient, right during the EEG capturing. The project can also help with the selection
of the right time for the 30 min relaxed recording, which can facilitate further localization.
Although the tool is fully functional in its current state, more work has to be put into its
development in order to put it into practice.

7.2 Upcoming work

Throughout the development we made attempts to test the tool on a live patient simul-
taneously with standard recording, but we encountered technical problems with the local
hospital network. Since the recording of EEG takes place on a different network than its
processing within the FNUSA, and due to the strict policy towards the data flowing in and
out, it is a problem to get permission for the transmission of the data from one network to
another. This problem has to be solved to put the tool into practice. Furthermore, there is
still work to be done to improve our pipeline and further develop its functions. The main
points include:
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• connecting the tool to the newly created database at BME FNUSA-ICRC. This goal
is achievable in a matter of weeks after the thesis submission.

• to get the most of the potential from the tool, follow-up connection to machine learning
algorithms will be ensured. That would allow real-time online localization.

• as described in section 4.4, we are facing the question of how to approach the signal
filtering within the pipeline. The optimal and the most robust solution would be
applying filters through a specific node, or nodes, as proposed in the original archi-
tectural design. That would require changes in the implementation of some Epycom
functions which apply filters from within. Other functions, such as MVL, require sig-
nal filtered in different frequency bands and that also needs to be taken into account.

• there is also an incentive to create a web interface for visualizing the computed data
from the database. The interface would include statistical graphs for easier assessment
of the data by neurologists.

• tool could be further optimized to increase the speed of computing. Using optimizing
tools, such as Numba1 (just in time Python compiler) to improve the performance will
be considered

7.3 Future prospects

Implementation of machine learning – online localization

With new research and advances in machine learning algorithms, it is possible that pre-
surgical assessment will be fully automatized in the future. Our pipeline presents the perfect
infrastructure for such a process. Machine learning-based algorithms, that can localize SOZ
from interictal biomarkers already exist [4]. The time needed for signal capturing would
be much shorter if there is no need to wait for the patient’s seizure during his stay in the
hospital. At the same time, machine learning algorithm could evaluate the data in real-time
and immediate results from the localization would be available.

Implementation of seizure prediction algorithms

A bit different direction is the prediction of seizures, which is becoming another hot topic in
epilepsy research. The mechanism for sending data in real-time and immediately processing
them by a machine has been used already for a successful seizure prediction [7]. Our tool
could be used for implementing such a seizure predicting device at FNUSA. This device
would warn nurses of oncoming seizures and ensure enough time to prevent imminent danger
to the patient.

Possible implementation on other institutions

Thanks to the close cooperation of FNUSA-ICRC with other institutes, our pipeline might
be eventually used in one of them. This will likely happen at Mayo clinic2. Several studies
from the field of epilepsy have been conducted in cooperation with these two institutes,
such as [27] or [28].

1https://numba.pydata.org/
2https://www.mayoclinic.org/
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Usage of the tool for neuroscience

Understanding the human brain is relevant not only for the treatment of epilepsy. This
work may find use also in general research in the neuroscience field. One of the possible uses
is implementation as a part of an instant neurofeedback device. Commercial non-invasive
devices for neurofeedback are already available to the public3 and with ongoing research in
this area, the possible use of such devices will widen.

3https://choosemuse.com/
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Appendix A

Results from the ramaining
patients

Patient 83
Channels L1 and L2 were labeled by neurologist as pathological. Refference ROC of REN
was significantly greater than mean ROC of real-time computed results with p-value= 0.004.
The mean ROC of HFO was significantly greater than reference ROC (p-value< 0.0001)
which indicates a better performance of our tool in this patients HFO evaluation. Results
for individual segments are available in table A.1.

