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Abstract 
Sequence-to-sequence automatic speech recognition (ASR) models require large quantities 
of training data to attain good performance. For this reason, unsupervised and semi-
supervised training in seq2seq models have recently witnessed a surge in interest. This 
work builds upon recent results showing notable improvements in semi-supervised training 
using cycle-consistency and related techniques. Such techniques derive training procedures 
and losses able to leverage unpaired speech and/or text data by combining A S R with text-
to-speech (TTS) models. 

This thesis first proposes a new semi-supervised modelling framework combining an 
end-to-end differentiable ASR—>TTS loss with TTS—>ASR loss. The method is able to 
leverage unpaired speech and text data to outperform recently proposed related techniques 
in terms of word error rate (WER) . We provide extensive results analysing the impact of 
data quantity as well as the contribution of speech and text modalities in recovering errors 
and show consistent gains across W S J and LibriSpeech corpora. 

The thesis also discusses the limitations of the A S R o T T S model in out-of-domain data 
conditions. We propose an enhanced A S R o T T S (EAT) model incorporating two main 
features: 1) the ASR—»TTS pipeline is equipped with a language model reward to penalize 
the A S R hypotheses before forwarding them to TTS; and 2) speech regularizer trained in 
unsupervised fashion is introduced in TTS—»ASR to correct the synthesized speech before 
sending it to the A S R model. Training strategies and the effectiveness of the E A T model 
are explored and compared with augmentation approaches. The results show that E A T 
reduces the performance gap between supervised and semi-supervised training by absolute 
W E R improvement of 2.6% and 2.7% on LibriSpeech and B A B E L respectively. 

Abstrakt 
Modely pro automatické rozpoznávání řeči (ASR) vyžadují pro dosažení přijatelné přes­
nosti velké množství trénovacích dat. Z tohoto důvodu se v poslední době zvýšil zájem 
o trénování seq2seq modelů bez dohledu a s částečným dohledem. Tato práce vychází z 
nedávných výsledků, které ukázaly výrazné zlepšení trénování s částečným dohledem po­
mocí cyklické konzistence a souvisejících technik. Ty využívají trénovací postupy a kritéria 
schopná pomocí kombinace A S R s modely převodu textu na řeč (TTS) zužitkovat nesou­
visející řečová a/nebo textová data. 

Tato práce nejprve navrhuje nový rámec pro modelování kombinující diferencovatelné 
end-to-end kritérium ASR—?^TTS s kritériem TTS—?• A S R . Tato metoda dokáže využít ne­
související řečová a textová data a překonat související techniky ve slovní chybovosti (WER) . 
Práce obsahuje rozsáhlou sadu výsledků analyzujících vliv množství dat i vliv podílu řeči 
a textu na opravách chyb. Výsledky dokládají konzistentní zlepšení na korpusech W S J a 
LibriSpeech. 

Práce se rovněž zabývá omezeními modelu A S R o T T S v podmínkách mimo doménu 
trénovacích dat (out-of-domain). Navrhujeme vylepšený model ASR-f->TTS (EAT), zahrnu­
jící dva klíčové komponenty: 1) směr ASR—?^TTS je doplněn jazykovým model, který pe-
nalizuje hypotézy A S R před jejich vstupem do TTS; a 2) ve směru TTS—»ASR je zavedena 
regularizace trénovaná bez dohledu tak, aby opravovala syntetizovanou řeč před vstupem 
do modelu ASR. Zkoumáme strategie trénování a účinnost modelu E A T a porovnáme jej 
s přístupy umělého zvyšování množství (augmentace) dat. Výsledky ukazují, že model 
E A T snižuje rozdíl v úspěšnosti mezi trénováním bez dohledu a trénováním s částečným 
dohledem absolutně o 2,6% W E R na LibriSpeech datech a o 2,7% W E R na B A B E L datech. 
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Rozšířený abstrakt 
Modely pro automatické rozpoznávání řeči (ASR) vyžadují pro dosažení přijatelné přes­
nosti velké množství trénovacích dat. Z tohoto důvodu se v poslední době zvýšil zájem 
o trénování seq2seq modelů bez dohledu a s částečným dohledem. Tato práce vychází z 
nedávných výsledků, které ukázaly výrazné zlepšení trénování s částečným dohledem po­
mocí cyklické konzistence a souvisejících technik. Ty využívají trénovací postupy a kritéria 
schopná pomocí kombinace A S R s modely převodu textu na řeč (TTS) zužitkovat nesou­
visející řečová a/nebo textová data. 

Cíle této práce jsou: 

1. End-to-end diferencovatelný tréninkový kanál integrací seq2seq A S R a T T S . Architek­
tura je jednoduchá na konstrukci a umožňuje použití stávajícího A S R a modely T T S . 

2. Synergujte jak nepárová řečová, tak textová data, abyste snížili chyby A S R zobec­
něním přes akustické variace i jazykové variace. 

3. Pochopte cíl konzistence cyklu pro A S R a navrhněte jeho zlepšení zpracovávat různé 
datové domény analýzou výkonu na těžších testovacích sadách (např: BABEL-svahilština) 

Tato práce nejprve navrhuje nový rámec pro modelování kombinující diferencovatelné 
end-to-end kritérium ASR—?^TTS s kritériem TTS—?• A S R . Tato metoda dokáže využít ne­
související řečová a textová data a překonat související techniky ve slovní chybovosti (WER) . 
Práce obsahuje rozsáhlou sadu výsledků analyzujících vliv množství dat i vliv podílu řeči 
a textu na opravách chyb. Výsledky dokládají konzistentní zlepšení na korpusech W S J a 
LibriSpeech. 

