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INTRODUCTION

Sparse representation has proven to be a very powerful tool in a variety of applications,
especially in signal processing, image processing, machine learning, and computer vision. The
list of specific tasks concerning images, for which sparse representation offers a huge potential,
contains image inpainting, image denoising, image segmentation, visual tracking, and more.
Another example of a popular topic in the last few years, where the use of sparse representation
is definitely beneficial and favourable, is image classification. Sparse representation are directly
related to compressed sensing, which can be seen as a method for recovering a sparse signal
from a small number of linear measurements.

Specific problems of the mentioned topics, which need to be solved, can be often represented
via convex optimisation problems. Searching for the sparse representation contributed to the
development of numerical methods for solving convex optimisation problems – specifically the
proximal algorithms, which are iterative algorithms based on the evaluation of the proximal
operators associated with the optimised function. Optimisation problems can be solved using
approximation algorithms, which can be divided into three categories: the greedy algorithms,
relaxation algorithms (which include also the proximal algorithms) and “hybrid” algorithms,
combining different approaches.

The image edge detection is one of the most used techniques in digital image processing,
computer and robot vision. It finds application in many topics such as object tracking, motion
detection, pattern recognition, image segmentation, medical data processing, etc. An edge in
the image is usually defined as a position where the intensity of an image changes significantly.
However, each application requires a different estimation of what a significant edge is and thus
there are several different approaches suited for each application.

Image edge detection can be viewed as the first step of image segmentation, therefore,
even nowadays, the edge detection is in the focus of researchers who are still trying to develop
better edge detection techniques.

Image segmentation is one of the most important applications in digital signal processing.
Segmentation divides an image into areas (segments) which have similar features or form
logical parts. These segments are disjoint and cover the entire image. A very interesting and
important area of image segmentation is a segmentation of medical images.

The most frequently used imaging modalities for anatomical structure imaging in medicine
are Computed Tomography (CT), Magnetic Resonance (MR) and Ultrasound. Image segmen-
tation is most often applied to CT and MR images. These imaging modalities are used for
diagnostic and treatment planning in various medical disciplines. In the time of developing 3D
printing, the importance of image segmentation is increasing. Doctors can print segmented
organs on a 3D printer and plan the operation on anatomical models of a particular patient.

This Thesis works with an assumption that an image can be modelled as an overcomplete
piecewise polynomial image, such as the image consisting of disjoint piecewise-polynomial
patches/segments. The number of the signal segments 𝑆 is considerably lower than the number
of the signal samples 𝑁 (𝑆 ≪ 𝑁), which motivates to measure and optimise sparsity in
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parametrisation images. Based on the above-mentioned assumptions, the convex recovery
problem can be formulated.

Our approach was inspired by authors of [11], who used a greedy approach to solve the
optimisation problem for signal segmentation. The presented approach is using the over-
parametrisation signal model and ℓ1-based convex relaxation methods. To the best of our
knowledge, it is the first time when the ℓ1 minimisation-based approach is used for signal
segmentation/edge detection.

First, the convex optimisation problems for one-dimensional signal segmentation and de-
noising are formulated since it is easier to implement appropriate algorithms able to solve such
formulated problems, and determine their advantages and disadvantages for one-dimensional
signals than for two-dimensional signals, i.e. images. Afterwards, the formulation of the con-
vex optimisation problem for the image edge detection, later solved by the most promising
algorithm from the 1D segmentation phase, takes place.
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1 THEORY

1.1 Sparse representation

In the beginning, the term “sparse” should be clarified. It can be used to describe the properties
of a matrix or a vector, which can be called sparse if most of its elements are zero [12].

The term “sparse” can be also used to describe the properties of a signal representation.
The representation of a signal is sparse if the signal is modelled as a linear combination of only a
few elements from the dictionary A. The dictionary consists of a set of basis elements (called
atoms) and it is always formed with respect to a specific task [13]. Sparse representation
is important for many applications [12]. The advantages of sparse representations include
simplifying the interpretation of data, enabling easy and strong compression or providing
numerical stability.

The intention of the sparse-based methods is to select a few atoms from the dictionary that
best represent given signal y ∈ R𝑁 . Signal y is defined by the linear system y = Ax, where
A ∈ R𝑁×𝑀 is the dictionary and x ∈ R𝑁 is the parametrisation vector with parametrisation
coefficients [14]. The aim is to find a sparse solution of the given linear system with as few
parametrisation coefficients as possible.

Sparsity 𝑘 of the solution concerns the number of non-zero coefficients in a vector of length
𝑁 . The sparsity is usually measured by the ℓ0-norm, which refers to the number of non-zero
entries 𝑘. A vector is called 𝑘-sparse, when its ℓ0-norm is equal to 𝑘. Usually, it holds that
𝑘 < 𝑁 or 𝑘 ≪ 𝑁 [15].

The basic sparse representation problem is formulated as:

arg min
x

‖x‖0 s.t. Ax = y. (1.1)

The problem is NP-hard and the solution is difficult to approximate. The ℓ0-norm is a non-
convex function and therefore, it is not possible to use any of the algorithms of convex optimi-
sation for solving the problem (1.1). To be able to use the convex optimisation, it is necessary
to use convex ℓ𝑝-norms, which are convex for 𝑝 ≥ 1.

In the case of noisy signal y, defined as y = Ax+e, where e ∈ R𝑁 is noise, the optimisation
problem can be recast to:

arg min
x

‖x‖1 s.t. ‖Ax − y‖2 ≤ 𝛿, (1.2)

where 𝛿 is a noise level. It will be shown later that for finding the solution to the optimisation
problem (1.2), the convex optimisation can be used.
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1.2 Convex optimisation

In mathematics, computer science, and economics, an optimisation problem is determined by
finding the best solution among all possible solutions. A general optimisation problem can be
defined as follows [16]:

minimise 𝑓0(x) s.t. 𝑓𝑖(x) ≤ 𝛿𝑖, 𝑖 = 1, . . . , 𝑚, (1.3)

where x is the optimisation variable of the problem, 𝑓0 is the objective function, 𝑓𝑖 are con-
straint functions, and 𝛿𝑖 are limits of the constraints. The solution to the optimisation problem
(1.3) is the vector x̂ producing the smallest objective value among all vectors satisfying the
constraints, i.e. for any z with 𝑓1(z) ≤ 𝛿1, . . . , 𝑓𝑚(z) ≤ 𝛿𝑚, it holds 𝑓0(z) ≥ 𝑓0(x̂).