REN
segment p-value conclusion

0 0.48766 equal
1 0.33714 equal
2 0.37527 equal
3 0.38222 equal
4 0.43754 equal
5 0.40435 equal
6 0.44667 equal
7 0.37527 equal
8 0.30378 equal
9 0.29859 equal
10 0.26467 equal
11 0.44557 equal

HFO
segment p-value conclusion

0 <0.0001 our ROC greater
1 0.35350 equal
2 0.13217 equal
3 0.17359 equal
4 0.01503 our ROC greater
5 0.09246 equal
6 0.02025 our ROC greater
7 0.00082 our ROC greater
8 0.09655 equal
9 0.03009 our ROC greater
10 0.0573 equal

Table A.1: p-values of statistical comparison between ROC of real-time computed results
and reference results for REN and HFO. Note, that there is less HFO segments than REN
time segments. That is because the occurrence of HFO is irregular in time.
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Figure A.1: Patient 83 entropy – ROC curves computed from the data pulled from the
database in the pale color, together with ROC curve of offline computed data and mean
ROC curve.

Figure A.2: Patient 83 HFO – ROC curves compute from the data pulled from the
database in the pale color, together with ROC curve of offline computed data and mean
ROC curve.
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Figure A.3: Patient 83 entropy – AUC values computed from the data pulled from the
database, together with one reference AUC of offline computed data.

Figure A.4: Patient 83 HFO – AUC values computed from the data pulled from the
database, together with one reference AUC of offline computed data.
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Figure A.5: Patient 83 entropy – Difference between values of relative entropy in patho-
logical and non-pathological channels. Outlier points are not displayed on the graph.

Figure A.6: Patient 83 HFO – Difference between number of detected HFO in patholog-
ical and non-pathological channels. Outlier points are not displayed on the graph.
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Patient 79
Channels B’1, B’2 and B’3 were labeled by neurologist as pathological. Refference ROC
of REN was significantly greater than mean ROC of real-time computed results with p-
value< 0.0001. Refference ROC was also significantly greater than mean ROC in HFO
(p-value< 0.0052). Results for individual segments are available in table A.2.

REN
segment p-value conclusion

0 0.06957 equal
1 0.09702 equal
2 0.19861 equal
3 0.04517 ref. ROC greater
4 0.00350 ref. ROC greater
5 0.28193 equal
6 0.36685 equal
7 0.38582 equal
8 0.44736 equal

HFO
segment p-value conclusion

0 <0.0001 ref. ROC greater
1 0.37540 equal
2 0.42677 equal
3 0.28971 equal
4 0.03874 ref. ROC greater
5 0.07084 equal
6 <0.0001 ref. ROC greater
7 <0.0001 ref. ROC greater

Table A.2: p-values of statistical comparison between ROC of real-time computed results
and reference results for REN and HFO. Note, that there is less HFO segments than REN
time segments. That is because the occurrence of HFO is irregular in time.
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Figure A.7: Patient 79 entropy – ROC curves computed from the data pulled from the
database in the pale color, together with ROC curve of offline computed data and mean
ROC curve.

Figure A.8: Patient 79 HFO – ROC curves compute from the data pulled from the
database in the pale color, together with ROC curve of offline computed data and mean
ROC curve.
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Figure A.9: Patient 79 entropy – AUC values computed from the data pulled from the
database, together with one reference AUC of offline computed data.

Figure A.10: Patient 79 HFO – AUC values computed from the data pulled from the
database, together with one reference AUC of offline computed data.
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Figure A.11: Patient 79 entropy – Difference between values of relative entropy in patho-
logical and non-pathological channels. Outlier points are not displayed on the graph.

Figure A.12: Patient 79 HFO – Difference between number of detected HFO in patho-
logical and non-pathological channels. Outlier points are not displayed on the graph.
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Appendix B

Contents of SD card

• \mepior:

* \mepior – mepior library
* pipeline_single.py – single-process pipeline
* pipeline_manager.py – distributed pipeline

• \valuation:

* valuate.py – script used for evaluation of question 1 from Chapter 6
* compute_statistics.py – script used for evaluation of questions 2 and 3 from

Chapter 6
* get_channel_names.py

• \eeds – simulation of real-time data flow:

* \build

* \src

* \work – contains configurations files and usage information

• README.md – contains also installation guide
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