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Abstract 
The subject of the thesis is to design new hardware verification techniques opt imized for 
a process of H W / S W co-design in which hardware and software are developed in parallel to 
speed up the development of new embedded systems. Currently, microprocessor co-design 
tools typical ly allow to verify designs by simulat ion and /or functional verification. However, 
even extensive functional verification can miss some non- t r iv ia l bugs. Therefore, formal ver
ification has become more and more desirable in recent years. A s opposed to testing and 
bug-hunting techniques that only a im at detecting flaws, the goal of formal verification 
is to rigorously prove that the system is indeed correct. Formal verification is, however, 
a very demanding task, and even though a lot of progress has been achieved in this area, 
formal verification is far from being able to fully automatical ly check a l l relevant properties 
of complex designs without a significant and costly human involvement i n the verification 
process. The thesis deals w i th these challenges by focusing on verification techniques based 
on formal approaches, but possibly relaxing or l imi t ing their precision and generality to 
achieve full automation. Further, the thesis also focuses on the efficiency of the proposed 
techniques and their abi l i ty to deliver continuous feedback about the verification process. 
Special at tention is devoted to the development of formal methods for checking the equiv
alence of microprocessor designs on various levels of abstraction. A l t h o u g h these designs 
cannot be behaviorally equivalent, they are required to give mutual ly corresponding results 
when executing the same input program, which is a property difficult to achieve. A s another 
considered topic, the thesis proposes methods for checking correctness of mechanisms pre
venting data and control hazards i n single-pipelined implementations of microprocessors. 
The approaches described in this thesis has been implemented in the form of several tools 
which, after examining designs of mult iple pipelined microprocessors, were able to deliver 
promising experimental results. 

Abstrakt 
P ř e d m ě t e m d i ze r t ačn í p r á c e je n á v r h nových technik pro verifikaci hardwaru, k t e r é jsou 
op t ima l i zovány pro použ i t í v procesu s o u b ě ž n é h o vývoje hardwaru a softwaru. V r á m c i 
tohoto typu vývoje je hardware spolu se software vyví jen pa ra l e lně s c í lem urychli t vývoj 
nových s y s t é m ů . Současné n á s t r o j e pro tvorbu mik rop roceso rů stavějící na tomto stylu 
vývoje obvykle umožňu j í v ý v o j á ř ů m ověři t jejich n á v r h v y u ž i t í m různých s imulačn ích tech
nik a/nebo za pomoci tzv. funkční verifikace. Spo lečnou n e v ý h o d o u t ěch to p ř í s t u p ů je, že 
se zaměřu j í pouze na h l edán í chyb. Výs ledný produkt tedy m ů ž e s tá le obsahovat nena lezené 
ne t r iv iá ln í defekty. Z tohoto d ů v o d u se v pos ledn ích letech s t ává s tá le více ž á d a n é nasazen í 
formálních metod. N a rozdí l od výše uvedených p ř í s t u p ů za ložených na h l edán í chyb, 
se formáln í verifikace zaměřu je na d o d á n í r igorózního d ů k a z u , že d a n ý s y s t é m sku tečně 
splňuje p o ž a d o v a n é vlastnosti . I když bylo v up lynu lých letech v t é t o oblasti dosaženo 
z n a č n é h o pokroku, tak a k t u á l n í formální p ř í s t u p y nema j í zdaleka schopnost p lně automat
icky prověř i t všechny re levan tn í vlastnosti verif ikovaného n á v r h u bez v ý r a z n é h o a ča s to 
n á k l a d n é h o zapo jen í lidí v r á m c i verif ikačního procesu. Tato p r á c e se snaž í řeši t p r o b l é m 
s a u t o m a t i z a c í verif ikačního procesu je j ím z a m ě ř e n í m na verifikační techniky, ve k t e rých 
je ale z á m ě r n ě kladen menš í d ů r a z na jejich p řesnos t a obecnost za cenu dosažen í p lné 
automatizace (např . vy loučen ím p o t ř e b y r u č n ě v y t v á ř e t modely p r o s t ř e d í ) . Dá le se p ráce 
t a k é zaměřu je na efektivitu n a v r h o v a n ý c h technik a jejich schopnost poskytovat nep ře t r ž i 
tou z p ě t n o u vazbu o ver i f ikačním procesu (nap ř . v p o d o b ě p o d a n í informace o a k t u á l n í c h 



stavu p o k r y t í ) . Zv láš tn í pozornost je pak věnována vývoj i formálních metod ověřujících 
ekvivalenci n á v r h ů m i k r o p r o c e s o r ů na různých ú rovn ích abstrakce. T y t o n á v r h y se mohou 
lišit ve způsobu , j a k ý m jsou v n i t ř n ě zp racovány p r o g r a m o v é instrukce, n i c m é n ě z vnějš ího 
pohledu ( d a n é h o n a p ř . obsahem reg i s t rů v id i te lných z pozice p r o g r a m á t o r a ) mus í bý t jejich 
chování p ř i p rováděn í s t e jného v s t u p n í h o programu s h o d n é . Jako dalš í t é m a se p r á c e dále 
věnuje n á v r h u metod pro verifikaci sp r ávnos t i m e c h a n i s m ů zabraňuj íc ích v ý s k y t u d a t o v ý c h 
a ř ídících h a z a r d ů v r á m c i l inky z ře t ězeného zpracován í ins t rukc í . Veškeré metody p o p s a n é 
v t é t o p rác i byly i m p l e m e n t o v á n y ve formě někol ika n á s t r o j ů . Apl ikac í t ě ch to n á s t r o j ů pro 
verifikaci n á v r h ů ne t r iv iá ln ích p roceso rů bylo dosaženo s l ibných e x p e r i m e n t á l n í c h výs ledků . 
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Chapter 1 

Prologue 

Embedded systems are massively deployed i n almost every electronic device that we now use 
i n our everyday life. For embedded systems, customized application-specific instruction-set 
processors (ASIPs) are often designed. These processors have specific functions of hardware 
available through special instructions in order to achieve required performance cri teria and 
low power consumption. A significant part of embedded system costs includes prices that are 
required for (i) design of hardware architecture, (ii) its physical realization, and (iii) design 
of software. 

If we consider costs of the physical realization as fixed, the only way for further lowering 
of the price of an embedded system is to reduce the t ime that is needed for the design of 
hardware and software. In order to achieve that, the trend is to develop both hardware and 
software i n parallel in a process of the so-called hardware/software co-design. The automa
t ion of common tasks that are a part of the co-design process is another crucial factor for 
successful and fast development. To facilitate automation, specialized architecture descrip
tion languages ( A D L s ) are frequently ut i l ized during the microprocessor design process. 
Specifically, in the case of microprocessor design, various integrated frameworks [125, 28, 1] 
take advantage of the availabil i ty of the high- and low-level A D L descriptions and pro
vide automatic generation of hardware description language ( H D L ) designs and tool-chains 
including, e.g., simulators, assemblers, disassemblers, and compilers. 

In the current microprocessor design frameworks, an in i t i a l understanding about the de
sign (e.g., to see whether an instruct ion set contains enough instructions, to check the per
formance of the design) is done by simulat ion. After this step, verification of the designs 
is typical ly performed. Currently, simulation-based approaches such as testing and func
t ional verification are very popular. Testing is based on the observation of the behavior 
of the verified system i n a l imi ted number of situations (e.g., for cases considered as cru
cial by the designer) and, therefore, it provides only a par t ia l guarantee of the system's 
correctness. Funct ional verification automates the testing process by generating a set of 
constrained/random test vectors and by comparing the behavior of the system for these 
vectors w i t h the behavior specified by a reference model, the so-called golden specification, 
which must be provided manual ly by the developers. However, even extensive functional 
verification, like any other bug-hunting technique, can s t i l l miss non- t r iv ia l bugs. There
fore, the use of formal verification is very desirable. Its goal is to rigorously prove that the 
system is indeed correct. Tha t is, if no issue is found by a formal method, the system is 
guaranteed to conform to the given specification. Unfortunately, formal verification is not 
a common part of the current microprocessor design frameworks. 
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Formal methods can be categorized into three basic categories (with not completely 
sharp boundaries): theorem proving, static analysis, and model checking. Theorem prov
ing, also called deductive verification, is based on deducing properties of a verified system 
from various logical axioms and assumptions about the system. The process often requires 
a significant manual intervention. Static analysis attempts to avoid execution of the system 
being examined, and instead analyses and gathers approximate (and often conservative) 
information about the system from the source code, and thus it may produce many false 
alarms. M o d e l checking systematically explores the state space of the examined system. 
Unl ike i n static analysis, i f some abstraction is used, it typical ly comes wi th an automated 
refinement technique that allows the approach to automatical ly exclude spurious counterex
amples to the verified properties. 

A n ideal formal approach should be sound and complete, so an error is reported if and 
only if there is a real error in a system, otherwise the system is said to be correct. Moreover, 
the approach should be fully automated and terminating. Satisfying these ideal properties 
is, however, very costly (or impossible i f a source of unboundness such as parametriza-
t ion is involved) due to the state explosion problem that is usually hit (or due to the 
implied undecidabil i ty for the case of unbounded state spaces). To provide efficiency and 
high automation, completeness or even soundness are sometimes sacrificed leading to error 
detection methods buil t on formal roots. Such a method may be s t i l l quite useful as it 
can discover flaws that would stay hidden otherwise, which is most often caused due to 
a different way of state space traversal. 

A i m of T h e Thesis. In accordance wi th the above, the thesis aims at developing new 
verification techniques wi th formal roots w i t h an emphasis on full automation (without 
a need to manual ly create models of the environment of the verified system), efficiency, and 
abil i ty to deliver continuous feedback, e.g., actual coverage about the verification process. 
W i t h i n the thesis, special attention is devoted to the development of formal methods that 
check the equivalence of designs on various levels of abstraction. These designs cannot 
be behaviorally equivalent (due to their different abstraction level), but they are required 
to give mutual ly corresponding results when executing the same input program, which 
is a property difficult to achieve. Another considered topic is development of methods 
for checking correctness of mechanisms preventing data and control hazards in pipelined 
implementations of microprocessors. The above-described techniques should, i n particular, 
be opt imized for the class of A S I P s broadly used i n light-weight embedded devices. 

A s the first step towards the a im, we focused on automatic checking of correspondence 
of instruction-set-architecture ( ISA) and register-transfer-level ( R T L ) descriptions of a mi 
croprocessor. The correspondence means that after start ing i n the same in i t i a l states of 
resources (such as registers, memories, and devices connected to the microprocessor) and 
executing the same program, both models w i l l always end up in states in which the resources 
have equivalent contents. The I S A (instruction-accurate, high-level) description captures 
the behavior of an instruct ion without consideration of complex parts (such as pipelines, 
buses, etc.) that are part of the R T L (cycle-accurate, low-level) specification. The existence 
of I S A description i n early phases of processor development is cr i t ica l because it allows one 
to generate the previously mentioned tool-chains that are necessary to create software when 
its R T L description is s t i l l being designed. Because the software is created over a model 
that is different from the one delivered wi th the final product, conformance of these two 
models must be guaranteed. The correspondence checking can be also useful if the R T L 
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specification is automatical ly generated from the I S A description to verify the correctness 
of such a generator. 

Regarding the correspondence checking topic, i n [31, 32], we proposed a novel technique 
that copes w i t h this problem, although not taking the influence of complex parts of the 
processor (pipelines, buses, etc.) into account. Even w i t h this simplification, one has to deal 
w i th the large b i t -wid th of registers and size of memories and register files. The proposed 
approach deals w i th this problem by using abstraction and reduction techniques that are 
described later i n this thesis. The approach has been experimentally implemented wi th in 
Codasip I D E [ ] and successfully tested i n several case studies. The experiments include 
a non- t r iv ia l single-pipelined processor i n which the approach revealed three previously 
unknown bugs. The experiments also show that instructions of single-pipelined processors 
can be verified wi th in seconds. 

Further, we have extended the above-proposed correspondence checking by another 
verification phase devoted to the verification of the so-called pipeline hazards. Hazards 
in the instruction pipeline are problems caused by inadequate synchronisation of earlier 
and later instructions running concurrently through the pipeline that may cause potential 
corruption of the data used by the instructions. Three common types of pipeline hazards are 
data, control, and structural hazards. In the thesis, we focus on the first two of them. A n 
example of such a hazard is the so-called read-after-write ( R A W ) data hazard. Here, a later-
started instruction uses data supposed to be produced by an earlier-started instruction, but 
the earlier instruction has not yet managed to proceed far enough in the pipeline to write 
the data into the storage used by the later instruction. The later instruction then stores 
a potential ly wrong result of its execution, obtained by dealing wi th the obsolete data. 

To address these issues, i n [34, 35, 36, 37], we propose a novel, highly-automated ap
proach for discovering the above-listed kinds of hazards wi th in in-order pipelined instruc
t ion execution. The approach combines (i) static analysis of data paths to detect anomalies 
and possible hazards, followed by (ii) a transformation of detected problematic paths to 
a parametric system, and (iii) a subsequent formal verification using techniques for formal 
verification of the parametric systems. The approach has been implemented i n a tool called 
Hades [ 7] and, i n this thesis, we present promising experimental results applying the tool 
to mult iple pipelined microprocessors. 

Outline. The rest of the thesis is organized as follows. Chapter 2 gives an overview of 
microprocessor architectures together w i th an introduct ion to the former and contempo
rary techniques used during the design of embedded systems. Chapter 3 briefly describes 
the most common architecture description languages and frameworks for processor design. 
Chapter 4 is an introduct ion to selected topics of formal verification. Chapter 5 provides 
an overview of related work i n the field of microprocessor verification. Chapter 6 presents 
the m a i n goals of the thesis. Chapter 7 describes our newly proposed technique for au
tomatic generation of abstract models of memories that can be used for efficient formal 
verification of hardware designs. Next , Chapter 8 presents a new automated approach buil t 
on a formal basis that we use for checking correspondence between an R T L implementa
t ion of a microprocessor and its I S A description. Further, Chapter 9 describes our novel 
technique u t i l iz ing static analysis of data paths and formal verification of parameterized 
systems i n order to discover flaws caused by improper ly handled pipeline hazards. F ina l ly , 
Chapter 10 concludes the thesis. 

5 



Chapter 2 

Embedded System Design 

Since the last decades of the 20th century, one can observe the ever-increasing populari ty 
of built-in systems such as (smart) T V s , cell phones, entertainment systems, or network-
connected devices. Th is caused a significant increase i n demand for embedded systems. B y 
the embedded system, we typical ly mean a combinat ion of hardware and software together 
wi th other mechanical components intended to perform a dedicated function (often) i n real
t ime computing constraints. Embedded systems often reside i n machines that are expected 
to run continuously for years without errors and (in certain cases) recover autonomously 
if an error occurs. Today, it is very common that a final product consists of several co
operating but indiv idual ly designed embedded systems [107, 91]. 

A s the capabilities of the embedded systems are s t i l l growing, they are now widely 
deployed across mult iple fields. For instance, the use of embedded systems i n the auto
motive industry allowed the implementat ion of complex algorithms (e.g., in fuel injection) 
which resulted i n lower emissions and higher fuel efficiency. The higher computing power 
of embedded devices also helps i n airplane tracking and navigation systems which now 
allow for safe landing even i n adverse weather conditions. Another example comes from 
the automated household control industry. Here, the recent development of the so-called 
Internet of Things (IoT) enabled smart control of home temperature control systems v ia 
connected thermostats. Besides the fact that such a thermostat can be controlled remotely 
v i a a mobile application, it can also learn the owner's typica l day-to-day behavior (e.g., 
working hours, weekend routines) and perform heat ing/cooling opt imizat ion i n order to 
lower household running costs. 

The above-mentioned rapid evolution of the embedded systems has been largely sus
tained by research and innovation i n the field of system design methodologies. The co
operated design of both hardware and software, the so-called hardware/software co-design, 
is one of them. Even though it is not a new discipline (as since the era of the first comput
ers, designers have always considered mutual dependence between hardware and software), 
the growing complexity of the embedded systems, increasing time-to-market pressure, and 
system costs br ing new challenges for the co-design methodology [91]. A significant part 
of these challenges can be overcome by design automation. This translates to an increased 
demand for development of new co-design tools that would speed up the implementat ion 
and verification tasks. 

To provide necessary background, the following sections of this chapter describe some of 
microprocessor and hardware architectures that are typical ly used i n the embedded devices. 
The last section then discusses how the H W / S W co-design methodology can help to find 
the most suitable microprocessor for the given task wi th in a short t ime and at a low cost. 
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2.1 General-Purpose Microprocessors 

The first embedded systems based on microprocessors started to appear i n the 1960s. 
A well-known example of such a system is A p o l l o Guidance Computer [55]. In early stages, 
the embedded systems were produced i n series counting only l imi ted number of units. A n 
early example of a mass-produced system is the D-17 guidance computer used for naviga
t ion of Minu teman I intercontinental ball ist ic missiles [88]. Due to the mass production, 
the price of microprocessors had fallen which led to their spread across a wide spectrum of 
industry sectors. Now, microprocessors can be found in almost any electronic device. 

F rom the component point of view, a very basic microprocessor consists of the follow
ing ma in parts: (i) internal memory (register files, cell memory), (ii) an ari thmetic logical 
unit ( A L U ) , and (iii) the control unit [108]. The microprocessor registers can be typical ly 
split into one of the following categories: general-purpose registers ( G P R s ) , index registers 
(IRs), and the program counter ( P C ) . The G P R s are used to store temporary data wi th in 
the microprocessor. The IRs modify operand addresses dur ing the run of a program, typ
ically for doing vector and /or array operations. In the case of the V o n Neumann memory 
organization, program and computat ional data are commonly stored i n a single memory 
whereas, i n the case of the Harvard architecture, the program code is kept separate from 
the program data. The P C is an index register that contains the address (location) of the 
instruction being executed at the current t ime. The purpose of the A L U is then to perform 
arithmetic and logical operations on source data. The data sourcing and their transfer to 
the A L U inputs are performed by the control unit which controls flow inside the proces
sor. Besides the data flow, the control unit also contains components buil t around the P C 
register which are responsible for loading (i.e., fetch logic) and decoding instructions (i.e., 
instruction decoder). 

Each microprocessor can execute a set of instructions. The instruct ion set typical ly 
reflects the structural , functional, and operative principles of the processor. The most 
influential factors that have an impact on the microprocessor instruct ion set are the follow
ing: (i) processor registers, (ii) size of memory units (data types), (iii) addressing modes, 
(iv) memory architecture (e.g., V o n Neumann vs Harvard) , (v) interruption and exception 
handling [107, 91]. 

In the pioneer era of microprocessor development, almost every processor has its own in
struction set. Therefore, programs wri t ten for a part icular microprocessor were only hardly 
portable to another processor. Over the last decades several standardized instruction sets 
emerged, for instance, i386 [ ], amd64 [ ], armv7 [ ], or r i s c v [115]. The contemporary 
general-purpose microprocessors use the same set of instructions, even i f their inner design 
is often entirely different. W h i l e s t i l l maintaining the same instruct ion set, modern micro
processors bu i ld on addi t ional concepts, such as instruct ion pipelines, branch prediction, 
and/or microinstruct ion architecture to better fulfill performance expectations. 

The processor pipel ining means spl i t t ing the overall execution of the instruct ion into 
smaller parts named execution stages. This is par t icular ly useful, for example, in a si tuation 
when one clock pulse latches a value into a register or begins a calculation and it takes too 
much time for the value to be stable at the outputs of the register or for the calculat ion to 
complete. A s the number of pipeline stages grows, a given stage can be implemented wi th 
simpler circuitry, which may let the processor clock run faster [121]. 

Almos t a l l pipelined processors do (at least simple) branch prediction because they have 
to speculatively fetch the next instruct ion before the current instruct ion is finished [107]. 
The predict ion is typical ly handled by a circuit known as a branch predictor. Th is part 
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of a processor determines whether a condit ional branch (jump) in the instruct ion flow of 
a program is l ikely to be taken or not. Therefore, branch predictors are important i n today's 
modern processors to achieve high performance. 

The microprogram architecture is a type of microprocessor architecture where high-level 
instructions are performed by executing several lower-level instructions (microinstructions). 
The microprogram architecture firstly appeared i n [138, 139]. Soon after, the instructions 
had become so complex that the use of the so-called microprogram controller became in
evitable. Later, the opposite concept of a reduced instruction set computer (RISC) ap
peared. It used simple instructions and avoided the need for the microprogrammed con
troller. However, it subsequently merged wi th a complete instruction set computer (CISC) 
paradigm and microprogrammed controllers started to be used more frequently again. The 
main advantages of the microprogrammed architectures are that new (high-level) instruc
tions may be added quickly and that developers can fix certain design errors in the instruc
t ion processing just by changing the underlying microinstructions [108, 91]. In the thesis, 
we w i l l further assume that a l l presented models/examples are on the microinstruct ion level 
if not stated otherwise. 

Taken a l l together, the typica l organization of a simple microprocessor w i th a single 
pipeline is shown i n F i g . 2.1. In such a microprocessor, instructions are processed i n the 
next described steps. Fi rs t , the instruct ion is loaded from the program memory. Then it is 
decoded to an operation code (opcode) and an address section. The opcode identifies the 
operation to be performed (e.g., addit ion, mult ipl icat ion) while the address part contains 
the operand specification or immediate value. These operands can be registers, memory 
addresses, input ports, etc. In the t h i rd stage, which is often called the execution stage, 
result values and memory access addresses are calculated according to the opcode. Next , in 
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the memory access stage, the data memory is read and/or wri t ten. F ina l ly , i n the write-back 
stage, the registers are wri t ten. 

F rom the point of view of embedded systems, the use of general-purpose microprocessors 
is advantageous for several reasons. Most of the benefits come from the fact that the micro
processor itself represents a universal calculation unit . Th is allows the same microprocessor 
to be used for various computat ion required in different embedded systems. Moreover, ex
tending design wi th addi t ional connections to other parts of the system can be quickly made 
using existing solutions which greatly reduces the time required for system design. F ina l ly , 
one of the biggest benefits is a variety of available well-documented and tested software 
tools that support program development (such as compilers and debuggers) [91]. Thus, 
especially i n the case of lower product ion volumes, the use of a general-purpose micropro
cessor is typical ly less costly than designing an application-specific integrated circuit or an 
application-specific instruction-set processor (that are described more i n the next sections). 

The universal nature of the general-purpose microprocessors could be, however, also 
their main disadvantage. In specialized applications (e.g., video filtering), the general-
purpose microprocessors typical ly have lower performance and higher energy consumption 
when compared to specifically crafted circuits or processors. 

2.2 Application-Specific Integrated Circuits 

The so-called application-specific integrated circuits (ASICs) are the opposite of the univer
sal architectures. They are made for a part icular purpose to meet the challenging design 
constraints typical ly given i n terms of performance, energy consumption, and chip size. The 
downside is the high cost and time consumption required for their design. Thus, the use 
of A S I C is especially viable for mass product ion where development costs are distr ibuted 
among a large number of manufactured units [91]. 

In the 1980s, much effort was invested to find a technology which would be easy and 
reliable enough to be pract ical ly used i n application-specific systems. One of the first tech
nologies of this type was Uncommitted Logic Array ( U L A ) [113] which is a chip consisting of 
basic bui lding blocks (i.e., standard logic cells or gateways) that can perform basic calcula
tions. Cus tomiza t ion of the chip is done by modification of a metal mask which connects the 
ind iv idua l parts that can be achieved, for instance, by breaking certain connections. A s the 
technology evolved, the number of gates on the chip rapidly rose to allow the development 
of very complex circuits on a single chip. 

The A S I C design process is rather complex. It can be roughly divided into the following 
steps. The first step consists of a specification of the system requirements. Then , a model of 
the system is created. It is usually described by the language appropriate for system design, 
the so-called hardware description language ( H D L ) such as V H D L [ ] or Veri log [65]. The 
model is verified whether it meets the original requirements ( typically using simulation). If 
the verification is successful, one can process w i th a synthesis of the A S I C logic. The design 
is converted into a set of basic bui ld ing blocks (standard cells or gateways) of the logic array. 
These bui lding blocks are then mapped on the logic array. After that, interconnections are 
created to form the final design. Next , the A S I C is analyzed whether the final system 
works like expected (i.e., whether the specification cri teria are s t i l l met). F inal ly , masks 
are fabricated and the manufacturing of the circuit can begin [91]. 

A l though A S I C s typical ly dominate in the terms of speed and power efficiency, their 
bui lding costs are becoming more and more prohibit ive mostly because the design cost and 
longer time-to-market period cannot be amortized over mult iple applications. 
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Figure 2.2: Trade-off between flexibil i ty and performance among various components used 
in embedded systems. Source: [119]. 

2.3 Application-Specific Instruction-Set Processors 

The instruct ion set of an application-specific instruction-set processor ( A S I P ) is buil t in 
a way so it benefits a specific appl icat ion by the abi l i ty to perform specific operations 
through special instructions. In general, components of an A S I P can be divided into two 
parts: (i) logic which is able to execute some well-known instruct ion set and (ii) specific 
logic, which can be configurable per application, that is accessed v i a newly introduced 
instructions [52]. The specific logic can be then placed i n a dedicated component (e.g., 
A S I C ) or in the programmable field (such as F P G A ) . A s can be seen in F i g . 2.2, the 
spl i t t ing of the microprocessor components into these two parts provides a good trade-off 
between the flexibil i ty of a general-purpose microprocessor and the A S I C ' s performance 
and low power consumption. 

Because of the above-mentioned properties, A S I P s provide an attractive approach in 
a growing number areas of embedded systems, for example, as an alternative to hardware 
accelerators for video coding [59] or signal processing [120]. 

2.4 Modern Hardware/Software Co-Design 

A s was discussed i n the previous sections, the current microprocessor design cycle strives 
to find the most suitable microprocessor (often in the form of an A S I P ) for the target 
application wi th in a short t ime and at a low cost. Due to this time-to-market pressure and 
short product life-cycle, a rapid exploration and evaluation of candidate architectures is 
an essential need. Hardware description languages ( H D L s ) , such as V H D L or Veri log, are 
commonly used for hardware design, modeling, and simulat ion. However, a microprocessor 
specified only in H D L does not include a l l necessary information about assembler syntax, 
binary encoding of instructions, etc. Th is is the reason why specially crafted architecture 
description languages A D L s were introduced [92]. 
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Figure 2.3: A generic hardware/software co-design methodology. Source: [ ]. 

A n A D L together w i th a microprocessor integrated development environment ( IDE) and 
an appropriate tool-set helps the designer to quickly find a microprocessor that opt imal ly 
splits computat ion tasks between hardware and software. A D L s are used to specify proces
sor and memory architectures and to automatical ly generate a software toolki t including 
compiler, simulator, assembler, profiler, and debugger. Moreover, there are A D L s that can 
describe microprocessors on several levels of abstraction. W i t h such an A D L , it is then 
possible to start wr i t ing the target (application) programs even before the low-level ( R T L ) 
description of the processor exists, because much simpler high-level (ISA) description often 
suffices to generate compilers, debuggers and simulators. 

F i g . 2.3 shows a common exploration co-design flow [110]. Tasks computed by the 
system are part i t ioned between hardware and software. The applicat ion programs are 
compiled and simulated, and the feedback is used to modify the A D L specification wi th 
the goal of finding the best possible architecture for the given set of appl icat ion programs 
under various design constraints such as area, power, and performance. Because of the 
short t ime that is typical ly allowed for design and implementation, bugs can be introduced 
in the microprocessor, and thus the candidate designs have to be verified whether they s t i l l 
comply wi th the original specification. The required t ime savings are then accomplished 
by automation of these tasks that would otherwise have to be done manual ly (such as the 
tool-chain and /or the H D L representation generation). 

Since A D L s play a key role i n the modern hardware/software co-design, the next chapter 
describes and classifies them i n a more detai l together w i t h their accompanying tools. 
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Chapter 3 

Architecture Description 
Languages 

This chapter describes the expressive power of the contemporary A D L s together w i th micro
processor development frameworks that are based on them. Further, the chapter also points 
out possible verification options offered by the frameworks. Please note that the following 
list intentionally does not represent an exhausting overview of the A D L s and frameworks, 
but it should give the reader an idea about the environment i n which the proposed verifi
cation methods are supposed to be integrated. Moreover, since the verification techniques 
proposed i n the thesis a i m to be automated as much as possible, it is also important to 
observe which information is usually part of the microprocessor descriptions and what k ind 
of information would have to be provided externally. 

A s it is discussed in [92, 67, 93], hardware A D L s can be divided into three categories: 
(i) structure-oriented, (ii) instruction-set-oriented, and (iii) mixed. The level of abstraction 
in structure-oriented A D L s is close to the R T L . Such a description typical ly misses high-level 
information. Therefore, extraction of, e.g., an assembly language is a quite hard task. O n 
the opposite side, instruction-set-oriented A D L s are close to the I S A level. They lack cycle-
accurate information, and thus they usually cannot be used for hardware synthesis. They 
are mainly manufactured for use i n retargetable compilers which are compilers/decompilers 
that are designed to be relatively easy to modify and to generate/decompile code for various 
instruction-set architectures. M i x e d A D L s t ry to overlap the gap between the two former 
approaches by adding the missing pieces of information. 

3.1 Structure-Oriented ADLs 

The structural A D L s capture the structure in terms of architectural components and their 
connectivity. St ructura l A D L s enable flexible and precise architecture descriptions. The 
same description can be used for hardware synthesis, test generation, simulation, and compi
lat ion. However, it is difficult to extract the instruct ion set without restrictions on a descrip
t ion style. Therefore, the structural A D L s t radi t ional ly find their use more for hardware 
generation than in compilers [92]. In this Section, M I M O L A [80] A D L is briefly described. 

3.1.1 M I M O L A 

The machine-independent microprogramming language ( M I M O L A ) is one of the first lan
guages specifically designed for synthesis and not just for the hardware simulat ion. This 
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Figure 3.1 A M I M O L A example showing the description of a mult ifunctional A L U module. 
Source: [80]. 

MODULE ALU(IN o p e r a t i o n : (1:0); 
IN a: (31:0) 
IN b: (31:0) 
OUT r e s u l t : (31:0);) 

CONBEGIN 
r e s u l t <- CASE o p e r a t i o n OF 

a + b; 
a - b; 
a AND b; 
b; 

END; 
CONEND; 

approach avoided t ime-consuming considerations caused by differences between synthesis 
and simulation semantics (i.e., checking whether the simulated design is wi th in a synthe-
sizable subset). The A D L - d r i v e n synthesis used in MIMOLA Software System (MSS) was 
among the first approaches of its k ind . 

The major advantage of M I M O L A is that the same description can be used for synthesis, 
simulation, test generation, and compilat ion. A toolchain including a hardware synthesizer, 
a code generator, a self-test program compiler, a functional simulator, and an R T L sim
ulator were a l l developed based on the M I M O L A language [ ]. The description of the 
microprocessor i n M I M O L A A D L consists of the following three parts: (i) the a lgori thm to 
be compiled (application program), (ii) the target processor model, and (iii) the addi t ional 
linkage and transformation rules. 

The algori thmic part of a processor description i n M I M O L A is an extension of P A S 
C A L . Unl ike other high-level languages (e.g., C or P A S C A L ) , it allows references to physical 
registers and memories. It also allows usage of hardware components i n the form of pro
cedure calls. For example, i f the processor description contains a component named ALU 
(arithmetical-logical unit) , programmers can write segments like result := ALU (op, a, 
b) to get the result of the mathematical operation given by the operation op which is 
performed by the mult ifunctional ALU component. 

The target processor model is then described using modules and connections. Modules 
describe the behavior of hardware components. In M I M O L A , each module is specified 
by its port interface and its behavior. S imi lar ly to V H D L , several predefined, pr imit ive 
operators exist. Example 3.1 shows the description of a mult i funct ional A L U module. 
In the example, the CONBEGIN/CONEND construct denotes a set of concurrent assignments. 
W i t h i n the assignment block, a condit ional assignment to output port result is specified, 
which depends on the two-bit control input operation. The microprocessor structure is 
then formed by connecting ports of module instances. For example, a M I M O L A description 
shown i n F i g . 3.2 connects two modules: (i) the arithmetic-logic unit ALU and (ii) the 
accumulator ACC. 

Final ly , the linkage information is used by the compiler to locate important modules 
such as program counter and instruct ion memory. The code segment which is shown in 
F i g . 3.3 specifies the program counter and instruct ion memory locations. 
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Figure 3.2 M I M O L A description connecting two modules. Source: [80]. 

CONNECTIONS A L U . r e s u l t -> A C C . i n p u t 
A C C . o u t p u t -> ALU.a 

Figure 3.3 M I M O L A linkage segment specifies the program counter and instruction mem
ory locations. Source: [80]. 

LOCATION_FOR_PROGRAM_COUNTER PC; 
LOCATION_FOR_INSTRUCTIONS INSTR_MEMORY [ 0 . . 1 0 2 3 ] ; 

F rom the verification point of view, the M S S tools rely solely on functional verification 
techniques based on simulat ion which are more deeply described i n Chapter 5. 

3.2 Instruction-Set-Oriented ADLs 

The problem of the structure-oriented A D L S wi th the extraction of the instruct ion set 
can be avoided by abstracting behavioral information away from the structural details. 
Instruction-set-oriented (sometimes also named behavioral) A D L s expl ici t ly specify the 
instruction semantics and ignore detailed hardware structures. This typical ly leads to 
a si tuation when there is a correspondence between instruction-set-oriented A D L s and the 
instruct ion set reference manual. 

Typical ly , the instruction-set-oriented languages describe the microprocessor's instruc
t ion set i n a hierarchical way using, for instance, at tr ibute grammars [106]. This property 
simplifies the instruct ion set description by sharing the common components between op
erations. However, the capabilities of these models are l imi ted due to the lack of detailed 
pipeline and t iming information. Thus, it is not possible to generate cycle-accurate simula
tors without certain assumptions regarding control behavior. Due to the lack of structural 
details i n instruction-set-oriented A D L S , it is also not possible to perform any resource-
based scheduling [92, 67]. Furthermore, without the abi l i ty to capture the low-level infor
mation, it is also very difficult to deploy verification techniques that are based on a gradual 
refinement of microprocessor description. 

In this section, we w i l l describe two instruction-set-oriented A D L s : I S D L [ ] and 
T I E [117]. 

3.2.1 I S D L 

The Instruction Set Description Language ( ISDL) [54] was designed to be an A D L for 
compiler retargetability, specially focused on microprocessors w i th very large instruction 
words ( V L I W s ) . I S D L is a purely instruction-set-oriented language based on an at t r ibuted 
grammar which is pr imar i ly used to describe the instruct ion set of processor architectures. 
Thus, without addi t ional assumptions, the I S D L tools (such as G e n S i m simulator generator) 
are not capable of extracting the correct behavior for pipelined architectures w i th complex 
execution schemes that include, for instance, cancellation of par t ia l ly executed instructions 
(pipeline clearing), or multi-cycle instructions of variable length [53]. 
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Figure 3.4 Example of an instruct ion set description in I S D L . 

S e c t i o n Format 
M a i n = OPCODE[8]; 

S e c t i o n G l o b a l _ D e f i n i t i o n s 
// A s s e m b l y T o k e n Type V a l u e 
Token X [ 0 . . 1 ] XR i v a l { y y l v a l . i v a l = y y t e x t [ l ] - ' 0 ' ; }; 
Token Y [ 0 . . 1 ] YR i v a l { y y l v a l . i v a l = y y t e x t [ l ] - ' 0 ' ; }; 
Token ACC AR i v a l { }; 

// Type A s s e m b l y A c t i o n 
N o n t e r m i n a l i v a l XYSRC: XR { $$ = 2 * XR; } 

YR { $$ = 2 * YR + 1; }; 
N o n t e r m i n a l i v a l ACC: AR { $$ = 1; } 

S e c t i o n Storage 
R e g i s t e r X0 = 0x8; R e g i s t e r X I = 0x8; R e g i s t e r Y0 = 0x8; 
R e g i s t e r Y l = 0x8; R e g i s t e r ACC = 0x8 

S e c t i o n Assembly 
F i e l d M a i n : 

// A s s e m b l y // B i n a r y 
ADD XYSRC, ACC { Main.OPCODE = 0x01 | (ACC<<3) | (XYSRC<<4); } 

{ ACC <- ACC + XYSRC; } // RTL O p e r a t i o n 
{ c y c l e = 2; s i z e = 1; } // C o s t s 
{ l a t e n c y = 1; } // T i m i n g 

S e c t i o n C o n s t r a i n t s 
~ (REP *) & ( [1] ADD *, *) 

I S D L description of the microprocessor consists of mainly five sections: (i) instruc
t ion word format, (ii) global definitions, (iii) storage resources, (iv) assembly syntax and 
constraints, and (v) an opt imizat ion information section. 

The instruct ion word is separated into mult iple fields each containing one or more sub-
fields. The b i twid th of each sub-field is also provided. The instruct ion word is assembled 
by concatenating a l l the sub-fields i n the order specified i n this section. F i g . 3.4 shows an 
example of the format section for a simple instruct ion w i t h just one field Main w i th a single 
sub-field OPCODE. The to ta l length of the instruction word i n the example is 8 bits. 