Práce se rovněž zabývá omezeními modelu A S R o T T S v podmínkách mimo doménu 
trénovacích dat (out-of-domain). Navrhujeme vylepšený model ASR-f->TTS (EAT), zahrnu­
jící dva klíčové komponenty: 1) směr ASR—?^TTS je doplněn jazykovým model, který pe­
nalizuje hypotézy A S R před jejich vstupem do TTS; a 2) ve směru TTS—»ASR je zavedena 
regularizace trénovaná bez dohledu tak, aby opravovala syntetizovanou řeč před vstupem 
do modelu ASR. Zkoumáme strategie trénování a účinnost modelu E A T a porovnáme jej 
s přístupy umělého zvyšování množství (augmentace) dat. Výsledky ukazují, že model 
E A T snižuje rozdíl v úspěšnosti mezi trénováním bez dohledu a trénováním s částečným 
dohledem absolutně o 2,6% W E R na LibriSpeech datech a o 2,7% W E R na B A B E L datech. 

Nárůst výkonu v E A T ukázal důležitost společného tréninku A S R s mnoha způsoby, jako 
je řeč a text. Budou dvě možná rozšíření až 1) mají sdílený kodér pro společné trénování řeči 
a textu. 2) upsamplujte text sekvence, aby se podobala sekvenci řeči, nebo převzorkování 
sekvence řeči, aby se podobala textu sekvence. 
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Notations 

Symbol Description 

t time frame index in 1 , T 
I Token index in text sequence in 1, ...,L 
X Single data point(vectors)if input features 
y Text sequence as output label 
yto Text only data 
X Speech sequence predicted by TTS 
V Text sequence predicted by A S R 
X Matrix of input features with X = x\,XT 
Y Matrix of output vectors Y = y i , m 
E(.) Expectation 
exp() Exponential of 
C Loss function 

P(-) Probability 
A Alignments using Forward-backward algorithm 
a Attention context vector 
H Encoder hidden state matrix 
c Decoder hidden state vector 
q Quantization vector 
a Scalar weight 
A Scalar weight 
m Abstract encoder 
g(y) Abstract decoder 
^ASR Gradients belonging to A S R model 
VTT5 Gradients belonging to TTS model 
e Neural network model parameters 
vt0 

Dataset with text only data 
vso Dataset with speech only data 
vs Supervised Dataset with speech-text pairs 
K L Kullback-Leibler Divergence 
are max Index of maximum element in a vector 
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Nomenclature 

A E AutoEncoder 

A F V A S R to Feature2Vector 

ASR Automatic Speech Recognition 

B L S T M Bi-directional Long Short-Term Memory 

B R M N Bi-directional Residual Memory Network 

C A T Cluster Adaptive Training 

C B H G 1-D convolution bank + highway network + bidirectional G R U 

C E Cross Entropy 

C N N Convolutional Neural Network 

C T C Connectionist Temporal Classification 

D N N Deep Neural Network 

E A T Enhanced A S R - T T S 

E L B O Evidence Lower BOund 

G C P Generated Consistent Predictions 

G M M Gaussian Mixture Model 

G P U Graphics Processing Unit 

G R U Gated Recurrent Unit 

GST Global Style Tokens 

H M M Hidden Markov Model 

I L M Ideal Localization Mask 

IPA Internation Phonetic Alphabet 

IPD Interchannel Phase Difference 

I R M Ideal Ratio Mask 

ISCA International Speech Communication Association 

K L Kullback-Leibler 

L H U C Linear Hidden Unit Contribution 

L L R Log-Likelihood Ratio 

L M Language Model 

L M P Language Model Penalizer 
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L P M Local Prior Matching 

L S T M Long Short-Term Memory 

M F C C Mel-Frequency Cepstral Coefficient 

M M S E Minimum Mean Squared Error 

M S E Mean Square Error 

M S E Mean Squared Error 

M T L Mult i Task Learning 

M T L Multi-Task Learning 

OOD Out-of-Domain 

R B M Restricted Boltzmann Machine 

R E I N F O R C E REward INcrement = Nonnegative Factor times Offset Reinforcement 
times Characteristic Eligibility 

ReLU Rectified Linear Unit 

R M N Residual Memory Network 

R N N Recurrent Neural Network 

R N N L M Recurrent Neural Network Neural Network Language Model 

Seq2Seq Sequence-to-sequence 

SO Speech Only 

ST Speech Only and Text Only 

S T F T Short-time Fourier Transform 

T O Text Only 

T T E Text to A S R Encoder outputs 

T T S Text to Speech Synthesis 

V A E Variational Auto Encoder 

W E R Word Error Rate 

W P E Weighted Prediction Error 

W S J Wall Street Journal 

(i 



Chapter 1 

Introduction 

1.1 Motivat ion 
Contemporaneous sequence-to-sequence (seq2seq [Bahdanau et al., 2014]) automatic speech 
recognition (ASR) systems have shown outstanding recognition performance over conven­
tional ASR. The salient and single modeling framework of seq2seq A S R unifies the acous­
tic model (AM) and language model (LM) components in conventional model architec­
tures [Povey et al., 2011a, Burget et al., 2010, Povey et al., 2011b] into a single and salient 
learnable model. The seq2seq models contains a relatively large number of model parame­
ters and hence require huge amounts of supervised training data (paired speech-text data). 
Procuring supervised training data for various domains such as environmental conditions, 
speaker variations and languages is time consuming and expensive in terms of man hours. 
On the contrary, unpaired or unsupervised speech and text data are available [Glass, 2012] 
in abundance. Various successful prior works [Karafiát et al., 2016] on unsupervised learn­
ing for A S R have used either unpaired speech [Swietojanski et al., 2014, Schneider et al., 
2019] or unpaired text data [Xu et al., 2020a, Hsu et al., 2017] or both [Tjandra et al., 2017] 
but have not found promising results due to limited modelling capability. The aspiration 
of this research is to propose a simplified framework to exploit both unpaired speech and 
the text data to largely reduce the performance gap between unsupervised and supervised 
learning compared to recent state-of-the-art (SoTA) models. 