1.3 Proximal splitting algorithms

Proximal splitting algorithms (PAs) are in general able to solve unconstrained convex optimi-
sation problems of type

arg min
x

𝑓1(𝐿1x) + · · · + 𝑓𝑚(𝐿𝑚x), (1.4)

where functions 𝑓1, . . . , 𝑓𝑚 are convex and 𝐿1, . . . , 𝐿𝑚 are linear operators [17]. Note, however,
that some algorithms are restricted regarding the number of minimised functions and linear
operators. For instance, the Douglas–Rachford algorithm is able to find the minimum of
the sum of only two convex functions, without linear operators (i.e. the linear operators are
identities).

The PAs are suitable for finding the minimum of a sum of convex functions during an
iterative process. A process of iterations is generally terminated after a pre-defined number of
iterations or if a convergence criterion is met, e.g. the change in the solution is small enough:
‖x̂𝑖+1 − x̂𝑖‖2/‖x̂𝑖‖2 ≤ 𝜀, where 𝑖 is the number of the iteration and 𝜀 is the parameter of the
convergence criterion. Proximal splitting algorithms are proven to provide convergence to the
optimal value. However, in practice, convergence and its speed are greatly affected by the
nature of the functions and parameters used in the algorithm.

The PAs perform iterations involving the evaluation of gradients and/or proximal operators
(see below) related to individual functions, which is much simpler than minimisation of the
composite functional by other means. The advantage of proximal splitting algorithms is that
they allow solving the minimisation problems even with non-smooth functions. Each non-
smooth function is involved via its proximity operator.

Several proximal splitting algorithms exist, and their application depends on the definition
of the minimisation problem. In this Thesis, these proximal splitting algorithms are used:
the Forward-backward (FB) algorithm [17], the Douglas–Rachford (DR) algorithm [17], the
Chambolle–Pock (CP) algorithm [18], the Forward-backward based primal-dual (FBB-PD)
algorithm [19], and the Condat algorithm [20, 21].
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1.4 Edge detection

An edge is defined as a position in the image where it is a significant local change in the
image intensity. A stronger change of the intensity causes clearer edge, which can be detected
more easily and more precisely. Edges provide important visual information, for example each
object can be easily described with few key edges and therefore, edges are important for human
sight.

Edge detection can be interpreted as a transformation of the grayscale or colour image to
the binary image, where white pixels represent the edge position and black pixels represent
the background or vice versa. Finding the place where the change in the image intensity is
strong, is the appropriate way how to find the edges. Many approaches to the edge detection
were designed. An easy and very common approach to the edge detection is application of the
edge operators.

Edge strength and orientation An edge can be described by their strength and orienta-
tion. Edge strength and orientation are computed from the results of the convolution of the
original image with the gradient masks for each image position. [22, 23]

Edge detection and noise The result of the edge detection is significantly affected by noise
in the image, which usually causes the detection of false edges. This phenomena is naturally
more significant with stronger noise and in the case of simple edge detection methods. These
false detected edges should be excluded via post-processing, which takes image context into
consideration. [22]

Edge maps The result of the edge detection approach is full of edge candidates. The
decision on which candidate is truly an edge and which is not is a very important part of
the post-processing. The simplest method to decide this is to apply thresholding to the edge
strength. The threshold value can be fixed or adaptive. The decision process leads to the
binary image – so called edge map. [23]

1.5 Denoising

Denoising or noise smoothing can be viewed as a signal enhancement, which focuses on the
compensation of the signal imperfections caused by the noise, providing the assumption of the
original “clean” signal [22]. Noise smoothing is realised mostly by local operators (masks) –
linear or non-linear and space invariant or adaptive.

An image can be corrupted by a different kind of noise. The origin of the noise plays
important role in choosing the suitable noise-suppressing method.
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2 THESIS AIMS AND OBJECTIVES

The main aim of the Thesis is to propose, implement, and evaluate an effective method for
image edge detection.

To do this, the first step is to propose a suitable convex optimisation problem that can
deal with the problem of edge detection. Since there are many methods for solving convex
optimisation problems, appropriate optimisation algorithms will be chosen to solve the problem
numerically.

The authors of [11] used greedy approach to solve the optimisation recovery problem for
signal segmentation. Inspired by this work, the intent of this Thesis is to explore how the
ℓ1-based convex relaxation methods will deal with the recovery problems for 1D signal seg-
mentation and denoising. To the best of our knowledge, it will be the first time when the ℓ1

minimisation-based approach will be used for signal segmentation/breakpoint detection.
First, the convex optimisation problems for one-dimensional signal segmentation and de-

noising will be formulated. It is easier to formulate the recovery problems, implement appro-
priate algorithms able to solve such formulated problems, and determine their advantages and
disadvantages for one-dimensional signals than for 2D signals, i.e. images.

One of the advantages of the the 1D case is that segmentation and denoising are performed
simultaneously. Denoising can be considered as a side-product of this solution. Furthermore,
each detected segment can be denoised separately once again, to obtain a better denoising
effect.

The first step will be to compare these methods on 1D signals, and then the method that
gives the most promising results on 1D signals will be extended for the use in the higher
dimension. Afterwards, the convex optimisation problems for the detection of edges in images
will be formulated, which will be then solved by the most promising algorithm from the 1D
segmentation phase.

A necessary part of the Thesis is the evaluation of the obtained results, which will be per-
formed on a generated dataset of 1D synthetic signals and a public image dataset (BSDS500).
Several evaluation metrics described in the Thesis will be used to evaluate the results on 1D
and 2D signals.

Following the idea of reproducible research, the implementations of the algorithms for
1D signal segmentation and denoising and for image edge detection will be made publicly
available.

