
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATED VERIFICATION IN HW/SW CO-DESIGN
AUTOMATICKÁ VERIFIKACE V PROCESU SOUBĚŽNÉHO NÁVRHU HARDWARE A SOFTWARE

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. LUKÁŠ CHARVÁT
AUTOR PRÁCE

SUPERVISOR Prof. TOMÁŠ VOJNAR, Ph.D.
ŠKOLITEL

CO-SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
ŠKOLITEL SPECIALISTA

BRNO 2019

Abstract
The subject of the thesis is to design new hardware verification techniques opt imized for
a process of H W / S W co-design in which hardware and software are developed in parallel to
speed up the development of new embedded systems. Currently, microprocessor co-design
tools typical ly allow to verify designs by simulat ion and /or functional verification. However,
even extensive functional verification can miss some non- t r iv ia l bugs. Therefore, formal ver
ification has become more and more desirable in recent years. A s opposed to testing and
bug-hunting techniques that only a im at detecting flaws, the goal of formal verification
is to rigorously prove that the system is indeed correct. Formal verification is, however,
a very demanding task, and even though a lot of progress has been achieved in this area,
formal verification is far from being able to fully automatical ly check a l l relevant properties
of complex designs without a significant and costly human involvement i n the verification
process. The thesis deals w i th these challenges by focusing on verification techniques based
on formal approaches, but possibly relaxing or l imi t ing their precision and generality to
achieve full automation. Further, the thesis also focuses on the efficiency of the proposed
techniques and their abi l i ty to deliver continuous feedback about the verification process.
Special at tention is devoted to the development of formal methods for checking the equiv
alence of microprocessor designs on various levels of abstraction. A l t h o u g h these designs
cannot be behaviorally equivalent, they are required to give mutual ly corresponding results
when executing the same input program, which is a property difficult to achieve. A s another
considered topic, the thesis proposes methods for checking correctness of mechanisms pre
venting data and control hazards i n single-pipelined implementations of microprocessors.
The approaches described in this thesis has been implemented in the form of several tools
which, after examining designs of mult iple pipelined microprocessors, were able to deliver
promising experimental results.

Abstrakt
P ř e d m ě t e m d i ze r t ačn í p r á c e je n á v r h nových technik pro verifikaci hardwaru, k t e r é jsou
op t ima l i zovány pro použ i t í v procesu s o u b ě ž n é h o vývoje hardwaru a softwaru. V r á m c i
tohoto typu vývoje je hardware spolu se software vyví jen pa ra l e lně s c í lem urychli t vývoj
nových s y s t é m ů . Současné n á s t r o j e pro tvorbu mik rop roceso rů stavějící na tomto stylu
vývoje obvykle umožňu j í v ý v o j á ř ů m ověři t jejich n á v r h v y u ž i t í m různých s imulačn ích tech
nik a/nebo za pomoci tzv. funkční verifikace. Spo lečnou n e v ý h o d o u t ěch to p ř í s t u p ů je, že
se zaměřu j í pouze na h l edán í chyb. Výs ledný produkt tedy m ů ž e s tá le obsahovat nena lezené
ne t r iv iá ln í defekty. Z tohoto d ů v o d u se v pos ledn ích letech s t ává s tá le více ž á d a n é nasazen í
formálních metod. N a rozdí l od výše uvedených p ř í s t u p ů za ložených na h l edán í chyb,
se formáln í verifikace zaměřu je na d o d á n í r igorózního d ů k a z u , že d a n ý s y s t é m sku tečně
splňuje p o ž a d o v a n é vlastnosti . I když bylo v up lynu lých letech v t é t o oblasti dosaženo
z n a č n é h o pokroku, tak a k t u á l n í formální p ř í s t u p y nema j í zdaleka schopnost p lně automat
icky prověř i t všechny re levan tn í vlastnosti verif ikovaného n á v r h u bez v ý r a z n é h o a ča s to
n á k l a d n é h o zapo jen í lidí v r á m c i verif ikačního procesu. Tato p r á c e se snaž í řeši t p r o b l é m
s a u t o m a t i z a c í verif ikačního procesu je j ím z a m ě ř e n í m na verifikační techniky, ve k t e rých
je ale z á m ě r n ě kladen menš í d ů r a z na jejich p řesnos t a obecnost za cenu dosažen í p lné
automatizace (např . vy loučen ím p o t ř e b y r u č n ě v y t v á ř e t modely p r o s t ř e d í) . Dá le se p ráce
t a k é zaměřu je na efektivitu n a v r h o v a n ý c h technik a jejich schopnost poskytovat nep ře t r ž i
tou z p ě t n o u vazbu o ver i f ikačním procesu (nap ř . v p o d o b ě p o d a n í informace o a k t u á l n í c h

stavu p o k r y t í) . Zv láš tn í pozornost je pak věnována vývoj i formálních metod ověřujících
ekvivalenci n á v r h ů m i k r o p r o c e s o r ů na různých ú rovn ích abstrakce. T y t o n á v r h y se mohou
lišit ve způsobu , j a k ý m jsou v n i t ř n ě zp racovány p r o g r a m o v é instrukce, n i c m é n ě z vnějš ího
pohledu (d a n é h o n a p ř . obsahem reg i s t rů v id i te lných z pozice p r o g r a m á t o r a) mus í bý t jejich
chování p ř i p rováděn í s t e jného v s t u p n í h o programu s h o d n é . Jako dalš í t é m a se p r á c e dále
věnuje n á v r h u metod pro verifikaci sp r ávnos t i m e c h a n i s m ů zabraňuj íc ích v ý s k y t u d a t o v ý c h
a ř ídících h a z a r d ů v r á m c i l inky z ře t ězeného zpracován í ins t rukc í . Veškeré metody p o p s a n é
v t é t o p rác i byly i m p l e m e n t o v á n y ve formě někol ika n á s t r o j ů . Apl ikac í t ě ch to n á s t r o j ů pro
verifikaci n á v r h ů ne t r iv iá ln ích p roceso rů bylo dosaženo s l ibných e x p e r i m e n t á l n í c h výs ledků .

Keywords
Formal Verification, Microprocessor, Hardware / Software Co-design, Archi tecture Descrip
t ion Language, R T L - I S A Equivalence Checking, Pipel ine Hazard , Parametr ic Systems.

Klíčová slova
F o r m á l n í verifikace, mikroprocesor, so u b ěžn ý n á v r h hardware a software, jazyk pro popis
architektury, formáln í ověřování ekvivalence, hazardy v lince zře tězení , p a r a m e t r i c k é sys
témy.

Reference
C H A R V Á T , L u k á š . Automated Verification in HW/SW Co-design. Brno , 2019. P h D thesis.
Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor Prof. T o m á š
Vojnar, P h . D . Co-supervisor Ing. Aleš Smrčka , P h . D .

Automated Verification in HW/SW Co-design

Declaration
Hereby I declare that this P h D thesis was prepared as an original author's work under the
supervision of Prof. Tomas Vojnar and D r . Ales Smrcka. A l l the relevant information
sources, which were used dur ing preparation of this thesis, are properly cited and included
in the list of references.

L u k á š C h a r v á t
August 9, 2019

Acknowledgements
I would like to thank my supervisors Prof. T o m á š Vojnar and D r . Aleš S m r č k a for their
valuable comments, suggestions, and inspir ing consultations during the supervision of this
work. Further, I thank a l l former and current members of the V e r i F I T group for their
advice, fruitful discussions, and friendly working environment. Last but not least, I would
like to thank my family, especially my wife, and friends for their endless support, strong
motivation, and ceaseless patience.

The work presented i n this thesis was supported by the Czech Science Foundat ion (under
the project P103/10/0306) , the Czech M i n i s t r y of Educa t ion (under the projects C O S T
OC10009, M S M 0021630528, 14-11384S), the Czech M i n i s t r y of Industry and Trade (un
der the project F R - T I 1 / 0 3 8) , the E U / C z e c h IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070, the I T 4 I X S : IT4Innovations Excellence in Science project LQ1602 ,
and the B U T projects FIT-S-11-1 , FIT-S-12-1 , FIT-S-14-2486.

Contents

1 Prologue 3

2 E mbedded System Design 6
2.1 General-Purpose Microprocessors 7
2.2 Applicat ion-Specif ic Integrated Ci rcu i t s 9
2.3 Applicat ion-Specif ic Instruction-Set Processors 10
2.4 M o d e r n Hardware/Software Co-Design 10

3 Architecture Description Languages 12
3.1 Structure-Oriented A D L s 12

3.1.1 M I M O L A 12
3.2 Instruction-Set-Oriented A D L s 14

3.2.1 I S D L 14
3.2.2 T I E 16

3.3 M i x e d A D L s 18
3.3.1 n M L 18
3.3.2 C o d A L 20

4 Introduction to Selected Areas of Formal Verification 24
4.1 Prel iminaries 24
4.2 M o d e l Checking 25

4.2.1 Transi t ion Systems 25
4.2.2 Parameterized Systems 26
4.2.3 Regular M o d e l Checking 27

4.3 Static Analys is 28
4.3.1 Da ta -F low Analys is 28

4.4 S A T and S M T Solvers 29
4.4.1 S A T Solvers 29
4.4.2 S M T Solvers 31

5 Hardware Verification Techniques 32
5.1 Funct ional Verification of Hardware 32
5.2 Formal Verification of Pipel ined Microprocessors 34

5.2.1 Correspondence Checking 34
5.2.2 Checking of Generic Properties of P ipe l ined Microprocessor 36
5.2.3 Look ing for Undesirable Design Patterns 37

5.3 Large Memory Abs t rac t ion 37

1

6 Goals of the Thesis 40

7 Large M e m o r y Abstract ion 42
7.1 Introduction 42
7.2 Memories To Be Abst rac ted 43
7.3 Abst rac t ion of the Considered Memories 43
7.4 Deal ing wi th Differently Sized D a t a 44
7.5 Further Extensions of the Abst rac t Memory M o d e l 45
7.6 Implementation and Experiments 46
7.7 Conclusion 47

8 R T L - I S A Correspondence Checking 48
8.1 Background: Expec ted Design F l o w 49
8.2 The M a i n Idea of the Proposed R T L - I S A Correspondence Checking 49
8.3 Generat ion of the I S A M o d e l 51
8.4 The Top-Level M o d e l 52
8.5 Mode l ing Large Archi tec tura l Resources 54
8.6 Da ta -Domain Reduct ion 55
8.7 Use of B M C and its Paral le l izat ion 55
8.8 Experiments 57
8.9 Conclusion 58

9 Analysis of Pipeline Hazards 60
9.1 Prel iminaries 60

9.1.1 Processor Structure Graphs 60
9.1.2 Transi t ion Systems Induced by P S G s 62
9.1.3 D a t a and Con t ro l Hazards 63

9.2 The Proposed Approach to Hazard Detection 64
9.3 Preprocessing a Processor Structure G r a p h 66

9.3.1 Da ta -F low Analys is Discovering Pipel ine Stages 66
9.3.2 Pipel ine Consistency Checking 68

9.4 Static Detect ion of Potent ia l Pipel ine Hazards 70
9.5 Parametr ic Systems for Potent ia l Hazards 75

9.5.1 States and Edge Condit ions of the Parametr ic System 76
9.5.2 Transi t ion Rela t ion of the Parametr ic System 78
9.5.3 Const ruct ion of the M i n i m a l B a d Set 84

9.6 Exper imenta l Evalua t ion 96

9.7 Conclusion 98

10 Epilogue 100

Bibl iography 101

2

Chapter 1

Prologue

Embedded systems are massively deployed i n almost every electronic device that we now use
i n our everyday life. For embedded systems, customized application-specific instruction-set
processors (ASIPs) are often designed. These processors have specific functions of hardware
available through special instructions in order to achieve required performance cri teria and
low power consumption. A significant part of embedded system costs includes prices that are
required for (i) design of hardware architecture, (ii) its physical realization, and (iii) design
of software.

If we consider costs of the physical realization as fixed, the only way for further lowering
of the price of an embedded system is to reduce the t ime that is needed for the design of
hardware and software. In order to achieve that, the trend is to develop both hardware and
software i n parallel in a process of the so-called hardware/software co-design. The automa
t ion of common tasks that are a part of the co-design process is another crucial factor for
successful and fast development. To facilitate automation, specialized architecture descrip
tion languages (A D L s) are frequently ut i l ized during the microprocessor design process.
Specifically, in the case of microprocessor design, various integrated frameworks [125, 28, 1]
take advantage of the availabil i ty of the high- and low-level A D L descriptions and pro
vide automatic generation of hardware description language (H D L) designs and tool-chains
including, e.g., simulators, assemblers, disassemblers, and compilers.

In the current microprocessor design frameworks, an in i t i a l understanding about the de
sign (e.g., to see whether an instruct ion set contains enough instructions, to check the per
formance of the design) is done by simulat ion. After this step, verification of the designs
is typical ly performed. Currently, simulation-based approaches such as testing and func
t ional verification are very popular. Testing is based on the observation of the behavior
of the verified system i n a l imi ted number of situations (e.g., for cases considered as cru
cial by the designer) and, therefore, it provides only a par t ia l guarantee of the system's
correctness. Funct ional verification automates the testing process by generating a set of
constrained/random test vectors and by comparing the behavior of the system for these
vectors w i t h the behavior specified by a reference model, the so-called golden specification,
which must be provided manual ly by the developers. However, even extensive functional
verification, like any other bug-hunting technique, can s t i l l miss non- t r iv ia l bugs. There
fore, the use of formal verification is very desirable. Its goal is to rigorously prove that the
system is indeed correct. Tha t is, if no issue is found by a formal method, the system is
guaranteed to conform to the given specification. Unfortunately, formal verification is not
a common part of the current microprocessor design frameworks.

3

Formal methods can be categorized into three basic categories (with not completely
sharp boundaries): theorem proving, static analysis, and model checking. Theorem prov
ing, also called deductive verification, is based on deducing properties of a verified system
from various logical axioms and assumptions about the system. The process often requires
a significant manual intervention. Static analysis attempts to avoid execution of the system
being examined, and instead analyses and gathers approximate (and often conservative)
information about the system from the source code, and thus it may produce many false
alarms. M o d e l checking systematically explores the state space of the examined system.
Unl ike i n static analysis, i f some abstraction is used, it typical ly comes wi th an automated
refinement technique that allows the approach to automatical ly exclude spurious counterex
amples to the verified properties.

A n ideal formal approach should be sound and complete, so an error is reported if and
only if there is a real error in a system, otherwise the system is said to be correct. Moreover,
the approach should be fully automated and terminating. Satisfying these ideal properties
is, however, very costly (or impossible i f a source of unboundness such as parametriza-
t ion is involved) due to the state explosion problem that is usually hit (or due to the
implied undecidabil i ty for the case of unbounded state spaces). To provide efficiency and
high automation, completeness or even soundness are sometimes sacrificed leading to error
detection methods buil t on formal roots. Such a method may be s t i l l quite useful as it
can discover flaws that would stay hidden otherwise, which is most often caused due to
a different way of state space traversal.

A i m of T h e Thesis. In accordance wi th the above, the thesis aims at developing new
verification techniques wi th formal roots w i t h an emphasis on full automation (without
a need to manual ly create models of the environment of the verified system), efficiency, and
abil i ty to deliver continuous feedback, e.g., actual coverage about the verification process.
W i t h i n the thesis, special attention is devoted to the development of formal methods that
check the equivalence of designs on various levels of abstraction. These designs cannot
be behaviorally equivalent (due to their different abstraction level), but they are required
to give mutual ly corresponding results when executing the same input program, which
is a property difficult to achieve. Another considered topic is development of methods
for checking correctness of mechanisms preventing data and control hazards in pipelined
implementations of microprocessors. The above-described techniques should, i n particular,
be opt imized for the class of A S I P s broadly used i n light-weight embedded devices.

A s the first step towards the a im, we focused on automatic checking of correspondence
of instruction-set-architecture (ISA) and register-transfer-level (R T L) descriptions of a mi
croprocessor. The correspondence means that after start ing i n the same in i t i a l states of
resources (such as registers, memories, and devices connected to the microprocessor) and
executing the same program, both models w i l l always end up in states in which the resources
have equivalent contents. The I S A (instruction-accurate, high-level) description captures
the behavior of an instruct ion without consideration of complex parts (such as pipelines,
buses, etc.) that are part of the R T L (cycle-accurate, low-level) specification. The existence
of I S A description i n early phases of processor development is cr i t ica l because it allows one
to generate the previously mentioned tool-chains that are necessary to create software when
its R T L description is s t i l l being designed. Because the software is created over a model
that is different from the one delivered wi th the final product, conformance of these two
models must be guaranteed. The correspondence checking can be also useful if the R T L

4

specification is automatical ly generated from the I S A description to verify the correctness
of such a generator.

Regarding the correspondence checking topic, i n [31, 32], we proposed a novel technique
that copes w i t h this problem, although not taking the influence of complex parts of the
processor (pipelines, buses, etc.) into account. Even w i t h this simplification, one has to deal
w i th the large b i t -wid th of registers and size of memories and register files. The proposed
approach deals w i th this problem by using abstraction and reduction techniques that are
described later i n this thesis. The approach has been experimentally implemented wi th in
Codasip I D E [] and successfully tested i n several case studies. The experiments include
a non- t r iv ia l single-pipelined processor i n which the approach revealed three previously
unknown bugs. The experiments also show that instructions of single-pipelined processors
can be verified wi th in seconds.

Further, we have extended the above-proposed correspondence checking by another
verification phase devoted to the verification of the so-called pipeline hazards. Hazards
in the instruction pipeline are problems caused by inadequate synchronisation of earlier
and later instructions running concurrently through the pipeline that may cause potential
corruption of the data used by the instructions. Three common types of pipeline hazards are
data, control, and structural hazards. In the thesis, we focus on the first two of them. A n
example of such a hazard is the so-called read-after-write (R A W) data hazard. Here, a later-
started instruction uses data supposed to be produced by an earlier-started instruction, but
the earlier instruction has not yet managed to proceed far enough in the pipeline to write
the data into the storage used by the later instruction. The later instruction then stores
a potential ly wrong result of its execution, obtained by dealing wi th the obsolete data.

To address these issues, i n [34, 35, 36, 37], we propose a novel, highly-automated ap
proach for discovering the above-listed kinds of hazards wi th in in-order pipelined instruc
t ion execution. The approach combines (i) static analysis of data paths to detect anomalies
and possible hazards, followed by (ii) a transformation of detected problematic paths to
a parametric system, and (iii) a subsequent formal verification using techniques for formal
verification of the parametric systems. The approach has been implemented i n a tool called
Hades [7] and, i n this thesis, we present promising experimental results applying the tool
to mult iple pipelined microprocessors.

Outline. The rest of the thesis is organized as follows. Chapter 2 gives an overview of
microprocessor architectures together w i th an introduct ion to the former and contempo
rary techniques used during the design of embedded systems. Chapter 3 briefly describes
the most common architecture description languages and frameworks for processor design.
Chapter 4 is an introduct ion to selected topics of formal verification. Chapter 5 provides
an overview of related work i n the field of microprocessor verification. Chapter 6 presents
the m a i n goals of the thesis. Chapter 7 describes our newly proposed technique for au
tomatic generation of abstract models of memories that can be used for efficient formal
verification of hardware designs. Next , Chapter 8 presents a new automated approach buil t
on a formal basis that we use for checking correspondence between an R T L implementa
t ion of a microprocessor and its I S A description. Further, Chapter 9 describes our novel
technique u t i l iz ing static analysis of data paths and formal verification of parameterized
systems i n order to discover flaws caused by improper ly handled pipeline hazards. F ina l ly ,
Chapter 10 concludes the thesis.

5

Chapter 2

Embedded System Design

Since the last decades of the 20th century, one can observe the ever-increasing populari ty
of built-in systems such as (smart) T V s , cell phones, entertainment systems, or network-
connected devices. Th is caused a significant increase i n demand for embedded systems. B y
the embedded system, we typical ly mean a combinat ion of hardware and software together
wi th other mechanical components intended to perform a dedicated function (often) i n real
t ime computing constraints. Embedded systems often reside i n machines that are expected
to run continuously for years without errors and (in certain cases) recover autonomously
if an error occurs. Today, it is very common that a final product consists of several co
operating but indiv idual ly designed embedded systems [107, 91].

A s the capabilities of the embedded systems are s t i l l growing, they are now widely
deployed across mult iple fields. For instance, the use of embedded systems i n the auto
motive industry allowed the implementat ion of complex algorithms (e.g., in fuel injection)
which resulted i n lower emissions and higher fuel efficiency. The higher computing power
of embedded devices also helps i n airplane tracking and navigation systems which now
allow for safe landing even i n adverse weather conditions. Another example comes from
the automated household control industry. Here, the recent development of the so-called
Internet of Things (IoT) enabled smart control of home temperature control systems v ia
connected thermostats. Besides the fact that such a thermostat can be controlled remotely
v i a a mobile application, it can also learn the owner's typica l day-to-day behavior (e.g.,
working hours, weekend routines) and perform heat ing/cooling opt imizat ion i n order to
lower household running costs.

The above-mentioned rapid evolution of the embedded systems has been largely sus
tained by research and innovation i n the field of system design methodologies. The co
operated design of both hardware and software, the so-called hardware/software co-design,
is one of them. Even though it is not a new discipline (as since the era of the first comput
ers, designers have always considered mutual dependence between hardware and software),
the growing complexity of the embedded systems, increasing time-to-market pressure, and
system costs br ing new challenges for the co-design methodology [91]. A significant part
of these challenges can be overcome by design automation. This translates to an increased
demand for development of new co-design tools that would speed up the implementat ion
and verification tasks.

To provide necessary background, the following sections of this chapter describe some of
microprocessor and hardware architectures that are typical ly used i n the embedded devices.
The last section then discusses how the H W / S W co-design methodology can help to find
the most suitable microprocessor for the given task wi th in a short t ime and at a low cost.

(i

2.1 General-Purpose Microprocessors

The first embedded systems based on microprocessors started to appear i n the 1960s.
A well-known example of such a system is A p o l l o Guidance Computer [55]. In early stages,
the embedded systems were produced i n series counting only l imi ted number of units. A n
early example of a mass-produced system is the D-17 guidance computer used for naviga
t ion of Minu teman I intercontinental ball ist ic missiles [88]. Due to the mass production,
the price of microprocessors had fallen which led to their spread across a wide spectrum of
industry sectors. Now, microprocessors can be found in almost any electronic device.

F rom the component point of view, a very basic microprocessor consists of the follow
ing ma in parts: (i) internal memory (register files, cell memory), (ii) an ari thmetic logical
unit (A L U) , and (iii) the control unit [108]. The microprocessor registers can be typical ly
split into one of the following categories: general-purpose registers (G P R s) , index registers
(IRs), and the program counter (P C) . The G P R s are used to store temporary data wi th in
the microprocessor. The IRs modify operand addresses dur ing the run of a program, typ
ically for doing vector and /or array operations. In the case of the V o n Neumann memory
organization, program and computat ional data are commonly stored i n a single memory
whereas, i n the case of the Harvard architecture, the program code is kept separate from
the program data. The P C is an index register that contains the address (location) of the
instruction being executed at the current t ime. The purpose of the A L U is then to perform
arithmetic and logical operations on source data. The data sourcing and their transfer to
the A L U inputs are performed by the control unit which controls flow inside the proces
sor. Besides the data flow, the control unit also contains components buil t around the P C
register which are responsible for loading (i.e., fetch logic) and decoding instructions (i.e.,
instruction decoder).

Each microprocessor can execute a set of instructions. The instruct ion set typical ly
reflects the structural , functional, and operative principles of the processor. The most
influential factors that have an impact on the microprocessor instruct ion set are the follow
ing: (i) processor registers, (ii) size of memory units (data types), (iii) addressing modes,
(iv) memory architecture (e.g., V o n Neumann vs Harvard) , (v) interruption and exception
handling [107, 91].

In the pioneer era of microprocessor development, almost every processor has its own in
struction set. Therefore, programs wri t ten for a part icular microprocessor were only hardly
portable to another processor. Over the last decades several standardized instruction sets
emerged, for instance, i386 [], amd64 [], armv7 [], or r i s c v [115]. The contemporary
general-purpose microprocessors use the same set of instructions, even i f their inner design
is often entirely different. W h i l e s t i l l maintaining the same instruct ion set, modern micro
processors bu i ld on addi t ional concepts, such as instruct ion pipelines, branch prediction,
and/or microinstruct ion architecture to better fulfill performance expectations.

The processor pipel ining means spl i t t ing the overall execution of the instruct ion into
smaller parts named execution stages. This is par t icular ly useful, for example, in a si tuation
when one clock pulse latches a value into a register or begins a calculation and it takes too
much time for the value to be stable at the outputs of the register or for the calculat ion to
complete. A s the number of pipeline stages grows, a given stage can be implemented wi th
simpler circuitry, which may let the processor clock run faster [121].

Almos t a l l pipelined processors do (at least simple) branch prediction because they have
to speculatively fetch the next instruct ion before the current instruct ion is finished [107].
The predict ion is typical ly handled by a circuit known as a branch predictor. Th is part

7

of a processor determines whether a condit ional branch (jump) in the instruct ion flow of
a program is l ikely to be taken or not. Therefore, branch predictors are important i n today's
modern processors to achieve high performance.

The microprogram architecture is a type of microprocessor architecture where high-level
instructions are performed by executing several lower-level instructions (microinstructions).
The microprogram architecture firstly appeared i n [138, 139]. Soon after, the instructions
had become so complex that the use of the so-called microprogram controller became in
evitable. Later, the opposite concept of a reduced instruction set computer (RISC) ap
peared. It used simple instructions and avoided the need for the microprogrammed con
troller. However, it subsequently merged wi th a complete instruction set computer (CISC)
paradigm and microprogrammed controllers started to be used more frequently again. The
main advantages of the microprogrammed architectures are that new (high-level) instruc
tions may be added quickly and that developers can fix certain design errors in the instruc
t ion processing just by changing the underlying microinstructions [108, 91]. In the thesis,
we w i l l further assume that a l l presented models/examples are on the microinstruct ion level
if not stated otherwise.

Taken a l l together, the typica l organization of a simple microprocessor w i th a single
pipeline is shown i n F i g . 2.1. In such a microprocessor, instructions are processed i n the
next described steps. Fi rs t , the instruct ion is loaded from the program memory. Then it is
decoded to an operation code (opcode) and an address section. The opcode identifies the
operation to be performed (e.g., addit ion, mult ipl icat ion) while the address part contains
the operand specification or immediate value. These operands can be registers, memory
addresses, input ports, etc. In the t h i rd stage, which is often called the execution stage,
result values and memory access addresses are calculated according to the opcode. Next , in

8

the memory access stage, the data memory is read and/or wri t ten. F ina l ly , i n the write-back
stage, the registers are wri t ten.

F rom the point of view of embedded systems, the use of general-purpose microprocessors
is advantageous for several reasons. Most of the benefits come from the fact that the micro
processor itself represents a universal calculation unit . Th is allows the same microprocessor
to be used for various computat ion required in different embedded systems. Moreover, ex
tending design wi th addi t ional connections to other parts of the system can be quickly made
using existing solutions which greatly reduces the time required for system design. F ina l ly ,
one of the biggest benefits is a variety of available well-documented and tested software
tools that support program development (such as compilers and debuggers) [91]. Thus,
especially i n the case of lower product ion volumes, the use of a general-purpose micropro
cessor is typical ly less costly than designing an application-specific integrated circuit or an
application-specific instruction-set processor (that are described more i n the next sections).

The universal nature of the general-purpose microprocessors could be, however, also
their main disadvantage. In specialized applications (e.g., video filtering), the general-
purpose microprocessors typical ly have lower performance and higher energy consumption
when compared to specifically crafted circuits or processors.

2.2 Application-Specific Integrated Circuits

The so-called application-specific integrated circuits (ASICs) are the opposite of the univer
sal architectures. They are made for a part icular purpose to meet the challenging design
constraints typical ly given i n terms of performance, energy consumption, and chip size. The
downside is the high cost and time consumption required for their design. Thus, the use
of A S I C is especially viable for mass product ion where development costs are distr ibuted
among a large number of manufactured units [91].

In the 1980s, much effort was invested to find a technology which would be easy and
reliable enough to be pract ical ly used i n application-specific systems. One of the first tech
nologies of this type was Uncommitted Logic Array (U L A) [113] which is a chip consisting of
basic bui lding blocks (i.e., standard logic cells or gateways) that can perform basic calcula
tions. Cus tomiza t ion of the chip is done by modification of a metal mask which connects the
ind iv idua l parts that can be achieved, for instance, by breaking certain connections. A s the
technology evolved, the number of gates on the chip rapidly rose to allow the development
of very complex circuits on a single chip.

The A S I C design process is rather complex. It can be roughly divided into the following
steps. The first step consists of a specification of the system requirements. Then , a model of
the system is created. It is usually described by the language appropriate for system design,
the so-called hardware description language (H D L) such as V H D L [] or Veri log [65]. The
model is verified whether it meets the original requirements (typically using simulation). If
the verification is successful, one can process w i th a synthesis of the A S I C logic. The design
is converted into a set of basic bui ld ing blocks (standard cells or gateways) of the logic array.
These bui lding blocks are then mapped on the logic array. After that, interconnections are
created to form the final design. Next , the A S I C is analyzed whether the final system
works like expected (i.e., whether the specification cri teria are s t i l l met). F inal ly , masks
are fabricated and the manufacturing of the circuit can begin [91].

A l though A S I C s typical ly dominate in the terms of speed and power efficiency, their
bui lding costs are becoming more and more prohibit ive mostly because the design cost and
longer time-to-market period cannot be amortized over mult iple applications.

9

102 Log P E R F O R M A N C E (MOPS) 106

Figure 2.2: Trade-off between flexibil i ty and performance among various components used
in embedded systems. Source: [119].

2.3 Application-Specific Instruction-Set Processors

The instruct ion set of an application-specific instruction-set processor (A S I P) is buil t in
a way so it benefits a specific appl icat ion by the abi l i ty to perform specific operations
through special instructions. In general, components of an A S I P can be divided into two
parts: (i) logic which is able to execute some well-known instruct ion set and (ii) specific
logic, which can be configurable per application, that is accessed v i a newly introduced
instructions [52]. The specific logic can be then placed i n a dedicated component (e.g.,
A S I C) or in the programmable field (such as F P G A) . A s can be seen in F i g . 2.2, the
spl i t t ing of the microprocessor components into these two parts provides a good trade-off
between the flexibil i ty of a general-purpose microprocessor and the A S I C ' s performance
and low power consumption.

Because of the above-mentioned properties, A S I P s provide an attractive approach in
a growing number areas of embedded systems, for example, as an alternative to hardware
accelerators for video coding [59] or signal processing [120].

2.4 Modern Hardware/Software Co-Design

A s was discussed i n the previous sections, the current microprocessor design cycle strives
to find the most suitable microprocessor (often in the form of an A S I P) for the target
application wi th in a short t ime and at a low cost. Due to this time-to-market pressure and
short product life-cycle, a rapid exploration and evaluation of candidate architectures is
an essential need. Hardware description languages (H D L s) , such as V H D L or Veri log, are
commonly used for hardware design, modeling, and simulat ion. However, a microprocessor
specified only in H D L does not include a l l necessary information about assembler syntax,
binary encoding of instructions, etc. Th is is the reason why specially crafted architecture
description languages A D L s were introduced [92].

10

Design

• T
HW/SW

Partitioning

Software Synthesis

• Code
Generation

• Target
Architecture
Model

HW/SW
Co-Simulation

> :

System
Evaluation

System
Evaluation

Figure 2.3: A generic hardware/software co-design methodology. Source: [].

A n A D L together w i th a microprocessor integrated development environment (IDE) and
an appropriate tool-set helps the designer to quickly find a microprocessor that opt imal ly
splits computat ion tasks between hardware and software. A D L s are used to specify proces
sor and memory architectures and to automatical ly generate a software toolki t including
compiler, simulator, assembler, profiler, and debugger. Moreover, there are A D L s that can
describe microprocessors on several levels of abstraction. W i t h such an A D L , it is then
possible to start wr i t ing the target (application) programs even before the low-level (R T L)
description of the processor exists, because much simpler high-level (ISA) description often
suffices to generate compilers, debuggers and simulators.

F i g . 2.3 shows a common exploration co-design flow [110]. Tasks computed by the
system are part i t ioned between hardware and software. The applicat ion programs are
compiled and simulated, and the feedback is used to modify the A D L specification wi th
the goal of finding the best possible architecture for the given set of appl icat ion programs
under various design constraints such as area, power, and performance. Because of the
short t ime that is typical ly allowed for design and implementation, bugs can be introduced
in the microprocessor, and thus the candidate designs have to be verified whether they s t i l l
comply wi th the original specification. The required t ime savings are then accomplished
by automation of these tasks that would otherwise have to be done manual ly (such as the
tool-chain and /or the H D L representation generation).

Since A D L s play a key role i n the modern hardware/software co-design, the next chapter
describes and classifies them i n a more detai l together w i t h their accompanying tools.

J

Hardware Synthesis

• Architecture
Selection

• Custom Data
Paths

• Architecture
Selection

• Custom Data
Paths

11

Chapter 3

Architecture Description
Languages

This chapter describes the expressive power of the contemporary A D L s together w i th micro
processor development frameworks that are based on them. Further, the chapter also points
out possible verification options offered by the frameworks. Please note that the following
list intentionally does not represent an exhausting overview of the A D L s and frameworks,
but it should give the reader an idea about the environment i n which the proposed verifi
cation methods are supposed to be integrated. Moreover, since the verification techniques
proposed i n the thesis a i m to be automated as much as possible, it is also important to
observe which information is usually part of the microprocessor descriptions and what k ind
of information would have to be provided externally.

A s it is discussed in [92, 67, 93], hardware A D L s can be divided into three categories:
(i) structure-oriented, (ii) instruction-set-oriented, and (iii) mixed. The level of abstraction
in structure-oriented A D L s is close to the R T L . Such a description typical ly misses high-level
information. Therefore, extraction of, e.g., an assembly language is a quite hard task. O n
the opposite side, instruction-set-oriented A D L s are close to the I S A level. They lack cycle-
accurate information, and thus they usually cannot be used for hardware synthesis. They
are mainly manufactured for use i n retargetable compilers which are compilers/decompilers
that are designed to be relatively easy to modify and to generate/decompile code for various
instruction-set architectures. M i x e d A D L s t ry to overlap the gap between the two former
approaches by adding the missing pieces of information.

3.1 Structure-Oriented ADLs

The structural A D L s capture the structure in terms of architectural components and their
connectivity. St ructura l A D L s enable flexible and precise architecture descriptions. The
same description can be used for hardware synthesis, test generation, simulation, and compi
lat ion. However, it is difficult to extract the instruct ion set without restrictions on a descrip
t ion style. Therefore, the structural A D L s t radi t ional ly find their use more for hardware
generation than in compilers [92]. In this Section, M I M O L A [80] A D L is briefly described.

3.1.1 M I M O L A

The machine-independent microprogramming language (M I M O L A) is one of the first lan
guages specifically designed for synthesis and not just for the hardware simulat ion. This

12

Figure 3.1 A M I M O L A example showing the description of a mult ifunctional A L U module.
Source: [80].

MODULE ALU(IN o p e r a t i o n : (1:0);
IN a: (31:0)
IN b: (31:0)
OUT r e s u l t : (31:0);)

CONBEGIN
r e s u l t <- CASE o p e r a t i o n OF

a + b;
a - b;
a AND b;
b;

END;
CONEND;

approach avoided t ime-consuming considerations caused by differences between synthesis
and simulation semantics (i.e., checking whether the simulated design is wi th in a synthe-
sizable subset). The A D L - d r i v e n synthesis used in MIMOLA Software System (MSS) was
among the first approaches of its k ind .

The major advantage of M I M O L A is that the same description can be used for synthesis,
simulation, test generation, and compilat ion. A toolchain including a hardware synthesizer,
a code generator, a self-test program compiler, a functional simulator, and an R T L sim
ulator were a l l developed based on the M I M O L A language []. The description of the
microprocessor i n M I M O L A A D L consists of the following three parts: (i) the a lgori thm to
be compiled (application program), (ii) the target processor model, and (iii) the addi t ional
linkage and transformation rules.

The algori thmic part of a processor description i n M I M O L A is an extension of P A S
C A L . Unl ike other high-level languages (e.g., C or P A S C A L) , it allows references to physical
registers and memories. It also allows usage of hardware components i n the form of pro
cedure calls. For example, i f the processor description contains a component named ALU
(arithmetical-logical unit) , programmers can write segments like result := ALU (op, a,
b) to get the result of the mathematical operation given by the operation op which is
performed by the mult ifunctional ALU component.