Next , F i g . 3.4 also demonstrates I S D L ' s global definition section. Here, pr imit ive and 
complex operands of the microprocessor's assembly language are defined. E a c h operand 
definition consists of the keyword Token, the syntax of the token as it appears in assembly, 
a symbolic name for the token, the type of value returned by the token, and a piece of 
Lex [ ] dependent code that returns the appropriate token value [54]. For instance, in 
F i g . 3.4, the first token has a symbolic name XR whose value is an integer. The assembly 
syntax allowed is either XO, or X I , and the values returned are 0 or 1 respectively. 
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The complex operands are then defined v i a non-terminals which have several purposes. 
Fi rs t , syntactically unrelated tokens can be grouped together into a non-terminal for con
venience. For instance, if there is a large number of possible alternatives in an instruct ion 
(e.g., several addressing modes), they can be factored out to a non-terminal. Next , non
terminals can also define new grammar rules, not necessarily related to any instruction. 
Final ly , the action por t ion of non-terminals allows the inclusion of arbi trary C code to 
be executed along wi th every rule. The non-terminal definitions consist of the keyword 
Nonterminal, the type of the returned value, a symbolic name as it appears in the as
sembly, and an action that describes the possible token or non-terminal combinations and 
the return value associated wi th each. For example, i n F i g . 3.4, the non-terminal w i th the 
symbolic name XYSRC returns value 1 and 3 for registers YO and Yl, respectively. 

The storage section lists a l l storage resources visible to the programmer. It lists the 
names and sizes of the memory, the register files, and the special registers. This section is 
used by the compiler to determine the available resources and how they should be used. 

The assembly syntax section is then split into subsections (per each field defined in 
format section) corresponding to the separate operations that can be performed in parallel 
wi th in a single instruction. A n instance of the assembly section shown i n F i g . 3.4 as well. 
One can see, that each operation consists of assembly mnemonic, a binary representation 
of instruction, the effect of the operation on storages, operations costs (such as execution 
t ime and code size), and t iming information (e.g., because of pipelining). 

The assembly syntax section describes a number of fields that can be generally exe
cuted i n parallel . However, there are certain combinations of operations that may not be 
executable by the hardware. The constraints section is used to make these combinations 
visible to the compiler so that the compiler can avoid generating such il legal operation 
combinations. The constraints are described as a set of Boolean rules, a l l of which must 
be satisfied for an instruction to be val id . F i g . 3.4 contains an example that shows how 
to describe the constraint that the instruction ADD cannot directly follow instruct ion REP. 
The [1] indicates a t ime shift of one instruct ion fetch for the REP instruction. The "~" is 
a symbol for N O T and "&" is for logical A N D . 

3.2.2 T I E 

The Tensilica Instruction Extension (TIE) [117] is an A D L language aimed at customization 
of the functionality of R I S C Xtensa processors [30] w i th in Tensil ica Software Development 
Toolki t ( S D K ) [28]. The customization is given by defining custom execution units, register 
files, I / O interfaces, load/store instructions, and multi-issue instructions which are synthe
sized into configurable hardware components. The T I E language syntax is a mixture of the 
Veri log hardware description and the C programming language. A designer does need to 
worry about pipel ining, control/bypass logic, and interfacing to other processor modules as 
the instruction extensions are integrated direct ly into the processor pipeline by the S D K . In 
other words, the T I E language is used only for adding instruction extensions and datapaths 
to a processor pipeline as it is not a general-purpose hardware design language. 

The T I E language optimizes computat ional strength of the processor in the following 
ways. One can (i) create new instructions to increase processor performance and efficiency 
This is achieved by defining the exact data wid th needed for the appl icat ion instead of 
using an impl ic i t s tandard size transfer bandwidth , or by merging serial operations into 
a single instruct ion that can be issued back-to-back to achieve single cycle throughput. 
Further, one may also (ii) uti l ize data-level parallel ism by creating single instruction mul-
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Figure 3.5 Defini t ion of the T I E instruct ion addshift. Source: [29]. 

o p e r a t i o n a d d s h i f t {out AR a v g , i n AR A, i n AR B} {} 
{ 

a s s i g n a v g = (A + B) >> 1; 
} 

Figure 3.6 Op t imiza t ion of computat ion using a custom instruction. Source: [29]. 

// F o r - l o o p i n t h e C l a n g u a g e 
f o r (unsigned i n t i = 0; i < N; i++) { 

c [ i ] = ( a [ i ] + b [ i ] ) / 2; // <<< t a r g e t t o o p t i m i z e 
} 

// C o m p i l e d a s s e m b l y : 
// * w i t h o u t o p t i m i z a t i o n s * w i t h o p t i m i z a t i o n 

add.n a 9 , a l l , a l 0 a d d s h i f t a l 2 , a l 0 , a 8 
s r l i a 9 , a 9 , 1 ... 

tiple data ( S I M D ) operations, and perform the same operation across mult iple elements. 
Next , (iii) instruction-level parallel ism can be used as well by creating mult i-operation 
V L I W instructions wi th variable slot widths. Final ly , (iv) data bandwidth connecting R T L 
blocks, memories, or other processors can be increased without going through the system 
bus, reducing I / O bottlenecks and improving data throughput. 

In order to demonstrate the use of the T I E language, assume the code shown in F i g . 3.5 
that describes a new instruction named addshift. F i g . 3.6 then shows the pract ical use 
of the first of the above-mentioned opt imizat ion approaches, that is, the merge of several 
instructions increases performance by combining mult iple operations into a single instruc
t ion. The C code i n F i g . 3.6 contains a for-loop wi th an inner-loop code of c [i] = (a[i] + 
b [i]) / 2. Compi l i ng this code on the Xtensa processor without any custom instructions 
results i n two sequentially executed instructions. The first operation, add.n, calculates the 
two's complement 32-bit sum. The second operation, s r l i , shifts the contents by a con
stant amount encoded i n the instruction word right (inserting zeros on the left). Each 
iteration of the for-loop executes i n two cycles. W i t h the T I E language, we can merge the 
two operations into a single new operation called addshift that performs both the add and 
shift operations at the same time. Now, compil ing the for-loop using the new fused opera
t ion, the assembly code shows the fusion operation addshift that executes only i n a single 
cycle. The T I E compiler automatical ly generates an opcode for the addshift operation, 
and a l l software tools are automatical ly updated to understand the function and t iming of 
the newly added addshift operation. 

A s we have seen, the T I E language allows the designer to perform l imi ted microprocessor 
customizations by ut i l iz ing configurable hardware components. In such a way, for instance, 
a new instruct ion wi th special semantics can be defined. However, the T I E language is not 
capable to perform any general s tructural changes as the processor architecture is impl ic i t ly 
bound to the one used i n Xtensa processor families. 
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Figure 3.7 Example of instruct ion description in the n M L language. 

op a l u _ i n s t r u c t i o n ( o p e r a t i o n : a l u _ o p e r a t i o n , s r c : s r c _ t , d s t : d s t _ t ) 
{ 

a c t i o n { 
o p _ s r c = s r c ; 
o p _ d s t = d s t ; 
o p e r a t i o n . a c t i o n ; 
d s t = o p _ d s t ; 

syntax : o p e r a t i o n " " d s t " , " s r c ; 
image : o p e r a t i o n : : d s t : : s r c ; 

} 
op a l u _ o p e r a t i o n = a d d | sub; 
op a d d ( ) 
{ 

a c t i o n { 
o p _ d s t = o p _ d s t + o p _ s r c ; 

The mixed A D L s capture both, the structure and behavior of the architecture. Th is section 
further focuses on two examples of the mixed A D L s : n M L and C o d A L . 

3.3.1 n M L 

The nML language [46, 79, 99, 109] is a high-level definition language originally designed 
for instruct ion set descriptions. Thus, it offers the abstraction level comparable to the 
programmer's manual of a given processor. The main idea behind the design of the n M L 
language builds on the fact that several instructions may share common properties. Ideal 
n M L descriptions are compact and simple i f the shared properties are properly re-used. 
A hierarchical scheme is used to describe instruct ion sets. The instructions are the topmost 
elements in the hierarchy. The intermediate elements of the hierarchy are the so-called par
tial instructions (P i s ) . The relationship between elements can be established using AND and 
OR composit ion rules. The AND-rule groups several P i s into a larger P I while the OR-rule 
enumerates a set of alternatives for one P I . Therefore, instruct ion definitions in n M L can 
be i n the form of an and/or tree where each possible derivation of the tree corresponds 
to an actual instruction. In F i g . 3.7, the definition of alu_instruction joins three P i s 
wi th the AND-rule: alu_operation, src_t, and dst_t. The first P I , alu_operation, uses 
the OR-rule to describe the val id options for A L U actions, that is, add or sub. The num
ber of a l l possible derivations of alu_instruction is given by the product of the size of 
alu_operation, src_t, and dst_t. The shared behavior of a l l these options is defined in 
the action at tr ibute of alu_instruction. Each option for alu_operation should have its 
action at tr ibute defined as its specific behavior, which is referred by the operation. action 

syntax 
image 

"add 
OxA; 

I! 

3.3 Mixed ADLs 
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Figure 3.8: A n overview of an A S I P Designer tool flow. Source: [125]. 

command. In the example, the action description is given for add operation. B ina ry and 
assembly syntax can also be specified in the same hierarchical manner using image and 
syntax attributes. 

The n M L language is also capable of capturing the structural information of the mi 
croprocessor. The n M L language supports three types of storages: (i) R A M , (ii) register, 
and (iii) t ransitory storage. W h i l e the R A M and register storages are visible directly to the 
instruction set, the transitory storage refers to machine states that are retained only for the 
l imi ted number of cycles, for instance, values on buses and latches. Computat ions have no 
delay in the n M L t iming model — only storage units have one. Instruction delay slots are 
modeled by introducing storage units as pipeline registers. The results of the computat ion 
are then propagated through the registers according to the description i n the behavioral 
specification. 

The n M L models constraints between operations by enumerating a l l the val id instruction 
combinations, and thus such an enumeration may render n M L descriptions which are very 
long. More complicated constraints, which often appear i n D S P s associated wi th irregular 
instruction-level parallel ism, or in V L I W processors w i th mult iple issue slots, are hard to 
model w i th n M L . For example, n M L cannot model the constraint that instruct ion I\ cannot 
directly follow instruction IQ [92, 58]. 

The n M L language has been used by several H D L code generators such as C B C [ ], 
St ructural S im-HS [11], and Chess [79]. A n example of the instruct ion set simulators that 
bu i ld on the n M L language are then S i g h / S i m [ ], Behavioral S im-HS [ ], and Check
ers [51, 125]. The Behavioral and Structural S im-HS are together provided wi th in Sim-HS 
framework allowing the transformation of microprocessor description to the corresponding 
Veri log models that are suitable for s imulat ion and synthesis, respectively. However, be-
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Figure 3.9 Example of resource description in the C o d A L language. 

// P r o g r a m C o u n t e r 
program_counter b i t [ 8 ] p c ; 
// G e n e r a l P u r p o s e 4b R e g i s t e r s - r O . . r 3 
a r c h r e g i s t e r b i t [ 8 ] r e g s [ 4 ] { .dataport = {2, 1} }; 
// P r o g r a m Memory 
memory b i t [ 8 ] prog_mem { 

.dataport = {1, 0}, . l a u = 8, .endianess = b i g , 

. s i z e = 256, . f l a g s = { r , x } , . l a t e n c y = {0, 1} 
}; 
// Memory M a p p i n g f o r P r o g r a m Memory 
memorymapping defaultmap { 0..255 = p r o g _ m e m [ 7 . . 0 ] ; }; 
// W i r e s 
s i g n a l b i t [ l ] jmp_en; 
s i g n a l b i t [ 2 ] o p c o d e , s r c A , s r c B , d s t , a l u _ o p ; 
s i g n a l b i t [ 4 ] imm, a d d r ; 
s i g n a l b i t [ 8 ] mem, r e g A , r e g B ; 

cause of the lack of low-level information, a more opt imized (e.g., deeply pipelined) synthe-
sizable output cannot be generated. The problem wi th the lack of the low-level information 
in the n M L language was addressed by several language vendor-specific extensions allowing 
more precise modeling of pipelines and V L I W instructions. These extensions push the n M L 
language more towards the group of mixed A D L s . 

One of the significantly extended variants of the n M L language is now adopted by 
ASIP Designer [125] which builds on an updated version of the previously mentioned 
Chess/Checkers [79, 51] environments. The n M L version used i n A S I P Designer provides 
options to expose the exact processor's resource and pipeline ut i l iza t ion. Th is accurate 
structural and t iming description stands at the basis of the s imulat ion and hardware gener
ation techniques used in the A S I P Designer too l suite (schematically visualized in F i g . 3.8). 
The n M L hazard rules provide efficient solutions for pipeline conflicts, either by stal l ing or 
forwarding, and their compact notat ion gives the designer full control over handling of the 
pipeline hazards. The generated pipeline control logic that avoids the hazards is supposed 
to be correct by construction. The designer can then tweak the hardware-software trade-off 
while being relieved from the detailed hardware implementat ion of pipeline interlocking and 
forwarding paths. The A S I P Designer can also co-operate w i th functional verification tools, 
for instance, V C S [126], static analyzers, e.g., SpyGlass L i n t [127], and formal verifiers such 
as V C Formal [128]. 

3.3.2 C o d A L 

C o d A L is a language used by Codasip [ ] which is an environment a iming at rapid 
processor development. In Codasip, each processor is described by two C o d A L models, 
the instruction-accurate (IA) model, and the cycle-accurate ( C A ) model . The I A model 
describes the syntax and semantics of the instructions and their functional behavior without 
any micro-architectural details. O n the other hand, the C A model then describes micro
architectural details such as pipelines, decoding, t iming, etc. 

20 



Golden 
Specificatic 

IA Simulator <" 

Design Under 
Verif ication 

C A Simulator 

Disassembler 
Synthesis 

Figure 3.11: Processor design flow in Codasip. 

The C o d A L descriptions are composed of two main types of definitions: (i) resources, (ii) 
instructions and events. The resource description captures hardware elements of a given pro
cessor. These may involve the definition of registers, memories, and system buses together 
wi th their mappings. Further, the resource description can also include other elements such 
as signals (wires) or pipelines. F i g . 3.9 demonstrates resources commonly present in almost 
every processor. The example contains a program counter pc (8bit), a memory resource 
prog_mem to store the program code (256 x 8bit), and default mapping of the program 
memory to the processor address space. Further, it also contains a definition of architec
tura l ly visible register file regs (4 x 8bit) and definition of globally accessible signals (i.e., 
equivalents of wires i n H D L s ) . 

Next , F i g . 3.10 shows an example of an instruct ion and event description at the I A 
level. Th is part contains a definition of the instruct ion set instr_set accompanied by the 
description of operand r which represent access to the previously defined regs resource. 
Similarly, as i n the case of n M L , the binary and assembly syntax, as well as semantic actions, 
can also be specified i n a hierarchical manner using assembler, binary, semantics sections. 
The example also includes special events that must be involved in each processor description 

- namely, (i) the reset event that describes start up state of the processor, (ii) the halt 
event describing shutdown actions of the processor, and (iii) the main event describing an 
assembly grammar entry point and actions that the processor should do at every clock cycle. 
The main event defines the top-level element of the processor's instruct ion set in start 
section. Moreover, the decoders section holds information about decoding instructions 
using the instruct ion decoder. F ina l ly , the semantics section describes computat ion done 
in each clock cycle. A s can be seen i n this I A example, the whole processing of each 
instruction is done in just one cycle. However, for C A models, the main event would 
typical ly contain activations of pipeline stages, interrupt checking, etc. 

F rom the I A and C A C o d A L models, Codasip tools can automatical ly generate S D K 
tools (assembler, disassembler, linker, C-compiler, simulators, profilers, debuggers) [64, 130, 
111, 110, 112]. F i g . 3.11 depicts the common processor design flow i n Codasip. Typical ly , 
the I A model is available significantly sooner than the C A one. Th is model allows the com
piler tool-chain and the I A simulator to be generated. These tools then give programmers 
an opportuni ty to start early wi th wr i t ing programs for the instruct ion set given by the 
I A model . W h e n the development of the C A model is finished and ready for hardware 
synthesis, the I A model can serve as the so-called golden specification for processor verifica-
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Figure 3.10 Example of instruction-accurate description of instructions and events i n the 
C o d A L architecture description language. 

element r r e p r e s e n t s r e g s { 
assembler { " r " ~ i d x = u n s i g n e d }; 
b i n a r y { i d x = 0 b [ 2 ] }; 
r e t u r n { i d x ; }; 

} 

element i n s t r _ a d d { 
use r as d s t , s r c A , s r c B ; 
assembler { "ADD" d s t "," s r c A "," s r c B }; 
b i n a r y { 0x1:2 d s t s r c A s r c B }; 
semantics { 

a l u _ o p = ALU_ADD; 
jmp_en = FA L S E ; 

}; 

s e t i n s t r _ s e t = i n s t r _ a d d /* ... */; 

event m a i n { 
use i n s t r u c t i o n s ; 
s t a r t { { i n s t r _ s e t ; } }; 
decoders (pc) { { i n s t r _ s e t ( o p c o d e ) ; } }; 
semantics { 

// F e t c h i n s t r u c t i o n 
mem = p r o g _ m e m [ p c ] ; 
// S p l i t i n s t r u c t i o n i n t o o p c o d e a n d o p e r a n d p a r t s 
o p c o d e = (mem >> 6) & 0x3; 
s r c A = (mem >> 4) & 0 x 3 ; 
s r c B = (mem >> 2) & 0 x 3 ; 
d s t = (mem) & 0 x 3 ; 
// . . . 
// Get d a t a f r o m r e g i s t e r s 
r e g A = r e g s [ s r c A ] ; 
r e g B = r e g s [ s r c B ] ; 
// P e r f o r m w r i t e - b a c k 
s w i t c h ( a l u _ o p ) { 

case ALU_ADD: r e g s [ d s t ] = r e g A + r e g B ; break; 
// . . . 

event r e s e t { semantics { p c = 0x00; }; } 

event h a l t { } 
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t ion. A s it is discussed i n [142], to assure mutual equivalency between I A and C A models, 
Codasip uses an U V M - b a s e d functional verification. 
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Chapter 4 

Introduction to Selected Areas of 
Formal Verification 

In this chapter, we w i l l introduce basic notions of formal verification methods and concepts 
used later i n the thesis. We recall that verification is a process that checks whether a system 
is correct w i th respect to a provided specification. A s opposed to testing and bug-hunting 
techniques which a im at detection of flaws against the specification, the goal of formal 
verification is to formally (mathematically) prove that the system is indeed correct. That 
is, i f no issue is found by a formal method, it is guaranteed that the system conforms to 
the given specification. Ideally, a formal approach should be sound and complete which 
means that an error is reported if and only i f there is a real error in a system, otherwise 
the system is said to be correct. However, meeting these properties can be costly (or 
impossible to achieve) and, therefore, to provide efficiency and automation, completeness 
and/or soundness are sometimes compromised which leads to error detection methods wi th 
formal roots. 

In the rest of this chapter, we w i l l formally introduce concepts that w i l l be used through
out the thesis, i n particular, model checking, static analysis, and S A T / S M T solvers. 

4.1 Preliminaries 

Throughout this thesis, the standard notion of formal languages is used according to their 
definition as it is given i n [77, 60, 89]. 

Definition 1. A n alphabet is defined as a non-empty finite set of symbols. 

Definition 2. A word over an alphabet E is recursively defined as follows: 

• the empty word e is a word over the alphabet E , 

• if x is a word over E and a £ E , then xa is also a word over E . 

We denote the set of a l l words over an alphabet E as E * . B y concatenation one can always 
combine two words x, y over E to form a new word xy. 

Definition 3. A formal language L is defined as any subset of E * . Next , given formal 
languages L\ and L2 over E , we define concatenation L\ • L2 of formal languages as the set 
{xy I x G L\ A y G L2} . Moreover, given a formal language L, we define the iteration L*, 
resp. the positive iteration L+, of the language L as follows: 
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Further, let us define a significant class of the formal languages known for its many practical 
applications. 

Definition 4. A regular set over an alphabet E is recursively defined as follows: 

• 0 is a regular set over E , 

• {e} is a regular set over E , 

• for a l l a G E , {a} is a regular set over E , 

• if P and Q are regular sets over E , then P U Q, P • Q, P* are also regular sets over E . 

The class of regular sets is thus the smallest language class that contains 0, {e}, {a} for a l l 
symbols a G E , and it is closed wi th respect to union, concatenation, and iteration. 

M o d e l checking [9] is an algori thmic approach of checking whether a given system satis
fies a given property through a systematic exploration of the state space of the system. 
Compared to other formal approaches (such as static analysis or theorem proving), model 
checkers are (usually) highly automated (for a closed system), fairly general, and capable 
of providing counter-examples. Often, a C E G A R loop [ ] is supported allowing for auto
mated refinement of the used abstraction i n order to exclude spurious counter-examples. 
One of the major disadvantages of model checkers is the so-called space-explosion problem 
which needs to be typical ly mit igated by efficient storage techniques (such as B D D s [26, 22]), 
automata (as i n [17, 16]), state-space reductions (for example, the so-called par t ia l order 
reduction [ ]), or (more recently) the integration of S A T solvers in model checking engines 
as i n , for instance, I C 3 / P D R [18, 45]. Another significant disadvantage is that a closed 
system is required, i.e., the verified system must be joined w i t h a model of its environment 
which may require a lot of non- t r iv ia l labour. 

The following sections briefly describe relevant model checking concepts that are later 
used in this thesis. 

4.2.1 Transition Systems 

In this section, a notion of transition systems is defined in the same way as it described 
in [9]. A transi t ion system is a mathematical structure consisting of two parts, (i) a set of 
configurations and (ii) a binary relation on this set. 

Definition 5. A transition system T is a pair of the form T = (C , ̂ ->) where C is a set of 
configurations and ^ C C x C i s a binary transition relation. 

4.2 Model Checking 
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The purpose of t ransi t ion systems is to describe behaviors which we define as certain se
quences of configurations. 

Definition 6. A transi t ion system T = (C , generates a set S(T) of sequences defined 
as follows: (i) the finite sequence co,...,cn (for n > 0) belongs to S(T) i f CQ G C and 
Ci C j + i for a l l 0 < i < n, (ii) the infinite sequence C o , . . . , c n , . . . belongs to S(T) if CQ G C 
and Ci Cj+i for a l l 0 < i . 

In most applications of t ransi t ion systems, we are only interested in configurations of the 
transi t ion system that are reachable from given in i t i a l configurations. 

Definition 7. G iven a transi t ion system T = (C , and a set I C C of initial configu
rations, we say that a configuration c n G C , n > 0, is reachable i f there exists a sequence 
c o , . . . , c„ G S(T) such that Co G / . 

4.2.2 Parameterized Systems 

In this thesis, we w i l l work wi th a common notion (used, e.g., i n [41, 102, 3]) of a parame
terized system operating on a linear topology where processes may perform local transitions 
or universal ly/existential ly guarded transitions. 

Definition 8. A parameterized system is a pair P = (Q , A) where Q is a finite set of local 
states of a process and A is a set of t ransi t ion rules over Q. A transi t ion rule is either 
local or global. A local transition rule is of the form q —>• q' G A , q,q' G Q. A global 
transition rule is then of the form Q D : G \= q —>• q' G A where Q G {V, 3}, o G {«—, —>•, 
G C Q, and g, g' G Q wi th a part " Q 0 : G " being referred as transition guard. The global 
rule can be applied only if its t ransi t ion guard is satisfied. For example, the meaning of 
the guard 3 0 : G is "for each state g G Q from the set G, there should be at least one 
process i n the linear topology including the current one so that the process is in the state 
g". Formally, the guard 3 0 : G is satisfied i n the configuration q\... qi... qn by the i - th 
process iff G G 31 < j < n: qj = q. Similarly, the meaning of the guard 3<_: G is "for 
each state q from the set G, there should be at least one process to the left of the current 
one so that the process is i n the state q". Formally, the guard 3<_: G is satisfied i n the 
configuration q\... qi... qn by the i - th process iff G G 31 < j < i: qj = q. The meaning 
of the other guards is defined analogically. 

A parameterized system P = (Q, A) induces an infinite t ransi t ion system T = ( C , 
whose configurations C are finite non-empty words over Q, i.e., elements from the set Q+. 
If we use c[i] to denote the state of the i t h process wi th in the configuration c G C , the 
transi t ion relation then contains a transi t ion c <—> c' w i th c[i] = s, c'[i] = s', c[j] = c'[j] 
for a l l j: j ^ i iff either (i) A contains a local rule s —> s', or (ii) A contains a global rule 
Qo : G \= s —>• s', and one of the following conditions is satisfied: 

• Q = 3 A o = o and Vg G G: 31 < j < \c\: c[j] = q, 

• Q = 3 A o = f- and Vg G G: 31 < j < i: c[j] = g, 

• Q = 3 A o = - » and V<? G G: 3 i < j < |c | : c[j] = q, 

• Q = V A o = and V I < j < |c | : c[j] G G , 

• Q = \ / A o = f - and V I < j < z: c[j] G G, 
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• Q = V A o = ->• and Vz < j < \c\: c[j] G G. 

A n instance of the reachability problem is defined by a parameterized system P = (Q, A) , 
a regular set / C Q+ of in i t i a l configurations, and a set Bad C Q+ of bad configurations. In 
particular, we w i l l define Bad as the upward closure of a finite set B C Q+ of min ima l bad 
configurations. Th is is, Bad = {c £ Q+ \ 3b G B: b C c} where C is the usual sub-word 
relation (i.e., it C si...sn u = Sil...Sik for some 1 < i\ < ... < ik < n, 0 < k < n). 
Now, let R C Q+ denote the set of a l l reachable configurations of the transi t ion system 
T = ( C , "—)•). We say that the system P is safe wrt / and Bad iff no bad configuration is 
reachable, i.e., R n Bad = 0. 

4.2.3 Regular Mode l Checking 

Regular model checking ( R M C ) , firstly described i n [71] and [ ], is a uniform framework 
for analyzing various classes of parameterized and infinite-state systems. The regular model 
checking framework [ ] represents a transi t ion system as follows: 

• A configuration (state) of the system is a word over an alphabet E . 

• The set of in i t i a l configurations is a regular set over E . 

• The t ransi t ion relation is a regularity-preserving re la t ion 1 on E , often (but not always) 
required to be regular and length-preserving. It is typica l ly represented by a finite-
state transducer over ( E x E ) , which accepts a l l words ( a i , b\) • • • ( a n , bn) such that 
(ai • • • an, b\ • • • bn) is in the transi t ion re la t ion. 2 

More formally, a length-preserving finite-state transducer T over E is a tuple (Q, s,5, F) 
where Q is the set of states, s G Q is the in i t i a l state, 5: (Q x S x E x Q is the transi t ion 
function, and F C Q is the set of accepting states. A transducer configuration is a pair 
(q,w) where q G Q, w G ( E x E ) * . G iven transducer configurations (qi,aw) and (q2,w), 
a G E x E , we say that the transducer makes a transit ion from (qi,aw) to (q2,w) denoted 
(qi,aw) h (q2,w), iff q2 G d(qi,a). The language of T is the language {w G ( E x E ) * | 
(s, w) h* (/ , e) A / G .F} where h* is the transitive closure of the relation h defined i n the 
standard way. We use L(T) to denote the language of T. The transducer T induces a regular 
relation R on words over E . More precisely, for words x = a\ • • • an and y = b\ • • • bn G E * , 
we have (x, y) G R if ( a i , 6i) • • • ( a„ , 6„) G L(T). The idea is that i? is used to represent the 
transi t ion relation on the configurations of the system (each of which is a word i n E ) . 

W h e n using R M C , a safety verification task is formulated as follows: G iven a regular set 
/ of in i t i a l configurations, a regularity-preserving relation R C E * x E * , and a regular set 
of bad configurations B C E * , is it the case that R*(I) n B = 0? Due to the undecidabil i ty 
issues, the question may not be solvable i n general. It is solvable for length-preserving 
systems, but even there one may hit a problem in the form of state explosion. Moreover, 
note that even i n length-preservation case, R*(I) cannot be computed by simple iterative 
computat ion of Rn(I) where n > 0. Therefore, an accelerated computat ion of R*(I) is 
required. Here, an applicat ion of abstraction on the involved automata, leading to abstract 
R M C [17] ( A R M C ) , has shown as part icular ly successful. 

X A relation g C S* x S* is regularity preserving iff g(L) G £3 for every L G £3. 
2 Sometimes, the transition relation is given as a union of a finite number of relations, each of which is 

called an action. 
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A s it is shown, for instance, i n [4], one of typica l applications of R M C is verification 
of parameterized systems w i t h linear or ring-formed topologies (where each component 
is finite-state). W i t h i n this thesis, namely in Chapter 9, A R M C method of [17] is used 
for showing that potential pipeline hazards may indeed occur in certain interleavings of 
instructions. 

4.3 Static Analysis 

Static analysis tries to avoid direct execution of the system being examined and, instead, it 
analyses and gathers approximate (often conservative) information about the system from 
its source code. Therefore, it may produce many false alarms. F r o m the point of view of 
this thesis, the most important form of static analysis is the so-called data-flow analysis 
that is described i n the next section. 

4.3.1 Data-Flow Analysis 

Data-flow analysis ( D F A ) is a technique for gathering information about the possible set of 
values calculated at various points i n a computer program or circuit . The information gath
ered is often used by compilers when opt imizing the given program or circuit . A n example 
of a D F A is the computat ion of reaching definitions i n compilers. 

A s an input, the D F A typical ly expects a flow graph G describing a given program (then 
G typical ly has the form of the so-called control flow graph) or a circuit (where G can have 
the form of a block schema). The flow graph can be often represented by a tuple (B, E, L) 
where B is a finite set of blocks, E C B x B is a finite set of oriented edges, and L is 
a labeling funct ion 3 . A simple way to perform D F A is to deploy the so-called monotonie 
DFA framework which, for each block of the flow graph, sets up data-flow equations over 
data-flow domains having the form of a complete lattice. The equations are then solved 
by repetitive local calculat ion of output from inputs at each node unt i l the whole system 
stabilizes, i.e., it reaches a fixpoint. Th is general D F A framework-based approach was firstly 
introduced i n [73]. 

Given a flow graph (B, E, L), an instance of the D F A framework can be more formally 
described using a quintuple (V, F, bo, vo) where V is a set describing possible flow values, 
n : V x V —> V is & meet operator (describing how are values originating from multiple 
locations joined together), F is a set of block monotone transfer functions V —> V for 
each block b G B (describing the effect of passing through a block), bo G B is a bound
ary block, and vo G V is a boundary value. Moreover, it is expected that a pair (V, n) 
forms a complete lattice, and thus V contains the bo t tom element _L and the top element 
T . F ina l ly , F must include the identity function, it must be closed under the function 
composition, and the used lattice should not contain infinite descending chains. 

The most common (naive) solution for solving a D F A framework instance is given in 
A l g . 1. Here, the output states Out(b) for each block b are computed by applying the 
transfer functions on the input states In(b). F r o m these, the input states are updated by 
applying the meet operation. The latter two steps are repeated unt i l we reach the fixpoint, 
that is, the si tuation i n which the output states do not change anymore. After reaching the 
fixpoint, the output and input states of the blocks can be used to derive properties of the 
program or circuit at the block boundaries. 

3 A concrete form of the labeling function usually depends on the purpose of data-flow analysis. 
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A l g o r i t h m 1 Round-robin iterative D F A algori thm. 

1: Out (bo) := vo 
2: for b e B \ {bo} do 
3: Out(b) := T 
4: end for 
5: while Out(b) has changed for some b £ B do 
6: for b G B do 
7: Pred := {b'e B \ (b',b) e E} 
8: In(b) := T\p&Pred Out(p) 
9: Out(b) := fb(In(b)) 

10: end for 
11: end while 

In Chapter 9 of the thesis, data-flow analysis of this type is ut i l ized to detect potential 
hazards i n a microprocessor's pipeline control logic. 

4.4 SAT and SMT Solvers 

The Boolean satisfiability ( S A T ) problem is the problem of determining whether there exists 
an interpretation that satisfies a given Boolean formula. In other words, we ask whether 
the variables of a given Boolean formula can be consistently replaced by the values True or 
False in such a way that the formula evaluates to True. Similarly, the satisfiability modulo 
theories ( S M T ) problem is a decision problem for first-order logical formulas w i th respect 
to combinations of background theories expressed i n the classical first-order logic w i th 
equality. Examples of such theories are the theory of real numbers, the theory of integers, 
and the theories of various data structures such as lists, arrays, bit vectors, etc. S A T and 
S M T solving has found many applications i n verification (e.g., w i th in predicate abstraction 
or invariant checking), test generation, hardware synthesis, error trace minimiza t ion , and 
artificial intelligence [18, 45]. 

In this thesis, S A T and S M T solvers are ut i l ized i n several cases. For instance, in 
Chapters 7 and 8, the GlueMin i sa t [101] S A T solver is used as an external S A T solver for 
the Cadence S M V [ ] tool . In another case (in Chapter 9), the Z3 [100] S M T solver is 
ut i l ized for val idat ion of the consistency of a processor pipeline. 

4.4.1 S A T Solvers 

The S A T problem, which asks whether a given proposit ional formula is satisfiable, is the first 
problem which has been proven to be NP-complete . Normally , we consider a proposit ional 
formula to be given i n the conjunctive normal form ( C N F ) , 1.6. j ctS cl conjunction of clauses 
where a clause is a disjunction of literals, and a l i teral is a (possibly negated) proposit ional 
symbol. Stated formally, let P be a finite set of proposit ional symbols. If p £ P, then 
p is an atom, and p and —>p are literals of P. A clause is a disjunction of literals t\ V 

. . . V £n. A C N F formula is a conjunction of one or more clauses C\ A . . . A Cn. Most 
contemporary SAT-solvers bu i ld on variants of the classical Davis-Putnam-Longemann-
Loveland ( D P L L ) procedure [ ] extended to the so-called conflict-driven clause-learning 
approach ( C D C L ) [85, 12], which we w i l l describe i n terms of an abstract C D C L system. 
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Abstract C D C L Algor i thm 

A n abstract C D C L system is a pair (S, —>•) where S is a set of states of the system and 
—>• C S x S is its set of transitions modeling progress of the algori thm. Most states are of 
the form M \\ F where: 

• M is a sequence of annotated literals denoting a par t ia l t ru th assignment, and 

• F is the C N F formula being checked, represented as a set of clauses. 

The in i t i a l state is 0 || F, where F is to be checked for satisfiability. The final state is 
either: 

• the special fail state fail if F is unsatisfiable, or 

• M || G where G is a C N F formula equisatisfiable w i t h the original formula F and M 

We further write F \= C to mean that, for every t ru th assignment v, v(F) = True (i.e., F 
holds i n valuation v) implies v{C) = True. 

In what follows, we w i l l describe transitions between states of the abstract system C D C L 
system (5, —>•). 

• Pure Literal 

M \\ F —> Ml II F if 

£ occurs i n some clause of F, 

->£ occurs i n no clause of F, and 

£ is undefined i n M. 

• Decide 

M II F ->• Mt II F if 

• Unit Propagate 

• Fail 

• Back Jump 
MtN \= ^C and there is some 

M£dN (I F, C ->• M£' (I F, C if < 

clause C' V such that: 

F, C \= C' V f , 

M |= - . C ' , 

is undefined i n M, and 

£' or occurs in F or i n M£dN. 

• Learn 
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• Forget 
M || F,C ->• M£\\ F if M ^ C 

• Restart 
M\\F->V)\\F 

The given formula is satisfiable i f neither Pure Literal, Unit Propagate, Back Jump, nor De
cide is applicable and the system is not i n the fail state. In part icular, the t ru th assignment 
M i n the final state is an example of a satisfying assignment for the input formula. More
over, the rules are not applied i n a completely random order. The priorities for applying the 
rules are as follows: (i) If Fail or Back Jump are applicable, they are applied. Otherwise, 
(ii) Unit Propagate and Pure Literal are applied if possible, (iii) O n l y i f no other rule can 
be applied, Decide, Learn, Forget, or Restart is used. The main motivat ion is quite straight
forward — reducing the amount of guessing as much as possible. The use of Decide, Learn, 
Forget, and Restart rules is then subject to heuristics. These heuristics may vary solver to 
solver and are one of the m a i n subjects of the on-going research (e.g., [82, 72]). M o d e r n 
S A T solvers are able to deal w i th real-life S A T problem instances containing mil l ions of 
variables and clauses. 

4.4.2 S M T Solvers 

The satisfiability modulo theories ( S M T ) problem is a decision problem for first-order logi
cal formulas wi th respect to combinations of background theories expressed in the classical 
first-order logic w i th equality. A n S M T instance is a formula in first-order logic where some 
function and predicate symbols have addi t ional interpretations and S M T is the problem 
of determining whether such a formula is satisfiable. Example predicates involve linear in 
equalities (e.g., 4x + 2y > z), equalities involving uninterpreted terms and function symbols 
(e.g., f(f(x,y),z) = f{x,z) where / is some unspecified binary function), or bit-vector 
ari thmetic w i th equalities (e.g., u © (CAFE)IQ = w <C x where © and <C denote the "xor" 
and "left shift" bit operations, respectively). Formulae wi th atoms from a specific theory are 
decided using their respective decision procedures. Then, approaches for combining such 
procedures (e.g., the Nelson-Oppen procedure [103]) are used for mixed formulae (where 
some variables are used i n atoms of several different theories). 