All the chosen algorithms will be implemented in Matlab, some proximal algorithms for
convex optimisation will be implemented using the UnLocBox toolbox[24].

A repository of Matlab implementations of the developed 1D signal segmentation and
denoising algorithms and image edge detection algorithm will be created, including also the
test datasets of 1D signals, images, and bases.
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3 SEGMENTATION OF 1D SIGNALS

3.1 Test signals and bases, evaluation

For the experiments, test datasets of synthetic signals and bases are created. The dataset of
synthetic signals is in this Thesis represented by the group of piecewise-linear and piecewise-
quadratic signals.

Synthetic signals As elementary signals for creating a dataset of linear signals, 10 random
piecewise-linear signals yclean (𝐾 = 1) with 6 signal segments (𝑆 = 6), and without jumps
of length 𝑁 = 300 are generated. For each elementary signal, 10 variations of the signal
with 𝐿 = 10 levels of the jump height h = [ℎ1, . . . , ℎ10] are generated. Five SNR values are
prescribed for the experiments: 15, 20, 25, 30, and 35 dB. For each signal and each SNR, 50
realizations of noise are generated, making a set of 27,500 noisy signals y in total. Examples
of clean linear signals yclean are depicted in Fig. 3.1a.

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

signal 2
signal 6
signal 10

(a) Synthetic piecewise-linear signals
0 50 100 150 200 250 300

−100

−50

0

signal 12
signal 14
signal 19

(b) Synthetic piecewise-quadratic signals

Fig. 3.1: Examples of used synthetic piecewise-linear and piecewise-quadratic signals. The
left-hand side figure shows the examples of used clean synthetic piecewise-linear signals –
signal 2, 6, and 10. The right-hand side figure shows the examples of used clean synthetic
piecewise-quadratic signals – signal 12, 14, and 15.

The dataset of piecewise-quadratic signals is created with the same process as the dataset
of piecewise-linear signals, with one difference. At the beginning, 10 randomly piecewise-
quadratic signals yclean (K=2) are generated, instead of the set of 10 randomly generated
piecewise-linear signals. Examples of clean quadratic signals yclean are depicted in Fig. 3.1b.

Bases In this Thesis, the bases are divided into groups according to their orthogonality and
normalisation. All the polynomial bases consist of 𝐾 + 1 basis vectors, which are linearly
independent discrete-time polynomials p𝑘. The basis vectors p𝑘 can be viewed as the columns
of the 𝑁 × (𝐾 + 1) matrix and they form the diagonals of the matrix P in the model (3.1).
According to the properties of the particular polynomials, the bases can be divided into:
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modified standard basis S, non-orthogonal bases B, normalised bases N, orthogonal bases O,
and random orthogonal bases R. The modified standard basis S and example of the O-basis
are shown in Fig. 3.2. For most of the experiments, only the modified standard basis S is
used. Then only the groups of the O-bases and R-bases are generated and used in this Thesis,
where each group consists of 20 particular bases.

0 50 100 150 200 250 3000

0.2

0.4

0.6

0.8

1

1.2

p0
p1
p2

(a) Modified standard basis.
0 50 100 150 200 250 300

−0.15

−0.1

−0.05

0

0.05

0.1

p0
p1
p2

(b) O-basis.

Fig. 3.2: The modified standard basis S and O-basis O consisting of three basis polynomials.

Evaluation

Two points of view are used for the evaluation of the results of the 1D signal segmentation
and denoising process. The first one is evaluation of the quality of signal segmentation, i.e.
breakpoint detection accuracy. The second one is the evaluation of obtained signal denoising.

For such an evaluation, several metrics are used - AAR, MMR, and NoB for breakpoint
detection accuracy, and SNR and MSE for denoising performance. The most important evalu-
ation parameter for breakpoint detection accuracy is the number of correctly detected break-
points (NoB), for denoising performance, it is signal-to-noise ratio (SNR).

3.2 Signal model description

A signal y can be modelled as

y = Px =
[︁
P0 | · · · | P𝐾

]︁
⎡⎢⎢⎢⎢⎢⎣

x0

|...

|

x𝐾

⎤⎥⎥⎥⎥⎥⎦ = p0 ⊙ x0 + · · · + p𝐾 ⊙ x𝐾 , (3.1)

where the length of x is (𝐾 + 1)𝑁 and P is a fat matrix of size 𝑁 × (𝐾 + 1)𝑁 , ⊙ denoting
the elementwise (Hadamard) product. Signal y, parametrisation vectors x𝑘, polynomial bases
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p𝑘 and matrices P𝑘 (for 𝑘 = 0, . . . , 𝐾) are defined as

y =

⎡⎢⎢⎢⎣
𝑦[1]

...
𝑦[𝑁 ]

⎤⎥⎥⎥⎦ , x𝑘 =

⎡⎢⎢⎢⎣
𝑥𝑘[1]

...
𝑥𝑘[𝑁 ]

⎤⎥⎥⎥⎦ , p𝑘 =

⎡⎢⎢⎢⎣
𝑝𝑘[1]

...
𝑝𝑘[𝑁 ]

⎤⎥⎥⎥⎦ , P𝑘 = diag(p𝑘) =

⎡⎢⎢⎢⎣
𝑝𝑘[1] 0

. . .
0 𝑝𝑘[𝑁 ]

⎤⎥⎥⎥⎦ . (3.2)

Such a description of a 𝑁 -dimensional signal is obviously overcomplete in terms of the
number of parameters. When the polynomials in P are fixed, (𝐾 + 1)𝑁 parameters are used
to characterise the signal.

Nevertheless, it is assumed that y is piecewise-polynomial and that it consists of 𝑆 inde-
pendent segments. Each segment 𝑠 ∈ {1, . . . , 𝑆} is then described by 𝐾 +1 basis polynomials.
This can be achieved by letting all the vectors x𝑘 be piecewise-constant within the particular
segments, with the change at the segment borders. See Fig. 3.3 for illustration. The positions
of the segment borders are unknown and they will be the subject of the search.