The target processor model is then described using modules and connections. Modules
describe the behavior of hardware components. In M I M O L A , each module is specified
by its port interface and its behavior. S imi lar ly to V H D L , several predefined, pr imit ive
operators exist. Example 3.1 shows the description of a mult i funct ional A L U module.
In the example, the CONBEGIN/CONEND construct denotes a set of concurrent assignments.
W i t h i n the assignment block, a condit ional assignment to output port result is specified,
which depends on the two-bit control input operation. The microprocessor structure is
then formed by connecting ports of module instances. For example, a M I M O L A description
shown i n F i g . 3.2 connects two modules: (i) the arithmetic-logic unit ALU and (ii) the
accumulator ACC.

Final ly , the linkage information is used by the compiler to locate important modules
such as program counter and instruct ion memory. The code segment which is shown in
F i g . 3.3 specifies the program counter and instruct ion memory locations.

13

Figure 3.2 M I M O L A description connecting two modules. Source: [80].

CONNECTIONS A L U . r e s u l t -> A C C . i n p u t
A C C . o u t p u t -> ALU.a

Figure 3.3 M I M O L A linkage segment specifies the program counter and instruction mem
ory locations. Source: [80].

LOCATION_FOR_PROGRAM_COUNTER PC;
LOCATION_FOR_INSTRUCTIONS INSTR_MEMORY [0 . . 1 0 2 3] ;

F rom the verification point of view, the M S S tools rely solely on functional verification
techniques based on simulat ion which are more deeply described i n Chapter 5.

3.2 Instruction-Set-Oriented ADLs

The problem of the structure-oriented A D L S wi th the extraction of the instruct ion set
can be avoided by abstracting behavioral information away from the structural details.
Instruction-set-oriented (sometimes also named behavioral) A D L s expl ici t ly specify the
instruction semantics and ignore detailed hardware structures. This typical ly leads to
a si tuation when there is a correspondence between instruction-set-oriented A D L s and the
instruct ion set reference manual.

Typical ly , the instruction-set-oriented languages describe the microprocessor's instruc
t ion set i n a hierarchical way using, for instance, at tr ibute grammars [106]. This property
simplifies the instruct ion set description by sharing the common components between op
erations. However, the capabilities of these models are l imi ted due to the lack of detailed
pipeline and t iming information. Thus, it is not possible to generate cycle-accurate simula
tors without certain assumptions regarding control behavior. Due to the lack of structural
details i n instruction-set-oriented A D L S , it is also not possible to perform any resource-
based scheduling [92, 67]. Furthermore, without the abi l i ty to capture the low-level infor
mation, it is also very difficult to deploy verification techniques that are based on a gradual
refinement of microprocessor description.

In this section, we w i l l describe two instruction-set-oriented A D L s : I S D L [] and
T I E [117].

3.2.1 I S D L

The Instruction Set Description Language (ISDL) [54] was designed to be an A D L for
compiler retargetability, specially focused on microprocessors w i th very large instruction
words (V L I W s) . I S D L is a purely instruction-set-oriented language based on an at t r ibuted
grammar which is pr imar i ly used to describe the instruct ion set of processor architectures.
Thus, without addi t ional assumptions, the I S D L tools (such as G e n S i m simulator generator)
are not capable of extracting the correct behavior for pipelined architectures w i th complex
execution schemes that include, for instance, cancellation of par t ia l ly executed instructions
(pipeline clearing), or multi-cycle instructions of variable length [53].

14

Figure 3.4 Example of an instruct ion set description in I S D L .

S e c t i o n Format
M a i n = OPCODE[8];

S e c t i o n G l o b a l _ D e f i n i t i o n s
// A s s e m b l y T o k e n Type V a l u e
Token X [0 . . 1] XR i v a l { y y l v a l . i v a l = y y t e x t [l] - ' 0 ' ; };
Token Y [0 . . 1] YR i v a l { y y l v a l . i v a l = y y t e x t [l] - ' 0 ' ; };
Token ACC AR i v a l { };

// Type A s s e m b l y A c t i o n
N o n t e r m i n a l i v a l XYSRC: XR { $$ = 2 * XR; }

YR { $$ = 2 * YR + 1; };
N o n t e r m i n a l i v a l ACC: AR { $$ = 1; }

S e c t i o n Storage
R e g i s t e r X0 = 0x8; R e g i s t e r X I = 0x8; R e g i s t e r Y0 = 0x8;
R e g i s t e r Y l = 0x8; R e g i s t e r ACC = 0x8

S e c t i o n Assembly
F i e l d M a i n :

// A s s e m b l y // B i n a r y
ADD XYSRC, ACC { Main.OPCODE = 0x01 | (ACC<<3) | (XYSRC<<4); }

{ ACC <- ACC + XYSRC; } // RTL O p e r a t i o n
{ c y c l e = 2; s i z e = 1; } // C o s t s
{ l a t e n c y = 1; } // T i m i n g

S e c t i o n C o n s t r a i n t s
~ (REP *) & ([1] ADD *, *)

I S D L description of the microprocessor consists of mainly five sections: (i) instruc
t ion word format, (ii) global definitions, (iii) storage resources, (iv) assembly syntax and
constraints, and (v) an opt imizat ion information section.

The instruct ion word is separated into mult iple fields each containing one or more sub-
fields. The b i twid th of each sub-field is also provided. The instruct ion word is assembled
by concatenating a l l the sub-fields i n the order specified i n this section. F i g . 3.4 shows an
example of the format section for a simple instruct ion w i t h just one field Main w i th a single
sub-field OPCODE. The to ta l length of the instruction word i n the example is 8 bits.

Next , F i g . 3.4 also demonstrates I S D L ' s global definition section. Here, pr imit ive and
complex operands of the microprocessor's assembly language are defined. E a c h operand
definition consists of the keyword Token, the syntax of the token as it appears in assembly,
a symbolic name for the token, the type of value returned by the token, and a piece of
Lex [] dependent code that returns the appropriate token value [54]. For instance, in
F i g . 3.4, the first token has a symbolic name XR whose value is an integer. The assembly
syntax allowed is either XO, or X I , and the values returned are 0 or 1 respectively.

15

The complex operands are then defined v i a non-terminals which have several purposes.
Fi rs t , syntactically unrelated tokens can be grouped together into a non-terminal for con
venience. For instance, if there is a large number of possible alternatives in an instruct ion
(e.g., several addressing modes), they can be factored out to a non-terminal. Next , non
terminals can also define new grammar rules, not necessarily related to any instruction.
Final ly , the action por t ion of non-terminals allows the inclusion of arbi trary C code to
be executed along wi th every rule. The non-terminal definitions consist of the keyword
Nonterminal, the type of the returned value, a symbolic name as it appears in the as
sembly, and an action that describes the possible token or non-terminal combinations and
the return value associated wi th each. For example, i n F i g . 3.4, the non-terminal w i th the
symbolic name XYSRC returns value 1 and 3 for registers YO and Yl, respectively.

The storage section lists a l l storage resources visible to the programmer. It lists the
names and sizes of the memory, the register files, and the special registers. This section is
used by the compiler to determine the available resources and how they should be used.

The assembly syntax section is then split into subsections (per each field defined in
format section) corresponding to the separate operations that can be performed in parallel
wi th in a single instruction. A n instance of the assembly section shown i n F i g . 3.4 as well.
One can see, that each operation consists of assembly mnemonic, a binary representation
of instruction, the effect of the operation on storages, operations costs (such as execution
t ime and code size), and t iming information (e.g., because of pipelining).

The assembly syntax section describes a number of fields that can be generally exe
cuted i n parallel . However, there are certain combinations of operations that may not be
executable by the hardware. The constraints section is used to make these combinations
visible to the compiler so that the compiler can avoid generating such il legal operation
combinations. The constraints are described as a set of Boolean rules, a l l of which must
be satisfied for an instruction to be val id . F i g . 3.4 contains an example that shows how
to describe the constraint that the instruction ADD cannot directly follow instruct ion REP.
The [1] indicates a t ime shift of one instruct ion fetch for the REP instruction. The "~" is
a symbol for N O T and "&" is for logical A N D .

3.2.2 T I E

The Tensilica Instruction Extension (TIE) [117] is an A D L language aimed at customization
of the functionality of R I S C Xtensa processors [30] w i th in Tensil ica Software Development
Toolki t (S D K) [28]. The customization is given by defining custom execution units, register
files, I / O interfaces, load/store instructions, and multi-issue instructions which are synthe
sized into configurable hardware components. The T I E language syntax is a mixture of the
Veri log hardware description and the C programming language. A designer does need to
worry about pipel ining, control/bypass logic, and interfacing to other processor modules as
the instruction extensions are integrated direct ly into the processor pipeline by the S D K . In
other words, the T I E language is used only for adding instruction extensions and datapaths
to a processor pipeline as it is not a general-purpose hardware design language.

The T I E language optimizes computat ional strength of the processor in the following
ways. One can (i) create new instructions to increase processor performance and efficiency
This is achieved by defining the exact data wid th needed for the appl icat ion instead of
using an impl ic i t s tandard size transfer bandwidth , or by merging serial operations into
a single instruct ion that can be issued back-to-back to achieve single cycle throughput.
Further, one may also (ii) uti l ize data-level parallel ism by creating single instruction mul-

16

Figure 3.5 Defini t ion of the T I E instruct ion addshift. Source: [29].

o p e r a t i o n a d d s h i f t {out AR a v g , i n AR A, i n AR B} {}
{

a s s i g n a v g = (A + B) >> 1;
}

Figure 3.6 Op t imiza t ion of computat ion using a custom instruction. Source: [29].

// F o r - l o o p i n t h e C l a n g u a g e
f o r (unsigned i n t i = 0; i < N; i++) {

c [i] = (a [i] + b [i]) / 2; // <<< t a r g e t t o o p t i m i z e
}

// C o m p i l e d a s s e m b l y :
// * w i t h o u t o p t i m i z a t i o n s * w i t h o p t i m i z a t i o n

add.n a 9 , a l l , a l 0 a d d s h i f t a l 2 , a l 0 , a 8
s r l i a 9 , a 9 , 1 ...

tiple data (S I M D) operations, and perform the same operation across mult iple elements.
Next , (iii) instruction-level parallel ism can be used as well by creating mult i-operation
V L I W instructions wi th variable slot widths. Final ly , (iv) data bandwidth connecting R T L
blocks, memories, or other processors can be increased without going through the system
bus, reducing I / O bottlenecks and improving data throughput.

In order to demonstrate the use of the T I E language, assume the code shown in F i g . 3.5
that describes a new instruction named addshift. F i g . 3.6 then shows the pract ical use
of the first of the above-mentioned opt imizat ion approaches, that is, the merge of several
instructions increases performance by combining mult iple operations into a single instruc
t ion. The C code i n F i g . 3.6 contains a for-loop wi th an inner-loop code of c [i] = (a[i] +
b [i]) / 2. Compi l i ng this code on the Xtensa processor without any custom instructions
results i n two sequentially executed instructions. The first operation, add.n, calculates the
two's complement 32-bit sum. The second operation, s r l i , shifts the contents by a con
stant amount encoded i n the instruction word right (inserting zeros on the left). Each
iteration of the for-loop executes i n two cycles. W i t h the T I E language, we can merge the
two operations into a single new operation called addshift that performs both the add and
shift operations at the same time. Now, compil ing the for-loop using the new fused opera
t ion, the assembly code shows the fusion operation addshift that executes only i n a single
cycle. The T I E compiler automatical ly generates an opcode for the addshift operation,
and a l l software tools are automatical ly updated to understand the function and t iming of
the newly added addshift operation.

A s we have seen, the T I E language allows the designer to perform l imi ted microprocessor
customizations by ut i l iz ing configurable hardware components. In such a way, for instance,
a new instruct ion wi th special semantics can be defined. However, the T I E language is not
capable to perform any general s tructural changes as the processor architecture is impl ic i t ly
bound to the one used i n Xtensa processor families.

17

Figure 3.7 Example of instruct ion description in the n M L language.

op a l u _ i n s t r u c t i o n (o p e r a t i o n : a l u _ o p e r a t i o n , s r c : s r c _ t , d s t : d s t _ t)
{

a c t i o n {
o p _ s r c = s r c ;
o p _ d s t = d s t ;
o p e r a t i o n . a c t i o n ;
d s t = o p _ d s t ;

syntax : o p e r a t i o n " " d s t " , " s r c ;
image : o p e r a t i o n : : d s t : : s r c ;

}
op a l u _ o p e r a t i o n = a d d | sub;
op a d d ()
{

a c t i o n {
o p _ d s t = o p _ d s t + o p _ s r c ;

The mixed A D L s capture both, the structure and behavior of the architecture. Th is section
further focuses on two examples of the mixed A D L s : n M L and C o d A L .

3.3.1 n M L

The nML language [46, 79, 99, 109] is a high-level definition language originally designed
for instruct ion set descriptions. Thus, it offers the abstraction level comparable to the
programmer's manual of a given processor. The main idea behind the design of the n M L
language builds on the fact that several instructions may share common properties. Ideal
n M L descriptions are compact and simple i f the shared properties are properly re-used.
A hierarchical scheme is used to describe instruct ion sets. The instructions are the topmost
elements in the hierarchy. The intermediate elements of the hierarchy are the so-called par
tial instructions (P i s) . The relationship between elements can be established using AND and
OR composit ion rules. The AND-rule groups several P i s into a larger P I while the OR-rule
enumerates a set of alternatives for one P I . Therefore, instruct ion definitions in n M L can
be i n the form of an and/or tree where each possible derivation of the tree corresponds
to an actual instruction. In F i g . 3.7, the definition of alu_instruction joins three P i s
wi th the AND-rule: alu_operation, src_t, and dst_t. The first P I , alu_operation, uses
the OR-rule to describe the val id options for A L U actions, that is, add or sub. The num
ber of a l l possible derivations of alu_instruction is given by the product of the size of
alu_operation, src_t, and dst_t. The shared behavior of a l l these options is defined in
the action at tr ibute of alu_instruction. Each option for alu_operation should have its
action at tr ibute defined as its specific behavior, which is referred by the operation. action

syntax
image

"add
OxA;

I!

3.3 Mixed ADLs

18

Q SDK generation

© Architectural optimization

Hardware generation

Verification

User-defined
algorithm

Architectural optimization
and software development Q

I Optimizing C/C++ compiler |

Asm Link

Debugger 1 Instruction
& profiler 1 set simulator

Virtual prototype

Verification

Test program generator

Figure 3.8: A n overview of an A S I P Designer tool flow. Source: [125].

command. In the example, the action description is given for add operation. B ina ry and
assembly syntax can also be specified in the same hierarchical manner using image and
syntax attributes.

The n M L language is also capable of capturing the structural information of the mi
croprocessor. The n M L language supports three types of storages: (i) R A M , (ii) register,
and (iii) t ransitory storage. W h i l e the R A M and register storages are visible directly to the
instruction set, the transitory storage refers to machine states that are retained only for the
l imi ted number of cycles, for instance, values on buses and latches. Computat ions have no
delay in the n M L t iming model — only storage units have one. Instruction delay slots are
modeled by introducing storage units as pipeline registers. The results of the computat ion
are then propagated through the registers according to the description i n the behavioral
specification.

The n M L models constraints between operations by enumerating a l l the val id instruction
combinations, and thus such an enumeration may render n M L descriptions which are very
long. More complicated constraints, which often appear i n D S P s associated wi th irregular
instruction-level parallel ism, or in V L I W processors w i th mult iple issue slots, are hard to
model w i th n M L . For example, n M L cannot model the constraint that instruct ion I\ cannot
directly follow instruction IQ [92, 58].

The n M L language has been used by several H D L code generators such as C B C [],
St ructural S im-HS [11], and Chess [79]. A n example of the instruct ion set simulators that
bu i ld on the n M L language are then S i g h / S i m [], Behavioral S im-HS [], and Check
ers [51, 125]. The Behavioral and Structural S im-HS are together provided wi th in Sim-HS
framework allowing the transformation of microprocessor description to the corresponding
Veri log models that are suitable for s imulat ion and synthesis, respectively. However, be-

19

Figure 3.9 Example of resource description in the C o d A L language.

// P r o g r a m C o u n t e r
program_counter b i t [8] p c ;
// G e n e r a l P u r p o s e 4b R e g i s t e r s - r O . . r 3
a r c h r e g i s t e r b i t [8] r e g s [4] { .dataport = {2, 1} };
// P r o g r a m Memory
memory b i t [8] prog_mem {

.dataport = {1, 0}, . l a u = 8, .endianess = b i g ,

. s i z e = 256, . f l a g s = { r , x } , . l a t e n c y = {0, 1}
};
// Memory M a p p i n g f o r P r o g r a m Memory
memorymapping defaultmap { 0..255 = p r o g _ m e m [7 . . 0] ; };
// W i r e s
s i g n a l b i t [l] jmp_en;
s i g n a l b i t [2] o p c o d e , s r c A , s r c B , d s t , a l u _ o p ;
s i g n a l b i t [4] imm, a d d r ;
s i g n a l b i t [8] mem, r e g A , r e g B ;

cause of the lack of low-level information, a more opt imized (e.g., deeply pipelined) synthe-
sizable output cannot be generated. The problem wi th the lack of the low-level information
in the n M L language was addressed by several language vendor-specific extensions allowing
more precise modeling of pipelines and V L I W instructions. These extensions push the n M L
language more towards the group of mixed A D L s .

One of the significantly extended variants of the n M L language is now adopted by
ASIP Designer [125] which builds on an updated version of the previously mentioned
Chess/Checkers [79, 51] environments. The n M L version used i n A S I P Designer provides
options to expose the exact processor's resource and pipeline ut i l iza t ion. Th is accurate
structural and t iming description stands at the basis of the s imulat ion and hardware gener
ation techniques used in the A S I P Designer too l suite (schematically visualized in F i g . 3.8).
The n M L hazard rules provide efficient solutions for pipeline conflicts, either by stal l ing or
forwarding, and their compact notat ion gives the designer full control over handling of the
pipeline hazards. The generated pipeline control logic that avoids the hazards is supposed
to be correct by construction. The designer can then tweak the hardware-software trade-off
while being relieved from the detailed hardware implementat ion of pipeline interlocking and
forwarding paths. The A S I P Designer can also co-operate w i th functional verification tools,
for instance, V C S [126], static analyzers, e.g., SpyGlass L i n t [127], and formal verifiers such
as V C Formal [128].

3.3.2 C o d A L

C o d A L is a language used by Codasip [] which is an environment a iming at rapid
processor development. In Codasip, each processor is described by two C o d A L models,
the instruction-accurate (IA) model, and the cycle-accurate (C A) model . The I A model
describes the syntax and semantics of the instructions and their functional behavior without
any micro-architectural details. O n the other hand, the C A model then describes micro
architectural details such as pipelines, decoding, t iming, etc.

20

Golden
Specificatic

IA Simulator <"

Design Under
Verif ication

C A Simulator

Disassembler
Synthesis

Figure 3.11: Processor design flow in Codasip.

The C o d A L descriptions are composed of two main types of definitions: (i) resources, (ii)
instructions and events. The resource description captures hardware elements of a given pro
cessor. These may involve the definition of registers, memories, and system buses together
wi th their mappings. Further, the resource description can also include other elements such
as signals (wires) or pipelines. F i g . 3.9 demonstrates resources commonly present in almost
every processor. The example contains a program counter pc (8bit), a memory resource
prog_mem to store the program code (256 x 8bit), and default mapping of the program
memory to the processor address space. Further, it also contains a definition of architec
tura l ly visible register file regs (4 x 8bit) and definition of globally accessible signals (i.e.,
equivalents of wires i n H D L s) .

Next , F i g . 3.10 shows an example of an instruct ion and event description at the I A
level. Th is part contains a definition of the instruct ion set instr_set accompanied by the
description of operand r which represent access to the previously defined regs resource.
Similarly, as i n the case of n M L , the binary and assembly syntax, as well as semantic actions,
can also be specified i n a hierarchical manner using assembler, binary, semantics sections.
The example also includes special events that must be involved in each processor description

- namely, (i) the reset event that describes start up state of the processor, (ii) the halt
event describing shutdown actions of the processor, and (iii) the main event describing an
assembly grammar entry point and actions that the processor should do at every clock cycle.
The main event defines the top-level element of the processor's instruct ion set in start
section. Moreover, the decoders section holds information about decoding instructions
using the instruct ion decoder. F ina l ly , the semantics section describes computat ion done
in each clock cycle. A s can be seen i n this I A example, the whole processing of each
instruction is done in just one cycle. However, for C A models, the main event would
typical ly contain activations of pipeline stages, interrupt checking, etc.

F rom the I A and C A C o d A L models, Codasip tools can automatical ly generate S D K
tools (assembler, disassembler, linker, C-compiler, simulators, profilers, debuggers) [64, 130,
111, 110, 112]. F i g . 3.11 depicts the common processor design flow i n Codasip. Typical ly ,
the I A model is available significantly sooner than the C A one. Th is model allows the com
piler tool-chain and the I A simulator to be generated. These tools then give programmers
an opportuni ty to start early wi th wr i t ing programs for the instruct ion set given by the
I A model . W h e n the development of the C A model is finished and ready for hardware
synthesis, the I A model can serve as the so-called golden specification for processor verifica-

21

Figure 3.10 Example of instruction-accurate description of instructions and events i n the
C o d A L architecture description language.

element r r e p r e s e n t s r e g s {
assembler { " r " ~ i d x = u n s i g n e d };
b i n a r y { i d x = 0 b [2] };
r e t u r n { i d x ; };

}

element i n s t r _ a d d {
use r as d s t , s r c A , s r c B ;
assembler { "ADD" d s t "," s r c A "," s r c B };
b i n a r y { 0x1:2 d s t s r c A s r c B };
semantics {

a l u _ o p = ALU_ADD;
jmp_en = FA L S E ;

};

s e t i n s t r _ s e t = i n s t r _ a d d /* ... */;

event m a i n {
use i n s t r u c t i o n s ;
s t a r t { { i n s t r _ s e t ; } };
decoders (pc) { { i n s t r _ s e t (o p c o d e) ; } };
semantics {

// F e t c h i n s t r u c t i o n
mem = p r o g _ m e m [p c] ;
// S p l i t i n s t r u c t i o n i n t o o p c o d e a n d o p e r a n d p a r t s
o p c o d e = (mem >> 6) & 0x3;
s r c A = (mem >> 4) & 0 x 3 ;
s r c B = (mem >> 2) & 0 x 3 ;
d s t = (mem) & 0 x 3 ;
// . . .
// Get d a t a f r o m r e g i s t e r s
r e g A = r e g s [s r c A] ;
r e g B = r e g s [s r c B] ;
// P e r f o r m w r i t e - b a c k
s w i t c h (a l u _ o p) {

case ALU_ADD: r e g s [d s t] = r e g A + r e g B ; break;
// . . .

event r e s e t { semantics { p c = 0x00; }; }

event h a l t { }

22

t ion. A s it is discussed i n [142], to assure mutual equivalency between I A and C A models,
Codasip uses an U V M - b a s e d functional verification.

23

Chapter 4

Introduction to Selected Areas of
Formal Verification

In this chapter, we w i l l introduce basic notions of formal verification methods and concepts
used later i n the thesis. We recall that verification is a process that checks whether a system
is correct w i th respect to a provided specification. A s opposed to testing and bug-hunting
techniques which a im at detection of flaws against the specification, the goal of formal
verification is to formally (mathematically) prove that the system is indeed correct. That
is, i f no issue is found by a formal method, it is guaranteed that the system conforms to
the given specification. Ideally, a formal approach should be sound and complete which
means that an error is reported if and only i f there is a real error in a system, otherwise
the system is said to be correct. However, meeting these properties can be costly (or
impossible to achieve) and, therefore, to provide efficiency and automation, completeness
and/or soundness are sometimes compromised which leads to error detection methods wi th
formal roots.

In the rest of this chapter, we w i l l formally introduce concepts that w i l l be used through
out the thesis, i n particular, model checking, static analysis, and S A T / S M T solvers.

4.1 Preliminaries

Throughout this thesis, the standard notion of formal languages is used according to their
definition as it is given i n [77, 60, 89].

Definition 1. A n alphabet is defined as a non-empty finite set of symbols.

Definition 2. A word over an alphabet E is recursively defined as follows:

• the empty word e is a word over the alphabet E ,

• if x is a word over E and a £ E , then xa is also a word over E .

We denote the set of a l l words over an alphabet E as E * . B y concatenation one can always
combine two words x, y over E to form a new word xy.

Definition 3. A formal language L is defined as any subset of E * . Next , given formal
languages L\ and L2 over E , we define concatenation L\ • L2 of formal languages as the set
{xy I x G L\ A y G L2} . Moreover, given a formal language L, we define the iteration L*,
resp. the positive iteration L+, of the language L as follows:

24

• L°

• L L • L n _ 1 for n > 1

U L n
n>0

• L + U Ln.
n>\

Further, let us define a significant class of the formal languages known for its many practical
applications.

Definition 4. A regular set over an alphabet E is recursively defined as follows:

• 0 is a regular set over E ,

• {e} is a regular set over E ,

• for a l l a G E , {a} is a regular set over E ,

• if P and Q are regular sets over E , then P U Q, P • Q, P* are also regular sets over E .

The class of regular sets is thus the smallest language class that contains 0, {e}, {a} for a l l
symbols a G E , and it is closed wi th respect to union, concatenation, and iteration.

M o d e l checking [9] is an algori thmic approach of checking whether a given system satis
fies a given property through a systematic exploration of the state space of the system.
Compared to other formal approaches (such as static analysis or theorem proving), model
checkers are (usually) highly automated (for a closed system), fairly general, and capable
of providing counter-examples. Often, a C E G A R loop [] is supported allowing for auto
mated refinement of the used abstraction i n order to exclude spurious counter-examples.
One of the major disadvantages of model checkers is the so-called space-explosion problem
which needs to be typical ly mit igated by efficient storage techniques (such as B D D s [26, 22]),
automata (as i n [17, 16]), state-space reductions (for example, the so-called par t ia l order
reduction []), or (more recently) the integration of S A T solvers in model checking engines
as i n , for instance, I C 3 / P D R [18, 45]. Another significant disadvantage is that a closed
system is required, i.e., the verified system must be joined w i t h a model of its environment
which may require a lot of non- t r iv ia l labour.

The following sections briefly describe relevant model checking concepts that are later
used in this thesis.

4.2.1 Transition Systems

In this section, a notion of transition systems is defined in the same way as it described
in [9]. A transi t ion system is a mathematical structure consisting of two parts, (i) a set of
configurations and (ii) a binary relation on this set.

Definition 5. A transition system T is a pair of the form T = (C , ̂ ->) where C is a set of
configurations and ^ C C x C i s a binary transition relation.

4.2 Model Checking

25

The purpose of t ransi t ion systems is to describe behaviors which we define as certain se
quences of configurations.

Definition 6. A transi t ion system T = (C , generates a set S(T) of sequences defined
as follows: (i) the finite sequence co,...,cn (for n > 0) belongs to S(T) i f CQ G C and
Ci C j + i for a l l 0 < i < n, (ii) the infinite sequence C o , . . . , c n , . . . belongs to S(T) if CQ G C
and Ci Cj+i for a l l 0 < i .

In most applications of t ransi t ion systems, we are only interested in configurations of the
transi t ion system that are reachable from given in i t i a l configurations.

Definition 7. G iven a transi t ion system T = (C , and a set I C C of initial configu
rations, we say that a configuration c n G C , n > 0, is reachable i f there exists a sequence
c o , . . . , c„ G S(T) such that Co G / .

4.2.2 Parameterized Systems

In this thesis, we w i l l work wi th a common notion (used, e.g., i n [41, 102, 3]) of a parame
terized system operating on a linear topology where processes may perform local transitions
or universal ly/existential ly guarded transitions.

Definition 8. A parameterized system is a pair P = (Q , A) where Q is a finite set of local
states of a process and A is a set of t ransi t ion rules over Q. A transi t ion rule is either
local or global. A local transition rule is of the form q —>• q' G A , q,q' G Q. A global
transition rule is then of the form Q D : G \= q —>• q' G A where Q G {V, 3}, o G {«—, —>•,
G C Q, and g, g' G Q wi th a part " Q 0 : G " being referred as transition guard. The global
rule can be applied only if its t ransi t ion guard is satisfied. For example, the meaning of
the guard 3 0 : G is "for each state g G Q from the set G, there should be at least one
process i n the linear topology including the current one so that the process is in the state
g". Formally, the guard 3 0 : G is satisfied i n the configuration q\... qi... qn by the i - th
process iff G G 31 < j < n: qj = q. Similarly, the meaning of the guard 3<_: G is "for
each state q from the set G, there should be at least one process to the left of the current
one so that the process is i n the state q". Formally, the guard 3<_: G is satisfied i n the
configuration q\... qi... qn by the i - th process iff G G 31 < j < i: qj = q. The meaning
of the other guards is defined analogically.

A parameterized system P = (Q, A) induces an infinite t ransi t ion system T = (C ,
whose configurations C are finite non-empty words over Q, i.e., elements from the set Q+.
If we use c[i] to denote the state of the i t h process wi th in the configuration c G C , the
transi t ion relation then contains a transi t ion c <—> c' w i th c[i] = s, c'[i] = s', c[j] = c'[j]
for a l l j: j ^ i iff either (i) A contains a local rule s —> s', or (ii) A contains a global rule
Qo : G \= s —>• s', and one of the following conditions is satisfied:

• Q = 3 A o = o and Vg G G: 31 < j < \c\: c[j] = q,

• Q = 3 A o = f- and Vg G G: 31 < j < i: c[j] = g,

• Q = 3 A o = - » and V<? G G: 3 i < j < |c | : c[j] = q,

• Q = V A o = and V I < j < |c | : c[j] G G ,

• Q = \ / A o = f - and V I < j < z: c[j] G G,

26

• Q = V A o = ->• and Vz < j < \c\: c[j] G G.

A n instance of the reachability problem is defined by a parameterized system P = (Q, A) ,
a regular set / C Q+ of in i t i a l configurations, and a set Bad C Q+ of bad configurations. In
particular, we w i l l define Bad as the upward closure of a finite set B C Q+ of min ima l bad
configurations. Th is is, Bad = {c £ Q+ \ 3b G B: b C c} where C is the usual sub-word
relation (i.e., it C si...sn u = Sil...Sik for some 1 < i\ < ... < ik < n, 0 < k < n).
Now, let R C Q+ denote the set of a l l reachable configurations of the transi t ion system
T = (C , "—)•). We say that the system P is safe wrt / and Bad iff no bad configuration is
reachable, i.e., R n Bad = 0.

4.2.3 Regular Mode l Checking

Regular model checking (R M C) , firstly described i n [71] and [], is a uniform framework
for analyzing various classes of parameterized and infinite-state systems. The regular model
checking framework [] represents a transi t ion system as follows:

• A configuration (state) of the system is a word over an alphabet E .

• The set of in i t i a l configurations is a regular set over E .

• The t ransi t ion relation is a regularity-preserving re la t ion 1 on E , often (but not always)
required to be regular and length-preserving. It is typica l ly represented by a finite-
state transducer over (E x E) , which accepts a l l words (a i , b\) • • • (a n , bn) such that
(ai • • • an, b\ • • • bn) is in the transi t ion re la t ion. 2

More formally, a length-preserving finite-state transducer T over E is a tuple (Q, s,5, F)
where Q is the set of states, s G Q is the in i t i a l state, 5: (Q x S x E x Q is the transi t ion
function, and F C Q is the set of accepting states. A transducer configuration is a pair
(q,w) where q G Q, w G (E x E) * . G iven transducer configurations (qi,aw) and (q2,w),
a G E x E , we say that the transducer makes a transit ion from (qi,aw) to (q2,w) denoted
(qi,aw) h (q2,w), iff q2 G d(qi,a). The language of T is the language {w G (E x E) * |
(s, w) h* (/ , e) A / G .F} where h* is the transitive closure of the relation h defined i n the
standard way. We use L(T) to denote the language of T. The transducer T induces a regular
relation R on words over E . More precisely, for words x = a\ • • • an and y = b\ • • • bn G E * ,
we have (x, y) G R if (a i , 6i) • • • (a„ , 6„) G L(T). The idea is that i? is used to represent the
transi t ion relation on the configurations of the system (each of which is a word i n E) .

W h e n using R M C , a safety verification task is formulated as follows: G iven a regular set
/ of in i t i a l configurations, a regularity-preserving relation R C E * x E * , and a regular set
of bad configurations B C E * , is it the case that R*(I) n B = 0? Due to the undecidabil i ty
issues, the question may not be solvable i n general. It is solvable for length-preserving
systems, but even there one may hit a problem in the form of state explosion. Moreover,
note that even i n length-preservation case, R*(I) cannot be computed by simple iterative
computat ion of Rn(I) where n > 0. Therefore, an accelerated computat ion of R*(I) is
required. Here, an applicat ion of abstraction on the involved automata, leading to abstract
R M C [17] (A R M C) , has shown as part icular ly successful.

X A relation g C S* x S* is regularity preserving iff g(L) G £3 for every L G £3.
2 Sometimes, the transition relation is given as a union of a finite number of relations, each of which is

called an action.

27

A s it is shown, for instance, i n [4], one of typica l applications of R M C is verification
of parameterized systems w i t h linear or ring-formed topologies (where each component
is finite-state). W i t h i n this thesis, namely in Chapter 9, A R M C method of [17] is used
for showing that potential pipeline hazards may indeed occur in certain interleavings of
instructions.

4.3 Static Analysis

Static analysis tries to avoid direct execution of the system being examined and, instead, it
analyses and gathers approximate (often conservative) information about the system from
its source code. Therefore, it may produce many false alarms. F r o m the point of view of
this thesis, the most important form of static analysis is the so-called data-flow analysis
that is described i n the next section.

4.3.1 Data-Flow Analysis

Data-flow analysis (D F A) is a technique for gathering information about the possible set of
values calculated at various points i n a computer program or circuit . The information gath
ered is often used by compilers when opt imizing the given program or circuit . A n example
of a D F A is the computat ion of reaching definitions i n compilers.

A s an input, the D F A typical ly expects a flow graph G describing a given program (then
G typical ly has the form of the so-called control flow graph) or a circuit (where G can have
the form of a block schema). The flow graph can be often represented by a tuple (B, E, L)
where B is a finite set of blocks, E C B x B is a finite set of oriented edges, and L is
a labeling funct ion 3 . A simple way to perform D F A is to deploy the so-called monotonie
DFA framework which, for each block of the flow graph, sets up data-flow equations over
data-flow domains having the form of a complete lattice. The equations are then solved
by repetitive local calculat ion of output from inputs at each node unt i l the whole system
stabilizes, i.e., it reaches a fixpoint. Th is general D F A framework-based approach was firstly
introduced i n [73].

Given a flow graph (B, E, L), an instance of the D F A framework can be more formally
described using a quintuple (V, F, bo, vo) where V is a set describing possible flow values,
n : V x V —> V is & meet operator (describing how are values originating from multiple
locations joined together), F is a set of block monotone transfer functions V —> V for
each block b G B (describing the effect of passing through a block), bo G B is a bound
ary block, and vo G V is a boundary value. Moreover, it is expected that a pair (V, n)
forms a complete lattice, and thus V contains the bo t tom element _L and the top element
T . F ina l ly , F must include the identity function, it must be closed under the function
composition, and the used lattice should not contain infinite descending chains.

The most common (naive) solution for solving a D F A framework instance is given in
A l g . 1. Here, the output states Out(b) for each block b are computed by applying the
transfer functions on the input states In(b). F r o m these, the input states are updated by
applying the meet operation. The latter two steps are repeated unt i l we reach the fixpoint,
that is, the si tuation i n which the output states do not change anymore. After reaching the
fixpoint, the output and input states of the blocks can be used to derive properties of the
program or circuit at the block boundaries.

3 A concrete form of the labeling function usually depends on the purpose of data-flow analysis.

28

A l g o r i t h m 1 Round-robin iterative D F A algori thm.

1: Out (bo) := vo
2: for b e B \ {bo} do
3: Out(b) := T
4: end for
5: while Out(b) has changed for some b £ B do
6: for b G B do
7: Pred := {b'e B \ (b',b) e E}
8: In(b) := T\p&Pred Out(p)
9: Out(b) := fb(In(b))

10: end for
11: end while

In Chapter 9 of the thesis, data-flow analysis of this type is ut i l ized to detect potential
hazards i n a microprocessor's pipeline control logic.

4.4 SAT and SMT Solvers

The Boolean satisfiability (S A T) problem is the problem of determining whether there exists
an interpretation that satisfies a given Boolean formula. In other words, we ask whether
the variables of a given Boolean formula can be consistently replaced by the values True or
False in such a way that the formula evaluates to True. Similarly, the satisfiability modulo
theories (S M T) problem is a decision problem for first-order logical formulas w i th respect
to combinations of background theories expressed i n the classical first-order logic w i th
equality. Examples of such theories are the theory of real numbers, the theory of integers,
and the theories of various data structures such as lists, arrays, bit vectors, etc. S A T and
S M T solving has found many applications i n verification (e.g., w i th in predicate abstraction
or invariant checking), test generation, hardware synthesis, error trace minimiza t ion , and
artificial intelligence [18, 45].