1.2 Related works 

The conventional A S R system design has posed major challenges in joint training with 
unpaired speech and text, resulting in numerous research works involving either unpaired 
speech or text data. Unpaired speech-based training [Khurana et al., 2021, X u et al., 2020a] 
has been applied with different model training criterions [Schneider et al., 2019, Hsu et al., 
2017] and has led to improved A S R performance [Oord et al., 2018]. On the contrary, 
unpaired text has been primarily used to build language models and later integrated with 
A S R during inference. Wi th the advent of seq2seq A S R systems, A S R training became 
flexible to text injection. A few works have attempted to inject unpaired text during 
training by bringing the encoder space [Renduchintala et al., 2018] or decoder space [Hsu 
et al., 2020a] closer to the text distribution. 

More recently, 'machine speech chain' [Tjandra et al., 2020, Tjandra et al., 2017] has 
been proposed to jointly train unpaired speech and text by cascading seq2seq A S R and 
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seq2seq text-to-speech (TTS) systems. The intuition behind speech chain is that it learns 
from A S R and T T S mutually. This line of work is particularly interesting as it yields a 
simple framework by cascading existing seq2seq A S R and T T S systems. 

Irrevocably, the recent success of models holding huge numbers of parameters (in the 
order of billions) [Zhang et al., 2022, Microsoft, ] has heightened the need for unsuper­
vised training regimes. Hence, jointly utilizing unpaired speech and text data presents an 
incredible opportunity to learn and adapt to different data conditions. 

1.3 Contributions and Structure of the Thesis 

The primary goal of this dissertation is to synergise the benefits of seq2seq ASR and seq2seq 
TTS systems in an end-to-end differentiable pipeline to improve ASR with the unpaired 
speech and text data. 

To this end, the thesis has three parts: 

A S R ^ T T S 

A n A S R o T T S model is proposed in chapter 3 to jointly train with unpaired speech and 
text data. This model includes two training pipelines: 

1. ASR—»TTS, an end-to-end differentiable pipeline to train with unpaired speech data. 

2. TTS—»ASR pipeline to train with unpaired text data. 

In simple terms, A S R o T T S is a combination of a continuous input/output (speech) based 
autoencoder [Bengio et al., 2013] and a discrete input/output (text) based autoencoder. 
A S R o T T S is motivated by the machine speech chain [Tjandra et al., 2020, Tjandra et al., 
2017] model, and the following strategies help to distinguish our work from speech chain: 

• Given a speech utterance, A S R generates multiple likely hypotheses and directs them 
to T T S for reconstruction of speech. 

• The ASR—>TTS objective applies R E I N F O R C E loss to perform back-propagation 
continuously from T T S to A S R without hindrance to back-propagation of gradients. 

This novel training scheme is beneficial as it considers multiple errors produced by the 
A S R model and allows the A S R to unsupervisedly learn from the penalty scores provided 
by the T T S . The following two chapters in this thesis focus on understanding each pipeline 
independently and addresses its issues. 

ASR—>TTS with Language Model Prior 

The autoencoder (AE) model [Hinton and Salakhutdinov, 2006, Bengio et al., 2013, Zheng 
et al., 2014] has served as a convenient neural network architecture to learn better represen­
tations of data. The variational autoencoder (VAE) [Kingma and Welling, 2013] is a variant 
of the A E model which has shown great promise in learning better model representations. 
The design of the V A E is analogous to ASR—»TTS, except in the following aspects: 

• V A E inherits prior knowledge over the latent variables from standard normal distri­
bution. 

• Learning to match the trade-off with prior distribution acts cts ct rc gularizer term. 
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To incorporate these ideas into ASR—»TTS, the L M is used as a prior and is integrated 
with TTS to improve the language related errors. A S R is now jointly trained with TTS 
and L M and hence named as ASR—?^TLM and is proposed in chapter 5 as an extension to 
A S R - ^ T T S . The A S R - ^ T L M learns to match the A S R decoder with the L M prior using 
cross-entropy objective. 

Enhanced A S R ^ T T S 

The experimental analysis of the TTS—?^ASR pipeline shows that the synthetic speech 
generated by the T T S suffers due to domain mismatch. The primary reason for this poor 
synthesis quality is that T T S can be trained only with clean data. 

TTS—»AFV (ASR+feat2Vec) architecture is proposed in chapter 6 to address this do­
main mismatch issue by penalizing the incorrectly synthesized speech using a penalizer 
before feeding the synthesized speech to the A S R model. A F V refers to a combination of 
the A S R and feat2vec [Schneider et al., 2019] models. Feat2vec is an unsupervisedly trained 
speech model used to provide confidence scores for the synthesized speech. 

Additionally, to capture better context information, transformer blocks are used in 
the encoder module of seq2seq A S R and TTS models. The proposed TTS—»AFV is later 
integrated with the ASR—>-TLM pipeline and the unified model is named as enhanced 
A S R o T T S (EAT) and is shown to be capable of handling domain mismatch. 

Finally, chapter 6 summarizes the contributions of this thesis and highlights possible 
directions for future research. 