0 10 20 30 40 50 60
-0.2

0

0.2

0.4
Signal

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4
Polynomials

0 10 20 30 40 50 60
-1

-0.5

0

0.5

1
Parameterisation coefficients

x0

x1
x2

Fig. 3.3: Example of piecewise-quadratic signal parametrisation. The top plot shows the clean
piecewise-quadratic signal y consisting of four segments. The middle plot shows three basis
polynomials p0, p1, p2. The bottom plot shows the parametrisation coefficients x0, x1, x2.

Due to the facts described above, if x𝑘 are piecewise-constant, the finite difference operator
∇ applied to vectors x𝑘 produces sparse vectors ∇x𝑘, where each such a vector ∇x𝑘 has 𝑆 − 1
non-zeros at maximum. Moreover, the non-zero components of each ∇x𝑘 occupy the same
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positions across 𝑘 = 0, . . . , 𝐾. Operator ∇ computes simple differences of each pair of adjacent
elements in the vector, i.e. ∇ : R𝑁 → R𝑁−1 such that ∇z = [𝑧2 − 𝑧1, . . . , 𝑧𝑁 − 𝑧𝑁−1]⊤.

Formulations mentioned above describe a clean polynomial signal without noise corruption.
In the real world, it is usual that signals are corrupted by different types of noise. In this Thesis,
it is assumed that the observed signal is corrupted by uncorrelated Gaussian noise with zero
mean and non-zero variance. The definition of such a signal is

y = Px + e, (3.3)

where e represents the noise vector of length 𝑁 .

3.3 Concept of 1D signal segmentation and denoising

The general method for 1D signal segmentation and denoising can be defined and formally
described by these main steps (illustrated in Fig. 3.4):

• Optimisation step using a proximal splitting algorithm,
• Segmentation and denoising,

– Detection of segment borders (breakpoints),
– Smoothing of detected segments.

Proposed methods differ from each other only in the first step (i.e. the optimisation step us-
ing a proximal splitting algorithm), specifically in the problem formulation and used proximal
splitting algorithm.

Optimisation step using a proximal splitting algorithm

At first, the general recovery problem suitable for the solution of the 1D signal segmentation
and denoising needs to be defined. The below-mentioned assumptions (which are based on the
signal model description) are taken into account to formulate the general recovery problem:

• Observed signal y can be approximated by a linear combination of basis polynomials p𝑘.
• The number of the signal segments 𝑆 is considerably lower than the number of the signal

samples 𝑁 (𝑆 ≪ 𝑁), which motivates to measure sparsity.
• Observed signal y is corrupted by Gaussian noise.
According to these assumptions, the general unconstrained recovery problem consists of

two main terms: data fidelity term and penalisation term (penalty). General formulation of
the recovery problem can be written as follows:

x̂ = arg min
x

𝑑𝑎𝑡𝑎_𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦_𝑡𝑒𝑟𝑚(x) + 𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑡𝑒𝑟𝑚(x), (3.4)

where x are parametrisation coefficients, and x̂ are the obtained parametrisation coefficients.
The proposed recovery problem is an optimisation program consisting of convex functions,

which can be solved by using proximal splitting algorithms.
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Using proximal splitting algorithm

Detection of segment borders

Smoothing of detected segments

Fig. 3.4: Process of 1D signal segmentation. The diagram shows how the observed signal is
processed during the 1D signal segmentation and denoising.

3.4 Formulated recovery problems

In this Thesis, several recovery problems suitable for the solution of the 1D signal segmenta-
tion/denoising process are proposed.

Recovery problem – Total variation According to the signal model description in Sec. 4.1,
the number of the signal segments 𝑆 is considerably lower than the number of the signal sam-
ples 𝑁 , and the parametrisation coefficients x𝑘 are piecewise-constant and positions of the
breakpoints should be clearly identifiable in individual ∇x𝑘 – the non-zero values indicate the
positions of segment borders. Estimation of such parametrisation coefficients x̂ of the observed
signal y is needed. Then the breakpoints are found in estimated parametrisation coefficients
x̂.

According to the above-mentioned assumptions, the following optimisation problem is for-
mulated as

x̂ = arg min
x

‖∇x0‖0 + · · · + ‖∇x𝐾‖0 s.t. ‖y − Px‖2 ≤ 𝛿, (3.5)

where x are parametrisation coefficients, x̂ are estimated parametrisation coefficients, ∇ is
the difference operator, y is the observed signal, P is the matrix of basis polynomials and 𝛿
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is the parameter reflecting the noise level and model error. The functional ‖ · ‖0 counts the
non-zero elements of the vector. The ‖∇ · ‖0 indicates the number of possible breakpoints in
the vector.

The problem (3.5) is reformulated into its unconstrained form. Numerical solution of
such unconstrained recovery problem using the Forward-backward and the Douglas–Rachford
algorithms was presented in our paper [25].

The proposed experiments showed that the denoising process is better when the FB algo-
rithm is used. However, the DR algorithm obtained a better breakpoint detection than the
FB algorithm.

Recovery problem – ℓ21-norm The presented recovery problem (3.5) from Sec. 3.4 does
not ensure finding the possible breakpoint candidates at the same positions across all difference
vectors ∇x̂𝑘 because that approach utilises ‖∇ · ‖0 to treat each x𝑘 separately. Therefore, the
correct breakpoints could be discarded by this approach. To avoid this phenomenon, the ℓ21-
norm [26] was used to enforce joint breakpoints over across all the difference vectors ∇x𝑘 in
the following optimisation problem:

x̂ = arg min
x

‖[𝜏0∇x0, . . . , 𝜏𝐾∇x𝐾 ]‖21 s.t. ‖y − Px‖2 ≤ 𝛿, (3.6)

where x are parametrisation coefficients, x̂ are estimated parametrisation coefficients, ∇ is
the difference operator, 𝜏𝑘 are 𝐾 + 1 positive regularisation weights, corresponding to the
individual polynomial degrees, ‖ · ‖21 indicates the ℓ21-norm, y is the observed signal, P is the
matrix of basis polynomials, and 𝛿 is the parameter reflecting the noise level and model error.

