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Abstract 
In this thesis, we designed and implemented a tool that is able to process intracranial 
E E G signals i n real-time. That is done by applying functions for computing various i E E G 
biomarkers implemented i n python l ibrary Epycom on the incoming data stream and storing 
the results into the database. We compared results computed by our tool against the offline 
computations and evaluated i f real-time signal processing is suitable for c l in ical practice. 

Abstrakt 
V t é t o p rác i jsme navrhl i a implementovali n á s t r o j , k t e r ý je schopen zpracováva t i n t r a k r a n i á l n í 
E E G s ignály v r e á l n é m čase . To se p rovád í ap l ikac í funkcí pro v ý p o č e t r ů z n ý c h i E E G 
b i o m a r k e r ů i m p l e m e n t o v a n ý c h v python k n ih o v n ě Epycom na př íchozí d a t o v ý tok a u ložen ím 
výs ledků do d a t a b á z e . Porovnal i jsme výs ledky v y p o č í t a n é n a š í m n á s t r o j e m s offline 
v ý p o č t y a vyhodnot i l i , zda je zp racován í s igná lu v r e á l n é m čase v h o d n é pro kl inickou praxi . 
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Rozšířený abstrakt 
Tato p r á c e vycház í z p o t ř e b y vývoje nových n á s t r o j ů v oblasti f a rmakorez i s t en tn í léčby 
epilepsie. Pacient i t rp íc í t í m t o typem epilepsie nereaguj í na b ě ž n á antiepileptika a ve vě tš ině 
p ř í p a d ů je j e d i n ý m z p ů s o b e m , jak d o s á h n o u t bezzáchva tového stavu, resekce ep i l ep togenn í 
mozkové t k á n ě . P ř e s n á lokalizace ep i l ep togenn í zóny (EZ) je proto n e z b y t n á . V r á m c i 
tohoto ú k o n u m u s í bý t pacientovi i m p l a n t o v á n y i n t r a k r a n i á l n í E E G elektrody po dobu až 
č ty ř t ý d n ů , p ř i čemž čekán í na výsky t záchva tu je dodnes j e d i n ý m z p ů s o b e m lokalizace E Z . 
V n ě k t e r ý c h p ř í p a d e c h ani tento proces nes t ač í k označen í čás t i mozku pro resekci (tato 
o z n a č e n á čás t se t a k é n a z ý v á zóna n á s t u p u z á c h v a t u nebo SOZ) s d o s t a t e č n o u j is totou k 
p roveden í operace. V t a k o v é m p ř í p a d ě se p r e d o p e r a č n í posouzen í ukazuje jako zby tečné . 
Pro to je vyna loženo velké úsilí na z lepšení tohoto procesu. Kl íčovými parametry jsou čas a 
p řesnos t . Tato d ip lomová p ráce , v y t v o ř e n á ve spo lup rác i s F N U S A - I C R C , p o k l á d á zák lad 
pro řešení obou zmíněných a s p e k t ů . Implementovali jsme n á s t r o j v Py thonu , k t e r ý dokáže 
zpracovat př íchozí proud i E E G s ignálů a extrahovat z něj p o ž a d o v a n é vlastnosti i E E G v 
r e á l n é m čase . Vzhledem k tomu, že kombinace různých i E E G b i o m a r k e r ů p ř ináš í lepší 
výs ledky př i lokalizaci S O Z [4], lze p řesnos t t é t o ú lohy zlepši t p o m o c í n a š e h o n á s t r o j e v 
kombinaci se s t r o j o v ý m u č e n í m nebo j i n ý m rozhodovac ím algoritmem. Zpracován í v reál­
n é m čase zajišťuje, že výs ledky jsou k dispozici o k a m ž i t ě a neurologové se mohou rozhodovat 
p ř í m o b ě h e m n a h r á v á n í . N a rozdí l od offline zp racován í jsou př i online zp racován í data uk­
l á d á n a do d a t a b á z e d o b ř e s t r u k t u r o v a n á pro dalš í v y h o d n o c o v á n í . N á š n á s t r o j by l t e s tován 
na datech od č ty ř p a c i e n t ů . T ř i d a t o v é sady byly d louhé z á z n a m y t rvaj íc í několik hodin 
a pacienti se b ě h e m doby n a h r á v á n í mohl i volně pohybovat po nemocnici . Jeden by l 30 
m i n u t o v ý z á z n a m pacienta ležícího na lůžku . A b y c h o m n á š n á s t r o j vyhodnot i l i , položili 
jsme č tyř i o t ázky : 

1. Zpracovává n á š n á s t r o j data s t e j n ý m z p ů s o b e m , jako když jsou zp racovávána offline? 

2. Je n á s t r o j d o s t a t e č n ě r o b u s t n í pro zp racován í d l o u h o d o b ý c h s ignálů? 

3. Dosahuje n á s t r o j p o d o b n é h o výkonu jako referenční 30 min . n a h r á v á n í v leže b ě h e m 
u v o l n ě n é m stavu? 

4. Měn í se schopnost lokalizovat S O Z p o m o c í b i o m a r k e r ů v čase a m ů ž e p ř e k o n a t refer­
enční z á z n a m v n ě k t e r ý c h segmentech? 

V y p o č í t a n é výs ledky byly statist icky p o r o v n á n y a vyneseny do grafů. V k r á t k é m záz­
namu byly rozdí ly mezi offline a online v y p o č í t a n ý m i daty m a l é (o t ázka 1). N á s t r o j zpraco­
val v šechny d a t o v é sady bez se lhán í nebo j i ného neočekávaného chování ( o t ázka 2). Funkce 
pro v ý p o č e t r e l a t ivn í entropie a detekci H F O byl i ap l ikované na d louhé d a t o v é sady proud íc í 
do na šeho programu. P r o s rovnán í s offline v ý p o č t y bylo jako reference k dispozici pouze 
30 min . offline v y p o č í t a n ý c h dat. Výs ledky byly p o r o v n á n y s daty z p r a c o v a n ý m i v r e á l n é m 
čase rozdě lenými do 30 m i n d louhých časových s e g m e n t ů . Hodnoty R E N po v ý p o č t u R O C 
se statisticky rovnaly re fe renčn ím v ý s l e d k ů m z 30 m i n re l axovaného z á z n a m u . Z toho vy­
plývá, že n á š n á s t r o j je v h o d n ý pro a n a l ý z u d l o u h o d o b ý c h n a h r á v e k s p o d o b n ý m v ý k o n e m 
jako offline a n a l ý z a k r á t k ý c h n a h r á v e k (o t ázka 3). Hodnoty R O C H F O byly statist icky 
horš í než referenční R O C . To m ů ž e bý t z p ů s o b e n o nižší kval i tou d l o u h o d o b ý c h nah rávek , 
k t e r é jsou vystaveny mnohem vě t š ímu š u m u . P o t e n c i á l n í v ý h o d y n a š e h o n á s t r o j e s tá le 
převyšuj í jeho nižší výkon v detekci H F O . Je to i kvůl i z j i š těn ím po ana lýze statistick­
ých rozdí lů v j edno t l i vých segmentech. Navzdory celkovému výs ledku by l výkon na šeho 



nás t ro j e p o d o b n ý offline ana lýze v n ě k t e r ý c h s a o s t a t n ý c h segmentech př i detekci H F O . To 
naznaču je existenci časově p r o m ě n n ý c h ep i lep t ických cyklů v mozku a nab íz í m o ž n o s t lepší 
lokalizace S O Z d íky t é t o znalosti ( o t ázka 4). 

P ř e s t o ž e na ce lém světě p r o b í h á v oblasti E E G a epilepsie mnoho v ý z k u m ů a vývoje , 
z a t í m nen í na mnoha ins t i tuc ích p lně i m p l e m e n t o v á n o online zp racován í E E G . Náš pro­
jekt m ů ž e dá le poskytnout p e v n ý zák lad pro dalš í rozvoj lepších m e c h a n i s m ů lokalizace a 
predikce z á c h v a t ů v Nemocnic i u sv. A n n y v B r n ě . Nav íc d íky o k a m ž i t ý m v ý s l e d k ů m mo­
hou lékař i uč in i t r o z h o d n u t í pro zaj iš tění lepšího komfortu pacienta p ř í m o b ě h e m s n í m á n í 
i E E G . Projekt m ů ž e t a k é pomoci s v ý b ě r e m s p r á v n é h o času pro 30 m i n n a h r á v á n í , kdy 
pacient jenom leží, což m ů ž e dá le usnadnit da lš í lokal izaci . P ř e s t o ž e je n á š n á s t r o j ve svém 
s o u č a s n é m stavu p lně funkční , aby by l uveden do praxe, je t ř e b a j ě š t e vyna lož i t úsi lý pro 
jeho vývo j . 
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Glossary 

Most commonly used shortcuts and abbreviations i n this thesis. 

A U G under the curve 
B M E department of biomediccal engineering at St Anne 's Hospi ta l Brno 
C S (detector) C i m b á l n í k - S t e a d detector; a lgori thm for detecting high-frequency oscillations 
E E G electroencephalogram, electroencephalograph (depending on context) 
E o C G electrocorticography 
E Z epileptogenic zone 
F N U S A F a k u l t n í Nemocnice u Sv. A n n y (St Anne 's Hospi ta l Brno) 
F N U S A - I C R C The International C l i n i c a l Research Centre 
H F O high-frequency oscillations 
ic ta l dur ing epileptic seizure 
i E E G intracranial E E G 
I E D interictal epileptiform discharges (also referred to as spikes) 
interictal i n between of epileptic seizures 
K L (divergence) Kul lback-Le ib le r divergence 
M I modula t ion index 
M V L mean vector length 
P A C phase-amplitude coupling 
R E N relative entropy 
R O C receiver operating characteristic (curve) 
s E E G stereotactic E E G 
SOS second-order series (in relation to filtering) 
S O Z seizure onset zone 
S V M support vector machine 
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Chapter 1 

Introduction 

1.1 Motivat ion 

Epilepsy is a disease that affects about 1 % people worldwide. M a n y of those people can be 
treated pharmacologically, yet about 30 % of epilepsy patients do not respond to any k ind 
of conventional epileptic drug [30]. In such a case, the best option for a patient is to undergo 
surgical treatment, which focuses on the epileptogenic zone (EZ) resection [31]. However, 
only about 60% of patients remain seizure-free after administering it [9]. Pre-surgical as­
sessment of E Z plays a key role i n the outcome of surgery and much effort is being put into 
developing more accurate and automatized methods for localizat ion of these zones by ana­
lyzing electroencephalographic ( E E G ) signals of the brain. Several E E G biomarkers can be 
used for the diagnosis of epilepsy, some of which are visual ly observable on E E G recordings, 
yet many others require further processing and analysis. The period of presurgical analysis, 
together w i th the E Z localizat ion, is on average two weeks long [4] where most of the time 
is spent by wait ing for patient's seizure. Dur ing this t ime, the patient's skul l is penetrated 
wi th electrodes, and the patient is exposed to the risk of infection or further deterioration. 
Besides that, a week spent in the intensive care unit costs about 150 thousand Czech crowns. 

recording video sEEG recording visual assesment clinical evaluation 
(waiting for twtients seizure) 

~ 2 weeks 
Figure 1.1: Golden standard of pre-surgical analysis. 