In this thesis, S A T and S M T solvers are ut i l ized i n several cases. For instance, in
Chapters 7 and 8, the GlueMin i sa t [101] S A T solver is used as an external S A T solver for
the Cadence S M V [] tool . In another case (in Chapter 9), the Z3 [100] S M T solver is
ut i l ized for val idat ion of the consistency of a processor pipeline.

4.4.1 S A T Solvers

The S A T problem, which asks whether a given proposit ional formula is satisfiable, is the first
problem which has been proven to be NP-complete . Normally , we consider a proposit ional
formula to be given i n the conjunctive normal form (C N F) , 1.6. j ctS cl conjunction of clauses
where a clause is a disjunction of literals, and a l i teral is a (possibly negated) proposit ional
symbol. Stated formally, let P be a finite set of proposit ional symbols. If p £ P, then
p is an atom, and p and —>p are literals of P. A clause is a disjunction of literals t\ V

. . . V £n. A C N F formula is a conjunction of one or more clauses C\ A . . . A Cn. Most
contemporary SAT-solvers bu i ld on variants of the classical Davis-Putnam-Longemann-
Loveland (D P L L) procedure [] extended to the so-called conflict-driven clause-learning
approach (C D C L) [85, 12], which we w i l l describe i n terms of an abstract C D C L system.

29

Abstract C D C L Algor i thm

A n abstract C D C L system is a pair (S, —>•) where S is a set of states of the system and
—>• C S x S is its set of transitions modeling progress of the algori thm. Most states are of
the form M \\ F where:

• M is a sequence of annotated literals denoting a par t ia l t ru th assignment, and

• F is the C N F formula being checked, represented as a set of clauses.

The in i t i a l state is 0 || F, where F is to be checked for satisfiability. The final state is
either:

• the special fail state fail if F is unsatisfiable, or

• M || G where G is a C N F formula equisatisfiable w i t h the original formula F and M

We further write F \= C to mean that, for every t ru th assignment v, v(F) = True (i.e., F
holds i n valuation v) implies v{C) = True.

In what follows, we w i l l describe transitions between states of the abstract system C D C L
system (5, —>•).

• Pure Literal

M \\ F —> Ml II F if

£ occurs i n some clause of F,

->£ occurs i n no clause of F, and

£ is undefined i n M.

• Decide

M II F ->• Mt II F if

• Unit Propagate

• Fail

• Back Jump
MtN \= ^C and there is some

M£dN (I F, C ->• M£' (I F, C if <

clause C' V such that:

F, C \= C' V f ,

M |= - . C ' ,

is undefined i n M, and

£' or occurs in F or i n M£dN.

• Learn

30

• Forget
M || F,C ->• M£\\ F if M ^ C

• Restart
M\\F->V)\\F

The given formula is satisfiable i f neither Pure Literal, Unit Propagate, Back Jump, nor De
cide is applicable and the system is not i n the fail state. In part icular, the t ru th assignment
M i n the final state is an example of a satisfying assignment for the input formula. More
over, the rules are not applied i n a completely random order. The priorities for applying the
rules are as follows: (i) If Fail or Back Jump are applicable, they are applied. Otherwise,
(ii) Unit Propagate and Pure Literal are applied if possible, (iii) O n l y i f no other rule can
be applied, Decide, Learn, Forget, or Restart is used. The main motivat ion is quite straight
forward — reducing the amount of guessing as much as possible. The use of Decide, Learn,
Forget, and Restart rules is then subject to heuristics. These heuristics may vary solver to
solver and are one of the m a i n subjects of the on-going research (e.g., [82, 72]). M o d e r n
S A T solvers are able to deal w i th real-life S A T problem instances containing mil l ions of
variables and clauses.

4.4.2 S M T Solvers

The satisfiability modulo theories (S M T) problem is a decision problem for first-order logi
cal formulas wi th respect to combinations of background theories expressed in the classical
first-order logic w i th equality. A n S M T instance is a formula in first-order logic where some
function and predicate symbols have addi t ional interpretations and S M T is the problem
of determining whether such a formula is satisfiable. Example predicates involve linear in
equalities (e.g., 4x + 2y > z), equalities involving uninterpreted terms and function symbols
(e.g., f(f(x,y),z) = f{x,z) where / is some unspecified binary function), or bit-vector
ari thmetic w i th equalities (e.g., u © (CAFE)IQ = w <C x where © and <C denote the "xor"
and "left shift" bit operations, respectively). Formulae wi th atoms from a specific theory are
decided using their respective decision procedures. Then, approaches for combining such
procedures (e.g., the Nelson-Oppen procedure [103]) are used for mixed formulae (where
some variables are used i n atoms of several different theories).

E a r l y attempts to solve S M T instances involved translating S M T instances to Boolean
S A T instances. For example, a 32-bit integer variable would be encoded by 32 variables,
each representing one bit w i t h the appropriate ordering, and word-level operations would
be replaced by lower-level logic operations on the bits. However, this loss of the high-level
semantics of the underlying theories means that the Boolean S A T solver has to work much
harder than necessary as it must (re-) discover t r iv i a l theory facts (such as commutat iv i ty for
the bit-vector © operation). Th is observation led to the development of the so-called lazy
S M T approaches where S M T solvers t ight ly integrate the Boolean reasoning of a C D C L -
style search wi th theory-specific solvers that handle conjunctions of predicates from a given
theory [10].

31

Chapter 5

Hardware Verification Techniques

This chapter discusses contemporary hardware verification techniques wi th a specific focus
on the ones used during the development of pipelined microprocessors. The chapter is
organized as follows. The first two sections describe some of the state-of-the-art approaches
for automatic verification of hardware using functional verification and formal methods
which are related to the a im of the thesis. The last section is then dedicated to various
ways of large memory modeling that represents another important research topic as it can
boost the performance of the two former approaches.

Lots of work has been invested i n the area of formal and functional verification of
hardware. Unfortunately, according to financial reports of major hardware developers,
functional verification was preferred to formal approaches i n the previous decades. 1 Th is
can be explained by the fact that formal methods were usually t ime-consuming and more
difficult to deploy. Yet , in the last years, w i th the great advances i n computat ional power
of modern processors and advances in research, formal methods are becoming more popular
as we l l . 2

5.1 Functional Verification of Hardware

Al though this topic is not the focus of the thesis, functional verification is one of the most
popular techniques for verification of hardware. Therefore, it should be mentioned, at
least briefly, so a more complete view of topics related to the thesis is provided to the
reader. The functional verification typical ly generates a set of constrained and /or random
test vectors and compares the behavior of the system for these vectors w i t h the behavior
specified by a reference model . In order to get a high level of coverage of the system's
state space, it is required to (i) discover a way to generate input vectors that cover cr i t ical
parts of the state space, and /or (ii) increase the number of tested vectors. Coverage (e.g.,
code coverage, functional coverage, path coverage) dynamical ly measures the completeness
of state-space exploration and allows the verification engineer to improve quali ty of input
test vectors, usually by adding constraints, to achieve an even higher level of coverage.
F u l l automation of the process can be achieved, for example, by an intelligent program
that controls coverage results and chooses parameters of a new test vector to reach better
coverage. Such an approach is called a coverage-driven verification.

source : Gary Smith E D A , Oct 2010.
2Source: Gary Smith E D A , Oct 2017.

32

The V C S [126] tool for functional verification is used by many major corporations in
a commercial sphere. V C S speeds up the verification process by running several tasks in
parallel on machines wi th mult iple cores. A special proprietary technology for generating
expressions named Echo [12] is used for automatic creation of s t imuli to efficiently cover
the state space specified by the user who typical ly adds constraining formulae to the code.
The expressions are generated by constraint solvers that find an appropriate solution to the
supplied constraints while min imiz ing conflicts between them. The V C S tool uses a uniform
coverage database for storing coverage statistics which can eliminate redundant execution of
certain test vectors for designs that were only par t ia l ly modified (e.g., by finding identical
parts of the designs).

In [142], authors describe a functional verification approach applied when checking the
implementation of R I S C - V processor [115] designed in Codasip framework []. The verifi
cation is based on the R T L simulat ion (running in Veloce emulator [90]) and the universal
verification methodology (U V M) [5] which is a standardized methodology for verifying in
tegrated circuit designs. The approach leverages the fact that, i n Codasip , models of the
processor can be described at various level of detail , that is, typical ly instruction- and cycle-
accurate as we have shown in Section 3.3.2. To keep up the pace wi th the R T L emulation,
a fast software simulator generated from the instruction-accurate level description is taken
as a golden model for the verification task. The U V M is then used for orchestration of
loading and execution of the test bench s t imul i into both runtime environments as well as
for asserting the equality of the obtained results (e.g., contents of register files).

The A r c h C [114, 6] framework provides a co-simulation tool al lowing a designer to verify
conformance of two different models of the architecture. The A r c h C verification approach is
based on a transaction verification methodology which tracks down every update to storage
devices of both models, marking them w i t h timestamps to show when they happened. B y
comparing the sequence of transactions generated throughout the execution, the A r c h C
verifier can te l l whether both models are consistent. A deficiency of the method is the
max imum frequency of the s imulat ion which is claimed to be i n the order of units of
megahertz for a M I P S processor. Such a frequency may not be sufficient for applications
that need to communicate using high-speed interfaces.

In H A V E N [123], the issue wi th the slow speed of s imulat ion is resolved by u t i l iz ing the
inherent parallel ism of a hardware system to accelerate its functional verification. The ver
ified system together w i th several necessary components of the verification environment is
moved to a field-programmable gate array (F P G A) . The frequency achieved by the accelera
t ion is approx. 125 M H z which is significantly higher than the frequency of emulation-based
solutions available at a comparable price. The current disadvantage of the technique may
be a lack of abi l i ty to automatical ly drive the generation of test vectors to target coverage
holes given by continuously measured coverage.

Another tool for functional verification is Z a m i a C A D [129]. It is a modular and exten
sible platform wi th I D E for hardware design. The main advantage of this platform is its
abi l i ty to automatical ly locate design flaws i n microprocessor designs at R T L . A s an input,
the user has to provide a set of independent tests where both failing and passing tests are
present. The error local izat ion is done by statistical s imulat ion [83] which is refined using
dynamic and static slicing [76, 137]. Besides this feature, Z a m i a C A D also offers the abi l i ty
to highlight results computed by static analysis directly i n H D L representation including
the cone of influence, dead code, etc.

33

5.2 Formal Verification of Pipelined Microprocessors

In this section, we would like to describe formal verification techniques w i th a high degree
of automation used during microprocessor design. W h e n concentrating on verification of
microprocessors, the approach of theorem proving (cf., e.g., [70, 118, 61]) is often considered.
There are mult iple successful industr ia l applications of theorem proving, including, e.g.,
a proof of correctness of the floating-point ari thmetic of the Intel I tanium processor [57]
or the fully verified design of the V A M P microprocessor, which was verified using the P V S
theorem prover []. However, theorem proving typical ly requires a significant level of
expertise and user intervention. A typica l microprocessor verification cost using theorem
proving is counted i n person-years.

Because this thesis aims at the max ima l automation of the proposed techniques, we w i l l
concentrate more on automated techniques. A n approach inspired by theorem proving is the
approach of automatic generation of properties satisfied by a given design (cf., e.g., [48, 116,
94, 43, 38]). Th i s approach is based on automatic learning of dependencies or properties
from simulat ion traces or data-flow graphs. Unfortunately, the approach is pr imar i ly suited
for an in i t i a l understanding of the design since it lacks the abi l i ty to completely verify
the whole microprocessor design. More automation is also offered by the approach of
model checking based on a systematic exploration of the state space of the verified system.
The approach of bounded model checking (B M C) [14], exploring the state space of a verified
system up to certain depth only, and related approaches such as I P C [105] have become
very popular in practice, leveraging the recent advances i n automatic decision procedures,
especially, S A T and/or S M T solvers [134, 132, 133, 45].

Major i ty of the work on automated formal verification of pipelined microprocessors
can be separated into two ma in branches: (i) correspondence checking between various ab
straction levels of implementat ion and (ii) verification of the microprocessor w i th respect to
generic properties of pipelined microprocessors. These two branches are often supplemented
by (iii) methods looking for undesirable patterns i n the microprocessor implementations.
Each of these topics is more discussed in the following subsections.

5.2.1 Correspondence Checking

Despite the formal methods of correspondence checking have a history dat ing back over
decades [62], one of the key ideas used i n correspondence checking among the I S A and R T L
implementations is described in []. Typical ly , the most challenging part of the I S A - R T L
correspondence checking is to find an abstraction function aisA that maps states of the
R T L - l e v e l states to I S A level such that the aisA mapping is maintained in each cycle of the
R T L level operation. The key contr ibution of [7] is showing that the abstraction function
otisA could be computed automatical ly by symbolical ly simulat ing the microprocessor as it
clears out instructions out of the pipeline (typically, by inserting NOP instructions into the
pipeline). Indeed, most pipelined processor designs already have a mechanism for clearing
instructions, because this is required to br ing the pipeline to an idle state when dealing
wi th exceptional conditions, such as hal t ing or interrupt handling.

For a single-pipelined microprocessor, the following verification task, schematically de
picted in F i g . 5.1, can be used for checking the I S A - R T L equivalence. G i v e n the function
aisA the task consists of:

1. choosing an arbi t rary legal s tart ing R T L state SRTL,

34

Figure 5.1: Correspondence checking approach between I S A and R T L processor descriptions
as it is proposed i n [27].

2. symbolical ly computing the corresponding I S A state SISA by finishing par t ia l ly exe
cuted instructions i n the pipeline, i.e., SISA '•= &ISA(SRTL),

3. obtaining an I S A state fisA by executing the instruction i n the I S A model, i.e.,

fiSA •= stepISA(sISA),

4. getting an R T L state /RTL by running the instruction for a normal pipeline cycle in
the R T L model, that is, fRTL •= stepRTL(sRTL),

5. computing the corresponding I S A state f'isA after making the normal cycle i n the
R T L model, i.e., f'ISA := aisA(fRTL),

6. comparing the programmer-visible parts of the designs, that is, checking whether

fiSA = fisA-

The original approach [;] utilizes the logic of equality w i th uninterpreted functions and
memories (E U F M) which allows for an abstraction of functional units and memories while
completely modeling the control of a processor. In [21], E U F M is extended by positive
equality of uninterpreted functions (P E U F) which greatly reduces the t ime needed for
verification. The works [136, 135, 56] further extend the approach by using positive equal
ity of uninterpreted functions for modeling functional units, superscalar processors w i th
mult icycle execution units, exceptions, and branch prediction. Since the approach uses un
interpreted functions for operators unsupported by E U F M and/or P E U F , the verification
may fail (or take too much time) on R T L designs w i t h opt imized operations. Moreover,
specifying an arbi t rary legal start ing R T L state is a hard problem and requires significant
user intervention, e.g., by wr i t ing assertions related to each microprocessor signal. The
difficulty of identifying such assertions can be seen, for instance, i n a recent work [23] aim
ing at verification of microprocessors using the above-described technique where non-t r ivia l
invariants related to pipeline control signals had to be added explicit ly.

A correspondence checking method is also proposed i n [75]. The main idea of the
approach is based on proving equivalence of data-flow graphs (D F G s) that are extracted
from instruction-accurate and cycle-accurate models by unrol l ing the transi t ion relation for
the needed number of t ime frames. The method benefits from reducing sizes of D F G s by
finding potentially equivalent pairs (P E P s) and proving their equivalence. Therefore, the
size of a D F G to be analyzed is much smaller. The method can be divided into the following
steps:

35

1. Detect ion of P E P s by computing values of each node i n both instruction- and cycle-
accurate D F G s for some random test pattern placed to the graph inputs. A n y pair
of nodes that have the same simulat ion values are considered to be a P E P .

2. Prove the P E P equivalence using model checking. The model checking is invoked for
each of the P E P s .

3. Merge equivalent P E P s and continue wi th Step 1 unt i l graph outputs are proven
equivalent. If the P E P nodes are shown to be not equivalent, then a counter-example
trace is used to prune the set of P E P s .

To achieve a better performance, addi t ional techniques such as constant propagation over
the D F G s or graph rewrit ing rules are used.

Another , yet similar approach to correspondence checking of the control of a micropro
cessor is described i n [78]. The work proposes a method of automatic formal verification
of a pipelined implementat ion against its I S A specification by using I P C [105] that a l l
assertions of a l l instructions are satisfied and to prove the val idi ty of assumptions and
consequents of instructions i n every possible chain of instructions. For this purpose, a map
ping of high-level I S A to R T L has to be provided which, however, requires manual user
intervention.

Checking of the pipeline control of a microprocessor is also addressed i n [81]. The pa
per presents a formal verification technique called unpipelining. A t first, the unpipel ining
technique analyzes the pipeline structure of a design. The analysis works wi th a graph
of the structure of the pipeline control where it identifies and classifies (by using pattern-
matching) a l l the control logic into three classes that deal w i th the basic pipeline hazards,
i.e., stall ing, clearing, and bypassing. Us ing the results of this analysis, the method au
tomatical ly reverse-engineers a pipeline through a series of transformations called pipeline
deconstruction. Each applicat ion of the pipeline deconstruction shortens the pipeline by
merging its last two stages into a single stage. If a l l the deconstruction transformations are
successful, the model is transformed into a functionally equivalent unpipelined design. This
equivalent design of the R T L specification can then be checked for correspondence wi th the
I S A description. The main deficiency of the method is that it cannot be used for designs
that implement, for instance, delayed branches or branch prediction.

Compared to the above approaches, the approach of correspondence checking presented
in Chapter 8 aims at no user intervention and thus min ima l expertise of the user even when
applying the approach on an optimized design. A l though the approach does not provide
fully formal verification, it can find bugs not found by functional verification.

5.2.2 Checking of Generic Properties of Pipelined Microprocessor

Instead of concentrating on proving the full IS A - R T L correspondence which, as we have
seen, could be a rather complicated task, the approaches listed in this section a i m at
automated verification wrt one or more specific properties that any correct pipelined mi
croprocessor should satisfy.

The approach proposed in [69] introduces the so-called self-consistency check that com
pares results of executions of an instruct ion i n two scenarios wrt a property given by the
user. For example, for a property concerning data hazards, the approach works wi th (i) ex
ecutions of an instruction enclosed by the finite number of random instructions wi th in the
pipeline and (ii) executions of the same instruct ion surrounded by NOP instructions only.

36

The m a i n drawback of this approach is that a user has to list a l l val id instructions and
their possible combinations. Further, the conformance established by the approach is valid
only up to the given number of instructions.

In [2], a formal model based on a not ion of stages, parcels (instructions), and hazards
has been introduced. Once the user defines predicates needed for describing the pipeline,
the design can be automatical ly formally proven correct under a correctness cri terion given
in the work. Another , a bit s imilar approach has been proposed in [78]. The approach
introduces an abstract formal model whose components are to be l inked by the user w i th
the concrete cycle-accurate implementat ion through a number of mappings. Afterwards,
I P C [105] is used to check several properties imply ing correctness of the pipeline behavior.
Aga in , bo th of the above methods require significant manual user intervention.

The works [98, 95, 96] propose general properties of the correct behavior of a typical
single-pipelined implementat ion of a microprocessor. For instance, the work [J] includes
definition of a rule that prevents an undesirable dupl icat ion of an instruct ion wi th in the
pipeline. These properties together w i th an A D L description of a processor are then con
verted to a B M C problem to find possible counterexamples [97].

In contrast w i t h the above approaches, the approach for showing an absence of problems
caused by pipeline hazards proposed in Chapter 9 is almost fully automated—the only
step required from the user is to identify the architectural resources (such as registers and
memory ports) and the program counter.

5.2.3 Looking for Undesirable Design Patterns

Searching for specific design patterns that could cause unwanted behavior of the designed
system (e.g., proper dealing wi th high impedance values i n H D L languages) could be
a rather simple but very efficient way to find some types of bugs. Spyglass L i n t [12']
is a pattern-based static R T L checker delivered wi th the A S I P Designer framework [125].
It contains a set of customizable rules which are aimed to help wi th revealing flaws in early
phases of the microprocessor development. Certainly, such rules only approximate reality
and can produce many false alarms. However, this information can be used to improve
the performance of other (more sophisticated) tools (e.g., [126, 75]) by providing useful
information about the verified system. A somewhat similar approach is also offered by the
Sigasi framework. In [122], the authors state that the framework is, for example, capable of
detecting signals and variables that are never read/wri t ten, dead states i n state machines,
or case statements that do not cover a l l choices.

A s one can see, static analysis of a hardware system can be used as an entry point for
more advanced techniques by providing hints that can, for instance, narrow the state space
explored by a model checker used for subsequent detailed analysis of the given system.

5.3 Large Memory Abstraction

Numerous works have focused on memory abstraction, notably wi th in the area of formal
verification. Designs wi th large embedded memories are quite common and have many
applications. However, these embedded memories add further complexity to formal verifi
cation tasks due to an exponential increase in the state space w i t h each addi t ional memory
bit . W i t h explicit modeling of large embedded memories, the search space frequently be
comes prohibi t ively large to analyze. Therefore, it is important to use abstract models of
such memories.

37

Theories for reasoning about arrays [86, 104] are often used as a formal basis in current
approaches for memory abstraction, especially the work on an extensional theory of ar
rays [121]. Intuitively, this theory formalizes the idea that two arrays are equivalent i f they
have the same value at each index. A n example of such an approach has been presented
in [50]. Th is work specializes i n reasoning about safety properties of systems wi th arrays.
In the work, an automatic a lgori thm for constructing abstractions of memories is presented.
The algori thm computes the smallest sound and complete abstraction of the given memory.

In [19], the authors introduce a theory of arrays w i t h quantifiers which is an extension
of [124]. Moreover, they define the so-called array property fragment for which the authors
supplement a decision procedure for satisfiability. A modification of the decision procedure
for purposes of correspondence checking is proposed i n [71] and implemented i n [75].

Another method for large memory modeling is described i n [131]. The memory state
is represented by an ordered set containing triplets composed of (i) an expression denoting
the set of conditions for which the triplet is defined, (ii) an address expression denoting
a memory location, and (iii) a data expression denoting the contents of this location. For
this set, a special implementat ion of write and read operations wrt the above-described
representation of the memory is defined. The abstracted memory interacts w i th the rest
of the circuit using standard enable, address, and data signals. The size of the set is
proport ional to the number of memory accesses. Further, in [5], the same author extends
the approach i n a way that it can be used for correspondence checking by applying the so-
called shadowing technique for read operations. The technique is used on a l l read operations
when the second of the two verified models is symbolical ly executed. In contrast w i th the
original read operation, the modified one delegates computat ion of the return value to the
memory used in the first model if a requested address has no record in the above-defined
set. Such an approach ensures (otherwise missing) consistency of read operations of both
verified models.

The work [63] formally specifies and verifies a model of a large memory that supports
efficient s imulat ion. The model is tailored for Intel x86 implementations only i n order
to offer a good trade-off between the speed of s imulat ion and the needed computat ional
resources.

A common disadvantage of [50, 74, 131, 25] is the fact that they omit support for
addressing different sizes of data which is considered, e.g., i n [63]. O n the other hand, in [63],
the authors assume start ing from the nullified state of the memory, not from a random state.

Some of the other proposed works describe a smarter encoding of formulas including
memories into C N F [84, 49]. In the thesis, the problems l inked to C N F transformation are
not discussed, however, the ideas in [84, 49] can be potential ly applied to i t . A n example
of a tool based on the method coupled wi th C N F is the Bit Analysis Tool [<] (B A T)
which automatical ly builds abstraction for memories over bounded time intervals. A s an
input, the B A T uses custom LISP-based language. The version of the verified system wi th
abstracted memories is created in the following steps:

1. The design to be verified is simplified through pre-defined rewrite rules applied on
the level of terms of the B A T language.

2. A n equality test relation that relates memories that are directly compared for equality
is buil t over the set of memory variables.

3. The transitive closure of the test relation is computed. Such a closure is an equivalence
relation.

38

4. A n address set is computed for each of the equivalence classes. The address set
contains only addresses that are relevant for a given class.

5. For a l l addresses i n address set, a shorter bit vector for addressing the abstract mem
ories is created. The size of the vector is proport ional to the number of memory
accesses.

6. The behavior of memories is changed to be compatible w i th the new addressing style.

7. Or ig ina l memories and addresses are replaced wi th their abstract counterparts.

A description of a system together w i th the checked properties is then efficiently transformed
into a C N F formula. S imi lar ly to previous approaches, there is no support for addressing
different sizes of data.

In Chapter 7, we propose another approach to generate abstractions of memories which
support addressing of arbi t rary addressable units, such as bytes and words (unlike [50, 74,
131, 25]), w i th mult iple read and write ports (in contrast w i t h [50, 74]), and it allows the
memory to start from a random in i t i a l state (not available i n [63]). O u r a lgori thm is also
not bound to any specific verification technique (unlike [84, 49]).

39

Chapter 6

Goals of the Thesis

The general idea of the thesis is to design new hardware verification techniques optimized
for use i n the process of hardware/software co-design. The key idea is to improve and/or
develop verification techniques wi th an emphasis on (i) max ima l amount of automation,
(ii) efficiency, and (iii) abi l i ty to deliver continuous feedback about the verification process.
The proposed techniques should be i n part icular applicable to the class of A S I P s that are
broadly used i n light-weight embedded devices wi th the following properties:

• 32bit architecture,

• in-order execution of instructions,

• memories w i th mult iple read/wri te ports,

• I / O communicat ion through buses, and

• abi l i ty to handle interrupts.

The first goal of the thesis is to develop formal methods for checking correspondence of
designs on various levels of abstraction. This goal can be narrowed down as follows:

• The proposed formal technique should be able to verify correspondence between R T L
and I S A specifications of a processor.

• The technique should be scalable for use in parallel processing.

• The method should deliver (at least partial) results i n the order of minutes.

• The approach should be able to cope w i t h the complex issues brought by the presence
of large memories i n designs.

The above-specified first goal is addressed in Chapter 8 which introduces a new algori thm
for verifying correspondence between the R T L and I S A microprocessor specifications wi th
a high degree of automation together w i th a new method for modeling large memories and
register files described i n Chapter 7.

The second goal of the thesis is to develop new methods for checking correctness of
various functional parts of a microprocessor, especially those associated wi th the pipeline
control. This goal can be more expanded as follows:

• The proposed formal technique should be able to work on a low-level R T L specification
of microprocessors w i t h a single pipeline.

40

• The technique should be able to benefit from parallel processing.

• The method should be able to split the verification task into smaller parts that can
be processed separately and thus deliver results i n a reasonable t ime (in the order of
minutes).

• The efficiency of the proposed method should not downgrade significantly for micro
processors w i t h wide data-paths.

Concerning this topic, i n Chapter 9, we propose an approach for detection of problems
caused by data and control hazards i n pipelined microprocessor designs.

41

Chapter 7

Large Memory Abstraction

This chapter describes a technique for automatic generation of abstract models of memories
that can be used for efficient formal verification of hardware designs. Our approach is able
to handle addressing of different sizes of data, such as quad words, double words, words, or
bytes, at the same time. The technique is also applicable to memories w i th mult iple read
and write ports, memories w i th read and write operations wi th zero- or single-clock delay,
and it allows the memory to start w i th a random in i t i a l state al lowing one to formally
verify the given design for a l l in i t i a l contents of the memory. Our abstraction allows large
register-files and memories to be represented i n a way that dramatical ly reduces the state
space to be explored during formal verification of microprocessor designs as witnessed by
our experiments.

7.1 Introduction

A s we have already said, the complexity of the verification process of microprocessor designs
is usually significantly influenced by the presence and size of the memories used in the design
because of an exponential increase i n the size of the state space of the given system wi th
each addi t ional memory bi t . Therefore the so-called efficient memory modeling (E M M)
techniques that t ry to avoid explicit modeling of the memories are being developed.

In this chapter, we present an approach to automatic generation of abstract memory
models whose basic idea comes from the fact that formal verification often suffices w i th
exploring a l imi ted number of accesses to the available memory, and it is thus possible to
reduce the number of values that are to be recorded to those that are actually stored in
the memory (abstracting away the random contents stored at unused memory locations).
Expand ing the basic idea, we propose an approach that allows one to represent memories
wi th various advanced features, such as different kinds of endianness (big or l i t t le) , read
and write delays, mult iple read and write ports, and different sizes of addressable units
(e.g., bytes, words, double words). A s far as we know, the abi l i ty to handle a l l of the above
mentioned features differentiates our approach from the currently used ones. Moreover,
our technique is applicable i n environments requiring a very high level of automation (e.g.,
processor development frameworks), and it is suitable for formal verification approaches that
a im at verifying a given design for an arbi trary in i t i a l contents of the memory. Further,
our abstract memory models can be used wi th in formal verification i n a quite efficient way
as proved by our experiments.

42

E n a b l e
H

A d d r e s s ^ ^
<U H

Data pg o ft
U n i t

E n a b l e
+J A d d r e s s
£ o Data
3 ft

U n i t

E n a b l e
A d d r e s s Tjj _p

a) ti Data os, o ft
U n i t

E n a b l e
+J ,, A d d r e s s
£ o Data * ft

U n i t

Figure 7.1: Memory interface.

The following sections provide a description of our technique of automated memory
abstraction that was originally published i n [32]. A s we have already said, its basic idea
is to record only those values i n the memory that are actually used (abstracting away the
random contents stored at unused memory locations).

7.2 Memories To Be Abstracted
In our approach, we view a memory as an i tem of the verified design wi th the interface
depicted in F i g . 7.1. The interface consists of (possibly multiple) read and write ports.
Each port is equipped wi th Enable, Address, Data, and Unit signals. W h e n the Enable
signal is down, the value of the Data signal of a read port is undefined. W h e n dealing
wi th a write port, no value is stored into the memory through this port . O n the other
hand, when the Enable signal is up, the memory returns/stores data from/into the cell
associated wi th the value of the Address signal. In the special case when mult iple ports are
enabled for wr i t ing into the same memory cell, the result depends on the implementat ion
of the memory. We support two variants: (i) either a priori t ized port is selected or (ii) an
undefined (random) value is stored to the mul t ip ly addressed memory cell.

The size of the addressed unit can be modified by the Unit signal. W h e n the size of the
accessed unit is smaller than the size of the greatest addressable unit , the most significant
bits of the Data signal are filled up wi th zeros. It is also assumed that the size of any
addressable unit is divisible by the size of the least addressable unit , and thus for the Data
signal it is sufficient to transfer the size of the addressed unit expressed as a mult iple of
the least addressable unit only (instead of the actual number of bits of the uni t) . F ina l ly ,
if the memory allows addressing of a single k ind of units only, then the Unit signal can be
omitted.

7.3 Abstraction of the Considered Memories

Our abstraction preserves the memory interface, and hence concrete memories can be easily
substituted wi th their abstract counterparts. We w i l l first describe the basic principle of our
abstraction on memories w i th a single addressable unit only. A n extension of the approach
for mult iple addressable units w i l l be discussed later. Moreover, we assume reading wi th no

43

Memory Interface Low-level
Memory Model

Port 1

Enablei
•H Addressi +>

Datai u
0 CH Uniti

Port i , l

Enablei *
ij
U 1-1

o - Add r e s s ^ Data±, -

Port i , n
Port m

Figure 7.2: Memory mapping.

delay and wr i t ing wi th a delay of one cycle. A n extension to other timings w i l l be described
in Section 7.5.

The abstract memory effectively remembers only the memory cells which have been
accessed. Internally, the memory is implemented as a table consisting of some number
d of couples of variables storing corresponding pairs of addresses and values (a, v). W h e n
using bounded model checking (B M C) as the verification technique, the needed number d of
address-value pairs can be easily determined from the depth k of B M C as the following holds
d = k*(m + n) where m and n denote the number of read and write ports, respectively. For
unbounded verification, the number d can be iteratively incremented unt i l it is sufficient.
The incrementation is finite since the number of memory cells is finite. The memory also
remembers which of the pairs are i n use by tracking the number r £ {0, . . . , d} of couples
that were accessed (and hence the number of the rows of the table used so far).

W h e n the memory is accessed for reading, the remembered address-value pairs (a i , v\),
(ar,vr) that are in use are searched first. If a locat ion ard that is being read has

been accessed earlier, then the value Vi associated wi th the appropriate address = ard
is s imply returned. O n the other hand, i f a locat ion that has never been accessed is being
read, a corresponding pair is not found in the table, and a new couple (aw, vrd) is allocated.
Its address part ard w i l l store the part icular address that is accessed while the value vrd
is ini t ia l ized as unconstrained. However, the variable representing the value vrd associated
wi th the accessed location ard is kept constant in the future (unless there occurs a write
operation to the ard address). T h i s ensures that subsequent reads from ard re turn the same
value. In the case of wri t ing, the address awr and value t^lVf tire both known. W h e n wri t ing
to a location that has not been accessed yet, a new address-value pair (awr, vwr) is allocated
i n order to memoize the given memory access. Otherwise, a value Vi associated w i t h the
given address awr = ai is replaced by vwr.

7.4 Dealing with Differently Sized Data

To support different sizes of addressable data (including reading/wri t ing data smaller than
the contents of a single memory cell of the modeled memory), we split our abstract memory
into a low-level memory model and a set of functions mapping accesses to ports of the

44

modeled memory to ports of the low-level memory. The idea of this approach is shown in
F i g . 7.2 and further discussed below.

The low-level memory consists of cells whose size equals the size of the least addressable
unit of the modeled memory, and therefore, for low-level memory, the Unit signal can be
omitted. In the low-level memory, values of units that are larger than the least addressable
unit are stored on succeeding addresses. In order to allow reading/wri t ing the allowed
addressable units (including the greatest one) i n one cycle, the number of read and write
ports of the low-level memory is appropriately increased. The resulting number of ports of
the low-level memory is equal to m * n where m is the number of interface ports and n is
the number of distinct addressable units. The latter can be expressed as the quotient of
bit-widths of the greatest (wgau) and the least (wiau) addressable unit . In other words, for
each port of the memory interface there are n corresponding ports of the low-level memory
model. Therefore, we use double indices for the low-level memory ports in our further
description.

In particular, let enablei, datai, addressi, and uniti be values of signals of the port
i of the memory interface, and let enablei,j, datai j , and addressij have the analogical
meaning for the low-level memory port Then, the value of the enableij £ B signal
can be computed as enablei A uniti > j where enablei G B and 1 < uniti < n. Th is
means that the required number of low-level memory ports are activated only. Next , the
value of addressij can be expressed as addressi + j — 1 for the l i t t le endian version of the
memory and addressi +uniti — j for the big endian version, respectively. These expressions
follow from the fact that larger units of the original memory are stored as mult iple smallest
addressable units stored at succeeding addresses i n the low-level memory.

Further, for transfers of data, separate mappings for read ports and write ports must
defined. In the case of a write port, the data flow into the low-level memory, and the value
of the dataij signal can be computed as slice(datai, uniti*wiau — 1, (uniti — 1) *u)iau) where
slice is a function extracting the part of the first argument (on the bit level) that lies wi th in
the range given by the second and th i rd arguments (with the bit indices being zero-based).
Final ly , for a read port, for which data flow from the low-level memory, the value of the datai
signal can be expressed as concat(ite(enableijn V -tenable^i, dataijn,0),ite(enable^2 V
-^enablei^i, dataip, 0), daia^i) where concat is a bit concatenation and ite ("if-then-else") is
the selection operator. Thus, the data value is composed from several ports of the low-level
memory, and the most significant bits are zero-filled when the read unit is smaller than
the greatest one. Note that according to the semantics of the Enable and Data signals
(described i n Section 7.2), i n the case when enable^i is false (i.e., no unit is read), the value
of the datai signal is undefined.

7.5 Further Extensions of the Abstract Memory Model

To broaden the range of memories that we can abstract, we further added support for
more memory t iming options, i n part icular for the one-cycle-delay reading and the zero-
delay wr i t ing . The former can be achieved by s imply connecting a unit buffer to the data
signal of the memory interface. For the latter case, a special attention must be pa id to the
situation when both read and write operations over the same address are zero-delayed. In
such a situation, it is required to append an addi t ional logic that ensures that wri t ten data
are propagated wi th zero delay to a given read port.

Moreover, for a pract ical deployment in correspondence checking, our model has also
been extended by applying the shadowing technique described in [25]. In particular, during

45

correspondence checking, both models are executed i n a sequence. The shadowing technique
deals w i th potential inconsistencies that can arise when both models read from the same
unini t ia l ized memory cell—indeed, in this case, a random value is to be returned, but the
same one i n both models. To ensure this when the shadowing is used, the return value of
the read operation is obtained from the memory i n the design executed first whenever the
value is not available in the second design.

7.6 Implementation and Experiments

The memory abstraction that we generate i n the above described way can be encoded in any
language for which the user can provide templates specifying (i) how to express declarations
of state and nonstate variables, (ii) how to encode proposit ional logic expressions over state
and nonstate variables, (iii) and how to define in i t i a l and next states of state variables. We
currently developed these templates for the Cadence S M V language [87].