The recovery problem (3.6) is reformulated to the unconstrained form and the numerical
solution using the Forward-backward based primal-dual algorithm and the Chambolle–Pock
algorithm was presented in our paper [27] and article [28].

The proposed experiments showed that for both denoising and breakpoint detection, the
FBB-PD algorithm gave better results than the CP algorithm. The comparison of the FBB-
PD algorithm with the FB algorithm revealed that the FBB-PD algorithm provided better
results in all areas.

Recovery problem – imitation of non-convexity Another way how the breakpoint detec-
tion could be improved is the imitation of non-convexity. To enhance the sparsity of the
solution, it is possible to imitate the non-convexity via a series of convex programs. This
approach is not new in general, it has been both theoretically and practically justified in [29],
for example. Such a series of convex problems is formulated such that the parameters of the
currently solved convex problem depend on the solution of the latest problem. The optimisa-
tion problem that extends problem (3.6) from previous section by the change of parameters
can be formulated as follows:

x̂(𝑗) = arg min
x

‖reshape(𝐿(𝑗)x)‖21 s.t. ‖y − Px‖2 ≤ 𝛿, (3.7)
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where the linear operator 𝐿(𝑗) includes parameters, which change with each problem repeti-
tion, where 𝑗 = 0, . . . , 𝐽 represents the counter for problem repetitions, x̂(𝑗) are estimated
parametrisation coefficients, x are parametrisation coefficients, y is the input signal, P is
the matrix of polynomials, 𝛿 is the parameter reflecting the noise level and model error, and
reshape() operator takes the stacked vector 𝐿(𝑗)x to the form of a matrix with disjoint columns.

After a defined number of inner iteration (𝐼𝑇 ) of the proximal splitting algorithm, the
parameters in the operator 𝐿(𝑗) are recomputed. Therefore, the process of re-computation is
called re-weighting in this Thesis.

Numerical solution to the unconstrained form of the optimisation problem (3.7) using non-
weighted and re-weighted variants of the Condat algorithm was presented in our paper[30].

The proposed experiments showed that for both breakpoint detection and denoising, the
non-weighted Condat algorithm gave better results than re-weighted Condat algorithm.

Testing different types of bases In the previous sections, the modified standard basis S
was used in all experiments. The disadvantage of using the modified standard basis is that
it is necessary to set the regularisation weights for the individual polynomials of the basis,
because the influence of the individual polynomials on the segmentation process is not equal
and the achieved results are worse without weighting.

The aim of this section is to reduce the number of tunable parameters caused by using
the modified standard basis. Therefore, different types of bases introduced in Sec. 3.1 will be
exploited, which will avoid the weighting of basis polynomials.

This approach was already presented in our article [31], where it is demonstrated that
using another types of bases is a promising way how to improve the segmentation results of
the non-weighted Condat algorithm. The paper shows that the best results are achieved with
R-bases and O-bases. Therefore, the experiments in this section will be performed only for
these two types of bases.

The optimisation problem for this section is identical as in Sections 3.4 and 3.4and is
formulated as follows:

x̂ = arg min
x

‖reshape(𝐿x)‖21 s.t. ‖y − Px‖2 ≤ 𝛿, (3.8)

where 𝐿 is a linear operator, x̂ are estimated parametrisation coefficients, x are parametrisation
coefficients, y is input signal, P is the matrix of polynomials, 𝛿 is the parameter reflecting the
noise level and model error, and reshape() operator takes the stacked vector 𝐿(𝑗)x to the form
of a matrix with disjoint columns.

The unconstrained form of the optimisation problem (3.8) is solved using Forward-backward
based primal-dual (FBB-PD) algorithm and the non-weighted Condat algorithm.

The performed experiments showed that from the breakpoint detection point of view, the
non-weighted Condat algorithm gave better results than the FBB-PD algorithm for both O-
and R-bases. The results showed that the standard modified basis performed the best for
linear signals and R-bases were the best for quadratic signals.
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4 EDGE DETECTION IN IMAGES

4.1 Signal model description

The 2D signal model used in this Thesis is a natural extension of the 1D signal model de-
scribed in Sec. 4.1. Therefore, the images are assumed to consist of non-overlapping piecewise-
polynomial patches. The edges in the image represent positions where the adjacent patches
(segments) change their polynomial characterisation. Within the patches (segments), the
respective representation stays steady.

Let the 2D signal (image) Y ∈ R𝑀×𝑁 contain entries 𝑌 [𝑚, 𝑛], 𝑚 = 1, . . . , 𝑀 , 𝑛 = 1, . . . , 𝑁 .
The image is modelled in the similar way as the 1D signal (see Eq. (??))

Y = P̄00 ⊙ X00 + P̄01 ⊙ X01 + · · · + P̄𝐾𝐾 ⊙ X𝐾𝐾 , (4.1)

where X𝑘𝑙 are matrices of parametrisation coefficients of the size 𝑀 × 𝑁 , and P̄𝑘𝑙 are basis
images of size 𝑀 × 𝑁 as defined below in Eq. (4.2).

The image Y is assumed to be piecewise-polynomial and consists of 𝑆 independent patches
(segments). Each patch 𝑠 ∈ {1, . . . , 𝑆} is described by (𝐾 + 1)2 basis polynomial images P𝑘𝑙.
Matrices X𝑘𝑙 are assumed to be piecewise-constant within the particular patches, with the
change at the patch borders.

For the images, the polynomial basis images P̄𝑘𝑙 ∈ R𝑀×𝑁 are needed instead of the poly-
nomial vectors p𝑘. The extension from the polynomial vectors to the polynomial basis images
is done through the Kronecker product of 1D polynomial vectors p𝑘v ∈ R𝑁 and p𝑙h ∈ R𝑀 ,
where the subscripts “v” and “h” represent the vertical and the horizontal directions of the
1D polynomial vectors, respectively. And the subscripts “𝑘” and “𝑙” represent the degree of
the vertical and horizontal polynomials, respectively. Note that for the definition of the 2D
signal model, the degrees of the polynomials in the vertical and the horizontal direction are
supposed to be identical, i.e. 𝐾.