The motivat ion for this thesis lies i n the need for developing algori thmic tools for efficient 
analysis of non-observable properties of E E G signals and offering real-time data that can 

4 



be used for E Z diagnosis and speeding up the whole pre-operation process. Developing 
a tool that could analyze intracranial signals coming i n real-time, right from the inside 
of the head of a patient, could potential ly speed up the whole process and by combining 
various bio-markers also improve the precision of the E Z localizat ion, thus enhancing the 
overall probabil i ty for the seizure-free outcome of the surgery. A l t h o u g h the current golden 
standard - visual assessment of E E G recording, captured during the seizure (figure 1.1), is 
most l ikely not going to change during the following years, w i th more research on biomarkers 
computed from the recordings between the seizures and development of tools like the one 
described i n this thesis, we might reach a point i n the future where seizure recording w i l l 
not be needed for an accurate pre-surgical evaluation and the whole process would be done 
under 24 hours, or even i n the operating room. The thesis is based on ongoing research at 
The International C l i n i c a l Research Centre of St. Anne 's Univers i ty Hospi ta l Brno ( F N U S A 
I C R C ) 1 i n cooperation w i t h the Institute of Scientific Instruments of The Czech Academy 
of Sciences ( ISI -CAS) 2 focused on the analysis of high-frequency intracerebral E E G signals. 

recording data processing machine learning clinical evaluation 

<24 hours 
Figure 1.2: Future prospects on the process of presurgical analysis, that could be far less 
costly and more efficient than current golden standard. 

1.2 Collaboration 

This project is part of a larger cooperation between several insti tutions around the globe. 
I have been cooperating wi th the Computa t iona l Neuroscience research group at I S I - C A S 
together w i th The Biomedica l Engineering research team ( B M E ) from F N U S A I C R C i n 
B r n o 3 since au tumn 2020 by making contributions to the python l ibrary Epycom

4

, which 
contains functions for calculation of various E E G biomarkers and is also used i n this project. 
Later, I signed a contract w i t h I S I - C A S and started working on the already ini t iated, but 
at the time stagnating project and l ibrary Mepior. The knowledge base for the implemen-

x

https: //www.f nusa.cz/en/hp/ 

http: //www.isibrno.cz/en 
3

https://www.f nusa-icrc.org/en/research/research-teams/clinical-research/biomedical-

engineering/ 
4

https: //gitlab.com/icrc-bme/epycom 
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ta t ion comes from several studies published by the institutions mentioned above in further 
cooperation wi th the Mayo C l i n i c Department of Neuro logy 5 , such as [4]. Therefore this 
work represents results coming from the cooperation of several departments across multiple 
institutions, rather than as a single person solution. 

1.2.1 C o - w o r k e r s 

Dur ing the wr i t ing and implementation, I could always rely on the advice of my external 
supervisor Ing. J á n C imbá ln ík , P h . D . 6 who has many years of experience i n the research of 
electrophysiological signals and has worked wi th E E G data from epileptic patients directly. 
Besides, he abounds wi th deep technical knowledge of programming signal processing scripts 
and libraries. He originally ini t ia ted the whole project and introduced me to i t . A t the same 
time, he provided me wi th support programs and data from his lab. The second important 
person part ic ipat ing in this project is Ing. Petr Kl imeš , P h . D . 7 , w i th many publications 
and rich experience i n the field of E E G signals. Besides deepening my understanding of 
the topic and offering consulting about brain electrophysiology and epilepsy, he took care 
of the formal part of our collaboration, giving me a contract. 

1.3 Work progress 

Because of the project complexity, work was progressing through the several stages. F i rs t , 
I had to get familiar w i th project i n the state as it was. Tha t was the phase of s tudying al l 
the tools, doing configurations and solving dependency problems as well as learning about 
the already existing architecture. Next , I started implementing my adjustments in order to 
make the pipeline work as expected. Together w i th J á n C i m b á l n í k and Pet r Kl imeš , we were 
having regular meetings every two weeks in order to discuss the project progress, emerging 
questions and possible improvements. In the following phase, after the functionality of the 
pipeline on a single core of single machine has been tested, I implemented multi-process 
pipeline w i th the use of the tools for managing distr ibuted nodes, described i n Chapter 4. 
Later, I ran this enhanced pipeline on mult iple C P U s at St. Anne ' s Hospi ta l and performed 
the tool evaluation which was the last phase of the development. The dis t r ibut ion of work 
is displayed i n figure 1.3. 

1.4 Claims 

We implemented tool processing E E G signals i n real t ime which is processing the signals 
comparably well w i th the offline processing. O u r tool is suitable for c l in ical use and w i l l be 
put into pract ical use at St. Anne ' s Hospi ta l Brno . 

5
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• Ján Cimbalnik's work my work | someone else's work 

I p y a c q val idat ion 

m e p i o r I short records I long records I 

I EasysSocket S q l i t e P u s h e r 

EpycomNode 

pipel ine <- data f low simulat ion 

I prototype I with process manager 

Figure 1.3: Approx imate contr ibut ion to the project. O n the top, pyacq is the l ibrary which 
was in i t ia l ly forked from G i t H u b and by bui ld ing up on i t , mepior l ibrary was created. The 
classes from mepior used i n our pipeline implementat ion are displayed in the figure. Note, 
that there are other classes in mepior implemented by J á n Cimbá ln ík , but they were not 
used i n this project. 
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Chapter 2 

E E G and Epilepsy 

The journal Epi leps ia introduced, i n its I L A E Official Report [8], a conceptual definition 
for epilepsy, stating that it is 

a disorder of the brain characterized by an enduring predisposition to generate 
epileptic seizures, and by the neurobiological, cognitive, psychological, and social 
consequences of this condit ion. The definition of epilepsy requires the occurrence 
of at least one epileptic seizure. 

Whereas seizure was defined in the same paper as 

a transient occurrence of signs and/or symptoms due to abnormal excessive or 
synchronous neuronal act ivi ty i n the brain. 

Usually, epilepsy can be treated wi th either one or a combinat ion of more anti-seizure 
medication currently available on the market. Despite the high number of these agents 
currently available (>25 according to the journal Epi leps ia [30]) a significant por t ion of 
the patients w i th epilepsy seem to not respond to any k ind of medication. A s stated 
in Chapter 1, a possible solution for these people is to undergo surgery to remove the 
epileptogenic zone which is causing seizures. 

2.1 Inside the brain 

Neurons inside the bra in communicate through electrical impulses. W h e n a neuron sends 
an impulse, it creates a certain amount of electricity of which the magnitude determines the 
strength of the impulse. This strength, also referred to as voltage or amplitude is mea­
sured i n microvolts. Neurons of a healthy bra in are generating impulses wi th the voltage in 
the range of 0 — 200/xF when measured on the scalp [32]. In the terms of frequency, its 
value represents how many times d id neuron send an impulse to other neurons. The elec­
t r ica l ac t iv i ty of neurons can be measured by a non-invasive electroencephalograph ( E E G ) . 
Various E E G electrodes are placed at standardized locations on the patient's head. Such 
electrodes are displayed in figure 2.1. 

Scalp E E G is capturing a summarized act ivi ty of big assemblies of neurons on the sur­
face of the patient's head. Based on frequency, we can classify brain waves as alpha, beta, 
delta, theta and gamma. These categories are described i n detail in table 2.1. In general, 
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Figure 2.1: Scalp E E G [25]. 

electrophysiological signals have 1 / / characterisation, meaning, the higher the frequency, 
the lower the ampli tude. In the context of the amount of information that is being pro­
cessed i n a given state, the more awake the state is, the more information is being processed 
at once, which results i n the higher frequency of bra in waves (beta, alpha), whereas the 
strength of impulses is lower. The opposite applies to the relaxed states (delta, theta). 

T y p e Frequency State Figure 

De l ta 0-4 H z deep sleep 

The ta 4-8 H Z deep relaxation, R E M sleep 

A l p h a 8-13 H z day dreaming, ca lm 

Be ta 13-30 H z alert, active th inking, anxiety 
1 , , , Ii I i I i i 

G a m m a 30-100 H z high levels of thought and focus 

Table 2.1: Classification of brain waves based on frequency [22]. 

Classic scalp E E G is used for the diagnosis of epilepsy by capturing the electrical act ivi ty 
of the brain and revealing abnormal patterns compared to its normal function [17]. Results 
are represented on a graph as signals assigned to a part icular E E G channel. Channels are 
created as the subtraction of the voltage on the reference electrode from an input electrode. 
Book Practical approach to electroencephalography [24] has a whole chapter dedicated to 
problematics of choosing a reference electrode. F i n d i n g a good reference electrode is a 
difficult task - it cannot be connected it to the ground due to the noise from other electrical 
devices i n hospitals. A t the same time, the input electrode would always be a subject of 
"body noise" (eye movement, muscle movement, E C G . . . ) , which would not be present on 
a ground electrode and therefore would appear on the graph. Par t of the body would be 
a better choice because the body noises from both of the electrodes would cancel out each 
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other. However, placing electrodes too close to each other also poses certain risks. If there 
was a bra in act iv i ty common for the reference electrode and for the observed electrode, 
this act ivi ty would be canceled out dur ing the subtraction which would result i n a flat 
signal. Hence placing a reference electrode is a compromise between a locat ion that would 
cancel out most of the noise, yet would not cancel too much of the brain activity. In general 
practice, the most commonly used electrode montages are so-called Bipolar Montages where 
electrodes are connected sequentially. The channels then result from the subtraction of 
neighboring electrodes. Another commonly used reference is an average signal calculated 
from a l l E E G contacts. This average signal is then subtracted from ind iv idua l signals [33]. 

Unfortunately, epileptogenic zone (EZ) often lies deep wi th in the brain tissue, which 
means that epileptogenic signals may not reach the scalp, thus the non-invasive measures are 
usually not adequate for precise localizat ion of seizure onset zone (SOZ) - part of the brain 
marked for further resection (ideally the same part as E Z ) . Therefore, implant ing electrodes 
either deep inside the bra in tissue or, on the brain surface is necessary. A standard invasive 
method i n c l in ica l routine is an intracranial electroencephalogram, commonly referred to 
as an i E E G . Moreover, i E E G recordings are subject to artifacts caused by muscle and eye 
movement to a far lesser extent than normal scalp E E G . 

2.2 i E E G 

E E G recordings obtained i n an invasive way are referred to as an intracranial EEG or iEEG. 
A n article by Josef Parvizi [29] provides a good overview of the intracranial E E G , which is 
summarized i n this section. There are two main categories of i E E G (see figure 2.2): Those 
recorded wi th the strips or grids of electrodes implanted on the brain surface (i . e. subdural 
space), and the ones recorded using electrodes penetrating the brain and targeting its spe­
cific, pre-defined parts (depth electrode is displayed i n figure 2.3). The data from the latter 
method are the subject of interest of St Anne 's Hospi ta l Brno research, same as of this thesis. 

