
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

USING INFINISPAN AS A BACKEND FOR CDI CON-
TEXTS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ADAM KÖVÁRI
AUTHOR

BRNO 2013

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

POUŽITÍ INFINISPANU PRO IMPLEMENTACI CDI KON-
TEXTU
USING INFINISPAN AS A BACKEND FOR CDI CONTEXTS

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE ADAM KÖVÁRI
AUTHOR

VEDOUCÍ PRÁCE RNDr. MAREK RYCHLÝ, Ph.D.
SUPERVISOR

BRNO 2013

Abstrakt
Tato práce vede čtenáře od vývoje kontextově závislé injekce v Java EE, ukazuje základní
přehled o JSR 299, které se vyvinulo do rámce této specifikace a analyzuje referenční imple-
mentace Weld. V pozdějších částech je vytvořeno CDI rozšíření, které vytváří cluster-wide
scope pomocí Infinispanu jako skladem dat, kterého základní vlastnosti jsou také prozk-
oumána.

Abstract
This thesis guides the reader from the evolution of the Contextual Dependency Injection in
Java EE, shows the basic overview of JSR 299, frameworks that evolved into this specifica-
tion and analyses the reference implementation Weld. In the later parts a CDI extension
that creates a cluster-wide scope is creating using Infinispan as a backend storage, of which
elementary features are also explored.

Klíčová slova
cdi, kontextuální, závislost, injekce, infinispan, nosql, cache, klaster

Keywords
cdi, contextual, dependency, injection, infinispan, nosql, cache, cluster

Citace
Adam Kövári: Using Infinispan as a Backend for CDI Contexts, bakalářská práce, Brno,
FIT VUT v Brně, 2013

Using Infinispan as a Backend for CDI Contexts

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Jozefa Hartingera

. .
Adam Kövári
May 9, 2013

Poděkování
Rád bych poděkoval vedoucímu mé diplomové práce, RNDr. Markovi Rychlému, Ph.D.
stejně tak mému technickému vedoucímu Ing. Jozefovi Hartingerovi za veškerou podporu
a pomoc v průběhu psaní této práce.

c© Adam Kövári, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Contextual Dependency Injection - the Journey to the Java EE 4
2.1 Spring Framework . 4
2.2 javax.inject - JSR 330 . 4
2.3 Seam Framework . 4
2.4 CDI - JSR 299 . 5

3 JSR 299 Overview 6
3.1 Architecture . 7

3.1.1 Contracts & responsibilities . 8
3.1.2 Relationship to other specifications 9

3.2 Concepts . 10
3.2.1 Functionality provided by the container to the bean 11

3.3 Portable extensions . 11
3.4 Packaging and deployment . 12

3.4.1 Bean archives . 12

4 JBoss Weld – reference implementation of JSR 299 14
4.1 Seam 2 Framework . 14
4.2 CDI, Weld and Seam – How do they relate to each other? 18
4.3 Deployment . 19
4.4 Extensibility . 19

5 Infinispan – Transactional in-memory key/value NoSQL datastore & Data
Grid 20
5.1 Introduction . 20
5.2 Relationship to CDI and Clustered context 21

6 Implementation 23
6.1 Using Infinispan as a Backend for CDI Contexts – design overview 23
6.2 Implementation overview . 23
6.3 Creating the extension . 24

6.3.1 Container lifecycle events . 25
6.4 Technologies used . 26
6.5 Structure of the extension . 27
6.6 Source codes . 29
6.7 Code in depth . 30

1

6.7.1 Object serialization . 30
6.7.2 @ClusterScoped Interceptor . 30
6.7.3 Extension’s beans descriptor META-INF/beans.xml 31

6.8 Example deployment . 31
6.8.1 Most important parts . 31
6.8.2 Extension configuration . 32
6.8.3 Creating a replicated cache with the JBoss CLI 33
6.8.4 Trace logging . 33
6.8.5 Implementation of the @ClusteredOperations 33

6.9 Testing . 34
6.9.1 Manual testing . 34
6.9.2 Unit and integration testing . 34

6.10 Summary . 34

7 Conclusion 36

A Extension’s code structure 38

B Example application’s code structure 40

2

Chapter 1

Introduction

This theses starts with the history of Contextual dependency injecting and it’s journey to
the Enterprise specification world — chapter 2, then continues with the Java specification
request(JSR) 299 overview — chapter 3 - where it tries to go through the history of this
specification, the motivation to create it and relationships to other already existing stan-
dards and specifications. Later it explains basic concepts with focus on extensibility options
which are later discussed in the implementation sections, beginning in JBoss Weld chapter 4
— the reference implementation of this specification and continuing in the implementation
chapter which provides detailed overview of implementing a CDI extension in JBoss Weld
environment.

Chapters describing the specification and basics of implementation of extensions will
be further followed by description of Infinispan as a powerful data grid technology which
is used as a back-end storage for clustered beans in this thesis — chapter 5. The CDI
extension written as a part of this thesis will combine all these technologies in order to
provide new Context for beans which wish to share their state across nodes in a cluster.

Last chapter 6 focuses on the extension itself, first the design ideas behind this exception
— section 6.1, followed by the implementation part itself — section 6.2.

3

Chapter 2

Contextual Dependency Injection -
the Journey to the Java EE

The history of contextual dependency injection as we know it today from the JSR 299 is
a many years long and goes back to the early year 2004 when Martin Fowler1 asked the
readers of his site: when talking about Inversion of Control:

”
the question, is what aspect

of control are they inverting?“. After talking about the term Inversion of Control Martin
suggests renaming the pattern, or at least giving it a more self-explanatory name, and starts
to use the term Dependency Injection. His article continues to explain some of the ideas
behind Inversion of Control or Dependency Injection.

2.1 Spring Framework

Java EE back in the old days provided no such a thing as dependency injection or as
previously often called – Inversion of Control(IoC) pattern. Java EE at the times of first
Spring releases offered very complicated and un-intuitive support for transactional processes
– EJBs 2.x. At this time a new framework called Spring was created in order to bring major
simplification of writing business logic addressing both issues – EJBs and IoC pattern. This
framework quickly became very popular and many Java EE developers were escaping to
this framework.

2.2 javax.inject - JSR 330

Java EE community saw the success of the Spring’s IoC pattern and tried to provide similar
functionality in the EE environments. The first try was to copy the Spring’s @Autowired
functionality which in the EE specification is called @Inject.

2.3 Seam Framework

The Seam framework developed by the community around mostly JBoss projects such as
Java Server Faces(JSF) greatly improved and simplified the development model around
connecting the view-model of JSF and the business logic-model of EJBs. The Seam Frame-

1http://martinfowler.com/articles/injection.html

4

http://martinfowler.com/articles/injection.html

work offered many of functionality which later resulted in the JSR 299 specification and
which later even replaced the Seam Framework as such.

2.4 CDI - JSR 299

JSR 299 represents the result of bringing the best of IoC patterns enriched by the contextual
point of view into the Enterprise level specifications. The journey of this specification was
quite interesting as shown above and is a great example of how different community projects
and ideas can result into carefully prepared Enterprise-class specifications and standards
that will exist and be supported as long as Java EE stays around.