E a r l y attempts to solve S M T instances involved translating S M T instances to Boolean 
S A T instances. For example, a 32-bit integer variable would be encoded by 32 variables, 
each representing one bit w i t h the appropriate ordering, and word-level operations would 
be replaced by lower-level logic operations on the bits. However, this loss of the high-level 
semantics of the underlying theories means that the Boolean S A T solver has to work much 
harder than necessary as it must (re-) discover t r iv i a l theory facts (such as commutat iv i ty for 
the bit-vector © operation). Th is observation led to the development of the so-called lazy 
S M T approaches where S M T solvers t ight ly integrate the Boolean reasoning of a C D C L -
style search wi th theory-specific solvers that handle conjunctions of predicates from a given 
theory [10]. 
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Chapter 5 

Hardware Verification Techniques 

This chapter discusses contemporary hardware verification techniques wi th a specific focus 
on the ones used during the development of pipelined microprocessors. The chapter is 
organized as follows. The first two sections describe some of the state-of-the-art approaches 
for automatic verification of hardware using functional verification and formal methods 
which are related to the a im of the thesis. The last section is then dedicated to various 
ways of large memory modeling that represents another important research topic as it can 
boost the performance of the two former approaches. 

Lots of work has been invested i n the area of formal and functional verification of 
hardware. Unfortunately, according to financial reports of major hardware developers, 
functional verification was preferred to formal approaches i n the previous decades. 1 Th is 
can be explained by the fact that formal methods were usually t ime-consuming and more 
difficult to deploy. Yet , in the last years, w i th the great advances i n computat ional power 
of modern processors and advances in research, formal methods are becoming more popular 
as we l l . 2 

5.1 Functional Verification of Hardware 

Al though this topic is not the focus of the thesis, functional verification is one of the most 
popular techniques for verification of hardware. Therefore, it should be mentioned, at 
least briefly, so a more complete view of topics related to the thesis is provided to the 
reader. The functional verification typical ly generates a set of constrained and /or random 
test vectors and compares the behavior of the system for these vectors w i t h the behavior 
specified by a reference model . In order to get a high level of coverage of the system's 
state space, it is required to (i) discover a way to generate input vectors that cover cr i t ical 
parts of the state space, and /or (ii) increase the number of tested vectors. Coverage (e.g., 
code coverage, functional coverage, path coverage) dynamical ly measures the completeness 
of state-space exploration and allows the verification engineer to improve quali ty of input 
test vectors, usually by adding constraints, to achieve an even higher level of coverage. 
F u l l automation of the process can be achieved, for example, by an intelligent program 
that controls coverage results and chooses parameters of a new test vector to reach better 
coverage. Such an approach is called a coverage-driven verification. 

source : Gary Smith E D A , Oct 2010. 
2Source: Gary Smith E D A , Oct 2017. 
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The V C S [126] tool for functional verification is used by many major corporations in 
a commercial sphere. V C S speeds up the verification process by running several tasks in 
parallel on machines wi th mult iple cores. A special proprietary technology for generating 
expressions named Echo [12 ] is used for automatic creation of s t imuli to efficiently cover 
the state space specified by the user who typical ly adds constraining formulae to the code. 
The expressions are generated by constraint solvers that find an appropriate solution to the 
supplied constraints while min imiz ing conflicts between them. The V C S tool uses a uniform 
coverage database for storing coverage statistics which can eliminate redundant execution of 
certain test vectors for designs that were only par t ia l ly modified (e.g., by finding identical 
parts of the designs). 

In [142], authors describe a functional verification approach applied when checking the 
implementation of R I S C - V processor [115] designed in Codasip framework [ ]. The verifi
cation is based on the R T L simulat ion (running in Veloce emulator [90]) and the universal 
verification methodology ( U V M ) [5] which is a standardized methodology for verifying in 
tegrated circuit designs. The approach leverages the fact that, i n Codasip , models of the 
processor can be described at various level of detail , that is, typical ly instruction- and cycle-
accurate as we have shown in Section 3.3.2. To keep up the pace wi th the R T L emulation, 
a fast software simulator generated from the instruction-accurate level description is taken 
as a golden model for the verification task. The U V M is then used for orchestration of 
loading and execution of the test bench s t imul i into both runtime environments as well as 
for asserting the equality of the obtained results (e.g., contents of register files). 

The A r c h C [114, 6] framework provides a co-simulation tool al lowing a designer to verify 
conformance of two different models of the architecture. The A r c h C verification approach is 
based on a transaction verification methodology which tracks down every update to storage 
devices of both models, marking them w i t h timestamps to show when they happened. B y 
comparing the sequence of transactions generated throughout the execution, the A r c h C 
verifier can te l l whether both models are consistent. A deficiency of the method is the 
max imum frequency of the s imulat ion which is claimed to be i n the order of units of 
megahertz for a M I P S processor. Such a frequency may not be sufficient for applications 
that need to communicate using high-speed interfaces. 

In H A V E N [123], the issue wi th the slow speed of s imulat ion is resolved by u t i l iz ing the 
inherent parallel ism of a hardware system to accelerate its functional verification. The ver
ified system together w i th several necessary components of the verification environment is 
moved to a field-programmable gate array ( F P G A ) . The frequency achieved by the accelera
t ion is approx. 125 M H z which is significantly higher than the frequency of emulation-based 
solutions available at a comparable price. The current disadvantage of the technique may 
be a lack of abi l i ty to automatical ly drive the generation of test vectors to target coverage 
holes given by continuously measured coverage. 

Another tool for functional verification is Z a m i a C A D [129]. It is a modular and exten
sible platform wi th I D E for hardware design. The main advantage of this platform is its 
abi l i ty to automatical ly locate design flaws i n microprocessor designs at R T L . A s an input, 
the user has to provide a set of independent tests where both failing and passing tests are 
present. The error local izat ion is done by statistical s imulat ion [83] which is refined using 
dynamic and static slicing [76, 137]. Besides this feature, Z a m i a C A D also offers the abi l i ty 
to highlight results computed by static analysis directly i n H D L representation including 
the cone of influence, dead code, etc. 
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5.2 Formal Verification of Pipelined Microprocessors 

In this section, we would like to describe formal verification techniques w i th a high degree 
of automation used during microprocessor design. W h e n concentrating on verification of 
microprocessors, the approach of theorem proving (cf., e.g., [70, 118, 61]) is often considered. 
There are mult iple successful industr ia l applications of theorem proving, including, e.g., 
a proof of correctness of the floating-point ari thmetic of the Intel I tanium processor [57] 
or the fully verified design of the V A M P microprocessor, which was verified using the P V S 
theorem prover [ ]. However, theorem proving typical ly requires a significant level of 
expertise and user intervention. A typica l microprocessor verification cost using theorem 
proving is counted i n person-years. 

Because this thesis aims at the max ima l automation of the proposed techniques, we w i l l 
concentrate more on automated techniques. A n approach inspired by theorem proving is the 
approach of automatic generation of properties satisfied by a given design (cf., e.g., [48, 116, 
94, 43, 38]). Th i s approach is based on automatic learning of dependencies or properties 
from simulat ion traces or data-flow graphs. Unfortunately, the approach is pr imar i ly suited 
for an in i t i a l understanding of the design since it lacks the abi l i ty to completely verify 
the whole microprocessor design. More automation is also offered by the approach of 
model checking based on a systematic exploration of the state space of the verified system. 
The approach of bounded model checking ( B M C ) [14], exploring the state space of a verified 
system up to certain depth only, and related approaches such as I P C [105] have become 
very popular in practice, leveraging the recent advances i n automatic decision procedures, 
especially, S A T and/or S M T solvers [134, 132, 133, 45]. 

Major i ty of the work on automated formal verification of pipelined microprocessors 
can be separated into two ma in branches: (i) correspondence checking between various ab
straction levels of implementat ion and (ii) verification of the microprocessor w i th respect to 
generic properties of pipelined microprocessors. These two branches are often supplemented 
by (iii) methods looking for undesirable patterns i n the microprocessor implementations. 
Each of these topics is more discussed in the following subsections. 

5.2.1 Correspondence Checking 

Despite the formal methods of correspondence checking have a history dat ing back over 
decades [62], one of the key ideas used i n correspondence checking among the I S A and R T L 
implementations is described in [ ]. Typical ly , the most challenging part of the I S A - R T L 
correspondence checking is to find an abstraction function aisA that maps states of the 
R T L - l e v e l states to I S A level such that the aisA mapping is maintained in each cycle of the 
R T L level operation. The key contr ibution of [ 7] is showing that the abstraction function 
otisA could be computed automatical ly by symbolical ly simulat ing the microprocessor as it 
clears out instructions out of the pipeline (typically, by inserting NOP instructions into the 
pipeline). Indeed, most pipelined processor designs already have a mechanism for clearing 
instructions, because this is required to br ing the pipeline to an idle state when dealing 
wi th exceptional conditions, such as hal t ing or interrupt handling. 

For a single-pipelined microprocessor, the following verification task, schematically de
picted in F i g . 5.1, can be used for checking the I S A - R T L equivalence. G i v e n the function 
aisA the task consists of: 

1. choosing an arbi t rary legal s tart ing R T L state SRTL, 
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Figure 5.1: Correspondence checking approach between I S A and R T L processor descriptions 
as it is proposed i n [27]. 

2. symbolical ly computing the corresponding I S A state SISA by finishing par t ia l ly exe
cuted instructions i n the pipeline, i.e., SISA '•= &ISA(SRTL), 

3. obtaining an I S A state fisA by executing the instruction i n the I S A model, i.e., 

fiSA •= stepISA(sISA), 

4. getting an R T L state /RTL by running the instruction for a normal pipeline cycle in 
the R T L model, that is, fRTL •= stepRTL(sRTL), 

5. computing the corresponding I S A state f'isA after making the normal cycle i n the 
R T L model, i.e., f'ISA := aisA(fRTL), 

6. comparing the programmer-visible parts of the designs, that is, checking whether 

fiSA = fisA-

The original approach [; ] utilizes the logic of equality w i th uninterpreted functions and 
memories ( E U F M ) which allows for an abstraction of functional units and memories while 
completely modeling the control of a processor. In [21], E U F M is extended by positive 
equality of uninterpreted functions ( P E U F ) which greatly reduces the t ime needed for 
verification. The works [136, 135, 56] further extend the approach by using positive equal
ity of uninterpreted functions for modeling functional units, superscalar processors w i th 
mult icycle execution units, exceptions, and branch prediction. Since the approach uses un
interpreted functions for operators unsupported by E U F M and/or P E U F , the verification 
may fail (or take too much time) on R T L designs w i t h opt imized operations. Moreover, 
specifying an arbi t rary legal start ing R T L state is a hard problem and requires significant 
user intervention, e.g., by wr i t ing assertions related to each microprocessor signal. The 
difficulty of identifying such assertions can be seen, for instance, i n a recent work [23] aim
ing at verification of microprocessors using the above-described technique where non-t r ivia l 
invariants related to pipeline control signals had to be added explicit ly. 

A correspondence checking method is also proposed i n [75]. The main idea of the 
approach is based on proving equivalence of data-flow graphs ( D F G s ) that are extracted 
from instruction-accurate and cycle-accurate models by unrol l ing the transi t ion relation for 
the needed number of t ime frames. The method benefits from reducing sizes of D F G s by 
finding potentially equivalent pairs ( P E P s ) and proving their equivalence. Therefore, the 
size of a D F G to be analyzed is much smaller. The method can be divided into the following 
steps: 
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1. Detect ion of P E P s by computing values of each node i n both instruction- and cycle-
accurate D F G s for some random test pattern placed to the graph inputs. A n y pair 
of nodes that have the same simulat ion values are considered to be a P E P . 

2. Prove the P E P equivalence using model checking. The model checking is invoked for 
each of the P E P s . 

3. Merge equivalent P E P s and continue wi th Step 1 unt i l graph outputs are proven 
equivalent. If the P E P nodes are shown to be not equivalent, then a counter-example 
trace is used to prune the set of P E P s . 

To achieve a better performance, addi t ional techniques such as constant propagation over 
the D F G s or graph rewrit ing rules are used. 

Another , yet similar approach to correspondence checking of the control of a micropro
cessor is described i n [78]. The work proposes a method of automatic formal verification 
of a pipelined implementat ion against its I S A specification by using I P C [105] that a l l 
assertions of a l l instructions are satisfied and to prove the val idi ty of assumptions and 
consequents of instructions i n every possible chain of instructions. For this purpose, a map
ping of high-level I S A to R T L has to be provided which, however, requires manual user 
intervention. 

Checking of the pipeline control of a microprocessor is also addressed i n [81]. The pa
per presents a formal verification technique called unpipelining. A t first, the unpipel ining 
technique analyzes the pipeline structure of a design. The analysis works wi th a graph 
of the structure of the pipeline control where it identifies and classifies (by using pattern-
matching) a l l the control logic into three classes that deal w i th the basic pipeline hazards, 
i.e., stall ing, clearing, and bypassing. Us ing the results of this analysis, the method au
tomatical ly reverse-engineers a pipeline through a series of transformations called pipeline 
deconstruction. Each applicat ion of the pipeline deconstruction shortens the pipeline by 
merging its last two stages into a single stage. If a l l the deconstruction transformations are 
successful, the model is transformed into a functionally equivalent unpipelined design. This 
equivalent design of the R T L specification can then be checked for correspondence wi th the 
I S A description. The main deficiency of the method is that it cannot be used for designs 
that implement, for instance, delayed branches or branch prediction. 

Compared to the above approaches, the approach of correspondence checking presented 
in Chapter 8 aims at no user intervention and thus min ima l expertise of the user even when 
applying the approach on an optimized design. A l though the approach does not provide 
fully formal verification, it can find bugs not found by functional verification. 

5.2.2 Checking of Generic Properties of Pipelined Microprocessor 

Instead of concentrating on proving the full IS A - R T L correspondence which, as we have 
seen, could be a rather complicated task, the approaches listed in this section a i m at 
automated verification wrt one or more specific properties that any correct pipelined mi 
croprocessor should satisfy. 

The approach proposed in [69] introduces the so-called self-consistency check that com
pares results of executions of an instruct ion i n two scenarios wrt a property given by the 
user. For example, for a property concerning data hazards, the approach works wi th (i) ex
ecutions of an instruction enclosed by the finite number of random instructions wi th in the 
pipeline and (ii) executions of the same instruct ion surrounded by NOP instructions only. 
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The m a i n drawback of this approach is that a user has to list a l l val id instructions and 
their possible combinations. Further, the conformance established by the approach is valid 
only up to the given number of instructions. 

In [2], a formal model based on a not ion of stages, parcels (instructions), and hazards 
has been introduced. Once the user defines predicates needed for describing the pipeline, 
the design can be automatical ly formally proven correct under a correctness cri terion given 
in the work. Another , a bit s imilar approach has been proposed in [78]. The approach 
introduces an abstract formal model whose components are to be l inked by the user w i th 
the concrete cycle-accurate implementat ion through a number of mappings. Afterwards, 
I P C [105] is used to check several properties imply ing correctness of the pipeline behavior. 
Aga in , bo th of the above methods require significant manual user intervention. 

The works [98, 95, 96] propose general properties of the correct behavior of a typical 
single-pipelined implementat ion of a microprocessor. For instance, the work [J ] includes 
definition of a rule that prevents an undesirable dupl icat ion of an instruct ion wi th in the 
pipeline. These properties together w i th an A D L description of a processor are then con
verted to a B M C problem to find possible counterexamples [97]. 

In contrast w i t h the above approaches, the approach for showing an absence of problems 
caused by pipeline hazards proposed in Chapter 9 is almost fully automated—the only 
step required from the user is to identify the architectural resources (such as registers and 
memory ports) and the program counter. 

5.2.3 Looking for Undesirable Design Patterns 

Searching for specific design patterns that could cause unwanted behavior of the designed 
system (e.g., proper dealing wi th high impedance values i n H D L languages) could be 
a rather simple but very efficient way to find some types of bugs. Spyglass L i n t [12' ] 
is a pattern-based static R T L checker delivered wi th the A S I P Designer framework [125]. 
It contains a set of customizable rules which are aimed to help wi th revealing flaws in early 
phases of the microprocessor development. Certainly, such rules only approximate reality 
and can produce many false alarms. However, this information can be used to improve 
the performance of other (more sophisticated) tools (e.g., [126, 75]) by providing useful 
information about the verified system. A somewhat similar approach is also offered by the 
Sigasi framework. In [122], the authors state that the framework is, for example, capable of 
detecting signals and variables that are never read/wri t ten, dead states i n state machines, 
or case statements that do not cover a l l choices. 

A s one can see, static analysis of a hardware system can be used as an entry point for 
more advanced techniques by providing hints that can, for instance, narrow the state space 
explored by a model checker used for subsequent detailed analysis of the given system. 

5.3 Large Memory Abstraction 

Numerous works have focused on memory abstraction, notably wi th in the area of formal 
verification. Designs wi th large embedded memories are quite common and have many 
applications. However, these embedded memories add further complexity to formal verifi
cation tasks due to an exponential increase in the state space w i t h each addi t ional memory 
bit . W i t h explicit modeling of large embedded memories, the search space frequently be
comes prohibi t ively large to analyze. Therefore, it is important to use abstract models of 
such memories. 

37 



Theories for reasoning about arrays [86, 104] are often used as a formal basis in current 
approaches for memory abstraction, especially the work on an extensional theory of ar
rays [121]. Intuitively, this theory formalizes the idea that two arrays are equivalent i f they 
have the same value at each index. A n example of such an approach has been presented 
in [50]. Th is work specializes i n reasoning about safety properties of systems wi th arrays. 
In the work, an automatic a lgori thm for constructing abstractions of memories is presented. 
The algori thm computes the smallest sound and complete abstraction of the given memory. 

In [19], the authors introduce a theory of arrays w i t h quantifiers which is an extension 
of [124]. Moreover, they define the so-called array property fragment for which the authors 
supplement a decision procedure for satisfiability. A modification of the decision procedure 
for purposes of correspondence checking is proposed i n [71] and implemented i n [75]. 

Another method for large memory modeling is described i n [131]. The memory state 
is represented by an ordered set containing triplets composed of (i) an expression denoting 
the set of conditions for which the triplet is defined, (ii) an address expression denoting 
a memory location, and (iii) a data expression denoting the contents of this location. For 
this set, a special implementat ion of write and read operations wrt the above-described 
representation of the memory is defined. The abstracted memory interacts w i th the rest 
of the circuit using standard enable, address, and data signals. The size of the set is 
proport ional to the number of memory accesses. Further, in [ 5], the same author extends 
the approach i n a way that it can be used for correspondence checking by applying the so-
called shadowing technique for read operations. The technique is used on a l l read operations 
when the second of the two verified models is symbolical ly executed. In contrast w i th the 
original read operation, the modified one delegates computat ion of the return value to the 
memory used in the first model if a requested address has no record in the above-defined 
set. Such an approach ensures (otherwise missing) consistency of read operations of both 
verified models. 

The work [63] formally specifies and verifies a model of a large memory that supports 
efficient s imulat ion. The model is tailored for Intel x86 implementations only i n order 
to offer a good trade-off between the speed of s imulat ion and the needed computat ional 
resources. 

A common disadvantage of [50, 74, 131, 25] is the fact that they omit support for 
addressing different sizes of data which is considered, e.g., i n [63]. O n the other hand, in [63], 
the authors assume start ing from the nullified state of the memory, not from a random state. 

Some of the other proposed works describe a smarter encoding of formulas including 
memories into C N F [84, 49]. In the thesis, the problems l inked to C N F transformation are 
not discussed, however, the ideas in [84, 49] can be potential ly applied to i t . A n example 
of a tool based on the method coupled wi th C N F is the Bit Analysis Tool [< ] ( B A T ) 
which automatical ly builds abstraction for memories over bounded time intervals. A s an 
input, the B A T uses custom LISP-based language. The version of the verified system wi th 
abstracted memories is created in the following steps: 

1. The design to be verified is simplified through pre-defined rewrite rules applied on 
the level of terms of the B A T language. 

2. A n equality test relation that relates memories that are directly compared for equality 
is buil t over the set of memory variables. 

3. The transitive closure of the test relation is computed. Such a closure is an equivalence 
relation. 
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4. A n address set is computed for each of the equivalence classes. The address set 
contains only addresses that are relevant for a given class. 

5. For a l l addresses i n address set, a shorter bit vector for addressing the abstract mem
ories is created. The size of the vector is proport ional to the number of memory 
accesses. 

6. The behavior of memories is changed to be compatible w i th the new addressing style. 

7. Or ig ina l memories and addresses are replaced wi th their abstract counterparts. 

A description of a system together w i th the checked properties is then efficiently transformed 
into a C N F formula. S imi lar ly to previous approaches, there is no support for addressing 
different sizes of data. 

In Chapter 7, we propose another approach to generate abstractions of memories which 
support addressing of arbi t rary addressable units, such as bytes and words (unlike [50, 74, 
131, 25]), w i th mult iple read and write ports (in contrast w i t h [50, 74]), and it allows the 
memory to start from a random in i t i a l state (not available i n [63]). O u r a lgori thm is also 
not bound to any specific verification technique (unlike [84, 49]). 
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Chapter 6 

Goals of the Thesis 

The general idea of the thesis is to design new hardware verification techniques optimized 
for use i n the process of hardware/software co-design. The key idea is to improve and/or 
develop verification techniques wi th an emphasis on (i) max ima l amount of automation, 
(ii) efficiency, and (iii) abi l i ty to deliver continuous feedback about the verification process. 
The proposed techniques should be i n part icular applicable to the class of A S I P s that are 
broadly used i n light-weight embedded devices wi th the following properties: 

• 32bit architecture, 

• in-order execution of instructions, 

• memories w i th mult iple read/wri te ports, 

• I / O communicat ion through buses, and 

• abi l i ty to handle interrupts. 

The first goal of the thesis is to develop formal methods for checking correspondence of 
designs on various levels of abstraction. This goal can be narrowed down as follows: 

• The proposed formal technique should be able to verify correspondence between R T L 
and I S A specifications of a processor. 

• The technique should be scalable for use in parallel processing. 

• The method should deliver (at least partial) results i n the order of minutes. 

• The approach should be able to cope w i t h the complex issues brought by the presence 
of large memories i n designs. 

The above-specified first goal is addressed in Chapter 8 which introduces a new algori thm 
for verifying correspondence between the R T L and I S A microprocessor specifications wi th 
a high degree of automation together w i th a new method for modeling large memories and 
register files described i n Chapter 7. 

The second goal of the thesis is to develop new methods for checking correctness of 
various functional parts of a microprocessor, especially those associated wi th the pipeline 
control. This goal can be more expanded as follows: 

• The proposed formal technique should be able to work on a low-level R T L specification 
of microprocessors w i t h a single pipeline. 
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• The technique should be able to benefit from parallel processing. 

• The method should be able to split the verification task into smaller parts that can 
be processed separately and thus deliver results i n a reasonable t ime (in the order of 
minutes). 

• The efficiency of the proposed method should not downgrade significantly for micro
processors w i t h wide data-paths. 

Concerning this topic, i n Chapter 9, we propose an approach for detection of problems 
caused by data and control hazards i n pipelined microprocessor designs. 
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Chapter 7 

Large Memory Abstraction 

This chapter describes a technique for automatic generation of abstract models of memories 
that can be used for efficient formal verification of hardware designs. Our approach is able 
to handle addressing of different sizes of data, such as quad words, double words, words, or 
bytes, at the same time. The technique is also applicable to memories w i th mult iple read 
and write ports, memories w i th read and write operations wi th zero- or single-clock delay, 
and it allows the memory to start w i th a random in i t i a l state al lowing one to formally 
verify the given design for a l l in i t i a l contents of the memory. Our abstraction allows large 
register-files and memories to be represented i n a way that dramatical ly reduces the state 
space to be explored during formal verification of microprocessor designs as witnessed by 
our experiments. 

7.1 Introduction 

A s we have already said, the complexity of the verification process of microprocessor designs 
is usually significantly influenced by the presence and size of the memories used in the design 
because of an exponential increase i n the size of the state space of the given system wi th 
each addi t ional memory bi t . Therefore the so-called efficient memory modeling ( E M M ) 
techniques that t ry to avoid explicit modeling of the memories are being developed. 

In this chapter, we present an approach to automatic generation of abstract memory 
models whose basic idea comes from the fact that formal verification often suffices w i th 
exploring a l imi ted number of accesses to the available memory, and it is thus possible to 
reduce the number of values that are to be recorded to those that are actually stored in 
the memory (abstracting away the random contents stored at unused memory locations). 
Expand ing the basic idea, we propose an approach that allows one to represent memories 
wi th various advanced features, such as different kinds of endianness (big or l i t t le) , read 
and write delays, mult iple read and write ports, and different sizes of addressable units 
(e.g., bytes, words, double words). A s far as we know, the abi l i ty to handle a l l of the above 
mentioned features differentiates our approach from the currently used ones. Moreover, 
our technique is applicable i n environments requiring a very high level of automation (e.g., 
processor development frameworks), and it is suitable for formal verification approaches that 
a im at verifying a given design for an arbi trary in i t i a l contents of the memory. Further, 
our abstract memory models can be used wi th in formal verification i n a quite efficient way 
as proved by our experiments. 
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Figure 7.1: Memory interface. 

The following sections provide a description of our technique of automated memory 
abstraction that was originally published i n [32]. A s we have already said, its basic idea 
is to record only those values i n the memory that are actually used (abstracting away the 
random contents stored at unused memory locations). 

7.2 Memories To Be Abstracted 
In our approach, we view a memory as an i tem of the verified design wi th the interface 
depicted in F i g . 7.1. The interface consists of (possibly multiple) read and write ports. 
Each port is equipped wi th Enable, Address, Data, and Unit signals. W h e n the Enable 
signal is down, the value of the Data signal of a read port is undefined. W h e n dealing 
wi th a write port, no value is stored into the memory through this port . O n the other 
hand, when the Enable signal is up, the memory returns/stores data from/into the cell 
associated wi th the value of the Address signal. In the special case when mult iple ports are 
enabled for wr i t ing into the same memory cell, the result depends on the implementat ion 
of the memory. We support two variants: (i) either a priori t ized port is selected or (ii) an 
undefined (random) value is stored to the mul t ip ly addressed memory cell. 

The size of the addressed unit can be modified by the Unit signal. W h e n the size of the 
accessed unit is smaller than the size of the greatest addressable unit , the most significant 
bits of the Data signal are filled up wi th zeros. It is also assumed that the size of any 
addressable unit is divisible by the size of the least addressable unit , and thus for the Data 
signal it is sufficient to transfer the size of the addressed unit expressed as a mult iple of 
the least addressable unit only (instead of the actual number of bits of the uni t ) . F ina l ly , 
if the memory allows addressing of a single k ind of units only, then the Unit signal can be 
omitted. 

7.3 Abstraction of the Considered Memories 

Our abstraction preserves the memory interface, and hence concrete memories can be easily 
substituted wi th their abstract counterparts. We w i l l first describe the basic principle of our 
abstraction on memories w i th a single addressable unit only. A n extension of the approach 
for mult iple addressable units w i l l be discussed later. Moreover, we assume reading wi th no 
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delay and wr i t ing wi th a delay of one cycle. A n extension to other timings w i l l be described 
in Section 7.5. 

The abstract memory effectively remembers only the memory cells which have been 
accessed. Internally, the memory is implemented as a table consisting of some number 
d of couples of variables storing corresponding pairs of addresses and values (a, v). W h e n 
using bounded model checking ( B M C ) as the verification technique, the needed number d of 
address-value pairs can be easily determined from the depth k of B M C as the following holds 
d = k*(m + n) where m and n denote the number of read and write ports, respectively. For 
unbounded verification, the number d can be iteratively incremented unt i l it is sufficient. 
The incrementation is finite since the number of memory cells is finite. The memory also 
remembers which of the pairs are i n use by tracking the number r £ {0, . . . , d} of couples 
that were accessed (and hence the number of the rows of the table used so far). 

W h e n the memory is accessed for reading, the remembered address-value pairs ( a i , v\), 
(ar,vr) that are in use are searched first. If a locat ion ard that is being read has 

been accessed earlier, then the value Vi associated wi th the appropriate address = ard 
is s imply returned. O n the other hand, i f a locat ion that has never been accessed is being 
read, a corresponding pair is not found in the table, and a new couple (aw, vrd) is allocated. 
Its address part ard w i l l store the part icular address that is accessed while the value vrd 
is ini t ia l ized as unconstrained. However, the variable representing the value vrd associated 
wi th the accessed location ard is kept constant in the future (unless there occurs a write 
operation to the ard address). T h i s ensures that subsequent reads from ard re turn the same 
value. In the case of wri t ing, the address awr and value t^lVf tire both known. W h e n wri t ing 
to a location that has not been accessed yet, a new address-value pair (awr, vwr) is allocated 
i n order to memoize the given memory access. Otherwise, a value Vi associated w i t h the 
given address awr = ai is replaced by vwr. 

7.4 Dealing with Differently Sized Data 

To support different sizes of addressable data ( including reading/wri t ing data smaller than 
the contents of a single memory cell of the modeled memory), we split our abstract memory 
into a low-level memory model and a set of functions mapping accesses to ports of the 
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modeled memory to ports of the low-level memory. The idea of this approach is shown in 
F i g . 7.2 and further discussed below. 

The low-level memory consists of cells whose size equals the size of the least addressable 
unit of the modeled memory, and therefore, for low-level memory, the Unit signal can be 
omitted. In the low-level memory, values of units that are larger than the least addressable 
unit are stored on succeeding addresses. In order to allow reading/wri t ing the allowed 
addressable units ( including the greatest one) i n one cycle, the number of read and write 
ports of the low-level memory is appropriately increased. The resulting number of ports of 
the low-level memory is equal to m * n where m is the number of interface ports and n is 
the number of distinct addressable units. The latter can be expressed as the quotient of 
bit-widths of the greatest (wgau) and the least (wiau) addressable unit . In other words, for 
each port of the memory interface there are n corresponding ports of the low-level memory 
model. Therefore, we use double indices for the low-level memory ports in our further 
description. 

In particular, let enablei, datai, addressi, and uniti be values of signals of the port 
i of the memory interface, and let enablei,j, datai j , and addressij have the analogical 
meaning for the low-level memory port Then, the value of the enableij £ B signal 
can be computed as enablei A uniti > j where enablei G B and 1 < uniti < n. Th is 
means that the required number of low-level memory ports are activated only. Next , the 
value of addressij can be expressed as addressi + j — 1 for the l i t t le endian version of the 
memory and addressi +uniti — j for the big endian version, respectively. These expressions 
follow from the fact that larger units of the original memory are stored as mult iple smallest 
addressable units stored at succeeding addresses i n the low-level memory. 

Further, for transfers of data, separate mappings for read ports and write ports must 
defined. In the case of a write port, the data flow into the low-level memory, and the value 
of the dataij signal can be computed as slice(datai, uniti*wiau — 1, (uniti — 1) *u)iau) where 
slice is a function extracting the part of the first argument (on the bit level) that lies wi th in 
the range given by the second and th i rd arguments (with the bit indices being zero-based). 
Final ly , for a read port, for which data flow from the low-level memory, the value of the datai 
signal can be expressed as concat(ite(enableijn V -tenable^i, dataijn,0),ite(enable^2 V 
-^enablei^i, dataip, 0), daia^i) where concat is a bit concatenation and ite ("if-then-else") is 
the selection operator. Thus, the data value is composed from several ports of the low-level 
memory, and the most significant bits are zero-filled when the read unit is smaller than 
the greatest one. Note that according to the semantics of the Enable and Data signals 
(described i n Section 7.2), i n the case when enable^i is false (i.e., no unit is read), the value 
of the datai signal is undefined. 

7.5 Further Extensions of the Abstract Memory Model 

To broaden the range of memories that we can abstract, we further added support for 
more memory t iming options, i n part icular for the one-cycle-delay reading and the zero-
delay wr i t ing . The former can be achieved by s imply connecting a unit buffer to the data 
signal of the memory interface. For the latter case, a special attention must be pa id to the 
situation when both read and write operations over the same address are zero-delayed. In 
such a situation, it is required to append an addi t ional logic that ensures that wri t ten data 
are propagated wi th zero delay to a given read port. 

Moreover, for a pract ical deployment in correspondence checking, our model has also 
been extended by applying the shadowing technique described in [25]. In particular, during 
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correspondence checking, both models are executed i n a sequence. The shadowing technique 
deals w i th potential inconsistencies that can arise when both models read from the same 
unini t ia l ized memory cell—indeed, in this case, a random value is to be returned, but the 
same one i n both models. To ensure this when the shadowing is used, the return value of 
the read operation is obtained from the memory i n the design executed first whenever the 
value is not available in the second design. 

7.6 Implementation and Experiments 

The memory abstraction that we generate i n the above described way can be encoded in any 
language for which the user can provide templates specifying (i) how to express declarations 
of state and nonstate variables, (ii) how to encode proposit ional logic expressions over state 
and nonstate variables, (iii) and how to define in i t i a l and next states of state variables. We 
currently developed these templates for the Cadence S M V language [87]. 

In order to prove usefulness of the described abstraction technique, we used our abstract 
memory generator wi th in the approach proposed i n [31] (further described i n Chapter 8) for 
checking correspondence between the I S A and R T L level descriptions of microprocessors, 
which we applied to several embedded microprocessors. Briefly, i n the approach of [31], the 
I S A specification and V H D L model of a processor are automatical ly translated into behav
ioral models described i n the language of a model checker (the Cadence S M V language in 
our case). These models are then equipped wi th an environment model, including archi
tectural registers and memories, which can be abstracted using the technique proposed in 
this chapter. A l l these models are composed together, and B M C is used to check whether 
both of the processor models start w i t h the same state of their environment ( including the 
same instruct ion to be executed), their environments equal after the execution too. A n 
experimental version of the described approach was integrated into the Codasip I D E [1] 
processor development framework. 

Our approach was tested on the following processors: Tiny CPU is a smal l 8-bit test 
processor w i th 4 general-purpose registers and 3 instructions that we developed mainly 
for testing new verification approaches. SPP8 is an 8-bit ipcore wi th 16 general-purpose 
registers and a R I S C instruct ion set consisting of 9 instructions. SPP16 is a 16-bit variant of 
the previous processor w i th a more complex memory model al lowing one, e.g., to load/store 
both bytes and words f rom/to the memory. Codea2 is a 16-bit processor w i th 4 pipeline 
stages par t ia l ly based on the M S P 4 3 0 microcontroller developed by Texas Instruments [ ]. 
The processor is dedicated for signal processing applications. It is equipped wi th 16 general-
purpose registers, 15 special registers, a flag register, and an instruction set consisting of 
41 instructions, where each may use up to 4 available addressing modes. Our experiments 
were evaluated for two modifications of the processor—using memory wi th and without 
mult iple addressable units. 

Our experiments were run on a P C w i t h Intel Core i7-3770K @3.50GHz and 32 G B 
R A M using Cadence S M V (the bu i ld from 05-25-11) and GlueMin i sa t (version 2.2.5) [101] 
as an external S A T solver. The results can be seen in Table 7.1. The first three columns 
give a name of verified processor, a size of its register file, and a size of the memory. The 
next columns give the results obtained from the verification—in particular, the average time 
needed for verification of a single instruct ion wi th the abstraction applied or not-applied 
in different combinations on the register file and the memory. In the first case, bo th the 
register file and the memory were modeled expl ic i t ly which, for larger designs such as 
Codea2, led to out-of-memory errors ("o.o.m."). Next , the abstraction was only used for 
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Table 7.1: Verification results. 

Processor Reg. F i le Memory Exp l i c i t A b s . A b s . A l l 

Size Size Memory Reg. F i le M e m o r y A b s . 

T i n y C P U 4 x 8bit 0.151 s 0.41 s - -

S P P 8 16 x 8bit 256 x 8bit 5.06 s 1.11 s 3.66 s 0.452 s 

S P P 1 6 16 x 16bit 2048 x 8bit 266 s 92.2 s 1.23 s 0.822 s 

Codea2_single 32 x 16bit 32768 x 16bit o.o.m. o.o.m. 4.30 s 4.44 s 

Codea2_mul t 32 x 16bit 65536 x 8bit o.o.m. o.o.m. 4.75 s 4.89 s 

single Single addressable unit used o.o.m. Out of memory error occurred 

mult Multiple addressable units used 

register files. Even though better results were obtained this way for the S P P 8 and S P P 1 6 
processor designs, the verification s t i l l ran out of system resources for Codea2 because of 
the expl ic i t ly modeled memory. In the last two cases when either only memories or both 
memories and register files of the verified processors were abstracted, verification was able 
to finish even for larger designs. We explain the 10 % deterioration between verification 
times for the Codea2 processor w i th and without presence of mult iple addressable units by 
the complexity of the addi t ional logic. 

Final ly , we note that for very smal l memories and memories w i th many possible accesses 
(caused by, e.g., a higher verification depth during B M C ) , the overhead brought by the ab
straction can result in worse verification times as can be seen in the case of the register file 
of the T i n y C P U and Codea2 processors. Moreover, for S P P 8 , where only a few instruc
tions directly access the memory, and thus only a few instructions influence the average 
verification times, the overhead caused by the abstraction introduces worse than expected 
average verification t ime when abstracting the memory only. In practice, we deal w i t h this 
problem by defining heuristics that computes whether or not it is better to use the explicit 
or the abstract description of a given memory. 