Figure 2.2: Two types of i E E G : Electrocorticography ( E o C G ) [6] on the left, using grids 
of electrodes, and stereotactic electroencephalogaphy ( s E E G ) [12] on the right, using depth 
electrodes penetrating the brain. 
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i E E G plays an important role i n the pre-surgical evaluation of epilepsy patients. Yet 
before the patient is implanted, a hypothesis about the approximate origin of his seizures 
must be formed wi th the use of non-invasive diagnostic tools. Tha t implies that only pa­
tients w i th focal epilepsy (i. e. seizures arising from a specific part of the brain) are suitable 
for invasive screening. Therefore, i E E G is only chosen i f the clinicians have high confidence 
about this condit ion (referred to as focality), and the preoperative work suggests a high 
chance of finding the S O Z . Usually, 5-15 depth electrodes are implanted, each consisting of 
10-14 recording contacts as displayed in figure 2.3. W i t h these electrodes implanted, the 
patient is admit ted to the operating room, subjected to continuous recording and stream­
ing of raw electrophysiological data from the electrodes. Often, several seizures have to be 
captured to determine their source. This process, as mentioned in Chapter 1, can take up 
to two weeks. W h e n comparing classical scalp E E G and i E E G , probably the most notable 
difference is the resolution. A study comparing the two [2] proved that a signal-to-noise 
ratio of i E E G could be as high as 100 times higher than the scalp E E G . Tha t can be par­
t ia l ly caused by the ampli tude of i E E G , which is 10 x higher than scalp E E G , and par t ia l ly 
because of significantly reduced noise from the recording room, and the physiological noise 
from eye blinks, eye movements, heartbeat, and muscle movements. Another important 
differentiator of scalp E E G and i E E G is the sampling frequency used for the signal record­
ing. Scalp E E G is usually recorded, taking into account the Nyquis t theorem, wi th the 
frequency of hundreds H z , whereas i E E G w i t h thousands. For example, the testing signal 
we were processing throughout the project development was sampled at 5000Hz. 

Figure 2.3: A n electrode used for i E E G measures at St. Anne ' s Hospi ta l Brno . Par t 
implanted inside the bra in tissue is marked wi th a red oval. E a c h metal plate is a contact 
for the recording of one channel. 

2.3 ( i ) E E G signal processing 

The first stage of processing E E G signals, as displayed in figure 2.4, is the removal of ar­
tifacts. Several types of artifacts may occur in the E E G recording. Those which fall into 
the extrinsic category are easier to detect and filter out. Ex t r ins ic artifacts are caused by 
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external sources, such as electrode misplacement and cable movements. These artifacts can 
be eliminated, at least to a certain extent, by strict recording procedures and a cautious 
approach during the recording. In some cases, the whole part of the signal, which is faulty, 
is removed. Electromagnetic interference emitted from surroundings is another external 
source of artifacts i n the E E G signal. Art i facts caused by this interference can be easily fil­
tered out because of their distinguishable frequency band using a band-pass filter. A bigger 
problem is intrinsic artifacts that occur due to eye movements, eye blinks, muscle activity, 
and cardiac activity. A l t h o u g h there is no consensus on an ideal method for removing al l 
types of artifacts, regression methods are the golden standard i n this domain. Regression 
analysis uses a reference channel to estimate the relation between the ampli tude of the 
reference channel and the ampli tude of an E E G channel and then subtracts estimated arti­
facts from E E G . A l l types of artifacts, as well as artifact removal methods, are described in 
depth i n [16]. The pipeline used at St Anne 's Hospi ta l Brno contains a method for labeling 
faulty parts of the signal, which are not further analyzed. 

Artifacts Data Feature Classification 
Removal w Filtering Extraction 

Pre-Processing Post-Processing 

Figure 2.4: T y p i c a l E E G processing pipeline [23] 

A standard method of analyzing signals - time-frequency analysis can be fruitful in the 
domain of biomedical signals, par t icular ly E E G signals. A t the same time, it can also be 
incomplete for E E G s . The book Advanced Biosignal Processing [26] discusses problems of 
such analysis. T y p i c a l E E G signal consists of mult iple frequency components of different 
magnitudes competing wi th each other over t ime, whereas time-frequency analysis only 
focuses on detecting t ime-varying spectral power. This analysis may also ignore changes 
in oscillations and thus fail to provide an accurate description of evolving oscillations. A n ­
other problem is transitions i n mental state and reactions to external s t imuli , which are 
difficult to track and do not always appear clearly i n time-frequency representations. The 
shortcomings of time-frequency analysis are displayed i n figure 2.5. A l though we can ob­
serve an increase of power i n the time-frequency domain (fourth row), it does not say 
anything about the appearance of the oscillation we are t ry ing to observe. The solution 
for this is to decompose the E E G signal into separate frequency bands, as shown on the 
second and th i rd rows of figure 2.5 and to perform time-frequency analysis on each of them 
separately. However, this approach also comes wi th a drawback. Cut-off frequencies of 
every bandpass filter are assumed to remain constant dur ing the whole neurophysiologi-
cal process under investigation, which can be misleading when the oscillatory component 
is crossing the cut-off frequency l imi t . Th is issue is discussed more in detai l in the book [26]. 

After the artifact removal and data filtering, the post-processing stage follows in the 
typica l E E G processing pipeline. D u r i n g the feature extraction phase, relevant E E G fea­
tures are extracted from the signal and later used to derive target observations i n the 
classification stage. 
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Raw data 

Ripple 

Fast ripple 

Time-frequency analysis 0.1S 

0.5 
Time(s) 

Figure 2.5: Time-frequency analysis (fourth row) applied on raw E E G signal (first row). 
A l though change i n the power at 0.5s is observable, the nature of the oscillations cannot 
be seen. Second row: one second of 80-200Hz filtered data. T h i r d row: one second of 
200-500Hz filtered data. Four th row: Time-frequency analysis of raw data [34]. 

2.4 Localization of epileptogenic tissue 

Since epileptic surgery is a major and irreversible intervention i n the patient's brain, ac­
curate local izat ion of the S O Z must be ensured. The cl inical gold standard for the S O Z 
localizat ion and outcome prognostication is based on recording of epileptic seizures and 
approximat ion of their origin and spread. To obtain enough data, it takes up to 4 weeks 
of invasive E E G ( i E E G ) recordings wi th reduced patient's medication, which might cause 
addi t ional side effects, risks and unnecessary costs. The c l in ica l gold standard has not sig­
nificantly changed over the last 50 years [4]. However, the field of i E E G signal processing 
has undergone rapid development i n recent decades, providing novel, interictal (seizure-
independent) i E E G biomarkers of the S O Z , which can improve and significantly accelerate 
the presurgical evaluation. 

The most commonly used interictal markers are Interictal epileptiform discharges, also 
known as spikes, and high frequency oscillations. Spikes are cl inical ly defined as sharp 
jumps i n the signal, w i th the durat ion between 20 and 70 ms, that are easy to differentiate 
from the background activity. In the frequency domain, spike is a local energy increase 
in the 14.3 — 50 H z frequency band [15]. A study made by joined forces of Czech and 
Amer ican researchers [15] has proposed an automatic evaluation of spikes as a necessity i n 
the field, since visual analysis of the long-term signals, coming from dozens of channels, 
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is extremely error-prone. Especia l ly when it comes to intracranial E E G s , which come in 
massive amounts of data, manual analysis is almost impossible. 

Another promising interictal biomarker of the epileptogenic zone is E E G act ivi ty in 
higher frequencies, also called high-frequency oscillations ( H F O : 6 5 - 6 0 0 H z ) . J an C i m -
balnik in cooperation wi th researchers from the Mayo C l i n i c has published a review of 
current evidence on the interictal (between seizures) H F O and their association w i t h the 
epileptic brain [5]. Accord ing to this paper, H F O are strong evidence of epileptogenic 
tissues, yet not sufficient to recommend a single patient resection, since they can occur 
in a healthy bra in as well [20]. Th is fact raises the need to differentiate between their 
pathological and normal form. Review further states that most of the time, H F O s were 
shown to be a reliable marker of S O Z only i n a group analysis of data summed across 
S O Z of a l l patients. Another study found that epileptic cortex may demonstrate atypical 
cross-frequency interactions [14]. Accord ing to the study findings, ic ta l (during seizure) 
modulat ion of pathological H F O ( p H F O ) by the phase of slow oscillations during seizures 
is concentrated i n the epileptogenic cortex. Slow rhythms happen to co-exist w i t h patholog­
ical H F O s and this relationship can be evaluated by computing modulation index (MI ) , in 
order to assess the strength of the cross-frequency coupling. The stronger the relationship 
between ampli tude and frequency, the higher probabi l i ty of the S O Z occurrence. 

A relatively novel approach is to measure interactions between different frequency bands 
of the E E G signal. Mont rea l Neurological Institute conducted a study in 2016 which evalu­
ated a part icular form of these interactions - Phase-amplitude coupling ( P A C ) , i n patients 
w i th focal epilepsy during different stages of sleep [1]. Results have shown that P A C be­
tween high and low-frequency bands was stronger i n the S O Z regions than i n the healthy 
ones. P A C may thus play a significant role i n the local izat ion of S O Z . 

Jan Cimbaln ik ' s s tudy of multi-feature S O Z localizat ion [4] has proven that using sev­
eral biomarkers to t ra in a support vector machine ( S V M ) classification is superior to using 
a single one. The study further argues that due to the nature of brain electrophysiological 
activity, which is hardly consistent wi th in a time, no single biomarker can be used to effec­
t ively localize S O Z in the majori ty of patients. There are E E G features, whose combination 
can improve overall S O Z localizat ion by S V M . The study evaluated several of these features. 
A m o n g the best performing ones was Local Field Potential, which is a good indicator of 
electrophysiological activity. It is also used for s tudying brain waves dur ing the high-level 
cognitive functions of a healthy brain (memory, decision making, etc.) [19]. Another one was 
Relative entropy, which evaluates the randomness and spectral richness of two signals, de­
termining how much the entropy of one diverges from the other one. This high performance 
of entropy feature can be explained by the statist ically higher occurrence of spectrally r ich 
events (such as H F O or spikes) i n the epileptogenic bra in tissue, compared to a healthy one. 

A s we can see, there are several options for analyzing epileptic signals and localizing 
pathological tissues i n the brain. Novel ty of some approaches and the lack of unified meth­
ods and codes have been the main drivers for start ing the project of which this thesis is a 
part. Even though automated approaches perform well i n the studies, the golden standard 
remains (and probably w i l l remain for some time yet) identifying S O Z by neurologist over 
using purely machine-based localization. 
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2.5 Seizure prediction 

One of the biggest hurdles of l iv ing life w i t h epilepsy is the unpredictabil i ty of seizures. W i t h 
the knowledge of incoming seizures, patients would be able to take precautions to avoid 
injuries. Accurate prediction of seizures would also enable a novel approach to epilepsy 
treatment based on the control and prevention of seizures. Review from 2018 [21] evaluates 
the current state of the art i n this area. We know that seizures are not random and have 
been shown to have short-range and long-range temporal dependencies. Mos t of the time, 
they occur during the rising phase of mult i -day rhythms of interictal epileptic activity. 
However, the fact that there is no predictive characteristic or biomarker that could be used 
to predict the seizure and would be universal throughout a l l the patients makes seizure 
prediction a complicated domain. 

Brain and body / Raw data 
For example, 
local or large 
cortical regions 
deep brain, 
hippocampus 

For example, 
—^ intracranial 
i £ . EEC scalp EEC 

microelectrode 
recordings, 

" NIRS 

Seizure prediction system 

Preprocessing 
For example, 
artefact 
removal, 
signal 
re-referencing 

Characteristics 
extraction 
For example, 
frequency-band 
power, synchrony, 
model 
parameters 

Decision system 
(deterministic 
or probabilistic) 
For example, 
thresholding, 
nonlinear 
classifier 

Advisory 
system 
(discrete or 
graded} 
For example, 
flashing light on 
external device 

Intervention 
Seizure controller 
For example, electrical stimulation, drug delivery, cooling Warning signal 

Figure 2.6: A n i l lustrat ion of how seizure prediction system pipeline might look like [21]. 

Electrodes 

Telemetry 
device, 
implanted 

Advisory 
device 

Figure 2.7: Seizure prediction system i l ­
lustrated in 2018 seizure predict ion re­
view [21]. 