5

Chapter 3

JSR 299 Overview

JSR 299 specification request provides interesting insight into topics such as why was this
specification was created and which areas it aims to improve. Before this specification was
created, integration of EJB backend model and JSF view model was mostly implemented
in the Seam Framework1 project. In order to standardize these integration services, JSR
299 was proposed with the following description:

JSR 299 being finalized from year 2007 to 2009 tries to enhance the EJB architec-
ture that is defined as a component architecture for the development and deployment of
component-based business applications. Particularly, EJB provides a programming model
for components that make use of transactional resources. Applications written using this
Enterprise JavaBeans architecture are scalable, transactional, and multi-user secure.

This chapter is based on the overview chapter of the JSR-299: Contexts and Dependency
Injection for the Java EE platform

”
[1].

The EJB component model still has some limitations, though:

• EJB components are unaware of the web-tier request, session and application contexts
and have no access to state associated with those contexts. The lifecycle of a stateful
EJB component may also not be scoped to a web-tier context.

• EJB components are not suitable for use in the presentation tier in general.

• JSF2 provides no support for accessing transactional resources from managed bean
components.

• The managed bean component model provides neither component-level nor method-
level security.

• The context model provided by the servlet specification — and leveraged by JSF —
is not rich enough for use in complex applications in an enterprise environment.

1Seam is a powerful open source development platform for building rich Internet applications in Java.
Seam integrates technologies such as Asynchronous JavaScript and XML (AJAX), JavaServer Faces (JSF),
Java Persistence (JPA), Enterprise Java Beans (EJB 3.0) and Business Process Management (BPM) into a
unified full-stack solution, complete with sophisticated tooling.

2JavaServer Faces is a web-tier presentation framework which provides, among other facilities, a compo-
nent model for graphical user interface components, a “managed bean

”
component model for application

logic, and an event-driven interaction model that binds the two component models. The managed bean
component model is a contextual model where components are bound to one of the three web-tier contexts
and may hold contextual state.

6

• The JSF component model is not consistent with Java EE component registry (JNDI),
dependency injection, packaging and deployment standards.

JSR 299 specification enables EJB 3.0 components to be used as JSF managed beans
by unifying the two component models and enabling a considerable simplification to the
programming model for web-based applications in Java.

Particularly JSR 299 provides programming model suitable for rapid development of
simple data-driven applications without sacrificing the full power of the Java EE 5 platform.
This is a domain where Java EE has been perceived as overly complex.

Aspects considered in this specification include, but are not limited to, the following:

• Definition of additional capabilities to be used with the EJB component model, al-
lowing EJB beans to act as JSF managed beans in a JavaServer Faces application.
In principle, this is possible without requiring any changes to the EJB or JSF speci-
fications.

• Definition of a unified annotations for manipulating contextual variables in a contex-
tual, stateful, component-base architecture.

• Definition of an enhanced context model including business process contexts and
conversational.

• Definition of an extension point that allows integration of business process manage-
ment engines with the contextual component model.

• Integration of Java Persistence API extended persistence contexts with the enhanced
context model.

• Ensure that components written conform to this specification may be executed in the
context of a Web Services invocations.

• Ensure that the component model can be used with JSR-227 databindings.

3.1 Architecture

Following sections provide an overview of the specification in order to understand what
programming model it brings. It is important to dive in into this development model so
the value of the Clustering extension that this thesis brings can be seen. Sections below
summarize the introductionary parts of the specification, Weld as the reference implemen-
tation and Seam as the Framework that inspired this specification.

The JSR 299 brings additional services which can help improve the structure of application
code.

• Lifecycle definition for stateful objects bound to lifecycle contexts, where the set of
contexts is extensible

• Typesafe, sophisticated dependency injection mechanism, having the ability to select
dependencies at either development or deployment time, without verbose configura-
tion

7

• The modularity of a Java EE application is taken into account when resolving depen-
dencies between Java EE components

• Integration with the Unified Expression Language (EL), allowing any contextual ob-
ject to be used directly within a JSP or JSF page

• Interceptors able to be associated to objects via typesafe interceptor bindings

• An event notification model

• The ability to decorate injected objects

• New web conversation context in addition to the three standard web contexts defined
by the Java Servlets specification

• Clean integration with the container enabled through the possibility to write portable
extensions using SPI

Services defined by this specification make it possible for objects to be bound to lifecycle
contexts, to be injected and associated with decorators and interceptors, and to interact
in a loosely coupled fashion by firing and observing events. Different kinds of objects are
injectable, mainly EJB 3 session beans, managed beans and Java EE resources. General
these objects are being referred to as beans and to instances of beans that belong to contexts
as contextual instances. Contextual instances may be injected into other objects by the
dependency injection service.

To make use of these services, additional bean-level metadata in the form of Java an-
notations and application-level metadata the form of an XML descriptor are available to
the application developer.

Using these services significantly simplifies the task of creating Java EE applications
by integrating the Java EE web tier with Java EE enterprise services. Particularly, EJB
components may be used as JSF managed beans, therefore integrating the programming
models of JSF and EJB.

There is even possibility to integrate with third-party frameworks. Portable extensions
may provide objects to be injected or obtain contextual instances using the dependency
injection service. The third-party framework may even raise and observe events using the
event notification service.

An application that makes use of these services may be designed to execute in both the
Java EE environment or the Java SE environment. If the application uses Java EE services
like transaction management and persistence in the Java SE environment, the services are
usually restricted to the subset defined for embedded usage by the EJB specification.

3.1.1 Contracts & responsibilities

The JSR 299 provides a very nice introduction into how the specification falls in the world of
previous standards and specification. Below are the most important relationships described
— passages of the specification.

The specification defines responsibilities of:

• the vendor implementing the functionality defined in this specification and providing
a runtime environment in which the application executes

8

• the application developer using these services

The runtime environment is referred to as a container. An example of such a container
would be a Java EE container or an embeddable EJB container.

3.1.2 Relationship to other specifications

Application developer can create container-managed components like EJBs, JavaBeans,
servlets and then provide some additional metadata declaring additional behaviour that
is defined in the JSR 299 specification. All those components may take advantage of the
services this specification brings, combining the enterprise and presentational components
defined by different Java EE technologies.

The specification additionally defines an SPI interface allowing alternative technolo-
gies to be integrated with the container and the Java EE environment, alternative web
presentation technologies, for example.

Relationship to Java EE platform

In the Java EE 6 environment, all component classes that support injection, as defined
by the Java EE 6 platform specification, can inject beans using the dependency injection
service.

The Java EE platform specification defines a functionality for resource injection which
exist in the Java EE component environment. Resources are identified by string-based
names. This specification underlays that functionality by adding the possibility to inject
an open-ended set of object types, including, but not limited to, component environment
resources, based upon typesafe qualifiers.

Relationship to EJB

EJB provides a development model for application components which access transactional
resources in a multi-user environment. EJB supports concerns such as role-based security,
transaction demarcation, concurrency and scalability to be specified declaratively using an-
notations and XML deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not contextual by nature. References to state-
ful component instances need to be explicitly passed between clients and stateful instances
need to be explicitly destroyed by the application.

This specification improves the EJB component model with contextual lifecycle man-
agement.

Session beans instances obtained via the dependency injection service are contextual
instances. They are bound to a lifecycle context and is available to other objects that
execute in that context. The container automatically creates the instance when it is needed
by a client. When the context ends, the container automatically destroys the instance.

Message-driven and entity beans are non-contextual objects by nature and may not be
injected into other objects.

The container performs dependency injection on all session and message-driven bean
instances, even those which are not contextual instances.

9

Relationship to managed beans

The Managed Beans specification provides the basic programming model for application
components which are managed by the Java EE container.