7.7 Conclusion 

We have presented an approach of memory abstraction that utilizes the fact that formal 
verification often suffices w i th exploring a l imi ted number of accesses to the available mem
ory, and it is thus possible to reduce the number of values that are to be recorded to those 
that are actually stored in the memory. O u r approach allows one to abstract memories 
wi th various advanced features, such as different kinds of endianness, read and write de
lays, mult iple read and write ports, and different sizes of addressable units. The technique 
is fully automated and suitable for usage wi th in processor development frameworks where 
it can br ing a significant improvement i n verification times. 
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Chapter 8 

RTL- ISA Correspondence 
Checking 

In [31], we proposed an automated approach buil t on a formal basis and intended to be 
used wi th in an automated microprocessor design framework for checking correspondence 
between an R T L implementat ion of a microprocessor and a description of its instruction 
set architecture ( ISA) . 

Our approach is original i n its very high level of automation: the only user inputs are 
an R T L implementation, an I S A description (possibly complemented by a specification of 
assumed restrictions on the possible values of instruct ion operands), and a t ime l imi t for 
the verification. 

The main idea behind our approach is to use bounded model checking ( B M C ) to compare 
the outputs produced by automatical ly derived R T L and I S A models of a given processor 
for a l l possible instructions and their inputs. In order to guarantee that some useful result 
is obtained in the given t ime l imi t , each instruct ion is checked i n parallel for several bit-
widths of its input, and the m a x i m u m bi t -wid th for which a result is obtained i n the given 
t ime l imi t is used. 

Compared to the techniques proposed, e.g., i n [27, 69], the approach presented in this 
chapter does not provide full formal verification since (i) it uses B M C , (ii) it does not 
consider any mutual influence among the instructions, and (iii) it may l imi t the b i t -wid th 
of input data i n some cases. Hence, it may under-approximate the behavior of the verified 
designs. However, our experience shows that the approach is complementary to functional 
verification, and due to a different way of exploring the state space of the verified design, 
it can find bugs not found by functional verification. 

A n experimental version of the approach has been implemented wi th in the Codasip 
I D E [1] and successfully tested i n several case studies. The experiments included a non-
t r iv ia l single-pipelined processor i n which, dur ing its development, our approach revealed 
three previously unknown bugs confirmed by the developers. The experiments have shown 
that almost every instruct ion of a single-pipelined processor (of a form commonly used in 
light-weight embedded devices) is verified wi th in seconds. Shortened input data were used 
only i n a few cases, typical ly for instructions such as mul t ip l ica t ion (and even i n such cases, 
one can argue that most typ ica l bugs would anyway manifest even for shortened input) . 

Section 8.1 of this chapter provides a background on the expected design flow for which 
our approach is opt imized. The ma in idea of the proposed method is then described in 
Section 8.2. Sections 8.3, 8.4, 8.5, and 8.6 provide more details about the way we model 
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processors and about the actual verification process. Potent ia l parallel ization options of 
the proposed method are given in Section 8.7. Experiments are discussed in Section 8.8. 
Section 8.9 concludes the chapter. 

8.1 Background: Expected Design Flow 

Our work was originally motivated by a request to provide some support for verification on 
a formal basis for the Codasip I D E [I] described i n Section 3.3.2, but the proposed method 
can be used wi th in other microprocessor development tool chains too i f they are able to 
provide a l l needed information about the processor (as discussed below). 

Our method uses both the I A and C A descriptions given in C o d A L A D L to automat
ical ly perform conformance checking between them. F r o m the instruction-accurate model, 
we use: (i) the set of a l l instructions, (ii) the binary representation of each instruct ion 
and its format (i.e., information about which bits represent the operator, operands, and 
immediate data), and (iii) the semantics of the instructions. The above can be obtained by 
automatical ly generated extractor of instruct ion semantics for the target compiler [64, 130]. 
F rom the low-level, cycle-accurate model, we use: (iv) the types of memories and register 
files together w i th the number of read and write ports and (v) the identification of the 
write-back pipeline stage. Furthermore, in the case of processors w i th mult icycle instruc
tions, we need to know the m a x i m u m number of cycles each instruction needs to complete 
its execution. 

For our approach, as stated above, it is crucial to know the set of instructions to be 
checked as well as their semantics. However, there is no notion of instructions i n the C o d A L 
language as can be seen in F i g . 8.1. Nevertheless, the assembly syntax description can be 
used instead. This syntax is based on a context-free grammar generating a finite language 
(ensured by the C o d A L compiler) . Hence, if a l l words of the language are systematically 
generated, a list of instructions is obtained. T h i s extraction is supported by Codasip as 
a part of its automatic generator of a C compiler, which needs to know every instruct ion 
included i n the instruction set of the modeled processor. Codasip also extracts a C-language 
description of the behavior of each instruct ion and converts it to a static single assignment 
(SSA) format w i th a few simple optimizations. 

8.2 The Main Idea of the Proposed RTL-ISA Correspon
dence Checking 

We concentrate on checking a correspondence between the behavior of an R T L design 
of a microprocessor and its I S A description on the level of an independent execution of 
each instruction. B y the independent execution, we mean the execution of an instruction 
surrounded by no-operation instructions (NOP). Hence, our approach does not a im at finding 
errors related to the use of pipelines, branch prediction, caches, etc. We, however, believe 
that such an approach is s t i l l useful, especially when combined w i t h other techniques (such 
as the one discussed i n Chapter 9). 

The proposed method uses the bounded model checking as an automated reasoning 
engine. A typica l approach to use the (bounded) model checking is to encode the spec
ification ( ISA i n our case) as a temporal formula using the specification language of the 
chosen model checker. Unfortunately, for complex instructions, this is a rather complicated 
task. Therefore, we use a more straightforward translat ion of the I S A specification into 
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Figure 8.1 A description of the add instruct ion i n C o d A L . 

1 element r e g represents r e g s { 
2 use imm4 as num; 
3 assembler { " r " ~ num }; 
4 binary { num }; 
5 return { num; }; 
6 } 
7 element add { 
8 assembler { "ADD" }; 
9 binary { OP_ADD:4 }; 

10 return { 0P_ADD; }; 
11 } 
12 set opc = add, /* ... */; 
13 element i n s t r _ a l u { 
14 use r e g as { d s t , sA, sB }; 
15 use opc; 
16 assembler { opc d s t "," sA "," sB }; 
17 binary { opc d s t sA sB }; 
18 semantics { 
19 switch (opc) { 
2 0 case OP_ADD: 
21 r e g s [ d s t ] = r e g s [ s A ] + r e g s f s B ] ; 
22 c f = f u n c _ a d d _ c a r r y ( r e g s [ s A ] , r e g s [ s B ] ) ; 
2 3 break; 
24 / * . . . * / 
25 } 
2 6 }; 
27 } 

a behavioral model described i n the modeling (not specification) language of the model 
checker. We thus generate two behavioral models: namely, an R T L and I S A model of the 
given processor. These models are then equipped wi th an environment model, including 
architectural registers, memories, the program counter, and I / O ports. A l l these models are 
composed together, and B M C is used to check whether both of the processor models start 
w i th the same state of their environment ( including the same instruct ion to be executed), 
their environments equal after the execution too. For this purpose, we have implemented 
an automated generator of models from I S A descriptions and translator of V H D L to R T L 
models, created abstract models of memories and register files, and a top-level model con
trol l ing the I S A , R T L , and environment models as well as comparing their execution. 

Our approach uses similar principles as [27], but since we are interested in verification 
of a single instruct ion only, we can consider the reset state of the R T L model as a starting 
point. Th is also eliminates the need to make the symbolic execution reach in a potential ly 
costly way the corresponding starting I S A state. The top-level control of verifying a single 
instruction can be summarized as follows: 

1. Initialize the environment of the given R T L and I S A model. 

2. Symbol ical ly execute one cycle of the I S A model (covering a l l possible cases that may 
arise). 

3. S ta l l the I S A model and reset the R T L model to ensure that it is i n a stable state. 
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4. Symbol ical ly execute the R T L model for the needed number of cycles (depending on 
the write-back pipeline stage or on the number of cycles of a mult icycle instruction). 

5. S ta l l the R T L model to ensure that no more changes i n architectural resources are 
made. 

6. Final ly , check whether the environments of the R T L and I S A model are equal. 

In the first step of the ini t ia l izat ion of the environment, the program memory is filled w i th 
an instruct ion to be verified, other architectural resources are left random to simulate a l l 
possible inputs for the instruction. If the environments of the R T L and I S A models are 
found different in Step 6, an error i n the implementat ion of the instruct ion in i t ia l ly set in 
the program memory was found. In the next section, a l l these steps are described in more 
details. 

8.3 Generation of the ISA Model 

To derive the I S A model of a processor, we use the output of the Codasip semantics extrac
tor, which consists of the instruction syntax and the semantics generated for each possible 
combination of operands of the instruction. The way these combinations are encoded wi th in 
an instruct ion word is called the instruction format. The description of the syntax includes 
the name of the instruct ion and its unique assembler and binary representation. The binary 
representation divides the instruct ion word into constant and operand parts. The constant 
parts are usually used to express the opcode and addressing mode, while the operand parts 
mark the posit ion of the code of operands w i th in an instruction word. The semantics 
description uses an SSA-based representation. 

In F i g . 8.2, the information extracted for the add instruct ion is shown. This instruction 
works w i t h three 16-bit register operands: it adds the last two (regl, reg2) and stores the 
result into the first one (regO). Based on the result of the addit ion, the carry flag (cf) 
is set. The regop(rf, idx) operation used on lines 4, 5, 7 represents reading/wri t ing of 
a value stored at the index idx w i th in the register file r f . The reg(r, 0) operation used on 
line 9 means reading/wri t ing from/to the register r (not i n a register file). The iN operator 
where N stands for a positive integer is a b i t -wid th specifier. The operation add represents 
the addi t ion itself, while carry_add computes the value of the carry after the addit ion. 
A u x i l i a r y variables introduced due to usage the SSA-fo rm can be recognized by their % 
prefix. W h e n generating the I S A model, we translate the output described above into the 
Cadence S M V language [ 7]. This formal modeling language is used mainly because of its 
wide support i n various model checking tools. 

The I S A model is obtained by translating the semantics of each format of each instruc
t ion separately. The obtained translations are used as different branches of the I S A model. 
The branch to be executed is chosen according to the contents of the so-called fetch vector 
that is added to the I S A model since a description of the fetch stage is not included in the 
output of the semantics extractor. The value of this vector is ini t ia l ized according to the 
instruction format (line 12 i n F i g . 8.2) by the top-level model discussed below. 

The translat ion of the part icular instruct ion formats relies on the interface of the chosen 
model of architectural resources. We, i n particular, represent single registers as binary 
vectors w i th signals we, d, and q i n their interface. These signals have the same meaning 
as those used in a D-la tch . Similarly, memories and register files w i th m read and n write 
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Figure 8.2 The output from the Codasip semantics extractor for the add instruction. 

1 /* Name */ 
2 i n s t r i n s t r a d d r e g r e g r e g , 
3 /* S e m a n t i c s */ 
4 %tmpO = ±16 r e g o p ( r e g s , r e g l ) ; 
5 % t m p l = ±16 r e g o p ( r e g s , r e g 2 ) ; 
6 %tmp2 = add(%tmpO, % t m p l ) ; 
7 r e g o p ( r e g s , regO) = %tmp2; 
8 %tmp3 = carry_add(%tmpO, % t m p l ) ; 
9 r e g ( c f , 0) = %tmp3;, 

10 /* S y n t a x */ 
11 "ADD" regO "," r e g l "," r e g 2 , 
12 O b O l O l r e g 0 [ 3 , 0 ] r e g l [ 3 , 0 ] r e g 2 [ 3 , 0 ] 

ports are mapped to binary matrices having an interface wi th signals weo, ..., wem, wao, 
..., wam, d0, ..., d mi fSQ, ..., ren, vciQ, ..., ran, qo, ..., qn. 

The actual t ranslat ion of the semantics of the part icular instruct ion formats is then 
based on rewri t ing each operation i n the semantics description into its S M V implementation. 
For that, we buil t a l ibrary of S M V implementations of a l l the operations that may appear 
in the output of the Codas ip semantics extractor. Some of them are natively supported by 
S M V (i.e., they map to the certain S M V operation), some are replaced by mult iple S M V 
operations. For an i l lustrat ion of the translation, see F i g . 8.3 which shows the result of 
translating the add instruction. Note, e.g., the extraction of operands from the fetch vector 
(lines 12-14 i n F i g . 8.3) and the translation of the carry_add operation (line 8 i n F i g . 8.2) 
using the operations plus and bit extraction (lines 25, 26 in F i g . 8.3). 

8.4 The Top-Level Model 

The top-level model controls ini t ia l izat ion, symbolic execution, and stal l ing of the I S A and 
R T L models and their environment. For that, three special variables are used: a clock 
counter and two halt signals. The clock counter increments its value wi th every cycle of 
the symbolic execution of I S A and R T L models. It is used for detecting the end of the 
verification process. The I S A and R T L halt signals are connected to every resource of the 
I S A and R T L models, respectively, and are used to signal them to keep their values, hence 
to stal l the whole I S A and R T L models. 

In the first step of the verification of one of the instruct ion formats (to verify a l l formats, 
the verification is run for each format separately), the program memory of the R T L model 
is ini t ia l ized such that upon the first read access, the same fetch vector that was assigned to 
the I S A model and that describes the instruction format chosen to be verified is read from 
the program memory. Further read accesses, even from the same address, w i l l produce the 
fetch vector representing the NOP instruction. This behavior ensures that the processor w i l l 
execute the verified instruct ion only. The fetch vector is defined bit per bit according to 
the binary coding of the instruction (cf. line 12 in F i g . 8.2) in the following way: each bit 
corresponding to a constant (operation code or addressing mode) is set to the value of that 
constant, other bits are left random to simulate a l l possible inputs. Other architectural 
resources such as data memories and register files are ini t ia l ized to random values which, 
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Figure 8.3 Instruction semantics translated to S M V . 

1 — V a r i a n t i n s t r a d d r e g r e g r e g  
2 — D e f i n i t i o n s 
3 regO : a r r a y 3..0 of boolean; 
4 r e g l : a r r a y 3..0 of boolean-
5 r e g 2 : a r r a y 3..0 of boolean; 
6 _tmp0 : a r r a y 15..0 o f boolean; 
7 _ t m p l : a r r a y 15..0 o f boolean; 
8 _tmp2 : a r r a y 15..0 o f boolean; 
9 _tmp3 : boolean; 

10 _ t r _ t m p 0 : a r r a y 16. .0 o f boolean; 
11 — T r a n s i t i o n s 
12 r e g O [ 3 . . 0] := f e t c h [ 1 1 . . 8 ] ; 
13 r e g l [ 3 . . 0] := f e t c h [ 7 . . 4 ] ; 
14 r e g 2 [ 3 . . 0] := f e t c h [ 3 . . 0 ] ; 
15 r e g s _ r e 0 := 1; 
16 r e g s _ r a 0 := r e g l ; 
17 _tmp0 := r e g s _ q 0 ; 
18 r e g s _ r e l := 1; 
19 r e g s _ r a l := r e g 2 ; 
20 _ t m p l := r e g s _ q l ; 
21 _tmp2 := (_tmp0 + _ t m p l ) ; 
22 r e g s _ w e 0 := 1; 
23 r e g s _ w a 0 := regO; 
24 r e g s _ d 0 := _tmp2; 
25 _ t r _ t m p 0 := (_tmp0 + _ t m p l ) ; 
26 _tmp3 := _ t r _ t m p 0 [ 1 6 ] ; 
27 c f _ w e := i ; 
28 c f _ d := _tmp3; 
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in the in i t i a l state only, are shared by the I S A and R T L models to ensure that both models 
have the same inputs. 

In the next step, the I S A model is symbolical ly executed for a single clock cycle. Since 
the I S A model of an instruct ion semantics is encoded as a function of instruct ion inputs, 
which are known after the ini t ia l izat ion step, a single clock cycle is needed for architectural 
resources of the I S A model to store new values. The I S A model and its architectural 
resources are then stalled using the I S A halt signal, and the R T L model is reset to its 
in i t i a l stable state. 

Next , the R T L model is symbolical ly executed for twb +1 cycles where twb represents the 
write-back stage of the pipeline (or the number of cycles of a multi-cycle instruction to get 
to the write-back stage), and the addi t ional clock cycle is used for architectural resources 
to store new values. The R T L model w i th its architectural resources are then stalled using 
the R T L halt signal to ensure that no more changes happen on the R T L level. 

Final ly , the results of the symbolic executions of the I S A and R T L models are checked 
for correspondence. Since the behavior of some instructions is defined only for a specific 
range of values of the operands, the correspondence is not just identity. In particular, the 
developers must expl ic i t ly specify which restrictions of the possible operand values they 
assume in a form of assertions (e.g., by some pragma i n the I A model) . The property 
expressing the required correspondence is then an invariant of the following form: 

{elk = twb + 2) ( / \ a f\(nsA = rRTL)) 
a£A r£R 

where elk is the clock counter, A denotes the set of restrictions on operands, R is a set of 
architectural resources, and TISA {TRTL) represents a value of architectural resource r of 
the I S A model (the R T L model), respectively. The t ime twb + 2 represents the overall time 
for symbolic executions of I S A and R T L models. 

8.5 Modeling Large Architectural Resources 

W h i l e single architectural registers or smal l memories can be modeled direct ly as binary 
vectors or matrices, modeling large memories or register files i n such a way could lead to 
a state space explosion during the verification. Therefore, we use an abstraction technique 
described in Chapter 7. The technique exploits the fact that the number of values stored 
in memory cells that must be remembered is l imi ted wrt the depth of the analyzed B M C 
problem. The interface of the abstracted memory is left the same, but internally, an access 
table is used. Every E ICC6SS , 1.6., cl wr i te / read to / f rom the memory, is recorded in the form 
of an address-value pa i r 1 . If the memory is accessed again, its access table is searched first. 
If there exists a record wi th the given address, a value that corresponds to the address 
is returned/modified. Otherwise, a new record is created. A s it is shown i n Chapter 7, 
the abstraction could sometimes use more bits than the actual implementation. Hence, 
a decision whether or not to use the abstraction is done based on the knowledge of the 
number of state variables that are to be used i n each of the cases. 

1A similar approach is applied when the processor uses I / O ports and buses. 
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8.6 Data-Domain Reduction 

Another technique that we use to cope wi th the state space explosion problem is data-
domain reduction, which we apply to reduce the influence of the many different random 
values stored in data memories, register files, and immediate operands of the fetch vector 
on a rapid increase i n the size of the state space. The technique sacrifices soundness in 
favor of speed i n which a potential flaw is discovered. It under-approximates the b i t -wid th 
of the architectural resources by setting selected bits permanently to zero or one. 

We use two types of data-domain reductions each of which comes from stressing different 
aspects of the operations over bit-vectors: The first one concentrates on flaws in incorrectly 
implemented basic effects of operations (including, e.g., situations when the implementat ion 
performs a completely different operation than intended, it incorrectly loads operands from 
a fetch vector, and the like). The second one then concentrates on flaws in instruct ion 
side effects (e.g., i n setting the carry-flag after a successful completion of an ari thmetic 
operation). We implement the data-domain reductions by preserving high and low values of 
operands only—we cal l these reductions as high and low reductions, respectively. The high 
reduction transforms a l l bit-vectors being used as operands such that the least significant 
bits are set to one, while the low reduction sets the most significant bits to zero. The idea 
behind this is that a flaw in the implementat ion of the basic effect of an operation w i l l be 
revealed even for smal l values of operands, and a flaw i n the implementat ion of side effects 
w i l l be revealed by high values of operands. The ratio of the number of random bits (i.e., 
those whose randomness is preserved) and reduced bits (set to zero or one) is defined by 
a reduction factor. For example, the factor of 1/4 of the low reduction means that every 
bit-vector which is used as an input of an instruct ion is transformed such that 3/4 of most 
significant bits of the bit-vector are set to zero and 1 / 4 of the least significant bits are left 
random. 

We apply our data-domain reduction on output data from data memories, data from 
register files, as well as immediate operands of the fetch vector. We do not consider addresses 
because the b i t -wid th of addresses has an insignificant influence on the size of the state space 
since we cope w i t h it using abstracted memories. We implement the reduction technique 
such that a l l outputs of data memories and register files are masked wi th a predefined bit-
vector representing the required data-domain reduction. W h e n using the low reduction, 
the output from a memory or a register file is A N D - m a s k e d wi th a bit-vector w i th zero's 
in the most significant bits. O n the other hand, when using the high reduction, the output 
is OR-masked wi th a bit-vector w i th ones i n the least significant bits. Similarly, the same 
masking is performed on each immediate operand of the fetch vector resulting i n the so-
called reduced fetch vector. 

8.7 Use of B M C and its Parallelization 

For the actual verification of the correspondence property, we use the abi l i ty of the S M V 
model checker to convert a given verification problem to a B M C problem of a specified depth. 
In particular, in our case, the depth of the problem is twb + 2 which is sufficient because 
no further changes are made to the architectural resources after that t ime. The problem 
is represented i n C N F using the D I M A C S format and exported to be solved using a S A T 
solver. It is possible to map the C N F terms back to variables of the I S A and R T L models, 
thus i n the case of a flawed R T L design, the encountered problem can be presented to the 
developers i n terms of the original variables. 

55 



Table 8.1: Verification results. 

Processor / N o . of No. of instr. Proved Par t ia l ly Par t . proved Par t . proved Par t . proved A v g . 

t ime l imi t instructions formats no reduction proved 1/2 reduction 1/4 reduction 1/8 reduction time 

high low high low high low 

S P P 8 / 10 s 9 9 9 - - - 0.43 s 

S P P 1 6 / 10 s 11 11 11 - - - 0.89 s 

Codea2 / 850 s 41 319 213 106 49 77 43 28 14 1 2.50 s 

additive 5 73 46 27 19 22 4 5 4 - 2.51 s 

mult ipl icat ive 3 54 3 51 14 39 33 12 4 - 2.60 s 

logic 8 96 89 7 7 7 - - - - 2.47 s 

move 9 50 49 1 1 1 - - - - 2.44 s 

jump 7 13 13 - - - - - - - 2.33 s 

memory 5 12 10 2 2 2 - - - - 2.51 s 

other 4 21 3 18 6 6 6 11 6 1 2.57 s 

Codea2 / 2400 s 41 319 277 42 24 42 18 - - - 3.45 s 

additive 5 73 73 - - - - - - - 2.84 s 

mult ipl icat ive 3 54 12 42 24 42 18 - - - 6.69 s 

logic 8 96 96 - - - - - - - 2.72 s 

move 9 50 50 - - - - - - - 2.82 s 

jump 7 13 13 - - - - - - - 2.71 s 

memory 5 12 12 - - - - - - - 2.85 s 

other 4 21 21 - - - - - - - 2.80 s 



In fact, we do not generate a single B M C problem for each format of each instruction, 
but seven of them to be solved i n parallel . These seven problems differ in the data-domain 
reduction used, i n particular: no reduction, 1/2 low and high reductions, 1/4 low and high 
reductions, and 1/8 low and high reductions. A time l imi t is then applied for solving each 
of these problems, and the result of the lowest reduction for which the appropriate problem 
is solved i n t ime is used. The t ime l imi t is derived from the overall t ime l imi t for the 
verification of the whole processor (given by the user) d ivided by the number of a l l formats 
of a l l instructions. Th is l imi ta t ion ensures that the whole verification process w i l l terminate 
wi th in the specified time. 

8.8 Experiments 

We have implemented the above described method i n a prototype tool and tested it on 
the processors which we have described i n Section 7.6 of Chapter 7. Our experiments were 
run on a P C wi th Intel Core i7-3770K @3.50GHz and 16 G B R A M using Cadence S M V 
(build from 05-25-11) and GlueMin i sa t (version 2.2.5) [101] as an external S A T solver. 
The results can be seen i n Table 8.1. The first three columns give the processor being 
verified, the number of instructions i n its instruct ion set, and the number of formats of 
al l instructions (IFs), which gives the number of the (parallelized) B M C problems to be 
solved. The next columns give the results obtained from the verification: the number of IFs 
which have been successfully verified wi th no data-reduction, the number of IFs which have 
been successfully verified wi th at least some data-reduction, and numbers of IFs successfully 
verified for the different concrete data-reductions. F ina l ly , the column " A v g . t ime" denotes 
the average t ime needed for verification of a single instruction format. 

The t ime l imi t for verification was set to 10 s for S P P 8 and S P P 1 6 . For S P P 1 6 , the l imi t 
is close to the t ime that is needed for generation of the B M C problems to be solved (i.e., 
the t ime needed for the semantics extraction together w i th the translation to S M V and the 
subsequent derivation of the B M C problems i n D I M A C S ) , which took on average 0.7 s per 
instruction format. The average t ime needed for S A T solving was 0.19 s per instruction 
format. Push ing the t ime l imi t below this bound would lead to unusable results. 

To illustrate the use of the verification t ime l imi t i n our approach, we provide exper
iments w i t h Codea2 for two different t ime l imits : 850 s and 2400 s. The former is close 
to the bound described above (most of the t ime is taken by the semantics extraction, and 
the S M V and D I M A C S translations: 2.21 s per instruct ion format on average). The latter 
l imi t leaves more t ime for S A T solving (0.87 s in contrast of 0.29 s per instruct ion format on 
average). A s can be observed, w i th more t ime dedicated to S A T solving, more instruct ion 
formats get verified w i t h a less aggressive reduction factor. Further, one can notice that 
wi th in the smaller t ime l imi t of 850 s, every instruct ion format was proved at least for the 
reduction factor of 1/8 (for a 16-bit processor, this means that 2 bits of the register file 
and memory were left random). W i t h i n the t ime l imi t of 1000 s (not listed i n the table), 
each instruct ion format was verified at least for the 1/4 reduction. F ina l ly , mul t ip l ica t ion 
instructions (42 instruction formats) were the only ones that were too complex to be proved 
fully even wi th in the extended time l imi t of 2400 s. 

Next , to demonstrate an abi l i ty of the proposed data-domain reductions to rapidly 
detect errors, we also ran a series of experiments on some flawed designs of the Codea2 
microprocessor. The results are shown in Table 8.2. The first column denotes the type of 
flaw, while the next columns provide the average t ime (in seconds) per instruct ion format 
needed to detect a flaw of the given type wi th a part icular level of reduction. 
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Table 8.2: Detect ion of flaws using data-domain reductions. 

Flaw type 1/2 1/4 1/8 

none high low high low high low 

add. cf 2.89 2.73 2.67 2.66 2.62 2.62 2.59 

mult, high 3.36 3.15 - 3.03 - 2.97 -

load byte 2.91 - 2.74 - 2.30 - 2.25 

The first type of flaws (named "add. cf") represents errors that we actually found during 
verification of a development version of Codea2. A l l of them were confirmed as real errors 
by the processor development team and subsequently corrected. The errors were discovered 
in three instructions. E a c h of them was related to setting the carry flag during ari thmetic 
instructions. A l though one could expect that flaws related to the carry flag should be 
detected only when no reduction or the high reduction is used, in our case, they were 
detected even wi th the low reduction. Th i s is due to the different ways how the verified 
I S A and R T L models ini t ial ize the value of the carry flag—in the R T L model, it is always 
nullified, while the I S A model leaves it i n the previous state. 

The further two types of flaws ("mult, h igh" and "load byte") were artificially injected 
into the design. However, we tr ied to inject errors that are likely to appear during processor 
development. In the first case ("mult, high"), the most significant bits of the result of 
mul t ip l icat ion are wrongly propagated (some are set to zero). In this case, the error can be 
detected wi th the high or no reduction only. Us ing the high reduction is by approximately 
10 % faster than i n the case wi th no reduction. In the last case ("load byte"), a wrong AND-
mask (OxF instead of OxFF) is applied on the value fetched from a data memory. Since the 
bit-mask affects the least significant bits only, the error is detected only when the low version 
of the data-domain reduction is used. The speed-up is comparable to the case described 
above. Moreover, the described speed-up can, i n fact, be also seen during verification of 
flawless instruct ion formats. Th is produces an improvement in the overall verification time 
in the order of minutes for microprocessors of size comparable to Codea2, and therefore we 
can conclude that verification wi th data-domain reductions can be advantageously used to 
quickly scan a design for presence of errors. 

8.9 Conclusion 

In this chapter, we have proposed a method of checking correspondence between the I S A and 
R T L description of a microprocessor through B M C . Despite its formal roots, the approach 
does not provide full formal verification since it checks each instruct ion i n isolation and also 
possibly l imits the b i t -wid th of the data being manipulated. However, as confirmed by our 
experimental results, the approach can be s t i l l quite useful i n that it can find real errors not 
found by functional verification (due to the different ways these approaches exercise the state 
space of the verified systems). Moreover, the approach is almost fully automated, hence not 
requiring any addi t ional efforts from the developers (apart from possibly describing their 
assumptions about l imi ted values of instruction arguments). Furthermore, the approach 
allows for an easy control of the verification t ime and for u t i l iz ing parallel ization i n order 
to increase usefulness of the results that can be obtained i n the given time. 
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A potential future work may include adding support for designs wi th mult iple pipelines. 
Another considerable topic is also an experimental evaluation of sui tabi l i ty of another back-
end verification procedures (e.g., S M T solving instead of S A T ) and representations wi th 
which these procedures work (e.g., and-inverter graph format [15] vs. D I M A C S ) . F ina l ly , 
one can also uti l ize recent advances in model-checking techniques that are not based on 
B M C , such as I C 3 / P D R [18, 45], and use them for adding better support for multi-cycle 
instructions. 
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Chapter 9 

Analysis of Pipeline Hazards 

In this chapter, we present an automated approach that combines static analysis of data 
paths, S M T solving, and formal verification of parametric systems i n order to discover flaws 
caused by improper ly handled data and control hazards. The chapter unifies and better 
formalizes our previous works on read-after-write [34, 35], write-after-read, and write-after-
write hazards [36, 2 '] and also adds support to handle control hazards. The approach 
has been implemented in a tool called Hades using which we have obtained promising 
experimental results. The contents of the chapter is currently under submission to a journal . 

P l a n of the Chapter Section 9.1 defines the needed notions. In Section 9.2, we sketch 
the main idea of the proposed approach. Sections 9.3 and 9.4 discuss pre-processing tasks 
that are needed before the core steps of our verification approach are applied. These core 
steps are then described i n Section 9.5. Section 9.6 presents an experimental evaluation of 
the proposed approach. F ina l ly , Section 9.7 concludes the chapter. 

9.1 Preliminaries 

We now introduce various basic notions that we w i l l bu i ld on i n the rest of the chapter. 

9.1.1 Processor Structure Graphs 

In what follows, we expect a processor to be described i n the form of a so-called processor 
structure graph ( P S G ) which can be represented by a tuple G = (V, E, s,t,u). Here, V is 
a finite set that is the union Vs U Vf of a set Vs of storages and a set Vf of Boolean circuits, 
Vs f l Vf = 0. We distinguish two types of storages: namely, architectural storages Va and 
pipeline registers Vp such that Vs = Va U Vp and Va n Vp = 0. We expect a l l storages to 
have a unit write and zero read delay. Longer access times (e.g., for memory ports) can 
be modeled by introducing sequentially connected registers emulating the required delay. 
Boolean circuits represent common combinational logic circuits. For the rest of the chapter, 
it is sufficient to distinguish these circuits into multiplexers Vmx and a l l other circuits Vg, 
referred to as generic circuits further on. Hence, we let Vf = Vmx U Vg while requiring 

vmx n vg = 0. 
For registers, we use a well-known notat ion to characterize their connections: namely, 

we use d to denote the data-in, q data-out, r s t reset, and en write-enable connections. For 
multiplexers, we denote by sel the inbound connection that is the selector which selects 
one of the input cases Cj to be transferred from the input to the output of the multiplexer, 
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which is again denoted as q. We denote input connections of generic Boolean circuits as 
generic inputs aj. Let T = {d, q, rst, en, sel} U {aj, Cj | i G N} be the set of a l l connection 
types. 

Next , we use E to denote a finite set of transfer edges. Note that we do not define the 
set of edges as E C V x V since we sometimes need more edges between two nodes. Instead, 
we s imply require that E is a finite set of some abstract edges, and we assign each edge 
wi th its source, target, and type. Namely, we use s : E —>• V x T to assign to each edge its 
source vertex and its connection type, and t : E —>• V x T to assign to each edge its target 
vertex and its type of connection. 

The sets V and E and the functions s and t must fulfil the following criteria: 

• For each storage vs G Vs, there is exactly one inbound data-in edge G E such that 
t(ed) = (vs, d). 

• For each storage vs G Vs, there are arbi t rar i ly many outbound data-out edges e* G E 
such that s(el

q) = (vs, q) where 0 < i < n for some n G N. 

• For each storage vs G Vs, there is exactly one inbound clear edge erst G E, also 
denoted as the synchronous reset edge, such that t(erst) = (vs,rst). 

• For each storage vs G Vs, there is exactly one inbound enable edge een G E such that 
t(een) = (vs,en). 

• For each circuit vg G Vg implementing a Boolean function g(ao,... , a n _ i ) , there is 
exactly one inbound edge for each argument of g such that i ( e a J = (vg,ai) for a l l 
0 < i < n where n G N. (For n = 0, we get a constant function without parameters.) 

• Every multiplexer vmx G Vmx that implements a case selection function switch(sel, 
caseo,..., case n_i) has exactly one inbound edge for each of its arguments such that 
t(esei) = (vmx, sel) and t(ecasei) = (vmx, Cj) for a l l 0 < i < n where n > 2. 

• For each circuit Vf G V/-, there are arbi t rar i ly many outbound result edges el

q <E E 
such that s(eq) = (vf, q) where 0 < i < n for some n G N +. 

• There are no other types of edges other than the ones described above. 

• There is no cycle i n the graph consisting of vertices representing Boolean circuits only. 

Due to the above restriction to at most one inbound edge for a single connection type, one 
can use a simpler notat ion to uniquely describe the edges. In particular, an edge e G E that 
satisfies t(e) = (v, c), v G V, c G T, can be encoded using the expression v.c. F inal ly , the 
function OJ: E —>• N + represents a mapping that assigns some b i t -wid th to a l l edges of the 
P S G . The mapping can be natural ly expanded to be defined over storages too—namely, we 
let OJ{Vs) = u(vs.d) for a l l vs G Vs. Addi t ional ly , it must also hold that oj{eout) = co(vs.d) 
for any (vs, eout) G Vs x {e G E \ s(e) = (vs, q)}. 

Since we propose the not ion of P S G s to be as simple as possible, it does not take into 
account memories and memory ports. Instead, it contains architectural registers, which can 
be used to represent part icular memory cells. In the chapter, we assume that a memory is 
modeled using a finite number of architectural storages representing the cells of the memory. 
Memory ports are then modeled using addi t ional logic circuits that select the appropriate 
memory cell using its address. In particular, for a memory wi th n addressable units, there 
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Figure 9.1: A schematic of a write and a read memory port. 

are architectural registers mo,..., mn-\ G Va. A read memory port of such a memory is 
modeled using a single multiplexer circuit vread G Vmx connected to each of the registers 
representing memory units—for each nii, 0 < i < n, there is an edge e = vread-Ci connecting 
a multiplexer case w i t h the corresponding memory unit s(e) = (rrij,q). The selector edge 
vread-sel then represents a memory address and vread.q represents the data-out connection 
of the memory port . A write memory port is modeled by n circuits used to enable wr i t ing 
to a given memory-cell rrii, 0 < i < n. Each of these circuits implements a Boolean function 
(sel = i) A en, 0 < i < n, where sel represents a memory port address and en enables 
wr i t ing to the memory. A schematic of a write and a read memory port is depicted in 
F i g . 9.1. 

9.1.2 Transition Systems Induced by P S G s 

Let IB = {0,1} be the set of Boolean values, and let B n denote the set of bit-vectors of 
size n > 1. A P S G G = (V, E, s,t,ui) induces a (finite) transition system (C,^->) where 
C = ® „ e v is the set of configurations of G and <̂-> C C x C is its t ransi t ion relation 
(defined later i n this section). We use c[vs] to denote the bit-vector value of the register 
vs £ 14 i n a configuration c G C. We abuse the notat ion and write c[e] to denote the value 
transferred over an edge e G E i n the configuration c as well . G iven an edge e G E such 
that s(e) = (vf, q) where Vf G Vf is a circuit computing a function fn(ao,..., a n _ i ) , n G N , 
the value of c[e] can be recursively expressed as c[e] = fn(c[eao],..., c[ea„_J) where e a i G E1, 
0 < i < n, corresponds to the edge of the i - t h parameter of the function fn. In the case 
that an edge e G E is an outbound edge of a storage vs G Vs, i.e., s(e) = (vs,q), we let 
c[e] = c[vs]. 

For each storage vs G F s of a b i t -wid th m, m > 1, we assume the standard next-state 
function f'^xt: B( 2' m + 2) —>• B m where the storage vs is wri t ten a value transferred over the 
vs.d edge iff the ws.rst edge transfers "0" and vs.en transfers "1" i n the given configuration. 
Next , the value of the storage vs is nullified i f the vs.zst edge transfers "1". In the following, 
we w i l l refer to such a t ransi t ion as storage clearing. F ina l ly , the storage vs keeps the same 
value if bo th vs.en and vs.zst transfer the value of "0". T h i s w i l l be referred as storage 
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stalling in the following explanation. W h e n put together, the next state function f^xt can 
be formally defined as follows: 

Then , the relation contains a transi t ion c c' iff c'[vs] = f™ext(c[vs], c[vs.d], c[vs.en], 
c[vs.Tst]) for a l l vs G Vs. 