Mere ly one cl in ical t r i a l w i th a fully functioning 
prediction system has been conducted so far [7]. 
The prediction system was based on intracranial 
electrodes connected to a telemetry unit that was 
sending data to the device. That was processing 
them i n real-time and displaying warning lights 
to the implanted patient when the seizure was 
impeding (prediction system is displayed i n fig­
ure 2.7). It was portable, and patients participat­
ing i n the study were implanted wi th it for several 
months. Seizure prediction was excellent for three 
out of nine patients. Th is study brings a new light 
to the discipline by demonstrating that long-term 
recordings are possible and that seizure predict ion 
is achievable, yet patient-specific. The tool that 
we are implementing i n this thesis highly overlaps 
wi th this domain since real-time signal processing 
is a significant part of successful seizure predic­
t ion and might be of use in future research, that 
is eagerly awaited by patients w i th epilepsy. 
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Chapter 3 

Data 

We were working w i t h the intracranial E E G data recorded at St Anne 's Hospi ta l Brno 
throughout the project development. Thanks to the treatment of the number of patients 
w i th epilepsy and mult iple studies conducted i n this inst i tut ion, we were able to work 
wi th a data set of i E E G signals w i th labeled pathological channels and available results 
of computed biomarkers. D a t a sets from four patients were used for a simulation of real­
t ime data flow, flowing into our implemented tool . A l l the data sets we used during the 
development and testing were anonymized, and patients were assigned wi th IDs. 

3.1 Short data 

We used a ~30 m i n of relaxed stated i E E G recording to continuously test the functionality 
and performance of our tool throughout its development. The data set was recorded by 
a 150-channel research i E E G acquisit ion system ( M & I ; Brainscope, Czech Republ ic ) . The 
sampling rate was 25 k H z during the recording. The i E E G s were then low-pass filtered 
and down-sampled to 5 k H z for further processing. This sampling rate gives all-together 
9,491, 505 samples for a single channel. 

Such short recordings are made while the patient is ly ing on the bed without exerting 
any activity. Th is approach may be troublesome since the recordings may not always be 
accurate. A s the latest research suggests [18], the epileptic bra in is active i n cycles occurring 
in different timescales, such as circadian (—24h cycle), mul t id ien (cycles lasting >2 days 
up to several weeks), and circannual (1-year cycles). There is a high probabil i ty that 
during the selected 30 m i n window, the electrophysiological act ivi ty of the epileptogenic 
focus w i l l be low. Due to this fact, much larger data sets were used for the evaluation of the 
finished tool (see next section). The data were flowing to the tool i n 5s segments. Results 
computed offline -.relative entropy and signal statistics were available as a reference to the 
data computed i n 'real-time'. 

3.2 Long data 

Larger data sets were used for the final evaluation of the tool . The recordings were obtained 
during the patient's routine activities, such as eating, using the phone, or walking around 
the hospital . A l l patients were implanted wi th depth electrodes as part of their pre-surgical 
analysis for the treatment of pharmacoresistant focal epilepsy. Used electrodes were either 
D I X I or A L C I S (diameter = 0.8 m m ; inter-contact distance = 1.5 m m , contact surface 
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area = 5 m m 2 ; contact length = 2 m m ) . The acquired i E E G was low-pass filtered and 
down-sampled from 25 k H z to 1,000 H z for subsequent storage and analysis. The used 
recording reference was the average of a l l intracranial signals. 

3.2.1 Pat i ent 95 

The data set of patient 95 consisted of 172 channels and was —13 hours long. Channels P'6 
and P'7 were labeled as pathological by a neurologist, while channels P ' l to P'9 were a l l 
exerting signs of epileptogenic act ivi ty based on the values of relative entropy and detected 
H F O computed during the offline procedure. For the evaluation, real-time computed data 
were pulled out of the database and separated into a segment of 30 m i n length. Channels 
without offline computed reference results were excluded from the assessment. Furthermore, 
channels that were out of the patient's head during the recording were excluded as well. 

3.2.2 A d d i t i o n a l pat ients 

The tests described in chapter 6 were performed on two addi t ional patients. The results of 
those patients are available i n appendix A . 

Patient 83 

The data set of patient 83 consisted of 165 channels and was ~5 hours long. Channels L I 
and L 2 were labeled as pathological by neurologists. Channels without offline computed 
reference results were excluded from the assessment. The relaxed i E E G of patient 83 
without seizures is shown i n figure 3.1. i E E G wi th an ongoing seizure on channels L 2 and 
L 3 f from the same patient is displayed i n figure 3.2. 

Patient 79 

This data set was recorded wi th a 68-channel research i E E G acquisit ion system and the 
recording was ~4hours long. Channels B ' l , B ' 2 , and B ' 3 were labeled as pathological by 
neurologists. Channels without offline computed reference results were excluded from the 
assessment. 
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Figure 3.1: A 30 s (axis x) of seizure-free i E E G record from patient 83. A x i s y displays 
i E E G channels. 

Figure 3.2: A 30 s (axis x) i E E G record w i t h captured seizure from patient 83. A x i s y 
displays i E E G channels. Seizure is visible on channels L 2 and L 3 (red oval ). 
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Chapter 4 

Tools and algorithms 

This chapter describes the three libraries, on which the whole project is based, together 
w i t h some other tools used for the implementation. 

4.1 Epycom library 

W h e n I first started collaborat ing wi th B M E I C R C at St. Anne 's Universi ty Hospi ta l i n 
Brno , I joined the work on the python l ibrary named E p y c o m 1 - E lec t roPhYsio logy C o m ­
putat ional Module , which was buil t considering novel approaches towards localizat ion of 
epileptogenic tissues combined wi th the t radi t ional methods and algorithms. It implements 
many of the promising i E E G biomarkers, such as phase-amplitude coupling [1]. Overal l , 
the package provides tools for the computat ion of various features of i E E G signals that can 
be further analyzed by artif icial intelligence or evaluated by physicians. 

E p y c o m consists mainly of the three types of functions - univariate, bivariate and event 
detection. The main differentiators between them are the input, output and nature of the 
computation, which make a given function to fall into a part icular category. 

4.1.1 U n i v a r i a t e funct ions 

These functions take as an input t ime series from a single channel and are usually returning 
a single float value. A s an example, we can mention the function for computing mean 
vector length ( M V L ) , which returns a value assessing the strength of the cross-frequency 
coupling. I chose to describe this a lgori thm here because I implemented it as a part of 
E p y c o m l ibrary prior to the start of this project. M V L is computed by averaging complex 
numbers obtained from combining phase and ampli tude extracted from different frequencies 
of an analytic signal. A n a l y t i c signal is a complex-valued function that consists of the 
original function as the real part and its Hi lber t transform as the imaginary pa r t 2 . Hi lber t 
transform can be understood as a phase shift of every frequency component of a function 
by + ^ for negative frequencies and by — ^ for positive frequencies 3. Therefore, the analytic 
signal of x[t] can be mathematicaly wri t ten as: 

Xa(t) = x(t) +i —± *x(t) 
lirt 

x

https: //gitlab.com/icrc-bme/epycom 
2

https: //en.wikipedia.org/wiki/Analytic_signal 
3

https: //en.wikipedia.org/wiki/Hilbert_transform 
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where TTt x(t) 

amplitude from 

is the Hi lber t transform and sign * means convolution. Ex t rac t ing the 

ligh-frequency filtered analytic signal and phase from the low-frequency 
filtered analyt ic signal, we can compute mean vector length in the discrete domain as: 

MVL E n=l anc. i0„ 

III 

m is here the total number of data samples, an is an ampli tude extracted from high-
frequency filtered analytic signal at data point n and 9n is phase extracted from low-
frequency filtered analytic signal at data point n. Complex numbers represent vectors in 
a polar plane. The result is a mean vector, whose length resembles the amount of phase-
amplitude coupling. If there is no phase-amplitude coupling present, a l l vectors cancel 
out and the mean vector w i l l be short, otherwise the vector w i l l be of a significant length 
(figure 4.1). 
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Figure 4.1: I l lustrat ion of mean vector length method used to asses phase-amplitude cou­
pl ing of the signal [13]. Signal, w i th no coupling is displayed on the left, signal w i t h high 
degree of coupling displayed on the right. 

4.1.2 B i v a r i a t e funct ions 

Functions from the Bivariate category take as input signals from the two adjacent channels 
and compute relationships between them. A n example from this category can be function 
for computing relative entropy ( R E N ) between the two signals. Th is function was also used 
as a reference function for the evaluation of computations of our real-time E E G processing 
tool . Relat ive entropy is computed as a Kul lback-Le ib le r ( K L ) divergence of two input sig­
nals. In theory, K L divergence is computed from two probabi l i ty distr ibutions. If p(x) and 
q(x) are the probabil i ty distributions of a random variable x, K L divergence is computed as: 

DKL(p(x)\\q(x)) = ^ p ( x ) l n 

In the E p y c o m function compute_relative_entropy() , histograms hi and h2 are created 
to represent probabi l i ty dis t r ibut ion of each of the two input signals across 10 equally wide 
bins. In the next step, K L divergence of the histograms is computed from both sides (hi 
wi th respect to h2, and h2 w i th respect to hi). The higher estimated entropy is returned. 
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4.1.3 E v e n t s 

Functions performing the event detection are the most complex. Two types of events are 
implemented in E p y c o m - spikes and HFOs. They are the most commonly used epilepsy 
biomarkers, both are discussed i n Chapter 2. Several algorithms for detecting H F O s are 
implemented here, as well as the function for detecting spikes. The input is a single sig­
nal, whereas the output is a tuple of several values containing information about the given 
event, such as event start, event stop, duration, low and high frequencies, etc. Output in ­
formation may vary wi th the used algori thm. F r o m this category, we used implementat ion 
of an algori thm for detecting H F O s , referred to as C S (Cimbalnik-Stead) detector [3] for 
val idat ion of our real-time processing tool . Th is a lgor i thm was designed wi th to respect to 
efficiency to be suitable for real-time processing. Exp la in ing i n details is beyond the scope 
of this thesis, but interested reader can read more i n [3]. 

4.1.4 O r g a n i z a t i o n of l i b r a r y 

Each epycom function is wrapped in a class of the same name, inheri t ing from the class 
Method implemented i n this library. Th is class stores metadata about the part icular func­
t ion, such as algorithm, algorithm_type, or version. Moreover, class Method is imple­
menting methods for running the E p y c o m function stored as its class variable or running the 
given function using a sl iding window, where the analyzed signal is divided into windows of 
a given size. The latter method, named run_windowed() is also used in the implementat ion 
of EpycomNode i n the Mepior l ibrary discussed further. 

In this thesis, we were dealing wi th the challenge of the E E G signals delivery into 
the interface, where mult iple functions from the E p y c o m l ibrary can be applied to the 
data at the same time. We created an infrastructure that works wi th signals in real-time, 
computes their parameters and epileptic markers (using E p y c o m l ibrary) , and stores them 
in a database, from which they can be further extracted and processed. After the tool 
is tested and evaluated, a server-based database w i l l be used for storing the data. Bu t 
during the t ime of developing a tool for real-time signal processing, we were sending the 
data to a local ly created database. The details about the storing of data are described i n 
the Implementation section of Chapter 5.3. 

4.2 Pyacq 

The foundation of our project is P y a c q 4 - a python l ibrary implementing an A P I for the 
processing of data streams. It provides an interface consisting of several types of nodes, 
al lowing to bu i ld data processing pipelines. Nodes can interact w i th devices, generate data, 
store data, perform computations, or display user interfaces and send the data further i n a 
form of the output stream. E a c h node can have mult iple inputs and outputs connected to 
the other nodes. 