As defined in this specification, most Java classes, including all JavaBeans, are managed
beans.

This specification defines contextual lifecycle management and dependency injection as
generic services which can be applied to all managed beans.

Any managed bean instance obtained using the dependency injection service is a con-
textual instance. It is bound to a lifecycle context and can be used by other objects which
execute in that context. The container automatically creates the instance when it is needed
by a client. When the context ends, the container automatically destroys the instance.

The container performs dependency injection on all managed bean instances, even those
that are not contextual instances.

Relationship to Dependency Injection for Java

The Dependency Injection for Java specification provides a set of annotations for declaring
injected fields, methods and constructors of beans. The dependency injection service uses
these annotations.

Relationship to Java Interceptors

The Java Interceptors specification defines the basic programming model and semantics
for interceptors. This specification improves this model by defining the ability to associate
interceptors with beans using typesafe interceptor bindings.

Relationship to JSF

JavaServer Faces is a web presentation framework which provides a component model for
the GUI components and an event-driven interaction model which binds user interface
components to objects accessible through the Unified EL.

This specification allows any bean to be assigned a Unified EL name. Therefore, a
JSF application can take advantage of the sophisticated context and dependency injection
model provided by this specification.

3.2 Concepts

A Java EE component is a bean if the lifecycle of its instances may be managed by the
container according to the lifecycle context model. A bean may carry metadata defining
its lifecycle and interactions with other components.

In general, a bean is a source of contextual objects which define application state and/or
logic. These objects are called contextual instances of the bean. The container creates and
destroys these instances and assigns them to the appropriate context. Contextual instances
of a bean may be injected into other objects (including other bean instances) that execute
in the same context, and may be used in EL expressions that are evaluated in the same
context.

Bean needs to comply to the following attributes:

• bean types, at least one

10

• qualifiers, at least one

• A scope

• Optionally, a bean EL name

• A set of interceptor bindings

• A bean implementation

More than that, a bean can but does not have to be an alternative.
Most of the time, a bean developer provides the bean implementation by writing business

logic in Java code. The developer then needs to define the remaining attributes by explicitly
annotating the bean class, or by allowing them to get default values by the container. In
certain other cases-for example, Java EE component environment resources-the developer
provides only the annotations and the bean implementation is provided by the container.

The bean types and qualifiers of a bean determine where its instances will be injected
by the container, lookup and EL.

The bean developer may also create interceptors and/or decorators or reuse existing
interceptors and/or decorators. The interceptor bindings of a bean determine which in-
terceptors will be applied at runtime. The bean types and qualifiers of a bean determine
which decorators will be applied at runtime.

3.2.1 Functionality provided by the container to the bean

A bean has the following capabilities provided by the container:

• transparent creation and destruction and providing a scope to a particular context,

• scoped resolution by name when used in a Unified EL expression,

• scoped resolution by bean type and qualifier annotation type when injected into a
Java-based client,

• lifecycle callbacks and automatic injection of other bean instances, lookup and EL,

• method interception, callback interception, and decoration, and

• event notifications.

3.3 Portable extensions

Portable extensions may integrate themselves within the container by:

• Providing their own beans, interceptors and decorators to the container

• Injecting dependencies into their own objects using the dependency injection service

• Providing a context implementation for a custom scope

• Augmenting or overriding the annotation-based metadata with metadata defined in
some other source

11

3.4 Packaging and deployment

When applications are started, the container must perform bean discovery, detect definition
errors and deployment problems and raise events that allow portable extensions to be
integrated with the deployment lifecycle.

During the bean discovery process, the following must be determined:

• The bean archives that exist in the application, and the beans they contain

• Which alternatives, interceptors and decorators are enabled for each bean archive

• The order of enabled interceptors and decorators

3.4.1 Bean archives

Deployed bean archives contain enabled bean classes.

• An EJB jar, a library jar, application client jar or rar3 archive is a bean archive if it
has a file named beans.xml in the META-INF directory.

• A directory in the JVM classpath is a bean archive if it has a file named beans.xml
in the META-INF directory.

• The WEB-INF/classes directory of a war4 is a bean archive if there is a file named
beans.xml in the WEB-INF directory of the war.

It is not mandatory for a container to support application client jar bean archives.
A Java EE container is required by the Java EE specification to support Java EE

modules. Other containers may decide whether they will provide support for war, EJB jar
or rar bean archives.

The container tries to discover beans in all bean archives in the application classpath:

• In an application deployed as an ear5, the container goes through every bean archive
bundled with or referenced by the ear, including bean archives bundled with or refer-
enced by wars and EJB jars contained in the ear. The bean archives could be library
jars, EJB jars, rars or war WEB-INF/classes directories.

• In an application deployed as a war, the container goes through every bean archive
bundled with or referenced by the war. The bean archives could be library jars or the
WEB-INF/classes directory.

• In an application deployed as an EJB jar, the container goes through the EJB jar, if
it is a bean archive, and every bean archive referenced by the EJB jar.

• An embeddable EJB container goes through each bean archive in the JVM classpath
that is listed in the value of the embeddable container initialization property
javax.ejb.embeddable.modules, or every bean archive in the JVM classpath
if the property is not specified. The bean archives might be directories, library jars
or EJB jars.

3Resource archive
4Web archive
5Enterprise archive

12

When discovering beans, the container considers:

• all Java classes in any bean archive,

• all ejb-jar.xml files in the metadata directory of any EJB bean archive,

• all Java classes referenced by the @New qualifier of an injection point of another bean,

• all interceptor or decorator classes declared in the beans.xml file of any bean archive.

When a bean class is deployed in two different bean archives, non-portable behaviour
results. Portable applications must deploy each bean class in one bean archive at most.

Additional beans can be registered programmatically with the container by the appli-
cation or a portable extension after the automatic bean discovery completes. Portable
extensions can even integrate with the process of building the Bean object for a bean, to
enhance the container’s built-in functionality.

13

Chapter 4

JBoss Weld – reference
implementation of JSR 299

Weld is the reference implementation (RI) for JSR-299: Java Contexts and Dependency
Injection for the Java EE platform (CDI). CDI is the Java standard for dependency injection
and contextual lifecycle management, led by Gavin King for Red Hat, Inc. and is a Java
Community Process (JCP) specification that integrates cleanly with the Java EE platform.
All Java EE 6 application server provide support for JSR-299 (including the web profile).

The Weld – JSR-299 Reference Implementation[2] provides great introduction in the
JBoss Weld as the Reference Implementation of the JSR-299 and this chapter is greatly
inspired by this guide.

4.1 Seam 2 Framework

Seam is an application framework for Java EE. As discussed earlier Seam played an irre-
placeable role in designing the CDI standard as many parts of Seam directly resulted in
the CDI specification. Therefore understanding the basic principles the Seam is built upon
is crucial in order to understand the core of CDI functionality and functionality in the
enterprise applications for Java EE 6.

Please note that this chapter is inspired by publication “A Framework for En-
terprise Java”[3].

The Seam Framework is built up on the following principles:

• One kind of “stuff
”

Seam provides a uniform component model for all business logic in an application. A
Seam component can be stateful, with the state associated with any one of several
well-defined contexts, such as the long-running, persistent, business process context
and the conversation context, which is preserved across multiple web requests in a
user interaction.

Presentation tier components and business logic are not distinct components in Seam.
An application can be layered according to whatever architecture you prefer, rather
than being forced to make your application logic compliant with an unnatural layering
scheme forced upon you by whatever combination of any frameworks used today.