In order to prove usefulness of the described abstraction technique, we used our abstract
memory generator wi th in the approach proposed i n [31] (further described i n Chapter 8) for
checking correspondence between the I S A and R T L level descriptions of microprocessors,
which we applied to several embedded microprocessors. Briefly, i n the approach of [31], the
I S A specification and V H D L model of a processor are automatical ly translated into behav
ioral models described i n the language of a model checker (the Cadence S M V language in
our case). These models are then equipped wi th an environment model, including archi
tectural registers and memories, which can be abstracted using the technique proposed in
this chapter. A l l these models are composed together, and B M C is used to check whether
both of the processor models start w i t h the same state of their environment (including the
same instruct ion to be executed), their environments equal after the execution too. A n
experimental version of the described approach was integrated into the Codasip I D E [1]
processor development framework.

Our approach was tested on the following processors: Tiny CPU is a smal l 8-bit test
processor w i th 4 general-purpose registers and 3 instructions that we developed mainly
for testing new verification approaches. SPP8 is an 8-bit ipcore wi th 16 general-purpose
registers and a R I S C instruct ion set consisting of 9 instructions. SPP16 is a 16-bit variant of
the previous processor w i th a more complex memory model al lowing one, e.g., to load/store
both bytes and words f rom/to the memory. Codea2 is a 16-bit processor w i th 4 pipeline
stages par t ia l ly based on the M S P 4 3 0 microcontroller developed by Texas Instruments [].
The processor is dedicated for signal processing applications. It is equipped wi th 16 general-
purpose registers, 15 special registers, a flag register, and an instruction set consisting of
41 instructions, where each may use up to 4 available addressing modes. Our experiments
were evaluated for two modifications of the processor—using memory wi th and without
mult iple addressable units.

Our experiments were run on a P C w i t h Intel Core i7-3770K @3.50GHz and 32 G B
R A M using Cadence S M V (the bu i ld from 05-25-11) and GlueMin i sa t (version 2.2.5) [101]
as an external S A T solver. The results can be seen in Table 7.1. The first three columns
give a name of verified processor, a size of its register file, and a size of the memory. The
next columns give the results obtained from the verification—in particular, the average time
needed for verification of a single instruct ion wi th the abstraction applied or not-applied
in different combinations on the register file and the memory. In the first case, bo th the
register file and the memory were modeled expl ic i t ly which, for larger designs such as
Codea2, led to out-of-memory errors ("o.o.m."). Next , the abstraction was only used for

46

Table 7.1: Verification results.

Processor Reg. F i le Memory Exp l i c i t A b s . A b s . A l l

Size Size Memory Reg. F i le M e m o r y A b s .

T i n y C P U 4 x 8bit 0.151 s 0.41 s - -

S P P 8 16 x 8bit 256 x 8bit 5.06 s 1.11 s 3.66 s 0.452 s

S P P 1 6 16 x 16bit 2048 x 8bit 266 s 92.2 s 1.23 s 0.822 s

Codea2_single 32 x 16bit 32768 x 16bit o.o.m. o.o.m. 4.30 s 4.44 s

Codea2_mul t 32 x 16bit 65536 x 8bit o.o.m. o.o.m. 4.75 s 4.89 s

single Single addressable unit used o.o.m. Out of memory error occurred

mult Multiple addressable units used

register files. Even though better results were obtained this way for the S P P 8 and S P P 1 6
processor designs, the verification s t i l l ran out of system resources for Codea2 because of
the expl ic i t ly modeled memory. In the last two cases when either only memories or both
memories and register files of the verified processors were abstracted, verification was able
to finish even for larger designs. We explain the 10 % deterioration between verification
times for the Codea2 processor w i th and without presence of mult iple addressable units by
the complexity of the addi t ional logic.

Final ly , we note that for very smal l memories and memories w i th many possible accesses
(caused by, e.g., a higher verification depth during B M C) , the overhead brought by the ab
straction can result in worse verification times as can be seen in the case of the register file
of the T i n y C P U and Codea2 processors. Moreover, for S P P 8 , where only a few instruc
tions directly access the memory, and thus only a few instructions influence the average
verification times, the overhead caused by the abstraction introduces worse than expected
average verification t ime when abstracting the memory only. In practice, we deal w i t h this
problem by defining heuristics that computes whether or not it is better to use the explicit
or the abstract description of a given memory.

7.7 Conclusion

We have presented an approach of memory abstraction that utilizes the fact that formal
verification often suffices w i th exploring a l imi ted number of accesses to the available mem
ory, and it is thus possible to reduce the number of values that are to be recorded to those
that are actually stored in the memory. O u r approach allows one to abstract memories
wi th various advanced features, such as different kinds of endianness, read and write de
lays, mult iple read and write ports, and different sizes of addressable units. The technique
is fully automated and suitable for usage wi th in processor development frameworks where
it can br ing a significant improvement i n verification times.

47

Chapter 8

RTL- ISA Correspondence
Checking

In [31], we proposed an automated approach buil t on a formal basis and intended to be
used wi th in an automated microprocessor design framework for checking correspondence
between an R T L implementat ion of a microprocessor and a description of its instruction
set architecture (ISA) .

Our approach is original i n its very high level of automation: the only user inputs are
an R T L implementation, an I S A description (possibly complemented by a specification of
assumed restrictions on the possible values of instruct ion operands), and a t ime l imi t for
the verification.

The main idea behind our approach is to use bounded model checking (B M C) to compare
the outputs produced by automatical ly derived R T L and I S A models of a given processor
for a l l possible instructions and their inputs. In order to guarantee that some useful result
is obtained in the given t ime l imi t , each instruct ion is checked i n parallel for several bit-
widths of its input, and the m a x i m u m bi t -wid th for which a result is obtained i n the given
t ime l imi t is used.

Compared to the techniques proposed, e.g., i n [27, 69], the approach presented in this
chapter does not provide full formal verification since (i) it uses B M C , (ii) it does not
consider any mutual influence among the instructions, and (iii) it may l imi t the b i t -wid th
of input data i n some cases. Hence, it may under-approximate the behavior of the verified
designs. However, our experience shows that the approach is complementary to functional
verification, and due to a different way of exploring the state space of the verified design,
it can find bugs not found by functional verification.

A n experimental version of the approach has been implemented wi th in the Codasip
I D E [1] and successfully tested i n several case studies. The experiments included a non-
t r iv ia l single-pipelined processor i n which, dur ing its development, our approach revealed
three previously unknown bugs confirmed by the developers. The experiments have shown
that almost every instruct ion of a single-pipelined processor (of a form commonly used in
light-weight embedded devices) is verified wi th in seconds. Shortened input data were used
only i n a few cases, typical ly for instructions such as mul t ip l ica t ion (and even i n such cases,
one can argue that most typ ica l bugs would anyway manifest even for shortened input) .

Section 8.1 of this chapter provides a background on the expected design flow for which
our approach is opt imized. The ma in idea of the proposed method is then described in
Section 8.2. Sections 8.3, 8.4, 8.5, and 8.6 provide more details about the way we model

18

processors and about the actual verification process. Potent ia l parallel ization options of
the proposed method are given in Section 8.7. Experiments are discussed in Section 8.8.
Section 8.9 concludes the chapter.

8.1 Background: Expected Design Flow

Our work was originally motivated by a request to provide some support for verification on
a formal basis for the Codasip I D E [I] described i n Section 3.3.2, but the proposed method
can be used wi th in other microprocessor development tool chains too i f they are able to
provide a l l needed information about the processor (as discussed below).

Our method uses both the I A and C A descriptions given in C o d A L A D L to automat
ical ly perform conformance checking between them. F r o m the instruction-accurate model,
we use: (i) the set of a l l instructions, (ii) the binary representation of each instruct ion
and its format (i.e., information about which bits represent the operator, operands, and
immediate data), and (iii) the semantics of the instructions. The above can be obtained by
automatical ly generated extractor of instruct ion semantics for the target compiler [64, 130].
F rom the low-level, cycle-accurate model, we use: (iv) the types of memories and register
files together w i th the number of read and write ports and (v) the identification of the
write-back pipeline stage. Furthermore, in the case of processors w i th mult icycle instruc
tions, we need to know the m a x i m u m number of cycles each instruction needs to complete
its execution.

For our approach, as stated above, it is crucial to know the set of instructions to be
checked as well as their semantics. However, there is no notion of instructions i n the C o d A L
language as can be seen in F i g . 8.1. Nevertheless, the assembly syntax description can be
used instead. This syntax is based on a context-free grammar generating a finite language
(ensured by the C o d A L compiler) . Hence, if a l l words of the language are systematically
generated, a list of instructions is obtained. T h i s extraction is supported by Codasip as
a part of its automatic generator of a C compiler, which needs to know every instruct ion
included i n the instruction set of the modeled processor. Codasip also extracts a C-language
description of the behavior of each instruct ion and converts it to a static single assignment
(SSA) format w i th a few simple optimizations.

8.2 The Main Idea of the Proposed RTL-ISA Correspon
dence Checking

We concentrate on checking a correspondence between the behavior of an R T L design
of a microprocessor and its I S A description on the level of an independent execution of
each instruction. B y the independent execution, we mean the execution of an instruction
surrounded by no-operation instructions (NOP). Hence, our approach does not a im at finding
errors related to the use of pipelines, branch prediction, caches, etc. We, however, believe
that such an approach is s t i l l useful, especially when combined w i t h other techniques (such
as the one discussed i n Chapter 9).

The proposed method uses the bounded model checking as an automated reasoning
engine. A typica l approach to use the (bounded) model checking is to encode the spec
ification (ISA i n our case) as a temporal formula using the specification language of the
chosen model checker. Unfortunately, for complex instructions, this is a rather complicated
task. Therefore, we use a more straightforward translat ion of the I S A specification into

49

Figure 8.1 A description of the add instruct ion i n C o d A L .

1 element r e g represents r e g s {
2 use imm4 as num;
3 assembler { " r " ~ num };
4 binary { num };
5 return { num; };
6 }
7 element add {
8 assembler { "ADD" };
9 binary { OP_ADD:4 };

10 return { 0P_ADD; };
11 }
12 set opc = add, /* ... */;
13 element i n s t r _ a l u {
14 use r e g as { d s t , sA, sB };
15 use opc;
16 assembler { opc d s t "," sA "," sB };
17 binary { opc d s t sA sB };
18 semantics {
19 switch (opc) {
2 0 case OP_ADD:
21 r e g s [d s t] = r e g s [s A] + r e g s f s B] ;
22 c f = f u n c _ a d d _ c a r r y (r e g s [s A] , r e g s [s B]) ;
2 3 break;
24 / * . . . * /
25 }
2 6 };
27 }

a behavioral model described i n the modeling (not specification) language of the model
checker. We thus generate two behavioral models: namely, an R T L and I S A model of the
given processor. These models are then equipped wi th an environment model, including
architectural registers, memories, the program counter, and I / O ports. A l l these models are
composed together, and B M C is used to check whether both of the processor models start
w i th the same state of their environment (including the same instruct ion to be executed),
their environments equal after the execution too. For this purpose, we have implemented
an automated generator of models from I S A descriptions and translator of V H D L to R T L
models, created abstract models of memories and register files, and a top-level model con
trol l ing the I S A , R T L , and environment models as well as comparing their execution.

Our approach uses similar principles as [27], but since we are interested in verification
of a single instruct ion only, we can consider the reset state of the R T L model as a starting
point. Th is also eliminates the need to make the symbolic execution reach in a potential ly
costly way the corresponding starting I S A state. The top-level control of verifying a single
instruction can be summarized as follows:

1. Initialize the environment of the given R T L and I S A model.

2. Symbol ical ly execute one cycle of the I S A model (covering a l l possible cases that may
arise).

3. S ta l l the I S A model and reset the R T L model to ensure that it is i n a stable state.

50

4. Symbol ical ly execute the R T L model for the needed number of cycles (depending on
the write-back pipeline stage or on the number of cycles of a mult icycle instruction).

5. S ta l l the R T L model to ensure that no more changes i n architectural resources are
made.

6. Final ly , check whether the environments of the R T L and I S A model are equal.

In the first step of the ini t ia l izat ion of the environment, the program memory is filled w i th
an instruct ion to be verified, other architectural resources are left random to simulate a l l
possible inputs for the instruction. If the environments of the R T L and I S A models are
found different in Step 6, an error i n the implementat ion of the instruct ion in i t ia l ly set in
the program memory was found. In the next section, a l l these steps are described in more
details.

8.3 Generation of the ISA Model

To derive the I S A model of a processor, we use the output of the Codasip semantics extrac
tor, which consists of the instruction syntax and the semantics generated for each possible
combination of operands of the instruction. The way these combinations are encoded wi th in
an instruct ion word is called the instruction format. The description of the syntax includes
the name of the instruct ion and its unique assembler and binary representation. The binary
representation divides the instruct ion word into constant and operand parts. The constant
parts are usually used to express the opcode and addressing mode, while the operand parts
mark the posit ion of the code of operands w i th in an instruction word. The semantics
description uses an SSA-based representation.

In F i g . 8.2, the information extracted for the add instruct ion is shown. This instruction
works w i t h three 16-bit register operands: it adds the last two (regl, reg2) and stores the
result into the first one (regO). Based on the result of the addit ion, the carry flag (cf)
is set. The regop(rf, idx) operation used on lines 4, 5, 7 represents reading/wri t ing of
a value stored at the index idx w i th in the register file r f . The reg(r, 0) operation used on
line 9 means reading/wri t ing from/to the register r (not i n a register file). The iN operator
where N stands for a positive integer is a b i t -wid th specifier. The operation add represents
the addi t ion itself, while carry_add computes the value of the carry after the addit ion.
A u x i l i a r y variables introduced due to usage the SSA-fo rm can be recognized by their %
prefix. W h e n generating the I S A model, we translate the output described above into the
Cadence S M V language [7]. This formal modeling language is used mainly because of its
wide support i n various model checking tools.

The I S A model is obtained by translating the semantics of each format of each instruc
t ion separately. The obtained translations are used as different branches of the I S A model.
The branch to be executed is chosen according to the contents of the so-called fetch vector
that is added to the I S A model since a description of the fetch stage is not included in the
output of the semantics extractor. The value of this vector is ini t ia l ized according to the
instruction format (line 12 i n F i g . 8.2) by the top-level model discussed below.

The translat ion of the part icular instruct ion formats relies on the interface of the chosen
model of architectural resources. We, i n particular, represent single registers as binary
vectors w i th signals we, d, and q i n their interface. These signals have the same meaning
as those used in a D-la tch . Similarly, memories and register files w i th m read and n write

51

Figure 8.2 The output from the Codasip semantics extractor for the add instruction.

1 /* Name */
2 i n s t r i n s t r a d d r e g r e g r e g ,
3 /* S e m a n t i c s */
4 %tmpO = ±16 r e g o p (r e g s , r e g l) ;
5 % t m p l = ±16 r e g o p (r e g s , r e g 2) ;
6 %tmp2 = add(%tmpO, % t m p l) ;
7 r e g o p (r e g s , regO) = %tmp2;
8 %tmp3 = carry_add(%tmpO, % t m p l) ;
9 r e g (c f , 0) = %tmp3;,

10 /* S y n t a x */
11 "ADD" regO "," r e g l "," r e g 2 ,
12 O b O l O l r e g 0 [3 , 0] r e g l [3 , 0] r e g 2 [3 , 0]

ports are mapped to binary matrices having an interface wi th signals weo, ..., wem, wao,
..., wam, d0, ..., d mi fSQ, ..., ren, vciQ, ..., ran, qo, ..., qn.

The actual t ranslat ion of the semantics of the part icular instruct ion formats is then
based on rewri t ing each operation i n the semantics description into its S M V implementation.
For that, we buil t a l ibrary of S M V implementations of a l l the operations that may appear
in the output of the Codas ip semantics extractor. Some of them are natively supported by
S M V (i.e., they map to the certain S M V operation), some are replaced by mult iple S M V
operations. For an i l lustrat ion of the translation, see F i g . 8.3 which shows the result of
translating the add instruction. Note, e.g., the extraction of operands from the fetch vector
(lines 12-14 i n F i g . 8.3) and the translation of the carry_add operation (line 8 i n F i g . 8.2)
using the operations plus and bit extraction (lines 25, 26 in F i g . 8.3).

8.4 The Top-Level Model

The top-level model controls ini t ia l izat ion, symbolic execution, and stal l ing of the I S A and
R T L models and their environment. For that, three special variables are used: a clock
counter and two halt signals. The clock counter increments its value wi th every cycle of
the symbolic execution of I S A and R T L models. It is used for detecting the end of the
verification process. The I S A and R T L halt signals are connected to every resource of the
I S A and R T L models, respectively, and are used to signal them to keep their values, hence
to stal l the whole I S A and R T L models.

In the first step of the verification of one of the instruct ion formats (to verify a l l formats,
the verification is run for each format separately), the program memory of the R T L model
is ini t ia l ized such that upon the first read access, the same fetch vector that was assigned to
the I S A model and that describes the instruction format chosen to be verified is read from
the program memory. Further read accesses, even from the same address, w i l l produce the
fetch vector representing the NOP instruction. This behavior ensures that the processor w i l l
execute the verified instruct ion only. The fetch vector is defined bit per bit according to
the binary coding of the instruction (cf. line 12 in F i g . 8.2) in the following way: each bit
corresponding to a constant (operation code or addressing mode) is set to the value of that
constant, other bits are left random to simulate a l l possible inputs. Other architectural
resources such as data memories and register files are ini t ia l ized to random values which,

52

Figure 8.3 Instruction semantics translated to S M V .

1 — V a r i a n t i n s t r a d d r e g r e g r e g
2 — D e f i n i t i o n s
3 regO : a r r a y 3..0 of boolean;
4 r e g l : a r r a y 3..0 of boolean-
5 r e g 2 : a r r a y 3..0 of boolean;
6 _tmp0 : a r r a y 15..0 o f boolean;
7 _ t m p l : a r r a y 15..0 o f boolean;
8 _tmp2 : a r r a y 15..0 o f boolean;
9 _tmp3 : boolean;

10 _ t r _ t m p 0 : a r r a y 16. .0 o f boolean;
11 — T r a n s i t i o n s
12 r e g O [3 . . 0] := f e t c h [1 1 . . 8] ;
13 r e g l [3 . . 0] := f e t c h [7 . . 4] ;
14 r e g 2 [3 . . 0] := f e t c h [3 . . 0] ;
15 r e g s _ r e 0 := 1;
16 r e g s _ r a 0 := r e g l ;
17 _tmp0 := r e g s _ q 0 ;
18 r e g s _ r e l := 1;
19 r e g s _ r a l := r e g 2 ;
20 _ t m p l := r e g s _ q l ;
21 _tmp2 := (_tmp0 + _ t m p l) ;
22 r e g s _ w e 0 := 1;
23 r e g s _ w a 0 := regO;
24 r e g s _ d 0 := _tmp2;
25 _ t r _ t m p 0 := (_tmp0 + _ t m p l) ;
26 _tmp3 := _ t r _ t m p 0 [1 6] ;
27 c f _ w e := i ;
28 c f _ d := _tmp3;

53

in the in i t i a l state only, are shared by the I S A and R T L models to ensure that both models
have the same inputs.

In the next step, the I S A model is symbolical ly executed for a single clock cycle. Since
the I S A model of an instruct ion semantics is encoded as a function of instruct ion inputs,
which are known after the ini t ia l izat ion step, a single clock cycle is needed for architectural
resources of the I S A model to store new values. The I S A model and its architectural
resources are then stalled using the I S A halt signal, and the R T L model is reset to its
in i t i a l stable state.

Next , the R T L model is symbolical ly executed for twb +1 cycles where twb represents the
write-back stage of the pipeline (or the number of cycles of a multi-cycle instruction to get
to the write-back stage), and the addi t ional clock cycle is used for architectural resources
to store new values. The R T L model w i th its architectural resources are then stalled using
the R T L halt signal to ensure that no more changes happen on the R T L level.

Final ly , the results of the symbolic executions of the I S A and R T L models are checked
for correspondence. Since the behavior of some instructions is defined only for a specific
range of values of the operands, the correspondence is not just identity. In particular, the
developers must expl ic i t ly specify which restrictions of the possible operand values they
assume in a form of assertions (e.g., by some pragma i n the I A model) . The property
expressing the required correspondence is then an invariant of the following form:

{elk = twb + 2) (/ \ a f\(nsA = rRTL))
a£A r£R

where elk is the clock counter, A denotes the set of restrictions on operands, R is a set of
architectural resources, and TISA {TRTL) represents a value of architectural resource r of
the I S A model (the R T L model), respectively. The t ime twb + 2 represents the overall time
for symbolic executions of I S A and R T L models.

8.5 Modeling Large Architectural Resources

W h i l e single architectural registers or smal l memories can be modeled direct ly as binary
vectors or matrices, modeling large memories or register files i n such a way could lead to
a state space explosion during the verification. Therefore, we use an abstraction technique
described in Chapter 7. The technique exploits the fact that the number of values stored
in memory cells that must be remembered is l imi ted wrt the depth of the analyzed B M C
problem. The interface of the abstracted memory is left the same, but internally, an access
table is used. Every E ICC6SS , 1.6., cl wr i te / read to / f rom the memory, is recorded in the form
of an address-value pa i r 1 . If the memory is accessed again, its access table is searched first.
If there exists a record wi th the given address, a value that corresponds to the address
is returned/modified. Otherwise, a new record is created. A s it is shown i n Chapter 7,
the abstraction could sometimes use more bits than the actual implementation. Hence,
a decision whether or not to use the abstraction is done based on the knowledge of the
number of state variables that are to be used i n each of the cases.

1A similar approach is applied when the processor uses I / O ports and buses.

54

8.6 Data-Domain Reduction

Another technique that we use to cope wi th the state space explosion problem is data-
domain reduction, which we apply to reduce the influence of the many different random
values stored in data memories, register files, and immediate operands of the fetch vector
on a rapid increase i n the size of the state space. The technique sacrifices soundness in
favor of speed i n which a potential flaw is discovered. It under-approximates the b i t -wid th
of the architectural resources by setting selected bits permanently to zero or one.

We use two types of data-domain reductions each of which comes from stressing different
aspects of the operations over bit-vectors: The first one concentrates on flaws in incorrectly
implemented basic effects of operations (including, e.g., situations when the implementat ion
performs a completely different operation than intended, it incorrectly loads operands from
a fetch vector, and the like). The second one then concentrates on flaws in instruct ion
side effects (e.g., i n setting the carry-flag after a successful completion of an ari thmetic
operation). We implement the data-domain reductions by preserving high and low values of
operands only—we cal l these reductions as high and low reductions, respectively. The high
reduction transforms a l l bit-vectors being used as operands such that the least significant
bits are set to one, while the low reduction sets the most significant bits to zero. The idea
behind this is that a flaw in the implementat ion of the basic effect of an operation w i l l be
revealed even for smal l values of operands, and a flaw i n the implementat ion of side effects
w i l l be revealed by high values of operands. The ratio of the number of random bits (i.e.,
those whose randomness is preserved) and reduced bits (set to zero or one) is defined by
a reduction factor. For example, the factor of 1/4 of the low reduction means that every
bit-vector which is used as an input of an instruct ion is transformed such that 3/4 of most
significant bits of the bit-vector are set to zero and 1 / 4 of the least significant bits are left
random.

We apply our data-domain reduction on output data from data memories, data from
register files, as well as immediate operands of the fetch vector. We do not consider addresses
because the b i t -wid th of addresses has an insignificant influence on the size of the state space
since we cope w i t h it using abstracted memories. We implement the reduction technique
such that a l l outputs of data memories and register files are masked wi th a predefined bit-
vector representing the required data-domain reduction. W h e n using the low reduction,
the output from a memory or a register file is A N D - m a s k e d wi th a bit-vector w i th zero's
in the most significant bits. O n the other hand, when using the high reduction, the output
is OR-masked wi th a bit-vector w i th ones i n the least significant bits. Similarly, the same
masking is performed on each immediate operand of the fetch vector resulting i n the so-
called reduced fetch vector.

8.7 Use of B M C and its Parallelization

For the actual verification of the correspondence property, we use the abi l i ty of the S M V
model checker to convert a given verification problem to a B M C problem of a specified depth.
In particular, in our case, the depth of the problem is twb + 2 which is sufficient because
no further changes are made to the architectural resources after that t ime. The problem
is represented i n C N F using the D I M A C S format and exported to be solved using a S A T
solver. It is possible to map the C N F terms back to variables of the I S A and R T L models,
thus i n the case of a flawed R T L design, the encountered problem can be presented to the
developers i n terms of the original variables.

55

Table 8.1: Verification results.

Processor / N o . of No. of instr. Proved Par t ia l ly Par t . proved Par t . proved Par t . proved A v g .

t ime l imi t instructions formats no reduction proved 1/2 reduction 1/4 reduction 1/8 reduction time

high low high low high low

S P P 8 / 10 s 9 9 9 - - - 0.43 s

S P P 1 6 / 10 s 11 11 11 - - - 0.89 s

Codea2 / 850 s 41 319 213 106 49 77 43 28 14 1 2.50 s

additive 5 73 46 27 19 22 4 5 4 - 2.51 s

mult ipl icat ive 3 54 3 51 14 39 33 12 4 - 2.60 s

logic 8 96 89 7 7 7 - - - - 2.47 s

move 9 50 49 1 1 1 - - - - 2.44 s

jump 7 13 13 - - - - - - - 2.33 s

memory 5 12 10 2 2 2 - - - - 2.51 s

other 4 21 3 18 6 6 6 11 6 1 2.57 s

Codea2 / 2400 s 41 319 277 42 24 42 18 - - - 3.45 s

additive 5 73 73 - - - - - - - 2.84 s

mult ipl icat ive 3 54 12 42 24 42 18 - - - 6.69 s

logic 8 96 96 - - - - - - - 2.72 s

move 9 50 50 - - - - - - - 2.82 s

jump 7 13 13 - - - - - - - 2.71 s

memory 5 12 12 - - - - - - - 2.85 s

other 4 21 21 - - - - - - - 2.80 s

In fact, we do not generate a single B M C problem for each format of each instruction,
but seven of them to be solved i n parallel . These seven problems differ in the data-domain
reduction used, i n particular: no reduction, 1/2 low and high reductions, 1/4 low and high
reductions, and 1/8 low and high reductions. A time l imi t is then applied for solving each
of these problems, and the result of the lowest reduction for which the appropriate problem
is solved i n t ime is used. The t ime l imi t is derived from the overall t ime l imi t for the
verification of the whole processor (given by the user) d ivided by the number of a l l formats
of a l l instructions. Th is l imi ta t ion ensures that the whole verification process w i l l terminate
wi th in the specified time.

8.8 Experiments

We have implemented the above described method i n a prototype tool and tested it on
the processors which we have described i n Section 7.6 of Chapter 7. Our experiments were
run on a P C wi th Intel Core i7-3770K @3.50GHz and 16 G B R A M using Cadence S M V
(build from 05-25-11) and GlueMin i sa t (version 2.2.5) [101] as an external S A T solver.
The results can be seen i n Table 8.1. The first three columns give the processor being
verified, the number of instructions i n its instruct ion set, and the number of formats of
al l instructions (IFs), which gives the number of the (parallelized) B M C problems to be
solved. The next columns give the results obtained from the verification: the number of IFs
which have been successfully verified wi th no data-reduction, the number of IFs which have
been successfully verified wi th at least some data-reduction, and numbers of IFs successfully
verified for the different concrete data-reductions. F ina l ly , the column " A v g . t ime" denotes
the average t ime needed for verification of a single instruction format.

The t ime l imi t for verification was set to 10 s for S P P 8 and S P P 1 6 . For S P P 1 6 , the l imi t
is close to the t ime that is needed for generation of the B M C problems to be solved (i.e.,
the t ime needed for the semantics extraction together w i th the translation to S M V and the
subsequent derivation of the B M C problems i n D I M A C S) , which took on average 0.7 s per
instruction format. The average t ime needed for S A T solving was 0.19 s per instruction
format. Push ing the t ime l imi t below this bound would lead to unusable results.

To illustrate the use of the verification t ime l imi t i n our approach, we provide exper
iments w i t h Codea2 for two different t ime l imits : 850 s and 2400 s. The former is close
to the bound described above (most of the t ime is taken by the semantics extraction, and
the S M V and D I M A C S translations: 2.21 s per instruct ion format on average). The latter
l imi t leaves more t ime for S A T solving (0.87 s in contrast of 0.29 s per instruct ion format on
average). A s can be observed, w i th more t ime dedicated to S A T solving, more instruct ion
formats get verified w i t h a less aggressive reduction factor. Further, one can notice that
wi th in the smaller t ime l imi t of 850 s, every instruct ion format was proved at least for the
reduction factor of 1/8 (for a 16-bit processor, this means that 2 bits of the register file
and memory were left random). W i t h i n the t ime l imi t of 1000 s (not listed i n the table),
each instruct ion format was verified at least for the 1/4 reduction. F ina l ly , mul t ip l ica t ion
instructions (42 instruction formats) were the only ones that were too complex to be proved
fully even wi th in the extended time l imi t of 2400 s.

Next , to demonstrate an abi l i ty of the proposed data-domain reductions to rapidly
detect errors, we also ran a series of experiments on some flawed designs of the Codea2
microprocessor. The results are shown in Table 8.2. The first column denotes the type of
flaw, while the next columns provide the average t ime (in seconds) per instruct ion format
needed to detect a flaw of the given type wi th a part icular level of reduction.

57

Table 8.2: Detect ion of flaws using data-domain reductions.

Flaw type 1/2 1/4 1/8

none high low high low high low

add. cf 2.89 2.73 2.67 2.66 2.62 2.62 2.59

mult, high 3.36 3.15 - 3.03 - 2.97 -

load byte 2.91 - 2.74 - 2.30 - 2.25

The first type of flaws (named "add. cf") represents errors that we actually found during
verification of a development version of Codea2. A l l of them were confirmed as real errors
by the processor development team and subsequently corrected. The errors were discovered
in three instructions. E a c h of them was related to setting the carry flag during ari thmetic
instructions. A l though one could expect that flaws related to the carry flag should be
detected only when no reduction or the high reduction is used, in our case, they were
detected even wi th the low reduction. Th i s is due to the different ways how the verified
I S A and R T L models ini t ial ize the value of the carry flag—in the R T L model, it is always
nullified, while the I S A model leaves it i n the previous state.

The further two types of flaws ("mult, h igh" and "load byte") were artificially injected
into the design. However, we tr ied to inject errors that are likely to appear during processor
development. In the first case ("mult, high"), the most significant bits of the result of
mul t ip l icat ion are wrongly propagated (some are set to zero). In this case, the error can be
detected wi th the high or no reduction only. Us ing the high reduction is by approximately
10 % faster than i n the case wi th no reduction. In the last case ("load byte"), a wrong AND-
mask (OxF instead of OxFF) is applied on the value fetched from a data memory. Since the
bit-mask affects the least significant bits only, the error is detected only when the low version
of the data-domain reduction is used. The speed-up is comparable to the case described
above. Moreover, the described speed-up can, i n fact, be also seen during verification of
flawless instruct ion formats. Th is produces an improvement in the overall verification time
in the order of minutes for microprocessors of size comparable to Codea2, and therefore we
can conclude that verification wi th data-domain reductions can be advantageously used to
quickly scan a design for presence of errors.

8.9 Conclusion

In this chapter, we have proposed a method of checking correspondence between the I S A and
R T L description of a microprocessor through B M C . Despite its formal roots, the approach
does not provide full formal verification since it checks each instruct ion i n isolation and also
possibly l imits the b i t -wid th of the data being manipulated. However, as confirmed by our
experimental results, the approach can be s t i l l quite useful i n that it can find real errors not
found by functional verification (due to the different ways these approaches exercise the state
space of the verified systems). Moreover, the approach is almost fully automated, hence not
requiring any addi t ional efforts from the developers (apart from possibly describing their
assumptions about l imi ted values of instruction arguments). Furthermore, the approach
allows for an easy control of the verification t ime and for u t i l iz ing parallel ization i n order
to increase usefulness of the results that can be obtained i n the given time.

58

A potential future work may include adding support for designs wi th mult iple pipelines.
Another considerable topic is also an experimental evaluation of sui tabi l i ty of another back-
end verification procedures (e.g., S M T solving instead of S A T) and representations wi th
which these procedures work (e.g., and-inverter graph format [15] vs. D I M A C S) . F ina l ly ,
one can also uti l ize recent advances in model-checking techniques that are not based on
B M C , such as I C 3 / P D R [18, 45], and use them for adding better support for multi-cycle
instructions.

59

Chapter 9

Analysis of Pipeline Hazards

In this chapter, we present an automated approach that combines static analysis of data
paths, S M T solving, and formal verification of parametric systems i n order to discover flaws
caused by improper ly handled data and control hazards. The chapter unifies and better
formalizes our previous works on read-after-write [34, 35], write-after-read, and write-after-
write hazards [36, 2 '] and also adds support to handle control hazards. The approach
has been implemented in a tool called Hades using which we have obtained promising
experimental results. The contents of the chapter is currently under submission to a journal .

P l a n of the Chapter Section 9.1 defines the needed notions. In Section 9.2, we sketch
the main idea of the proposed approach. Sections 9.3 and 9.4 discuss pre-processing tasks
that are needed before the core steps of our verification approach are applied. These core
steps are then described i n Section 9.5. Section 9.6 presents an experimental evaluation of
the proposed approach. F ina l ly , Section 9.7 concludes the chapter.

9.1 Preliminaries

We now introduce various basic notions that we w i l l bu i ld on i n the rest of the chapter.

9.1.1 Processor Structure Graphs

In what follows, we expect a processor to be described i n the form of a so-called processor
structure graph (P S G) which can be represented by a tuple G = (V, E, s,t,u). Here, V is
a finite set that is the union Vs U Vf of a set Vs of storages and a set Vf of Boolean circuits,
Vs f l Vf = 0. We distinguish two types of storages: namely, architectural storages Va and
pipeline registers Vp such that Vs = Va U Vp and Va n Vp = 0. We expect a l l storages to
have a unit write and zero read delay. Longer access times (e.g., for memory ports) can
be modeled by introducing sequentially connected registers emulating the required delay.
Boolean circuits represent common combinational logic circuits. For the rest of the chapter,
it is sufficient to distinguish these circuits into multiplexers Vmx and a l l other circuits Vg,
referred to as generic circuits further on. Hence, we let Vf = Vmx U Vg while requiring

vmx n vg = 0.
For registers, we use a well-known notat ion to characterize their connections: namely,

we use d to denote the data-in, q data-out, r s t reset, and en write-enable connections. For
multiplexers, we denote by sel the inbound connection that is the selector which selects
one of the input cases Cj to be transferred from the input to the output of the multiplexer,

60

which is again denoted as q. We denote input connections of generic Boolean circuits as
generic inputs aj. Let T = {d, q, rst, en, sel} U {aj, Cj | i G N} be the set of a l l connection
types.

Next , we use E to denote a finite set of transfer edges. Note that we do not define the
set of edges as E C V x V since we sometimes need more edges between two nodes. Instead,
we s imply require that E is a finite set of some abstract edges, and we assign each edge
wi th its source, target, and type. Namely, we use s : E —>• V x T to assign to each edge its
source vertex and its connection type, and t : E —>• V x T to assign to each edge its target
vertex and its type of connection.

The sets V and E and the functions s and t must fulfil the following criteria:

• For each storage vs G Vs, there is exactly one inbound data-in edge G E such that
t(ed) = (vs, d).

• For each storage vs G Vs, there are arbi t rar i ly many outbound data-out edges e* G E
such that s(el

q) = (vs, q) where 0 < i < n for some n G N.

• For each storage vs G Vs, there is exactly one inbound clear edge erst G E, also
denoted as the synchronous reset edge, such that t(erst) = (vs,rst).

• For each storage vs G Vs, there is exactly one inbound enable edge een G E such that
t(een) = (vs,en).

• For each circuit vg G Vg implementing a Boolean function g(ao,... , a n _ i) , there is
exactly one inbound edge for each argument of g such that i (e a J = (vg,ai) for a l l
0 < i < n where n G N. (For n = 0, we get a constant function without parameters.)

• Every multiplexer vmx G Vmx that implements a case selection function switch(sel,
caseo,..., case n_i) has exactly one inbound edge for each of its arguments such that
t(esei) = (vmx, sel) and t(ecasei) = (vmx, Cj) for a l l 0 < i < n where n > 2.

• For each circuit Vf G V/-, there are arbi t rar i ly many outbound result edges el

q <E E
such that s(eq) = (vf, q) where 0 < i < n for some n G N +.

• There are no other types of edges other than the ones described above.

• There is no cycle i n the graph consisting of vertices representing Boolean circuits only.