The l ibrary is buil t i n an object-oriented way, where each node is implemented as an 
ind iv idua l class inheri t ing from the abstract class Node. This class contains methods com­
mon for a l l the nodes, such as configure(), i n i t i a l i z e ( ) , s t a r t ( ) , or stopO, which 
are reimplemented by the subclass based on its specification. The Node class has also prop­
erties input and output, which are instances of classes InputStream and OutputStream 

4

https: //github.com/pyacq/pyacq 
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and both are instantiated when a part icular node is created. They allow nodes (which may 
exist on different threads, processes, or machines) to send and receive data to and from 
other nodes. Schema of data flow in one instance of a node is displayed i n figure 4.2. 

-input- Node -output-

polls sends 

Thread 
processes data 

Figure 4.2: Schema of relationships between the ind iv idua P y a c q classes 

Most of the nodes create their own thread, stored as their class variable, instantiated 
when a method i n i t i a l i z e () is called from an instance of a node. The thread is an instance 
of a class implemented exclusively as a thread for the given type of node. Thread classes are 
usually inheri t ing from the another abstract class ThreadPollInput. The purpose of node 
thread is pol l ing an InputStream associated to that node i n the background and emit t ing 
a signal when data is received. ThreadPollInput contains method process_data() that 
is called from the pol l ing thread when a new data chunk has been received. B y default, 
this method only emits the signal new_data w i th the updated stream posit ion, but most 
of the t ime it is overridden and data are being processed here and sent further. Figure 4.3 
illustrates example of class diagram for node ChunkResizer w i th selected parameters and 
methods. 

D a t a between nodes are transported through zmq.PUB sockets either directly or v ia 
shared memory when only the index of a current frame is sent in the socket 5 . The great 
advantage of pyacq lies i n the abi l i ty to use several C P U s as well as remote machines and 
process data i n parallel . The l ibrary implements tools for managing mult iple processes 
through the class Manager. Single process, that consist of a group of nodes (gathered in 
the object named NodeGroup), can be assigned to a remote machine that is running a host 
server 6 . It can significantly speed up the computations that are mutual ly independent and 
allows us to shorten the t ime needed for data processing. 

Our project has been ini t ia ted by forking a P y a c q repository and bui ld ing upon it our 
own infrastructure for processing E E G data wi th the functions from E p y c o m library. 

5

https: //pyacq.readthedocs.io/en/latest/apiref/core.html 
6

https: //pyacq.readthedocs.io/en/latest/manager.html 
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<<Node» 

-Hnput: InputStream 

+name: str 

+output: OutputStream 

+close() 

+configure() 

+initialize() 

+running() 

+start() 

+stop() 

Chunkres izer 

+chunksize: int 

+nb_channel:irit 

+output_channels: list 

+thread: ThreadChunkRf 

+after_input_conriect() 

<<ThreadPolllnput>> 

•+input_stream: InputStream 

+return_data: bool 

•running: bool 

+timeout: int 

+pos() 

+process_data() 

+run() 

+stop() 
A 

1 
ThreadChunkRes i ze r 

+chunksize: int 

+output_stream: OutputStt 

ThreadPo l lOutpu t +chunksize: int 

+output_stream: OutputStt +instream: InputStream 

+process_data() +process_data() 

Ou tpu tS t ream 

+configured: bool 

+connected: bool 

+interface: str 

+node: Node 

+params: list 

+port: str 

+protocol: str 

+socket 

+transfermode: str 

+close() 

+connect() 

+configure() 

+get_data() 

+send{) 

Figure 4.3: Reverse-engineered class diagram of an example P y a c q node ChunkResizer. 

Classes InputStream and OutputStream are fully dependent on the node, that instantiates 

them and stores them as its parameters. O n contrary, there is a weak reference between the 

streams and ThreadChunkR.es izer class which means that this reference is not enough to 

keep the streams alive (even though they are stored as ThreadChunkResizer parameters), 

unless there is other remaining reference (in this case reference to the node). O n l y selected 

methods and parameters are displayed on the diagram. 

InputSt ream 

+configured: bool 

+connected: bool 

+node: Node 

+params: list 

+socket 

+close() 

+connect() 

+get_data 

+recv() 
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4.3 Mepior 

B y modifying the P y a c q l ibrary we created a new l ibrary called Mepior . The nodes not 
needed for the E E G processing infrastructure were left out, while new nodes have been 
implemented. These nodes include: 

• EpycomNode exclusively for applying E p y c o m functions on the incoming data stream 

• SQLitePusher node for pushing the data into the database 

• EasysSocket node for establishing a connection throughout a B S D Socket w i th the 
external data stream (using python l ibrary socket

7

) 

Each of these nodes, same as the native pyacq nodes, is implemented as a class inheri t ing 
from the abstract class Node. The operation for which a part icular node is responsible (for 
example, sending data into the database) is conducted wi th in a node thread, a class variable 
belonging to that node. Th is mechanism is described in details in section 4.2. 

This l ibrary was used and specifically designed for bui ld ing a pipeline that would satisfy 
the requirements for real-time E E G processing. 

4.4 Signal filtering 

P y a c q implements node OverlapFiltf i l t that allows filtering of the incoming signal 
chunks. This node implements the forward-backward method using a second-order (sos) 
coefficient and a sl iding, overlapping window. Node applies externally provided sos coef­
ficients on incoming data chunks using scipy.signal function s o s f i l t

8

. Th is function 
implements series of second-order filters w i th transposed direct form 2. One series are 
computed as: 

Here, the a\, a2, bo, b\ and b2 are the supplied coefficients, x is the raw signal and y is 
the new filtered signal. F low diagram of this filter is displayed i n figure 4.4. 

The forward-backward method applies the filter twice. Fi rs t , the filter is applied to the 
signal (in our case chunk of the signal), then the result is reversed, the filter is applied for 
the second time, and the result is reversed again. The reason for doing this is a zero phase 
shift in the filtered signal. 

In our pipeline, we used the 3rd order But te rwor th bandpass filter for computing the 
coefficients using scipy.signal function butter

1 0

. A l t h o u g h the signal filtering plays a 
significant role i n the i E E G processing and thus i n our pipeline as well, dur ing the tool 
evaluation, filtering node was omit ted. This way, we wanted to avoid the possibil i ty of 
inaccurate computations caused by the differences between the filtered signals and focus 

T

https: //docs.python.org/3/library/socket.html 
8

https: //docs, scipy.org/doc/scipy/reference/generated/scipy.s ignal. sosfilt .html 
9

https: //en.wikipedia.org/wiki/Digital_biquad_filter 
1 0

https: //docs.scipy.org/doc/scipy/ref erence/generated/scipy.signal.butter.html 

y[n] 

si[n] 

s2[n] 

b0x[n] +si[n- 1], 

s2[n - 1] + b\x[n] - aiy[n] 

b2x[n] - a2y[n], 
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• y [ n ] 

Figure 4.4: F l o w diagram of the transposed direct form 2 of the second-order series filter 
used i n the filtering node 9 

more on computing i E E G biomarkers. Therefore, we used computations from the unfiltered 
signal as a reference. Moreover, some E p y c o m methods implement their filters or require 
signal filtered i n part icular frequency bands, and the topic of future work w i l l be to i m ­
plement a robust solution for the signal filtering, that would work for a l l of the E p y c o m 
functions universally. 
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Chapter 5 

Implementation 

Before the actual computat ion of the E E G features, signal has to be divided into chunks 
and filtered to extract the features that reflect different electrophysiological phenomena 
occurring i n the brain. There is also a question of how and where to store a big amount 
of computed data. A l l of these aspects have been taken into account while designing the 
architecture of our real-time E E G processing tool . 

The project is implemented in PythonS
1

, w i th the use of some addi t ional tools, that are 
exceeding this language (such as S Q L engine). 

5.1 What was working 

A s previously mentioned, my colleagues had ini t ia ted the project before the start of my 
contract, but the project was later postponed unt i l we re-opened it again as my next work 
assignment. Nevertheless, many things were implemented during the in i t ia t ion phase. For 
the first couple of months, I had to study current architecture and proposed solutions. That 
required reading the pyacq documentation and understanding the principles of its classes. 
Mepior library, described i n the previous chapter, was implemented by Jan Cimba ln ik to a 
great extent, al though class EpycomNode was not yet adjusted for processing various types 
of the E p y c o m functions, same as class SqlitePusher, which is responsible for storing 
computed data into the database. A program wri t ten i n C , named Easys EEG Data Server 
(eeds), was used to simulate a live data stream. It allows sending parts of an E E G recording 
specified i n a configuration file as U D P packets, which are received by the first node from 
the class EasysSocket. Th is program was configured to send packets of 5000 samples for 
each of 150 channels from the reference file on localhost. J an Cimba ln ik also implemented 
a prototype of a script w i th basic architecture of a real-time signal processing tool i n a 
sample script which was used as a baseline for my implementation. T h i s architecture is 
sketched i n Figure 5.1 which also describes the flow of data throughout the pipeline. Such 
architecture remains very flexible when it comes to adding or removing nodes (for example, 
we can insert a node from class MefRecorder after the filtering node for capturing the 
filtered signal into the .mefd file or visualize the filtered signal through the node from the 
class QOscilloscope). 

The data are flowing i n the form of OutputStream, which is a class implemented in 
the original pyacq library. The detailed description of the input and output stream can be 
found in the section 4.2 of Chapter 4. 

1

https: //www.python.org/ 
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5.2 Architecture 

Our pipeline consists of mult iple nodes as discussed i n the previous sections. The process of 
creating and in i t ia t ing node is similar for a l l cases. F i r s t , an instance of a part icular node 
class is created. Then node. conf igure () function is called wi th parameters specific for the 
given type of node (for example, for ChunkResizer a chunksize is passed as a parameter). 
If the node input is supposed to be connected to the output of different node, it is ensured 
by cal l ing node. input. connect () function on the instance of that node passing the second 
node output as a parameter. The output of this node has to be configured as well . Tha t is 
done by call ing function node. output. conf igure () specifying protocol and interface used 
for sending the data from it in the parameters. Final ly , node thread is created by call ing 
node. i n i t i a l i z e ( ) . Thus, instantiat ing and configuring node can look like this: 

# Chunk resizer node 

chunkresizer = ChunkResizer() 

chunkresizer.configure(chunksize=50000) 

chunkresizer.input.connect(dev.output) # connect to the output of node dev 

chunkresizer. output. configure ( p r o t o c o l ^ t c p
1

 , interf ace=' 1 2 7 . 0 . 0 . 1 ' ) 
chunkresizer.initialize() 

Schema of the pipeline is displayed in figure 5.1. A l l nodes are configured to use T C P proto­
col and send the output to localhost interface. The first node is an instance of EasysSocket, 
which is responsible for catching the incoming signal from an external source and sending 
it further to the instance of a class ChunkResizer, which takes a multi-channel input signal 
stream and ensures that the output is the same packet w i th the length of a chunksize. Next , 
the data flows into the O v e r l a p F i l t F i l t node which applies the filter on incoming chunks. 
After that, output of filtering node can be connected to the input of various nodes com­
put ing i E E G biomarkers (instance of class EpycomNode). Throughout the development, we 
used only three such nodes, each carrying an E p y c o m function of one category. Ideally, most 
of the E p y c o m functions w i l l be used in practice, but it is not necessary to implement them 
al l for the prototyping and evaluation. Because i f the representative of the part icular cate­
gory proves to be accurate i n comparison w i t h the reference offline computations, we may 
safely assume that the rest of the functions from the same category w i l l also be accurate. 
Tha t is because the implementation of E p y c o m function remains the same and our ma in 
concerns which may affect the results i n real-time processing are phase shift and packet loss. 
A s a representative of univariate category, function SignalStats was used (function com­
putes simple statistic about the incoming signal, such as mean amplitude, m a x i m u m and 
m i n i m u m amplitude, etc.), from bivariate category function RelativeEntropy was used 
and for event computing we selected function CSdetector (functions Rela t iveEntropy and 
CSdetector are described i n details i n chapter 4.1). E a c h of the E p y c o m nodes is connected 
w i t h its output to the instance of class SqlitePusher. Th is class sends the incoming data 
to the database (details described in the following section). 