14

Unlike plain Java EE or Java EE components, Seam components may simultaneously
access state associated with the web request and state held in transactional resources
(without the need to propagate web request state manually via method parameters).
There might be objections that the application layering imposed upon you by the
old Java EE platform was a Good Thing. However, nothing stops the developer
from creating an equivalent layered architecture using Seam, the difference is that the
developer gets to architect his/her own application and decide what the layers are
and how they work together.

• Integrate JSF with EJB 3.0

JSF and EJB 3 are two main new features of Java EE 5. EJB 3 is a brand new com-
ponent model for server side business and persistence logic. JSF is a great component
model for the presentation tier. Unfortunately, neither of these two component mod-
els is able to solve all problems in development of business applications by itself. It
is true that JSF and EJB3 work best used together. But the Java EE 5 specification
provides no standard way to integrate the two component models. Fortunately, the
creators of both models foresaw this situation and provided standard extension points
to allow extension and integration with other frameworks.

Seam unifies the component models of JSF and EJB 3, eliminating glue code, and
letting the developer think about the actual business logic.

It is possible to write Seam applications where “everything
”

is an EJB. This may seem
as a surprise if a developer is used to thinking of EJBs as coarse-grained, so-called
“heavyweight

”
objects. However, version 3.0 has completely changed the nature of

EJB from the point of view of the developer. An EJB is a fine-grained object, nothing
more complex than an annotated JavaBean. Seam even encourages you to use session
beans as JSF action listeners!

On the other hand, if the developer prefers not to adopt EJB 3.0 at this time, he/she
doesn’t have to. Virtually any Java class may be a Seam component, and Seam
provides all the functionality that is expected from a “lightweight

”
container, and

more, for any component, EJB or otherwise.

• Integrated with Java EE6

While Seam 2.2 target Java EE 5 mainly, some of Java EE 6 technologies are available
on Seam 2.3.x.

Seam 2 and some of its extensions/implementations were added into Java EE 6 as
CDI technology. So this should be a current focus of majority users. But for previous
Seam 2.2 users who don’t want or can’t use pure Java EE 6, the Seam framework
brings some new features from the Java EE 6, for instance, JSF 2, JPA 2 and Bean
Validation integrations into Seam 2.3.x.

• Integrated AJAX

Seam supports some of the best open source JSF-based AJAX solutions: RichFaces
and ICEfaces. These solutions let the developer add AJAX capability to the user
interface without the need to write a line of JavaScript code.

Alternatively, Seam provides a built-in JavaScript remoting layer that lets the devel-
oper call components asynchronously from client-side JavaScript without the need for

15

an intermediate action layer. The application can even subscribe to server-side JMS
topics and receive messages via AJAX push.

Neither of these approaches would work well, if there was no Seam’s built-in con-
currency and state management, which ensures that many concurrent fine-grained,
asynchronous AJAX requests are handled safely and efficiently on the server side.

• Business process as a first class construct

Optionally, Seam provides transparent business process management via jBPM. It is
very easy to implement complex workflows, collaboration and task management using
jBPM and Seam.

Seam even allows the developer to define presentation tier pageflow using the same
language (jPDL) that jBPM uses for business process definition.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances
this model by exposing jBPM’s business process related events via exactly the same
event handling mechanism, providing a uniform event model for Seam’s uniform com-
ponent model.

• Declarative state management

The developers are used to the concept of declarative transaction management and
declarative security from the early days of EJB. EJB 3.0 even introduces declarative
persistence context management. These are three examples of a broader problem of
managing state that is associated with a particular context, while ensuring that all
needed cleaning up actions occurs when the context ends. Seam takes the concept of
declarative state management much further and applies it to application state. Tradi-
tionally, Java EE applications implement state management manually, by getting and
setting servlet session and request attributes. This approach to state management is
the source of many bugs and memory leaks when applications fail to clean up session
attributes properly, or when session data associated with different workflows collides
in a multi-window application. Seam has the potential to almost entirely eliminate
this class of bugs.

Declarative application state management is made possible by the richness of the con-
text model defined by Seam. Seam extends the context model defined by the servlet
specification - request, session, application – with two new contexts – conversation and
business process — that are more meaningful from the point of view of the business
logic.

The developer will notice how many things become easier once he/she starts using
conversations. It has been common to suffer a pain from dealing with lazy associa-
tion fetching in an ORM solution like Hibernate or JPA. Seam’s conversation-scoped
persistence contexts mean that a developer rarely gets to see a LazyInitializationEx-
ception. The typical problems, such as problems with the refresh button, the back
button, the duplicate form submission, the propagating message across a post-then-
redirect are solved using the Seam’s conversation management without the developer
even needing to really think about them. They’re all symptoms of the broken state
management architecture that has been prevalent since the earliest days of the web.

• Bijection

16

The notion of Inversion of Control or dependency injection exists in both JSF and
EJB3, as well as in numerous so-called “lightweight containers

”
. Most of these con-

tainers emphasize injection of components that implement stateless services. Even
when injection of stateful components is supported (such as in JSF), it is virtually
useless for handling application state because the scope of the stateful component
cannot be defined with sufficient flexibility, and because components belonging to
wider scopes may not be injected into components belonging to narrower scopes.

Bijection differs from IoC in that it is dynamic, contextual, and bidirectional. The
developer can think of it as a mechanism for aliasing contextual variables (names
in the various contexts bound to the current thread) to attributes of the component.
Bijection allows auto-assembly of stateful components by the container. It even allows
a component to safely and easily manipulate the value of a context variable, just by
assigning it to an attribute of the component.

• Workspace management and multi-window browsing

Seam applications let the user freely switch between multiple browser tabs, each asso-
ciated with a different, safely isolated, conversation. Applications may even take ad-
vantage of workspace management, allowing the user to switch between conversations
(workspaces) in a single browser tab. Seam provides not only correct multi-window
operation, but also multi-window-like operation in a single window!

• Prefer annotations to XML

Traditionally, the Java community has been in a state of deep confusion about pre-
cisely what kinds of meta-information counts as configuration. Java EE and popular
“lightweight

”
containers have provided XML-based deployment descriptors both for

things which are truly configurable between different deployments of the system, and
for any other kinds or declaration which can not easily be expressed in Java. Java 5
annotations changed all this.

EJB 3.0 embraces annotations and “configuration by exception
”

as the easiest way to
provide information to the container in a declarative form. Unfortunately, JSF is still
heavily dependent on verbose XML configuration files. Seam extends the annotations
provided by EJB 3.0 with a set of annotations for declarative state management and
declarative context demarcation. This lets the developer to eliminate the noisy JSF
managed bean declarations and reduce the required XML to just that information
which truly belongs in XML (the JSF navigation rules).

• Integration testing is easy

Seam components, being plain Java classes, are by nature unit testable. But for
complex applications, unit testing alone is insufficient. Integration testing has tradi-
tionally been a messy and difficult task for Java web applications. Therefore, Seam
provides for testability of Seam applications as a core feature of the framework. The
developer can easily write JUnit or TestNG tests that reproduce a whole interaction
with a user, exercising all components of the system apart from the view. The devel-
oper can run these tests directly inside an IDE, where Seam will automatically deploy
EJB components using the Arquillian testing framework.