Given k > 1 and vertices v\,Vk G V of a P S G , a watt; from v\ to is an alternating 
sequence of vertices and edges (vi, e\, V2, • • •, ek-i,Vk) where V2,Wfc-i G V", e i , e ^ - i G 
E, and every two subsequent vertices are incident w i th the edge listed between them, i.e., 
s(ej) = (vi, c i ) , t(ej) = (uj+i, c i + i ) for each I < i < k and c i , c k 6 T . A path from u i to 
Wfc is a walk where no vertex appears twice, i.e., i ^ j =4> v% ^ Vj for 1 < i, j < k. 

Since our approach builds on analysing conditions that hold i n certain stages of the 
execution of a given instruction, we now introduce a notion of edge and path conditions. 
A n edge condition is a pair (e, 6), denoted e b, meaning that the edge e G E transfers some 
value b G W^e\ B y IE, we denote the set of a l l such edge conditions. For each multiplexer 
Vmx G Vmx, we define a mapping aVmx : E —>• IE that captures the edge condit ion that must 
hold over the multiplexer 's selector edge w m : r.sel for the data on the i - th inbound-case edge 
Vmx-Ci to be propagated to the multiplexer 's outbound edge vmx.q. In particular, 

where binn: 7L —> Mn is the standard two's complement encoding of a decimal value on 
n bits. Further, we define a mapping 7 : IE -> 2 C that assigns each edge condit ion (e ~~> 
6) G IE the set of configurations from C i n which the edge e transfers the value b, i.e., 
7(e -w 6) := {c G C I c[e] = 6}. Given a set K C IE, we also use the point-wise extension 

9.1.3 Data and Control Hazards 

Hazards in the instruct ion pipeline of central processing units ( C P U s ) are problems caused 
by inadequate synchronisation of earlier and later instructions running concurrently through 
the pipeline that may cause potential corruption of the data used by the instructions, 
w i th some result of the computat ion that referred to such data eventually propagated to 
a programmer-visible storage [108]. Three common types of hazards are data hazards, 
control hazards, and structural hazards. In this thesis, we w i l l further focus on the first two 
types of the hazards and on C P U designs that do not use out-of-order execution. We w i l l 
now give informal definitions of each of the considered hazard types, which we w i l l later 
formalize in Section 9.4. 

Definition 9. A read-after-write ( R A W ) data hazard is a scenario in which a later-started 
instruction uses data supposed to be produced by an earlier-started instruction, but the 
earlier instruct ion has not yet managed to proceed far enough i n the pipeline to write 
the data into the storage used by the later instruction. The later instruct ion then stores 
a potential ly wrong result of its execution, obtained by dealing wi th obsolete data, into 
some programmer-visible storage. 

o~vmx(vmx-Ci) •= vmx.sel 6ma,(, %s -S6. 

l{K) : = f W 7 ( f c ) of 7 . 
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Definition 10. A write-after-read ( W A R ) data hazard is a scenario i n which some data that 
should be used by an earlier-started instruct ion are overwritten by a later-started instruct ion 
before the earlier instruct ion manages to read the data. The earlier instruct ion then stores 
a potential ly wrong result of its execution, obtained by dealing w i t h data seemingly coming 
from the future, into some programmer-visible storage. 

Definition 11. A write-after-write ( W A W ) data hazard is a scenario i n which an earlier-
started instruction overwrites the result of a later-started instruct ion that is stored in some 
programmer-visible storage, which then ends up containing obsolete data. 

Definition 12. A control ( C T L ) hazard is a scenario where an earlier-started control-flow 
instruction changes the flow of the control, but some later, speculatively-started instruction 
manages to store some data into a programmer-visible storage. 

In in-order execution designs, the above specified hazards are el iminated by pipeline 
stalling and /or operand forwarding. For pipeline stalling, it is necessary for a processor to 
be equipped wi th a control logic that determines whether a hazard c o u l d / w i l l occur. If such 
a si tuation is detected, the control logic inserts no-operation (NOP) instruction, sometimes 
called bubble, into the pipeline. Therefore, before the later instruct ion from the pair of 
instructions which would cause the hazard executes, the earlier one w i l l have sufficient time 
to proceed far enough in the pipeline so that the hazard does not happen. 

In the case of operand forwarding, addi t ional (redundant) data-paths are introduced 
into a processor design. These data-paths are aimed to provide an option to propagate 
part ia l ly computed da t a 1 from an earlier instruction to a later one i n order to minimize 
the number of NOP instructions that would otherwise have to be inserted using the above 
mentioned stall ing technique. 

9.2 The Proposed Approach to Hazard Detection 

Our approach for verifying that the pipeline logic prevents hazards consists of the follow
ing steps: (i) a simple data-flow analysis intended to dist inguish part icular stages of the 
pipeline, (ii) a consistency check to make sure that the flow logic guarantees an in-order 
execution of instructions through the identified pipeline stages, (iii) a static analysis deriv
ing constraints over data-paths of instructions that can potential ly cause a pipeline hazard, 
(iv) generation of a parametric system model l ing mutua l interactions between potential ly 
conflicting instructions allowed by the derived constraints, and (v) an analysis of the con
structed parametric system to see whether the identified interactions may lead to a hazard. 

We assume the processor under verification to be represented using a P S G , which can 
be easily obtained from a description of the processor on the register transfer level ( R T L ) 
wri t ten i n common hardware description languages, such as V H D L or Veri log. 

Example 1. Throughout the following sections, we w i l l be i l lustrat ing the different steps 
of our approach on a running example depicted in F i g . 9.2. The figure shows a P S G 
describing a part of a simple microprocessor w i th an accumulator architecture wi th the 
following architectural storages: X (a memory index register), A (an accumulator), PC 
(the program counter), Progi (program memory cells), and Menij (data memory cells) 
where 0 < i < £, 0 < j < k and k, resp. £, are the sizes of the memories. The depicted 
part of the C P U is used when executing ari thmetic and load/store instructions. In order 

l r The data that have not been written to its final storage. 
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Stage 1 

0> 

Figure 9.2: A processor structure graph of a part of a C P U wi th an accumulator architecture. 



to keep the P S G easily readable, types of connections are shown for architectural storages 
and case-c edges of multiplexers only. Also , since enable (i.e., "en") and clear (i.e., "rst") 
connections for pipeline registers 2 are common for each stage, they are left out up to the 
ones that are required in the further explanation. 

In the C P U , the computat ion starts i n Stage 1 by using the content of the program 
counter PC to address the i t h cell of the program memory Prog^ A n instruction fetched 
from the program memory cell is stored into the storage Idlr that represents the so-called 
fetch register. The fetched instruct ion word i n Idlr is then decoded by an instruction de
coder i n Stage 2. Boolean circuits that belong to the decoder are shown i n yellow. Next , 
an address stored in the index register is used to fetch data from the j t h cell of the data 
memory Merrij i n Stage 3. Optional ly, the index register can be auto-incremented. The 
auto-incrementation logic is a feature al lowing for an early incrementation of the value of 
a register for memory addressing just before or right after it is read. We then speak about 
the so-called pre-/post-increment, respectively. The auto-incrementation feature usually 
brings a more efficient execution of sequences of instructions accessing the processor's mem
ory (for instance, when computing over long arrays or other juxtaposed data). Th is speed 
up results from removing a need of otherwise required pipeline stalls, but it also introduces 
potential W A W and W A R hazards that must be handled properly. Final ly , i n Stage 4, the 
decoded opcode part of the instruct ion is used to determine the type of an A L U operation 
(with the A L U itself colored i n purple) and to select destination storages by setting their 
enable connection "en" to logical "1". 

The Boolean circuit Flow i n F i g . 9.2 represents the flow logic of the second pipeline 
stage. This logic is responsible for dealing wi th W A R hazards on the index register X. The 
flow logic implements the function 

Flow(IncX, OfWrMem) := ^IncX V ^OfWrMem. 

In case a later instruct ion wants to perform an auto-increment of the index register X while 
an earlier instruction is going to use the content of X for a memory write, the flow logic 
uses the enable "en" and clear " r s t " signals of pipeline registers to insert a pipeline bubble 
between the instructions into Stage 3. < 

9.3 Preprocessing a Processor Structure Graph 

This section describes the first two steps of the proposed approach: namely, the data-flow 
analysis identifying pipeline stages and the pipeline consistency check ensuring a proper 
in-order execution of instructions wi th in the pipeline. 

9.3.1 Data-Flow Analysis Discovering Pipeline Stages 

The input of the proposed verification method consists of a P S G and a list of its architectural 
registers, including the program counter. O n this input, the method starts by a simple data 
flow analysis whose goal is to compute the number of pipeline stages. We then map storages, 
logic functions, and edges of the P S G into the pipeline stages. We define a pipeline stage 
as the sub-graph of the P S G that is responsible for executing a single-cycle step of an 
instruction. The pipeline stage that an edge or a vertex (representing a storage or circuit) 
of a P S G belongs to is given by the m i n i m u m number of cycles needed to propagate data 

2 F o r a full list of pipeline registers, see Table 9.1 in Section 9.3.1. 
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Table 9.1: Storages of the C P U from F i g . 9.2 and the corresponding pipeline stages. 

Storage Stage Write stages Read stages Pivot 
<P <pWI <prd 

PC 1 {1,2,3,4} {1,2} 
ProQi 1 0 {2} -

X 3 {2,3,4} {3,4,5} -

A 5 {4} {1,2,3,4,5} -

Merrij 5 {4} {4} -

Idlr 2 {1,2,3,4} {1,2,3} / 

OfJrap 3 {2,3,4} {1,2,3,4} / 
OfWrA 3 {2,3,4} {4} X 

OfWrX 3 {2,3,4} {1,2,3,4} / 

OfAlu 3 {2,3,4} {1,2,3,4} / 

OfOp 3 {2,3,4} {1,2,3,4} / 

OfWrMem 3 {2,3,4} {1,2,3,4} / 

ExJmp 4 {3,4} {1,2,3,4} / 

ExWrA 4 {3,4} {5} X 

ExWrX 4 {3,4} {1,2,3} / 

ExAlu 4 {3,4} {1,2,3,5} / 

ExOp 4 {3,4} {1,2,3,5} / 

ExMem 4 {3,4} {3,5} / 

ExWrMem 4 {3,4} {1,2,3,5} / 

from the input of the program counter to the edge or the output of the given vertex, 
respectively. Hence, as a part icular case, the program counter itself belongs to Stage 1. 

The data-flow analysis that we use starts from the program counter and its Stage 1 and 
propagates the so-far computed stages forward through the P S G . If several stage values 
are propagated to a single vertex or edge, the m i n i m u m is taken. Whenever a propagated 
stage value passes a storage, it is incremented by one. Th is analysis gives us a mapping 
ip: V U E —>• S, S = {1, . . . , n} , n > 1, which maps graph's vertices and edges to pipeline 
stages. 

Subsequently, we derive the so-called write stage mapping <pWT: VUE^2S that maps 
each vertex or edge to the set of stages that directly influence its value. Namely, we include 
into fwv(x) the stage of every pipeline storage vp G Vp from which there is a path to x 
that does not pass through any further storage from Vp. Likewise, we derive the read stage 
mapping (pvd: V U E —>• 2 s for each vertex or edge that describes which stages are directly 
influenced by its value. In particular, we include into (prA(x) the stage of every pipeline 
storage vp £ Vp to which there is a path from x that does not pass through any other 
storage from Vp. 

67 



Pipel ine stages of the storages from the P S G of F i g . 9.2 and the corresponding read and 
write stages, computed as described above, are shown in Table 9.1. (The not ion of pivots 
w i l l be introduced later on.) 

9.3.2 Pipeline Consistency Checking 

The second step of our approach is consistency checking which checks whether the flow logic 
assures a correct in-order execution of a l l instructions through a l l the identified pipeline 
stages. This means that a l l instructions which are fetched from the program memory 
should flow from the first stage to the last stage while maintaining their execution order 
wi th no loss or dupl icat ion of an instruction. To check the above, we verify whether the flow 
logic obeys a set of rules which express how the control connections (en, rst) of storages 
in adjacent pipeline stages should be set. In particular, we use a strengthened variant of 
the rules proposed i n [98]. The rules have been strengthened since (as we w i l l see later 
on) our approach builds on an assumption that, if some pipeline stage is stalled, then a l l 
predecessor stages have to be stalled as well . Th is means that our approach rules out some 
extreme ways of pipeline implementat ion allowed by the original rules. A n example of such 
a si tuation is an opt imizat ion of the execution during stage stal l ing when an instruction 
preceded by a series of NOP instructions is allowed to proceed to the next stage in order to 
increase the throughput. 

For the following, assume a transi t ion system ( C , induced by the P S G being verified. 
We introduce mappings st, rst: Vp —>• 2C defined as 

st(vp) := 7({wp.en 0,vp.rst 0}), 

rst(vp) := 7(w p.rst 1). 

Intuitively, for any storage vp G Vp, st{vp) and rst{vp) are the sets of configurations in which 
vp is stalled or cleared, respectively. The pipeline consistency rules that we check are then 
the following: 

• Rule 1: If some pipeline register of a stage s G § is stalled, then a l l pipeline storages 
of the Stage s have to be stalled, i.e., for a l l vp,v'p G Vp: 

tp(vp) = <f(v'p) => st(vp) C st{v'p). 

The rule follows the idea that an instruct ion carried by a pipeline stage cannot be 
fragmented. The rule also reflects one of the fundamental assumptions about pipe
lined execution from [ ]: namely, at any given time, an instruction is always in 
a single pipeline stage only. A s a corollary, by simply swapping vp and v'p, one can 
derive a stronger statement <p(vp) = f(v'p) =4> st{vp) = st(v'p). 

• Rule 2: If some pipeline register i n a Stage s G § \ { m a x ( § ) } is stalled, then a l l pipeline 
storages of the Stage s + 1 have to be stalled or cleared, i.e., for a l l vp,v'p G Vp: 

<p(vp) = <p(v'p) - 1 => st(vp) C st(v'p) U rst(v'p). 

This rule is a rephrased version of Equa t ion (15) from [{ i] and prevents dupl icat ion 
of an instruction. 

• Rule 3: If some pipeline register in a Stage s G S \ {1} is stalled, then a l l pipeline 
storages of the Stage s — 1 have to be stalled, i.e., for a l l vp,v'p G Vp: 

<p(vp) = (p(v'p) + 1 st(vp) C st(v'p). 
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This rule is a rephrased version of Equa t ion 16 from [ ] and prevents an instruction 
to be lost. 

• Rule 4 '• If some pipeline register i n a Stage s G § is cleared, then a l l pipeline storages 
of the Stage s have to be cleared, i.e., for a l l vp,v'p G Vp: 

<p(vp) = <p(v'p) rst(vp) C rst(v'p). 

Similar ly to Rule 1, this rule prevents fragmentation of an instruct ion and it is a part 
of the basic assumptions about pipelined execution mentioned i n [98]. 

We check the above rules using an S M T solver [21, 100] for the bit-vector logic. To 
convert the rules into the bit-vector logic, we first define an operator * that maps edges of 
a P S G to variables of the bit-vector logic (BVL) such that e\ = e*2 s{e\) = sfa) for each 
ei ,e2 G E. Intuitively, edges wi th the same source must have the same value. Then , for 
any e G E, we define a BVL formula ip(e) that encodes how the value transmit ted over e is 
computed from values stored i n storages. The formula tp(e) is recursively defined as 

{ m 

e* = g(e*,e*m) A A V ^ ) a(e) = (v,q)Ave Vf, 
i= i 

true otherwise 
where g denotes the Boolean function computed by the circuit v G Vf. 

Now, the inclusion test st(vp) C st{v'p) from Rule 1 can be reduced to checking validi ty 
of the following formula: 

&(vp) := ( (ip(vp.en) Aip(vp.rst) Aip(v'p.en) A ip(v'p.rst)) 

=> ( (vp.eiL* = 0 A vp.rst* = 0) => 
(v'p.en* = 0Av'p.rst* = 0) ) ). 

Intuitively, $(vp) says that if the values of vp.en, vp.rst, v'p.en, and v'p.rst are computed 
according to the given flow logic, then i f vp is stalled, v'p is stalled too. Instead of check
ing val idi ty of <&(vp), one can check unsatisfiability of the negation of the formula, i.e., 
-isat(-i$(vp)). Moreover, as - i $ ( u p ) = tp(vp.en) Atp(vp.rst) Aipiv'p.en) Atp(vp.xst) Avp.en* = 
0 A Vp.rst* = 0 A (v'p.en* = 1 V v'p.rst* = 1), the check - i s a i ( - i $ (u p ) ) can be replaced by 
the following two simpler checks: 3 

f ip(vp.eiL) A Vp.en* = 0 A 

->sat ip(vp.rst) A vp.zst* = 0 A (9.1 

\ fp(v'p.en) A v'p.en* = 1 J 

f ip(vp.eiL) A Vp.en* = 0 A \ 
->sat ip(vp.rst) A Vp.rst* = 0 A (9.2 

\ ^(v'p.rst) A v'p.rst* = 1 J 

Hence, Rule 1 can be checked by applying the checks from Equations 9.1 and 9.2 to a l l 
Vp,v'p G Vp such that ip(vp) = <p(v'p). 

Rules 2-4 can be checked i n a very similar way as Rule 1. 

3 Note that, in Equation 9.1, we may remove the V(Vp-rs"t) conjunct since the constraint v'p.rst* = 1 is 
not present, and likewise with ip(v'p.en) in Equation 9.2. 
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9.4 Static Detection of Potential Pipeline Hazards 

According to Definitions 9-12, a pipeline hazard (of any of the discussed kinds) occurs when 
two instructions access the same architectural storage and at least one of the accesses is 
a write. We w i l l further use the term spoiler whenever referring to the wr i t ing instruction 
causing the hazard. The other involved instruct ion w i l l then be called a victim instruction. 
Final ly , we w i l l speak about a hazard case when referring to the pair formed by a spoiler 
and a v i c t i m instruction. 

In this section, we w i l l first focus on identifying a finite set of hazard cases potential ly 
causing hazards i n a given processor. For that, we w i l l use a static hazard analysis examining 
the P S G and pipeline stage mappings ip, (pwv, (pvd determined by the data-flow analysis from 
Section 9.3.1. In order to be able to describe a spoiler-vict im pair forming a hazard case, 
we w i l l introduce several auxi l iary concepts w i th the so-called minimal transfer execution 
and maximal store execution being the most important ones. 

We begin by introducing a notion representing a generic concept of a data transfer 
between two vertices wi th in a given P S G . Natural ly , each such transfer must conform to 
the ipwv and ipvd mappings. We first formalize the notion of data transfers i n a broader form 
in Defini t ion 13, which is narrowed later on in Defini t ion 14. In particular, Defini t ion 13 
is broader i n the sense that it may describe data transfers that can only be achieved when 
mult iple instructions are involved and some of the instructions pass the data back to lower 
stages of the pipeline where they are processed by instruction(s) that entered the pipeline 
later. Th is would mean that a spoiler itself (and likewise a vict im) could consist of multiple 
instructions. Deal ing w i t h such situations is, of course, interesting, but we w i l l restrict 
ourselves to the case of the spoiler and v i c t i m being single instructions each, generating the 
so-called forward executions (Definition 14). 

Definition 13. G iven a walk TT = {pi,P2, • • • ,Pk) for some k > 3 i n a P S G G, pi, 
P3i • • • iPk £ V, P2-, PA-, • • • iPk-i £ E, an execution plan is any valuation T : {1, . . . , k} —>• S 
s.t. pi € Vs =^ r ( i ) - 1 G ipwv(pi) for a l l 1 < i < k. 

Intuitively, an execution plan gives a sequence of stages i n which part icular vertices are 
wri t ten during a data transfer. Hence, taking into account the unit delay of wri t ing , the 
value wri t ten to a vertex pi is obtained from a value computed i n the stage r ( i ) — 1 (with 
the first element of the walk being, of course, special and excluded from this requirement). 
A n execution walk is then any walk i n G w i th an execution plan. We define an execution as 
a pair (TT, T ) consisting of an execution walk ir and an execution plan r . We denote the set 
of a l l such pairs as X . In the following explanation, we w i l l also use shortcuts r f s t and r l s t 

i n order to refer to the valuation of the first and last element of the walk IT, respectively, 
i.e., r

f s t = r ( l ) and r l s t = r(k). 

Example 2. Consider the P S G G depicted in F i g . 9.2. A pair (7ri,Ti) s.t. 7Ti = (X, 
MxMem.sel, MxMem, ExMem.d, ExMem, MxOp.c0, MxOp, Eq.ao, Eq, MxAlu.c0, MxAlu, 
A.d, A) and n = { l x ^ 3, 2 M x M e m - s e l ^ 3, 3MxMem ^ 3, 4ExMem-d ^ 3, 5ExMem ^ 4, 
QMxOp.co ^ 4 jMxOp ^ 4 gEq.&o ^ 4 gEq ^ 4 ^QMXAIU.CO ^ 4 -y-yMxAlu ^ 4 l2A'd h-̂  4 

1 3 A ^ 5} is an execution i n G describing one of the possible data transfers from the 
storage X to the storage A. Note that we indexed the left-hand sides of the mappings by 
the corresponding storages to make the mappings more readable. 

Another example of an execution is a pair {^2^2) where TT2 = (ExJmp, MxJmp.sel, 
MxJmp, MxPC.sel, MxPC, PC A, PC, MxProg.sel, MxProg, Idlr.d, Idlr) and r 2 = 
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[•^ExJmp 4 2^ r ^ T O P- s e l i—). 4 ^MxJmp 4 ^MzPC.sel ^ ^ gMxPC 4 gPC.d ^ ^ 
7^C i—^ 5; 8 MxPro 9 .sel ^ gMzProg ^ jQ/d/r.d ^ j j /d / r ^ 2 } . < 

To narrow our selection only to executions that are feasible by a single instruction, 
one needs to only th ink of executions t ied w i t h execution plans where stages form a non-
decreasing sequence. Intuitively, a single instruction in the pipeline can only move forward 
or stay i n the same stage. This leads us to the definition given next. 

Definition 14. A forward execution is a special type of execution ((pi, P2, • • • ,Pk),T~) G X, 
k > 3, where the following restrictions hold: (i) pi G Vs =4> r(pi) = r(pj_i) + 1 and 
(ii) pi G Vf U E r(pi) = r(pi-i) for a l l 1 < i < k. 

Clearly, i f any of the conditions (i) or (ii) is not met, there could not be any single instruction 
capable of a data transfer described by the execution. 

Example 3. Consider the executions from Example 2. The execution (iri, T\) is a forward 
execution while ( 7 T 2 , T 2 ) is not since r 2(8 M x - P T O s , - s e l ) ^ T 2 ( 7 p c ' ) . < 

For further explanation, it is important to be able to identify a storage from which the 
transferred data can be passed to another (later) instruction. Such an action occurs only 
if there exists a path leading from a storage i n a higher stage to a storage that belongs to 
a lower one. This is formalized i n the next definition. 

Definition 15. A pipeline storage v G Vp is a pivot i f there exist a stage sr G (pvd(v) s.t. 
sr < <p(v). 

We also need to establish a notion of a stage that can be cleared without the previous 
stage being stalled. Such a stage can be used to nullify the state of a par t ia l ly executed 
instruction. 

Definition 16. A stage s G § is independently clearable if there exist pipeline storages 
vp,v'p G Vp s.t. (p(vp) = s = (p(v'p) + 1 and rst(vp) n st{v'p) / 0 where st and rst are the 
mappings defined i n Section 9.3.2. 

We decide whether a stage satisfies the above given constrains for being independently 
clearable i n a similar way to Rules 1-4. More precisely, an S M T solver performs the 
following check i n this case: 

*at I ^ ^ - r S t ) A ^ K - e n ) A V ^ p - r s t ) ^ 

Vp.rst* = 1 A (u' .en* = 1 V v'p.rst* = 1) 

The above check can be further decomposed into two simpler checks while it suffices that 
at least one is satisfiable: 

s a t ^ ( v P - r s t ) A V r s t * = : ( ^ 

ip(v'p.en) A v'p.en* = . 

sat\ A V p - T S t * =~ | (9.5) 
ip(v'p.TSt) A v'p.rst* = . 

In the next step, we define an execution that can be performed by a single instruct ion 
and which may influence the value stored i n some storage. 
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Definition 17. A store execution is a forward execution ((vi, e i , . . . , efc_i, i ^ ) , r ) for some 
k > 0, Vk £ Vs so that U2, . . . , i>fc-i 0 ^s- We also define a maximal store execution as 
a store execution that is not a suffix of any other store execution. 

A s a final step, we define an execution that can be performed by a single instruct ion and 
which may influence the data stored i n an architectural storage va <E Va by reading some 
data from a (potentially different) storage v £ Vs and transferring them to the storage va. 

Definition 18. A transfer execution is a forward execution ((vi, e\,... ,ek-i, Vk), T) for 
some k > 0, Vk £ Vs that satisfies the following two properties: (i) The storage Vk satisfies 
one of the following: (a) it is an architectural storage £ 14, (b) it is a pipeline storage 
Vk £ Vp s.t. t(efc-i) = (ufc,rst) and <p(vk) is an independently clearable stage, or (c) the 
storage v^ £ Vp is a pivot s.t. t(ek-i) = (v^, d). (ii) Moreover, t(ej) £" Vp x {en, rst} for a l l 
1 < i < fc. We also define a minimal transfer execution as a transfer execution that does 
not contain any prefix that is a transfer execution. 

Condi t ion (i-a) is straightforward as the execution affects the architectural storage d i 
rectly i n this case. Clear ing the target pipeline register Vk £ Vp in an independently 
clearable stage as described i n Cond i t ion (i-b) causes cancellation of any par t ia l ly executed 
instruction i n Stage (p(vk). Such an event may indirect ly influence any architectural storage 
va £ Va that belongs to a stage s > <p(vk)- Similarly, concerning Cond i t ion (i-c), i f the tar
get pipeline register Vk £ Vp is a pivot, the value read from i t—by a later instruction—may 
also indirect ly influence any architectural storage that the later instruct ion writes to. Next , 
as described by Cond i t ion (ii), the transfer execution must not traverse through enable 
connections of pipeline registers. Such executions cannot influence the value of any archi
tectural storage. The i r only impact can be that they stal l a stage. This also holds for reset 
connections of pipeline storages i n a stage that is not independently clearable—in this case, 
an instruct ion cannot be lost since the previous stage is always stalled. In such a case, the 
pipeline consistency given by Rules 1-4 from Section 9.3.2 assures correct preservation of 
al l par t ia l ly executed instructions. 

A n incorrectly handled pipeline hazard manifests upon the first write of improper data 
into some architectural storage of the design. Therefore, it suffices to further deal w i th 
the min ima l transfer executions only. We can now formalize the notion of hazard cases in 
a unified way for a l l the different kinds of hazards (restricted to the case when the spoiler 
and v i c t i m consist of single instructions) as follows. In particular, we represent a hazard case 
as a tuple (Xsp,Xvi) £ X 2 where Xsp and Xvi are spoiler and v i c t i m executions appropriate 
for the concerned k ind of hazard. More rigorous descriptions of each considered type of 
hazard cases are given in the following definitions. 

Definition 19. A RAW hazard case is a tuple (XspiXvi) £ ̂ 2 consisting of a max ima l 
store execution Xsp = ({v{p, e f e f c _ i = v^_vd, vs

k

p = v), TSP), v{p £ Vs, of a spoiler 
instruction and a min ima l transfer execution Xvi = ((v™ = v, £\ •> • • • )U<T)' Tvi) of a v ic t im 
instruction where v £ Va \ {vpc}, k,£ > 1, and data i n the architectural storage v can be 
read by the v i c t i m instruct ion before they are wri t ten by the spoiler, i.e., r^f < T ] ^ . 

Definition 20. A WAR hazard case is a tuple (Xsp,Xvi) £ ̂ 2 consisting of a max ima l 
store execution Xsp = ( ( ^ f , e f e ^ - i = v^_vd, vs

k

p = v), TSP), £ Vs, of a spoiler 
instruction and a min ima l transfer execution Xvi = {{v™ = v, e\l,... ,v^1), TV{) of a v ic t im 
instruction where v £ Va \ {vpc}, k,£ > 1, and data i n the architectural storage v can be 
wri t ten by the spoiler before they are read by the v i c t im , i.e., T^J1 < r^f. 
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Definition 21. A WAW hazard case is a tuple (xsp, Xvi) G ^ 2 consisting of a max ima l store 
execution Xsp = ( (wf , , . . . , es

k

p_1 = v.d, vs
k

p = v), Tsp), vsp G Vs, of a spoiler instruction 
and a max ima l store execution Xvi = ({VT> eT> • • • > e £ - i = u-d> U<T = u)> r*>«)> ^ l * e ^s> °f 
a v i c t i m instruct ion where n e K \ {%>C}, k,£ > 1, and data into the architectural storage 
w can be wri t ten from two different stages. In the following, without a loss of generality 
(since the conflicting instructions can always be swapped), we w i l l assume the spoiler to 
perform a write operation i n an earlier stage, i.e., T ] ^ < r^jf. 

One can observe that there is no need to include any min ima l transfer execution i n the 
case of W A W hazard since an error that is caused by the hazard is manifested instantly by 
wr i t ing an incorrect value to the storage v. 

Definition 22. A CTL hazard case is a tuple (Xsp,Xvi) G ^ 2 consisting of a max ima l 
store execution Xsp = ((v{p', e f , . . . , e ^ - i = v^.d, vs

k
p = vpc), Tsp), vsp G Vs, of a spoiler 

instruction and a min ima l transfer execution Xvi = ( W = vpc e\\ • • •, v™), T„) of a v i c t im 
instruction where k,£ > 1, vpc ^ v™ and the program counter vpc G Va is wri t ten wi th data 
originating from a source other than auto-increment logic, which we consider to appear in 
Stage 1. Therefore, the spoiler must always write from a stage other than the first one, i.e., 
rlf > 2. 

Note that, since the definition of a part icular hazard case speaks about storages, their 
access stages, and the path along which the problematic data are transferred, it is not 
defined for a single concrete instruct ion only but for an entire class of instructions that 
conform to the cri teria given by the hazard case. Further, note that the cases when r]^ = 
r^f for R A W , W A R , and C T L hazards as well as the cases when T ] ^ = r * f for W A W 
hazards are not covered by the above definitions. Th is is because our approach assumes 
correct execution of isolated instructions, which rules such cases out. Such correctness can 
be checked separately using, e.g., methods described i n [27, 31]. 

In order to generate the set EI of hazard cases, we proceed as follows. F i r s t , using results 
of the data-flow analysis from Section 9.3.1, we find a l l storages va G Va for which there is 
a risk that some hazard si tuation may be ini t ia ted between stages s\,S2 G S. The conditions 
that must hold for s\,S2 differ for different hazard cases. For instance, for R A W hazards, 
we need the following conditions to hold: s\ — 1 G (pwv(va), S2 + 1 G (pvd(va), and S2 < s\. 
The condit ion S2 < s i reflects the fact that the needed data are read from va before they 
are wr i t ten into va. The rest of the condit ion reflects that it must be possible to write to va 

in stage s\ and read in stage S2, i.e., it must have a predecessor storage in stage s i — 1 and 
a successor storage in stage S2 + 1. The subtract ion/addi t ion of 1 is applied due to the unit 
write delay that happens between the data are read from the previous storage and wri t ten 
to va and then between reading the data from va and wr i t ing them to the successor storage. 
For other kinds of hazards, the conditions are derived from the k ind of hazard analogously 
as for R A W hazards as shown later on. Second, we find a l l max ima l store executions that 
terminate i n the storage va. F ina l ly , we generate a l l m in ima l transfer executions originating 
from the va vertex of the given P S G G.4 

The procedure for generating the set EI is shown i n A l g . 2. The procedure first con
structs auxi l iary sets ARAWI ^WAR, and AQTL s t r ict ly following the constraints given by 
R A W , W A R , and C T L hazard cases (see Definitions 19, 20, and 22). The sets ARAWI 
A WAR, and AQTL consist of quintuples characterising suspected hazards. They include the 
architectural storage va on which the hazard happens, the target storage vt through which 

4 T h i s step is not necessary in the case of WAW hazard as the error caused by the hazard is immediate. 
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the hazard manifests, and three stages: namely, stages s\ and s2 i n which the conflicting 
read/wri te operations on va happen, and stage S3 i n which the hazard gets manifested. For 
W A W hazards, the procedure later on proceeds similarly, but there is no vt and S3 needed 
since the hazard manifests immediately upon the second write operation (Definition 21). 
The auxi l iary sets are then used for finding max ima l store and min ima l transfer executions 
in the P S G . A standard breadth-first search algori thm during which constraints from Defi
nitions 13-18 are checked on-the-fly can be used to obtain the min ima l transfer executions 
in G for the suspected hazards. Similar ly, the procedure may deploy the depth-first search 
algori thm while checking constraints from Definitions 13, 14, and 17 in order to find the 
max ima l store executions. 

A l g o r i t h m 2 Procedure computing a set of hazard cases H . 

Require: A P S G G = (V,E,s,t,u), a set Va C V of architectural storages, a program 
counter vpc G Va, a set Vp C V of pipeline registers, Va n Vp = 0, a set VPiVOt C Vp of 
pivots, and a set Sic C § of independently clearable stages. 

Ensure: A set H C X x X of hazard cases i n the C P U encoded by G. 
1: Vt := Va U Vpivot U {v G Vp I <p(v) G Sic} 
2: Let A denote F a x N x N x F t x N 
3: A R A W := {(va,s1,s2,vt,s3) € A I s i - 1 € <pm(va) A s2 + l G <prd(va)/\s2 < S 1 A S 3 - I G 

<pwr(vt) A s 2 < s3} 
4: A W A R := {(va,s1,s2,vt,s3) € A I a i - 1 € ^m(va) A s2 + l G <^ r d (t ; a )Asi < s 2 A s 3 - l G 

Vm(vt) As2< s3} 
5: ACTL ••= {(vpc, si, l,vt, s 3 ) € A I s i - 1 € ^r(va) A 2 G <pvd(vpc) A s i > 2 A s 3 - 1 G 

ipm{vt) A v p c ^ v t A s 3 > 1} 
6: A := ARAW U A WAR U ^ C T L 

7: H := 0 
8: for (w a ,Sl,S2,Wt,S3) G A do 
9: Xmse := { (TT,T) G X I 7r = ( u i , e i , . . . , e f c _ i , u f c ) A ({u f c} x N x N x Vt x 

N) n A / 0 A t (e f c _i) = (u f c ,d) A v2,...,vk_i 0 (VJ, U Vp) A r l s t = s i A 

(7r, r ) is a max ima l store execution } 
10: Xmte := { (IT, T) G X | vr = (v i , e i , . . . , e f c _ i , u f c) A ({ui} x N x N x {vk} x N) n A / 

0 A r f s t = s2 A r l s t = S3 A (7r, r ) is a min ima l transfer execution } 
11: I : = I U ( I m s e x I m t e ) 
12: end for 
13: Let A denote Va x N x N 
14: A WAW ~ {(Va, «1, «2) G A | Si - 1, S 2 - 1 G lfm(va) A S 2 < S i } 

15: for (va,si,s2) G AWAW do 
16: A ^ s e := { (TT,T) G X | vr = ( u i . e i , . . . , e f c _ i ,u f c ) A ( K } x N x N) n 

A WAW + 0 A t(efc-i) = (ufc.d) A u 2 , . . . , U f c _ i 0 ( F a U F p ) A r l s t = s 2 A 

(7r, r ) is a max ima l store execution } 
17: A ^ s e := { (vr,r) G X | vr = {vi, ei,..., ek-i,vk) A ({v f c} x N x N) n 

A WAW 0 A t (e f c _i) = (ufc.d) A «2 , . . . , u f c _ i 0 ( F a U F p ) A r l s t = s x A 

(7r, r ) is a max ima l store execution } 
18: M:=mu(X1

msexX2

mse) 
19: end for 
20: return EI 
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Example 4. Consider the P S G from F i g . 9.2 and the mappings shown in Table 9.1. One 
can see that there is a potential W A R hazard on the index register X G Va because, for 
example, it can be wri t ten in Stage 3 ((pwv(X) = {2, 3, 4}) and read by Stage 5 ((pvd(X) = 
{3,4, 5}). B y Defini t ion 20, to form a W A R hazard, the P S G must contain (i) a max ima l 
store execution of a spoiler instruction (TTSP,TSP) G X ending i n X and (ii) a min ima l 
transfer execution (7T„J,T„J) G X leading from X to some target storage. There are multiple 
executions of spoiler and v i c t i m instructions that satisfy the above cri teria. E a c h of them 
must be considered in order to verify that the design is free of W A R hazards. For instance, 
one may consider a spoiler execution (TTSP, TSP) w i th 7rsp = (X, Inc.&i, Inc, MXIHC.CQ, Mxlnc, 
X.d, X) and rsp = { l x •->• 2, 2 / n c - a i •->• 2, 3 / n c •->• 2, 4MxInc-c° •->• 2, 4 M x I n c •->• 2, 5 X d •->• 2, 
6X H-> 3}. Further, we can consider a v i c t i m execution (7r„j, r„j) w i th the target memory cell 
Merrij wri t ten i n Stage 5 where 7r„j = (X, Cmpj.&o, Cmpj, MxSelj.ci, MxSelj, Merrij.en, 
Merrij). A n instance of an execution plan r„j for the walk irvi is { l x t-> 4, 2Cmpr&0 i-> 4, 
3CmPj ^ 4 j ^MxSelj.d ^ 4 j gM^Sei,- ^ 4 j gMem.-.en ^ 4 j 7 M e m i ^ 5} T h e g i y e n p a i r Q f 

a spoiler and v i c t i m is clearly a candidate for a W A R hazard since the needed data are 
overwritten before they are read (unless some control logic over the involved executions 
prevents the hazard, which w i l l be the subject of further checking). < 

Example 5. Further, as an example of a control hazard, one can consider a spoiler execu
t ion (irsp,Tsp) w i th Trsp = (ExAlu, MxAlu.sel, MxAlu, MxPC.ci, MxPC, PC.d, PC) and 
T s p = {\ExAlu ^ 4 j 2MxAlu.Sel ^ 4 j 3MxAlu ^ 4 j 4 M x P C . C l ^ ^ ^MxPC ^ 4 j gPC.d ^ 4 j 

7 P C > i->- 5}. A s an instance of a v i c t i m execution (iTvi, r„ j ) , we can consider an execution walk 
7r„j = ( P C , MxProg.sel, MxProg, Idlr.d, Idlr) w i th an execution p lan r„j = {1PC i-> 1, 
2MxPro9.sei ^ ^ 3 MxPro 9 ^ ^ 4Hfr .d ^ ^ g/d/r ^ 2 } . Note that, i n this case, Jd / r 0 F a , 

but we know from Table 9.1 that the pipeline register Idlr is a pivot, and so it is s t i l l a valid 
terminat ing element for a transfer execution. < 

9.5 Parametric Systems for Potential Hazards 

We w i l l now describe how the potential ly hazardous behavior of a spoiler and a v i c t i m 
instruction described by a hazard case can be modeled and checked for feasibility using 
a parametric system P: if the behavior is not feasible, the hazard case does not describe 
a real hazard (the suspected hazard gets prevented by the pipeline flow logic). In the system 
P, we map n > 2 instructions i n the pipeline to n processes i n a linear array (wi th the 
earliest instruct ion on the left). Note that the value of n is not constrained from above. 
Indeed, while there is a single spoiler and v ic t im, we do not know how many "padding" 
instructions should appear between the spoiler and the v i c t i m for the hazard to manifest. 
Tha t is why, we model the system as parametric, w i t h n being the parameter, and verify 
it for any value of n. 