5.3 Data storing 

Initially, the output data was stored in a local database file. D a t a saving was imple­
mented wi th the use of python l ibrary sqlalenemy 2 , which creates a S Q L i t e engine, and 

2

https : //www.sqlalchemy.org/ 
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signal v í device 
' \ socket -^{ filter 

EpycomNode 

,1 L 

Figure 5.1: Archi tecture of the protype pipeline for real-time E E G processing. Blue nodes 
are from the original P y a c q library, green nodes are implemented i n the Mepior library. 

pandas.DataFrame3, a class that enables pushing its data into the S Q L database. The ta­
bles w i th the computed features are created and filled by the respective node from the class 
SqlitePusher. Each EpycomNode output stream is assigned to a separate SqlitePusher 
node, which stores the data flowing from it into the table exclusive to the given E p y c o m 
function. Add i t iona l ly to the tables w i th computed features, the database contains tables 
wi th data about the functions, channels, algorithms, etc. E R diagram of these tables is in 
the figure 5.2. 

This solution is sufficient for evaluating the performance and functionality of the tool , 
yet for pract ical implementation, a different database must be used. The database server 
of F N U S A I C R C has been developed in parallel w i th this project by J á n Címbá ln ík , and 
in the future, it w i l l serve as a proper data storage for the computed data. 

3

https: //pandas .pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html 
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channel 
PK :l BIGINT 

channel_name TEXT 
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FK3 
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low_fc BIGINT 
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Figure 5.2: E R diagram of the tables w i th addi t ional data other than those which have been computed by EpycomNodes i n the temporary 
local database used during the development. Tables w i th computed features are not present on this diagram. 



5.4 M y work 

5.4.1 Class EpycomNode 

The purpose of this node is to apply the E p y c o m l ibrary to an incoming input data stream. 
A s discussed previously, E p y c o m function may fall into one of three categories-univariate, 
bivariate, or event. EpycomNode has also its thread -EpycomNodeThread and E p y c o m func­
t ion is applied wi th in the thread method process_data(). I implemented this method, 
so it applies E p y c o m function based on its type throughout a l l the channels, concatenates 
results into one array and sends it further. A s the function loops through the channels, the 
input data w i th the shape of buffer size * number of channels at the given channel index are 
passed to the E p y c o m function in the case of event or univariate E p y c o m function. W h e n 
it comes to bivariate functions, data from neighbouring channels (channels at index i and 
i + 1) are passed to the function. The algori thm for main part of method process_data() 
could be wri t ten i n pseudocode as: 

for channelldx in channels do 
if methodType is 'bivariate1 then 

if channelldx is last(channels) then 
result = 

epycomFunction(dataAt(channelIdx), dataAt(first(channels))) 
else 

result = 
epycomFunction(dataAt(channelIdx), dataAt(channelIdx + 1)) 

else 
result = epycomFunction(dataAt(channelIdx)) 

append result to allResults 
send allResults to output 

The channel names are stored as the class variable of InputStream connected to the 
EpycomNode. EpycomNode has to be instantiated and configured wi th the appropriate Epy­
com function parameters, for example as: 

# Epycom node parameters 

from epycom.univariate import SignalStats 

sigStatsParams = EpycomNodeParams( compute_class=SignalStats, 

win_size=5000, 

epycom_module='epycom.univariate', 

epycom_class='SignalStats', 

db_table='signal_stats') 

# Epycom node 

proc = EpycomNode(**sigStatsParams.get_node_params()) 

proc.configure(sigStatsParams.win_size) 

proc.input.connect(chunkresizer.output) 

proc.input.set_buffer(sigStatsParams.win_size) 

proc. output. configure ( p r o t o c o l ^ tcp', interf a.ce=' 1 2 7 . 0 . 0 . 1 ' ) 
p r o c . i n i t i a l i z e ( ) 
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5.4.2 Class SQLitePusher 

SQLi tePusher is responsible for sending the data from its input stream into the database, 
whereas the input stream of this class is connected to the output stream of the class 
EpycomNode . D a t a are being processed and stored i n database again from methode 
process_data() belonging to the class ThreadPush. S imi lar to the EpycomNode , I imple­
mented different ways of storing the data, depending on the type of E p y c o m node function, 
which is a variable of the input stream. Different E E G features require different informa­
t ion about their data to be stored. Besides the nature of the computed data, the table of 
the bivariate function contains columns for indexes of two channels. Event and univariate 
tables have a column w i t h only one channel. A t the same t ime, tables of event functions 
comprise addi t ional columns event_start and event_stop w i th the t ime of the beginning 
and end of the computed event. The mechanism of storing the data in the database is: first 
converting data from the input stream into the pandas.DataFrame4, then adjusting the 
data frame to the requirements of E p y c o m function type, and last sending the data into 
the database by applying function to_sql() on a given data frame. In order to do that, 
S Q L engine must be created wi th in the thread. The ma in part of the a lgori thm could be 
wri t ten in pseudocode as: 

if methodType is not 'event' then 
throw away 'event_start ' , 'event_stop' from inputData 
if methodType is 'bivariate' then 

map channels to inputData(channelldl) 
map (rotate channels by +1) to inputData(channelId2) 

else 
map channels to inputData(channelld) 

send inputData to DB 

4
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5.4.3 P i p e l i n e i m p l e m e n t a t i o n 

The prototype of a pipeline (displayed in figure 5.1) was par t ia l ly implemented by Jan 
Cimbaln ik . I finished the implementat ion of the testing pipeline script by implementing 
the function create_tables() and by implementing the three E p y c o m nodes, each for a 
function of one of the categories. Funct ion create_dables () creates in i t i a l tables described 
in figure 5.2. Table relationships and data consistency is handled manual ly i n this func­
t ion, since sqlalchemy and pandas don't implement advanced database operations (after 
connecting the tool to proper F N U S A database, manual handling w i l l not be needed). 

After the testing pipeline was functional, I implemented a distr ibuted p i p e l i n e - a high-
level implementat ion for running the original pipeline across mult iple processes and possibly 
using several machines at a t ime. Here, the non-working prototype of the script was done 
already by Jan Cimbaln ik ; I brought it into operation and adjusted according to the testing 
pipeline. Schema of the distr ibuted pipeline is shown i n figure 5.3. 

Manager 
manges distributed 
processes 

Figure 5.3: Archi tecture of the pipeline dis tr ibuted across mult iple processes (possibly 
machines). The central point is the Manager, that is taking care of distr ibuted processes 
- NodeGroups (symbolized by red squares). NodeGroup can manage several nodes wi th in 
a single process. Nodes are created wi th in a part icular NodeGroup , to which they belong. 
The instantiat ing of node is otherwise the same as in local , single-process implementation. 
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Chapter 6 

Testing 

To appropriately evaluate our tool , we asked four questions: 

Question 1 Does our tool process the data the same way as when they are processed offline? 

Question 2 Is the tool robust enough to process long-term signals'? 

Question 3 Does the tool achieve similar performance as the reference 30 min. relaxed-
state recording? 

Question 4 Does the ability to localize SOZ using biomarkers changes over time and can 
it outperform referential recording in some segments? 

Results of patient 95 recording have been used to evaluate questions 3 and 4 i n this 
chapter. Results calculated from recordings of patient 83 and 79 are available i n the ap­
pendix A . 

6.1 Methods 

Q u e s t i o n 1 

Does our tool process the data same way as when they are processed offline? 

A short, ~ 3 0 m i n recording (described in 3.1) was processed, and the results were used to 
answer the first question. D a t a from 122 of 150 channels were selected for the evaluation 
(reference and noisy channels were omitted). Reference results were available for E p y c o m 
functions RelativeEntropy and SignalStats. The latter computes simple statistics about 
the signal, such as standard deviation of signal power, m a x i m u m power of the signal, or 
mean power of the signal. A mean value of each of these statistics, along wi th the relative 
entropy, was computed for every channel i n both reference and newly computed datasets. 
The newly created datasets were then analyt ical ly compared. 

The paired Student's t-test1 was computed for the pairs of reference and newly calculated 
results. The t-test can be used to estimate whether the means of two sets of data are different 
from each other. The formula for computing statistics t between two datasets w i t h the same 
number of samples n is: 

x
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where X p is the average of the differences between a l l pairs and s u is the standard deviation 
of the differences. After the t value is computed, a p-value can be found in the table of 
values from the Student's t -dis tr ibut ion based on the estimated degrees of freedom (equal 
to n — 1). 

If the reference and online computed datasets differed significantly, it would mean that 
the tool is not processing data the same way as when they are processed offline. Func­
t ion scipy. stats . t t e s t _ r e l

2

 was used for estimating the statist ical significance. To test 
whether the results of our too l are significantly different from offline processing we chose 
the commonly used alpha level 5%. The function calculates t-statistic for two paired sets 
of data w i th the same number of samples together w i th the p-value. If the p-value is above 
0.05, the two datasets are not differing wi th a statist ical significance. 

Question 2 

Is the tool robust enough for processing long-term signals? 

The tool was tested on processing datasets from three patients flowing into it in a simulated 
real-time environment. Each of these datasets was several hours long, w i th the longest 
(patient 95) having about 13 hours. Such input signals may be noisy, contain extreme values 
or contain signals w i th dropped samples. Therefore, there was a risk of error occurrence 
during their processing. The tool allows for specifying sampling frequency and length of time 
windows i n a number of samples passed into an E p y c o m function, which also determines an 
overall number of results i n the database. Different values of these parameters were applied 
during the tests. We also tested processing large amounts of data when one of the datasets 
was sent repeatedly in a loop for several days. 

Q u e s t i o n 3 

Does the tool achieve similar performance as the referential 30 min . relaxed-
state recording? 

The long-term recordings are currently not being processed i n F N U S A because of the 
technical demands. The i E E G epileptic biomarkers are derived from 30 m i n recordings 
when the patient is ly ing relaxed i n bed. Th is approach has the advantage of el iminat ing 
movement artifacts, but such a strategy may not be sufficient since the latest research 
suggests the existence of cycles of epileptogenic act ivi ty in the brain [18]. There is a risk that 
the chosen t ime window for relaxed recording w i l l fall into the period when the patient's 
brain shows only slight signs of epileptogenic activity. The assumption of epileptogenic 
cycles is further discussed and verified as a part of answering the questing 6.1. 

After the processing of long recordings, results were pulled from the database. The 
following i E E G biomarkers were evaluated: 

Relative entropy 

The data in i t ia l ly stored in the database i n 1 s t ime windows were divided into 30 m i n long 
segments (there were altogether 25 segments). 

One segment thus consisted of 1800 windows. 152 pairs of channels were selected for the 
evaluation. The average R E N was calculated for each of the pairs throughout a l l segments. 
Tha t gave, i n the end, 25x152 data rows. 