For the sake of reproducibility, the A S R o T T S model proposed in this thesis is available 
at h t tps : / /g i thub.com/creatorscan/espnet-asr t ts 

1.4 Claims of the Thesis 

The original contributions of this thesis £1X6 ctS follows: 

• Development of an end-to-end trainable integrated A S R and T T S system named 
A S R o T T S to handle unpaired speech and text data. 

. Extension to A S R o T T S : 

— L M integration to fix the language related errors by adopting ideas from the 
variational autoencoder (VAE). 

— A proposal and integration of feat2vec model to reduce the domain mismatch 
issue in the T T S system. 

— Enhancements with transformer architecture, data annealing and data augmen­
tation strategies. 

• Empirical comparison with the state-of-the-art unsupervised learning techniques on 
the following tasks: 

— Wall Street Journal (WSJ) corpus 
— LibriSpeech corpus 

— BABEL-Swahi l i 

• Analysis of the effect of the proposed model on the scenarios of only unpaired speech, 
only unpaired text and both unpaired speech and text data. 
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1.5 Related Publications 
Portions of chapters 3, 5 and 6 have appeared in the following articles: 

1. Baskar, M . K . , Watanabe, S., Astudillo, R., Hori, T., Bürget, L . , Cernocky, J . "Semi-
Supervised Sequence-to-Sequence A S R Using Unpaired Speech and Text". In Proc. 
Interspeech 2019, pp. 3790-3794, 2019. 

2. Baskar, M . K . , Watanabe, S., Astudillo, R., Hori, T., Bürget, L . , Cernocky, Jan. 
"Eat: Enhanced A S R - T T S for Self-Supervised Speech Recognition". In Proc. IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 
6753-6757, 2021. 
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Chapter 2 

Sequence-to-Sequence A S R 

Learning to transcribe noisy, unsegmented sequence data is a ubiquitous problem in many 
real-world sequence learning tasks. A S R is a sequence learning problem X —>• Y that can 
be viewed as p(Y | X ) , where Y is the text label sequence and X is the input sequence of 
acoustic features. A hybrid approach has been used to handle this problem in ASR; by using 
hidden Markov model (HMM) [Rabiner and Juang, 1986] to capture the sequential infor­
mation and neural networks to perform classification of the token labels (context dependent 
phoneme or grapheme states). While training the H M M segments, the classified labels are 
transformed to label sequence. However, these hybrid systems assume the independence 
assumption and fail to exploit the complete potential of neural networks for sequence la­
belling. Hybrid systems perform classification either by using the Gaussian Mixture Model 
(GMM) or Deep Neural Network (DNN) models. 

Seq2seq A S R systems, on the contrary, simplify the sequence learning problem within 
a single framework and directly estimate p(Y | X ) . There are two important seq2seq 
A S R architectures: 1) connectionist temporal classification (CTC) [Graves et al., 2006] and 
attention-based encoder-decoder (AED) [Bahdanau et al., 2014]. 

2.1 From Hybr id to Seq2seq A S R 

The conventional D N N - H M M is denoted as hybrid model and the seq2seq model denotes 
C T C or attention models. 

2.1.1 D N N - H M M 

The working procedure of A S R is formulated with Bayes decision theory, by predicting the 
most probable text sequence Y from set of possible sequences V: 

Y = argmax p ( Y , X ) (2.1) 
Y e V 

The A S R is trained to learn the posterior distribution p ( Y , X ) , by introducing the H M M 
state sequence S = {st £ 1,2,.., J | t = 1,2,..,T} computed for each state j and time t. 
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and factorizes p(Y, X ) into three components: 

are max p(Y, X ) 
Y e v 

arg max p ( X | S, Y ) p ( S | Y ) p ( Y ) 
Y £ V Z ^ - v . . / - v i - v . ( 2 - 2 ) 

s 
RS arg m a x y ^ p ( X | S)p(S | Y ) p ( Y ) 

s 

Here p ( X | S), p(S | S , Y ) and p(Y) denotes the acoustic, lexicon and language model 
(LM) respectively. The conditional independence assumption is followed in acoustic model, 
lexicon and L M . In acoustic model, the likelihood p{xt \ St) is replaced with the posterior 
p(st | xt) by pseudo-likehoood trick. 

p ( X I S) = J } p ( x 4 I x1, ..,xt-i, S) 
t=i 

n 
(2-3) 

p(st | xt) 
i \ P(st) 

The above assumption limits the context capturing capability, but is mitigated with the help 
of D N N and Recurrent Neural Network (RNN). In lexicon modeling, p(S \ Y ) is factorized 
by chain rule and using first order Markov assumption: 

p ( S | Y) = f[p(st\s1,..,st-1,Y) 
t=i 
T 

(2.4) 

~[\p(st I st-i,Y) 
t=i 

p(st | st-i) represents the H M M state transition probability and Y is converted to a se­
quence of H M M states using the lexicon. The L M here is n-gram based and the probability 
over the text sequences p(Y) is computed using probabilistic chain rule and conditional 
independence assumption. R N N L M [Mikolov et al., 2010] mitigate this assumption con­
straint but make the decoding complex. Combining these three models together leads to 
incoherent optimization and thus needs a single pipeline model, or so-called seq2seq models: 
C T C and Attention based encoder-decoder. 

The need for seq2seq models rose due to the following problems in hybrid models: 

• Multiple modeling steps are required for alignment and training. For instance, Gaus­
sian Mixture Model ( G M M ) - H M M is required for learning alignments and D N N for 
label classification. 