Due to the above restriction to at most one inbound edge for a single connection type, one
can use a simpler notat ion to uniquely describe the edges. In particular, an edge e G E that
satisfies t(e) = (v, c), v G V, c G T, can be encoded using the expression v.c. F inal ly , the
function OJ: E —>• N + represents a mapping that assigns some b i t -wid th to a l l edges of the
P S G . The mapping can be natural ly expanded to be defined over storages too—namely, we
let OJ{Vs) = u(vs.d) for a l l vs G Vs. Addi t ional ly , it must also hold that oj{eout) = co(vs.d)
for any (vs, eout) G Vs x {e G E \ s(e) = (vs, q)}.

Since we propose the not ion of P S G s to be as simple as possible, it does not take into
account memories and memory ports. Instead, it contains architectural registers, which can
be used to represent part icular memory cells. In the chapter, we assume that a memory is
modeled using a finite number of architectural storages representing the cells of the memory.
Memory ports are then modeled using addi t ional logic circuits that select the appropriate
memory cell using its address. In particular, for a memory wi th n addressable units, there

61

. en .d

Figure 9.1: A schematic of a write and a read memory port.

are architectural registers mo,..., mn-\ G Va. A read memory port of such a memory is
modeled using a single multiplexer circuit vread G Vmx connected to each of the registers
representing memory units—for each nii, 0 < i < n, there is an edge e = vread-Ci connecting
a multiplexer case w i t h the corresponding memory unit s(e) = (rrij,q). The selector edge
vread-sel then represents a memory address and vread.q represents the data-out connection
of the memory port . A write memory port is modeled by n circuits used to enable wr i t ing
to a given memory-cell rrii, 0 < i < n. Each of these circuits implements a Boolean function
(sel = i) A en, 0 < i < n, where sel represents a memory port address and en enables
wr i t ing to the memory. A schematic of a write and a read memory port is depicted in
F i g . 9.1.

9.1.2 Transition Systems Induced by P S G s

Let IB = {0,1} be the set of Boolean values, and let B n denote the set of bit-vectors of
size n > 1. A P S G G = (V, E, s,t,ui) induces a (finite) transition system (C,^->) where
C = ® „ e v is the set of configurations of G and <̂-> C C x C is its t ransi t ion relation
(defined later i n this section). We use c[vs] to denote the bit-vector value of the register
vs £ 14 i n a configuration c G C. We abuse the notat ion and write c[e] to denote the value
transferred over an edge e G E i n the configuration c as well . G iven an edge e G E such
that s(e) = (vf, q) where Vf G Vf is a circuit computing a function fn(ao,..., a n _ i) , n G N ,
the value of c[e] can be recursively expressed as c[e] = fn(c[eao],..., c[ea„_J) where e a i G E1,
0 < i < n, corresponds to the edge of the i - t h parameter of the function fn. In the case
that an edge e G E is an outbound edge of a storage vs G Vs, i.e., s(e) = (vs,q), we let
c[e] = c[vs].

For each storage vs G F s of a b i t -wid th m, m > 1, we assume the standard next-state
function f'^xt: B(2' m + 2) —>• B m where the storage vs is wri t ten a value transferred over the
vs.d edge iff the ws.rst edge transfers "0" and vs.en transfers "1" i n the given configuration.
Next , the value of the storage vs is nullified i f the vs.zst edge transfers "1". In the following,
we w i l l refer to such a t ransi t ion as storage clearing. F ina l ly , the storage vs keeps the same
value if bo th vs.en and vs.zst transfer the value of "0". T h i s w i l l be referred as storage

62

stalling in the following explanation. W h e n put together, the next state function f^xt can
be formally defined as follows:

Then , the relation contains a transi t ion c c' iff c'[vs] = f™ext(c[vs], c[vs.d], c[vs.en],
c[vs.Tst]) for a l l vs G Vs.

Given k > 1 and vertices v\,Vk G V of a P S G , a watt; from v\ to is an alternating
sequence of vertices and edges (vi, e\, V2, • • •, ek-i,Vk) where V2,Wfc-i G V", e i , e ^ - i G
E, and every two subsequent vertices are incident w i th the edge listed between them, i.e.,
s(ej) = (vi, c i) , t(ej) = (uj+i, c i + i) for each I < i < k and c i , c k 6 T . A path from u i to
Wfc is a walk where no vertex appears twice, i.e., i ^ j =4> v% ^ Vj for 1 < i, j < k.

Since our approach builds on analysing conditions that hold i n certain stages of the
execution of a given instruction, we now introduce a notion of edge and path conditions.
A n edge condition is a pair (e, 6), denoted e b, meaning that the edge e G E transfers some
value b G W^e\ B y IE, we denote the set of a l l such edge conditions. For each multiplexer
Vmx G Vmx, we define a mapping aVmx : E —>• IE that captures the edge condit ion that must
hold over the multiplexer 's selector edge w m : r.sel for the data on the i - th inbound-case edge
Vmx-Ci to be propagated to the multiplexer 's outbound edge vmx.q. In particular,

where binn: 7L —> Mn is the standard two's complement encoding of a decimal value on
n bits. Further, we define a mapping 7 : IE -> 2 C that assigns each edge condit ion (e ~~>
6) G IE the set of configurations from C i n which the edge e transfers the value b, i.e.,
7(e -w 6) := {c G C I c[e] = 6}. Given a set K C IE, we also use the point-wise extension

9.1.3 Data and Control Hazards

Hazards in the instruct ion pipeline of central processing units (C P U s) are problems caused
by inadequate synchronisation of earlier and later instructions running concurrently through
the pipeline that may cause potential corruption of the data used by the instructions,
w i th some result of the computat ion that referred to such data eventually propagated to
a programmer-visible storage [108]. Three common types of hazards are data hazards,
control hazards, and structural hazards. In this thesis, we w i l l further focus on the first two
types of the hazards and on C P U designs that do not use out-of-order execution. We w i l l
now give informal definitions of each of the considered hazard types, which we w i l l later
formalize in Section 9.4.

Definition 9. A read-after-write (R A W) data hazard is a scenario in which a later-started
instruction uses data supposed to be produced by an earlier-started instruction, but the
earlier instruct ion has not yet managed to proceed far enough i n the pipeline to write
the data into the storage used by the later instruction. The later instruct ion then stores
a potential ly wrong result of its execution, obtained by dealing wi th obsolete data, into
some programmer-visible storage.

o~vmx(vmx-Ci) •= vmx.sel 6ma,(, %s -S6.

l{K) : = f W 7 (f c) of 7 .

63

Definition 10. A write-after-read (W A R) data hazard is a scenario i n which some data that
should be used by an earlier-started instruct ion are overwritten by a later-started instruct ion
before the earlier instruct ion manages to read the data. The earlier instruct ion then stores
a potential ly wrong result of its execution, obtained by dealing w i t h data seemingly coming
from the future, into some programmer-visible storage.

Definition 11. A write-after-write (W A W) data hazard is a scenario i n which an earlier-
started instruction overwrites the result of a later-started instruct ion that is stored in some
programmer-visible storage, which then ends up containing obsolete data.

Definition 12. A control (C T L) hazard is a scenario where an earlier-started control-flow
instruction changes the flow of the control, but some later, speculatively-started instruction
manages to store some data into a programmer-visible storage.

In in-order execution designs, the above specified hazards are el iminated by pipeline
stalling and /or operand forwarding. For pipeline stalling, it is necessary for a processor to
be equipped wi th a control logic that determines whether a hazard c o u l d / w i l l occur. If such
a si tuation is detected, the control logic inserts no-operation (NOP) instruction, sometimes
called bubble, into the pipeline. Therefore, before the later instruct ion from the pair of
instructions which would cause the hazard executes, the earlier one w i l l have sufficient time
to proceed far enough in the pipeline so that the hazard does not happen.

In the case of operand forwarding, addi t ional (redundant) data-paths are introduced
into a processor design. These data-paths are aimed to provide an option to propagate
part ia l ly computed da t a 1 from an earlier instruction to a later one i n order to minimize
the number of NOP instructions that would otherwise have to be inserted using the above
mentioned stall ing technique.

9.2 The Proposed Approach to Hazard Detection

Our approach for verifying that the pipeline logic prevents hazards consists of the follow
ing steps: (i) a simple data-flow analysis intended to dist inguish part icular stages of the
pipeline, (ii) a consistency check to make sure that the flow logic guarantees an in-order
execution of instructions through the identified pipeline stages, (iii) a static analysis deriv
ing constraints over data-paths of instructions that can potential ly cause a pipeline hazard,
(iv) generation of a parametric system model l ing mutua l interactions between potential ly
conflicting instructions allowed by the derived constraints, and (v) an analysis of the con
structed parametric system to see whether the identified interactions may lead to a hazard.

We assume the processor under verification to be represented using a P S G , which can
be easily obtained from a description of the processor on the register transfer level (R T L)
wri t ten i n common hardware description languages, such as V H D L or Veri log.

Example 1. Throughout the following sections, we w i l l be i l lustrat ing the different steps
of our approach on a running example depicted in F i g . 9.2. The figure shows a P S G
describing a part of a simple microprocessor w i th an accumulator architecture wi th the
following architectural storages: X (a memory index register), A (an accumulator), PC
(the program counter), Progi (program memory cells), and Menij (data memory cells)
where 0 < i < £, 0 < j < k and k, resp. £, are the sizes of the memories. The depicted
part of the C P U is used when executing ari thmetic and load/store instructions. In order

l r The data that have not been written to its final storage.

64

Stage 1

0>

Figure 9.2: A processor structure graph of a part of a C P U wi th an accumulator architecture.

to keep the P S G easily readable, types of connections are shown for architectural storages
and case-c edges of multiplexers only. Also , since enable (i.e., "en") and clear (i.e., "rst")
connections for pipeline registers 2 are common for each stage, they are left out up to the
ones that are required in the further explanation.

In the C P U , the computat ion starts i n Stage 1 by using the content of the program
counter PC to address the i t h cell of the program memory Prog^ A n instruction fetched
from the program memory cell is stored into the storage Idlr that represents the so-called
fetch register. The fetched instruct ion word i n Idlr is then decoded by an instruction de
coder i n Stage 2. Boolean circuits that belong to the decoder are shown i n yellow. Next ,
an address stored in the index register is used to fetch data from the j t h cell of the data
memory Merrij i n Stage 3. Optional ly, the index register can be auto-incremented. The
auto-incrementation logic is a feature al lowing for an early incrementation of the value of
a register for memory addressing just before or right after it is read. We then speak about
the so-called pre-/post-increment, respectively. The auto-incrementation feature usually
brings a more efficient execution of sequences of instructions accessing the processor's mem
ory (for instance, when computing over long arrays or other juxtaposed data). Th is speed
up results from removing a need of otherwise required pipeline stalls, but it also introduces
potential W A W and W A R hazards that must be handled properly. Final ly , i n Stage 4, the
decoded opcode part of the instruct ion is used to determine the type of an A L U operation
(with the A L U itself colored i n purple) and to select destination storages by setting their
enable connection "en" to logical "1".

The Boolean circuit Flow i n F i g . 9.2 represents the flow logic of the second pipeline
stage. This logic is responsible for dealing wi th W A R hazards on the index register X. The
flow logic implements the function

Flow(IncX, OfWrMem) := ^IncX V ^OfWrMem.

In case a later instruct ion wants to perform an auto-increment of the index register X while
an earlier instruction is going to use the content of X for a memory write, the flow logic
uses the enable "en" and clear " r s t " signals of pipeline registers to insert a pipeline bubble
between the instructions into Stage 3. <

9.3 Preprocessing a Processor Structure Graph

This section describes the first two steps of the proposed approach: namely, the data-flow
analysis identifying pipeline stages and the pipeline consistency check ensuring a proper
in-order execution of instructions wi th in the pipeline.

9.3.1 Data-Flow Analysis Discovering Pipeline Stages

The input of the proposed verification method consists of a P S G and a list of its architectural
registers, including the program counter. O n this input, the method starts by a simple data
flow analysis whose goal is to compute the number of pipeline stages. We then map storages,
logic functions, and edges of the P S G into the pipeline stages. We define a pipeline stage
as the sub-graph of the P S G that is responsible for executing a single-cycle step of an
instruction. The pipeline stage that an edge or a vertex (representing a storage or circuit)
of a P S G belongs to is given by the m i n i m u m number of cycles needed to propagate data

2 F o r a full list of pipeline registers, see Table 9.1 in Section 9.3.1.

66

Table 9.1: Storages of the C P U from F i g . 9.2 and the corresponding pipeline stages.

Storage Stage Write stages Read stages Pivot
<P <pWI <prd

PC 1 {1,2,3,4} {1,2}
ProQi 1 0 {2} -

X 3 {2,3,4} {3,4,5} -

A 5 {4} {1,2,3,4,5} -

Merrij 5 {4} {4} -

Idlr 2 {1,2,3,4} {1,2,3} /

OfJrap 3 {2,3,4} {1,2,3,4} /
OfWrA 3 {2,3,4} {4} X

OfWrX 3 {2,3,4} {1,2,3,4} /

OfAlu 3 {2,3,4} {1,2,3,4} /

OfOp 3 {2,3,4} {1,2,3,4} /

OfWrMem 3 {2,3,4} {1,2,3,4} /

ExJmp 4 {3,4} {1,2,3,4} /

ExWrA 4 {3,4} {5} X

ExWrX 4 {3,4} {1,2,3} /

ExAlu 4 {3,4} {1,2,3,5} /

ExOp 4 {3,4} {1,2,3,5} /

ExMem 4 {3,4} {3,5} /

ExWrMem 4 {3,4} {1,2,3,5} /

from the input of the program counter to the edge or the output of the given vertex,
respectively. Hence, as a part icular case, the program counter itself belongs to Stage 1.

The data-flow analysis that we use starts from the program counter and its Stage 1 and
propagates the so-far computed stages forward through the P S G . If several stage values
are propagated to a single vertex or edge, the m i n i m u m is taken. Whenever a propagated
stage value passes a storage, it is incremented by one. Th is analysis gives us a mapping
ip: V U E —>• S, S = {1, . . . , n} , n > 1, which maps graph's vertices and edges to pipeline
stages.

Subsequently, we derive the so-called write stage mapping <pWT: VUE^2S that maps
each vertex or edge to the set of stages that directly influence its value. Namely, we include
into fwv(x) the stage of every pipeline storage vp G Vp from which there is a path to x
that does not pass through any further storage from Vp. Likewise, we derive the read stage
mapping (pvd: V U E —>• 2 s for each vertex or edge that describes which stages are directly
influenced by its value. In particular, we include into (prA(x) the stage of every pipeline
storage vp £ Vp to which there is a path from x that does not pass through any other
storage from Vp.

67

Pipel ine stages of the storages from the P S G of F i g . 9.2 and the corresponding read and
write stages, computed as described above, are shown in Table 9.1. (The not ion of pivots
w i l l be introduced later on.)

9.3.2 Pipeline Consistency Checking

The second step of our approach is consistency checking which checks whether the flow logic
assures a correct in-order execution of a l l instructions through a l l the identified pipeline
stages. This means that a l l instructions which are fetched from the program memory
should flow from the first stage to the last stage while maintaining their execution order
wi th no loss or dupl icat ion of an instruction. To check the above, we verify whether the flow
logic obeys a set of rules which express how the control connections (en, rst) of storages
in adjacent pipeline stages should be set. In particular, we use a strengthened variant of
the rules proposed i n [98]. The rules have been strengthened since (as we w i l l see later
on) our approach builds on an assumption that, if some pipeline stage is stalled, then a l l
predecessor stages have to be stalled as well . Th is means that our approach rules out some
extreme ways of pipeline implementat ion allowed by the original rules. A n example of such
a si tuation is an opt imizat ion of the execution during stage stal l ing when an instruction
preceded by a series of NOP instructions is allowed to proceed to the next stage in order to
increase the throughput.

For the following, assume a transi t ion system (C , induced by the P S G being verified.
We introduce mappings st, rst: Vp —>• 2C defined as

st(vp) := 7({wp.en 0,vp.rst 0}),

rst(vp) := 7(w p.rst 1).

Intuitively, for any storage vp G Vp, st{vp) and rst{vp) are the sets of configurations in which
vp is stalled or cleared, respectively. The pipeline consistency rules that we check are then
the following:

• Rule 1: If some pipeline register of a stage s G § is stalled, then a l l pipeline storages
of the Stage s have to be stalled, i.e., for a l l vp,v'p G Vp:

tp(vp) = <f(v'p) => st(vp) C st{v'p).

The rule follows the idea that an instruct ion carried by a pipeline stage cannot be
fragmented. The rule also reflects one of the fundamental assumptions about pipe
lined execution from []: namely, at any given time, an instruction is always in
a single pipeline stage only. A s a corollary, by simply swapping vp and v'p, one can
derive a stronger statement <p(vp) = f(v'p) =4> st{vp) = st(v'p).

• Rule 2: If some pipeline register i n a Stage s G § \ { m a x (§) } is stalled, then a l l pipeline
storages of the Stage s + 1 have to be stalled or cleared, i.e., for a l l vp,v'p G Vp:

<p(vp) = <p(v'p) - 1 => st(vp) C st(v'p) U rst(v'p).

This rule is a rephrased version of Equa t ion (15) from [{ i] and prevents dupl icat ion
of an instruction.

• Rule 3: If some pipeline register in a Stage s G S \ {1} is stalled, then a l l pipeline
storages of the Stage s — 1 have to be stalled, i.e., for a l l vp,v'p G Vp:

<p(vp) = (p(v'p) + 1 st(vp) C st(v'p).

68

This rule is a rephrased version of Equa t ion 16 from [] and prevents an instruction
to be lost.

• Rule 4 '• If some pipeline register i n a Stage s G § is cleared, then a l l pipeline storages
of the Stage s have to be cleared, i.e., for a l l vp,v'p G Vp:

<p(vp) = <p(v'p) rst(vp) C rst(v'p).

Similar ly to Rule 1, this rule prevents fragmentation of an instruct ion and it is a part
of the basic assumptions about pipelined execution mentioned i n [98].

We check the above rules using an S M T solver [21, 100] for the bit-vector logic. To
convert the rules into the bit-vector logic, we first define an operator * that maps edges of
a P S G to variables of the bit-vector logic (BVL) such that e\ = e*2 s{e\) = sfa) for each
ei ,e2 G E. Intuitively, edges wi th the same source must have the same value. Then , for
any e G E, we define a BVL formula ip(e) that encodes how the value transmit ted over e is
computed from values stored i n storages. The formula tp(e) is recursively defined as

{ m

e* = g(e*,e*m) A A V ^) a(e) = (v,q)Ave Vf,
i= i

true otherwise
where g denotes the Boolean function computed by the circuit v G Vf.

Now, the inclusion test st(vp) C st{v'p) from Rule 1 can be reduced to checking validi ty
of the following formula:

&(vp) := ((ip(vp.en) Aip(vp.rst) Aip(v'p.en) A ip(v'p.rst))

=> ((vp.eiL* = 0 A vp.rst* = 0) =>
(v'p.en* = 0Av'p.rst* = 0))).

Intuitively, $(vp) says that if the values of vp.en, vp.rst, v'p.en, and v'p.rst are computed
according to the given flow logic, then i f vp is stalled, v'p is stalled too. Instead of check
ing val idi ty of <&(vp), one can check unsatisfiability of the negation of the formula, i.e.,
-isat(-i$(vp)). Moreover, as - i $ (u p) = tp(vp.en) Atp(vp.rst) Aipiv'p.en) Atp(vp.xst) Avp.en* =
0 A Vp.rst* = 0 A (v'p.en* = 1 V v'p.rst* = 1), the check - i s a i (- i $ (u p)) can be replaced by
the following two simpler checks: 3

f ip(vp.eiL) A Vp.en* = 0 A

->sat ip(vp.rst) A vp.zst* = 0 A (9.1

\ fp(v'p.en) A v'p.en* = 1 J

f ip(vp.eiL) A Vp.en* = 0 A \
->sat ip(vp.rst) A Vp.rst* = 0 A (9.2

\ ^(v'p.rst) A v'p.rst* = 1 J

Hence, Rule 1 can be checked by applying the checks from Equations 9.1 and 9.2 to a l l
Vp,v'p G Vp such that ip(vp) = <p(v'p).

Rules 2-4 can be checked i n a very similar way as Rule 1.

3 Note that, in Equation 9.1, we may remove the V(Vp-rs"t) conjunct since the constraint v'p.rst* = 1 is
not present, and likewise with ip(v'p.en) in Equation 9.2.

69

9.4 Static Detection of Potential Pipeline Hazards

According to Definitions 9-12, a pipeline hazard (of any of the discussed kinds) occurs when
two instructions access the same architectural storage and at least one of the accesses is
a write. We w i l l further use the term spoiler whenever referring to the wr i t ing instruction
causing the hazard. The other involved instruct ion w i l l then be called a victim instruction.
Final ly , we w i l l speak about a hazard case when referring to the pair formed by a spoiler
and a v i c t i m instruction.

In this section, we w i l l first focus on identifying a finite set of hazard cases potential ly
causing hazards i n a given processor. For that, we w i l l use a static hazard analysis examining
the P S G and pipeline stage mappings ip, (pwv, (pvd determined by the data-flow analysis from
Section 9.3.1. In order to be able to describe a spoiler-vict im pair forming a hazard case,
we w i l l introduce several auxi l iary concepts w i th the so-called minimal transfer execution
and maximal store execution being the most important ones.

We begin by introducing a notion representing a generic concept of a data transfer
between two vertices wi th in a given P S G . Natural ly , each such transfer must conform to
the ipwv and ipvd mappings. We first formalize the notion of data transfers i n a broader form
in Defini t ion 13, which is narrowed later on in Defini t ion 14. In particular, Defini t ion 13
is broader i n the sense that it may describe data transfers that can only be achieved when
mult iple instructions are involved and some of the instructions pass the data back to lower
stages of the pipeline where they are processed by instruction(s) that entered the pipeline
later. Th is would mean that a spoiler itself (and likewise a vict im) could consist of multiple
instructions. Deal ing w i t h such situations is, of course, interesting, but we w i l l restrict
ourselves to the case of the spoiler and v i c t i m being single instructions each, generating the
so-called forward executions (Definition 14).

Definition 13. G iven a walk TT = {pi,P2, • • • ,Pk) for some k > 3 i n a P S G G, pi,
P3i • • • iPk £ V, P2-, PA-, • • • iPk-i £ E, an execution plan is any valuation T : {1, . . . , k} —>• S
s.t. pi € Vs =^ r (i) - 1 G ipwv(pi) for a l l 1 < i < k.

Intuitively, an execution plan gives a sequence of stages i n which part icular vertices are
wri t ten during a data transfer. Hence, taking into account the unit delay of wri t ing , the
value wri t ten to a vertex pi is obtained from a value computed i n the stage r (i) — 1 (with
the first element of the walk being, of course, special and excluded from this requirement).
A n execution walk is then any walk i n G w i th an execution plan. We define an execution as
a pair (TT, T) consisting of an execution walk ir and an execution plan r . We denote the set
of a l l such pairs as X . In the following explanation, we w i l l also use shortcuts r f s t and r l s t

i n order to refer to the valuation of the first and last element of the walk IT, respectively,
i.e., r

f s t = r (l) and r l s t = r(k).

Example 2. Consider the P S G G depicted in F i g . 9.2. A pair (7ri,Ti) s.t. 7Ti = (X,
MxMem.sel, MxMem, ExMem.d, ExMem, MxOp.c0, MxOp, Eq.ao, Eq, MxAlu.c0, MxAlu,
A.d, A) and n = { l x ^ 3, 2 M x M e m - s e l ^ 3, 3MxMem ^ 3, 4ExMem-d ^ 3, 5ExMem ^ 4,
QMxOp.co ^ 4 jMxOp ^ 4 gEq.&o ^ 4 gEq ^ 4 ^QMXAIU.CO ^ 4 -y-yMxAlu ^ 4 l2A'd h-̂ 4

1 3 A ^ 5} is an execution i n G describing one of the possible data transfers from the
storage X to the storage A. Note that we indexed the left-hand sides of the mappings by
the corresponding storages to make the mappings more readable.

Another example of an execution is a pair {^2^2) where TT2 = (ExJmp, MxJmp.sel,
MxJmp, MxPC.sel, MxPC, PC A, PC, MxProg.sel, MxProg, Idlr.d, Idlr) and r 2 =

70

[•^ExJmp 4 2^ r ^ T O P- s e l i—). 4 ^MxJmp 4 ^MzPC.sel ^ ^ gMxPC 4 gPC.d ^ ^
7^C i—^ 5; 8 MxPro 9 .sel ^ gMzProg ^ jQ/d/r.d ^ j j /d / r ^ 2 } . <

To narrow our selection only to executions that are feasible by a single instruction,
one needs to only th ink of executions t ied w i t h execution plans where stages form a non-
decreasing sequence. Intuitively, a single instruction in the pipeline can only move forward
or stay i n the same stage. This leads us to the definition given next.

Definition 14. A forward execution is a special type of execution ((pi, P2, • • • ,Pk),T~) G X,
k > 3, where the following restrictions hold: (i) pi G Vs =4> r(pi) = r(pj_i) + 1 and
(ii) pi G Vf U E r(pi) = r(pi-i) for a l l 1 < i < k.

Clearly, i f any of the conditions (i) or (ii) is not met, there could not be any single instruction
capable of a data transfer described by the execution.

Example 3. Consider the executions from Example 2. The execution (iri, T\) is a forward
execution while (7 T 2 , T 2) is not since r 2(8 M x - P T O s , - s e l) ^ T 2 (7 p c ') . <

For further explanation, it is important to be able to identify a storage from which the
transferred data can be passed to another (later) instruction. Such an action occurs only
if there exists a path leading from a storage i n a higher stage to a storage that belongs to
a lower one. This is formalized i n the next definition.

Definition 15. A pipeline storage v G Vp is a pivot i f there exist a stage sr G (pvd(v) s.t.
sr < <p(v).

We also need to establish a notion of a stage that can be cleared without the previous
stage being stalled. Such a stage can be used to nullify the state of a par t ia l ly executed
instruction.

Definition 16. A stage s G § is independently clearable if there exist pipeline storages
vp,v'p G Vp s.t. (p(vp) = s = (p(v'p) + 1 and rst(vp) n st{v'p) / 0 where st and rst are the
mappings defined i n Section 9.3.2.

We decide whether a stage satisfies the above given constrains for being independently
clearable i n a similar way to Rules 1-4. More precisely, an S M T solver performs the
following check i n this case:

*at I ^ ^ - r S t) A ^ K - e n) A V ^ p - r s t) ^

Vp.rst* = 1 A (u' .en* = 1 V v'p.rst* = 1)

The above check can be further decomposed into two simpler checks while it suffices that
at least one is satisfiable:

s a t ^ (v P - r s t) A V r s t * = : (^

ip(v'p.en) A v'p.en* = .

sat\ A V p - T S t * =~ | (9.5)
ip(v'p.TSt) A v'p.rst* = .

In the next step, we define an execution that can be performed by a single instruct ion
and which may influence the value stored i n some storage.

71

Definition 17. A store execution is a forward execution ((vi, e i , . . . , efc_i, i ^) , r) for some
k > 0, Vk £ Vs so that U2, . . . , i>fc-i 0 ^s- We also define a maximal store execution as
a store execution that is not a suffix of any other store execution.

A s a final step, we define an execution that can be performed by a single instruct ion and
which may influence the data stored i n an architectural storage va <E Va by reading some
data from a (potentially different) storage v £ Vs and transferring them to the storage va.

Definition 18. A transfer execution is a forward execution ((vi, e\,... ,ek-i, Vk), T) for
some k > 0, Vk £ Vs that satisfies the following two properties: (i) The storage Vk satisfies
one of the following: (a) it is an architectural storage £ 14, (b) it is a pipeline storage
Vk £ Vp s.t. t(efc-i) = (ufc,rst) and <p(vk) is an independently clearable stage, or (c) the
storage v^ £ Vp is a pivot s.t. t(ek-i) = (v^, d). (ii) Moreover, t(ej) £" Vp x {en, rst} for a l l
1 < i < fc. We also define a minimal transfer execution as a transfer execution that does
not contain any prefix that is a transfer execution.

Condi t ion (i-a) is straightforward as the execution affects the architectural storage d i
rectly i n this case. Clear ing the target pipeline register Vk £ Vp in an independently
clearable stage as described i n Cond i t ion (i-b) causes cancellation of any par t ia l ly executed
instruction i n Stage (p(vk). Such an event may indirect ly influence any architectural storage
va £ Va that belongs to a stage s > <p(vk)- Similarly, concerning Cond i t ion (i-c), i f the tar
get pipeline register Vk £ Vp is a pivot, the value read from i t—by a later instruction—may
also indirect ly influence any architectural storage that the later instruct ion writes to. Next ,
as described by Cond i t ion (ii), the transfer execution must not traverse through enable
connections of pipeline registers. Such executions cannot influence the value of any archi
tectural storage. The i r only impact can be that they stal l a stage. This also holds for reset
connections of pipeline storages i n a stage that is not independently clearable—in this case,
an instruct ion cannot be lost since the previous stage is always stalled. In such a case, the
pipeline consistency given by Rules 1-4 from Section 9.3.2 assures correct preservation of
al l par t ia l ly executed instructions.

A n incorrectly handled pipeline hazard manifests upon the first write of improper data
into some architectural storage of the design. Therefore, it suffices to further deal w i th
the min ima l transfer executions only. We can now formalize the notion of hazard cases in
a unified way for a l l the different kinds of hazards (restricted to the case when the spoiler
and v i c t i m consist of single instructions) as follows. In particular, we represent a hazard case
as a tuple (Xsp,Xvi) £ X 2 where Xsp and Xvi are spoiler and v i c t i m executions appropriate
for the concerned k ind of hazard. More rigorous descriptions of each considered type of
hazard cases are given in the following definitions.

Definition 19. A RAW hazard case is a tuple (XspiXvi) £ ̂ 2 consisting of a max ima l
store execution Xsp = ({v{p, e f e f c _ i = v^_vd, vs

k

p = v), TSP), v{p £ Vs, of a spoiler
instruction and a min ima l transfer execution Xvi = ((v™ = v, £\ •> • • •)U<T)' Tvi) of a v ic t im
instruction where v £ Va \ {vpc}, k,£ > 1, and data i n the architectural storage v can be
read by the v i c t i m instruct ion before they are wri t ten by the spoiler, i.e., r^f < T] ^ .

Definition 20. A WAR hazard case is a tuple (Xsp,Xvi) £ ̂ 2 consisting of a max ima l
store execution Xsp = ((^ f , e f e ^ - i = v^_vd, vs

k

p = v), TSP), £ Vs, of a spoiler
instruction and a min ima l transfer execution Xvi = {{v™ = v, e\l,... ,v^1), TV{) of a v ic t im
instruction where v £ Va \ {vpc}, k,£ > 1, and data i n the architectural storage v can be
wri t ten by the spoiler before they are read by the v i c t im , i.e., T^J1 < r^f.

72

Definition 21. A WAW hazard case is a tuple (xsp, Xvi) G ^ 2 consisting of a max ima l store
execution Xsp = ((wf , , . . . , es

k

p_1 = v.d, vs
k

p = v), Tsp), vsp G Vs, of a spoiler instruction
and a max ima l store execution Xvi = ({VT> eT> • • • > e £ - i = u-d> U<T = u)> r*>«)> ^ l * e ^s> °f
a v i c t i m instruct ion where n e K \ {%>C}, k,£ > 1, and data into the architectural storage
w can be wri t ten from two different stages. In the following, without a loss of generality
(since the conflicting instructions can always be swapped), we w i l l assume the spoiler to
perform a write operation i n an earlier stage, i.e., T] ^ < r^jf.

One can observe that there is no need to include any min ima l transfer execution i n the
case of W A W hazard since an error that is caused by the hazard is manifested instantly by
wr i t ing an incorrect value to the storage v.

Definition 22. A CTL hazard case is a tuple (Xsp,Xvi) G ^ 2 consisting of a max ima l
store execution Xsp = ((v{p', e f , . . . , e ^ - i = v^.d, vs

k
p = vpc), Tsp), vsp G Vs, of a spoiler

instruction and a min ima l transfer execution Xvi = (W = vpc e\\ • • •, v™), T„) of a v i c t im
instruction where k,£ > 1, vpc ^ v™ and the program counter vpc G Va is wri t ten wi th data
originating from a source other than auto-increment logic, which we consider to appear in
Stage 1. Therefore, the spoiler must always write from a stage other than the first one, i.e.,
rlf > 2.

Note that, since the definition of a part icular hazard case speaks about storages, their
access stages, and the path along which the problematic data are transferred, it is not
defined for a single concrete instruct ion only but for an entire class of instructions that
conform to the cri teria given by the hazard case. Further, note that the cases when r]^ =
r^f for R A W , W A R , and C T L hazards as well as the cases when T] ^ = r * f for W A W
hazards are not covered by the above definitions. Th is is because our approach assumes
correct execution of isolated instructions, which rules such cases out. Such correctness can
be checked separately using, e.g., methods described i n [27, 31].

In order to generate the set EI of hazard cases, we proceed as follows. F i r s t , using results
of the data-flow analysis from Section 9.3.1, we find a l l storages va G Va for which there is
a risk that some hazard si tuation may be ini t ia ted between stages s\,S2 G S. The conditions
that must hold for s\,S2 differ for different hazard cases. For instance, for R A W hazards,
we need the following conditions to hold: s\ — 1 G (pwv(va), S2 + 1 G (pvd(va), and S2 < s\.
The condit ion S2 < s i reflects the fact that the needed data are read from va before they
are wr i t ten into va. The rest of the condit ion reflects that it must be possible to write to va

in stage s\ and read in stage S2, i.e., it must have a predecessor storage in stage s i — 1 and
a successor storage in stage S2 + 1. The subtract ion/addi t ion of 1 is applied due to the unit
write delay that happens between the data are read from the previous storage and wri t ten
to va and then between reading the data from va and wr i t ing them to the successor storage.
For other kinds of hazards, the conditions are derived from the k ind of hazard analogously
as for R A W hazards as shown later on. Second, we find a l l max ima l store executions that
terminate i n the storage va. F ina l ly , we generate a l l m in ima l transfer executions originating
from the va vertex of the given P S G G.4

The procedure for generating the set EI is shown i n A l g . 2. The procedure first con
structs auxi l iary sets ARAWI ^WAR, and AQTL s t r ict ly following the constraints given by
R A W , W A R , and C T L hazard cases (see Definitions 19, 20, and 22). The sets ARAWI
A WAR, and AQTL consist of quintuples characterising suspected hazards. They include the
architectural storage va on which the hazard happens, the target storage vt through which

4 T h i s step is not necessary in the case of WAW hazard as the error caused by the hazard is immediate.

73

the hazard manifests, and three stages: namely, stages s\ and s2 i n which the conflicting
read/wri te operations on va happen, and stage S3 i n which the hazard gets manifested. For
W A W hazards, the procedure later on proceeds similarly, but there is no vt and S3 needed
since the hazard manifests immediately upon the second write operation (Definition 21).
The auxi l iary sets are then used for finding max ima l store and min ima l transfer executions
in the P S G . A standard breadth-first search algori thm during which constraints from Defi
nitions 13-18 are checked on-the-fly can be used to obtain the min ima l transfer executions
in G for the suspected hazards. Similar ly, the procedure may deploy the depth-first search
algori thm while checking constraints from Definitions 13, 14, and 17 in order to find the
max ima l store executions.

A l g o r i t h m 2 Procedure computing a set of hazard cases H .

Require: A P S G G = (V,E,s,t,u), a set Va C V of architectural storages, a program
counter vpc G Va, a set Vp C V of pipeline registers, Va n Vp = 0, a set VPiVOt C Vp of
pivots, and a set Sic C § of independently clearable stages.