The set of basis 2D polynomials are formed by all the combinations of p𝑘v and p𝑙h, where
𝑘 = 0, . . . , 𝐾 and 𝑙 = 0, . . . , 𝐾 such that

P̄00 = p0v · p⊤
0h

P̄01 = p0v · p⊤
1h

...
P̄𝐾𝐾 = p𝐾v · p⊤

𝐾h

(4.2)

making altogether (𝐾 + 1)2 polynomial basis images. When both the vertical and horizontal
polynomial vectors form the respective 1D orthonormal bases, the new generated polynomial
basis images form the 2D orthonormal basis.
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Also, the 2D signal model can be expressed as a matrix-vector multiplication

y = Px = [P00 | · · · | P𝐾𝐾 ]

⎡⎢⎢⎢⎢⎢⎢⎣
x00

|...

|

x𝐾𝐾

⎤⎥⎥⎥⎥⎥⎥⎦

=
[︁
diag(vec(P̄00)) | · · · | diag(vec(P̄𝐾𝐾))

]︁
⎡⎢⎢⎢⎢⎢⎢⎣

vec(X00)

|...

|

vec(X𝐾𝐾)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(4.3)

where y ∈ R𝑀𝑁 , P ∈ R𝑀𝑁×(𝐾+1)2𝑀𝑁 , x ∈ R(𝐾+1)2𝑀𝑁 , and vec(·) is the vectorisation operator,
which stacks the image columns, one after another, into a single column.

Vectors x𝑘𝑙 are assumed to be piecewise-constant. The finite difference operator ∇ applied
to them produces sparse vectors ∇x𝑘𝑙 with non-zero components occupying the same positions
across 𝑘 = 0, . . . , 𝐾 and 𝑙 = 0, . . . , 𝐾.

The definition of an image corrupted by uncorrelated Gaussian noise with zero mean and
non-zero variance is

y = Px + vec(E), (4.4)

where E represents the noise matrix of size 𝑀 × 𝑁 .

4.2 Concept of image edge detection

Concept of the image edge detection is divided into two main steps, similar to the 1D signal
segmentation and denoising process, except the last step “Smoothing of detected segments”,
which is not utilised in proposed image edge detection method:

• Optimisation using a proximal splitting algorithm,
• Edge identification.

Since vectorised images are used for the process of the image edge detection, the illustration
in Fig. 3.4 demonstrates the individual steps of both 1D and 2D process (except the last step
“Smoothing of detected segments”).

4.3 Recovery problem and algorithm used

Since it is assumed that the clean image consists of several non-overlapping polynomial patches,
the piecewise-constant parametrisation coefficients {x𝑘ℓ}𝑘,ℓ, which are sparse under the differ-
ence operator ∇, can be found. The image consists of edges with different orientations. To
successfully detect the edges in the image, it is necessary to seek the edges in at least two
perpendicular directions (usually the vertical and horizontal direction). Therefore, two forms
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of the difference operator are used – the horizontal and the vertical one. As mentioned before,
the analysed image is supposed to be corrupted by an i.i.d. Gaussian noise.

These assumptions lead to the following formulation of the constrained optimisation prob-
lem

x̂ = arg min
x

{︃
‖ reshape

v
(𝐿vx)‖21 + 𝜆‖ reshape

h
(𝐿hℳ(x))‖21

}︃
s.t. ‖y − Px‖2 ≤ 𝛿, (4.5)

where the vector x̂ represents the obtained optimal parametrisation coefficients, y is the
vectorised image Y, x are the vectorised parametrisation coefficients X, and P is a matrix of
polynomial bases images. The parameter 𝛿 reflects the noise level and the model imperfections.

Numerical solution of the unconstrained form of the optimisation problem (4.5) using the
Condat algorithm was presented in our paper [32].

4.4 Image dataset and bases, evaluation

Natural images For the experiments, the Berkeley Segmentation Data Set and Benchmarks
500 (BSDS500) [33] is used. This dataset consists of 500 natural RGB images YRGB. Each
image of the BSDS500 dataset was manually annotated on average by five different subjects
(see some examples of the natural images and their annotations in Fig. 4.1). Further informa-
tion on how the annotations were taken can be found in [34]. The BSDS500 is divided into 3
groups: 200 train images, 100 images for validation, and 200 test images. BSDS500 with its
human annotations serves as the ground truth for comparing different segmentation and edge
detection methods.

Fig. 4.1: Example of RGB natural image of BSDS500 dataset with its annotations by humans.

For the testing, also the Berkeley Segmentation Data Set and Benchmarks 300 (BSDS300)
[33] is used. This dataset consists of 300 natural RGB images YRGB, and is divided into
2 groups: 200 train images, 100 test images. The train subset of BSDS300 is equal to the
train subset of BSDS500 and the test subset of BSDS300 is same as the validation subset of
BSDS500.

Types of processed images For the purpose of this Thesis, three groups of real images
Y ∈ R𝑀×𝑁 are used. The first group of images consists of the set of RGB images denoted
as YRGB. The second group of images consists of the grayscale images Ygray, which were
obtained from the first group of RGB images by converting the RGB image to the grayscale
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image. For the conversion, the Matlab function “rgb2gray” was used. By converting, the hue
and saturation information are eliminated while the luminance is retained.

The third group is formed with noisy grayscale images Ynoisy. The Gaussian i.i.d. noise E
is added to the grayscale images Ygray, resulting in grayscale noisy images Ynoisy, such that

Ynoisy = Ygray + E, E ∼ N(0, 𝜎2
E). (4.6)

Bases For the experiments, the basis consisting of the (𝐾 + 1)2 basis images, where 𝐾 = 2,
is used. The generation process of polynomial basis images is defined in Eq. (4.2) and it is
independent of the particular choice of the basis type.