• The specifications are not perfect

17

The Seam development team thinks the latest incarnation of Java EE is great. But
it is also clear that it’s never going to be perfect. Where there are holes in the
specifications (for example, limitations in the JSF lifecycle for GET requests), Seam
fixes them. And the authors of Seam are working with the JCP expert groups to
make sure those fixes make their way back into the next revision of the standards.

• There’s more to a web application than serving HTML pages

Today’s web frameworks think too small. They let the developer to get user input
off a form and into your Java objects. And then they leave you hanging. A truly
complete web application framework should address problems like persistence, concur-
rency, asynchronicity, state management, security, email, messaging, PDF and chart
generation, workflow, wikitext rendering, webservices, caching and more. Once the
developer scratches the surface of Seam, many problems become simpler. . .

Seam integrates JPA and Hibernate for persistence, the EJB Timer Service and
Quartz for lightweight asychronicity, jBPM for workflow, JBoss Rules for business
rules, Meldware Mail for email, Hibernate Search and Lucene for full text search,
JMS for messaging and JBoss Cache for page fragment caching. Seam layers an inno-
vative rule-based security framework over JAAS and JBoss Rules. There’s even JSF
tag libraries for rendering PDF, outgoing email, charts and wikitext. Seam compo-
nents may be called synchronously as a Web Service, asynchronously from client-side
JavaScript or Google Web Toolkit or, of course, directly from JSF.

4.2 CDI, Weld and Seam – How do they relate to each other?

It may seem confusing how do these “terms
”
(CDI, Weld and Seam) relate to each other.

Here is a short summary about differences and things in common between them:

• CDI is a JCP specification included in Java EE

• Weld is the reference implementation of CDI

• Seam 3 is a set of modules which extend CDI to provide functionality beyond that
offered by Java EE 6

The two technologies share a common goal of providing a unified, contextual, program-
ming model for Java Web Applications. Both provide integration of EJB and JSF.

However, Seam 3 is a superset of JSR-299. JSR-299 can be thought of as the core of
Seam 3 – it’s the basic programming model for your application components, and for the
built-in components that make up the Seam framework. Weld is our implementation of this
programming model. Based on this programming model, Seam provides a full framework
for application development, including integration with various non-standard open source
technologies. JSR-299 defines a very powerful framework for portable extensions. Seam 3
is implemented as a set of portable extensions, or modules, for JSR-299, that run in any
environment which supports JSR-299 (including any Java EE 6 environment).

The following diagram illustrates the relationship between Seam 2, Seam 3 and JSR-299
(implemented by Weld):

Seam will continue to be the vehicle which delivers BPM integration, Seam Security,
Drools integration, RESTeasy integration, PDF and email templates, Excel generation, etc.
The Seam can be thought of as “the goodies

”
. Seam will also contain improvements for

technologies in Java EE such as JSF fixes or Seam-managed persistence.

18

Figure 4.1: CDI is the specification, of which Weld is a full implementation.

4.3 Deployment

Weld supports these platforms at the time of writing these thesis:

• JBoss Application Server 7

• JBoss Application Server 6

• GlassFish V3.x

• Apache Tomcat 6 & 7

• Jetty 6.1 & 7.x

• Java SE 5.0+

4.4 Extensibility

Apache DeltaSpike consist of a number of portable CDI extensions that provide useful
features for Java application developers.

The DeltaSpike project will also ensure true portability. DeltaSpike is tested on different
CDI implementations like Apache OpenWebBeans and JBoss Weld, and also on different
Java EE servers like Apache Tomcat and TomEE, JBoss-AS7, Oracle GlassFish 3.1+, IBM
Websphere 8.x, Oracle Weblogic Server 12c, Jetty, and others.

19

Chapter 5

Infinispan – Transactional
in-memory key/value NoSQL
datastore & Data Grid

Infinispan[4] is very scalable, highly available key/value NoSQL datastore and distributed
data grid platform - 100% open source, and written in Java. The purpose of Infinispan is to
provide a data structure that is highly concurrent, designed ground-up to make use of the
most of modern multi-processor/multi-core architectures while at the same time providing
distributed cache capabilities.

Infinispan User Guide[4] is a resourceful source of knowledge about Infinispan as such
and also shares multiple deep-level details behind the implementation and design choices
that make Infinispan so great. This chapter leverages this publication greatly.

At its core level, Infinispan provides a Cache interface which extends java.util.Map.
It is also optionally backed by a peer-to-peer network architecture to distribute state effi-
ciently around the data grid.

Infinispan offers high availability through replicating state across a network as well as
optionally persisting state to configurable cache stores, Infinispan offers enterprise features
such as efficient eviction algorithms to control memory usage as well as JTA compatibility
— to support transactional semantics.

In addition to the peer-to-peer architecture of Infinispan, a client/server mode is also
supported. This provides the ability to run farms of Infinispan instances as servers and
connecting to them using a plenty of clients — both written in Java as well as other
popular open source and proprietary platforms.

5.1 Introduction

What makes Infinispan so interesting:

• State-of-the-art core - Infinispan’s core is a specialised data structure, tuned to and
geared for a great degree of concurrency — especially on multi-CPU/multi-core archi-
tectures. Most of the internals are essentially lock- and synchronization-free, favour-
ing state-of-the-art non-blocking algorithms and techniques wherever possible. Even
though non-clustered caching (LOCAL mode) is not its primary goal, Infinispan still
is very competitive, as demonstrated in the benchmarks.

20

• Massive heap - If you have 100 blade servers, and each node has 2GB of space to
dedicate to a replicated cache, you end up with 2 GB of total data. Every server is
just a copy. On the other hand, with a distributed grid — assuming the user wants
1 copy per data item — he/she gets a 100 GB memory backed virtual heap that is
efficiently accessible from anywhere in the grid. Session affinity is not required, so
there is no need for fancy load balancing policies. Of course they can still be used
for further optimisation. If a server fails, the grid simply creates new copies of the
lost data, and puts them on other servers. This means that applications looking
for ultimate performance are no longer forced to delegate the majority of their data
lookups to a large single database server — that massive bottleneck that exists in
over 80% of enterprise applications!

• Extreme scalability - Since data is evenly distributed, there is essentially no major
limit to the size of the grid, except group communication on the network – which is
minimised to just discovery of new nodes. All data access patterns use peer-to-peer
communication where nodes directly speak to each other, which scales very well.

• Not Just for Java (PHP, Python, Ruby, C, etc.) - Infinispan ships with a language-
independent server module. This supports the popular memcached protocol — with
existing clients for almost every popular programming language — as well as an
optimised Infinispan-specific protocol, called Hot Rod. And finally, Infinispan also
has a REST API. This means that Infinispan is not just useful to Java or JVM-based
applications. Any major website or application that wants to take advantage of a fast
data grid will be able to do so.

• Support for Compute Grids - Also on the roadmap is the ability to pass a Runnable
around the grid. The developer will be able to push complex processing towards the
server where data is local, and pull back results using a Future. This map/reduce
style paradigm is common in applications where a large amount of data is needed to
compute relatively small results.

• Management is the key! - When the developer starts thinking about running a grid
on several hundred servers, management is no longer an extra, it becomes a necessity.
This is on Infinispan’s roadmap. The Inifinispan team aims to provide rich tooling in
this area, with many integration opportunities.

5.2 Relationship to CDI and Clustered context

Infinispan includes integration with CDI in the infinispan-cdi module, as shown in listing 5.1.
Configuration and injection of the Inifispan’s Cache API is provided, and it is planned to
bridge Cache listeners to the CDI event system. The module also provide partial support
of the JCache (JSR-107) caching annotations.