• Conditional independence assumption is applied to unify three different models namely 
G M M , D N N and n-gram language model. In addition to this these three models have 
different training objectives. 

2.2 Connectionist Temporal Classification ( C T C ) 

The C T C technique considers the alignment between input and output as latent and thus 
does not require explicit alignment information as in hybrid systems although the Markov 
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"A" is missing 

Figure 2.1: Valid and Invalid alignments for an input speech of input length T = 7 with 
the corresponding output Y with target length L = 4 

conditions are used to generate the alignments by dynamic programming. The softmax 
probability scores from the neural network model are used to generate different hard align­
ment paths; aggregated to obtain soft alignment paths using the Baum-Welch algorithm. 
C T C still assumes that the output labels are independent of each other while computing 
hard alignments. 

Given an input sequence ( X = xi,X2, XT) with T frames, the probability of each 
output label yi from sequence Y = yi, 7/2, 2/l with L output labels is computed using the 
softmax output layer in the C T C network. 

Aligning 

The alignment between X and Y is generated by mapping each of y\ and xt- Since the 
number of frames T is always higher than the number of output labels Y , (that is characters 
or phonemes), two strategies are used during training to handle this mismatch: 

• A blank token e is used to mark the silence frames and will be completely ignored at 
the output 

• Repeated tokens are allowed to learn patterns such as Lb a I V without collapsing. 

Due to the presence of e before or after any output label yi, a new alignment sequence Z is 
defined: 

Z=[e,B,e,e,A,L,L] (2.5) 

Figure 2.1 shows the process of selecting the valid alignments. Some of the important 
properties of the C T C alignment process are as follows: 

• The alignments Z between input frames and output tokens are monotonic, that is, 
no future output labels can be aligned to the past input frames. 

• Valid alignments are determined when the input and output have the same length 
sequence. Final alignments are obtained by merging identical subsequent tokens and 
by removing the blanks, e. 

• C T C alignments follow a many-to-one approach, where one or many inputs can be 
mapped to a single output label. 

Finally, Y is obtained by collapsing the Z sequence to the absolute length of the output 
sequence L. L is given by the groundtruth - number of characters. 
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Figure 2.2: Training procedure using C T C objective 

The C T C training objective is to maximize the probability of predicting the correct output 
label given input acoustic frames. The posterior probability p(Y | X ) is computed as: 

P ( Y | x ) = ] r n ^ i x ) (2.6) 
z t=i 

Here, p(Y | X ) performs marginalization over all valid alignments Z. The alignments are 
differentiable as in equation 2.6 to allow backpropagation of gradients for weight updation 
and each alignment is computed step by step as in figure 2.2. C T C architecture is typically 
constructed using an R N N based encoder which provides the probability of p(yt | X ) with 
the output token, yt for each time step, t. R N N plays a major role in capturing the long 
term temporal context information from the input. Calculating C T C loss is computationally 
expensive as direct computation of scores for each alignment and marginalization is tedious. 
Hence, dynamic programming is applied by merging the alignments which arrive to the same 
output at a particular timestep. 

Decoding 

The C T C model is trained to output a highly probable output sequence Y * for each input 
X using greedy decoding 

Y * = argmaxp(Y | X ) (2.7) 

Given the alignments [6, 6, e] and [6, b, b] as in figure 2.2, each of these has lower probabil­
ity over alignment [a, a, a], but the sum of their probabilities is higher than that of [a,a,a]. 
In this case, the naive beam search predicts Y = [a] as the likely prediction. However, the 
correct output must be Y = [&]. Hence, the naive beam search is not applied in C T C . 
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Figure 2.3: C T C prefix beam search algorithm with symbols a, b, e and a beam size of 3 

A prefix beam search algorithm can handle this issue by collapsing both the alignments 
to the same output Y = [b]. Instead of striving to predict the most likely Y , the prefix 
beam search aims to attain a better solution with minimal computation. 

Figure 2.3 shows the prefix beam search decoding procedure. In this, instead of accu­
mulating all the alignments in the beam, only the prefixes are stored after collapsing the 
repetitive symbols and removing blanks. The prefix scores are accumulated at each step 
based on the alignments mapped to them. For example, at T = 3, the prefix [a] is proposed 
to have a child branch with a and the possible output prefixes at T = 4 are [a] and [a,a]. 
The final prediction is computed by scaling the C T C score p(Y | X ) with the language 
model score p(Y): 

Y* = argmaxp(Y | X ) • p(Y)a (2.8) 

2.3 Attention Encoder-Decoder Mode l ( A E D ) 

The encoder-decoder framework [Bahdanau et al., 2014] serves as an alternative to the C T C 
model and represents a true seq2seq model by performing complex mapping between input 
speech and output text sequence. The model contains an encoder neural network with 
recurrent layers, to encode the entire input sequence into an fixed-length vector represen­
tation. This vector serves as an input to the decoder - another set of recurrent layers with 
a final softmax layer, which, in each recurrent iteration, predicts probabilities for the next 
symbol of the output sequence. This work deals with the task of ASR, where the seq2seq 
model is used to map a sequence of speech features onto a sequence of characters. In partic­
ular, we use an attention-based seq2seq model [Chorowski et al., 2014] in which the encoder 
encodes an input sequence into continuous low dimensional representation. The attention 
mechanism focuses on the relevant portion of the internal sequence in order to predict each 
next output symbol using the decoder. The model is typically trained to maximize the 
conditional likelihood (or minimize the cross-entropy) of the correct output symbols. For 
predicting the current character, the previous character (e.g. its one-hot encoding) from 
the ground truth sequence is typically fed as an auxiliary input to the decoder during train-
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Figure 2.4: Diagrammatic view of attention-based encoder-decoder network (AED). 

ing. This so-called teacher-forcing [Williams and Zipser, 1989] helps the decoder to learn 
an internal language model (LM) for the output sequences in an auto-regressive fashion. 
Using such a training strategy, the attention [Chorowski et al., 2014] based seq2seq model 
has been shown to absorb and jointly learn all the components of a traditional A S R (i.e. 
acoustic, pronunciation and language model). 