A standard basis S̄, which was generated using the polynomials of the modified standard
basis S using Eq. (4.2). See Fig. 4.2 for examples of standard basis images of S̄.
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Fig. 4.2: Examples of polynomial images S̄00, S̄01, S̄12, S̄22 of size 321 × 481, generated from
the 1D modified standard basis S of degree 𝐾 = 2.

4.5 Evaluation

The datasets of natural images with human annotations of image edges/segments are used for
the evaluation of the edge detection accuracy and for the comparison of the results of different
algorithms.

For evaluation of the edge detection accuracy, the precision–recall curve and F-measure
score [34] are used. The parametric curve reflects the relation between the precision and the
recall for changing threshold value of the edge detector.

Precision (P) is defined as a ratio of true positive (TP) detections to the sum of false
positive (FP) and true positive (TP) detections: P = TP

FP+TP .
Recall (R) is defined as a ratio of true positive (TP) detections to the sum of false negative

(FN) and true positive (TP) detections: R = TP
FN+TP .

F-measure score (F) is defined as a harmonic mean of precision and recall:

F = 2 P · R
P + R . (4.7)

The optimal threshold value of the detector gives the maximal F-measure score along the
curve.
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4.6 Experiments

The image edge detection method presented in this Thesis is tuned only on the train and
validation groups of images. During the training and validation phase, the optimal values of
parameter 𝛿 are chosen for both RGB and grayscale images. Since the proposed approach is
applied to each colour channel separately, the best merging approach is also chosen. These
values of parameter 𝛿 and the best merging approach for RGB images are then used in the
test phase. The final evaluation is performed on the test group of images. Example of edge
detection result on RGB and grayscale test images is displayed in Fig. 4.3.

Fig. 4.3: Examples of edge detection results for RGB and grayscale image of BSDS500 test
subset. From the left: original colour image, detected edges in RGB image, grayscale image,
detected edges in grayscale image.

The precision–recall curves of other approaches are displayed in Fig. 4.4 on the left side.
The proposed image edge detection method for both grayscale and RGB test images gives
better results in term of F-measure score than the classical gradient-based edge detection
techniques (Prewitt, Sobel, and Roberts) and Laplacian of Gaussian.
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Fig. 4.4: Precision–recall curves with their maximum F-measure scores for 𝛿 settings. The
precision–recall curves of other approaches described are displayed on the left side. The
precision–recall curves of proposed approach for RGB and grayscale images are plotted on the
right side. Presented results are for test subset of BSDS300 consisting of 100 natural images.
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CONCLUSION

This Thesis dealt with breakpoint/edge detection in 1D and 2D signals using sparse signal
representation and convex optimisation. The main objective of this Thesis was to provide a
novel method for detecting edges in an image. Several suitable approaches were selected and
tested on 1D signals and the best of them was subsequently extended to 2D. The Thesis was
divided into main three parts.

The first part included a basic overview, the notation used and explained sparse signal
representation and convex optimisation, including proximal splitting algorithms, which were
implemented in this Thesis. Then here is presented a discussion of a selection of topics from the
field of image processing that were relevant to this Thesis. This included image segmentation,
edge detection and enhancement, and denoising. And finally, it gave an overview of the edge
detection methods used.

The second part focused on finding the most promising algorithm for breakpoint detection
in a 1D signal, which was then extended for the use in 2D. In this part, the input data
(test signals, polynomial bases), formulation of the signal model and the general concept for
the 1D signal segmentation and denoising were introduced, several possible solutions were
designed, and the experiments and their results were evaluated from two perspectives – the
quality evaluation of segmentation and denoising. A general concept of the proposed 1D signal
segmentation process explained the basic idea of the proposed methodology. The general
method was divided into two main steps – “Optimisation step using a proximal splitting
algorithm” and “Segmentation and denoising step”. The methods proposed in the second part
differed from each other only in the first step, namely in the particular formulation of the
problem and in the proximal splitting algorithm that was used.

First, an ℓ1-based unconstrained formulation of the recovery problem using the total
variation was proposed, and two proximal algorithms (the Forward-backward (FB) and the
Douglas–Rachford (DR) algorithm) were used to solve this recovery problem. The carried
experiments revealed that the denoising process is better when the FB algorithm is used.
However, the DR algorithm obtained a better breakpoint detection than the FB algorithm.
Considering that noise reduction was only a by-product of the proposed algorithm, perfor-
mance in breakpoint detection were more important.

Since the total variation treated each parametrisation vector separately, it did not ensure
that possible breakpoint candidates were found at the same positions across all difference
vectors. Therefore, the correct breakpoints could be discarded by this approach. To avoid this
phenomenon, the ℓ21-norm was used to enforce joint breakpoints over the difference vectors.
The second recovery problem using ℓ21-norm was solved using the Forward-backward based
primal-dual (FBB-PD) and the Chambolle–Pock (CP) algorithm. For both denoising and
breakpoint detection, the FBB-PD algorithm gave better results than the CP algorithm. The
comparison of the FBB-PD algorithm with the FB algorithm revealed that the FBB-PD
algorithm provided better results in all areas. Based on these results, a conclusion can be made
that the use of the ℓ21-norm has led to a significant improvement in the results, compared to
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the simple total variation-based approach.
Another idea to improve the breakpoint detection was to imitate non-convexity via a series

of convex programs, where the parameter of the currently solved convex problem depended
on the latest solution. In this sense, the extended ℓ21-norm based unconstrained recovery
problem was defined, and it was solved using the re-weighted and non-weighted variants of the
Condat algorithm. The comparison of the non-weighted and re-weighted Condat algorithms
showed that the breakpoint detection and denoising was better when the non-weighted Condat
algorithm was used. Thus, there was no confirmation that the imitation of non-convexity would
bring an improvement in the detection of breakpoints. Compared to the FBB-PD algorithm,
the non-weighted Condat algorithm achieved worse results in the breakpoint detection and
denoising. The differences between FBB-PD and the non-weighted Condat algorithm were
not so significant for the signals with big jump heights and high SNR.