Ensure: A set H C X x X of hazard cases i n the C P U encoded by G.
1: Vt := Va U Vpivot U {v G Vp I <p(v) G Sic}
2: Let A denote F a x N x N x F t x N
3: A R A W := {(va,s1,s2,vt,s3) € A I s i - 1 € <pm(va) A s2 + l G <prd(va)/\s2 < S 1 A S 3 - I G

<pwr(vt) A s 2 < s3}
4: A W A R := {(va,s1,s2,vt,s3) € A I a i - 1 € ^m(va) A s2 + l G <^ r d (t ; a)Asi < s 2 A s 3 - l G

Vm(vt) As2< s3}
5: ACTL ••= {(vpc, si, l,vt, s 3) € A I s i - 1 € ^r(va) A 2 G <pvd(vpc) A s i > 2 A s 3 - 1 G

ipm{vt) A v p c ^ v t A s 3 > 1}
6: A := ARAW U A WAR U ^ C T L

7: H := 0
8: for (w a ,Sl,S2,Wt,S3) G A do
9: Xmse := { (TT,T) G X I 7r = (u i , e i , . . . , e f c _ i , u f c) A ({u f c} x N x N x Vt x

N) n A / 0 A t (e f c _i) = (u f c ,d) A v2,...,vk_i 0 (VJ, U Vp) A r l s t = s i A

(7r, r) is a max ima l store execution }
10: Xmte := { (IT, T) G X | vr = (v i , e i , . . . , e f c _ i , u f c) A ({ui} x N x N x {vk} x N) n A /

0 A r f s t = s2 A r l s t = S3 A (7r, r) is a min ima l transfer execution }
11: I : = I U (I m s e x I m t e)
12: end for
13: Let A denote Va x N x N
14: A WAW ~ {(Va, «1, «2) G A | Si - 1, S 2 - 1 G lfm(va) A S 2 < S i }

15: for (va,si,s2) G AWAW do
16: A ^ s e := { (TT,T) G X | vr = (u i . e i , . . . , e f c _ i ,u f c) A (K } x N x N) n

A WAW + 0 A t(efc-i) = (ufc.d) A u 2 , . . . , U f c _ i 0 (F a U F p) A r l s t = s 2 A

(7r, r) is a max ima l store execution }
17: A ^ s e := { (vr,r) G X | vr = {vi, ei,..., ek-i,vk) A ({v f c} x N x N) n

A WAW 0 A t (e f c _i) = (ufc.d) A «2 , . . . , u f c _ i 0 (F a U F p) A r l s t = s x A

(7r, r) is a max ima l store execution }
18: M:=mu(X1

msexX2

mse)
19: end for
20: return EI

74

Example 4. Consider the P S G from F i g . 9.2 and the mappings shown in Table 9.1. One
can see that there is a potential W A R hazard on the index register X G Va because, for
example, it can be wri t ten in Stage 3 ((pwv(X) = {2, 3, 4}) and read by Stage 5 ((pvd(X) =
{3,4, 5}). B y Defini t ion 20, to form a W A R hazard, the P S G must contain (i) a max ima l
store execution of a spoiler instruction (TTSP,TSP) G X ending i n X and (ii) a min ima l
transfer execution (7T„J,T„J) G X leading from X to some target storage. There are multiple
executions of spoiler and v i c t i m instructions that satisfy the above cri teria. E a c h of them
must be considered in order to verify that the design is free of W A R hazards. For instance,
one may consider a spoiler execution (TTSP, TSP) w i th 7rsp = (X, Inc.&i, Inc, MXIHC.CQ, Mxlnc,
X.d, X) and rsp = { l x •->• 2, 2 / n c - a i •->• 2, 3 / n c •->• 2, 4MxInc-c° •->• 2, 4 M x I n c •->• 2, 5 X d •->• 2,
6X H-> 3}. Further, we can consider a v i c t i m execution (7r„j, r„j) w i th the target memory cell
Merrij wri t ten i n Stage 5 where 7r„j = (X, Cmpj.&o, Cmpj, MxSelj.ci, MxSelj, Merrij.en,
Merrij). A n instance of an execution plan r„j for the walk irvi is { l x t-> 4, 2Cmpr&0 i-> 4,
3CmPj ^ 4 j ^MxSelj.d ^ 4 j gM^Sei,- ^ 4 j gMem.-.en ^ 4 j 7 M e m i ^ 5} T h e g i y e n p a i r Q f

a spoiler and v i c t i m is clearly a candidate for a W A R hazard since the needed data are
overwritten before they are read (unless some control logic over the involved executions
prevents the hazard, which w i l l be the subject of further checking). <

Example 5. Further, as an example of a control hazard, one can consider a spoiler execu
t ion (irsp,Tsp) w i th Trsp = (ExAlu, MxAlu.sel, MxAlu, MxPC.ci, MxPC, PC.d, PC) and
T s p = {\ExAlu ^ 4 j 2MxAlu.Sel ^ 4 j 3MxAlu ^ 4 j 4 M x P C . C l ^ ^ ^MxPC ^ 4 j gPC.d ^ 4 j

7 P C > i->- 5}. A s an instance of a v i c t i m execution (iTvi, r„ j) , we can consider an execution walk
7r„j = (P C , MxProg.sel, MxProg, Idlr.d, Idlr) w i th an execution p lan r„j = {1PC i-> 1,
2MxPro9.sei ^ ^ 3 MxPro 9 ^ ^ 4Hfr .d ^ ^ g/d/r ^ 2 } . Note that, i n this case, Jd / r 0 F a ,

but we know from Table 9.1 that the pipeline register Idlr is a pivot, and so it is s t i l l a valid
terminat ing element for a transfer execution. <

9.5 Parametric Systems for Potential Hazards

We w i l l now describe how the potential ly hazardous behavior of a spoiler and a v i c t i m
instruction described by a hazard case can be modeled and checked for feasibility using
a parametric system P: if the behavior is not feasible, the hazard case does not describe
a real hazard (the suspected hazard gets prevented by the pipeline flow logic). In the system
P, we map n > 2 instructions i n the pipeline to n processes i n a linear array (wi th the
earliest instruct ion on the left). Note that the value of n is not constrained from above.
Indeed, while there is a single spoiler and v ic t im, we do not know how many "padding"
instructions should appear between the spoiler and the v i c t i m for the hazard to manifest.
Tha t is why, we model the system as parametric, w i t h n being the parameter, and verify
it for any value of n.

Initially, the instructions are in a state saying that their execution has not started. Then ,
they proceed through ind iv idua l stages of the pipeline during which they may interact w i th
each other by means of the pipeline flow logic, e.g., an earlier instruct ion may force a later
instruction to be stalled or cleared. Final ly , the instructions end up i n a state denoting
that they left the pipeline.

In the following explanation, we start by constructing the set of states of the system P.
Then, we proceed to capturing the above mentioned influence of the pipeline flow logic and
reflect it i n the transi t ion relation of the system P. F ina l ly , we define the set of m in ima l bad

75

file://{/ExAlu

configurations of the system P that describes the prohibi ted interleavings of instructions
causing the hazard.

9.5.1 States and Edge Conditions of the Parametric System

Given a hazard case of the form (xsp, Xvi) G X 2 , Xsp = (^sp,Tsp), Xvi = (TT vi; Tvi)) the para
metric system P w i l l model interactions among four classes of processes, resp. instructions,
IK := {sp "spoiler", vi "v i c t im" , sf "stall-flow", nf "normal-flow"}. This follows the fact
that each type of the considered pipeline hazard is caused by some pair of instructions.
The sp class represents the spoiler part of the hazard case, i.e., an instruct ion that writes
to a storage v G Va i n a stage Tsp(v). The vi class then represents an instruct ion corre
sponding to the v i c t i m part of the hazard case, reading or wr i t ing f rom/to v i n a stage
Tvi(v). Further, the sf and nf classes both denote any other instructions than the spoiler
and vic t im—we just differentiate two operating modes of these instructions. A s we w i l l
discuss later i n Section 9.5.2, the difference between the stal l- and normal-flow operation
modes is that an s/-class instruct ion i n a stage so G § causes that a l l pipeline stages s £ §
s.t. s < so get stalled. B o t h the sf and nf classes serve as a pipeline filler and a sink for
cleared (flushed) instructions.

To facilitate the construction of a parametric system allowing us to verify whether
a given hazard case corresponds to a real hazard or not, we need to introduce an extended
set of stages. Let S := § U {_L, T } be the set of stages extended wi th auxi l iary in i t i a l " _ L "
and final " T " stages. We w i l l then represent the behavior of instructions given by a hazard
case h = (Xsp,Xvi) in the form of a labelled parametric system, called a hazard system
(HS), Ph = (Qh, A \ ah) where Qh := K x S, Ah w i l l be introduced in Section 9.5.2, and
ah: Qh —>• 2 E is a state labell ing function. The label l ing function ah associates each state
wi th a set of edge conditions that should hold in this state for the hazard to be executable.
We w i l l show the construction of the labell ing below. Note that each state q G Qh represents
a unique instruction class and a stage i n which an instruct ion of this class is supposed to
be. F ina l ly , for a proper understanding of the rest of the section, we once again stress that
the part icular states i n Qh are states of individual instructions, not of the entire system.
A configuration of the system Ph is a sequence of such states.

Next , we define the mapping ah describing which edge conditions must hold i n a state
q = (re, s) G Qh, which is a state of an instruct ion of the class re G K i n the stage s G S,
for that instruct ion to execute i n accordance wi th the hazard case h. F i r s t , for instructions
of the classes re = sf and re = nf, we define ah((n,s}) := 0 for every s £ § since we do
not expect any special behavior from instructions of these classes, and, on every realistic
processor, we can always find instructions that do not interfere wi th the spoiler and v i c t i m
instructions and may serve as the needed pipeline filler. Likewise, we define a ' 1 ((re, s)) := 0
for any re G K and s G {_L, T } , i.e., for instructions that have not yet started or that have
already ended.

For the spoiler and v i c t i m instructions, the idea is to extract the edge conditions by
looking for the necessary settings of selector, enable, and clear edges so that the data
involved in the potential hazard are carried over the walks irK for re G {sp, vi} that are
a part of the concerned spoiler and v i c t i m executions XK = (KK,TK). The mapping ah can
be constructed from three auxi l iary mappings a^el, a^n, and a^st: X —> 2 E x S where a^el

w i l l be examining a l l edges but the last one (hence covering a l l edges that route the data
through multiplexers) and the last edge w i l l be covered by exactly one of the two remaining
mappings (related to enabling a write of the data to the target storage or clearing the

76

storage). In particular, the a g e l mapping is defined as

«Bei(x) == { K (e i _ i) , T (2 i - 1)) | 1 < i < k A

G F m z A % = ((vi,ei,... ,et-i,Vi,... ,vk),T)}.

Intuitively, the mapping produces a set of pairs consisting of a condit ion aVi{ei-\) G IE
over selector edges that is required by the multiplexer Vi G Vmx to propagate the data along
the execution walk TT and the stage T (UJ) in which the part icular condit ion must be satisfied.
Similarly, the and a^3t mappings establish the necessary condit ion for the final edge of
the execution's target storage, making sure that either wr i t ing of the data into the storage
is enabled or the storage is cleared:

« e n (x):={(^-en - l , r (2 A : - l)) |

X = ((w i , e i , . . . , e f c _ i = vk.d,vk),T)},

a J r t (X) := {(vk.rst ~> 1, r(2k - 1) |

X = ((w i , e i , . . . , e f c _ i = u f c . r s t , u f c) , T) } .

In particular, ensures that the data transferred along the path described by the execu
t ion x are indeed wri t ten to its destination storage vk at the end of the execution. Therefore,
a% produces a singleton containing a pair consisting from the condi t ion v/u.en 1 and the
stage r(2k — 1) which is the stage where the data reside just prior to the write. Similarly,
a^st produces a singleton containing a pair consisting from the condit ion vk.rst 1 and
the stage r(2k — 1) so that the target storage is indeed cleared. Using the above mappings,
we can define a h for the given hazard case h = (xsp, Xvi) such that the following holds for
any state (re, s) G {sp, vi} x S:'J

ah((K, s}) := {c G E | (c, s) G ah

sel{Xn) U < (% «) U

«rst(X«)}-

Example 6. Assume the hazard case (xsp, Xvi) shown i n Example 4 for the microprocessor
from Example 1. F i r s t , we focus on the spoiler execution Xsp = (^sp,Tsp). Since the
microprocessor contains five pipeline stages, the spoiler gets associated wi th the set of
states Qgp := {sp} x S where S = {_L, 1 , . . . , 5, T } . We w i l l now show how the ah mapping
is computed for the states of Qgp. F r o m the definition of a h , it direct ly follows that

ah((sp,±))=ah((sp,T)) = <t>.

For the states (sp,l), (sp,5), one has to first compute the auxi l iary mappings a * e l ,
a ^ , and a^st from Equa t ion 9.9. A s the X register is wri t ten v i a its d connection, it
immediately follows that

«rst(Xs P) = 0.

Next , since the walk 7rsp of the spoiler store execution Xsp passes through a single mul t i
plexer, namely, Mxlnc, v ia the edge MXIHCCQ w i t h Tsp(4MxInc-c°) = 2, we get

<xhsei(Xsp) = {(Mxlnc.sel - » 0,2)}.

5 Note that the executions can also end by an Vk-en edge. However, in this case, no matter what the value
of the enable signal is a hazard happens by enabling/not enabling a write of some data into an architectural
storage. Hence, no further condition is needed in this case.

77

For Q!gn, we only need to assure that the storage X is wri t ten at the end of the execution.
Since Tsp(5X'd) = 2, we let

al(XsP) = {(X.en^l,2)}.

Final ly , by uni t ing the above computed auxi l iary mappings, we get that

ah((sp, 2)) = {Mxlnc.sel 0, X.en 1}

and V i G § \ {2}: ah((sp,i}) = 0. Analogical ly, for the v i c t i m execution \vi = {^vii^vi) of
the analyzed hazard case, we would infer that

«se i (x«) = {(MxSelj.sel 1,4)}

and a^st(xvi) = «en(Xw) = 0- Therefore, we get that

ah({vi,4)) = {MxSelj.sel ~* 1}

and V i G S \ {4}: ah({vi,i)) = 0. <c

9.5.2 Transition Relation of the Parametric System

For the construction of the transi t ion relation Ah presented later on, we w i l l first introduce
three predicates that characterise mutual interactions of pairs of instructions whose execu
t ion has reached some states gi, g 2 G Qh of the verified H S Ph. We stress that q\ and g 2 are
states of the execution of two considered instructions, which are of course a part of a single
configuration of the H S Ph. Before providing rigorous definitions of the predicates, which
are given later in this section, we first provide some intui t ion behind them.

A pair of states g i , g 2 € Qh and a stage s G § satisfy the ternary stage stall predicate

C Qh x § x Qh provided that the edge conditions associated wi th the states q\ and g 2

ensure that the stage s is stalled, and thus the contents of a l l pipeline storages of s stays
st h, s st h

unchanged. We w i l l further use the shorthand q\ < ' ' > g 2 for (gi , s,g 2) G <—L^.
Further, a pair of states g i , g 2 G Qh and a stage s £ § satisfy the ternary stage clear

predicate C Qh x S x Qh provided that the stage s is cleared, i.e., the contents of

al l pipeline storages of s is nullified. We w i l l further use the shorthand q\ <c' ,S) g 2 for
, , c\,h
(Qi,s,q2) G <—>.

Final ly , a pair of states g i , g 2 G Qh satisfies a binary state conflict predicate « — C
Qh x Qh provided that the given processor excludes a configuration where two instructions
would appear i n the states qi, g 2 at the same time. We w i l l further use the shorthand

cf h cih
qi «—^ g 2 for {q\, g 2) G ^—L->-. For instance, one of the typica l scenarios when two states qi,
g 2 G Qh are i n a state conflict occurs when there exists an edge e G E so that e 6i G
^ ^ (g i) A e ~» 6 2 G ah(q2), h, 6 2 G B, while b\ / 6 2 .

In order to formally define the above described predicates, we first introduce two auxi l
iary notions: i n particular, (i) a mapping unwind^ : Qh —>• 2C where C is the set of configu
rations of the T S Th = (C , ^) induced by the P S G and (ii) a predicate csath C 2 E x 2 Q h .

The purpose of the unwind h mapping is to compute a l l configurations of the T S Th

i n which Th (and hence the processor it represents) can be when the processor contains
an instruction of a class K in a stage s while executing wi th in the given hazard case h.
The considered configurations must be such that the processor can reach them by going
through a l l preceding stages and such that the processor can finish the execution of the

78

instruction by going through a l l its further stages, a l l the t ime executing wi th in the hazard
case h. In particular, let m = m a x (§) be the number of stages and let (K, S) G Qh be an
instruction state representing an instruct ion of a class K i n a stage s w i th in a hazard case
h. Then , unwindh({n, s)) consists of exactly a l l those configurations ko G C such that there
is a trace (k-s, ..., ko, ..., km-s) i n Th that conforms to the following rules for a l l i such
that — s < i < m — s:

k i ^ h + i , (9.10)

kie^{ah((K,s + i))). (9.11)

The first constraint above ensures that we indeed consider a trace in the T S Th. The second
condit ion then ensures that the trace passes a l l stages of an instruction of the given class
while the processor is executing wi th in the given hazard case.

The above described computat ion of the unwind h mapping can be implemented sym
bolical ly using a BVL formula unwind*h{q) for any q G Qh. To describe the computat ion,
we introduce the notat ion to denote the result of a (straightforward) conversion of
the relation s - to a 5 VL formula where a l l variables representing the current state of the
T S Th are indexed w i t h i and those representing the future state are indexed wi th i + 1.
Moreover, as i n Section 9.3.2, we use e* to denote the conversion of an edge e G E indexed
wi th the trace index i to a BVL variable. Then, given q = (K,S) G Q h \ K x { _ L , T } , the
B V L formula unwind*h{q) is obtained as follows:

m—s—l
F i := A ^ M + 1) ,

i=-s+l
m—s

F2(q) := A A e* = b,
i=-s+l e^beah({K,s+i)) (9-12J

^3 := A e* = e*0,
eS-E

unwind*h(q) : = 3E : F\ A F2(q) A F 3 .

Above, the existential quantification ranges over the set E = {e* \ e G E A— s < i < m — s}.
Its reason is to get r i d of the concrete past and future values of the variables that appear
in the execution, keeping only their impact on the current values of the variables. 6 F ina l ly ,
in order to extend the definition of unwindh for in i t i a l and final states q' G K x {_L, T } , we
define unwind\{q') := true.

Further, we proceed to the second auxi l iary predicate: csath- The csath predicate
determines satisfiability of a set of edge conditions / C IE i n a s i tuat ion when the pipeline
contains instructions i n states from a set S C Qh. Formally, it is defined as follows:

csath(I, S) P| unwindh(q) D Q 7(c) / 0. (9.13)
q&S c£l

The evaluation of csath{I,S) can be natural ly reduced to checking the satisfiability of
a BVL formula as follows:

csath(I, S) sat(^ f \ unwind\(q) A f \ e* = b^j. (9.14)
q&S e~+b£l

6 I n our implementation of the approach, we replace the existential quantification by simply pruning away
all variables unrelated with any e* for any e € E and by renaming the remaining variables in a unique way
such that no conflicts arise when constructing more complex formulae on top unwind*h(q).

79

st h
Now, the predicate csath can be used to precisely define the needed predicates <—L->,

cl,h cf,h r

<—>, and i—> as tollows.

Definition 23. For any instruction states q\, q2 € Qh and any stage s £ S , the stage stall

predicate q\ <st'fe's> q2 [s defined as follows:

qi Q2 3 Vp € Vp : if{vp) = s A

-^csath({vp.en 1}, {qi,q2}) A (9.15)

-.csai f t({up.rst l},{q\,q2}).

Intuitively, the definition requires that the presence of some instructions i n states q\
and q2 i n the pipeline ensures that there is a pipeline storage vp in stage s, which we denote
as a representative storage below, such that the value of vp can neither be updated nor
cleared, i.e., vp keeps its value. Note that the already established val idi ty of the consistency
Rules 1 and 4 implies that the setting of any control edge (en, rst) is the same for a l l
pipeline storages across the given pipeline stage, and so the fact that some representative
storage is stalled means that a l l storages of the given stage are stalled (and the instruction
that is now in stage s stays in i t) .

cl h
In a similar fashion, we define the « — p r e d i c a t e .

Definition 24. For any instruction states q\, q2 € Qh and any stage s £ §, the stage clear

predicate q\ <cl'fe's> q2 is defined as follows:

qi q2 < ^ 3 Vp e Vp : <p(vp) = s A ^

-*csath({vp.rst 0}, {qi,q2}).

Note that the definition requires that the representative storage must be cleared (since
the formula cannot be satisfied wi th the vp.zst edge being zero). The consistency rules
then assure that the same holds for a l l storages of the given stage.

In order to be able to define the •̂ -L-> predicate, we only need to be able to determine
whether two given instruction states are prohibi ted from occurring together i n a single
pipeline configuration by the control logic of the considered processor. Th is is, however,
easy thanks to the csath predicate as shown below.

Definition 25. For any instruction states qi, q2 £ Qh, the state conflict predicate q\ q2

is defined as follows:

qi Q2 < ^ -^csath(Q),{ql,q2}). (9.17)

Intuitively, the expression csai/j(0, {qi, q2}) does not put any constraints on edge con
ditions, but it s t i l l checks whether some concurrently executing instructions can simultane
ously get into states q\ and q2. Hence, its negation says that this is excluded i n the given

processor, al lowing us to define the «—^ predicate.

st h
Example 7. In this example, we w i l l demonstrate how the predicate <—'-t can be evaluated
for a given pair of states and a given stage. Let us consider states (sp,2), (vi,3), Stage
2, and the hazard case h = (Xsp,Xvi) from Example 4. Here, the spoiler instruct ion in

80

state (sp, 2) writes into the register X the (auto-incremented) value previously read from
the same register. The v i c t i m instruction in state (w,4) then reads the value j from the
register X and uses it as an index to access the memory cell Merrij.

st h 2
From Defini t ion 23, we know that, in order to determine the value of (sp, 2) < ' ' > (vi, 3),

one has to (i) pick a representative pipeline storage vp G {v G Vp \ p(v) = 2}, (ii) evaluate
$ i := ^csat({vp.en 1}, {(sp, 2), (vi, 3)}), and (hi) evaluate $2 := -,csat({vp.rst 1},
{(ap,2) ,<w,3)}).

A s for Step (i) above, it suffices to look in Table 9.1 and choose, for instance, Idlr as
the representative storage. Moreover, in Example 1, we have pointed out that the value of
the enable edge on the Idlr storage is determined by the following expression i n BVL:

Idlr.en* = ^IncX.q* V ^OfWrMem.q*. (9.18)

Now, to address Step (ii), we know that, according to Equa t ion 9.14, $1 expands to

->sat(unwind*h((sp,2)) A unwind*, ((vi, 3)) A
(y . iy j

Idlr.en* = 1).

We further concetrate on the expansion of unwind*h((sp, 2)). Accord ing to Equa t ion 9.12, we
need to construct formulae F\, F2((sp,2)), and F3 . F i r s t , the transi t ion relation described
by Formula F\ contains the following conjuncts :

Impl.qfc = (IncX.q* ExWrX.q*) A

Mxlnc. selg = Impl.afo.

To see that the above holds, it suffices to check how the value of Mxlnc.sel is computed
from its predecesors i n the P S G shown i n F i g . 9.2 8 . The formula F2((sp, 2)) then gives

MxInc.sel*Q = 0 A X.en*Q = 1, (9.21)

which is a direct consequence of the result that we have obtained i n Example 6 where we
have shown

a((sp,2)) = {Mxlnc.sel 0, A .en 1}.

Final ly , Formula -F3 s imply asserts equality between zero-indexed and non-indexed variables.
We can then apply the existential quantification from Equa t ion 9.12, which allows us to get
r id of the indexed variables, leading to that the below equality must hold:

IncX.q* = 1. (9.22)

7 T h e entire formula is, of course, much bigger—indeed, it describes the entire transition relation. When
the satisfiability checking is done automatically, the solver wi l l consider the entire formula. However, we
select its relevant parts only so that the example is readable.

8 W e assume that the Impl vertex of the P S G computes the standard implication function fimpi(ao, 01) :=
an => 01 for an, 01 G B .

81

Now, we w i l l apply a similar approach to expand the formula unwind*h((vi, 3)). In this
case, the following conjuncts of Formula F\ tu rn out to be relevant:

ExWrMemAl = OfWrMem.q*, A

ExWrMem.q* = f%*rMem(ExWrMem.cfc,

ExWrMem.d*0, ExWrMem.en*0, (9.23)

ExWrMem.rst*) A

MxSelj.sel* = ExWrMem.q*.

Above, fExWrMem ^ s * n e next-state function that was defined in Section 9.1.2 and that
propages the value on the data-in edge d to the data-out edge q iff the enable edge en is
set and the reset edge rst is unset. Moreover, i f rst is set, then the data-out q is nullified.
Otherwise, when both en and r s t are unset, the data-out edge q keeps the value from the
previous cycle. Further, i n Example 6, we have seen that

a((vi,4)) = {MxSelj.sel 1},

which imples that the formula i<2((w,3)) must ensure

MxSel.sel\ = 1. (9.24)

B y combining the observations from Formulae 9.23 and 9.24, and by adding Formula F%
and the existential quantification of Equa t ion 9.12, we obtain the following statement:

((ExWrMem.en* = 1) (OfWrMem.q* = 1)) A ^

ExWrMem.rst* = 0.

Here, the ExWrMem.rst* = 0 conjuct comes from the fact that the data-out edge must
not be zero because of the constraint i n Formula 9.24.

Next , according to the consistency Rule 3 from Section 9.3.2 that holds globally at any
pipeline cycle, the following expression must hold:

(ExWrMem.en* = 0 A ExWrMem.rst* = 0)
(9.26)

(Idlr.en* = 0 A Idlr.rst* = 0).

In particular, the above comes from the fact that ip(Idlr) + 1 = ip(ExWrMem), i.e., Idlr
and ExWrMem are two pipeline storages i n adjacent stages.

B y applying the modus tollens rule on Formula 9.26, we get

(Idlr.en* = 1 V Idlr.rst* = 1)
V ; (9.27)

(ExWrMem.en* = 1 V ExWrMem.rst* = 1).

Final ly , if we put together our observations made in Formulae 9.18, 9.22, 9.25, and 9.27,
we can conclude that the expression

unwind*, ((sp, 2)) A unwind*h((vi, 3)) A Idlr.en* = 1

is not satisfiable. Thus, the expression $ i evaluates to true.

82

Analogical ly, for Step (ii i) , we would also derive that <&2 is true, and therefore the
st h 2

predicate (sp,2) < ' ' > (w,3) necessarily holds. In other words, this means that the NOP
injection into Stage 3 takes place whenever there is a spoiler defined by Xsp in Stage 2 and
a v i c t i m described by Xvi i n Stage 3. <

We can now define transitions that the transi t ion relation Ah of the H S Ph contains.
Fi rs t , for every instruction state q = (re, s) G Qh, Ah contains a transi t ion q —>• q al lowing
the instruct ion that is i n q to stay i n q whenever the state q appears in a configuration of
the pipeline of the given processor (i.e., a configuration of the transi t ion system induced
by Ph) that contains a combination of instruct ion states q\, q2 £ Qh which causes the
instruction i n the state q to be stalled. Formally, Vg = (re, s),q\,q2 £ Qh:

(3 „ : {qi,q2} Q2- (9.28)

A s we have already mentioned at the beginning of Section 9.5, we use the stall-flow sf
and normal-flow nf instruction classes to model pipeline-filler instructions, i.e., to model
al l other instructions than the spoiler and v i c t i m . The difference between the stal l- and
normal-flow operation modes is that an s/-class instruction in a stage s' G § causes a l l
pipeline stages s £ § s.t. s < s' to be stalled. In other words, an instruct ion stays in a state
q = (re, S) G Qh whenever q appears i n a configuration of the pipeline containing an earlier
instruction i n the stall-flow operation mode. Formally, \/q = (re, S), q' = (sf, s'} G Qh:

(3^_ : {q'} H ^ ?) e A ^ s < s ' . (9.29)

Including stalls caused by stall-flow instructions is necessary as they may introduce oth
erwise unreachable configurations of the verified H S Ph. Moreover, since a pipeline stall
caused by some filler instruction may occur at any processor cycle, we w i l l always allow
random transitions between stal l- and normal-flow operation modes of filler instructions in
the upcoming explanation.

Next , an instruct ion in a state q = (K,S) G QH, QH = K x S, S = S \ {max(S)}, is
cancelled, i.e., yields a transi t ion q —>• (re', s + 1), re' G {nf, sf}, provided that q appears in
a configuration of the pipeline i n which there exist instructions i n states q\ and q2 that cause
the stage s+1 to be cleared. More formally, \/q = (re, s) G Qh, V g i , q2 G Qh, Vre' G {nf, sf} :

(3 „ : {qi,q2} h= Q -»• <«', s + l)) e A k O
cl,/l,S+l / Bt,/l,S \ (9.30)

qi i > q2 A -. ^1 ^ > g 2 J •

Note that for a successful clearing of an instruct ion in the stage s, it is also required that
s is not stalled at the same time.

For the case when our over-approximating abstraction allows two states q and q' that are
conflicting to be reached i n a single configuration of the transit ion system induced by the
H S Ph, we introduce the following solution to reduce the number of possible false alarms.
Namely, we k i l l the instruct ion that entered the pipeline later assuming that this instruction
is in the state q = (re, s), i.e., we introduce the transi t ion q —>• (re', s + 1), re' G {nf, sf}, into

A \ Formally, = (re, s) G Q~h, Vg ' G Q \ Vre' G { n / , s / } :

(3 ^ : {q'} \= q (re', s + l)) e A k O (re, a) 4^ </. (9.31)

A s for the possibil i ty of new instructions entering the pipeline, only the left-most in
struction in a given configuration that has so far not entered the pipeline is allowed to enter

83

it . Moreover, new instructions cannot enter the first stage if it is stalled. More precisely,
Vq= (re,i_), q'= (re',i_), ? 1 j g 2 G <2ft:

(9-32)

(3 „ : { ? 1 , g 2 } H ^ ? e A ' 1) o ? 1 q2. (9.33)

Next , an instruct ion can proceed to the next stage iff none of the above rules is appli
cable. To model this fact, we use local transitions, bui ld ing on that we define a l l global
transitions (used above) to be of a higher probabil i ty than the local ones. Further, we add
transitions reflecting that once finalized instructions stay in their final state forever. More
rigorously, V(re, S) G Qh:

((re, s) —>• (re, s + 1)) G Ah, (9.34)

((r e , ±) ^ (r e , l » G A \ (9.35)

((re, max(S)) -> (re, T)) G Ah, (9.36)

((r e , T) ^ (r e , T » G A \ (9.37)

To ensure a possibil i ty of the pipeline being stalled by some filler instruction, we allow
switching between stal l- and normal-flow operation modes. More formally, V (s / , s), (nf, s) G

Qh:

((nf,s)^ (sf,s + l)) G A \ (9.38)

((sf,s)^(nf,s + l))eAh. (9.39)

Final ly , we recall that apart from the higher pr ior i ty of global (i.e., guarded) transitions
over local (i.e., unguarded) ones, the transi t ion relation Ah is constructed under the as
sumption that, i n each step of the transi t ion system induced by the H S Ph, each instruction
whose state is a part of the given configuration of Ph must make a step. This is, if we take,
e.g., a configuration 51̂ 2^3 consisting of three states of three instructions, a l l of the three
instructions must synchronously fire some of the above described transitions such that we
get the successor configuration q^q^q's-

9.5.3 Construction of the Min imal Bad Set

In the previous section, we have constructed a hazard system Ph = (Qh,Ah, ah) that
models possible interactions of a spoiler and a v i c t i m instruction, forming a hazard case
h = (Xsp, Xvi) G X x X , surrounded by other instructions during a pipelined execution. We
now need to be able to check whether some k ind of data or control hazard occurs.

To facilitate detection of possible hazards from the constructed H S , we w i l l construct
a set Bh of minimal bad configurations describing min ima l illegal configurations whose
reachability (wi thin possibly larger configurations) w i l l mean that the given hazard case h
does indeed lead to a hazard. We define the set Bh wrt an extended hazard system P y

81

Table 9.2: Roles of e- /£-class instructions in hazards cases.

Hazard e-class Role £-class Role

RAW writes spoiler (too slow) reads victim

WAR reads victim writes spoiler (too fast)

WAW writes victim writes spoiler (too fast)

CTL writes spoiler (too slow) jumps victim

(defined later i n this section), which is obtained by applying four transformations, described
also later in the section, on the input system Ph. Since the ordering of instructions wi th in
a hazard case is an important factor in the following explanation, we w i l l be speaking
about pairs of instruct ion classes consisting of an e ("earlier") instruct ion class and an £
("later") instruction class such that either e = sp A £ = vi or e = vi A £ = sp, meaning
that an earlier instruct ion always enters the pipeline sooner than the later one. For the e
and £ class instructions, one of the following statements always holds: (a) For R A W and
C T L hazards, the e-class instruct ion is a spoiler that enters the pipeline first and should
write data to be read by the later instruction, but it is too slow and the later instruction
uses obsolete data, (b) For W A R and W A W hazards, the spoiler is an £-class instruction
that enters the pipeline later, but it is too fast and it either destroys data to be read by
the earlier instruct ion (W A R) , or it stores its result too early and the result is overwritten
by the obsolete result of the earlier instruction (W A W) . These scenarios are summarized in
Table 9.2.

We are going to bu i ld the set Bh such that it w i l l contain so-called hazard pairs
ill}> • • •> QeQe °f states of the earlier and later instruct ion such that a hazard described
by the hazard case h may occur iff there exists a configuration of the system P-y that con
tains as a subword some hazard pair from the set Bh and that is reachable from the set of
in i t i a l configurations Ih. Note, however, that the control states of the earlier/ later instruc
tions that signify that something relevant for the hazard has happened (some cr i t ica l value
has been wri t ten or read) do not necessarily occur at the same time. O n the other hand,
hazard pairs consist of pairs of states that should be reached at the same time. To resolve
this discrepancy, we w i l l pass information that the cr i t ica l control state of an instruct ion has
been reached to its successor states. For that, we w i l l introduce several auxi l iary notions,
which w i l l be introduced such that the detection of the different kinds of hazards may be
described i n an as uniform way as possible.

We first introduce the hazard distance 5 that, intuitively, determines the m a x i m u m de
lay (measured i n pipeline cycles) w i th which the later instruct ion can s t i l l cause a hazard.
Intuitively, the basis of the distance is the difference in the number of the stages in which
the col l iding read/wri te operations happen wi th in the concerned instructions. However,
sometimes, this basic difference has to be decreased by one since one of the col l iding opera
tions must appear by at least one cycle earlier than the other, while i n other cases a hazard
appears even when they occur at the same time. More details on that are given below the
definition.

85

Definition 26. The hazard distance 5: X x X —> N is defined as follows for a l l hazards
h = (Xsp, Xvi) £ X x X where Xk = (^k, Tk) for k G {sp, vi}:

5(h)
.1st
vi

.1st
sp
1st

- T .

- T,

- T\

.fst
vi
.1st
sp

.1st
sp

if / i is a W A R hazard, and

1 if / i is a W A W hazard.

1 if / i is a R A W or C T L hazard

Notice that the hazard distance is indeed always non-negative as the definitions of R A W
and C T L hazard cases (Definitions 19, 22) imply that T * * < r]p , and the definitions of W A R
and W A W hazards (Definitions 20, 21) imply that rlf < r ^ f (and, for the case of W A W
hazards, one can add the fact that r ^ f < r^f) . For R A W and C T L hazard cases, the
distance is decremented by one because reading a value at a cycle when its wr i t ing was
finished, which is what the corresponding value of r records (recall that the wr i t ing starts
one cycle earlier), is safe. O n the other hand, i n W A R hazards, overwrit ing the value that is
read/wri t ten by the earlier instruct ion at the same t ime is an error. F ina l ly , W A W hazards
are special i n that the conflict arises between two write operations where the most extreme
case arises when the write operation in the spoiler appears one cycle before the write i n the
v ic t im: that is why, we have the decrement by one in the formula of W A W hazards. For
a further i l lustrat ion of the notion, see Figure 9.3.

We w i l l next introduce the so-called spo i le r /v ic t im gap and detection windows. Intu
itively, the gap window gSp/gvi of a spo i le r /v ic t im instruct ion t w i l l tel l us for how many
cycles one has to wait wi th in the execution of t, s tart ing from its cr i t ical wri te operation,
un t i l the detection of a possible hazard may start. In some cases, the gap w i l l be zero while
in some other cases it w i l l be positive. The latter case w i l l happen when the v ic t im/spoi le r
instruction i!, possibly coll iding wi th t, has no chance to perform its write operation be
fore the moment when the write operation of t happens even if t' starts right after t. The
detection window (of size at least one) w i l l then te l l us for how many cycles the detection
of a possible hazard should be performed wi th in a given instruct ion after the gap window
passes.

In particular, we w i l l define a l l the windows such that the detection window of v i c t i m
instructions, denoted dvi, w i l l be fixed to one, i.e., d„ = 1. Intuitively, the hazard detection
w i l l always be performed as soon as the v i c t i m instruct ion writes (and hence "publishes")
the wrong data and the gap window of that instruct ion is over.

The detection window of a spoiler instruct ion w i l l be possibly longer, i n particular, it
w i l l correspond to the hazard distance, i.e., dsp = 5(h) where h = (xsp, Xvi) is the considered
hazard case. The definition of the gap windows must then be done i n such a way that any
hazard may be detected wi th the detection windows defined as above, i.e., the detection
wi th in the part icular instructions must be postponed such that the hazard can always be
caught wi th in the detection windows. This definition is more complex and is given below
separately for different types of hazards.

G a p Windows for R A W and C T L Hazards

Firs t , notice that r f s t < r l s t holds for each forward execution (vr, r) £ X where 7r f s t , 7r l s t £ V^.
Second, recall that the definitions of R A W and C T L hazard cases (Definitions 19, 22) imply
that rlf < rlSp. If put together, one can see that there are two possible orderings of rlf,

86

1 2 3 4 j 5
-1st

1 2 3 4
-1st
Lsp

1 , 2

« = 2 2 3 4 5
-1st

6 7
Tvi

(a) Detection of a RAW hazard using a delay in the
spoiler: 5(7i) = T] P * - 4f - 1 = 4 - 1 - 1 = 2,
9sP = rlf - TI? + 1 = 5 - 4 + 1 = 2, g O T = 0,
dsp = 5(7i) = 2, and dvi = 1.