2
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H F O 

H F O waere detected on 10 s long t ime windows. Obta ined data were again divided into 
3 0 m i n segments. One t ime segment, therefore, consisted of 180 windows from the database. 
H F O occurrence is not distr ibuted evenly among the channels. In theory, pathological 
channels should exert more H F O act ivi ty than non-pathological ones. O n l y H F O wi th in 
frequency band 80 — 250 Hz (also referred to as ripples) were chosen for the test because 
the lower frequencies are not considered epileptogenic and wi th higher frequencies, there is 
a risk of viola t ion of the Nyquis t theorem for the sampling frequency of 1000 H z . 161 out of 
172 channels were selected for evaluation. H F O were counted for each channel throughout 
a l l the segments. 

Statistical evaluation 

Channels P ' 6 and P ' 7 were labeled as pathological by the neurologist. The receiver oper­
at ing characteristic ( R O C ) was computed for reference results, the as well as for indiv idual 
segments. R O C curve illustrates the diagnostic abi l i ty of a binary classifier system at differ­
ent threshold settings 3 . The graph is created by plot t ing the true positive rate ( T P R ) of the 
confusion matr ix on the y-axis and the false positive rate ( F P R ) on the x-axis, computed 
as: 

T P R and F P R were computed by function 
sklearn.metrics .roc_curve

4

. The function takes binary labels as the first argument and 
target scores as the second, returning F P R , T P R , and calculated thresholds. In our case, 
labels of ind iv idua l channels (1 -pa tho log ica l channel; 0 - non-pathological channel) were 
passed as the first argument, and the mean R E N s , or the number of detected H F O i n a 
given segment, were passed to the function as scores. Besides computing R O C for each 
t ime segment, an average R O C curve was computed from R O C curves of ind iv idua l 3 0 m i n 
t ime segments. 

The area under the curve ( A U C ) can be computed to represent R O C by a single number, 
which allows to statist ically estimate the difference between the part icular R O C curves. For 
calculating A U C , function sklearn.metrics.auc

5

 was used. The function takes previously 
computed F P R and T P R and returns the area under the R O C curve. A U C of the R O C of 
each segment was computed, the as well as of the reference R O C . In the next two steps 

(a) The mean R O C curve was statist ically compared to the reference R O C curve 

(b) Individual R O C curves were statist ically compared to the reference R O C curve 

Hanley-McNeil test [11] can estimate, whether the part icular R O C curves are statisti­
cally different. It is computed as [10]: 

TPR = 
TruePositive 

FPR = 
FalsePositive 

TruePositive + FalseNegative FalsePositive + TrueNegative 

Al - A 2 

z = 

3

https: //en.wikipedia.org/wiki/Receiver_operating_characteristic 
4

https : //scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html 
5

https: //s cikit-learn.org/ stable/modules/generated/ sklearn.metrics.auc.html 
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where A\ and A2 represent values of A U C for the two compared R O C curves and SE\ 
wi th SE2 are the standard errors of the compared curves. The standard error of A U C is 
computed as: 

SE{A) = 
U ( l -A) + (nP - l)(Qx - A*) + (nN - 1)(Q 2 - A*) 

npnN 

where np is number of samples (in our case channels) labeled as positive, TIN is number of 
samples labeled as negative, A represents A U C and 

o - A • o - 2 A " 

Q u e s t i o n 4 

Does the abi l i ty to localize S O Z using biomarkers changes over t ime and can 
it outperform referential recording i n some segments? 

This question follows up the previous one, since the calculated statistics can te l l i f the results 
are varying throughout the t ime segments. To better visualize the differences between 
channels labeled as pathological and channels labeled as non-pathological, boxplot graph 
was used. 

Outliers 

Interquart i le Range 
(IQR) 

I 
"M in imum" 

(Ql - 1.5*IQR) 

Outl iers 

Median g ^ 

(25th Percentile) (75th Percentile) 

1 * * 

"Max imum" 
(Q3 + 1.5*IQR) 

-4 -3 -2 -1 

Figure 6.1: B o x p l o t 6 . The min imum is displayed i n the graph as the first line of a left 
whisker. The left edge of the box is the first quartile. The right edge of the box is the th i rd 
quartile. The line at the end of the right whisker is max imum. 

A boxplot is a way of visual izing the dis t r ibut ion of the data wi th in a five numbers 
summary 6 . The numbers are respectively: m i n i m u m (not the smallest number), first quar­
t i l e - t h e middle number between the smallest number and the median, median, th i rd quar­
t i l e - the middle value between the median and the highest value and m a x i m u m (not the 
highest number). Figure 6.1 shows an i l lustrat ion of the boxplot. 

6

https: //towardsdatascience.com/understanding-boxplots-5e2df7bcbd51 
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6.2 Results 

Q u e s t i o n 1 

Does our tool process the data same way as when they are processed offline? 

The p-value of the difference between reference and online computed R E N was 0.90, whereas 
the p-values of mean signal power, a standard deviation of signal power, and maximum signal 
power were a l l close to 1 by < 0.0001. 

real- t ime computed 
reference 

60 
Channel ID 

Figure 6.2: A n average value of entropy per channel. Smal l differences between the datasets 
could be caused by possible packet loss or phase shift of incoming signal. 

Q u e s t i o n 2 

Is the tool robust enough for processing long-term signals? 

N o crashes or other unexpected behavior was observed during the processing of long term 
signal. The tool performed well even after processing amounts of data for an extended 
period of several days. 

Q u e s t i o n 3 

Does the tool achieve similar performance as the referential 30 min . relaxed-
state recording? 

Difference between mean R O C and refference R O C is not statist ically significant in R E N , 
w i t h p-value = 0.2586. However, reference R O C was significantly bigger for H F O , wi th p-
value < 0.001. R O C curves of ind iv idua l segments were plotted i n a single graph, together 
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wi th R O C computed from the reference segment and mean R O C of a l l segments (figures 6.3 
and 6.4). 

Q u e s t i o n 4 

Does the abi l i ty to localize S O Z using biomarkers changes over t ime and can 
it outperform referential recording i n some segments? 

Change of the A U C values i n t ime is plotted i n figures 6.5 and 6.6 together w i th one 
reference A U C . Differences between values of pathological and non-pathological channels, 
varying throughout the time, are displayed in figures 6.7 and 6.8. Table 6.1 shows p-values 
of statist ical comparison of R O C curves throughout ind iv idua l segments. 

R E N 
segment p-value conclusion 

0 0.43022 equal 
1 0.48739 equal 
2 0.49045 equal 
3 0.49837 equal 
4 0.49286 equal 
5 0.40636 equal 
6 0.42012 equal 
7 0.42012 equal 
8 0.47334 equal 
9 0.49045 equal 
10 0.47909 equal 
11 0.43768 equal 
12 0.48480 equal 
13 0.43154 equal 
14 0.44376 equal 
15 0.41908 equal 
16 0.43768 equal 
17 0.43768 equal 
18 0.46167 equal 
19 0.45576 equal 
20 0.40636 equal 
21 0.45576 equal 
22 0.41521 equal 
23 0.40070 equal 
24 0.37719 equal 

H F O 
segment p-value conclusion 

0 <0.0001 ref. R O C g 'reater 
1 0.1739 equal 
2 0.3330 equal 
3 0.2063 equal 
4 0.2772 equal 
5 0.0009 ref. R O C g 'reater 
6 0.4394 equal 
7 0.3524 equal 
8 0.0002 ref. R O C g 'reater 
9 <0.0001 ref. R O C g 'reater 
10 <0.0001 ref. R O C g 'reater 
11 <0.0001 ref. R O C g 'reater 
12 0.0005 ref. R O C g 'reater 
13 0.0058 ref. R O C g 'reater 
14 <0.0001 ref. R O C g 'reater 
15 <0.0001 ref. R O C g 'reater 
16 <0.0001 ref. R O C g 'reater 
17 <0.0001 ref. R O C g 'reater 
18 0.0001 ref. R O C g 'reater 
19 <0.0001 ref. R O C g 'reater 
20 <0.0001 ref. R O C g 'reater 
21 <0.0001 ref. R O C g 'reater 
22 <0.0001 ref. R O C g 'reater 

Table 6.1: p-values of statist ical comparison between R O C of real-time computed results 
and reference results for R E N and H F O . Note, that there is less H F O segments than R E N 
time segments. Tha t is because the occurrence of H F O is irregular in time. 
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False positive rate 

Figure 6.3: E n t r o p y - R O C curves computed from the data pulled from the database i n 
the pale color, together w i t h R O C curve of offline computed data and mean R O C curve. 

False positive rate 

Figure 6.4: H F O - R O C curves compute from the data pulled from the database i n the 
pale color, together w i th R O C curve of offline computed data and mean R O C curve. 
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Figure 6.5: E n t r o p y - A U C values computed from the data pulled from the database, 
together w i th one reference A U C of offline computed data. 

AUC values throughout time segments 
reference AUC 

10 
T i m e window 

Figure 6.6: H F O - A U C values computed from the data pulled from the database, together 
wi th one reference A U C of offline computed data. 
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Figure 6.7: Entropy -Di f fe rence between values of relative entropy i n pathological and 
non-pathological channels. Out l ier points are not displayed on the graph. 
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Figure 6.8: H F O - Difference between number of detected H F O in pathological and non-
pathological channels. Out l ier points are not displayed on the graph. 
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Chapter 7 

Discussion 

Answering the questions 1 and 2 from the previous Chapter was a straightforward task. We 
have proven that our pipeline processes signals the same way as when they are processed 
offline (question 1). Our tool is robust enough to be used in research and possibly in cl inical 
practice (question 2). Answer ing question 3 was more difficult. W h i l e the mean R O C of real­
t ime computed segments and R O C of reference results are statist ically equal, which implies 
that our tool performs similar ly i n processing long recordings as offline processing of 30 m i n 
relaxed recordings, the mean R O C of H F O was statist ically worse than the reference. It's 
important to point out, that long recordings are much noisier in comparison to the relaxed, 
short recordings since the patient is engaging i n activities like eating, walking, speaking, 
etc. O n the contrary, the patient is solely ly ing on a hospital bed during the making of the 
relaxed recording. W i t h a closer look at the statist ical differences of ind iv idua l segments in 
table 6.1, we can see that H F O i n segments 1, 2, 3, 4, 6, and 7 were, in fact, statist ically 
equal to the reference results {p > 0.05). Th is finding offers an answer to the further 
question 4. Epileptogenic activity, but also artifacts and noise levels, seem to change i n the 
brain over t ime. It can be observed further in the graphs, which are part of question 4. A n 
estimation of the best moment for making a short relaxed recording based on a real-time 
analysis would be of great benefit in c l in ical practice. 

7.1 Summary of work done 

This thesis comes out of a need for the development of new tools i n the field of pharma-
coresistant epilepsy treatment. Patients suffering from this type of epilepsy do not respond 
to common anti-epileptic drugs, and i n most cases, the only way to achieve a seizure-free 
state is resection of epileptogenic bra in tissue. Precise local izat ion of the epileptogenic zone 
(EZ) is therefore essential. A s a part of this procedure, the patient must be implanted wi th 
intracranial E E G electrodes for up to four weeks, wait ing for a seizure occurrence as the 
only way of local izing E Z up to this day. In some cases, even this process is not adequate 
to mark part of the brain for resection (this marked part is also called seizure onset zone, 
or S O Z ) wi th enough confidence to perform the surgery. In such a case, presurgical assess­
ment turns out to be wasteful. Therefore, a lot of effort is put into improving this process. 
The key parameters of this are t ime and accuracy. Th is thesis, made i n cooperation wi th 
F N U S A - I C R C , lays a foundation for solving both mentioned aspects. We implemented a 
tool in P y t h o n that can process an incoming stream of E E G signals and extract desired 
E E G features from it i n real-time. Since evaluating various E E G biomarkers turns out to 
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bring better results in local izing S O Z [4], the precision of this task can be improved using 
our tool i n combination wi th machine learning, or another decision-making algori thm. The 
real-time processing ensures that results are available immediately, and neurologists can 
make decisions right from the operating room during the recording. Unl ike offline pro­
cessing, dur ing the online processing, data are stored i n the database, well-structured for 
further evaluation. O u r tool was tested on data from four patients. Three datasets were 
long recordings lasting for several hours, and one was a 30 m i n relaxed recording. To 
evaluate our tool , we asked four questions. 