In detail, the attention-based encoder-decoder (AED) [Chorowski et al., 2014] architec­
ture is shown in figure 2.4. Here, the encoder H = enc(X) neural network provides internal 
representations H = {ht}J=1 of an input sequence X = {xt}f=i, where T is the number of 
frames in an utterance. In this work, the encoder is a recurrent network with bi-directional 
long short-term memory (BLSTM) layers [Hochreiter and Schmidhuber, 1997, Schuster and 
Paliwal, 1997]. To predict the Ith output symbol, the attention component takes the en­
tire sequence H and the previous hidden state of the decoder qi_i as inputs and produces 
per-frame attention weights: 

Attention((//_i, H) (2.9) 

Here, q denotes the 'query'' and encoded input H contains the '£;ey' and 'values1 to get 
the attention alignments. The attention mechanism is location-aware and the values of 
attention weights for frames are set proportionately to the corresponding focus needed. 
These frames are used to predict the current output and the weights are normalized to 
sum-up to one. The weighted average of the internal sequence H with attention weights 
serves as an attention summary vector, q. 

(2.10) 

16 



The decoder is a recurrent network with unidirectional L S T M layers, which receives a; along 
with the previously predicted output character (e.g. its one-hot encoding) as inputs 
and estimates the hidden state vector 

qi = dec(ci,qi-i,yi-i). (2-H) 

This vector is further subjected to an afnne transformation (LinB) and softmax non-linearity 
to obtain the probabilities of the current output symbol y\ 

si = LmB(qi) (2.12) 

p(yi I y i : j - i , X ) = Softmax(sz) (2.13) 

The probability of a whole sequence y = {yi}f=i is 

L 
p ( Y | X ) = J J p ( y i | y i : i - i , X ) (2.14) 

I 

During the training, the model parameters are typically updated to minimize the cross-
entropy (CE) loss for correct output y*. This is particularly easy with the teacher forcing, 
when the symbol from the ground truth sequence is always used: 

CCE = -logp(y* I X ) = - J > g P ( y f I y í : i_ i ,X) . (2.15) 
1=1 

Here, the previously predicted symbol is from groundtruth and therefore no alternative 
hypotheses need to be considered. A simple greedy search can be performed to decode the 
output sequence where the most likely symbol is chosen in each decoding iteration until the 
dedicated end-of-sentence symbol is decoded: 

ýi:L = argmaxTTP(cz | ci j _ i X ) . (2.16) 
cul V 

During inference, the predicted characters are fed back unlike training (where ground 
truth character yj_1 is used). The best path sequence yl:L is then estimated from N-best 
paths (as traversing across all paths is not feasible for practical reasons). This procedure 
does not guarantee finding the most likely sequence. To find the optimal sequence, explor­
ing multiple hypotheses generated by beam search usually provides better results. Here, 
each partial hypothesis in the beam search has its own hidden state, as it depends on the 
previously predicted symbols yi in that hypothesis. 

2.4 Joint CTC-At ten t ion 

The joint CTC-attention model [Watanabe et al., 2017a] takes the best out of C T C and A E D 
models through a multi-task learning (MTL) mechanism while training and joint decod­
ing during inference. Joint training with C T C is added to help enforcement of temporally 
monotonie behaviour in the attention alignments. The overall joint training objective func­
tion with M T L is a logarithmic linear combination of the C T C and A E D training objectives 
with a G [0,1] as the interpolation weight 

£ M T L = a l o g p c T c ( Y | X ) + (1 - a) l o g p A E D ( Y | X ) , (2.17) 
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Here, the C T C loss P C T C ( Y | X ) is given by (2.6) and the A E D loss P A E D ( Y | X ) i s given by 
(2.15). During inference, a label-synchronous beam search is employed to predict the most 
probable label sequence Y 

Y = a r g m a x { a l o g p C T c ( Y | X ) + (1 - a ) l o g p A E D ( Y | X ) + 7 l o g p L M ( Y ) } , (2.18) 
Y e V 

where logpLM(Y) is evaluated from an external neural language model with a scaling factor 
7. The log probability of the hypothesized character sequence at each partial hypothesis can 
be calculated using a beam search. The A E D partial hypothesis score can be accumulated 
recursively, while the C T C score can be computed using the C T C prefix probability [Graves 
et al., 2006, Watanabe et al., 2017b]. The look-ahead word-based L M can be used to obtain 
the partial hypothesis L M score [Hori et al., 2018]. 

2.5 Text To Speech (TTS) 

In recent years, T T S architectures have undergone a significant change from statistical 
parametric synthesis (SPS) to the seq2seq approach. Seq2seq T T S simplifies SPS in three 
ways: 1) the extensively scripted rule based procedure (convert characters to acoustic units) 
in SPS is handled by a text encoder in seq2seq TTS, 2) SPS individually analyses text and 
speech, while seq2seq T T S jointly learns from text and speech input 3) Seq2seq TTS is 
autoregressive in nature (prediction is based on previous context) while SPS predicts speech 
frames independently. Tacotron is currently the most widely used seq2seq T T S model. 