21

...
import javax.inject.Inject;

public class GreetingService {
@Inject
private Cache<String, String> cache;

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {

cachedValue = ”Hello ” + user;
cache.put(user, cachedValue);

}
return cachedValue;

}
}

Figure 5.1: A simple example of injecting an embedded cache

As can be seen, in listing 5.1, Infinispan already provides support for CDI – at least
for injecting Caches. This support is not used in the Extension this theses is about. The
reason is that the CDI support provided by the Infinispan is yet to evolve, it doesn’t provide
enough configuration options yet.

22

Chapter 6

Implementation

6.1 Using Infinispan as a Backend for CDI Contexts – design
overview

At this point it should be clear what CDI is and how it works. Advantages of Infinispan as
a Key-Value storage have been mentioned as well. In combination of these 2 technologies it
is possible to achieve creating a powerful, yet not too complicated, extension that brings a
new Context, the one that allows sharing the state of a bean throughout the whole Java
Application Server Cluster.

The basic idea is simple, you have a bean and want it’s state to be seamlessly shared
across all the nodes, without having to worry about manually synchronizing the state. The
user just needs to use some annotations to add the needed metadata, such as which bean
should be clustered this way and which operations affect the shared state.

The next chapter will explain in the depth the details of creating this extension. It men-
tions the issues that needed to be overcome and lessons learned during the implementation
phase as well.

6.2 Implementation overview

Currently Java EE CDI specification JSR-299 or any other does not define a scope that
would allow to share a state of beans across an application server’s cluster nodes.

Infinispan provides a clustered key-value storage database which can be used to hold
this state.

23

Infinispan cluster

JBoss AS #1 JBoss AS #2 JBoss AS #3

Figure 6.1: Typical architecture with @ClusterScoped

Implementation of @ClusterScoped will consist of implementing/extending following:

• CDI extension itself - Context, Scope, Extension

• Configuration options of the extension - via a .properties files

– Default replicated cache - needs to be created using the JBoss CLI and configured
appropriately

• Concurrent access to the instance of a clustered bean - CDI @Interceptors

• Definition of a lifecycle for a clustered bean - bound to Infinispan’s cache lifecycle

– When is the bean instantizied - with first injection on any node

– When is the bean destroyed - with destruction of the cache — either persistent
or not persistent

6.3 Creating the extension

Creating a portable extension starts with writing a class implementing the Extension
interface, see listing 6.2. This interface does not define any methods but i’s required by the
Java SE service provider architecture.

class MyExtension implements Extension {
...
}

Figure 6.2: Extension class

Next thing that needs to be done is to register the extension as a service provider by
creating a file named
META-INF/services/javax.enterprise.inject.spi.Extension, which contains
the name of our extension class, see listing 6.3.

24

org.example.extension.MyExtension

Figure 6.3: Extension service file

An extension itself is not a bean, exactly, as it is instantiated by the container during
the initialization process which takes place before any beans or contexts exist. However, it
can be injected, see listing 6.4, into other beans when the initialization process is complete.

@Inject
public MyBean(MyExtension myExtension) {

myExtension.doSomething();

}

Figure 6.4: Injection of Extension into other bean

And, like beans, extensions can have observer methods. Usually, the observer methods
observe container lifecycle events.

6.3.1 Container lifecycle events

The container fires a series of events during the initialization process, including:

• BeforeBeanDiscovery

• ProcessModule

• ProcessAnnotatedType and ProcessSyntheticAnnotatedType

• ProcessInjectionTarget and ProcessProducer

• ProcessInjectionPoint

• ProcessBeanAttributes

• ProcessBean, ProcessManagedBean, ProcessSessionBean,
ProcessProducerMethod and ProcessProducerField

• ProcessObserverMethod

• AfterBeanDiscovery

• AfterDeploymentValidation

Extension may be observer using the @Observes annotation, as shown in the listing 6.5.

25

class MyExtension implements Extension {
void beforeBeanDiscovery(@Observes BeforeBeanDiscovery event) {

log.debug(”the scanning process begins”);
}

<T> void processAnnotatedType(@Observes ProcessAnnotatedType<T> event) {
log.debug(”type scanned: ” + event.getAnnotatedType()
.getJavaClass().getName());

}

void afterBeanDiscovery(@Observes AfterBeanDiscovery event) {
log.debug(”the scanning process completed”);

}
}

Figure 6.5: Extension observing events using the observer methods

Extensions can do much more than just observe events. The extension is allowed to
modify the container’s metamodel and more. A very simple example can be found in the
listing 6.6.

class MyExtension implements Extension {
<T> void processAnnotatedType(@Observes ProcessAnnotatedType<T> event) {

//tell the container to ignore the type if it is annotated @Ignore
if (event.getAnnotatedType().isAnnotionPresent(Ignore.class)) {
event.veto();

}
}

}

Figure 6.6: Extension observing the container’s lifecycle events

The observer method may inject a BeanManager as shown in the listing 6.7.

<T> void processAnnotatedType(@Observes ProcessAnnotatedType<T> event,
BeanManager beanManager) {

}

Figure 6.7: Injecting the BeanManager into an observer method

Extension observer methods are not allowed to inject any other object.

6.4 Technologies used

Implementation of @ClusterScoped extensions makes use of following technologies:

• Maven - as a build tool

• JBoss Weld Solder - set of classes/tools simplified development of CDI extensions

• Apache DeltaSpike - set of CDI extensions and tools simplifying the development of
CDI extensions

26

• Infinispan - key/value storage used to store the state of beans annotated as
@ClusterScoped

• Java EE 6 compatible application server — tested in the JBoss Enterprise Application
Platform 6

• Arquillian - testing framework

6.5 Structure of the extension

Figures 6.8 and 6.9 show the structure of the source codes of the extension.

27

cz.vutbr.fit.bp.xkovar57.cache.
CacheNotFoundException

+ CacheNotFoundException()
+ CacheNotFoundException()
+ CacheNotFoundException()
+ CacheNotFoundException()
+ CacheNotFoundException()

Exception

cz.vutbr.fit.bp.xkovar57.cache.configuration.
JndiCacheConfigurator

+ configureCache()

cz.vutbr.fit.bp.xkovar57.cache.configuration.
CacheConfigurator

+ configureCache()

cz.vutbr.fit.bp.xkovar57.cache.configuration.
CacheConfigurator

+ configureCache()

cz.vutbr.fit.bp.xkovar57.cache.configuration.
JndiCacheConfigurator

+ configureCache()

cz.vutbr.fit.bp.xkovar57.serialization.
ObjectSerializer

+ serialize()
+ deserialize()

cz.vutbr.fit.bp.xkovar57.serialization.
XStreamObjectSerializer

+ serialize()
+ deserialize()

Figure 6.8: Class diagrams of the extension classes #1

28

cz.vutbr.fit.bp.xkovar57.
ClusterContextExtension

+ ClusterContextExtension()
+ afterBeanDiscovery()
+ registerInterceptorBinding()
+ processBean()
+ getIdMap()

Extension

cz.vutbr.fit.bp.xkovar57.
ClusterContext

+ getScope()
+ isActive()
~ get()
~ get()

Context

cz.vutbr.fit.bp.xkovar57.serialization.
InvalidTypeForSerializationException

+ InvalidTypeForSerialization
Exception()
+ InvalidTypeForSerialization
Exception()
+ InvalidTypeForSerialization
Exception()
+ InvalidTypeForSerialization
Exception()
InvalidTypeForSerialization
Exception()

Exception

cz.vutbr.fit.bp.xkovar57.serialization.
XStreamObjectSerializer

+ serialize()
+ deserialize()

cz.vutbr.fit.bp.xkovar57.serialization.
ObjectSerializer

+ serialize()
+ deserialize()

Figure 6.9: Class diagrams of the extension classes #2

6.6 Source codes

The source codes of all the extension itself, the application and this thesis are publicly
available from public GIT repositories:

• extension source code:
https://bitbucket.org/kovariadam/cluster-cdi

29

https://bitbucket.org/kovariadam/cluster-cdi

• testing application:
https://bitbucket.org/kovariadam/cluster-cdi-test

• this thesis:
https://bitbucket.org/kovariadam/cdi-cluster-doc

6.7 Code in depth

The source code is available under the cz.vutbr.fit.bp.xkovar57 package. The code
is structured further in packages as shown in the appendix A.