« = 1 1
Jst
Tvi

2
-1st

3 4 5 1
Jst
Tvi Tvi

S = 2 2 3 4 5

T v i

5 = 3

V!

2
-1st

3 4 5

V! Tvi

(b) Detection of a RAW hazard using a delay in the
victim: 5(h) = r ' p -r'f -1 = 4 - 1 -1 = 2, flsp = 0,
ff» = rfe* - TJS* - 1 = 4 - 2 - 1 = 1, dsp = 6(h) = 2,
and dm = 1.

5= -1 1 2 ^
-1st

3 — 5 - 5
lsp

8 =-2 1 2
-1st

3 4 5 6
Lsp

« = -3 1 2
-1st

3 4 5 6
tsp

(c) Detection of a WAR hazard using a delay in
the spoiler: 5(h) = rlf - r ' p = 4 - 2 = 2, g s p =
r j f - r„ ff = 6 - 4 = 2, 5 o t = 0, d s p = 5(h) = 2, and
dvi — 1 •

5= -2 1 2
lsp

3 4 5

5= -3 1 2
-1st
lsp

3 4 5 1 2
-1st
lsp

3 4 5

(d) Detection of a WAW hazard using a delay in the
spoiler: 5(h) = T^-T^-I = 5 - 2-1 = 2, gsp = 1,
3„» = 0, d s p = 5(7i) = 2, and d„» = 1.

Figure 9.3: A n i l lustrat ion of the notions of hazard distance and gap and detection windows
used to construct m in ima l bad sets.

T*> and T%:

r% < rlf < T% (9.40)

rlf < r]f < r j f (9.41)

We start w i t h the ordering (9.40), which is i l lustrated by the scenarios in F i g . 9.3(a).
In this case, the spoiler finishes its write operation earlier, and the R A W hazard occurs as
soon as the v i c t i m performs its write operation. Hence, i n order to be able to detect the
hazard v i a states simultaneously reached i n the spoiler and the v ic t im, the detection needs
to be put off in the spoiler. Provided that the we consider a v i c t i m that starts right after
the spoiler, r * f — T ^ * + 1 cycles need to be skipped in the spoiler (including the cycle in

87

which the write operation of the spoiler happens), and so gsp = T ^ * — T] ^ + l . 9 O n the
other hand, no cycles need to be skipped before the detection starts in the v ic t im, and so
gvi = 0. Note that the detection of hazards w i t h vic t ims that start later than one cycle
behind the spoiler is handled through the detection window dsp.

Next , we consider the ordering (9.41), which is i l lustrated i n F i g . 9.3(b). In this case,
the v i c t i m performs the write operation first, and the hazard occurs as soon as the spoiler
performs its write operation. Hence, this t ime, the detection needs to be put off i n the
v i c t im . Us ing a s imilar reasoning as above, we define gsp = 0 and gvi = T] ^ — T ^ * — l . 1 0

G a p Windows for W A R Hazards

For an i l lustrat ion of the gap and detection windows of W A R hazards, see F i g . 9.3(c). A s
above, we can use the fact that r f s t < r l s t holds for each forward execution (ir, r) G X
where 7r f s t ,7r l s t £ Vs. Moreover, the definition of W A R hazards (Definition 20) implies that
Tsp < Tvf- Hence, for W A R hazards, r^f, r^jf, and r]p can be ordered as follows only:

r]f < rlf < T% (9.42)

Intuitively, after the spoiler instruct ion writes, the W A R hazard does not occur unt i l
the v i c t i m performs its write as well . Unl ike for R A W / C T L hazards, we now consider
as the base case not the si tuat ion when the later instruct ion starts right after the earlier,
but the case when the later instruction starts as late as possible to be s t i l l able to cause
a hazard, i.e., the case when the spoiler starts 5(h) cycles after the v i c t im . Then , it is easy
to see that the detection needs to be put off by — (T]^ + 5(h)) cycles. Hence, we define
9sP = r i f - (rlf + 5(h)) = r j ? - (r # + r ^ f - r #) = r # - 4f while gm = 0. The cases of
the spoiler that start sooner are then handled appropriately by using the detection window
dsp = 5(h) as also i l lustrated i n F i g . 9.3(c).

G a p Windows in W A W Hazards

A s wi th W A R hazards, for W A W hazards, the ordering between writes given i n Equa
t ion 9.42 is the only possible. After the spoiler instruct ion writes, the W A W hazard does
not occur un t i l the v i c t i m performs its write as well . This cannot happen sooner than after
passing through at least one pipeline stage. Therefore, we put the spoiler gap distance
equal to one and the v i c t i m gap distance equal to zero, i.e., gsp = 1 and g„ = 0.

Tracking Passage through G a p and Detection Windows

To facilitate t racking whether a spo i le r /v ic t im instruction is inside a gap or detection win
dow and, i f so, how far inside the window it is, we w i l l introduce a notion of extended hazard
systems (E H S) . In an E H S , each state of the execution of a spo i le r /v ic t im instruct ion w i l l
be labelled by a set of tags saying whether the write operation of the spo i l e r /v ic t im has
already happened and, i f so, how many cycles have passed since then. The universe of tags
T w i l l therefore include a l l couples from the set { w i n s p , win„ j} x N . The universe of tags is,
however, not defined to be equal to the above set since we w i l l need to add some more tags

in tu i t ive ly , the addition of 1 is needed since the vict im starts by one cycle later. Further, note that the
gap is appropriately defined also for the case when rsf = Tvf when a gap window of size 1 is needed to
compensate the fact that the vict im starts by one cycle later.

1 0 T h e subtraction of 1 comes from that the spoiler starts by one cycle earlier.

88

into it later on when we examine the effect of stall ing of an instruction, which we w i l l need
to reflect in the tags as well . We defer the discussion of the stalling-related tags behind we
properly explain the basic spo i le r /v ic t im tags.

Below, we w i l l introduce the E H S s step-wise by first adding tracking of spoiler windows,
then v i c t i m windows, and then adding tracking of stalled instructions. This w i l l lead to
introduct ion of E H S s of various levels, w i th the zero level being the original hazard system,
level one being the extension by tracking spoilers, etc.

More formally, for a hazard case h = {XspiXvi) and the associated H S PH = (Qh, AH,
ah), the corresponding extended hazard system (EHS) of level n > 0 is a tuple P% = (0,%,
AtutPn) where:

1. Ql1 is a finite subset of the set Qh x (N U { _ L , T }) ™ . 1 1 We let Qft = Qh, and we give the
precise construction of the set Q% for n > 1 below. Intuitively, the addi t ional compo
nents of the states w i l l allow us to track the passage of the spo i le r /v ic t im instructions
through the gap and detection windows, for which some states of the original H S
w i l l need to be split to mult iple occurrences to reflect whether an instruct ion i n that
state is in the window and, i f so, how far. Moreover, some further spl i t t ing w i l l be
needed when some of the tracked instructions are stalled some number of times. The
finiteness of Q% w i l l stem from that the tracked gap and detection windows are finite,
that we are t racking a pair of instructions, and that the stal l ing can happen for finite
t ime only.

2. The transi t ion relation and the label l ing function lift the transi t ion relation
AH and the labell ing function ah to the extended set of states. We have A g = AH

and OJQ = ah, and the construction of the relations for n > 1 is described in detail
below.

3. F inal ly , 0^: Q% —>• 2 R is the new tag function. We let /3Q (q) = 0 for any q G Qft. For
n > 1, the construction of the function w i l l also be shown below.

For n > 1, the construction of the E H S P% w i l l be based on applying A l g . 3 and 4
several times on the E H S PQ. We start by presenting A l g . 3 that implements a procedure
denoted as window. Th is procedure extends the input E H S such that it allows for tracking
a spo i le r /v ic t im instruction, which performs its cr i t ica l write instruct ion w i n a state from
some given set of states S, through its gap and detection windows whose combined length is
k. Here, note that we monitor the gap and detection windows joint into one window which
is possible since the latter follows immediately after the former (and we can distinguish in
which of the original windows we are by just looking at how deep into the combined window
we are).

Intuitively, the a lgor i thm extends a l l states of the input E H S by one more component
that ranges over the set / : = {A,T,0,...,/c — 1}. W h e n the addi t ional component is A ,
the tracked instruct ion has not yet entered the gap/detection window. If the addi t ional
component i is from the set { A , T , 0,..., k — 1}, the instruct ion is in the window for i + 1
cycles. If the addi t ional component is T , the instruct ion has already got out of the window.

The transi t ion relation is updated straightforwardly such that the moni tor ing phase
can be entered whenever an instruct ion is i n some state from the given set S (and the

n F o r convenience, by a slight abuse of the notation, we let (Qh x (N U {_L,T})) x (N U {_L,T}) =
Qh x (NU {_L,T}) x (NU {_L,T}) and ((q,ii),te) = (q,ii,h) for any q € Qh and i u i 2 £ NU {_L,T}, and
likewise for higher values of n.

89

monitor ing has not yet started). If the monitor ing is started, every executed transi t ion
increases the number of cycles spent i n the window (recorded in the addi t ional component
of states) un t i l the end of the window is reached. Note that, for transitions w i t h guards, the
states used i n the guards must be lifted to the new set of states, which is done by allowing
them to appear wi th any value of the addi t ional component. Indeed, satisfaction of the
guard is not subject to the cycle i n which it is reached.

The a function does not depend on the addi t ional component, and so it is lifted to the
new set of states by ignoring the addi t ional component. O n the other hand, the j5 function
is extended such that states that are inside the monitored window w i l l be tagged by a couple
(w, i), which says that the operation w is in the (i + l) - t h cycle of its gap/detection window.

To be able to compute the set S where the t racking of gap/detection windows starts,
which we need to be able to apply A l g . 3, we introduce some further notat ion. Namely,
given a state q = (re, s,i\,..., in) G Q F T x (N U {_L, T }) n , representing the state of execution
of some instruction, we denote by = re and S(q) = s the class and stage of execution
of the concerned instruction, respectively. To identify the states where the cr i t ical write
operations happen and the tracking of the passage of the gap/detection windows starts,
we introduce the following function. Namely, given an E H S P = (Q, A, a, j3) of any
level and an instruct ion class ft 6 K , we define wr^: X —>• 2 ^ as the function that maps
any execution (ir, r) G X to the set {q G Q | = re A S(q) = r(7r l s t)} of a l l the states
of P where a re-class instruct ion makes the write 7r l s t to its target storage in the execution
(T T , T) .

We can now proceed to the transformation of the original E H S PQ to the E H S P\
extended to track the spoiler gap and detection windows. W i t h the above notat ion and
algori thm i n hand, the E H S P i can be obtained s imply as

P1 := window(P0 , wrSp

Indeed, the cr i t ical operation is wr i t ing i n a spoiler, which we denote as w i n s p . The write
ph

operation can happen i n one of the states returned by wrSp (Trsp,Tsp). These states thus
serve as the in i t i a l states for t racking the gap and detection windows. Thei r sizes are gsp and
dsp, respectively, which gives the length gsp + dsp of the combined window whose tracking
is ensured in P^ by A l g . 3.

The E H S P% extended to track the v i c t i m gap and detection windows can be obtained
from P^ i n a very similar way as follows:

h h P^1

P2 := window (P{ , wrj (7r„j
i T m))) w i n OT) 9vi + dvi).

A n example of a computat ion of the t racking window is demonstrated i n F i g . 9.4.

Tracking Windows in Stalled Instructions

Since our approach builds on counting the exact number of cycles spent wi th in the tracking
windows, we also need to deal w i th any scenario when an £-class instruction is stalled while
the corresponding e-class instruct ion is n o t . 1 2 Th is scenario breaks the counting scheme
introduced i n the previous paragraphs as the later instruct ion can get delayed and the earlier
instruction might get out of the detection window before the later one gets into its detection
window. The goal of the following transformations is to compensate such misalignments

1 2 T h e converse cannot happen due to the basic consistency checks that we perform.

90

A l g o r i t h m 3 The window procedure transforming an E H S Pn to an E H S Pn+\ to facilitate
t racking of the execution of an instruction that performs a cr i t ica l write operation w in
a state from some given set S through a window of some given length k.

Require: A n E H S Pn = (Qn, A n , a n , j3n) of any level n > 0, a set S C Qn of states to
start the transformation from, a tag w G { w i n s p , win„j}, and the length of the tracking
window k G {1, . . . , max(S)}.

Ensure: A n E H S P „ + i = (Q n + i , A n + i , a n + i , /?n+i) where each state based on q G S
together w i t h its k reachable successors is tagged by a pair (w, i) where 0 < i < k
denotes the distance of the successor from the original occurrence of q.

1: J : = { ± , T , 0 , . . . , f c - l } .

2: Qn+1 '•= Qn X I-

3: A n _)_i is defined as the min ima l relation such that the following two conditions hold:
(a) For every global t ransi t ion Q D : G \= q\ —> q2 G A „ and for every injection r : Qn —>
/ , the following transitions are in A n _ | _ i :

• Q 0 : f (G) |= (<&>-•-) "•(<&>-•-)>

• Q 0 : f (G) ^(qi,±)^(q2,0) if q2 G S,

• Q D : f (G) |= (f t , i) -> ((Z2 ,*+l) for a l l 0 < i < k - 1,

• Q 0 : f (G) |= (qlti) -)• fe, T) for i = fc - 1,

• Q 0 : ? (G) M t t . T) - • (« ! , T)

where f : 2«» -> 2*«+ 1 is defined such that V Q ' C Q „ : f (Q ') := {(q,T(q)) \ q G Q'}.

(b) For every local t ransi t ion 91 —> 92 G A „ , the following transitions are in A n + i :

• («i ,-L) ->• ((72, -L),

• (91, i_) -> ((B,0) if g 2 G S,

• ((Zi>») (? 2 , i + 1) for a l l 0 < i < k — 1,

• (qi,i) -> (92, T) for i = k - 1,

• (« i , ~ 0 -)• (92, T) .

4: V (9 , i) e Qnx I : an+1(q,i) = an(q).

5: V (9 , i) € Qn x {4 - , T } : /3„+i(9 ,z) = Pn(q).

6: V((7,i) G Q„ x { 0 , . . . - 1} :/3 n + i ((9 , i)) = A»(«) U { (« ; , ») } .

91

3++:Gst 3«:r,(Gsr)

(a) A part of an E H S P „ = (Qn, A „ , a „ , /3„) mod
eling the behavior of a spoiler instruction before an
application of the window procedure. Note that, the
spoiler instruction in the state sp0 might stall (if
there are instructions from the set Gst), be cleared
(if there are instructions from the set Gci), or pro
ceed to the next stage (represented by the state sp^.

(b) A part of the E H S Pn+i
window(Pn, {sp0}, winsp, 2) that correponds to the
same part of Pn depicted in Part (a). States spj,
0 < i < 2, 0 < j < 2, for which (winsp, j) G Pn{sp\),
are highlighted in red. Please note that each global
transition from the orignal E H S Pn corresponds
to a family of transitions given by all possible
injections r i , . . . , P f e : Qn —> {_L,0,1,T} with
the mappings I \ , 1 < i < k, defined such that
V Q ' C Qn: Fi(Q') := {(q,^i(q)) I q € Q'}. These
families of transactions are denoted by the dashed
lines in the figure.

Figure 9.4: A n i l lustrat ion of an applicat ion of the window procedure on a fragment of an
E H S Pn.

by (1) using so-called slack tags to count how many times the later instruct ion gets stalled
and (2) by expanding the detection window of the earlier instruction correspondingly.

The introduct ion of slack tags, which are drawn from the set {si} x N , is implemented
in A l g . 4, which takes us from the E H S P 2 obtained by the previous transformations to
E H S P% as follows:

P% := slack(P2

ft, max(S)) .

Intuitively, a l l states from the E H S P 2 are considered to have the in i t i a l slack zero. Then ,
whenever a self-loop on any such state is possible, the self-loop is changed into a transi t ion
going to a new copy of the concerned state wi th the slack being one. More generally,
a self-loop on a state w i t h the slack being i is transformed into a transi t ion to a new
copy of that state w i t h the slack being i + 1 (unless the number of slack steps reaches the
max imum number of pipeline stages—going to such a number and beyond is not necessary
since such behaviors are ruled out by the in i t i a l sanity checks). The number of stalls (slack
transitions) performed by an instruct ion is thus remembered in the structure of the states,
and, i n addit ion, we add it into the tags of the states at the end of A l g . 4 so that the
slack information is easier to access. A n example of an applicat ion of the slack mapping is
demonstrated in F i g . 9.5.

W h a t remains to be done is to adjust the t racking window of the earlier instruction,
which has to be done such that the extension corresponds to the number of the slack

92

A l g o r i t h m 4 A procedure for computing the slack mapping.

Require: A n E H S Pn = (Qn, A n , a n , j3n) of any level n > 0 and the to ta l number of
pipeline stages m > 1.

Ensure: A n E H S P „ + i = (Qn+i , A n + i , a n + i , /? n+i) whose states Pn+i are tagged by pairs
(si , i) where 0 < i < m denotes the number of self-loop transitions taken by the later
tracked instruction in the E H S Pn.

1: I := { T , 0 , . . . , m - 1}.

2: Qn+1 '•= Qn X I-

3: A n _ | _ i is defined as the min ima l relation such that the following two conditions hold:
(a) For every global t ransi t ion Q D : G \= q\ —> q2 G A „ and for every injection r : Qn —>
/ , the following transitions are in A n _ |_ i :

• Q D : f (G) |= (qui) -) • (<Z2,*+ 1) i f 51 = 9 2 for a l l 0 < t < m - 1,

• Q 0 : f(G) \= (q1,i) ->• (g 2 , i) i f 9i / 92 for a l l 0 < i < m,

• Q D : f (G) \= (qi,i) -> (52, T) if gi = g 2 and z = m - 1,

• Q0:f(G)\=(quT)^(q2,T)

where f : 2«» ->• 2^+1 is defined such that V Q ' C Q „ : f (Q ') := {(g ,r(g)) | g G Q '} .

(b) For every local t ransi t ion qi ^ q2 £ A n , the following transitions are in A n _ |_ i :

• (qi, i) —> (q2, i + 1) i f qi = q2 for a l l 0 < i < m — 1,

• (Qi, i) -> (Q2, i) i f 9i / 92 for a l l 0 < i < m,

• (qi,i) (92, T) i f = 52 and z = m — 1,

• (9i , T) -)• (92, T) .

4: V(g,i) e Qnx I : an+1(q,i) = an(q).

5: V(g,i) G Q„ x { T } : = &»(«)•

6: V(<7, i) G Q n X { 0 , . . . , m - 1} : /3n+l((q, i)) = /3n(q) U {(si, i)}.

93

sp2

(a) A part of an E H S Pn modeling the behavior
of a spoiler instruction before an application of the
slack mapping. Note that the spoiler instruction in
the states sp1 and sp2 might be stalled (if there are
instructions from the set Gst, resp. G'st).

3«:r,(G s () 1 3„:r,.

3«:r,(G 5 () :r,'(G's,) '

(b) A part of an E H S Pn+i = slack(Pn, 2) that cor-
reponds to the same part of Pn depicted in Part
(a). States sp{, 0 < i < 3, 0 < j < 2, for which
(si, j) G Pn{spl) with the same value of j , indi
cating that the instructions passed the same num
ber of self-loops, share the same color. Please note
that each global transition from the orignal E H S
Pn corresponds to a family of transitions given by
all possible injections P i , . . . , Yk : Qn —> {_L, 0,1, T }
with the mappings I \ , 1 < i < k, defined such that
V Q ' C Qn: fi(Q') := {(q,Ti(q)) \ q G Q'}. These
families of transactions are denoted by the dashed
lines in the figure.

Figure 9.5: A n i l lustrat ion of an applicat ion of the slack mapping on a fragment of an E H S

transitions taken by the later instruction. For that, we w i l l again use the window procedure
(i)

from A l g . 3, but we w i l l instruct it to add special tags of the form w i n V ^ meaning that
the t racking window of the earlier instruct ion is extended by i cycles. The definition of the

(i)
bad configurations w i l l then match states of the earlier instruct ion tagged by w i n V ^ wi th
winsp//„j-tagged states of the later instruct ion that are at the same t ime tagged by such s i
tags which show that the later instruct ion went through i slack transitions more than the
earlier one.

To be able to formalize the above, we need to be able to distinguish whether the earlier
instruction of a hazard case h is a spoiler or a v i c t im . For that, we define the following
notation: n(e, h) = sp provided that h is a R A W or C T L hazard and n(e, h) = vi provided
that h is a W A R or W A W hazard. Likewise, for later use, we define the analogous notat ion
for the later instruct ion too: n(£, h) = vi provided that h is a R A W or C T L hazard and
K(£, h) = sp provided that h is a W A R or W A W hazard.

W i t h a l l the notat ion at hand, it is now easy to derive the E H S s P % + I of levels 3 + i for
1 < i < m w i th m = max(S) being the m a x i m u m number of pipeline stages that extend
the tracking window of the earlier instruction by i cycles. Let K = n(e, h). For i i terating
from 1 to m , we get

nh 1
 •>

-ph
R3+i

Final ly , we put P

window(P3\j_i, wrK

3+l 1(TTK,Tk), win$,gK + dK +

ph.
R3+m-

Initial and B a d Configurations

Above, we have finished the construction of the E H S P j designed to facilitate the construc
t ion of the set Bh of m in ima l bad configurations describing min ima l illegal configurations

94

whose reachability (wi thin possibly larger configurations) w i l l mean that the given haz
ard case h does indeed lead to a hazard. It now remains to define the set Bh along wi th
the corresponding set of in i t i a l configurations between which reachability w i l l have to be
checked.

We first define the regular set Ih of in i t i a l configurations of Pj that consists solely
of instructions i n the state _L, i.e., before entering the pipeline. A n in i t i a l configuration
may be of an arbi trary length, and it may contain exactly one spoiler sp and one v i c t im
instruction vi, interleaved by any other instructions i n any order, modeled using the nf
class. Formally, the set Ih of the in i t i a l states of E H S P j is defined as follows

Ih := If U 4

where
J * := {(nf, ±-)}*{(vi, ±)}{(nf, ±-)}*{(sp, ±)}{(nf,

and
I2

h := {(nf, ±-)}*{(sp, ±}}{(nf, ±-)}*{(vi, ±)}{(nf, 1)}* .

Next , we define the set Bh of m in ima l bad configurations that describe hazardous config
urations. The ma in challenge behind the construction of Bh is to correctly match detection
states of the earlier and later instructions. For that, we w i l l use the t racking mechanism
that we have provided by the winsp/vi tags. Namely, we w i l l construct Bh to include a l l
configurations that contain any pair of states qe, qe £ Qj, K(qe) = n(e, h), K.(qe) = K(£, h),
where the win tags correspond to the detection part of the t racking window, i.e.,

PriVe) £ {(win K (e^),i) | gK(e^K) < i < gK(e,h) +̂ «(e,ft)}

and

Priie) G {(u±nK(e,h),i) I gK(e,h) < * < gK(e,h) + dn(e,h)}-

It now remains to deal w i t h situations when some of the instructions are stalled. This is
monitored using the s i tags. F i rs t , we can observe that we do not have to further elaborate
cases when both (earlier and later) instructions are stalled together. Clearly, any hazard
that would occur after these cases would also occur i n the case when the instructions are
not stalled. Second, the case when the earlier instruction is stalled while the later is not
is excluded by the consistency of the pipeline. Therefore, it suffices to only consider those
states of the earlier instruct ion qe for which (sl , 0) £ j3(qe). Next , let i be a counter that
increases each t ime the later instruction is stalled while the earlier one is not. Since the
consistency Rules 1-4 from Section 9.3.2 guarantee that each instruct ion leaves the pipeline
in a final number of steps, the value of the counter i may only range from 0 to max(S).
Every t ime the counter i is increased, the detection i n the earlier instruct ion is postponed
by a single pipeline cycle.

Taken a l l together, the set Bh of m in ima l bad configurations describing hazardous
configurations is defined as

max(§)

Bh •= (J Bt

h (9.43)
i=0

95

where

B? := UeQe { (s l , 0) , (W i n « f t) , z + j) } C ^ (g e) A

{(sl,i),(winK(£^),A;)} C p^fa) A

9n(e,h) <3< 9n(e,h) + ^«(e,ft) A (9.44)

W i t h the E H S P-y and the sets of in i t i a l / and min ima l bad configurations B at
hand, checking whether the hazard h is feasible reduces to checking whether there is some
configuration in Bh that is reachable from some configuration in Ih, for which one can use
techniques described, e.g., i n [3, 17].

9.6 Experimental Evaluation

We have implemented the above described method in a prototype tool called Hades [33].
Hades is wri t ten in C + + combined wi th P y t h o n and consists of several components depicted
in Figure 9.6. The tool first reads an R T L description of the processor to be verified and
converts it into its internal P S G representation. Currently, Hades supports the R T L format
expressed in C o d A L which is an architectural description language used in the processor de
sign I D E []. For other R T L languages like V H D L and Veri log where architectural storages
are not expl ic i t ly identified, a list of architectural storages w i t h an explicit identification of
the program counter must be provided.

The obtained P S G representation is then normalised and simplified. Th is step includes,
for instance, a replacement of condit ional branching by multiplexors, an applicat ion of value
propagation, and a removal of redundant nodes and edges. The normalisat ion is done using
an internal component of Hades called as the RTL query engine (R Q E) , which allows one
to search for data-paths and substitute parts of the microprocessor R T L design described
v ia a P S G . Subsequently, pipeline stages are identified by the data-flow analysis discussed
in Section 9.3.1. Next , pipeline consistency is checked using Rules 1-4 from Section 9.3.2
by an S M T solver for bit-vector logic. Hades is compatible w i th a l l S M T solvers accepting
the S M T 2 formula format. In particular, for the below experiments, Z3 [100] was used.
Further, after the P S G is annotated by pipeline stages identified by the data-flow analysis,
Hades repeatedly utilizes the R Q E and the S M T solver to extract potential hazard cases
as described i n Section 9.4 and to generate the appropriate hazard systems (HSs) for each
hazard case as we have seen i n Section 9.5. The generated HSs are then checked using the
abstract regular model checker (A R M C) of [17]. The process of evaluation of the inputs
and generation of the results by the above mentioned subsystems is orchestrated by the
so-called "core" component of Hades.

We have tested the tool on six kinds of processors. The first four are identical to
the ones already presented i n Section 7.6. CompAcc is then an 8-bit processor based on
an accumulator architecture wi th a very similar structure as the one shown in F i g . 9.2.
Final ly , DLX5 is a 5-staged 32-bit processor able to execute a subset of the instruct ion set
of the D L X architecture [108] (with no floating point instructions).

We consider mult iple variants of the above introduced processors, which gives us 17
unique test cases i n total . In particular, the variants of the part icular processors differ
in the following aspects: (i) the way how data hazards are avoided (pipeline stall ing and

96

Table 9.3: Exper imenta l results.

Processor / Simpl . D a t a F l o w Consistency Parametr ic System Tota l Hazard

Variant T ime [s] Analys is [s] Checking [s Generat ion and Verification [s] T ime [s] Cases [#]

rqe smt core rqe smt arme core

T i n y C P U S 0.03 0.01 <0.01 0.43 0.23 0.01 1.21 16.17 1.83 19.92 6

S A 0.03 0.01 <0.01 0.61 0.28 0.06 8.71 114.04 14.54 138.28 20

B 0.03 0.01 <0.01 0.57 0.24 0.02 1.62 16.93 2.76 22.18 7

B A 0.04 0.01 <0.01 0.67 0.31 0.05 5.38 43.86 11.67 61.99 12

S F 0.03 0.01 <0.01 0.46 0.24 0.04 6.50 67.45 9.19 83.92 29

S F A 0.04 0.01 <0.01 0.64 0.30 0.13 19.95 221.43 32.95 275.45 42

S P P 8 S 0.10 0.02 <0.01 0.61 0.34 0.04 5.97 43.27 8.73 59.08 29

B 0.09 0.01 <0.01 0.70 0.42 0.05 6.66 43.24 13.48 64.65 29

S P P 1 6 S 0.10 0.03 0.01 0.85 0.52 0.04 6.00 43.41 9.04 60.00 29

B 0.11 0.03 0.01 0.90 0.53 0.04 6.59 43.19 13.80 65.20 29

Codea2 S F 0.24 0.07 0.01 1.17 0.53 0.42 80.60 339.33 115.68 538.05 243

C o m p A c c S F A 0.10 0.02 0.01 1.00 0.53 0.15 30.89 323.27 33.01 388.98 44

B F A 0.10 0.02 0.01 1.10 0.55 0.20 36.86 350.14 45.62 434.60 59

D L X 5 S 0.13 0.04 0.01 1.95 0.97 0.13 26.92 243.66 38.82 312.63 27

S A 0.15 0.05 0.01 2.03 1.01 0.57 95.50 521.91 182.09 803.32 95

B 0.18 0.05 0.01 2.16 1.05 0.16 62.95 243.6 160.89 471.05 27

B A 0.19 0.06 0.01 1.98 1.03 0.28 101.02 376.75 469.77 951.09 62

S Stal l ing Logic B Bypassing Logic F F l a g Register(s) A Auto-increment Logic

RTL
+ list of

architectural storages
PSG

Stage
identification

PSG
with stages

J

SMT
solver

Consistency
checks

HADES
core

RTL
query engine

Potential
hazard cases

ARMC

Parameterized
systems

Figure 9.6: A schematic of the Hades verification tool .

clearing or data bypassing), (ii) the presence of flag/status registers, and (iii) u t i l iza t ion of
the auto-increment logic.

We conducted a series of experiments on a P C w i t h Intel X e o n E5-2630 v2 @2.60GHz
and 32 G B R A M wi th results shown i n Table 9.3. The first columns give the verified
processor, its variant, the t ime needed for the P S G simplification and its data flow analysis.
The next columns give the durat ion of the consistency checking and the t ime spent by
verification of the parametric systems that are created for each hazard case. The times are
split to the times consumed by the different parts of the tool's architecture.

The following column gives the overall verification time, which remains i n the order of
minutes even for complex designs. Moreover, the tool also scales well w i th the growing size
of the processor data-path as can be seen by comparing the times obtained for SPP8 and
SPP16. It should be noted that the amount of t ime consumed by the tool's core can be
reduced by using a direct A P I of the S M T solver used instead of the current implementat ion
that relies on export ing (potentially large) formulas i n the smt2 file format. (On the other
hand, the current implementat ion does not depend on any part icular S M T solver.) F ina l ly ,
the last column represents the number of data and control hazard cases that had to be
generated and checked. Note that each hazard case represents a separate task so the part
of generation and verification of the parametric systems can be parallelized in the future.

Dur ing the experiments, we identified a flaw in a R A W hazard resolution when accessing
the data memory i n a development version of the SPP8 processor. O u r approach also
correctly identified a l l potential control hazards that are supposed to be handled by the
compiler (by expl ic i t ly generating series of NOP instructions after a condit ional branch).

9.7 Conclusion

We have presented an approach that harnesses methods for formal verification of parametric
systems i n order to discover incorrectly handled data and control pipeline hazards i n the
R T L implementation of pipeline-based execution. The approach was developed wi th the a im
to be highly automated, not requiring any addi t ional efforts from the developers (apart from
specifying the architectural registers). We have implemented the approach and successfully
tested it on several non- t r iv ia l microprocessors where the approach was able to discover
previously unknown flaws caused by unhandled hazards.

98

A potential future work may include extension of the proposed approach to support
microprocessors equipped w i t h mult iple pipelines. Further, as we have already mentioned
i n Section 9.4, another considerable topic is extending the approach so it can detect issues
caused by spoilers and/or vic t ims that consist of mult iple instructions.

99

Chapter 10

Epilogue

The subject of the thesis was to design new verification techniques based on formal ap
proaches that are opt imized for use in the process of concurrent development of hardware
and software, the so-called H W / S W co-design.

In accordance wi th the set-up goals, the thesis firstly presented a novel technique for
dealing wi th memory modeling that can be used for efficient formal verification of hardware
designs. The approach can accommodate different data sizes such as quad words, double
words, words, or bytes. A t the same time, it is also applicable to memories w i th multiple
read and write ports and memories w i th read and write operations wi th zero- or single-clock
delay. The memory is allowed to start w i th a random in i t i a l state permit t ing one to formally
verify the given design for a l l in i t i a l contents of the memory. A n abstraction used i n the
approach represents large register-files and memories i n a way that dramatical ly reduces
the state space explored during formal verification of microprocessors as can be witnessed
by our experiments presented in Chapter 7.

Further, i n Chapter 8, the thesis presents the correspondence checking approach based
on the idea of u t i l iz ing bounded model checking to compare the outputs produced by auto
matical ly derived R T L and I S A models of a given processor for a l l possible instructions and
their inputs. To guarantee that results are obtained in a given t ime l imi t , each instruct ion
is checked in parallel for several bit-widths of its input . The approach then returns only
the result of the verification task w i t h max ima l b i t -wid th that finished wi th in the time
l imi t . O u r experiments included a non- t r iv ia l single-pipelined processor i n which, during
its development, the approach revealed three previously unknown bugs confirmed by the
developers. The experiments have also shown that vast majority of instructions of single-
pipelined microprocessors, typical ly used wi th in embedded devices, can be verified wi th in
seconds.

Final ly , in Chapter 9, the thesis presents an approach that harnesses methods for formal
verification of parametric systems i n order to discover incorrectly handled data and control
pipeline hazards i n the R T L implementations of pipeline-based executions. The approach
was developed w i t h the a i m to be highly automated, requiring no external information
about the design (apart from specifying the architectural registers). The experimental im
plementation of the approach was successfully tested on several non- t r iv ia l microprocessors
where the approach was able to discover a previously unknown flaw caused by an unhandled
hazard.

The design of a l l the above-presented approaches was motivated by the general idea of
spl i t t ing processor verification into several simpler, more specialized tasks. Moreover, each
approach was designed to be highly automated, requiring min ima l addi t ional effort from
developers.

100

Bibliography

[1] Codasip Studio for R a p i d Processor Development, www.codasip.com. 2019.

[2] Aagaard , M . D . : A Hazards-Based Correctness Statement for P ipe l ined Circui ts . In
Proc. of Correct Hardware Design and Verification Methods (CHARME), LNCS,
vol . 2860. Springer. 2003. pp. 66-80.

[3] A b d u l l a , P . A . ; Haziza . , F . ; Holík, L . : A l l for the Pr ice of Few (Parameterized
Verification through V i e w Abst rac t ion) . In Proc. of Verification, Model Checking,
and Abstract Interpretation (VMCAI), LNCS, vol . 7737. Springer. 2013. pp.
476-495.

[4] A b d u l l a , P . A . ; Jonsson, B . ; Nilsson, M . ; et a l . : A Survey of Regular M o d e l
Checking. In CONCUR 2004 - Concurrency Theory, edited by P . Gardner:
N . Yoshida . Ber l in , Heidelberg: Springer Ber l in Heidelberg. 2004. pp. 35-48.
doi:10.1007/978-3-540-28644-8_3.

[5] Accellera: Standard Universal Verification Methodology Class Reference, Release
1.2. 2014.
Retrieved from: w o r k s p a c e . a c c e l l e r a . o r g / d o w n l o a d s / s t a n d a r d s / u v m

[6] Alencar , R . ; Rigo, S.; Azevedo, R . : Software Co-Verif icat ion Based on Program
Traces from Different Processors. In In 3rd Workshop on Infrastructures for
Software/Hardware Co-design (WISH). 2011. pp. 1-6.

[7] A M D : AMD64 Architecture Programmer's Manual, Volume 3. 2018.
Retrieved from: www.amd.com/sys tem/f i les /TechDocs /24594.pdf

[8] A R M : Arm Instruction Set Reference Guide. 2018.
Retrieved from: s t a t i c .docs . a rm.com/100076 /0100 /
a rm_ ins t ruc t i on_se t_ re f e r ence_gu ide_100076_0100_00_en .pd f

[9] Baier , C ; Ka toen , J . : Principles of model checking. M I T Press. 2008. I S B N
978-0-262-02649-9.

[10] Barret t , C ; Sebastiani, R . ; Seshia, S. A . ; et a l . : Satisfiability Modu lo Theories. In
Handbook of Satisfiability, vol . 4, edited by A . Biere; H . van Maaren; T . Walsh,
chapter 8. IOS Press. 2009.

[11] Basu, S.; Moona , R . : H i g h level synthesis from S i m - n M L processor models. In 16th
International Conference on VLSI Design, 2003. Proceedings.. J an 2003. I S S N
1063-9667. pp. 255-260. doi:10.1109/ICVD.2003.1183146.