Initially, the instructions are in a state saying that their execution has not started. Then , 
they proceed through ind iv idua l stages of the pipeline during which they may interact w i th 
each other by means of the pipeline flow logic, e.g., an earlier instruct ion may force a later 
instruction to be stalled or cleared. Final ly , the instructions end up i n a state denoting 
that they left the pipeline. 

In the following explanation, we start by constructing the set of states of the system P. 
Then, we proceed to capturing the above mentioned influence of the pipeline flow logic and 
reflect it i n the transi t ion relation of the system P. F ina l ly , we define the set of m in ima l bad 
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configurations of the system P that describes the prohibi ted interleavings of instructions 
causing the hazard. 

9.5.1 States and Edge Conditions of the Parametric System 

Given a hazard case of the form (xsp, Xvi) G X 2 , Xsp = (^sp,Tsp), Xvi = (TT vi; Tvi)) the para
metric system P w i l l model interactions among four classes of processes, resp. instructions, 
IK := {sp "spoiler", vi "v i c t im" , sf "stall-flow", nf "normal-flow"}. This follows the fact 
that each type of the considered pipeline hazard is caused by some pair of instructions. 
The sp class represents the spoiler part of the hazard case, i.e., an instruct ion that writes 
to a storage v G Va i n a stage Tsp(v). The vi class then represents an instruct ion corre
sponding to the v i c t i m part of the hazard case, reading or wr i t ing f rom/to v i n a stage 
Tvi(v). Further, the sf and nf classes both denote any other instructions than the spoiler 
and vic t im—we just differentiate two operating modes of these instructions. A s we w i l l 
discuss later i n Section 9.5.2, the difference between the stal l- and normal-flow operation 
modes is that an s/-class instruct ion i n a stage so G § causes that a l l pipeline stages s £ § 
s.t. s < so get stalled. B o t h the sf and nf classes serve as a pipeline filler and a sink for 
cleared (flushed) instructions. 

To facilitate the construction of a parametric system allowing us to verify whether 
a given hazard case corresponds to a real hazard or not, we need to introduce an extended 
set of stages. Let S := § U {_L, T } be the set of stages extended wi th auxi l iary in i t i a l " _ L " 
and final " T " stages. We w i l l then represent the behavior of instructions given by a hazard 
case h = (Xsp,Xvi) in the form of a labelled parametric system, called a hazard system 
(HS), Ph = (Qh, A \ ah) where Qh := K x S, Ah w i l l be introduced in Section 9.5.2, and 
ah: Qh —>• 2 E is a state labell ing function. The label l ing function ah associates each state 
wi th a set of edge conditions that should hold in this state for the hazard to be executable. 
We w i l l show the construction of the labell ing below. Note that each state q G Qh represents 
a unique instruction class and a stage i n which an instruct ion of this class is supposed to 
be. F ina l ly , for a proper understanding of the rest of the section, we once again stress that 
the part icular states i n Qh are states of individual instructions, not of the entire system. 
A configuration of the system Ph is a sequence of such states. 

Next , we define the mapping ah describing which edge conditions must hold i n a state 
q = (re, s) G Qh, which is a state of an instruct ion of the class re G K i n the stage s G S, 
for that instruct ion to execute i n accordance wi th the hazard case h. F i r s t , for instructions 
of the classes re = sf and re = nf, we define ah((n,s}) := 0 for every s £ § since we do 
not expect any special behavior from instructions of these classes, and, on every realistic 
processor, we can always find instructions that do not interfere wi th the spoiler and v i c t i m 
instructions and may serve as the needed pipeline filler. Likewise, we define a ' 1 ((re, s)) := 0 
for any re G K and s G {_L, T } , i.e., for instructions that have not yet started or that have 
already ended. 

For the spoiler and v i c t i m instructions, the idea is to extract the edge conditions by 
looking for the necessary settings of selector, enable, and clear edges so that the data 
involved in the potential hazard are carried over the walks irK for re G {sp, vi} that are 
a part of the concerned spoiler and v i c t i m executions XK = (KK,TK). The mapping ah can 
be constructed from three auxi l iary mappings a^el, a^n, and a^st: X —> 2 E x S where a^el 

w i l l be examining a l l edges but the last one (hence covering a l l edges that route the data 
through multiplexers) and the last edge w i l l be covered by exactly one of the two remaining 
mappings (related to enabling a write of the data to the target storage or clearing the 
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storage). In particular, the a g e l mapping is defined as 

«Bei(x) == { K ( e i _ i ) , T ( 2 i - 1)) | 1 < i < k A 

G F m z A % = ((vi,ei,... ,et-i,Vi,... ,vk),T)}. 

Intuitively, the mapping produces a set of pairs consisting of a condit ion aVi{ei-\) G IE 
over selector edges that is required by the multiplexer Vi G Vmx to propagate the data along 
the execution walk TT and the stage T (UJ ) in which the part icular condit ion must be satisfied. 
Similarly, the and a^3t mappings establish the necessary condit ion for the final edge of 
the execution's target storage, making sure that either wr i t ing of the data into the storage 
is enabled or the storage is cleared: 

« e n ( x):={(^-en - l , r ( 2 A : - l ) ) | 

X = ( ( w i , e i , . . . , e f c _ i = vk.d,vk),T)}, 

a J r t ( X ) := {(vk.rst ~> 1, r(2k - 1) | 

X = ( ( w i , e i , . . . , e f c _ i = u f c . r s t , u f c ) , T ) } . 

In particular, ensures that the data transferred along the path described by the execu
t ion x are indeed wri t ten to its destination storage vk at the end of the execution. Therefore, 
a% produces a singleton containing a pair consisting from the condi t ion v/u.en 1 and the 
stage r(2k — 1) which is the stage where the data reside just prior to the write. Similarly, 
a^st produces a singleton containing a pair consisting from the condit ion vk.rst 1 and 
the stage r(2k — 1) so that the target storage is indeed cleared. Using the above mappings, 
we can define a h for the given hazard case h = (xsp, Xvi) such that the following holds for 
any state (re, s) G {sp, vi} x S:'J 

ah((K, s}) := {c G E | (c, s) G ah

sel{Xn) U < ( % « ) U 

«rst(X«)}-

Example 6. Assume the hazard case (xsp, Xvi) shown i n Example 4 for the microprocessor 
from Example 1. F i r s t , we focus on the spoiler execution Xsp = (^sp,Tsp). Since the 
microprocessor contains five pipeline stages, the spoiler gets associated wi th the set of 
states Qgp := {sp} x S where S = {_L, 1 , . . . , 5, T } . We w i l l now show how the ah mapping 
is computed for the states of Qgp. F r o m the definition of a h , it direct ly follows that 

ah((sp,±))=ah((sp,T)) = <t>. 

For the states (sp,l), (sp,5), one has to first compute the auxi l iary mappings a * e l , 
a ^ , and a^st from Equa t ion 9.9. A s the X register is wri t ten v i a its d connection, it 
immediately follows that 

«rst(Xs P ) = 0. 

Next , since the walk 7rsp of the spoiler store execution Xsp passes through a single mul t i 
plexer, namely, Mxlnc, v ia the edge MXIHCCQ w i t h Tsp(4MxInc-c°) = 2, we get 

<xhsei(Xsp) = {(Mxlnc.sel - » 0,2)}. 

5 Note that the executions can also end by an Vk-en edge. However, in this case, no matter what the value 
of the enable signal is a hazard happens by enabling/not enabling a write of some data into an architectural 
storage. Hence, no further condition is needed in this case. 
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For Q!gn, we only need to assure that the storage X is wri t ten at the end of the execution. 
Since Tsp(5X'd) = 2, we let 

al(XsP) = {(X.en^l,2)}. 

Final ly , by uni t ing the above computed auxi l iary mappings, we get that 

ah((sp, 2)) = {Mxlnc.sel 0, X.en 1} 

and V i G § \ {2}: ah((sp,i}) = 0. Analogical ly, for the v i c t i m execution \vi = {^vii^vi) of 
the analyzed hazard case, we would infer that 

«se i (x«) = {(MxSelj.sel 1,4)} 

and a^st(xvi) = «en(Xw) = 0- Therefore, we get that 

ah({vi,4)) = {MxSelj.sel ~* 1} 

and V i G S \ {4}: ah({vi,i)) = 0. <c 

9.5.2 Transition Relation of the Parametric System 

For the construction of the transi t ion relation Ah presented later on, we w i l l first introduce 
three predicates that characterise mutual interactions of pairs of instructions whose execu
t ion has reached some states gi, g 2 G Qh of the verified H S Ph. We stress that q\ and g 2 are 
states of the execution of two considered instructions, which are of course a part of a single 
configuration of the H S Ph. Before providing rigorous definitions of the predicates, which 
are given later in this section, we first provide some intui t ion behind them. 

A pair of states g i , g 2 € Qh and a stage s G § satisfy the ternary stage stall predicate 

C Qh x § x Qh provided that the edge conditions associated wi th the states q\ and g 2 

ensure that the stage s is stalled, and thus the contents of a l l pipeline storages of s stays 
st h, s st h 

unchanged. We w i l l further use the shorthand q\ < ' ' > g 2 for (gi , s,g 2) G <—L^. 
Further, a pair of states g i , g 2 G Qh and a stage s £ § satisfy the ternary stage clear 

predicate C Qh x S x Qh provided that the stage s is cleared, i.e., the contents of 

al l pipeline storages of s is nullified. We w i l l further use the shorthand q\ <c' ,S) g 2 for 
, , c\,h 
(Qi,s,q2) G <—>. 

Final ly , a pair of states g i , g 2 G Qh satisfies a binary state conflict predicate « — C 
Qh x Qh provided that the given processor excludes a configuration where two instructions 
would appear i n the states qi, g 2 at the same time. We w i l l further use the shorthand 

cf h cih 
qi «—^ g 2 for {q\, g 2) G ^—L->-. For instance, one of the typica l scenarios when two states qi, 
g 2 G Qh are i n a state conflict occurs when there exists an edge e G E so that e 6i G 
^ ^ ( g i ) A e ~» 6 2 G ah(q2), h, 6 2 G B, while b\ / 6 2 . 

In order to formally define the above described predicates, we first introduce two auxi l 
iary notions: i n particular, (i) a mapping unwind^ : Qh —>• 2C where C is the set of configu
rations of the T S Th = ( C , ^ ) induced by the P S G and (ii) a predicate csath C 2 E x 2 Q h . 

The purpose of the unwind h mapping is to compute a l l configurations of the T S Th 

i n which Th (and hence the processor it represents) can be when the processor contains 
an instruction of a class K in a stage s while executing wi th in the given hazard case h. 
The considered configurations must be such that the processor can reach them by going 
through a l l preceding stages and such that the processor can finish the execution of the 
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instruction by going through a l l its further stages, a l l the t ime executing wi th in the hazard 
case h. In particular, let m = m a x ( § ) be the number of stages and let (K, S) G Qh be an 
instruction state representing an instruct ion of a class K i n a stage s w i th in a hazard case 
h. Then , unwindh({n, s)) consists of exactly a l l those configurations ko G C such that there 
is a trace (k-s, ..., ko, ..., km-s) i n Th that conforms to the following rules for a l l i such 
that — s < i < m — s: 

k i ^ h + i , (9.10) 

kie^{ah((K,s + i))). (9.11) 

The first constraint above ensures that we indeed consider a trace in the T S Th. The second 
condit ion then ensures that the trace passes a l l stages of an instruction of the given class 
while the processor is executing wi th in the given hazard case. 

The above described computat ion of the unwind h mapping can be implemented sym
bolical ly using a BVL formula unwind*h{q) for any q G Qh. To describe the computat ion, 
we introduce the notat ion to denote the result of a (straightforward) conversion of 
the relation s - to a 5 VL formula where a l l variables representing the current state of the 
T S Th are indexed w i t h i and those representing the future state are indexed wi th i + 1. 
Moreover, as i n Section 9.3.2, we use e* to denote the conversion of an edge e G E indexed 
wi th the trace index i to a BVL variable. Then, given q = (K,S) G Q h \ K x { _ L , T } , the 
B V L formula unwind*h{q) is obtained as follows: 

m—s—l 
F i := A ^ M + 1 ) , 

i=-s+l 
m—s 

F2(q) := A A e* = b, 
i=-s+l e^beah({K,s+i)) (9-12J 

^3 := A e* = e*0, 
eS-E 

unwind*h(q) : = 3E : F\ A F2(q) A F 3 . 

Above, the existential quantification ranges over the set E = {e* \ e G E A— s < i < m — s}. 
Its reason is to get r i d of the concrete past and future values of the variables that appear 
in the execution, keeping only their impact on the current values of the variables. 6 F ina l ly , 
in order to extend the definition of unwindh for in i t i a l and final states q' G K x {_L, T } , we 
define unwind\{q') := true. 

Further, we proceed to the second auxi l iary predicate: csath- The csath predicate 
determines satisfiability of a set of edge conditions / C IE i n a s i tuat ion when the pipeline 
contains instructions i n states from a set S C Qh. Formally, it is defined as follows: 

csath(I, S) P| unwindh(q) D Q 7(c) / 0. (9.13) 
q&S c£l 

The evaluation of csath{I,S) can be natural ly reduced to checking the satisfiability of 
a BVL formula as follows: 

csath(I, S) sat(^ f \ unwind\(q) A f \ e* = b^j. (9.14) 
q&S e~+b£l 

6 I n our implementation of the approach, we replace the existential quantification by simply pruning away 
all variables unrelated with any e* for any e € E and by renaming the remaining variables in a unique way 
such that no conflicts arise when constructing more complex formulae on top unwind*h(q). 
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st h 
Now, the predicate csath can be used to precisely define the needed predicates <—L->, 

cl,h cf,h r 

<—>, and i—> as tollows. 

Definition 23. For any instruction states q\, q2 € Qh and any stage s £ S , the stage stall 

predicate q\ <st'fe's> q2 [s defined as follows: 

qi Q2 3 Vp € Vp : if{vp) = s A 

-^csath({vp.en 1}, {qi,q2}) A (9.15) 

-.csai f t({up.rst l},{q\,q2}). 

Intuitively, the definition requires that the presence of some instructions i n states q\ 
and q2 i n the pipeline ensures that there is a pipeline storage vp in stage s, which we denote 
as a representative storage below, such that the value of vp can neither be updated nor 
cleared, i.e., vp keeps its value. Note that the already established val idi ty of the consistency 
Rules 1 and 4 implies that the setting of any control edge (en, rst) is the same for a l l 
pipeline storages across the given pipeline stage, and so the fact that some representative 
storage is stalled means that a l l storages of the given stage are stalled (and the instruction 
that is now in stage s stays in i t ) . 

cl h 
In a similar fashion, we define the « — p r e d i c a t e . 

Definition 24. For any instruction states q\, q2 € Qh and any stage s £ §, the stage clear 

predicate q\ <cl'fe's> q2 is defined as follows: 

qi q2 < ^ 3 Vp e Vp : <p(vp) = s A ^ 

-*csath({vp.rst 0}, {qi,q2}). 

Note that the definition requires that the representative storage must be cleared (since 
the formula cannot be satisfied wi th the vp.zst edge being zero). The consistency rules 
then assure that the same holds for a l l storages of the given stage. 

In order to be able to define the •̂ -L-> predicate, we only need to be able to determine 
whether two given instruction states are prohibi ted from occurring together i n a single 
pipeline configuration by the control logic of the considered processor. Th is is, however, 
easy thanks to the csath predicate as shown below. 

Definition 25. For any instruction states qi, q2 £ Qh, the state conflict predicate q\ q2 

is defined as follows: 

qi Q2 < ^ -^csath(Q),{ql,q2}). (9.17) 

Intuitively, the expression csai/j(0, {qi, q2}) does not put any constraints on edge con
ditions, but it s t i l l checks whether some concurrently executing instructions can simultane
ously get into states q\ and q2. Hence, its negation says that this is excluded i n the given 

processor, al lowing us to define the «—^ predicate. 

st h 
Example 7. In this example, we w i l l demonstrate how the predicate <—'-t can be evaluated 
for a given pair of states and a given stage. Let us consider states (sp,2), (vi,3), Stage 
2, and the hazard case h = (Xsp,Xvi) from Example 4. Here, the spoiler instruct ion in 
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state (sp, 2) writes into the register X the (auto-incremented) value previously read from 
the same register. The v i c t i m instruction in state (w,4) then reads the value j from the 
register X and uses it as an index to access the memory cell Merrij. 

st h 2 
From Defini t ion 23, we know that, in order to determine the value of (sp, 2) < ' ' > (vi, 3), 

one has to (i) pick a representative pipeline storage vp G {v G Vp \ p(v) = 2}, (ii) evaluate 
$ i := ^csat({vp.en 1}, {(sp, 2), (vi, 3)}), and (hi) evaluate $2 := -,csat({vp.rst 1}, 
{(ap,2) ,<w,3)}). 

A s for Step (i) above, it suffices to look in Table 9.1 and choose, for instance, Idlr as 
the representative storage. Moreover, in Example 1, we have pointed out that the value of 
the enable edge on the Idlr storage is determined by the following expression i n BVL: 

Idlr.en* = ^IncX.q* V ^OfWrMem.q*. (9.18) 

Now, to address Step (ii), we know that, according to Equa t ion 9.14, $1 expands to 

->sat(unwind*h((sp,2)) A unwind*, ((vi, 3)) A 
(y . iy j 

Idlr.en* = 1). 

We further concetrate on the expansion of unwind*h((sp, 2)). Accord ing to Equa t ion 9.12, we 
need to construct formulae F\, F2((sp,2)), and F3 . F i r s t , the transi t ion relation described 
by Formula F\ contains the following conjuncts : 

Impl.qfc = (IncX.q* ExWrX.q*) A 

Mxlnc. selg = Impl.afo. 

To see that the above holds, it suffices to check how the value of Mxlnc.sel is computed 
from its predecesors i n the P S G shown i n F i g . 9.2 8 . The formula F2((sp, 2)) then gives 

MxInc.sel*Q = 0 A X.en*Q = 1, (9.21) 

which is a direct consequence of the result that we have obtained i n Example 6 where we 
have shown 

a((sp,2)) = {Mxlnc.sel 0, A .en 1}. 

Final ly , Formula -F3 s imply asserts equality between zero-indexed and non-indexed variables. 
We can then apply the existential quantification from Equa t ion 9.12, which allows us to get 
r id of the indexed variables, leading to that the below equality must hold: 

IncX.q* = 1. (9.22) 

7 T h e entire formula is, of course, much bigger—indeed, it describes the entire transition relation. When 
the satisfiability checking is done automatically, the solver wi l l consider the entire formula. However, we 
select its relevant parts only so that the example is readable. 

8 W e assume that the Impl vertex of the P S G computes the standard implication function fimpi(ao, 01) := 
an => 01 for an, 01 G B . 
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Now, we w i l l apply a similar approach to expand the formula unwind*h((vi, 3)). In this 
case, the following conjuncts of Formula F\ tu rn out to be relevant: 

ExWrMemAl = OfWrMem.q*, A 

ExWrMem.q* = f%*rMem(ExWrMem.cfc, 

ExWrMem.d*0, ExWrMem.en*0, (9.23) 

ExWrMem.rst*) A 

MxSelj.sel* = ExWrMem.q*. 

Above, fExWrMem ^ s * n e next-state function that was defined in Section 9.1.2 and that 
propages the value on the data-in edge d to the data-out edge q iff the enable edge en is 
set and the reset edge rst is unset. Moreover, i f rst is set, then the data-out q is nullified. 
Otherwise, when both en and r s t are unset, the data-out edge q keeps the value from the 
previous cycle. Further, i n Example 6, we have seen that 

a((vi,4)) = {MxSelj.sel 1}, 

which imples that the formula i<2((w,3)) must ensure 

MxSel.sel\ = 1. (9.24) 

B y combining the observations from Formulae 9.23 and 9.24, and by adding Formula F% 
and the existential quantification of Equa t ion 9.12, we obtain the following statement: 

( (ExWrMem.en* = 1) (OfWrMem.q* = 1) ) A ^ 

ExWrMem.rst* = 0. 

Here, the ExWrMem.rst* = 0 conjuct comes from the fact that the data-out edge must 
not be zero because of the constraint i n Formula 9.24. 

Next , according to the consistency Rule 3 from Section 9.3.2 that holds globally at any 
pipeline cycle, the following expression must hold: 

(ExWrMem.en* = 0 A ExWrMem.rst* = 0) 
(9.26) 

(Idlr.en* = 0 A Idlr.rst* = 0). 

In particular, the above comes from the fact that ip(Idlr) + 1 = ip(ExWrMem), i.e., Idlr 
and ExWrMem are two pipeline storages i n adjacent stages. 

B y applying the modus tollens rule on Formula 9.26, we get 

(Idlr.en* = 1 V Idlr.rst* = 1) 
V ; (9.27) 

(ExWrMem.en* = 1 V ExWrMem.rst* = 1). 

Final ly , if we put together our observations made in Formulae 9.18, 9.22, 9.25, and 9.27, 
we can conclude that the expression 

unwind*, ((sp, 2)) A unwind*h((vi, 3)) A Idlr.en* = 1 

is not satisfiable. Thus, the expression $ i evaluates to true. 
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Analogical ly, for Step (ii i) , we would also derive that <&2 is true, and therefore the 
st h 2 

predicate (sp,2) < ' ' > (w,3) necessarily holds. In other words, this means that the NOP 
injection into Stage 3 takes place whenever there is a spoiler defined by Xsp in Stage 2 and 
a v i c t i m described by Xvi i n Stage 3. < 

We can now define transitions that the transi t ion relation Ah of the H S Ph contains. 
Fi rs t , for every instruction state q = (re, s) G Qh, Ah contains a transi t ion q —>• q al lowing 
the instruct ion that is i n q to stay i n q whenever the state q appears in a configuration of 
the pipeline of the given processor (i.e., a configuration of the transi t ion system induced 
by Ph) that contains a combination of instruct ion states q\, q2 £ Qh which causes the 
instruction i n the state q to be stalled. Formally, Vg = (re, s),q\,q2 £ Qh: 

( 3 „ : {qi,q2} Q2- (9.28) 

A s we have already mentioned at the beginning of Section 9.5, we use the stall-flow sf 
and normal-flow nf instruction classes to model pipeline-filler instructions, i.e., to model 
al l other instructions than the spoiler and v i c t i m . The difference between the stal l- and 
normal-flow operation modes is that an s/-class instruction in a stage s' G § causes a l l 
pipeline stages s £ § s.t. s < s' to be stalled. In other words, an instruct ion stays in a state 
q = (re, S) G Qh whenever q appears i n a configuration of the pipeline containing an earlier 
instruction i n the stall-flow operation mode. Formally, \/q = (re, S), q' = (sf, s'} G Qh: 

(3^_ : {q'} H ^ ? ) e A ^ s < s ' . (9.29) 

Including stalls caused by stall-flow instructions is necessary as they may introduce oth
erwise unreachable configurations of the verified H S Ph. Moreover, since a pipeline stall 
caused by some filler instruction may occur at any processor cycle, we w i l l always allow 
random transitions between stal l- and normal-flow operation modes of filler instructions in 
the upcoming explanation. 

Next , an instruct ion in a state q = (K,S) G QH, QH = K x S, S = S \ {max(S)}, is 
cancelled, i.e., yields a transi t ion q —>• (re', s + 1), re' G {nf, sf}, provided that q appears in 
a configuration of the pipeline i n which there exist instructions i n states q\ and q2 that cause 
the stage s+1 to be cleared. More formally, \/q = (re, s) G Qh, V g i , q2 G Qh, Vre' G {nf, sf} : 

( 3 „ : {qi,q2} h= Q -»• <«', s + l ) ) e A k O 
cl,/l,S+l / Bt,/l,S \ (9.30) 

qi i > q2 A -. ^1 ^ > g 2 J • 

Note that for a successful clearing of an instruct ion in the stage s, it is also required that 
s is not stalled at the same time. 

For the case when our over-approximating abstraction allows two states q and q' that are 
conflicting to be reached i n a single configuration of the transit ion system induced by the 
H S Ph, we introduce the following solution to reduce the number of possible false alarms. 
Namely, we k i l l the instruct ion that entered the pipeline later assuming that this instruction 
is in the state q = (re, s), i.e., we introduce the transi t ion q —>• (re', s + 1), re' G {nf, sf}, into 

A \ Formally, = (re, s) G Q~h, Vg ' G Q \ Vre' G { n / , s / } : 

( 3 ^ : {q'} \= q (re', s + l ) ) e A k O (re, a) 4^ </. (9.31) 

A s for the possibil i ty of new instructions entering the pipeline, only the left-most in 
struction in a given configuration that has so far not entered the pipeline is allowed to enter 
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it . Moreover, new instructions cannot enter the first stage if it is stalled. More precisely, 
Vq= (re,i_), q'= (re',i_), ? 1 j g 2 G <2ft: 

(9-32) 

( 3 „ : { ? 1 , g 2 } H ^ ? e A ' 1 ) o ? 1 q2. (9.33) 

Next , an instruct ion can proceed to the next stage iff none of the above rules is appli
cable. To model this fact, we use local transitions, bui ld ing on that we define a l l global 
transitions (used above) to be of a higher probabil i ty than the local ones. Further, we add 
transitions reflecting that once finalized instructions stay in their final state forever. More 
rigorously, V(re, S) G Qh: 

((re, s) —>• (re, s + 1)) G Ah, (9.34) 

( ( r e , ± ) ^ ( r e , l » G A \ (9.35) 

((re, max(S)) -> (re, T ) ) G Ah, (9.36) 

( ( r e , T ) ^ ( r e , T » G A \ (9.37) 

To ensure a possibil i ty of the pipeline being stalled by some filler instruction, we allow 
switching between stal l- and normal-flow operation modes. More formally, V ( s / , s), (nf, s) G 

Qh: 

((nf,s)^ (sf,s + l)) G A \ (9.38) 

((sf,s)^(nf,s + l))eAh. (9.39) 

Final ly , we recall that apart from the higher pr ior i ty of global (i.e., guarded) transitions 
over local (i.e., unguarded) ones, the transi t ion relation Ah is constructed under the as
sumption that, i n each step of the transi t ion system induced by the H S Ph, each instruction 
whose state is a part of the given configuration of Ph must make a step. This is, if we take, 
e.g., a configuration 51̂ 2^3 consisting of three states of three instructions, a l l of the three 
instructions must synchronously fire some of the above described transitions such that we 
get the successor configuration q^q^q's-

9.5.3 Construction of the Min imal Bad Set 

In the previous section, we have constructed a hazard system Ph = (Qh,Ah, ah) that 
models possible interactions of a spoiler and a v i c t i m instruction, forming a hazard case 
h = (Xsp, Xvi) G X x X , surrounded by other instructions during a pipelined execution. We 
now need to be able to check whether some k ind of data or control hazard occurs. 

To facilitate detection of possible hazards from the constructed H S , we w i l l construct 
a set Bh of minimal bad configurations describing min ima l illegal configurations whose 
reachability (wi thin possibly larger configurations) w i l l mean that the given hazard case h 
does indeed lead to a hazard. We define the set Bh wrt an extended hazard system P y 
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Table 9.2: Roles of e- /£-class instructions in hazards cases. 

Hazard e-class Role £-class Role 

RAW writes spoiler (too slow) reads victim 

WAR reads victim writes spoiler (too fast) 

WAW writes victim writes spoiler (too fast) 

CTL writes spoiler (too slow) jumps victim 

(defined later i n this section), which is obtained by applying four transformations, described 
also later in the section, on the input system Ph. Since the ordering of instructions wi th in 
a hazard case is an important factor in the following explanation, we w i l l be speaking 
about pairs of instruct ion classes consisting of an e ("earlier") instruct ion class and an £ 
("later") instruction class such that either e = sp A £ = vi or e = vi A £ = sp, meaning 
that an earlier instruct ion always enters the pipeline sooner than the later one. For the e 
and £ class instructions, one of the following statements always holds: (a) For R A W and 
C T L hazards, the e-class instruct ion is a spoiler that enters the pipeline first and should 
write data to be read by the later instruction, but it is too slow and the later instruction 
uses obsolete data, (b) For W A R and W A W hazards, the spoiler is an £-class instruction 
that enters the pipeline later, but it is too fast and it either destroys data to be read by 
the earlier instruct ion ( W A R ) , or it stores its result too early and the result is overwritten 
by the obsolete result of the earlier instruction ( W A W ) . These scenarios are summarized in 
Table 9.2. 

We are going to bu i ld the set Bh such that it w i l l contain so-called hazard pairs 
ill}> • • •> QeQe °f states of the earlier and later instruct ion such that a hazard described 
by the hazard case h may occur iff there exists a configuration of the system P-y that con
tains as a subword some hazard pair from the set Bh and that is reachable from the set of 
in i t i a l configurations Ih. Note, however, that the control states of the earlier/ later instruc
tions that signify that something relevant for the hazard has happened (some cr i t ica l value 
has been wri t ten or read) do not necessarily occur at the same time. O n the other hand, 
hazard pairs consist of pairs of states that should be reached at the same time. To resolve 
this discrepancy, we w i l l pass information that the cr i t ica l control state of an instruct ion has 
been reached to its successor states. For that, we w i l l introduce several auxi l iary notions, 
which w i l l be introduced such that the detection of the different kinds of hazards may be 
described i n an as uniform way as possible. 

We first introduce the hazard distance 5 that, intuitively, determines the m a x i m u m de
lay (measured i n pipeline cycles) w i th which the later instruct ion can s t i l l cause a hazard. 
Intuitively, the basis of the distance is the difference in the number of the stages in which 
the col l iding read/wri te operations happen wi th in the concerned instructions. However, 
sometimes, this basic difference has to be decreased by one since one of the col l iding opera
tions must appear by at least one cycle earlier than the other, while i n other cases a hazard 
appears even when they occur at the same time. More details on that are given below the 
definition. 
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Definition 26. The hazard distance 5: X x X —> N is defined as follows for a l l hazards 
h = (Xsp, Xvi) £ X x X where Xk = (^k, Tk) for k G {sp, vi}: 

5(h) 
.1st 
vi 

.1st 
sp 
1st 

- T . 

- T, 

- T\ 

.fst 
vi 
.1st 
sp 

.1st 
sp 

if / i is a W A R hazard, and 

1 if / i is a W A W hazard. 

1 if / i is a R A W or C T L hazard 

Notice that the hazard distance is indeed always non-negative as the definitions of R A W 
and C T L hazard cases (Definitions 19, 22) imply that T * * < r]p , and the definitions of W A R 
and W A W hazards (Definitions 20, 21) imply that rlf < r ^ f (and, for the case of W A W 
hazards, one can add the fact that r ^ f < r^f) . For R A W and C T L hazard cases, the 
distance is decremented by one because reading a value at a cycle when its wr i t ing was 
finished, which is what the corresponding value of r records (recall that the wr i t ing starts 
one cycle earlier), is safe. O n the other hand, i n W A R hazards, overwrit ing the value that is 
read/wri t ten by the earlier instruct ion at the same t ime is an error. F ina l ly , W A W hazards 
are special i n that the conflict arises between two write operations where the most extreme 
case arises when the write operation in the spoiler appears one cycle before the write i n the 
v ic t im: that is why, we have the decrement by one in the formula of W A W hazards. For 
a further i l lustrat ion of the notion, see Figure 9.3. 

We w i l l next introduce the so-called spo i le r /v ic t im gap and detection windows. Intu
itively, the gap window gSp/gvi of a spo i le r /v ic t im instruct ion t w i l l tel l us for how many 
cycles one has to wait wi th in the execution of t, s tart ing from its cr i t ical wri te operation, 
un t i l the detection of a possible hazard may start. In some cases, the gap w i l l be zero while 
in some other cases it w i l l be positive. The latter case w i l l happen when the v ic t im/spoi le r 
instruction i!, possibly coll iding wi th t, has no chance to perform its write operation be
fore the moment when the write operation of t happens even if t' starts right after t. The 
detection window (of size at least one) w i l l then te l l us for how many cycles the detection 
of a possible hazard should be performed wi th in a given instruct ion after the gap window 
passes. 

In particular, we w i l l define a l l the windows such that the detection window of v i c t i m 
instructions, denoted dvi, w i l l be fixed to one, i.e., d„ = 1. Intuitively, the hazard detection 
w i l l always be performed as soon as the v i c t i m instruct ion writes (and hence "publishes") 
the wrong data and the gap window of that instruct ion is over. 

The detection window of a spoiler instruct ion w i l l be possibly longer, i n particular, it 
w i l l correspond to the hazard distance, i.e., dsp = 5(h) where h = (xsp, Xvi) is the considered 
hazard case. The definition of the gap windows must then be done i n such a way that any 
hazard may be detected wi th the detection windows defined as above, i.e., the detection 
wi th in the part icular instructions must be postponed such that the hazard can always be 
caught wi th in the detection windows. This definition is more complex and is given below 
separately for different types of hazards. 

G a p Windows for R A W and C T L Hazards 

Firs t , notice that r f s t < r l s t holds for each forward execution (vr, r ) £ X where 7r f s t , 7r l s t £ V^. 
Second, recall that the definitions of R A W and C T L hazard cases (Definitions 19, 22) imply 
that rlf < rlSp. If put together, one can see that there are two possible orderings of rlf, 
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1 2 3 4 j 5 
-1st 

1 2 3 4 
-1st 
Lsp 

1 , 2 

« = 2 2 3 4 5 
-1st 

6 7 
Tvi 

(a) Detection of a RAW hazard using a delay in the 
spoiler: 5(7i) = T] P * - 4f - 1 = 4 - 1 - 1 = 2, 
9sP = rlf - TI? + 1 = 5 - 4 + 1 = 2, g O T = 0, 
dsp = 5(7i) = 2, and dvi = 1. 

« = 1 1 
Jst 
Tvi 

2 
-1st 

3 4 5 1 
Jst 
Tvi Tvi 

S = 2 2 3 4 5 

T v i 

5 = 3 

V! 

2 
-1st 

3 4 5 

V! Tvi 

(b) Detection of a RAW hazard using a delay in the 
victim: 5(h) = r ' p -r'f -1 = 4 - 1 -1 = 2, flsp = 0, 
ff» = rfe* - TJS* - 1 = 4 - 2 - 1 = 1, dsp = 6(h) = 2, 
and dm = 1. 

5= -1 1 2 ^ 
-1st 

3 — 5 - 5 
lsp 

8 =-2 1 2 
-1st 

3 4 5 6 
Lsp 

« = -3 1 2 
-1st 

3 4 5 6 
tsp 

(c) Detection of a WAR hazard using a delay in 
the spoiler: 5(h) = rlf - r ' p = 4 - 2 = 2, g s p = 
r j f - r„ ff = 6 - 4 = 2, 5 o t = 0, d s p = 5(h) = 2, and 
dvi — 1 • 

5= -2 1 2 
lsp 

3 4 5 

5= -3 1 2 
-1st 
lsp 

3 4 5 1 2 
-1st 
lsp 

3 4 5 

(d) Detection of a WAW hazard using a delay in the 
spoiler: 5(h) = T^-T^-I = 5 - 2-1 = 2, gsp = 1, 
3„» = 0, d s p = 5(7i) = 2, and d„» = 1. 

Figure 9.3: A n i l lustrat ion of the notions of hazard distance and gap and detection windows 
used to construct m in ima l bad sets. 