6.7.1 Object serialization

The object serialization has caused the most issues in this extension. First problem is
in-ability to change the ClassLoader in the JBoss modular classloader architecture to use
the contextual classloader of the application to serialize/deserialize objects saved into the
Infinispan cache which resulted in the need to perform the serialization/deserialization
programatically in the extension itself. I have created a community thread in order to try
to answer this question in the JBoss forum 1.

This was already a workaround of the original classloader issue, however even this was
not simple as the Infinispan is unable to handle comparision of arrays of primitive types,
since it always uses .equals() method to compare values in the cache, regardless whether
the type of the object is primitive array or not. I have reported this bug/enhancement
request against the Infinispan project in the ISPN-30502 ticket.

6.7.2 @ClusterScoped Interceptor

This interceptor is invoked whenever a method annotated as @ClusteredOperation is
invoked. The reason for intercepting these methods’ invocations it to make sure that the in-
vocation happens on the cluster-wide copy of the bean and the changes are properly reflected
in other nodes, once they will access a method annotated with the @ClusteredOperation
as well.

The logic is pretty simple, the clustered copy of the bean is downloaded from the
Infinispan cluster, the operation is performed on this copy and if in the meantime the
clustered copy got changed from another node, the operation is repeated until the local copy
can safely be again stored to the Infinispan cluster. This all happens in a transactional-
fashion to make sure the data is consistent all the time.

The tricky part of this interceptor is that Infinispan when serializing a bean, it also seri-
alizes annotations the bean has, which means that during the deserialization this interceptor
would get invoked recursively for infinite amount of time — well, until a StackOverflown
exception gets thrown from the JRE. In order to prevent this recursion, the interceptor
maintains a ThreadLocal variable that holds the stack of the invocations on this bean
and if the invocation is repeated, then the interceptor is not processed anymore, the flow
is returned to the next interceptor of the interceptor chain.

1https://community.jboss.org/thread/224280
2https://issues.jboss.org/browse/ISPN-3050

30

https://bitbucket.org/kovariadam/cluster-cdi-test
https://bitbucket.org/kovariadam/cdi-cluster-doc
https://community.jboss.org/thread/224280
https://issues.jboss.org/browse/ISPN-3050

6.7.3 Extension’s beans descriptor META-INF/beans.xml

The extension’s beans descriptor defines implementations of CacheConfigurator inter-
face and the ObjectSerializer. This must be configured appropriately for the given de-
ployment inside the extension’s JAR file. The default version of the META-INF/beans.xml
descriptor is shown in the listing 6.10.

<beans>
<alternatives>

<class>cz.vutbr.fit.bp.xkovar57.cache.configuration.
JndiCacheConfigurator</class>

<class>cz.vutbr.fit.bp.xkovar57.serialization.XStreamObjectSerializer</
class>

</alternatives>
</beans>

Figure 6.10: Extensions bean descriptor META-INF/beans.xml

6.8 Example deployment

The simplest web deployment(WAR) of the extension could have a structure as shown in
the appendix B.

6.8.1 Most important parts

Use of the @ClusterScoped annotation

ClusteredBean.java

@ClusterScoped
public class ClusteredBean implements Serializable {
...
}

Figure 6.11: Example clustered bean

The bean shown in the listing 6.11 bean will be stored in a cache and support the
@ClusteredOperations.

Use of the @ClusteredOperation annotation

ClusteredBean.java

@ClusteredOperation
public String getValue() {

return value;
}

Figure 6.12: Example method of a clustered bean that supports clustered operations

31

When the method in the listing 6.12 gets invoked, the state is loaded and saved from
and to the clustered cache.

Use of the @Inject of the bean

GetServlet.java / SetServlet.java

@Inject
private ClusteredBean clusteredBean;

Figure 6.13: Injection of the clustered bean

The clustered bean can be injected as any other CDI bean, see listing 6.13.

Configuration of JNDI cache

META-INF/cdi-cache-jndi.properties

jndi.name=java:jboss/cache/container/cdi
cache.name=

Figure 6.14: JNDI cache configuration properties file

In the listing 6.14 the JNDI name of the cache and it’s name can be configured. Empty
value means default cache.

Configuration of interceptors

beans.xml

<interceptors>
<class>cz.vutbr.fit.bp.xkovar57.interceptors.ClusteredOperationInterceptor</

class>
</interceptors>

Figure 6.15: Application’s beans.xml descriptor with the
ClusteredOperationInterceptor enabled

The application’s beans.xml shown in the listing 6.15 shows enabled
ClusteredOperationInterceptor interceptor for the deployment.

6.8.2 Extension configuration

The extension needs following configuration in order to work:

• enabling the ClusteredOperationInterceptor the application’s
beans.xml, listing 6.15

• the JNDI cache configuration, if JNDI provider is used
META-INF/cdi-cache-jndi.properties, listing 6.14

32

• creating a cache, listing 6.16

• the alternatives in the extension’s beans.xml, subsection 6.7.3

6.8.3 Creating a replicated cache with the JBoss CLI

To create a replicated Infinispan cache, one can use the the JBoss CLI command shown in
listing 6.16.

/subsystem=infinispan/cache-container=web:write-attribute(name=jndi-name, value=
cache/container/web)

/subsystem=infinispan/cache-container=web/replicated-cache=cdi-cluster:write-
attribute(name=start, value=EAGER)

Figure 6.16: JBoss CLI commands to create a replicated Cache

6.8.4 Trace logging

To enable the trace logging of the extension, one can use the JBoss CLI command shown
in listing 6.17.

/subsystem=logging/logger=cz.vutbr.fit.bp.xkovar57:add(level=ALL)

Figure 6.17: JBoss CLI command to enable the TRACE logging for the extension

6.8.5 Implementation of the @ClusteredOperations

CacheProvider.java
The pseudo-code responsible for invoking clustered operations on a clustered bean is

shown in the listing 6.18.

boolean success = false;
int maxTries = 5;
int i = 0;
Object returnValue = null;

while (success != true && i < maxTries) {
Object currentlyCachedVersion = cache.get(key);
returnValue = method.invoke(target, args);

success = cache.replace(key, currentlyCachedVersion, objectSerializer.
serialize(target));

i++;
}

if (i == maxTries && !success) {
logger.warning(”Failed to update ” + key);

}

Figure 6.18: Invoking a clustered operation pseudocode

33

This code first retrieves the current version of the object from the cache, it invokes the
method on it that has been intercepted due to being annotated as @ClusteredOperation
and then it saves it in the cache. If the replace operation fails, that means that the cache
has been update between the old object was retrieved and now that it is being saved. Then
the whole operation repeats – the old version is loaded and the method is again invoked on
the latest version of the bean. This prevents any inconsistency that could occur. There is
a limitation of how many times this operation can be repeated though – this is in place in
order to prevent any deadlock situations.