101

http://www.codasip.com
http://workspace.accellera.org/downloads/standards/uvm
http://www.amd.com/system/files/TechDocs/24594.pdf
http://static.docs.arm.com/100076/0100/

[12] Bayardo, R . J . , Jr.; Schrag, R . C : Us ing C S P Look-back Techniques to Solve
Real-world S A T Instances. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial
Intelligence. A A A I ' 9 7 / I A A I ' 9 7 . A A A I Press. 1997. I S B N 0-262-51095-2. pp.
203-208.

[13] Beyer, S.; Jacobi, C ; K r o n i n g , D . ; et a l . : P u t t i n g it a l l together - Formal
verification of the V A M P . International Journal on Software Tools for Technology
Transfer, vol . 8, no. 4. A u g 2006: pp. 411-430. I S S N 1433-2787.
doi:10.1007/sl0009-006-0204-6.

[14] Biere, A . ; C i m a t t i , A . ; Clarke, E . ; et a l . : Symbolic M o d e l Checking without B D D s .
In Tools and Algorithms for the Construction and Analysis of Systems, edited by
W . R . Cleaveland. Springer Be r l i n Heidelberg. 1999. I S B N 978-3-540-49059-3. pp.
193-207.

[15] Biere, A . ; Heljanko, K . ; Wier inga , S.: A I G E R 1.9 A n d Beyond. Technical report.
F M V Reports Series, Institute for Formal Models and Verification, Johannes Kepler
University, Altenbergerstr. 69, 4040 L i n z , Aus t r i a . 2011.

[16] Bouaj jani , A . ; Habermehl , P. ; Rogalewicz, A . ; et a l . : Abst rac t Regular Tree M o d e l
Checking of Complex Dynamic D a t a Structures. In Proc. of 13th International
Static Analysis Symposium (SAS), LNCS, vo l . 4134. Springer. 2006. pp. 52-70.

[17] Bouaj jani , A . ; Habermehl , P. ; Vojnar, T . : Abst rac t Regular M o d e l Checking. In
Proc. of 16th International Conference on Computer Aided Verification (CAV),
LNCS, vol . 3114. Springer. 2004. pp. 197-202.

[18] Bradley, A . R . : S A T - B a s e d M o d e l Checking without Unro l l ing . In Verification,
Model Checking, and Abstract Interpretation, edited by R . Jhala; D . Schmidt.
Ber l in , Heidelberg: Springer Ber l in Heidelberg. 2011. I S B N 978-3-642-18275-4. pp.
70-87. doi:10.1007/978-3-642-18275-4_7.

[19] Bradley, A . R . ; Manna , Z . ; Sipma, H . B . : Wha t ' s Decidable A b o u t Arrays? In Proc.
of Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS, vol .
3855, edited by K . S. Emerson, E . A l l enand Namjoshi . Ber l in , Heidelberg: Springer
Be r l i n Heidelberg. 2006. I S B N 978-3-540-31622-0. pp. 427-442.
doi:10.1007/11609773_28.

[20] Brown , D . ; Levine, J . ; Mason, T . : Lex & Yacc. O ' R e i l l y Med ia . 1992. I S B N
978-1565920002.

[21] Brummayer , R . ; Biere, A . : Boolector: A n Efficient S M T Solver for Bi t -Vectors and
Arrays . In Proc. of International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS, vol . 5505. Springer. 2009.
pp. 174-177.

[22] Bryant , R . E . : Symbolic Boolean Manipu la t ion wi th Ordered Binary-decision
Diagrams. ACM Computing Surveys, vo l . 24, no. 3. 1992: pp. 293-318. I S S N
0360-0300. doi: 10.1145/136035.136043.

102

[23] Bryant , R . E . : Formal Verification of P ipe l ined Y86-64 Microprocessors w i th
U C L I D 5 . Technical Report C M U - C S - 1 8 - 1 2 2 . 2018.

[24] Bryant , R . E . ; German, S.; Velev, M . N . : Exp lo i t i ng Posit ive Equa l i ty in a Logic of
Equa l i ty w i th Uninterpreted Functions. In Computer Aided Verification, edited by
N . Halbwachs; D . Peled. Springer Ber l in Heidelberg. 1999. I S B N 978-3-540-48683-1.
pp. 470-482.

[25] Bryant , R . E . ; Velev, M . N . : Verification of pipelined microprocessors by comparing
memory execution sequences i n symbolic simulat ion. In Proc. of Advances in
Computing Science (ASIAN), LNCS, vol . 1345, edited by K . Shyamasundar, R .
K . a n d Ueda. Ber l in , Heidelberg: Springer Ber l in Heidelberg. 1997. I S B N
978-3-540-69658-2. pp. 18-31. doi:10.1007/3-540-63875-X_40.

[26] Burch , J . R . ; Clarke, E . M . ; M c M i l l a n , K . L . ; et a l . : Symbolic M o d e l Checking: 1 0 2 0

States and Beyond. In Proc. of Fifth Annual IEEE Symposium on Logic in
Computer Science. I E E E . 1990. I S B N 0-8186-2073-0. pp. 428-439.
doi:10.1109/LICS.1990.113767.

[27] Burch , J . R . ; D i l l , D . L . : Au tomat ic Verification of P ipe l ined Microprocessor
Contro l . In Proc. of Computer Aided Verification (CAV), LNCS, vol . 818. Springer.
1994. I S B N 978-3-540-48469-1. pp. 68-80.

[28] Cadence: Tensilica Software Development Toolkit (SDK). 2014.
Retrieved from: ip . cadence .com/up loads /103 /SWdev-pdf

[29] Cadence: TIE Language — The Fast Path to High-Performance Embedded SoC
Processing. 2016.
Retrieved from: i p . cadence . com/up loads /980 /TIP_WP_TIE_FINAL-pdf

[30] Cadence: Xtensa LX7 Processor Datasheet. 2016.
Retrieved from: i p . cadence . com/up loads / 1 0 9 9 / T I P _ P B _ X t e n s a _ l x 7 _ F I N A L - p d f

[31] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Automat ic Formal Correspondence Checking
of I S A and R T L Microprocessor Descript ion. In Proc. of Microprocessor Test and
Verification (MTV'12). I E E E . 2012. pp. 6-12.

[32] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : A n Abs t rac t ion of M u l t i - P o r t Memories w i t h
A r b i t r a r y Addressable Uni t s . In Proc. of Computer Aided Systems Theory
(EUROCAST'13), LNCS, vol . 8111. Springer. 2013. pp. 460-468.

[33] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : H A D E S Hades Hardware Verification Tool .
www . f i t . v u t b r . c z / r e s e a r c h / g r o u p s / v e r i f i t / t o o l s / h a d e s / . 2014.

[34] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Us ing Formal Verification of Parameterized
Systems i n R A W Hazard Analys is in Microprocessors. In Proc. of Microprocessor
Test and Verification (MTV'U). I E E E . 2014. I S B N 978-1-4673-6858-2. pp. 83-89.

[35] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Us ing Formal Verification of Parameterized
Systems i n R A W Hazard Analys is in Microprocessors. Technical Report
FIT-TR-2014-04 . Brno Universi ty of Technology. 2014.

103

http://ip.cadence.com/uploads/103/SWdev-pdf
http://ip.cadence.com/uploads/980/TIP_WP_TIE_FINAL-pdf
http://ip.cadence.com/uploads/
http://www.fit.vutbr.cz/research/groups/verifit/tools/hades/

[36] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Microprocessor Hazard Analys is v ia Formal
Verification of Parameterized Systems. In Proc. of Computer Aided Systems Theory
(EUROCAST'15), LNCS, vol . 9520. Springer. 2015. pp. 605-614.

[37] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : H A D E S : Microprocessor Hazard Analys is v i a
Formal Verification of Parameterized Systems. In Proc. of 11th Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science (MEMICS'16).
233. E P T C S . 2016. pp. 87-93. do i :10 .4204/EPTCS.233 .9 .

[38] Chen , M . ; Mish ra , P. : Proper ty Learning Techniques for Efficient Generat ion of
Directed Tests. IEEE Transactions on Computers, vol . 60, no. 6. June 2011: pp.
852-864. I S S N 0018-9340. doi:10.1109/TC.2011.49.

[39] Clarke, E . ; Grumberg , O. ; Jha , S.; et a l . : Counterexample-Guided Abs t rac t ion
Refinement. In Proc. of Computer Aided Verification (CAV), LNCS, vol . 1855,
edited by E . A . Emerson; A . P . Sist la. Ber l in , Heidelberg: Springer Ber l in
Heidelberg. 2000. I S B N 978-3-540-45047-4. pp. 154-169. doi:10.1007/10722167_15.

[40] Clarke, E . ; Grumberg , O. ; Minea , M . ; et a l . : State space reduction using par t ia l
order techniques. International Journal on Software Tools for Technology Transfer.
vol . 2, no. 3. Nov 1999: pp. 279-287. I S S N 1433-2779. doi:10.1007/sl00090050035.

[41] Clarke, E . ; Talupur, M . ; Ve i th , H . : Environment abstraction for parameterized
verification. In Proc. of Verification, Model Checking, and Abstract Interpretation
(VMCAI), LNCS, vo l . 3855. Springer. 2006. pp. 126-141.

[42] Codea2 Core IP i n Codasip Studio, www.codas ip .com/produc ts /codea2/ . 2013.

[43] Dang , T . N . ; Roychoudhury, A . ; M i t r a , T . ; et a l . : Generat ing test programs to cover
pipeline interactions. In 2009 46th ACM/IEEE Design Automation Conference. J u l y
2009. I S S N 0738-100X. pp. 142-147.

[44] Davis , M . ; Logemann, G . ; Loveland, D . : A Machine P rogram for Theorem-proving.
Communication of the ACM. vol . 5, no. 7. J u l 1962. I S S N 0001-0782.
doi:10.1145/368273.368557.

[45] Een , N . ; Mishchenko, A . ; Bray ton , R . : Efficient Implementation of Proper ty
Directed Reachabili ty. In Proceedings of the International Conference on Formal
Methods in Computer-Aided Design. F M C A D ' l l . Aus t in , T X : F M C A D Inc. 2011.
I S B N 978-0-9835678-1-3. pp. 125-134.

[46] Fauth , A . ; K n o l l , A . : Automated generation of D S P program development tools
using a machine description formalism. In 1993 IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol . 1. A p r 1993. I S S N 1520-6149. pp.
457-460. doi:10.1109/ICASSP.1993.319154.

[47] Fauth , A . ; Lohr , F . ; Freericks, M . : S i g h / S i m : A n environment for retargetable
instruction set s imulat ion. Technical Report 1993/43. Technische Unive r s i t ä t Ber l in ,
Germany. 1993.

[48] Fey, G . ; Drechsler, R . : Design understanding by automatic property generation. In
Proceedings of Workshop on Synthesis And System Integration of Mixed Information
technologies. 2004. pp. 274-281.

104

http://www.codasip.com/products/codea2/

[49] Gana i , M . K . ; Gup ta , A . ; Ashar , P. : Verification of embedded memory systems
using efficient memory modeling. In Proc. of Design, Automation and Test in
Europe (DATE), vol . 2. I E E E . 2005. I S S N 1530-1591. pp. 1096-1101.
doi :10.1109/DATE.2005.325.

[50] German, S. M . : A Theory of Abs t rac t ion for Arrays . In Proc. of the International
Conference on Formal Methods in Computer-Aided Design (FMCAD). F M C A D .
2011. I S B N 978-0-9835678-1-3. pp. 176-185.

[51] Goossens, G . ; Lanneer, D . ; Geurts , W . ; et a l . : Design of A S I P s i n multi-processor
SoCs using the Chess/Checkers retargetable too l suite. In International Symposium
on System-on-Chip. N o v 2006. I S B N 1-4244-0621-8. pp. 1-4.
doi:10.1109/ISSOC.2006.321968.

[52] Gries, M . ; Keutzer , K . : Building ASIPs: The Mescal Methodology. Springer U S .
2005. I S B N 978-0-387-26057-0. doi:10.1007/bl36892.

[53] Hadjiyiannis , G . ; Devadas, S.: Techniques for accurate performance evaluation in
architecture exploration. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol . 11, no. 4. A u g 2003: pp. 601-615. I S S N 1063-8210.
doi:10.1109/TVLSI.2003.812290.

[54] Hadjiyiannis , G . ; Hanono, S.; Devadas, S.: I S D L : A n Instruction Set Descr ipt ion
Language for Retargetabil i ty and Archi tecture Explora t ion . Design Automation for
Embedded Systems, vo l . 6, no. 1. Sep 2000: pp. 39-69. I S S N 1572-8080.
doi:10.1023/A:1008937425064.

[55] H a l l , E . C : Journey to the Moon: The History of the Apollo Guidance Computer.
Amer i can Institute of Aeronautics. 1996. I S B N 978-1563471858.

[56] Hao, K . ; Ray, S.; X i e , F . : Equivalence Checking for Funct ion P ipe l in ing in
Behavioral Synthesis. In Proc. of Design, Automation and Test in Europe (DATE).
I E E E . 2014. pp. 1-6.

[57] Harr ison, J . : Float ing-Point Verification Us ing Theorem Proving . In Proceedings of
the 6th International Conference on Formal Methods for the Design of Computer,
Communication, and Software Systems. S F M ' 0 6 . Springer-Verlag. 2006. I S B N
3-540-34304-0, 978-3-540-34304-2. pp. 211-242. doi:10.1007/11757283_8.

[58] Hartoog, M . R. ; Rowson, J . A . ; Reddy, P . D . ; et a l . : Generation of Software Tools
from Processor Descriptions for Hardware/Software Codesign. In Proceedings of the
34th Annual Design Automation Conference. D A C ' 9 7 . New York , N Y , U S A : A C M .
1997. I S B N 0-89791-920-3. pp. 303-306. doi:10.1145/266021.266110.

[59] Hauta la , I.; Boutell ier, J . ; Hannuksela, J . ; et a l . : Programmable Low-Power
Mul t icore Coprocessor Archi tecture for H E V C / H . 2 6 5 In-Loop Fi l te r ing . IEEE
Transactions on Circuits and Systems for Video Technology, vo l . 25, no. 7. Ju ly
2015: pp. 1217-1230. I S S N 1051-8215. doi :10.1109/TCSVT.2014.2369744.

[60] Hopcroft, J . E . ; Motwan i , R . ; U l l m a n , J . D . : Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Boston, M A , U S A : Addison-Wesley
Longman Publ i sh ing Co . , Inc.. 2006. I S B N 0321455363.

105

[61] Hosabettu, R . ; Gopalakr ishnan, G . ; Srivas, M . : Verifying Advanced
Microarchitectures that Support Speculation and Exceptions. In Computer Aided
Verification, edited by E . A . Emerson; A . P . Sist la. Springer Ber l in Heidelberg.
2000. I S B N 978-3-540-45047-4. pp. 521-537.

[62] Hunt , W . A . : Microprocessor design verification. Journal of Automated Reasoning.
vol . 5, no. 4. Dec 1989: pp. 429-460. I S S N 1573-0670. doi:10.1007/BF00243132.

[63] Hunt , W . A . ; Kaufmann, M . : A formal model of a large memory that supports
efficient execution. In Proc. of Formal Methods in Computer-Aided Design
(FMCAD). I E E E . 2012. I S B N 978-0-9835678-2-0. pp. 60-67.

[64] Husar, A . ; Trmac, M . ; Hranac, J . ; et a l . : Au tomat ic C Compi ler Generat ion from
Architecture Descr ipt ion Language IS A C . In 6th Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science. Masaryk University.
2010. I S B N 978-80-87342-10-7. pp. 84-91.

[65] I E E E : IEC/IEEE Behavioural Languages - Part 4- Verilog Hardware Description
Language. 2004. doi :10.1109/IEEESTD.2004.95753.

[66] I E E E : IEEE Standard VHDL Language Reference Manual. 2009.
doi: 1 0 . 1 1 0 9 / I E E E S T D . 2009.4772 740.

[67] Ienne, P.; Leupers, R . : Customizable Embedded Processors: Design Technologies and
Applications. Morgan Kaufmann Publishers Inc.. 2007. I S B N 0123695260,
9780080490984.

[68] Intel: Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2. 2016.
Retrieved from: www.inte 1 . com/con ten t /dam/www/pub l i c /u s / en /documen t s /
m a n u a l s / 6 4 - i a - 3 2 - a r c h i t e c t u r e s - s o f t w a r e - d e v e l o p e r - i n s t r u c t i o n - s e t -
r e f e r ence -manua l -325383 .pd f

[69] Jones, R . B . ; Seger, C . H . ; D i l l , D . L . : Self-Consistency Checking. In Proc. of
Formal Methods in Computer-Aided Design (FMCAD), LNCS, vol . 1166. Springer.
1996. pp. 159-171.

[70] Jones, R . B . ; Skakkebsek, J . U . ; D i l l , D . L . : Formal Verification of Out-of-Order
Execut ion wi th Incremental F lushing . Formal Methods in System Design, vol . 20,
no. 2. M a r 2002: pp. 139-158. I S S N 1572-8102. doi:10.1023/A:1014118529369.

[71] Kesten, Y . ; Maler , O. ; Marcus , M . ; et a l . : Symbol ic model checking wi th r ich
assertional languages. Theoretical Computer Science, vol . 256, no. 1-2. 2001: pp.
93-112.

[72] K i e s l , B . ; Seidl, M . ; Tompits , H . ; et a l . : L o c a l Redundancy in S A T : Generalizations
of Blocked Clauses. Logical Methods in Computer Science, vol . 14. 2018: pp. 1-23.

[73] K i l d a l l , G . A . : A unified approach to global program opt imizat ion. In In Conf. Rec.
1st Symp. Principles of Prog. Lang. (POPL). A C M . 1973. pp. 194—206.

[74] K o e l b l , A . ; Burch , J . R . ; Pixley, C : Memory Mode l ing i n E S L - R T L Equivalence
Checking. In Proc. of the 44th Annual Design Automation Conference (DAC).
A C M . 2007. I S B N 978-1-59593-627-1. pp. 205-209. doi:10.1145/1278480.1278530.

106

http://www.inte

[75] K o e l b l , A . ; Jacoby, R . ; Ja in , H . ; et a l . : Solver technology for system-level to R T L
equivalence checking. In Proc. of Design, Automation Test in Europe Conference
Exhibition (DATE). I E E E . 2009. I S S N 1530-1591. pp. 196-201.
doi:10.1109/DATE.2009.5090657.

[76] K o r e l , B . ; Lask i , J . : Dynamic Program Slicing. Information Processing Letters.
vol . 29, no. 3. Oct 1988: pp. 155-163. I S S N 0020-0190.
doi:10.1016/0020-0190(88)90054-3.

[77] Kozen , D . C : Automata and Computability. New York , N Y : Springer. 1997. I S B N
978-1-4612-7309-7. doi:10.1007/978-1-4612-1844-9.

[78] K ü h n e , U . ; Beyer, S.; Bormann , J . ; et a l . : Au tomated Formal Verification of
Processors Based on Archi tec tura l Models . In Proc. of Formal Methods in
Computer-Aided Design (FMCAD). I E E E . 2010. pp. 129-136.

[79] Lanneer, D . ; V a n Praet, J . ; K i f l i , A . ; et a l . : Chess: Retargetable Code Generation
for Embedded DSP Processors. Springer U S . 2002. I S B N 978-1-4615-2323-9. pp.
85-102. doi:10.1007/978-1-4615-2323-9_5.

[80] Leupers, R . ; Marwedel , P.: Retargetable Code Generat ion Based on Structural
Processor Descript ion. Design Automation for Embedded Systems, vol . 3, no. 1. Jan
1998: pp. 75-108. I S S N 1572-8080. doi:10.1023/A:1008807631619.

[81] Lev i t t , J . ; Olukotun , K . : Verifying Correct Pipel ine Implementation for
Microprocessors. In Proceedings of the 1997 IEEE/ACM International Conference
on Computer-aided Design. I C C A D '97. I E E E Computer Society. 1997. I S B N
0-8186-8200-0. pp. 162-169.

[82] L i ang , J . H . ; O h , C ; Mathew, M . ; et a l . : Machine Learning-Based Restart Po l i cy
for C D C L S A T Solvers. In Proceedings of Theory and Applications of Satisfiability
Testing SAT 2018, Lecture Notes in Computer Science, vol . 10929. Springer. 2018.
I S B N 978-3-319-94143-1. pp. 94-110. doi:10.1007/978-3-319-94144-8.

[83] L i b l i t , B . ; Naik , M . ; Zheng, A . X . ; et a l . : Scalable Stat is t ical B u g Isolation.
SIGPLAN Not., vol . 40, no. 6. Jun 2005: pp. 15-26. I S S N 0362-1340.
doi:10.1145/1064978.1065014.

[84] Manolios , P. ; Srinivasan, S. K . ; Vroon , D . : Au tomat ic Memory Reductions for R T L
M o d e l Verification. In Proc. of IEEE/ACM International Conference on Computer
Aided Design (ICCAD). I E E E . 2006. I S S N 1092-3152. pp. 786-793.
doi :10.1109/ICCAD.2006.320121.

[85] Marques Silva, J . P. ; Sakallah, K . A . : G R A S P - A new search algori thm for
satisfiability. In Proceedings of International Conference on Computer Aided Design.
1996. I S B N 0-8186-7597-7. pp. 220-227. doi :10.1109/ICCAD.1996.569607.

[86] McCarthy, J . : Towards a Mathemat ica l Science of Computa t ion . In In IFIP
Congress. Nor th -Hol land . 1962. pp. 21-28.

[87] M c M i l l a n , K . L . : The SMV System. Boston, M A : Springer U S . 1993. I S B N
978-1-4615-3190-6. pp. 61-85. doi:10.1007/978-l-4615-3190-6_4.

107

[88] M c M u r r a n , M . W . : ACHIEVING ACCURACY: A Legacy of Computers and
Missiles. X l i b r i s Corp . . 2008. I S B N 978-1436381062.

[89] Meduna , A . : Automata and Languages: Theory and Applications. Ber l in ,
Heidelberg: Springer-Verlag. 2000. I S B N 1-85233-074-0.

[90] Mentor: The Veloce Strato Platform: Unique Core Components Create High-Value
Advantages. 2019.
Retrieved from: www.mentor . com/produc t s / fv / reques t?se lec ted=103372

[91] Mina f ik , M . : Concurrent Evolutionary Design of Hardware and Software. P h D .
Thesis. Brno Universi ty of Technology, Facul ty of Information Technology. 2017.

[92] Mish ra , P. ; Du t t , N . : Archi tecture description languages for programmable
embedded systems. IEE Proceedings - Computers and Digital Techniques, vol . 152,
no. 3. M a y 2005: pp. 285-297. I S S N 1350-2387. doi:10.1049/ip-cdt:20045071.

[93] Mish ra , P. ; Du t t , N . (editors): Processor Description Languages: Applications and
Methodologies. 2008. I S B N 978-0-12-374287-2.
doi:10.1016/B978-0-12-374287-2.X5001-0.

[94] Mish ra , P. ; Du t t , N . : Specification-driven Directed Test Generat ion for Val ida t ion of
Pipel ined Processors. ACM Transactions on Design Automation of Electronic
Systems, vol . 13, no. 3. J u l 2008: pp. 42:1-42:36. I S S N 1084-4309.
doi:10.1145/1367045.1367051.

[95] Mish ra , P. ; Du t t , N . ; Du t t , N . ; et a l . : Mode l ing and Val ida t ion of Pipel ine
Specifications. ACM Transactions on Embedded Computing Systems, vol . 3, no. 1.
Feb 2004: pp. 114-139. I S S N 1539-9087. doi:10.1145/972627.972633.

[96] Mish ra , P. ; Du t t , N . D . : Functional Verification of Programmable Embedded
Architectures: A Top-Down Approach. Springer U S . 2005. I S B N 978-0-387-26143-0.
doi:10.1007/bl37514.

[97] Mish ra , P. ; K o o , H . : Funct ional Test Generation Using Design and Proper ty
Decomposi t ion Techniques. ACM Transactions on Embedded Computing Systems.
vol . 8, no. 4. 2009.

[98] Mish ra , P. ; Tomiyama, H . ; Du t t , N . ; et a l . : Au tomat ic Verification of In-Order
Execut ion i n Microprocessors w i th Fragmented Pipelines and Mul t i cyc le Funct ional
Uni t s . In Proc. of Design, Automation and Test in Europe (DATE). I E E E . 2002. pp.
36-43. doi: 10.1109/DATE.2002.998247.

[99] Moona , R . : Processor Models for Retargetable Tools. In Proceedings of the 11th
IEEE International Workshop on Rapid System Prototyping. R S P ' 0 0 . I E E E
Computer Society. 2000. I S B N 0-7695-0668-2.

[100] Moura , L . D . ; Bjorner, N . : Z3: A n Efficient S M T Solver. In Proc. of International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS, vo l . 4963. Springer. 2008. pp. 337-340.

108

http://www.mentor.com/products/fv/request?selected=103372

[101] Nabeshima, H . ; Iwanuma, K . ; Inoue, K . : G l u e M i n i S a t 2.2.5: A fast S A T solver w i t h
an aggressive acquiring strategy of glue clauses. Computer Software, vol . 29. 2012:
pp. 146-160.

[102] Namjoshi , K . S.: Symmetry and completeness in the analysis of parameterized
systems. In Proc. of Verification, Model Checking, and Abstract Interpretation
(VMCAI), LNCS, vo l . 4349. Springer. 2007. pp. 299-313.

[103] Nelson, C . G . ; Oppen, D . C . : Simplif icat ion by Cooperat ing Decision Procedures.
Technical report. Stanford, C A , U S A . 1978.

[104] Nelson, G . ; Oppen, D . C : Simplif icat ion by Cooperat ing Decision Procedures. ACM
Transactions on Programming Languages and Systems (TOPLAS), vol . 1, no. 2.
1979: pp. 245-257. I S S N 0164-0925. doi:10.1145/357073.357079.

[105] Ngyuen, M . ; Thalmaier , M . ; Wedler, M . ; et al . : Unbounded Pro toco l Compliance
Verification usign Interval Proper ty Checking wi th Invariants. IEEE Transactions
on Computer-Aided Design of Integrated Circuits, vol . 27, no. 11. 2008.

[106] Paakk i , J . : A t t r ibu te G r a m m a r Paradigms — a High-level Methodology i n
Language Implementation. ACM Computing Surveys, vo l . 27, no. 2. Jun 1995: pp.
196-255. I S S N 0360-0300. doi:10.1145/210376.197409.

[107] Patterson, D . A . ; Hennessy, J . L . : Computer Architecture: A Quantitative Approach.
Morgan Kaufmann . 2011. I S B N 978-8178672663.

[108] Patterson, D . A . ; Hennessy, J . L . : Computer Organization and Design: The
Hardware / Software Interface. Boston: Morgan Kaufmann, fourth edition. 2012.
I S B N 0123747503.

[109] Praet, J . V . ; Lanneer, D . ; Geurts , W . ; et a l . : nML: A Structural Processor Modeling
Language for Retargetable Compilation and ASIP Design. Systems on Silicon, vol . 1.
Bur l ing ton: Morgan Kaufmann . 2008. I S B N 9780123742872. pp. 65-93.

[110] P r i k r y l , Z . : Fast Simulat ion of Pipel ine i n A S I P Simulators. In 15th International
Microprocessor Test and Verification Workshop, MTV 2014, Austin, TX, USA,
December 15-16, 2011 I E E E Computer Society. 2014. I S B N 978-1-4673-6858-2. pp.
10-15. doi :10 .1109/MTV.2014.18.

[I l l] P r i k r y l , Z . ; Masar ik , K . ; Hruska, T . ; et a l . : Fast Cycle-Accurate Interpreted
Simulat ion. In 10th International Workshop on Microprocessor Test and
Verification, MTV 2009. I E E E Computer Society. 2009. I S B N 978-0-7695-4000-9.
pp. 9-14. doi :10 .1109/MTV.2009.11 .

[112] P r i k r y l , Z . ; Masar ik , K . ; Hruska, T . ; et a l . : Generated Cycle-Accurate Profiler for C
Language. In 13th Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, DSD 2010, 1-3 September 2010, Lille, France. I E E E Computer
Society. 2010. I S B N 978-0-7695-4171-6. pp. 263-268. doi:10.1109/DSD.2010.39.

[113] Ramsay, F . R . : Au tomat ion of design for uncommit ted logic array. In Proc. of the
11th Design Automation Conference (DAC). New York , N Y , U S A : A C M . 1980.
I S B N 0-89791-020-6. pp. 100—107.

109

[114] Rigo , S.; Araujo , G . ; Bar tholomeu, M . ; et a l . : A r c h C : A SystemC-based
Archi tecture Descr ipt ion Language. In 16th Symposium on Computer Architecture
and High Performance Computing. Oct 2004. I S S N 1550-6533. pp. 66-73.
do i :10 .1109 /SBAC-PAD.2004 .8 .

[115] R i s c - V Foundation: Rise-V Instruction Set Architecture Specification. 2017.
Retrieved from: r i s c v . o r g / s p e c i f i c a t i o n s /

[116] Rogin , F . ; K l o t z , T. ; Fey, G . ; et a l . : Au tomat ic Generat ion of Complex Properties
for Hardware Designs. In 2008 Design, Automation and Test in Europe. M a r c h
2008. I S S N 1530-1591. pp. 545-548. doi:10.1109/DATE.2008.4484908.

[117] Sanghavi, H . A . ; Andrews, N . B . : Chapter 8 - T I E : A n A D L for Designing
Application-specific Instruction Set Extensions. In Processor Description Languages,
edited by P . Mishra ; N . Du t t . Morgan Kaufmann . 2008. pp. 183-216.
doi:10.1016/B978-012374287-2.50011-2.

[118] Sawada, J . ; Hunt , W . A . : Processor verification wi th precise exceptions and
speculative execution. In Computer Aided Verification, edited by A . J . H u ; M . Y .
V a r d i . Springer B e r l i n Heidelberg. 1998. I S B N 978-3-540-69339-0. pp. 135-146.

[119] Schliebusch, O. ; Meyr , H . ; Leupers, R . : Optimized ASIP Synthesis from Architecture
Description Language Models. Springer Netherlands. 2007. I S B N 978-1-4020-5685-7.
doi:10.1007/978-1-4020-5686-4.

[120] Shahabuddin, S.; Janhunen, J . ; Jun t t i , M . ; et a l . : Design of a transport triggered
vector processor for turbo decoding. Analog Integrated Circuits and Signal
Processing, vol . 78, no. 3. M a r 2014: pp. 611-622. I S S N 1573-1979.
doi:10.1007/sl0470-013-0183-y.

[121] Shen, J . P. ; L ipas t i , M . H . : Modern Processor Design: Fundamentals of Superscalar
Processors. Waveland Press, Inc.. 2013. I S B N 978-1478607830.

[122] Sigasi: Manual: Linting and Quick Fixes. 2019.
Retrieved from: i n s i g h t s . s i g a s i . c o m / m a n u a l / l i n t i n g . h t m l

[123] Š imková , M . ; Lengál , O. ; Ka jan , M . : H A V E N : A n Open Framework for
F P G A - A c c e l e r a t e d Funct ional Verification of Hardware. In Hardware and Software:
Verification and Testing. Ber l in , Heidelberg: Springer Ber l in Heidelberg. 2012. I S B N
978-3-642-34188-5. pp. 247-253.

[124] Stump, A . ; Barret t , C . W . ; D i l l , D . L . ; et a l . : A decision procedure for an
extensional theory of arrays. In Proc. of 16th Annual IEEE Symposium on Logic in
Computer Science. I E E E . 2001. I S S N 1043-6871. pp. 29-37.
doi:10.1109/LICS.2001.932480.

[125] Synopsys: ASIP Designer: Design Tool for Application Specific Instruction-Set
Processors, Designer Datasheet. 2018.
Retrieved from: s y n o p s y s . c o m / d w / d o c . p h p / d s / c c / a s i p - d e s i g n e r - d s . p d f

[126] Synopsys: ASIP Designer: Design Tool for Application Specific Instruction-Set
Processors, Designer Datasheet. 2018.

110

http://riscv.org/specifications/
http://insights.sigasi.com/manual/linting.html
http://synopsys.com/

Retrieved from:
s y n o p s y s . c o m / c g i - b i n / v e r i f i c a t i o n / d s d l a / p d f r l . c g i ? f i l e = v c s - d s . p d f

[127] Synopsys: SpyGlass Lint Datasheet. 2018.
Retrieved from: s y n o p s y s . c o m / c g i - b i n / v e r i f i c a t i o n / d s d l a / d o c s d l / s p y g l a s s -
l i n t - d s . p d f ? f i l e = s p y g l a s s - l i n t - d s . p d f

[128] Synopsys: VC Formal Datasheet. 2018.
Retrieved from:
s y n o p s y s . c o m / c g i - b i n / v e r i f i c a t i o n / d s d l a / p d f r l . c g i ? f i l e = v c _ f ormal_ds .pdf

[129] Tepurov, A . ; T ihhomirov , V . ; Jenihhin, M . ; et a l . : Loca l iza t ion of Bugs i n Processor
Designs Using z a m i a C A D Framework. In 2012 13th International Workshop on
Microprocessor Test and Verification (MTV). Dec 2012. I S S N 1550-4093. pp. 41-47.
doi :10.1109/MTV.2012.20.

[130] Trmac, M . ; Husar, A . ; Hranac, J . ; et a l . : Instructor Selector Generat ion from
Archi tecture Descript ion. In 6th Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science. Masaryk University. 2010. I S B N
978-80-87342-10-7. pp. 167-174.

[131] Velev, M . ; Bryant , R . E . ; Ja in , A . : Efficient modeling of memory arrays i n symbolic
simulation. In Proc. of Computer Aided Verification (CAV), LNCS, vol . 1254, edited
by O . Grumberg . Springer Ber l in Heidelberg. 1997. I S B N 978-3-540-69195-2. pp.
388-399. doi:10.1007/3-540-63166-6_38.

[132] Velev, M . N . : Efficient translat ion of Boolean formulas to C N F i n formal verification
of microprocessors. In Asia and South Pacific Design Automation Conference
(ASP-DAC'04). J an 2004. I S B N 0-7803-8175-0. pp. 310-315.
doi :10.1109/ASPDAC.2004.1337587.

[133] Velev, M . N . : Exp lo i t i ng signal unobservability for efficient translat ion to C N F i n
formal verification of microprocessors. In Proceedings Design, Automation and Test
in Europe Conference and Exhibition, vol . 1. Feb 2004. I S S N 1530-1591. pp.
266-271. doi:10.1109/DATE.2004.1268859.

[134] Velev, M . N . : Us ing automatic case splits and efficient C N F translation to guide a
S A T solver when formally verifying out-of-order processors. In Artificial Intelligence
and Mathematics (AI&MATH'04). 2004. pp. 242-254.

[135] Velev, M . N . ; Gao, P. : Au tomat ic Formal Verification of Mul t i threaded Pipel ined
Microprocessors. In Proc. of International Conference on Computer Aided Design
(ICCAD). I E E E . 2011. pp. 679-686.

[136] Velev, M . N . ; Gao, P. : Automated debugging of counterexamples i n formal
verification of pipelined microprocessors. In 17th Asia and South Pacific Design
Automation Conference (ASPDAC'12). J an 2012. I S S N 2153-697X. pp. 689-694.
doi :10.1109/ASPDAC.2012.6165044.

[137] Weiser, M . : P rogram Sl ic ing. In Proceedings of the 5th International Conference on
Software Engineering. I C S E '81. Piscataway, N J , U S A : I E E E Press. 1981. I S B N
0-89791-146-6. pp. 439-449.

I l l

http://synopsys.com/
http://synopsys.com/
http://synopsys.com/

[138] Wilkes , M . V . : The best way to design an automatic calculat ing machine. In
Manchester University Computer Inaugural Conference. Manchester, U K . 1951.

[139] Wilkes , M . V . ; Stringer, J . B . : Micro-programming and the design of the control
circuits in an electronic d igi ta l computer. Mathematical Proceedings of the
Cambridge Philosophical Society, vol . 49, no. 2. 1953: pp. 230—238.
doi:10.1017/S0305004100028322.

[140] Wolf, W . ; Madsen, J . : Embedded systems education for the future. Proceedings of
the IEEE. vol . 88, no. 1. 2000: pp. 23-30. I S S N 0018-9219. doi:10.1109/5.811598.

[141] Wolper , P.; Boigelot, B . : Verifying systems wi th infinite but regular state spaces. In
Computer Aided Verification, edited by A . J . H u ; M . Y . V a r d i . Ber l in , Heidelberg:
Springer Be r l i n Heidelberg. 1998. I S B N 978-3-540-69339-0. pp. 88-97.
doi:10.1007/BFb0028736.

[142] Zachariasova, M . ; P f i k r y l , Z . ; Hruska , T. ; et a l . : Automated Funct ional Verification
of App l i ca t i on Specific Instruction-set Processors. IFIP Advances in Information
and Communication Technology, vol . 4, no. 403. 2013: pp. 128-138. I S S N 1868-4238.
doi:10.1007/978-3-642-38853-8.

112