Tacotron and Tacotron2 

Tacotron [Wang et al., 2017] is an encoder-decoder based T T S system with the following 
components an encoder, a decoder, and a post-processing network (postnet). Figure 2.5 
shows the model architecture of Tacotron. The main component of Tacotron is the C B H G 
module. The acronym denotes a 1-D Convolutional layer, a highway network and a bi­
directional G R U layer in its architecture. The C B H G is present inside both the encoder 
and decoder and helps to extract high-level features such as phonetic, prosodic and lexical 
information from the incoming input sequence. The prenet component inside the encoder 
applies a set of non-linear transforms over the incoming input text embedding sequences 
before passing to the bottleneck layer with the dropout component. The generalized output 
is passed to the C B H G module to reduce overfitting and mispronunciations. 

A hyperbolic tangent (tanh) based attention component is present in the decoder with 
'query'' being the recurrent layer output at each timestep. Multiple non-overlapping output 
frames (e.g. three in figure 2.5) are predicted by the decoder. 

Tacotron2 [Shen et al., 2018] is a advancement over Tacotron with inclusion of an 
important component; post-net. The postnet converts the decoder output to a spectrogram 
and the spectrogram is later sent to a suitable vocoder to generate a speech waveform. The 
model includes the following components: 

• Encoder: The input is a sequence of characters converted to 512-dimensional sequence 
of embeddings using a learnable embedding matrix. The embedding sequence is fed 
to a stack of three convolutional layers, a batch normalization layer and R e L U activa­
tions. The resulting output is encoded using a 512-dimensional B L S T M layer followed 
by a location sensitive attention mechanism to capture neighbouring context input. 
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Figure 2.5: Tacotron - A text to speech synthesis model 

• Decoder: The module contains prenet (two fully connected layers) and is fed with the 
encoded outputs. The output of the prenet is concatenated with the encoded attention 
context vector and directed to two L S T M layers with 1024 neurons. The resulting 
output is followed by a projection layer to predict the frame-level spectrogram output 
and the stop token. 

• Postnet: The postnet contains five one-dimensional convolutional layers with 512 
filters and kernel size of five, followed by the batch normalization and tanh nonlinearity 
activation. The postnet output acts as a residual and is summed to the prediction 
to improve the reconstruction output. Finally, the predictions are transformed to 
waveforms using either Wavenet [Van Den Oord et al., 2016] or Griffin-Lim [Griffin 
and Lim, 1984]. 

Figure 2.6 shows the working pipeline of tacotron2 in detail. Initially, the encoder con­
verts the character sequence Y = [yi,y2,2/3, • UL] into encoded outputs H = [hi, hi, / 1 3 , h i ] 
as: 

H = Encoder CY) 
, v ( 2 - 1 9 ) an = Attention(mt-i, H , a^t-i) 

Encoded representations H are fed to the local-sensitive attention to estimate the at­
tention weights ait- The attention weights are interpolated with H to get the fixed length 
context vector a for each decoder step. The decoder predicts the intermediate represen­
tations mi ,m2, ...,m,T for each time t auto-regressively from a and the previous decoder 
Output Xf-l-

1 (2.20) 
mt = LSTM(mt-i,ct-i) 
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Figure 2.6: Tacotron2 

The prediction of the spectrogram at the current time-step xt is computed by feeding mt 
and ct to a linear layer (FFspec) to get the 80-dimensional output: 

xt = FFspec(ct,mt) (2.21) 

Another linear layer, FFstop projects the decoder output mt and attention output ct down 
to one-dimensional output followed by a sigmoid activation to predict the stop token s t: 

st = sigmoid(F Fstop(ct, mt)) (2.22) 

The stop token reveals that the frame is the last frame of the sequence. This allows the 
model to be flexible to predict sequences of different lengths. 

Multi-Speaker T T S 

Multi-speaker T T S complements the Tacotron2 architecture with speaker embeddings. 
These are generated using a separately trained speaker identification model such as ivec-
tor [Doddipatla et al., 2017] or xvector [Hayashi et al., 2021] extractor. The input to the 
decoder component of Tacotron2 is modified to insert the speaker embedding vector es from 
a particular speaker s. A projection matrix Proj is applied over es to match the dimensions 
of Ct-l-

es = Extractor (X) ^ 

mt = LSTM(mt-i,ct-i + Proj(es)) 

2.6 Learning from Unpaired Speech 

Modeling the acoustics (eg: pitch, intensity, timbre, duration, spectral envelope and for-
mants) in speech signal alone is the most difficult problem as they are non-stationary and 
sensitive to characteristics of the environment, speaker, channel and so on. The continuous 
flow of research [Hinton et al., 2012, Gales et al., 2008] in this field has led to progress in 
making the acoustic modeling practically usable at least for languages with a large amount 
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Figure 2.7: Wav2vec2 model architecture to perform self supervised training [Baevski et al., 
2020]. 

of data. However, the field is still evolving to effectively model languages with less super­
vision and transfer learning has gained attention and success . Some of the major works in 
speech research deals with transfer across speakers, transfer across languages and transfer 
across model.[Seide et al., 2011]. 

2.6.1 Wav2Vec2 Mode l 

The wav2vec2 model is designed to perform self supervised representation learning from 
unpaired speech data. The model architecture in figure 2.7 contains: 

• Feature encoder: Processes the raw waveform input to latent representation zt using 
a series of convolutional layers. 