6.9 Testing

Automated testing of every application is crucial nowadays. The extension comes with
several options of verifying it’s proper functionality.

6.9.1 Manual testing

The extension comes with a very a simple testing application which is described in the
section 6.8. This application consists of two servlets, one of them updates the cache, the
other one reads the current value. They use java.util.Calendar instance as a value
that gets printed on a server log whenever any of these servlets gets called.

Once the application is deployed, it can be tested as:

• http://<serverURL>:<serverport>:8180/cdi-cluster-test/get

• http://<serverURL>:<serverport>/cdi-cluster-test/set

Where the <server URL>:<server port> needs to be replaced for the actual
values. The set servlet updates the value of the clustered bean, while the get prints out
the current value.

6.9.2 Unit and integration testing

The extension also contains a very basic skeleton for an Arquillian test case, however, this
is nowhere nearly finished as the Arquillian does not proved any documentation related to
deploying Infinispan caches in the managed JBoss AS environment. This area is a good
opportunity for future improvements though. It would be interesting to perform some
performance benchmark of this extension.

6.10 Summary

The sections above provide step-by-step guide on how this extension was implemented.
First, it was important to understand how does container communicate with extensions
through it’s lifecycle events, as shown in section 6.3.1. Later, most of every new soft-
ware today uses different libraries and components, these technology choices were shown in
section 6.4.

Following these sections, the thesis gets deeper in the code itself, starting in section 6.5
which explains the structure of the extension, followed by section 6.6 which provides detailed
overview of the source codes.

34

http://<server URL>:<server port>:8180/cdi-cluster-test/get
http://<server URL>:<server port>/cdi-cluster-test/set

Another important part for a user of the extension is to have a complete example of a
deployment. This is provided in the section 6.8.

Last but not least, testing is important for every application and this extension is no
exception. Testing options are offered by section 6.9.

35

Chapter 7

Conclusion

This extension can be a great simplification of writing clustered applications where sharing
state of beans matters. Also, as CDI is quite young standard, this extension can be used
as a good example of writing new extensions. The application is open-sourced and as such
as long as there will be interest in using and developing the application further, this work
will not die.

The biggest challenge at the moment will be to prepare high-quality test-suite and
announce the extension somewhere in the JBoss community.

At last but not least this extension shows how new technologies, such as CDI or Infin-
ispan make writing of such complex tasks as contextual data clustering easy.

36

Bibliography

[1] Gavin King. JSR-299: Contexts and Dependency Injection for the Java EE platform.
Technical report, JSR-299 Expert Group, December 2009.

[2] Gavin King, Pete Muir, Dan Allen, and David Allen. Weld - JSR-299 Reference
Implementation. Red Hat, January 2012.

[3] Gavin King, Pete Muir, Norman Richards, Shane Bryzak, Michael Yuan, Mike
Youngstrom, Christian Bauer, Jay Balunas, Dan Allen, Max Rydahl Andersen,
Emmanuel Bernard, Nicklas Karlsson, Daniel Roth, Matt Drees, Jacob Orshalick,
Denis Forveille, Marek Novotny, , and Jozef Hartinger. A Framework for Enterprise
Java. JBoss.org, September 2012.

[4] Red Hat. Infinispan User Guide.

37

Appendix A

Extension’s code structure

cdi-cluster/src/main/
java

cz
vutbr

fit
bp

xkovar57
ClusterContext.java
ClusterContextExtension.java
interceptors

ClusteredOperationInterceptor.java
annotations

ClusterScoped.java
ClusteredOperation.java

cache
CacheNotFoundException.java
configuration

JndiCacheConfigurator.java
CacheConfigurator.java

common
CacheProvider.java

serialization
XStreamObjectSerializer.java
InvalidTypeForSerializationException.java
ObjectSerializer.java

resources
META-INF

MANIFEST.MF
beans.xml
services

javax.enterprise.inject.spi.Extension

ClusterContextExtension.java registers the @ClusterContext annotation for
further use by user applications

38

ClusterContext.java is the actual CDI context implementation where creating new
beans and obtaining @Inject-able references is done

ClusteredOperationInterceptor.java is an interceptor which is invoked on meth-
ods annotated as @ClusteredOperation, subsection 6.7.2

ClusterScoped.java is the @ClusterScoped annotation

ClusteredOperation.java is the @ClusteredOperation annotation, subsection 6.8.5

CacheNotFoundException.java is an exception thrown in case the Cache not found

JndiCacheConfiguration.java is an implementation of CacheConfigurator in-
terface which uses JNDI lookup to obtain a Cache

CacheConfigurator.java is an interface that must be implemented when a custom
Cache provider needs to be implemented

CacheProvider.java is a class defining operation on the Cache which are used during
invocations of @ClusteredOperations

XStreamObjectSerializer.java is an implementation of ObjectSerializer in-
terface which uses XStream library to serialize/deserialize beans

InvalidTypeForSerializationException.java is an exception thrown in case of
invalid input for serialization/deserialization methods

ObjectSerializer.java is an interface that must be implemented when a custom
Serializer / Deserializer needs to be implemented, subsection 6.7.1

META-INF/MANIFEST.MF contains dependencies of JBoss AS logging and Infinispan
modules

META-INF/beans.xml contains Alternatives for beans of which implementation de-
pends on the user and deployment needs, subsection 6.7.3

META-INF/services/javax.enterprise.inject.spi.Extension contains the Ex-
tension class Fully-Qualified-Name(FQN)

39

Appendix B

Example application’s code
structure

cdi-cluster-test/src/main/
java

cz
vutbr

fit
bp

xkovar57
test

GetServlet.java
SetServlet.java
util

Resources.java
data

ClusteredBean.java
resources

META-INF
MANIFEST.MF
cdi-cache-jndi.properties

webapp
web.xml
WEB-INF

beans.xml

40

	Introduction
	Contextual Dependency Injection - the Journey to the Java EE
	Spring Framework
	javax.inject - JSR 330
	Seam Framework
	CDI - JSR 299

	JSR 299 Overview
	Architecture
	Contracts & responsibilities
	Relationship to other specifications

	Concepts
	Functionality provided by the container to the bean

	Portable extensions
	Packaging and deployment
	Bean archives

	JBoss Weld – reference implementation of JSR 299
	Seam 2 Framework
	CDI, Weld and Seam – How do they relate to each other?
	Deployment
	Extensibility

	Infinispan – Transactional in-memory key/value NoSQL datastore & Data Grid
	Introduction
	Relationship to CDI and Clustered context

	Implementation
	Using Infinispan as a Backend for CDI Contexts – design overview
	Implementation overview
	Creating the extension
	Container lifecycle events

	Technologies used
	Structure of the extension
	Source codes
	Code in depth
	Object serialization
	@ClusterScoped Interceptor
	Extension's beans descriptor META-INF/beans.xml

	Example deployment
	Most important parts
	Extension configuration
	Creating a replicated cache with the JBoss CLI
	Trace logging
	Implementation of the @ClusteredOperations

	Testing
	Manual testing
	Unit and integration testing

	Summary

	Conclusion
	Extension's code structure
	Example application's code structure