T*> and T%: 

r% < rlf < T% (9.40) 

rlf < r]f < r j f (9.41) 

We start w i t h the ordering (9.40), which is i l lustrated by the scenarios in F i g . 9.3(a). 
In this case, the spoiler finishes its write operation earlier, and the R A W hazard occurs as 
soon as the v i c t i m performs its write operation. Hence, i n order to be able to detect the 
hazard v i a states simultaneously reached i n the spoiler and the v ic t im, the detection needs 
to be put off in the spoiler. Provided that the we consider a v i c t i m that starts right after 
the spoiler, r * f — T ^ * + 1 cycles need to be skipped in the spoiler ( including the cycle in 
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which the write operation of the spoiler happens), and so gsp = T ^ * — T ] ^ + l . 9 O n the 
other hand, no cycles need to be skipped before the detection starts in the v ic t im, and so 
gvi = 0. Note that the detection of hazards w i t h vic t ims that start later than one cycle 
behind the spoiler is handled through the detection window dsp. 

Next , we consider the ordering (9.41), which is i l lustrated i n F i g . 9.3(b). In this case, 
the v i c t i m performs the write operation first, and the hazard occurs as soon as the spoiler 
performs its write operation. Hence, this t ime, the detection needs to be put off i n the 
v i c t im . Us ing a s imilar reasoning as above, we define gsp = 0 and gvi = T ] ^ — T ^ * — l . 1 0 

G a p Windows for W A R Hazards 

For an i l lustrat ion of the gap and detection windows of W A R hazards, see F i g . 9.3(c). A s 
above, we can use the fact that r f s t < r l s t holds for each forward execution (ir, r ) G X 
where 7r f s t ,7r l s t £ Vs. Moreover, the definition of W A R hazards (Definition 20) implies that 
Tsp < Tvf- Hence, for W A R hazards, r^f, r^jf, and r]p can be ordered as follows only: 

r]f < rlf < T% (9.42) 

Intuitively, after the spoiler instruct ion writes, the W A R hazard does not occur unt i l 
the v i c t i m performs its write as well . Unl ike for R A W / C T L hazards, we now consider 
as the base case not the si tuat ion when the later instruct ion starts right after the earlier, 
but the case when the later instruction starts as late as possible to be s t i l l able to cause 
a hazard, i.e., the case when the spoiler starts 5(h) cycles after the v i c t im . Then , it is easy 
to see that the detection needs to be put off by — (T]^ + 5(h)) cycles. Hence, we define 
9sP = r i f - (rlf + 5(h)) = r j ? - ( r # + r ^ f - r # ) = r # - 4f while gm = 0. The cases of 
the spoiler that start sooner are then handled appropriately by using the detection window 
dsp = 5(h) as also i l lustrated i n F i g . 9.3(c). 

G a p Windows in W A W Hazards 

A s wi th W A R hazards, for W A W hazards, the ordering between writes given i n Equa
t ion 9.42 is the only possible. After the spoiler instruct ion writes, the W A W hazard does 
not occur un t i l the v i c t i m performs its write as well . This cannot happen sooner than after 
passing through at least one pipeline stage. Therefore, we put the spoiler gap distance 
equal to one and the v i c t i m gap distance equal to zero, i.e., gsp = 1 and g„ = 0. 

Tracking Passage through G a p and Detection Windows 

To facilitate t racking whether a spo i le r /v ic t im instruction is inside a gap or detection win
dow and, i f so, how far inside the window it is, we w i l l introduce a notion of extended hazard 
systems ( E H S ) . In an E H S , each state of the execution of a spo i le r /v ic t im instruct ion w i l l 
be labelled by a set of tags saying whether the write operation of the spo i l e r /v ic t im has 
already happened and, i f so, how many cycles have passed since then. The universe of tags 
T w i l l therefore include a l l couples from the set { w i n s p , win„ j} x N . The universe of tags is, 
however, not defined to be equal to the above set since we w i l l need to add some more tags 

in tu i t ive ly , the addition of 1 is needed since the vict im starts by one cycle later. Further, note that the 
gap is appropriately defined also for the case when rsf = Tvf when a gap window of size 1 is needed to 
compensate the fact that the vict im starts by one cycle later. 

1 0 T h e subtraction of 1 comes from that the spoiler starts by one cycle earlier. 
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into it later on when we examine the effect of stall ing of an instruction, which we w i l l need 
to reflect in the tags as well . We defer the discussion of the stalling-related tags behind we 
properly explain the basic spo i le r /v ic t im tags. 

Below, we w i l l introduce the E H S s step-wise by first adding tracking of spoiler windows, 
then v i c t i m windows, and then adding tracking of stalled instructions. This w i l l lead to 
introduct ion of E H S s of various levels, w i th the zero level being the original hazard system, 
level one being the extension by tracking spoilers, etc. 

More formally, for a hazard case h = {XspiXvi) and the associated H S PH = (Qh, AH, 
ah), the corresponding extended hazard system (EHS) of level n > 0 is a tuple P% = (0,%, 
AtutPn) where: 

1. Ql1 is a finite subset of the set Qh x ( N U { _ L , T } ) ™ . 1 1 We let Qft = Qh, and we give the 
precise construction of the set Q% for n > 1 below. Intuitively, the addi t ional compo
nents of the states w i l l allow us to track the passage of the spo i le r /v ic t im instructions 
through the gap and detection windows, for which some states of the original H S 
w i l l need to be split to mult iple occurrences to reflect whether an instruct ion i n that 
state is in the window and, i f so, how far. Moreover, some further spl i t t ing w i l l be 
needed when some of the tracked instructions are stalled some number of times. The 
finiteness of Q% w i l l stem from that the tracked gap and detection windows are finite, 
that we are t racking a pair of instructions, and that the stal l ing can happen for finite 
t ime only. 

2. The transi t ion relation and the label l ing function lift the transi t ion relation 
AH and the labell ing function ah to the extended set of states. We have A g = AH 

and OJQ = ah, and the construction of the relations for n > 1 is described in detail 
below. 

3. F inal ly , 0^: Q% —>• 2 R is the new tag function. We let /3Q (q) = 0 for any q G Qft. For 
n > 1, the construction of the function w i l l also be shown below. 

For n > 1, the construction of the E H S P% w i l l be based on applying A l g . 3 and 4 
several times on the E H S PQ. We start by presenting A l g . 3 that implements a procedure 
denoted as window. Th is procedure extends the input E H S such that it allows for tracking 
a spo i le r /v ic t im instruction, which performs its cr i t ica l write instruct ion w i n a state from 
some given set of states S, through its gap and detection windows whose combined length is 
k. Here, note that we monitor the gap and detection windows joint into one window which 
is possible since the latter follows immediately after the former (and we can distinguish in 
which of the original windows we are by just looking at how deep into the combined window 
we are). 

Intuitively, the a lgor i thm extends a l l states of the input E H S by one more component 
that ranges over the set / : = {A,T,0,...,/c — 1}. W h e n the addi t ional component is A , 
the tracked instruct ion has not yet entered the gap/detection window. If the addi t ional 
component i is from the set { A , T , 0,..., k — 1}, the instruct ion is in the window for i + 1 
cycles. If the addi t ional component is T , the instruct ion has already got out of the window. 

The transi t ion relation is updated straightforwardly such that the moni tor ing phase 
can be entered whenever an instruct ion is i n some state from the given set S (and the 

n F o r convenience, by a slight abuse of the notation, we let (Qh x (N U {_L,T})) x (N U {_L,T}) = 
Qh x (NU {_L,T}) x (NU {_L,T}) and ((q,ii),te) = (q,ii,h) for any q € Qh and i u i 2 £ NU {_L,T}, and 
likewise for higher values of n. 
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monitor ing has not yet started). If the monitor ing is started, every executed transi t ion 
increases the number of cycles spent i n the window (recorded in the addi t ional component 
of states) un t i l the end of the window is reached. Note that, for transitions w i t h guards, the 
states used i n the guards must be lifted to the new set of states, which is done by allowing 
them to appear wi th any value of the addi t ional component. Indeed, satisfaction of the 
guard is not subject to the cycle i n which it is reached. 

The a function does not depend on the addi t ional component, and so it is lifted to the 
new set of states by ignoring the addi t ional component. O n the other hand, the j5 function 
is extended such that states that are inside the monitored window w i l l be tagged by a couple 
(w, i), which says that the operation w is in the (i + l ) - t h cycle of its gap/detection window. 

To be able to compute the set S where the t racking of gap/detection windows starts, 
which we need to be able to apply A l g . 3, we introduce some further notat ion. Namely, 
given a state q = (re, s,i\,..., in) G Q F T x ( N U {_L, T } ) n , representing the state of execution 
of some instruction, we denote by = re and S(q) = s the class and stage of execution 
of the concerned instruction, respectively. To identify the states where the cr i t ical write 
operations happen and the tracking of the passage of the gap/detection windows starts, 
we introduce the following function. Namely, given an E H S P = (Q, A, a, j3) of any 
level and an instruct ion class ft 6 K , we define wr^: X —>• 2 ^ as the function that maps 
any execution (ir, r ) G X to the set {q G Q | = re A S(q) = r(7r l s t )} of a l l the states 
of P where a re-class instruct ion makes the write 7r l s t to its target storage in the execution 
( T T , T ) . 

We can now proceed to the transformation of the original E H S PQ to the E H S P\ 
extended to track the spoiler gap and detection windows. W i t h the above notat ion and 
algori thm i n hand, the E H S P i can be obtained s imply as 

P1 := window(P0 , wrSp 

Indeed, the cr i t ical operation is wr i t ing i n a spoiler, which we denote as w i n s p . The write 
ph 

operation can happen i n one of the states returned by wrSp (Trsp,Tsp). These states thus 
serve as the in i t i a l states for t racking the gap and detection windows. Thei r sizes are gsp and 
dsp, respectively, which gives the length gsp + dsp of the combined window whose tracking 
is ensured in P^ by A l g . 3. 

The E H S P% extended to track the v i c t i m gap and detection windows can be obtained 
from P^ i n a very similar way as follows: 

h h P^1 

P2 := window (P{ , wrj (7r„j 
i T m ) ) ) w i n OT) 9vi + dvi). 

A n example of a computat ion of the t racking window is demonstrated i n F i g . 9.4. 

Tracking Windows in Stalled Instructions 

Since our approach builds on counting the exact number of cycles spent wi th in the tracking 
windows, we also need to deal w i th any scenario when an £-class instruction is stalled while 
the corresponding e-class instruct ion is n o t . 1 2 Th is scenario breaks the counting scheme 
introduced i n the previous paragraphs as the later instruct ion can get delayed and the earlier 
instruction might get out of the detection window before the later one gets into its detection 
window. The goal of the following transformations is to compensate such misalignments 

1 2 T h e converse cannot happen due to the basic consistency checks that we perform. 
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A l g o r i t h m 3 The window procedure transforming an E H S Pn to an E H S Pn+\ to facilitate 
t racking of the execution of an instruction that performs a cr i t ica l write operation w in 
a state from some given set S through a window of some given length k. 

Require: A n E H S Pn = (Qn, A n , a n , j3n) of any level n > 0, a set S C Qn of states to 
start the transformation from, a tag w G { w i n s p , win„j}, and the length of the tracking 
window k G {1, . . . , max(S)}. 

Ensure: A n E H S P „ + i = ( Q n + i , A n + i , a n + i , /?n+i) where each state based on q G S 
together w i t h its k reachable successors is tagged by a pair (w, i) where 0 < i < k 
denotes the distance of the successor from the original occurrence of q. 

1: J : = { ± , T , 0 , . . . , f c - l } . 

2: Qn+1 '•= Qn X I-

3: A n _)_i is defined as the min ima l relation such that the following two conditions hold: 
(a) For every global t ransi t ion Q D : G \= q\ —> q2 G A „ and for every injection r : Qn —> 
/ , the following transitions are in A n _ | _ i : 

• Q 0 : f ( G ) |= (<&>-•-) "•(<&>-•-)> 

• Q 0 : f ( G ) ^(qi,±)^(q2,0) if q2 G S, 

• Q D : f ( G ) |= ( f t , i ) -> ((Z2 ,*+l) for a l l 0 < i < k - 1, 

• Q 0 : f ( G ) |= (qlti) -)• fe, T ) for i = fc - 1, 

• Q 0 : ? ( G ) M t t . T ) - • ( « ! , T ) 

where f : 2«» -> 2*«+ 1 is defined such that V Q ' C Q „ : f ( Q ' ) := {(q,T(q)) \ q G Q'}. 

(b) For every local t ransi t ion 91 —> 92 G A „ , the following transitions are in A n + i : 

• («i ,-L) ->• ((72, -L), 

• (91, i_) -> ( (B,0) if g 2 G S, 

• ((Zi>») ( ? 2 , i + 1) for a l l 0 < i < k — 1, 

• (qi,i) -> (92, T ) for i = k - 1, 

• ( « i , ~ 0 -)• (92, T ) . 

4: V ( 9 , i ) e Qnx I : an+1(q,i) = an(q). 

5: V ( 9 , i ) € Qn x {4 - , T } : /3„+i(9 ,z ) = Pn(q). 

6: V((7,i) G Q„ x { 0 , . . . - 1} :/3 n + i ( ( 9 , i ) ) = A»(«) U { ( « ; , » ) } . 
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3++:Gst 3«:r,(Gsr) 

(a) A part of an E H S P „ = (Qn, A „ , a „ , /3„) mod
eling the behavior of a spoiler instruction before an 
application of the window procedure. Note that, the 
spoiler instruction in the state sp0 might stall (if 
there are instructions from the set Gst), be cleared 
(if there are instructions from the set Gci), or pro
ceed to the next stage (represented by the state sp^. 

(b) A part of the E H S Pn+i 
window(Pn, {sp0}, winsp, 2) that correponds to the 
same part of Pn depicted in Part (a). States spj, 
0 < i < 2, 0 < j < 2, for which (winsp, j) G Pn{sp\), 
are highlighted in red. Please note that each global 
transition from the orignal E H S Pn corresponds 
to a family of transitions given by all possible 
injections r i , . . . , P f e : Qn —> {_L,0,1,T} with 
the mappings I \ , 1 < i < k, defined such that 
V Q ' C Qn: Fi(Q') := {(q,^i(q)) I q € Q'}. These 
families of transactions are denoted by the dashed 
lines in the figure. 

Figure 9.4: A n i l lustrat ion of an applicat ion of the window procedure on a fragment of an 
E H S Pn. 

by (1) using so-called slack tags to count how many times the later instruct ion gets stalled 
and (2) by expanding the detection window of the earlier instruction correspondingly. 

The introduct ion of slack tags, which are drawn from the set {si} x N , is implemented 
in A l g . 4, which takes us from the E H S P 2 obtained by the previous transformations to 
E H S P% as follows: 

P% := slack(P2

ft, max(S)) . 

Intuitively, a l l states from the E H S P 2 are considered to have the in i t i a l slack zero. Then , 
whenever a self-loop on any such state is possible, the self-loop is changed into a transi t ion 
going to a new copy of the concerned state wi th the slack being one. More generally, 
a self-loop on a state w i t h the slack being i is transformed into a transi t ion to a new 
copy of that state w i t h the slack being i + 1 (unless the number of slack steps reaches the 
max imum number of pipeline stages—going to such a number and beyond is not necessary 
since such behaviors are ruled out by the in i t i a l sanity checks). The number of stalls (slack 
transitions) performed by an instruct ion is thus remembered in the structure of the states, 
and, i n addit ion, we add it into the tags of the states at the end of A l g . 4 so that the 
slack information is easier to access. A n example of an applicat ion of the slack mapping is 
demonstrated in F i g . 9.5. 

W h a t remains to be done is to adjust the t racking window of the earlier instruction, 
which has to be done such that the extension corresponds to the number of the slack 
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A l g o r i t h m 4 A procedure for computing the slack mapping. 

Require: A n E H S Pn = (Qn, A n , a n , j3n) of any level n > 0 and the to ta l number of 
pipeline stages m > 1. 

Ensure: A n E H S P „ + i = (Qn+i , A n + i , a n + i , /? n+i) whose states Pn+i are tagged by pairs 
(si , i) where 0 < i < m denotes the number of self-loop transitions taken by the later 
tracked instruction in the E H S Pn. 

1: I := { T , 0 , . . . , m - 1}. 

2: Qn+1 '•= Qn X I-

3: A n _ | _ i is defined as the min ima l relation such that the following two conditions hold: 
(a) For every global t ransi t ion Q D : G \= q\ —> q2 G A „ and for every injection r : Qn —> 
/ , the following transitions are in A n _ |_ i : 

• Q D : f ( G ) |= (qui) - ) • (<Z2,*+ 1) i f 51 = 9 2 for a l l 0 < t < m - 1, 

• Q 0 : f(G) \= (q1,i) ->• (g 2 , i) i f 9i / 92 for a l l 0 < i < m, 

• Q D : f (G) \= (qi,i) -> (52, T ) if gi = g 2 and z = m - 1, 

• Q0:f(G)\=(quT)^(q2,T) 

where f : 2«» ->• 2^+1 is defined such that V Q ' C Q „ : f ( Q ' ) := {(g ,r(g)) | g G Q '} . 

(b) For every local t ransi t ion qi ^ q2 £ A n , the following transitions are in A n _ |_ i : 

• (qi, i) —> (q2, i + 1) i f qi = q2 for a l l 0 < i < m — 1, 

• (Qi, i) -> (Q2, i) i f 9i / 92 for a l l 0 < i < m, 

• (qi,i) (92, T ) i f = 52 and z = m — 1, 

• (9i , T ) -)• (92, T ) . 

4: V(g,i) e Qnx I : an+1(q,i) = an(q). 

5: V(g,i) G Q„ x { T } : = &»(«)• 

6: V(<7, i) G Q n X { 0 , . . . , m - 1} : /3n+l((q, i)) = /3n(q) U {(si, i)}. 
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sp2 

(a) A part of an E H S Pn modeling the behavior 
of a spoiler instruction before an application of the 
slack mapping. Note that the spoiler instruction in 
the states sp1 and sp2 might be stalled (if there are 
instructions from the set Gst, resp. G'st). 

3«:r,(G s ( ) 1 3„:r,. 

3«:r,(G 5 () :r,'(G's,) ' 

(b) A part of an E H S Pn+i = slack(Pn, 2) that cor-
reponds to the same part of Pn depicted in Part 
(a). States sp{, 0 < i < 3, 0 < j < 2, for which 
(si, j) G Pn{spl) with the same value of j , indi
cating that the instructions passed the same num
ber of self-loops, share the same color. Please note 
that each global transition from the orignal E H S 
Pn corresponds to a family of transitions given by 
all possible injections P i , . . . , Yk : Qn —> {_L, 0,1, T } 
with the mappings I \ , 1 < i < k, defined such that 
V Q ' C Qn: fi(Q') := {(q,Ti(q)) \ q G Q'}. These 
families of transactions are denoted by the dashed 
lines in the figure. 

Figure 9.5: A n i l lustrat ion of an applicat ion of the slack mapping on a fragment of an E H S 

transitions taken by the later instruction. For that, we w i l l again use the window procedure 
(i) 

from A l g . 3, but we w i l l instruct it to add special tags of the form w i n V ^ meaning that 
the t racking window of the earlier instruct ion is extended by i cycles. The definition of the 

(i) 
bad configurations w i l l then match states of the earlier instruct ion tagged by w i n V ^ wi th 
winsp//„j-tagged states of the later instruct ion that are at the same t ime tagged by such s i 
tags which show that the later instruct ion went through i slack transitions more than the 
earlier one. 

To be able to formalize the above, we need to be able to distinguish whether the earlier 
instruction of a hazard case h is a spoiler or a v i c t im . For that, we define the following 
notation: n(e, h) = sp provided that h is a R A W or C T L hazard and n(e, h) = vi provided 
that h is a W A R or W A W hazard. Likewise, for later use, we define the analogous notat ion 
for the later instruct ion too: n(£, h) = vi provided that h is a R A W or C T L hazard and 
K(£, h) = sp provided that h is a W A R or W A W hazard. 

W i t h a l l the notat ion at hand, it is now easy to derive the E H S s P % + I of levels 3 + i for 
1 < i < m w i th m = max(S) being the m a x i m u m number of pipeline stages that extend 
the tracking window of the earlier instruction by i cycles. Let K = n(e, h). For i i terating 
from 1 to m , we get 

nh 1
 •> 

-ph 
R3+i 

Final ly , we put P 

window(P3\j_i, wrK

3+l 1(TTK,Tk), win$,gK + dK + 

ph. 
R3+m-

Initial and B a d Configurations 

Above, we have finished the construction of the E H S P j designed to facilitate the construc
t ion of the set Bh of m in ima l bad configurations describing min ima l illegal configurations 
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whose reachability (wi thin possibly larger configurations) w i l l mean that the given haz
ard case h does indeed lead to a hazard. It now remains to define the set Bh along wi th 
the corresponding set of in i t i a l configurations between which reachability w i l l have to be 
checked. 

We first define the regular set Ih of in i t i a l configurations of Pj that consists solely 
of instructions i n the state _L, i.e., before entering the pipeline. A n in i t i a l configuration 
may be of an arbi trary length, and it may contain exactly one spoiler sp and one v i c t im 
instruction vi, interleaved by any other instructions i n any order, modeled using the nf 
class. Formally, the set Ih of the in i t i a l states of E H S P j is defined as follows 

Ih := If U 4 

where 
J * := {(nf, ±-)}*{(vi, ±)}{(nf, ±-)}*{(sp, ±)}{(nf, 

and 
I2

h := {(nf, ±-)}*{(sp, ±}}{(nf, ±-)}*{(vi, ±)}{(nf, 1 )}* . 

Next , we define the set Bh of m in ima l bad configurations that describe hazardous config
urations. The ma in challenge behind the construction of Bh is to correctly match detection 
states of the earlier and later instructions. For that, we w i l l use the t racking mechanism 
that we have provided by the winsp/vi tags. Namely, we w i l l construct Bh to include a l l 
configurations that contain any pair of states qe, qe £ Qj, K(qe) = n(e, h), K.(qe) = K(£, h), 
where the win tags correspond to the detection part of the t racking window, i.e., 

PriVe) £ {(win K ( e^),i) | gK(e^K) < i < gK(e,h) +̂ «(e,ft)} 

and 

Priie) G {(u±nK(e,h),i) I gK(e,h) < * < gK(e,h) + dn(e,h)}-

It now remains to deal w i t h situations when some of the instructions are stalled. This is 
monitored using the s i tags. F i rs t , we can observe that we do not have to further elaborate 
cases when both (earlier and later) instructions are stalled together. Clearly, any hazard 
that would occur after these cases would also occur i n the case when the instructions are 
not stalled. Second, the case when the earlier instruction is stalled while the later is not 
is excluded by the consistency of the pipeline. Therefore, it suffices to only consider those 
states of the earlier instruct ion qe for which (sl , 0 ) £ j3(qe). Next , let i be a counter that 
increases each t ime the later instruction is stalled while the earlier one is not. Since the 
consistency Rules 1-4 from Section 9.3.2 guarantee that each instruct ion leaves the pipeline 
in a final number of steps, the value of the counter i may only range from 0 to max(S). 
Every t ime the counter i is increased, the detection i n the earlier instruct ion is postponed 
by a single pipeline cycle. 

Taken a l l together, the set Bh of m in ima l bad configurations describing hazardous 
configurations is defined as 

max(§) 

Bh •= (J Bt

h (9.43) 
i=0 
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where 

B? := UeQe { ( s l , 0 ) , ( W i n « f t ) , z + j ) } C ^ ( g e ) A 

{(sl,i),(winK(£^),A;)} C p^fa) A 

9n(e,h) <3< 9n(e,h) + ^«(e,ft) A (9.44) 

W i t h the E H S P-y and the sets of in i t i a l / and min ima l bad configurations B at 
hand, checking whether the hazard h is feasible reduces to checking whether there is some 
configuration in Bh that is reachable from some configuration in Ih, for which one can use 
techniques described, e.g., i n [3, 17]. 

9.6 Experimental Evaluation 

We have implemented the above described method in a prototype tool called Hades [33]. 
Hades is wri t ten in C + + combined wi th P y t h o n and consists of several components depicted 
in Figure 9.6. The tool first reads an R T L description of the processor to be verified and 
converts it into its internal P S G representation. Currently, Hades supports the R T L format 
expressed in C o d A L which is an architectural description language used in the processor de
sign I D E [ ]. For other R T L languages like V H D L and Veri log where architectural storages 
are not expl ic i t ly identified, a list of architectural storages w i t h an explicit identification of 
the program counter must be provided. 

The obtained P S G representation is then normalised and simplified. Th is step includes, 
for instance, a replacement of condit ional branching by multiplexors, an applicat ion of value 
propagation, and a removal of redundant nodes and edges. The normalisat ion is done using 
an internal component of Hades called as the RTL query engine ( R Q E ) , which allows one 
to search for data-paths and substitute parts of the microprocessor R T L design described 
v ia a P S G . Subsequently, pipeline stages are identified by the data-flow analysis discussed 
in Section 9.3.1. Next , pipeline consistency is checked using Rules 1-4 from Section 9.3.2 
by an S M T solver for bit-vector logic. Hades is compatible w i th a l l S M T solvers accepting 
the S M T 2 formula format. In particular, for the below experiments, Z3 [100] was used. 
Further, after the P S G is annotated by pipeline stages identified by the data-flow analysis, 
Hades repeatedly utilizes the R Q E and the S M T solver to extract potential hazard cases 
as described i n Section 9.4 and to generate the appropriate hazard systems (HSs) for each 
hazard case as we have seen i n Section 9.5. The generated HSs are then checked using the 
abstract regular model checker ( A R M C ) of [17]. The process of evaluation of the inputs 
and generation of the results by the above mentioned subsystems is orchestrated by the 
so-called "core" component of Hades. 

We have tested the tool on six kinds of processors. The first four are identical to 
the ones already presented i n Section 7.6. CompAcc is then an 8-bit processor based on 
an accumulator architecture wi th a very similar structure as the one shown in F i g . 9.2. 
Final ly , DLX5 is a 5-staged 32-bit processor able to execute a subset of the instruct ion set 
of the D L X architecture [108] (with no floating point instructions). 

We consider mult iple variants of the above introduced processors, which gives us 17 
unique test cases i n total . In particular, the variants of the part icular processors differ 
in the following aspects: (i) the way how data hazards are avoided (pipeline stall ing and 
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Table 9.3: Exper imenta l results. 

Processor / Simpl . D a t a F l o w Consistency Parametr ic System Tota l Hazard 

Variant T ime [s] Analys is [s] Checking [s Generat ion and Verification [s] T ime [s] Cases [#] 

rqe smt core rqe smt arme core 

T i n y C P U S 0.03 0.01 <0.01 0.43 0.23 0.01 1.21 16.17 1.83 19.92 6 

S A 0.03 0.01 <0.01 0.61 0.28 0.06 8.71 114.04 14.54 138.28 20 

B 0.03 0.01 <0.01 0.57 0.24 0.02 1.62 16.93 2.76 22.18 7 

B A 0.04 0.01 <0.01 0.67 0.31 0.05 5.38 43.86 11.67 61.99 12 

S F 0.03 0.01 <0.01 0.46 0.24 0.04 6.50 67.45 9.19 83.92 29 

S F A 0.04 0.01 <0.01 0.64 0.30 0.13 19.95 221.43 32.95 275.45 42 

S P P 8 S 0.10 0.02 <0.01 0.61 0.34 0.04 5.97 43.27 8.73 59.08 29 

B 0.09 0.01 <0.01 0.70 0.42 0.05 6.66 43.24 13.48 64.65 29 

S P P 1 6 S 0.10 0.03 0.01 0.85 0.52 0.04 6.00 43.41 9.04 60.00 29 

B 0.11 0.03 0.01 0.90 0.53 0.04 6.59 43.19 13.80 65.20 29 

Codea2 S F 0.24 0.07 0.01 1.17 0.53 0.42 80.60 339.33 115.68 538.05 243 

C o m p A c c S F A 0.10 0.02 0.01 1.00 0.53 0.15 30.89 323.27 33.01 388.98 44 

B F A 0.10 0.02 0.01 1.10 0.55 0.20 36.86 350.14 45.62 434.60 59 

D L X 5 S 0.13 0.04 0.01 1.95 0.97 0.13 26.92 243.66 38.82 312.63 27 

S A 0.15 0.05 0.01 2.03 1.01 0.57 95.50 521.91 182.09 803.32 95 

B 0.18 0.05 0.01 2.16 1.05 0.16 62.95 243.6 160.89 471.05 27 

B A 0.19 0.06 0.01 1.98 1.03 0.28 101.02 376.75 469.77 951.09 62 

S Stal l ing Logic B Bypassing Logic F F l a g Register(s) A Auto-increment Logic 
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Figure 9.6: A schematic of the Hades verification tool . 

clearing or data bypassing), (ii) the presence of flag/status registers, and (iii) u t i l iza t ion of 
the auto-increment logic. 

We conducted a series of experiments on a P C w i t h Intel X e o n E5-2630 v2 @2.60GHz 
and 32 G B R A M wi th results shown i n Table 9.3. The first columns give the verified 
processor, its variant, the t ime needed for the P S G simplification and its data flow analysis. 
The next columns give the durat ion of the consistency checking and the t ime spent by 
verification of the parametric systems that are created for each hazard case. The times are 
split to the times consumed by the different parts of the tool's architecture. 

The following column gives the overall verification time, which remains i n the order of 
minutes even for complex designs. Moreover, the tool also scales well w i th the growing size 
of the processor data-path as can be seen by comparing the times obtained for SPP8 and 
SPP16. It should be noted that the amount of t ime consumed by the tool's core can be 
reduced by using a direct A P I of the S M T solver used instead of the current implementat ion 
that relies on export ing (potentially large) formulas i n the smt2 file format. (On the other 
hand, the current implementat ion does not depend on any part icular S M T solver.) F ina l ly , 
the last column represents the number of data and control hazard cases that had to be 
generated and checked. Note that each hazard case represents a separate task so the part 
of generation and verification of the parametric systems can be parallelized in the future. 

Dur ing the experiments, we identified a flaw in a R A W hazard resolution when accessing 
the data memory i n a development version of the SPP8 processor. O u r approach also 
correctly identified a l l potential control hazards that are supposed to be handled by the 
compiler (by expl ic i t ly generating series of NOP instructions after a condit ional branch). 

9.7 Conclusion 

We have presented an approach that harnesses methods for formal verification of parametric 
systems i n order to discover incorrectly handled data and control pipeline hazards i n the 
R T L implementation of pipeline-based execution. The approach was developed wi th the a im 
to be highly automated, not requiring any addi t ional efforts from the developers (apart from 
specifying the architectural registers). We have implemented the approach and successfully 
tested it on several non- t r iv ia l microprocessors where the approach was able to discover 
previously unknown flaws caused by unhandled hazards. 
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A potential future work may include extension of the proposed approach to support 
microprocessors equipped w i t h mult iple pipelines. Further, as we have already mentioned 
i n Section 9.4, another considerable topic is extending the approach so it can detect issues 
caused by spoilers and/or vic t ims that consist of mult iple instructions. 
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Chapter 10 

Epilogue 

The subject of the thesis was to design new verification techniques based on formal ap
proaches that are opt imized for use in the process of concurrent development of hardware 
and software, the so-called H W / S W co-design. 

In accordance wi th the set-up goals, the thesis firstly presented a novel technique for 
dealing wi th memory modeling that can be used for efficient formal verification of hardware 
designs. The approach can accommodate different data sizes such as quad words, double 
words, words, or bytes. A t the same time, it is also applicable to memories w i th multiple 
read and write ports and memories w i th read and write operations wi th zero- or single-clock 
delay. The memory is allowed to start w i th a random in i t i a l state permit t ing one to formally 
verify the given design for a l l in i t i a l contents of the memory. A n abstraction used i n the 
approach represents large register-files and memories i n a way that dramatical ly reduces 
the state space explored during formal verification of microprocessors as can be witnessed 
by our experiments presented in Chapter 7. 

Further, i n Chapter 8, the thesis presents the correspondence checking approach based 
on the idea of u t i l iz ing bounded model checking to compare the outputs produced by auto
matical ly derived R T L and I S A models of a given processor for a l l possible instructions and 
their inputs. To guarantee that results are obtained in a given t ime l imi t , each instruct ion 
is checked in parallel for several bit-widths of its input . The approach then returns only 
the result of the verification task w i t h max ima l b i t -wid th that finished wi th in the time 
l imi t . O u r experiments included a non- t r iv ia l single-pipelined processor i n which, during 
its development, the approach revealed three previously unknown bugs confirmed by the 
developers. The experiments have also shown that vast majority of instructions of single-
pipelined microprocessors, typical ly used wi th in embedded devices, can be verified wi th in 
seconds. 

Final ly , in Chapter 9, the thesis presents an approach that harnesses methods for formal 
verification of parametric systems i n order to discover incorrectly handled data and control 
pipeline hazards i n the R T L implementations of pipeline-based executions. The approach 
was developed w i t h the a i m to be highly automated, requiring no external information 
about the design (apart from specifying the architectural registers). The experimental im
plementation of the approach was successfully tested on several non- t r iv ia l microprocessors 
where the approach was able to discover a previously unknown flaw caused by an unhandled 
hazard. 

The design of a l l the above-presented approaches was motivated by the general idea of 
spl i t t ing processor verification into several simpler, more specialized tasks. Moreover, each 
approach was designed to be highly automated, requiring min ima l addi t ional effort from 
developers. 

100 



Bibliography 

[1] Codasip Studio for R a p i d Processor Development, www.codasip.com. 2019. 

[2] Aagaard , M . D . : A Hazards-Based Correctness Statement for P ipe l ined Circui ts . In 
Proc. of Correct Hardware Design and Verification Methods (CHARME), LNCS, 
vol . 2860. Springer. 2003. pp. 66-80. 

[3] A b d u l l a , P . A . ; Haziza . , F . ; Holík, L . : A l l for the Pr ice of Few (Parameterized 
Verification through V i e w Abst rac t ion) . In Proc. of Verification, Model Checking, 
and Abstract Interpretation (VMCAI), LNCS, vol . 7737. Springer. 2013. pp. 
476-495. 

[4] A b d u l l a , P . A . ; Jonsson, B . ; Nilsson, M . ; et a l . : A Survey of Regular M o d e l 
Checking. In CONCUR 2004 - Concurrency Theory, edited by P . Gardner: 
N . Yoshida . Ber l in , Heidelberg: Springer Ber l in Heidelberg. 2004. pp. 35-48. 
doi:10.1007/978-3-540-28644-8_3. 

[5] Accellera: Standard Universal Verification Methodology Class Reference, Release 
1.2. 2014. 
Retrieved from: w o r k s p a c e . a c c e l l e r a . o r g / d o w n l o a d s / s t a n d a r d s / u v m 

[6] Alencar , R . ; Rigo, S.; Azevedo, R . : Software Co-Verif icat ion Based on Program 
Traces from Different Processors. In In 3rd Workshop on Infrastructures for 
Software/Hardware Co-design (WISH). 2011. pp. 1-6. 

[7] A M D : AMD64 Architecture Programmer's Manual, Volume 3. 2018. 
Retrieved from: www.amd.com/sys tem/f i les /TechDocs /24594.pdf 

[8] A R M : Arm Instruction Set Reference Guide. 2018. 
Retrieved from: s t a t i c .docs . a rm.com/100076 /0100 / 
a rm_ ins t ruc t i on_se t_ re f e r ence_gu ide_100076_0100_00_en .pd f 

[9] Baier , C ; Ka toen , J . : Principles of model checking. M I T Press. 2008. I S B N 
978-0-262-02649-9. 

[10] Barret t , C ; Sebastiani, R . ; Seshia, S. A . ; et a l . : Satisfiability Modu lo Theories. In 
Handbook of Satisfiability, vol . 4, edited by A . Biere; H . van Maaren; T . Walsh, 
chapter 8. IOS Press. 2009. 

[11] Basu, S.; Moona , R . : H i g h level synthesis from S i m - n M L processor models. In 16th 
International Conference on VLSI Design, 2003. Proceedings.. J an 2003. I S S N 
1063-9667. pp. 255-260. doi:10.1109/ICVD.2003.1183146. 

101 

http://www.codasip.com
http://workspace.accellera.org/downloads/standards/uvm
http://www.amd.com/system/files/TechDocs/24594.pdf
http://static.docs.arm.com/100076/0100/


[12] Bayardo, R . J . , Jr.; Schrag, R . C : Us ing C S P Look-back Techniques to Solve 
Real-world S A T Instances. In Proceedings of the Fourteenth National Conference on 
Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial 
Intelligence. A A A I ' 9 7 / I A A I ' 9 7 . A A A I Press. 1997. I S B N 0-262-51095-2. pp. 
203-208. 

[13] Beyer, S.; Jacobi, C ; K r o n i n g , D . ; et a l . : P u t t i n g it a l l together - Formal 
verification of the V A M P . International Journal on Software Tools for Technology 
Transfer, vol . 8, no. 4. A u g 2006: pp. 411-430. I S S N 1433-2787. 
doi:10.1007/sl0009-006-0204-6. 

[14] Biere, A . ; C i m a t t i , A . ; Clarke, E . ; et a l . : Symbolic M o d e l Checking without B D D s . 
In Tools and Algorithms for the Construction and Analysis of Systems, edited by 
W . R . Cleaveland. Springer Be r l i n Heidelberg. 1999. I S B N 978-3-540-49059-3. pp. 
193-207. 