Calcula ted results were statist ically compared and plotted i n graphs. In the short 
recording, differences between offline and online computed data were minor (question 1). 
The tool processed a l l the datasets without crashes or other unexpected behavior (ques­
t ion 2). Functions for computing relative entropy and detecting H F O applied to the long 
datasets w i th in our pipeline. To compare wi th offline computations, only 30 m i n offline 
computed relaxed recordings were available as a reference. The results were compared to 
the real-time processed data separated into 30 m i n long time segments. The values of R E N 
after computing R O C were statist ically equal to the reference results from 30 m i n relaxed 
recording. It implies that our tool is suitable for analyzing long-term recordings wi th s imi­
lar performance as the offline analysis of short recordings (question 3). The R O C values of 
H F O were statist ically worse than the reference R O C . Tha t can be caused due to the lower 
quali ty of long-term recordings, which are subject to much bigger noise. The potential ben­
efits of our tool s t i l l exceed its lower performance in H F O detection. Tha t is also because 
of the findings after analyzing statistical differences in the ind iv idua l segments. Despite the 
overall result, our tool performance was similar to the offline analysis in part icular segments 
in H F O detection. Th is suggests the existence of t ime-varying epileptic cycles i n the bra in 
and offers a possibil i ty of improved S O Z localizat ion thanks to this knowledge (question 4). 

A l though there is a lot of ongoing research and development in the domains of E E G s and 
epilepsy around the world, not many insti tutions fully implemented online E E G processing 
yet. Our project can further provide a strong foundation for the further development of bet­
ter localizat ion and seizure prediction mechanisms at St Anne 's Hospi ta l Brno . Moreover, 
thanks to the immediate results, physicians can make decisions to ensure better comfort for 
the patient, right dur ing the E E G capturing. The project can also help wi th the selection 
of the right t ime for the 30 m i n relaxed recording, which can facilitate further localization. 
A l though the tool is fully functional i n its current state, more work has to be put into its 
development i n order to put it into practice. 

7.2 Upcoming work 

Throughout the development we made attempts to test the tool on a live patient simul­
taneously wi th standard recording, but we encountered technical problems wi th the local 
hospital network. Since the recording of E E G takes place on a different network than its 
processing wi th in the F N U S A , and due to the strict pol icy towards the data flowing i n and 
out, it is a problem to get permission for the transmission of the data from one network to 
another. Th is problem has to be solved to put the tool into practice. Furthermore, there is 
s t i l l work to be done to improve our pipeline and further develop its functions. The ma in 
points include: 
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• connecting the tool to the newly created database at B M E F N U S A - I C R C . This goal 
is achievable in a matter of weeks after the thesis submission. 

• to get the most of the potential from the tool , follow-up connection to machine learning 
algorithms w i l l be ensured. Tha t would allow real-time online localization. 

• as described i n section 4.4, we are facing the question of how to approach the signal 
filtering wi th in the pipeline. The opt imal and the most robust solution would be 
applying filters through a specific node, or nodes, as proposed i n the original archi­
tectural design. Tha t would require changes i n the implementat ion of some E p y c o m 
functions which apply filters from wi th in . Other functions, such as M V L , require sig­
nal filtered i n different frequency bands and that also needs to be taken into account. 

• there is also an incentive to create a web interface for visualizing the computed data 
from the database. The interface would include statist ical graphs for easier assessment 
of the data by neurologists. 

• tool could be further opt imized to increase the speed of computing. Us ing opt imizing 
tools, such as Numba

1

 (just i n t ime P y t h o n compiler) to improve the performance w i l l 
be considered 

7.3 Future prospects 

I m p l e m e n t a t i o n of mach ine l earn ing — onl ine loca l izat ion 

W i t h new research and advances in machine learning algorithms, it is possible that pre-
surgical assessment w i l l be fully automatized in the future. Our pipeline presents the perfect 
infrastructure for such a process. Machine learning-based algorithms, that can localize S O Z 
from interictal biomarkers already exist [4]. The t ime needed for signal capturing would 
be much shorter if there is no need to wait for the patient's seizure during his stay i n the 
hospital . A t the same time, machine learning algori thm could evaluate the data i n real-time 
and immediate results from the localizat ion would be available. 

I m p l e m e n t a t i o n of seizure p r e d i c t i o n a lgor i thms 

A bit different direction is the prediction of seizures, which is becoming another hot topic in 
epilepsy research. The mechanism for sending data i n real-time and immediately processing 
them by a machine has been used already for a successful seizure predict ion [7]. O u r tool 
could be used for implementing such a seizure predict ing device at F N U S A . This device 
would warn nurses of oncoming seizures and ensure enough t ime to prevent imminent danger 
to the patient. 

Poss ible i m p l e m e n t a t i o n o n other inst i tut ions 

Thanks to the close cooperation of F N U S A - I C R C wi th other institutes, our pipeline might 
be eventually used i n one of them. This w i l l l ikely happen at Mayo c l i n i c 2 . Several studies 
from the field of epilepsy have been conducted in cooperation wi th these two institutes, 
such as [27] or [28]. 

x

https: //numba.pydata.org/ 
2

https: //www.mayoclinic.org/ 
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U s a g e of the too l for neuroscience 

Understanding the human bra in is relevant not only for the treatment of epilepsy. Th is 
work may find use also i n general research i n the neuroscience field. One of the possible uses 
is implementation as a part of an instant neurofeedback device. Commerc ia l non-invasive 
devices for neurofeedback are already available to the p u b l i c 3 and wi th ongoing research i n 
this the possible use of such devices w i l l widen. 

3

https: //choosemuse.com/ 
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Appendix A 

Results from the ramaining 
patients 

Patient 83 

Channels L I and L 2 were labeled by neurologist as pathological. Refference R O C of R E N 
was significantly greater than mean R O C of real-time computed results w i th p-value= 0.004. 
The mean R O C of H F O was significantly greater than reference R O C (p-value< 0.0001) 
which indicates a better performance of our tool i n this patients H F O evaluation. Results 
for ind iv idua l segments are available i n table A . l . 

R E N 
segment p-value conclusion 

0 0.48766 equal 
1 0.33714 equal 
2 0.37527 equal 
3 0.38222 equal 
4 0.43754 equal 
5 0.40435 equal 
6 0.44667 equal 
7 0.37527 equal 
8 0.30378 equal 
9 0.29859 equal 
10 0.26467 equal 
11 0.44557 equal 

H F O 
segment p-value conclusion 

0 <0.0001 our R O C greater 
1 0.35350 equal 
2 0.13217 equal 
3 0.17359 equal 
4 0.01503 our R O C greater 
5 0.09246 equal 
6 0.02025 our R O C greater 
7 0.00082 our R O C greater 
8 0.09655 equal 
9 0.03009 our R O C greater 
10 0.0573 equal 

Table A . l : p-values of statist ical comparison between R O C of real-time computed results 
and reference results for R E N and H F O . Note, that there is less H F O segments than R E N 
time segments. Tha t is because the occurrence of H F O is irregular i n time. 
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random classif ier 
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0.8 1.0 

Figure A . l : Patient 83 e n t r o p y - R O C curves computed from the data pulled from the 
database in the pale color, together w i th R O C curve of offline computed data and mean 
R O C curve. 

False positive rate 

Figure A . 2 : Patient 83 H F O - R O C curves compute from the data pulled from the 
database in the pale color, together w i th R O C curve of offline computed data and mean 
R O C curve. 
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Figure A . 3 : Patient 83 e n t r o p y - A U C values computed from the data pulled from the 
database, together w i th one reference A U C of offline computed data. 

Figure A.4: Patient 83 H F O - A U C values computed from the data pulled from the 
database, together w i th one reference A U C of offline computed data. 
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Figure A . 5 : Patient 83 entropy -Difference between values of relative entropy i n patho­
logical and non-pathological channels. Out l ier points are not displayed on the graph. 
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Figure A . 6 : Patient 83 H F O - Difference between number of detected H F O in patholog 
ical and non-pathological channels. Out l ier points are not displayed on the graph. 
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Patient 79 
Channels B ' l , B ' 2 and B ' 3 were labeled by neurologist as pathological. Refference R O C 
of R E N was significantly greater than mean R O C of real-time computed results w i th p-
value< 0.0001. Refference R O C was also significantly greater than mean R O C i n H F O 
(p-value< 0.0052). Results for ind iv idua l segments are available in table A . 2 . 

R E N 
segment p-value conclusion 

0 0.06957 equal 
1 0.09702 equal 
2 0.19861 equal 
3 0.04517 ref. R O C greater 
4 0.00350 ref. R O C greater 
5 0.28193 equal 
6 0.36685 equal 
7 0.38582 equal 
8 0.44736 equal 

H F O 
segment p-value conclusion 

0 <0.0001 ref. R O C greater 
1 0.37540 equal 
2 0.42677 equal 
3 0.28971 equal 
4 0.03874 ref. R O C greater 
5 0.07084 equal 
6 <0.0001 ref. R O C greater 
7 <0.0001 ref. R O C greater 

Table A . 2 : p-values of statist ical comparison between R O C of real-time computed results 
and reference results for R E N and H F O . Note, that there is less H F O segments than R E N 
time segments. Tha t is because the occurrence of H F O is irregular i n time. 
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Figure A.7: Patient 79 e n t r o p y - R O C curves computed from the data pulled from the 
database in the pale color, together w i th R O C curve of offline computed data and mean 
R O C curve. 

Figure A . 8 : Patient 79 H F O - R O C curves compute from the data pulled from the 
database in the pale color, together w i th R O C curve of offline computed data and mean 
R O C curve. 
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Figure A . 9 : Patient 79 e n t r o p y - A U C values computed from the data pulled from the 
database, together w i th one reference A U C of offline computed data. 

Figure A . 10: Patient 79 H F O - A U C values computed from the data pulled from the 
database, together w i th one reference A U C of offline computed data. 
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Figure A . 1 1 : Patient 79 entropy -Difference between values of relative entropy i n patho­
logical and non-pathological channels. Out l ier points are not displayed on the graph. 
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Figure A . 1 2 : Patient 79 H F O - Difference between number of detected H F O i n patho­
logical and non-pathological channels. Out l ier points are not displayed on the graph. 
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Appendix B 

Contents of SD card 

• \mepior: 

* \mepior - mepior l ibrary 

* pipeline_single .py - single-process pipeline 

* pipeline_manager .py - distr ibuted pipeline 

• \valuation: 

* valuate.py - script used for evaluation of question 1 from Chapter 6 

* compute_statistics .py - script used for evaluation of questions 2 and 3 from 
Chapter 6 

* get_channel_names.py 

• \eeds - s imulat ion of real-time data flow: 

* \build 

* \src 

* \work - contains configurations files and usage information 

• R E A D M E . m d - contains also instal lat ion guide 
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