The last experiments from the second part focused on the use of different types of bases,
specifically O- and R- bases, in contrast to previous experiments where a modified standard
S-basis was used. The ℓ21-norm based recovery problem was used and the FBB-PD and the
non-weighted Condat algorithms were used to solve it. From the comparison between the FBB-
PD algorithm and the non-weighted Condat algorithm, it appeared that it was advantageous
to use the FBB-PD algorithm. However, for solving the task in more dimensions, the non-
weighted Condat algorithm offers a better possibility. From the breakpoint detection point of
view, it was evaluated that the non-weighted Condat algorithm gave better results than the
FBB-PD algorithm for both O- and R-bases. The results showed that the standard modified
basis performed the best for linear signals and R-bases were the best for quadratic signals.

The third part of the Thesis dealt with edge detection in images. First, 2D signal model
is formulated, then the general concept of the proposed image edge detection is introduced,
followed by the presentation of the image dataset and the evaluation metric used, and finally,
by the description of the specific image edge detection solution, including experiments and
their evaluation. A comparison with other edge detection approaches was also included in
this part. The general concept of image edge detection, was divided into two main steps –
“Optimisation step using a proximal splitting algorithm” and “Edge identification”.

For the experiments, 2D polynomial bases and the natural image datasets BSDS500 and
BSDS300 (Berkeley Segmentation Data Set) are needed. These datasets are often used for
the comparison of segmentation and edge detection methods containing manually annotated
image edges/segments used as the ground truth. The BSDS500 dataset is divided into three
classes: train, validation, and test subset, and the BSDS300 is only a subset of the BSDS500
containing only images from the train and validation subsets. To evaluate the accuracy of the
edge detection, the precision–recall curve and the F-measure score were used.

The extended ℓ21-norm based recovery problem for the use with 2D signals was presented.
A suitable algorithm for solving the defined recovery problem seemed to be the non-weighted
Condat algorithm, which obtained the most promising results when used on 1D signals.

First, the experiments on grayscale and colour images from the train and validation subsets
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of the BSDS500 dataset were done. For the purpose of these experiments a standard modified
basis was chosen. The experiments were divided into two phases – a training phase and a
validation phase. The output of the proposed edge detection method was compared with the
image annotation from the BSDS500 dataset.

In the training phase, several values of parameter 𝛿 were tested. The output of the training
phase was the 𝛿 with the highest F-measure score (for both grayscale and RGB images). In
the case of RGB images, the image edge detection algorithm was applied to each colour
channel separately. It was necessary to compose the outputs of the channels into one output.
Therefore, four merging approaches were proposed, and the best merging method was selected
for the other experiments. The purpose of the validation phase was to refine the parameter
𝛿 settings, where the steps between the tested values of parameter 𝛿 were smaller than in
the training phase. The 𝛿 parameter with the highest F-measure scores was identified as the
optimal setting for the testing phase.

The proposed edge detection method was compared with several other algorithms. The
comparison was made on the test subset of the public datasets BSDS300 and BSDS500. The
edge detection method obtained better results for RGB images than for its grayscale variants.
Our proposed method (for both RGB and grayscale images) obtained better results on the
BSDS300 dataset than the classical gradient-based edge detection techniques (Prewitt, Sobel,
and Roberts) and the Laplacian of Gaussian, whose output is a raw edge detection. Consider-
ing that our proposed approach did not involve any post-processing, the results obtained were
very good in terms of the raw edge detection. All methods that performed better than the
proposed approach included some post-processing, or were much more sophisticated. Consid-
ering that the more sophisticated methods require some initial estimation of edges (raw edge
detection) their results could be even better when combined with our proposed method. The
method was also tested on the BSDS500 dataset, where it gave slightly better results on RGB
images than the Canny detector, which includes post-processing.

The aim of the last experiments of the third part was to find out how our proposed method
copes with edge detection on noisy grayscale images with varying levels of noise. The results
showed that on less noisy images (SNR ∈ {25, 30, 35}), the method gave almost the same
results, according to the F-measure score, as when used on “clean” images.

Other ideas and possible directions for future research can be considered. Decomposing the
image into LAB channels instead of RGB channels could be a possible approach to improve
edge detection in colour images. Furthermore, the input data for the “Optimisation using
proximal splitting algorithm” step could be not only intensity images but also parametric
maps. The resulting outputs could then be combined with the outputs from the individual
colour channels. Moreover, the coupling of the colour channels can be already incorporated
into the recovery problem [35, Chapter 6], instead of applying the proposed method to each
colour channel separately. As a final direction for future development, the extension of the
proposed method by post-processing to produce compact, thin edges can be considered.
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ABSTRACT

Image edge detection is one of the most important techniques in digital image processing. It
is used, among other things, as the first step of image segmentation. Therefore, it remains
an area of interest for researchers trying to develop ever-better detection approaches. The
main objective of this Thesis is to find a suitable method for image edge detection using
convex optimisation. The proposed method is based on sparse modelling, and its main part is
formulated as a convex optimisation problem solved by proximal algorithms. For defining the
optimisation problem, it is assumed that the signal can be modelled as an over-parameterised,
piecewise-polynomial signal that consists of disjoint segments. The number of these segments is
significantly smaller than the number of signal samples, thereby encouraging the use of sparsity.
The formulation of a suitable optimisation problem is first performed on one-dimensional
signals since the implementation and comparison of the different algorithms is significantly
easier and less time-consuming for one-dimensional signals than two-dimensional ones.

The first part of the Thesis introduces the basic theory in signal processing, sparsity,
convex optimisation and proximal algorithms. It also presents a cross-section of the methods
used for image edge detection. The second part of the Thesis focuses on the formulation
and the subsequent evaluation of individual optimisation problems for the segmentation of
one-dimensional synthetic signals corrupted by noise. The evaluation is conducted in terms of
both denoising and breakpoint detection accuracy. The last part of the Thesis is dedicated to
expanding the best-performing approach for breakpoint detection in one-dimensional signals
for the application to image edge detection. The proposed approach is tested on a standardised
dataset of images containing manually labelled edges of several subjects. The results of the
proposed method are evaluated using precision-recall curves and their maximum F-measure
score, and then compared with other edge detection methods.
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