[15] Biere, A . ; Heljanko, K . ; Wier inga , S.: A I G E R 1.9 A n d Beyond. Technical report. 
F M V Reports Series, Institute for Formal Models and Verification, Johannes Kepler 
University, Altenbergerstr. 69, 4040 L i n z , Aus t r i a . 2011. 

[16] Bouaj jani , A . ; Habermehl , P. ; Rogalewicz, A . ; et a l . : Abst rac t Regular Tree M o d e l 
Checking of Complex Dynamic D a t a Structures. In Proc. of 13th International 
Static Analysis Symposium (SAS), LNCS, vo l . 4134. Springer. 2006. pp. 52-70. 

[17] Bouaj jani , A . ; Habermehl , P. ; Vojnar, T . : Abst rac t Regular M o d e l Checking. In 
Proc. of 16th International Conference on Computer Aided Verification (CAV), 
LNCS, vol . 3114. Springer. 2004. pp. 197-202. 

[18] Bradley, A . R . : S A T - B a s e d M o d e l Checking without Unro l l ing . In Verification, 
Model Checking, and Abstract Interpretation, edited by R . Jhala; D . Schmidt. 
Ber l in , Heidelberg: Springer Ber l in Heidelberg. 2011. I S B N 978-3-642-18275-4. pp. 
70-87. doi:10.1007/978-3-642-18275-4_7. 

[19] Bradley, A . R . ; Manna , Z . ; Sipma, H . B . : Wha t ' s Decidable A b o u t Arrays? In Proc. 
of Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS, vol . 
3855, edited by K . S. Emerson, E . A l l enand Namjoshi . Ber l in , Heidelberg: Springer 
Be r l i n Heidelberg. 2006. I S B N 978-3-540-31622-0. pp. 427-442. 
doi:10.1007/11609773_28. 

[20] Brown , D . ; Levine, J . ; Mason, T . : Lex & Yacc. O ' R e i l l y Med ia . 1992. I S B N 
978-1565920002. 

[21] Brummayer , R . ; Biere, A . : Boolector: A n Efficient S M T Solver for Bi t -Vectors and 
Arrays . In Proc. of International Conference on Tools and Algorithms for the 
Construction and Analysis of Systems (TACAS), LNCS, vol . 5505. Springer. 2009. 
pp. 174-177. 

[22] Bryant , R . E . : Symbolic Boolean Manipu la t ion wi th Ordered Binary-decision 
Diagrams. ACM Computing Surveys, vo l . 24, no. 3. 1992: pp. 293-318. I S S N 
0360-0300. doi: 10.1145/136035.136043. 

102 



[23] Bryant , R . E . : Formal Verification of P ipe l ined Y86-64 Microprocessors w i th 
U C L I D 5 . Technical Report C M U - C S - 1 8 - 1 2 2 . 2018. 

[24] Bryant , R . E . ; German, S.; Velev, M . N . : Exp lo i t i ng Posit ive Equa l i ty in a Logic of 
Equa l i ty w i th Uninterpreted Functions. In Computer Aided Verification, edited by 
N . Halbwachs; D . Peled. Springer Ber l in Heidelberg. 1999. I S B N 978-3-540-48683-1. 
pp. 470-482. 

[25] Bryant , R . E . ; Velev, M . N . : Verification of pipelined microprocessors by comparing 
memory execution sequences i n symbolic simulat ion. In Proc. of Advances in 
Computing Science (ASIAN), LNCS, vol . 1345, edited by K . Shyamasundar, R . 
K . a n d Ueda. Ber l in , Heidelberg: Springer Ber l in Heidelberg. 1997. I S B N 
978-3-540-69658-2. pp. 18-31. doi:10.1007/3-540-63875-X_40. 

[26] Burch , J . R . ; Clarke, E . M . ; M c M i l l a n , K . L . ; et a l . : Symbolic M o d e l Checking: 1 0 2 0 

States and Beyond. In Proc. of Fifth Annual IEEE Symposium on Logic in 
Computer Science. I E E E . 1990. I S B N 0-8186-2073-0. pp. 428-439. 
doi:10.1109/LICS.1990.113767. 

[27] Burch , J . R . ; D i l l , D . L . : Au tomat ic Verification of P ipe l ined Microprocessor 
Contro l . In Proc. of Computer Aided Verification (CAV), LNCS, vol . 818. Springer. 
1994. I S B N 978-3-540-48469-1. pp. 68-80. 

[28] Cadence: Tensilica Software Development Toolkit (SDK). 2014. 
Retrieved from: ip . cadence .com/up loads /103 /SWdev-pdf 

[29] Cadence: TIE Language — The Fast Path to High-Performance Embedded SoC 
Processing. 2016. 
Retrieved from: i p . cadence . com/up loads /980 /TIP_WP_TIE_FINAL-pdf 

[30] Cadence: Xtensa LX7 Processor Datasheet. 2016. 
Retrieved from: i p . cadence . com/up loads / 1 0 9 9 / T I P _ P B _ X t e n s a _ l x 7 _ F I N A L - p d f 

[31] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Automat ic Formal Correspondence Checking 
of I S A and R T L Microprocessor Descript ion. In Proc. of Microprocessor Test and 
Verification (MTV'12). I E E E . 2012. pp. 6-12. 

[32] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : A n Abs t rac t ion of M u l t i - P o r t Memories w i t h 
A r b i t r a r y Addressable Uni t s . In Proc. of Computer Aided Systems Theory 
(EUROCAST'13), LNCS, vol . 8111. Springer. 2013. pp. 460-468. 

[33] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : H A D E S Hades Hardware Verification Tool . 
www . f i t . v u t b r . c z / r e s e a r c h / g r o u p s / v e r i f i t / t o o l s / h a d e s / . 2014. 

[34] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Us ing Formal Verification of Parameterized 
Systems i n R A W Hazard Analys is in Microprocessors. In Proc. of Microprocessor 
Test and Verification (MTV'U). I E E E . 2014. I S B N 978-1-4673-6858-2. pp. 83-89. 

[35] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Us ing Formal Verification of Parameterized 
Systems i n R A W Hazard Analys is in Microprocessors. Technical Report 
FIT-TR-2014-04 . Brno Universi ty of Technology. 2014. 

103 

http://ip.cadence.com/uploads/103/SWdev-pdf
http://ip.cadence.com/uploads/980/TIP_WP_TIE_FINAL-pdf
http://ip.cadence.com/uploads/
http://www.fit.vutbr.cz/research/groups/verifit/tools/hades/


[36] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : Microprocessor Hazard Analys is v ia Formal 
Verification of Parameterized Systems. In Proc. of Computer Aided Systems Theory 
(EUROCAST'15), LNCS, vol . 9520. Springer. 2015. pp. 605-614. 

[37] C h a r v á t , L . ; Smrčka , A . ; Vojnar, T . : H A D E S : Microprocessor Hazard Analys is v i a 
Formal Verification of Parameterized Systems. In Proc. of 11th Doctoral Workshop 
on Mathematical and Engineering Methods in Computer Science (MEMICS'16). 
233. E P T C S . 2016. pp. 87-93. do i :10 .4204/EPTCS.233 .9 . 

[38] Chen , M . ; Mish ra , P. : Proper ty Learning Techniques for Efficient Generat ion of 
Directed Tests. IEEE Transactions on Computers, vol . 60, no. 6. June 2011: pp. 
852-864. I S S N 0018-9340. doi:10.1109/TC.2011.49. 

[39] Clarke, E . ; Grumberg , O. ; Jha , S.; et a l . : Counterexample-Guided Abs t rac t ion 
Refinement. In Proc. of Computer Aided Verification (CAV), LNCS, vol . 1855, 
edited by E . A . Emerson; A . P . Sist la. Ber l in , Heidelberg: Springer Ber l in 
Heidelberg. 2000. I S B N 978-3-540-45047-4. pp. 154-169. doi:10.1007/10722167_15. 

[40] Clarke, E . ; Grumberg , O. ; Minea , M . ; et a l . : State space reduction using par t ia l 
order techniques. International Journal on Software Tools for Technology Transfer. 
vol . 2, no. 3. Nov 1999: pp. 279-287. I S S N 1433-2779. doi:10.1007/sl00090050035. 

[41] Clarke, E . ; Talupur, M . ; Ve i th , H . : Environment abstraction for parameterized 
verification. In Proc. of Verification, Model Checking, and Abstract Interpretation 
(VMCAI), LNCS, vo l . 3855. Springer. 2006. pp. 126-141. 

[42] Codea2 Core IP i n Codasip Studio, www.codas ip .com/produc ts /codea2/ . 2013. 

[43] Dang , T . N . ; Roychoudhury, A . ; M i t r a , T . ; et a l . : Generat ing test programs to cover 
pipeline interactions. In 2009 46th ACM/IEEE Design Automation Conference. J u l y 
2009. I S S N 0738-100X. pp. 142-147. 

[44] Davis , M . ; Logemann, G . ; Loveland, D . : A Machine P rogram for Theorem-proving. 
Communication of the ACM. vol . 5, no. 7. J u l 1962. I S S N 0001-0782. 
doi:10.1145/368273.368557. 

[45] Een , N . ; Mishchenko, A . ; Bray ton , R . : Efficient Implementation of Proper ty 
Directed Reachabili ty. In Proceedings of the International Conference on Formal 
Methods in Computer-Aided Design. F M C A D ' l l . Aus t in , T X : F M C A D Inc. 2011. 
I S B N 978-0-9835678-1-3. pp. 125-134. 

[46] Fauth , A . ; K n o l l , A . : Automated generation of D S P program development tools 
using a machine description formalism. In 1993 IEEE International Conference on 
Acoustics, Speech, and Signal Processing, vol . 1. A p r 1993. I S S N 1520-6149. pp. 
457-460. doi:10.1109/ICASSP.1993.319154. 

[47] Fauth , A . ; Lohr , F . ; Freericks, M . : S i g h / S i m : A n environment for retargetable 
instruction set s imulat ion. Technical Report 1993/43. Technische Unive r s i t ä t Ber l in , 
Germany. 1993. 

[48] Fey, G . ; Drechsler, R . : Design understanding by automatic property generation. In 
Proceedings of Workshop on Synthesis And System Integration of Mixed Information 
technologies. 2004. pp. 274-281. 

104 

http://www.codasip.com/products/codea2/


[49] Gana i , M . K . ; Gup ta , A . ; Ashar , P. : Verification of embedded memory systems 
using efficient memory modeling. In Proc. of Design, Automation and Test in 
Europe (DATE), vol . 2. I E E E . 2005. I S S N 1530-1591. pp. 1096-1101. 
doi :10.1109/DATE.2005.325. 

[50] German, S. M . : A Theory of Abs t rac t ion for Arrays . In Proc. of the International 
Conference on Formal Methods in Computer-Aided Design (FMCAD). F M C A D . 
2011. I S B N 978-0-9835678-1-3. pp. 176-185. 

[51] Goossens, G . ; Lanneer, D . ; Geurts , W . ; et a l . : Design of A S I P s i n multi-processor 
SoCs using the Chess/Checkers retargetable too l suite. In International Symposium 
on System-on-Chip. N o v 2006. I S B N 1-4244-0621-8. pp. 1-4. 
doi:10.1109/ISSOC.2006.321968. 

[52] Gries, M . ; Keutzer , K . : Building ASIPs: The Mescal Methodology. Springer U S . 
2005. I S B N 978-0-387-26057-0. doi:10.1007/bl36892. 

[53] Hadjiyiannis , G . ; Devadas, S.: Techniques for accurate performance evaluation in 
architecture exploration. IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, vol . 11, no. 4. A u g 2003: pp. 601-615. I S S N 1063-8210. 
doi:10.1109/TVLSI.2003.812290. 

[54] Hadjiyiannis , G . ; Hanono, S.; Devadas, S.: I S D L : A n Instruction Set Descr ipt ion 
Language for Retargetabil i ty and Archi tecture Explora t ion . Design Automation for 
Embedded Systems, vo l . 6, no. 1. Sep 2000: pp. 39-69. I S S N 1572-8080. 
doi:10.1023/A:1008937425064. 

[55] H a l l , E . C : Journey to the Moon: The History of the Apollo Guidance Computer. 
Amer i can Institute of Aeronautics. 1996. I S B N 978-1563471858. 

[56] Hao, K . ; Ray, S.; X i e , F . : Equivalence Checking for Funct ion P ipe l in ing in 
Behavioral Synthesis. In Proc. of Design, Automation and Test in Europe (DATE). 
I E E E . 2014. pp. 1-6. 

[57] Harr ison, J . : Float ing-Point Verification Us ing Theorem Proving . In Proceedings of 
the 6th International Conference on Formal Methods for the Design of Computer, 
Communication, and Software Systems. S F M ' 0 6 . Springer-Verlag. 2006. I S B N 
3-540-34304-0, 978-3-540-34304-2. pp. 211-242. doi:10.1007/11757283_8. 

[58] Hartoog, M . R. ; Rowson, J . A . ; Reddy, P . D . ; et a l . : Generation of Software Tools 
from Processor Descriptions for Hardware/Software Codesign. In Proceedings of the 
34th Annual Design Automation Conference. D A C ' 9 7 . New York , N Y , U S A : A C M . 
1997. I S B N 0-89791-920-3. pp. 303-306. doi:10.1145/266021.266110. 

[59] Hauta la , I.; Boutell ier, J . ; Hannuksela, J . ; et a l . : Programmable Low-Power 
Mul t icore Coprocessor Archi tecture for H E V C / H . 2 6 5 In-Loop Fi l te r ing . IEEE 
Transactions on Circuits and Systems for Video Technology, vo l . 25, no. 7. Ju ly 
2015: pp. 1217-1230. I S S N 1051-8215. doi :10.1109/TCSVT.2014.2369744. 

[60] Hopcroft, J . E . ; Motwan i , R . ; U l l m a n , J . D . : Introduction to Automata Theory, 
Languages, and Computation (3rd Edition). Boston, M A , U S A : Addison-Wesley 
Longman Publ i sh ing Co . , Inc.. 2006. I S B N 0321455363. 

105 



[61] Hosabettu, R . ; Gopalakr ishnan, G . ; Srivas, M . : Verifying Advanced 
Microarchitectures that Support Speculation and Exceptions. In Computer Aided 
Verification, edited by E . A . Emerson; A . P . Sist la. Springer Ber l in Heidelberg. 
2000. I S B N 978-3-540-45047-4. pp. 521-537. 

[62] Hunt , W . A . : Microprocessor design verification. Journal of Automated Reasoning. 
vol . 5, no. 4. Dec 1989: pp. 429-460. I S S N 1573-0670. doi:10.1007/BF00243132. 

[63] Hunt , W . A . ; Kaufmann, M . : A formal model of a large memory that supports 
efficient execution. In Proc. of Formal Methods in Computer-Aided Design 
(FMCAD). I E E E . 2012. I S B N 978-0-9835678-2-0. pp. 60-67. 

[64] Husar, A . ; Trmac, M . ; Hranac, J . ; et a l . : Au tomat ic C Compi ler Generat ion from 
Architecture Descr ipt ion Language IS A C . In 6th Doctoral Workshop on 
Mathematical and Engineering Methods in Computer Science. Masaryk University. 
2010. I S B N 978-80-87342-10-7. pp. 84-91. 

[65] I E E E : IEC/IEEE Behavioural Languages - Part 4- Verilog Hardware Description 
Language. 2004. doi :10.1109/IEEESTD.2004.95753. 

[66] I E E E : IEEE Standard VHDL Language Reference Manual. 2009. 
doi: 1 0 . 1 1 0 9 / I E E E S T D . 2009.4772 740. 

[67] Ienne, P.; Leupers, R . : Customizable Embedded Processors: Design Technologies and 
Applications. Morgan Kaufmann Publishers Inc.. 2007. I S B N 0123695260, 
9780080490984. 

[68] Intel: Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2. 2016. 
Retrieved from: www.inte 1 . com/con ten t /dam/www/pub l i c /u s / en /documen t s / 
m a n u a l s / 6 4 - i a - 3 2 - a r c h i t e c t u r e s - s o f t w a r e - d e v e l o p e r - i n s t r u c t i o n - s e t -
r e f e r ence -manua l -325383 .pd f 

[69] Jones, R . B . ; Seger, C . H . ; D i l l , D . L . : Self-Consistency Checking. In Proc. of 
Formal Methods in Computer-Aided Design (FMCAD), LNCS, vol . 1166. Springer. 
1996. pp. 159-171. 

[70] Jones, R . B . ; Skakkebsek, J . U . ; D i l l , D . L . : Formal Verification of Out-of-Order 
Execut ion wi th Incremental F lushing . Formal Methods in System Design, vol . 20, 
no. 2. M a r 2002: pp. 139-158. I S S N 1572-8102. doi:10.1023/A:1014118529369. 

[71] Kesten, Y . ; Maler , O. ; Marcus , M . ; et a l . : Symbol ic model checking wi th r ich 
assertional languages. Theoretical Computer Science, vol . 256, no. 1-2. 2001: pp. 
93-112. 

[72] K i e s l , B . ; Seidl, M . ; Tompits , H . ; et a l . : L o c a l Redundancy in S A T : Generalizations 
of Blocked Clauses. Logical Methods in Computer Science, vol . 14. 2018: pp. 1-23. 

[73] K i l d a l l , G . A . : A unified approach to global program opt imizat ion. In In Conf. Rec. 
1st Symp. Principles of Prog. Lang. (POPL). A C M . 1973. pp. 194—206. 

[74] K o e l b l , A . ; Burch , J . R . ; Pixley, C : Memory Mode l ing i n E S L - R T L Equivalence 
Checking. In Proc. of the 44th Annual Design Automation Conference (DAC). 
A C M . 2007. I S B N 978-1-59593-627-1. pp. 205-209. doi:10.1145/1278480.1278530. 

106 

http://www.inte


[75] K o e l b l , A . ; Jacoby, R . ; Ja in , H . ; et a l . : Solver technology for system-level to R T L 
equivalence checking. In Proc. of Design, Automation Test in Europe Conference 
Exhibition (DATE). I E E E . 2009. I S S N 1530-1591. pp. 196-201. 
doi:10.1109/DATE.2009.5090657. 

[76] K o r e l , B . ; Lask i , J . : Dynamic Program Slicing. Information Processing Letters. 
vol . 29, no. 3. Oct 1988: pp. 155-163. I S S N 0020-0190. 
doi:10.1016/0020-0190(88)90054-3. 

[77] Kozen , D . C : Automata and Computability. New York , N Y : Springer. 1997. I S B N 
978-1-4612-7309-7. doi:10.1007/978-1-4612-1844-9. 

[78] K ü h n e , U . ; Beyer, S.; Bormann , J . ; et a l . : Au tomated Formal Verification of 
Processors Based on Archi tec tura l Models . In Proc. of Formal Methods in 
Computer-Aided Design (FMCAD). I E E E . 2010. pp. 129-136. 

[79] Lanneer, D . ; V a n Praet, J . ; K i f l i , A . ; et a l . : Chess: Retargetable Code Generation 
for Embedded DSP Processors. Springer U S . 2002. I S B N 978-1-4615-2323-9. pp. 
85-102. doi:10.1007/978-1-4615-2323-9_5. 

[80] Leupers, R . ; Marwedel , P.: Retargetable Code Generat ion Based on Structural 
Processor Descript ion. Design Automation for Embedded Systems, vol . 3, no. 1. Jan 
1998: pp. 75-108. I S S N 1572-8080. doi:10.1023/A:1008807631619. 

[81] Lev i t t , J . ; Olukotun , K . : Verifying Correct Pipel ine Implementation for 
Microprocessors. In Proceedings of the 1997 IEEE/ACM International Conference 
on Computer-aided Design. I C C A D '97. I E E E Computer Society. 1997. I S B N 
0-8186-8200-0. pp. 162-169. 

[82] L i ang , J . H . ; O h , C ; Mathew, M . ; et a l . : Machine Learning-Based Restart Po l i cy 
for C D C L S A T Solvers. In Proceedings of Theory and Applications of Satisfiability 
Testing SAT 2018, Lecture Notes in Computer Science, vol . 10929. Springer. 2018. 
I S B N 978-3-319-94143-1. pp. 94-110. doi:10.1007/978-3-319-94144-8. 

[83] L i b l i t , B . ; Naik , M . ; Zheng, A . X . ; et a l . : Scalable Stat is t ical B u g Isolation. 
SIGPLAN Not., vol . 40, no. 6. Jun 2005: pp. 15-26. I S S N 0362-1340. 
doi:10.1145/1064978.1065014. 

[84] Manolios , P. ; Srinivasan, S. K . ; Vroon , D . : Au tomat ic Memory Reductions for R T L 
M o d e l Verification. In Proc. of IEEE/ACM International Conference on Computer 
Aided Design (ICCAD). I E E E . 2006. I S S N 1092-3152. pp. 786-793. 
doi :10.1109/ICCAD.2006.320121. 

[85] Marques Silva, J . P. ; Sakallah, K . A . : G R A S P - A new search algori thm for 
satisfiability. In Proceedings of International Conference on Computer Aided Design. 
1996. I S B N 0-8186-7597-7. pp. 220-227. doi :10.1109/ICCAD.1996.569607. 

[86] McCarthy, J . : Towards a Mathemat ica l Science of Computa t ion . In In IFIP 
Congress. Nor th -Hol land . 1962. pp. 21-28. 

[87] M c M i l l a n , K . L . : The SMV System. Boston, M A : Springer U S . 1993. I S B N 
978-1-4615-3190-6. pp. 61-85. doi:10.1007/978-l-4615-3190-6_4. 

107 



[88] M c M u r r a n , M . W . : ACHIEVING ACCURACY: A Legacy of Computers and 
Missiles. X l i b r i s Corp . . 2008. I S B N 978-1436381062. 

[89] Meduna , A . : Automata and Languages: Theory and Applications. Ber l in , 
Heidelberg: Springer-Verlag. 2000. I S B N 1-85233-074-0. 

[90] Mentor: The Veloce Strato Platform: Unique Core Components Create High-Value 
Advantages. 2019. 
Retrieved from: www.mentor . com/produc t s / fv / reques t?se lec ted=103372 

[91] Mina f ik , M . : Concurrent Evolutionary Design of Hardware and Software. P h D . 
Thesis. Brno Universi ty of Technology, Facul ty of Information Technology. 2017. 

[92] Mish ra , P. ; Du t t , N . : Archi tecture description languages for programmable 
embedded systems. IEE Proceedings - Computers and Digital Techniques, vol . 152, 
no. 3. M a y 2005: pp. 285-297. I S S N 1350-2387. doi:10.1049/ip-cdt:20045071. 

[93] Mish ra , P. ; Du t t , N . (editors): Processor Description Languages: Applications and 
Methodologies. 2008. I S B N 978-0-12-374287-2. 
doi:10.1016/B978-0-12-374287-2.X5001-0. 

[94] Mish ra , P. ; Du t t , N . : Specification-driven Directed Test Generat ion for Val ida t ion of 
Pipel ined Processors. ACM Transactions on Design Automation of Electronic 
Systems, vol . 13, no. 3. J u l 2008: pp. 42:1-42:36. I S S N 1084-4309. 
doi:10.1145/1367045.1367051. 

[95] Mish ra , P. ; Du t t , N . ; Du t t , N . ; et a l . : Mode l ing and Val ida t ion of Pipel ine 
Specifications. ACM Transactions on Embedded Computing Systems, vol . 3, no. 1. 
Feb 2004: pp. 114-139. I S S N 1539-9087. doi:10.1145/972627.972633. 

[96] Mish ra , P. ; Du t t , N . D . : Functional Verification of Programmable Embedded 
Architectures: A Top-Down Approach. Springer U S . 2005. I S B N 978-0-387-26143-0. 
doi:10.1007/bl37514. 

[97] Mish ra , P. ; K o o , H . : Funct ional Test Generation Using Design and Proper ty 
Decomposi t ion Techniques. ACM Transactions on Embedded Computing Systems. 
vol . 8, no. 4. 2009. 

[98] Mish ra , P. ; Tomiyama, H . ; Du t t , N . ; et a l . : Au tomat ic Verification of In-Order 
Execut ion i n Microprocessors w i th Fragmented Pipelines and Mul t i cyc le Funct ional 
Uni t s . In Proc. of Design, Automation and Test in Europe (DATE). I E E E . 2002. pp. 
36-43. doi: 10.1109/DATE.2002.998247. 

[99] Moona , R . : Processor Models for Retargetable Tools. In Proceedings of the 11th 
IEEE International Workshop on Rapid System Prototyping. R S P ' 0 0 . I E E E 
Computer Society. 2000. I S B N 0-7695-0668-2. 

[100] Moura , L . D . ; Bjorner, N . : Z3: A n Efficient S M T Solver. In Proc. of International 
Conference on Tools and Algorithms for the Construction and Analysis of Systems 
(TACAS), LNCS, vo l . 4963. Springer. 2008. pp. 337-340. 

108 

http://www.mentor.com/products/fv/request?selected=103372


[101] Nabeshima, H . ; Iwanuma, K . ; Inoue, K . : G l u e M i n i S a t 2.2.5: A fast S A T solver w i t h 
an aggressive acquiring strategy of glue clauses. Computer Software, vol . 29. 2012: 
pp. 146-160. 

[102] Namjoshi , K . S.: Symmetry and completeness in the analysis of parameterized 
systems. In Proc. of Verification, Model Checking, and Abstract Interpretation 
(VMCAI), LNCS, vo l . 4349. Springer. 2007. pp. 299-313. 

[103] Nelson, C . G . ; Oppen, D . C . : Simplif icat ion by Cooperat ing Decision Procedures. 
Technical report. Stanford, C A , U S A . 1978. 

[104] Nelson, G . ; Oppen, D . C : Simplif icat ion by Cooperat ing Decision Procedures. ACM 
Transactions on Programming Languages and Systems (TOPLAS), vol . 1, no. 2. 
1979: pp. 245-257. I S S N 0164-0925. doi:10.1145/357073.357079. 

[105] Ngyuen, M . ; Thalmaier , M . ; Wedler, M . ; et al . : Unbounded Pro toco l Compliance 
Verification usign Interval Proper ty Checking wi th Invariants. IEEE Transactions 
on Computer-Aided Design of Integrated Circuits, vol . 27, no. 11. 2008. 

[106] Paakk i , J . : A t t r ibu te G r a m m a r Paradigms — a High-level Methodology i n 
Language Implementation. ACM Computing Surveys, vo l . 27, no. 2. Jun 1995: pp. 
196-255. I S S N 0360-0300. doi:10.1145/210376.197409. 

[107] Patterson, D . A . ; Hennessy, J . L . : Computer Architecture: A Quantitative Approach. 
Morgan Kaufmann . 2011. I S B N 978-8178672663. 

[108] Patterson, D . A . ; Hennessy, J . L . : Computer Organization and Design: The 
Hardware / Software Interface. Boston: Morgan Kaufmann, fourth edition. 2012. 
I S B N 0123747503. 

[109] Praet, J . V . ; Lanneer, D . ; Geurts , W . ; et a l . : nML: A Structural Processor Modeling 
Language for Retargetable Compilation and ASIP Design. Systems on Silicon, vol . 1. 
Bur l ing ton: Morgan Kaufmann . 2008. I S B N 9780123742872. pp. 65-93. 

[110] P r i k r y l , Z . : Fast Simulat ion of Pipel ine i n A S I P Simulators. In 15th International 
Microprocessor Test and Verification Workshop, MTV 2014, Austin, TX, USA, 
December 15-16, 2011 I E E E Computer Society. 2014. I S B N 978-1-4673-6858-2. pp. 
10-15. doi :10 .1109/MTV.2014.18. 

[ I l l ] P r i k r y l , Z . ; Masar ik , K . ; Hruska, T . ; et a l . : Fast Cycle-Accurate Interpreted 
Simulat ion. In 10th International Workshop on Microprocessor Test and 
Verification, MTV 2009. I E E E Computer Society. 2009. I S B N 978-0-7695-4000-9. 
pp. 9-14. doi :10 .1109/MTV.2009.11 . 

[112] P r i k r y l , Z . ; Masar ik , K . ; Hruska, T . ; et a l . : Generated Cycle-Accurate Profiler for C 
Language. In 13th Euromicro Conference on Digital System Design, Architectures, 
Methods and Tools, DSD 2010, 1-3 September 2010, Lille, France. I E E E Computer 
Society. 2010. I S B N 978-0-7695-4171-6. pp. 263-268. doi:10.1109/DSD.2010.39. 

[113] Ramsay, F . R . : Au tomat ion of design for uncommit ted logic array. In Proc. of the 
11th Design Automation Conference (DAC). New York , N Y , U S A : A C M . 1980. 
I S B N 0-89791-020-6. pp. 100—107. 

109 



[114] Rigo , S.; Araujo , G . ; Bar tholomeu, M . ; et a l . : A r c h C : A SystemC-based 
Archi tecture Descr ipt ion Language. In 16th Symposium on Computer Architecture 
and High Performance Computing. Oct 2004. I S S N 1550-6533. pp. 66-73. 
do i :10 .1109 /SBAC-PAD.2004 .8 . 

[115] R i s c - V Foundation: Rise-V Instruction Set Architecture Specification. 2017. 
Retrieved from: r i s c v . o r g / s p e c i f i c a t i o n s / 

[116] Rogin , F . ; K l o t z , T. ; Fey, G . ; et a l . : Au tomat ic Generat ion of Complex Properties 
for Hardware Designs. In 2008 Design, Automation and Test in Europe. M a r c h 
2008. I S S N 1530-1591. pp. 545-548. doi:10.1109/DATE.2008.4484908. 

[117] Sanghavi, H . A . ; Andrews, N . B . : Chapter 8 - T I E : A n A D L for Designing 
Application-specific Instruction Set Extensions. In Processor Description Languages, 
edited by P . Mishra ; N . Du t t . Morgan Kaufmann . 2008. pp. 183-216. 
doi:10.1016/B978-012374287-2.50011-2. 

[118] Sawada, J . ; Hunt , W . A . : Processor verification wi th precise exceptions and 
speculative execution. In Computer Aided Verification, edited by A . J . H u ; M . Y . 
V a r d i . Springer B e r l i n Heidelberg. 1998. I S B N 978-3-540-69339-0. pp. 135-146. 

[119] Schliebusch, O. ; Meyr , H . ; Leupers, R . : Optimized ASIP Synthesis from Architecture 
Description Language Models. Springer Netherlands. 2007. I S B N 978-1-4020-5685-7. 
doi:10.1007/978-1-4020-5686-4. 

[120] Shahabuddin, S.; Janhunen, J . ; Jun t t i , M . ; et a l . : Design of a transport triggered 
vector processor for turbo decoding. Analog Integrated Circuits and Signal 
Processing, vol . 78, no. 3. M a r 2014: pp. 611-622. I S S N 1573-1979. 
doi:10.1007/sl0470-013-0183-y. 

[121] Shen, J . P. ; L ipas t i , M . H . : Modern Processor Design: Fundamentals of Superscalar 
Processors. Waveland Press, Inc.. 2013. I S B N 978-1478607830. 

[122] Sigasi: Manual: Linting and Quick Fixes. 2019. 
Retrieved from: i n s i g h t s . s i g a s i . c o m / m a n u a l / l i n t i n g . h t m l 

[123] Š imková , M . ; Lengál , O. ; Ka jan , M . : H A V E N : A n Open Framework for 
F P G A - A c c e l e r a t e d Funct ional Verification of Hardware. In Hardware and Software: 
Verification and Testing. Ber l in , Heidelberg: Springer Ber l in Heidelberg. 2012. I S B N 
978-3-642-34188-5. pp. 247-253. 

[124] Stump, A . ; Barret t , C . W . ; D i l l , D . L . ; et a l . : A decision procedure for an 
extensional theory of arrays. In Proc. of 16th Annual IEEE Symposium on Logic in 
Computer Science. I E E E . 2001. I S S N 1043-6871. pp. 29-37. 
doi:10.1109/LICS.2001.932480. 

[125] Synopsys: ASIP Designer: Design Tool for Application Specific Instruction-Set 
Processors, Designer Datasheet. 2018. 
Retrieved from: s y n o p s y s . c o m / d w / d o c . p h p / d s / c c / a s i p - d e s i g n e r - d s . p d f 

[126] Synopsys: ASIP Designer: Design Tool for Application Specific Instruction-Set 
Processors, Designer Datasheet. 2018. 

110 

http://riscv.org/specifications/
http://insights.sigasi.com/manual/linting.html
http://synopsys.com/


Retrieved from: 
s y n o p s y s . c o m / c g i - b i n / v e r i f i c a t i o n / d s d l a / p d f r l . c g i ? f i l e = v c s - d s . p d f 

[127] Synopsys: SpyGlass Lint Datasheet. 2018. 
Retrieved from: s y n o p s y s . c o m / c g i - b i n / v e r i f i c a t i o n / d s d l a / d o c s d l / s p y g l a s s -
l i n t - d s . p d f ? f i l e = s p y g l a s s - l i n t - d s . p d f 

[128] Synopsys: VC Formal Datasheet. 2018. 
Retrieved from: 
s y n o p s y s . c o m / c g i - b i n / v e r i f i c a t i o n / d s d l a / p d f r l . c g i ? f i l e = v c _ f ormal_ds .pdf 

[129] Tepurov, A . ; T ihhomirov , V . ; Jenihhin, M . ; et a l . : Loca l iza t ion of Bugs i n Processor 
Designs Using z a m i a C A D Framework. In 2012 13th International Workshop on 
Microprocessor Test and Verification (MTV). Dec 2012. I S S N 1550-4093. pp. 41-47. 
doi :10.1109/MTV.2012.20. 

[130] Trmac, M . ; Husar, A . ; Hranac, J . ; et a l . : Instructor Selector Generat ion from 
Archi tecture Descript ion. In 6th Doctoral Workshop on Mathematical and 
Engineering Methods in Computer Science. Masaryk University. 2010. I S B N 
978-80-87342-10-7. pp. 167-174. 

[131] Velev, M . ; Bryant , R . E . ; Ja in , A . : Efficient modeling of memory arrays i n symbolic 
simulation. In Proc. of Computer Aided Verification (CAV), LNCS, vol . 1254, edited 
by O . Grumberg . Springer Ber l in Heidelberg. 1997. I S B N 978-3-540-69195-2. pp. 
388-399. doi:10.1007/3-540-63166-6_38. 

[132] Velev, M . N . : Efficient translat ion of Boolean formulas to C N F i n formal verification 
of microprocessors. In Asia and South Pacific Design Automation Conference 
(ASP-DAC'04). J an 2004. I S B N 0-7803-8175-0. pp. 310-315. 
doi :10.1109/ASPDAC.2004.1337587. 

[133] Velev, M . N . : Exp lo i t i ng signal unobservability for efficient translat ion to C N F i n 
formal verification of microprocessors. In Proceedings Design, Automation and Test 
in Europe Conference and Exhibition, vol . 1. Feb 2004. I S S N 1530-1591. pp. 
266-271. doi:10.1109/DATE.2004.1268859. 

[134] Velev, M . N . : Us ing automatic case splits and efficient C N F translation to guide a 
S A T solver when formally verifying out-of-order processors. In Artificial Intelligence 
and Mathematics (AI&MATH'04). 2004. pp. 242-254. 

[135] Velev, M . N . ; Gao, P. : Au tomat ic Formal Verification of Mul t i threaded Pipel ined 
Microprocessors. In Proc. of International Conference on Computer Aided Design 
(ICCAD). I E E E . 2011. pp. 679-686. 

[136] Velev, M . N . ; Gao, P. : Automated debugging of counterexamples i n formal 
verification of pipelined microprocessors. In 17th Asia and South Pacific Design 
Automation Conference (ASPDAC'12). J an 2012. I S S N 2153-697X. pp. 689-694. 
doi :10.1109/ASPDAC.2012.6165044. 

[137] Weiser, M . : P rogram Sl ic ing. In Proceedings of the 5th International Conference on 
Software Engineering. I C S E '81. Piscataway, N J , U S A : I E E E Press. 1981. I S B N 
0-89791-146-6. pp. 439-449. 

I l l 

http://synopsys.com/
http://synopsys.com/
http://synopsys.com/


[138] Wilkes , M . V . : The best way to design an automatic calculat ing machine. In 
Manchester University Computer Inaugural Conference. Manchester, U K . 1951. 

[139] Wilkes , M . V . ; Stringer, J . B . : Micro-programming and the design of the control 
circuits in an electronic d igi ta l computer. Mathematical Proceedings of the 
Cambridge Philosophical Society, vol . 49, no. 2. 1953: pp. 230—238. 
doi:10.1017/S0305004100028322. 

[140] Wolf, W . ; Madsen, J . : Embedded systems education for the future. Proceedings of 
the IEEE. vol . 88, no. 1. 2000: pp. 23-30. I S S N 0018-9219. doi:10.1109/5.811598. 

[141] Wolper , P.; Boigelot, B . : Verifying systems wi th infinite but regular state spaces. In 
Computer Aided Verification, edited by A . J . H u ; M . Y . V a r d i . Ber l in , Heidelberg: 
Springer Be r l i n Heidelberg. 1998. I S B N 978-3-540-69339-0. pp. 88-97. 
doi:10.1007/BFb0028736. 

[142] Zachariasova, M . ; P f i k r y l , Z . ; Hruska , T. ; et a l . : Automated Funct ional Verification 
of App l i ca t i on Specific Instruction-set Processors. IFIP Advances in Information 
and Communication Technology, vol . 4, no. 403. 2013: pp. 128-138. I S S N 1868-4238. 
doi:10.1007/978-3-642-38853-8. 

112 