• Transformer: Contextual representations ct are learned from the encoded representa­
tions Zt 

The model training involves quantization, masking and contrastive learning. Quantization 
is done to convert the continuous latent representation zt to quantized (discrete) targets 
qt- The quantized targets represents the right code word from the codebook entries. The 
codebook is created using the Gumbel softmax quantization technique, as it creates di­
verse codebook entries and has a variable temperature parameter to adjust the diversity. 
The masking component masks the zt along the temporal axis and is defined using two 
hyper parameters: p and M, having the following functionality: 

• Randomly select p percentage of starting time indices i from the zt 

• Each index i and its consecutive M time steps are then masked. 

Both masked and unmasked inputs are passed through the transformer and the whole 
architecture is trained to make the resulting output q close to the quantized target qt using 
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contrastive loss Ccont'-

Ccont = - b g expfcwnfe, qt) k) 

Here, k denotes the temperature parameter, sim is the cosine similarity between a and qt-

2.6.2 Knowledge Distillation 

Knowledge distillation was proposed as a theoretical work to perform model compression 
in [Buciluundefined et al., 2006] and as an application to A S R in [Li et al., 2014, Hinton 
et al., 2015]. Distillation refers to training a student network under the guidance of a 
well trained teacher network. The objective of distillation £ K D is to bring the output 
distribution of the student model ps(yi \ xt) close to the output distribution of the teacher 
model PL(UI \ %t) using K L divergence (equivalent to cross-entropy). 

L 

£ K D = - 5>L(2/Z | X ) • logps(yi | X ) . (2.25) 
i=i 

However, the softmax output distribution of the teacher model may have peaky be­
havior for correct class labels while suppressing the rest of the class labels to zero . To 
circumvent this and allow rich information beyond ground truth labels, a temperature term 
r is introduced to scale the logits before softmax computation: 

exp(^ ' 

k 

pL(yi I X ) = ^ *±]> (2.26) 

where, zi are original teacher model posteriors. 

2.6.3 Multi l ingual training 

Language evolves from one form to another resulting in different languages across the world 
and it is natural to believe that they share some common patterns. For example, many 
consonants and vowels are shared across languages, defined by universal phoneme sets such 
as the International Phonetic Alphabet (IPA). Even some parts of a word might share the 
same meaning, for example "nose" in English is similar to "nashi" in Sanskrit, and "inji" 
in Tamil shares a similar sound with "gingee" (ginger) in English. This sharing between 
human languages has been utilized explicitly and implicitly to improve statistical strength 
in multilingual conditions, delivering better models than those trained on monolingual data, 
especially for low-resource languages. A recent research conducted by Tremblay 1 claim that 
the basic tendency of humans to learn a new language by associating it with their mother 
tongue is what is exploited in transfer learning. This advantage has been demonstrated in 
a multitude of research fields [Thrun, 1995], although our work simply focuses on speech 
recognition. 

A simple approach to sharing data is to define a common phonetic alphabet across all 
languages. The universal phoneme set is either derived in a data-driven way, or obtained 
from the IPA by merging the phonemes from different languages. This phoneme set is 
then used set to obtain multilingual decision trees and tied-state targets for training the 

1https://www.languagemagazinexom/how-does-mother-tongue-affect-second-language-acquisition/ 
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multilingual neural network [Sim and L i , 2008]. During decoding, language-specific lan­
guage models and lexicons are used for each language separately. This method is successful 
compared to mono-lingual systems but is restricted to similar languages. 

The multilingual training strategies from conventional hybrid systems have been adopted 
to seq2seq A S R systems. Multilingual bottleneck features extracted from conventional hy­
brid models were used to train a seq2seq A S R system in [Cho et al., 2018] and showed 
substantial improvements. [Karafiát et al., 2016], also applied similar strategy to obtain a 
multilingual model with additional finetuning to the target language. 

2.6.4 Data Augmentation 

Data augmentation pivots data sparsity issue from exploiting unsupervised data to ma­
nipulating available data with distorted versions. Various data augmentation techniques 
have demonstrated consistent improvement for A S R [Park et al., 2019, Povey et al., 2011c]. 
This simple way of obtaining supervised training signal helps us to improve the baseline 
system, which in turn generates pseudo-labels with higher quality. Speed perturbation, vol­
ume perturbation and spectral masking techniques also play a major role in augmentation 
strategy. 

2.6.5 Pseudo-labeling 

In the pseudo-labeling technique [Khurana et al., 2021, X u et al., 2020a], the baseline 
system is initially trained with the available supervised data. The baseline model is used 
to predict labels on the unlabelled data. The confidence predictions (pseudo-labels) are 
chosen assuming that they are correct and are augmented with the supervised data during 
training. If the noise in pseudo-labels is sufficiently low, the A S R model can benefit from this 
additional training data to obtain improved accuracy. [Xu et al., 2020a], repeat the pseudo-
label generation and the augmented training steps and obtain continuous improvements in 
both. 

2.7 Learning from Unpaired Text 

The above discussed solutions efficiently use unpaired speech data to deal with conditions 
with small amount of paired data. In hybrid A S R systems application of unpaired text data 
is done by modeling it separately using a language model. The language model (LM) is 
integrated with the A S R only during inference. This technique does not utilize the unpaired 
text data during training due to the complex nature of A S R architecture. On the other 
hand Seq2seq A S R allows training with unpaired text data in multiple ways. Local prior 
matching [Hsu et al., 2020a] jointly trains L M with seq2seq A S R by reducing the distance 
between predictions of A S R and L M outputs using K L divergence. A multimodal objective 
used in [Renduchintala et al., 2018] extends the shared encoder concept by upsampling the 
input text sequence to match the corresponding speech sequence. 

Another extreme condition not widely focused on in the literature is training an A S R 
jointly with unpaired speech and text data. In this approach, the A S R is taught to unify 
both speech and text within a common subspace. The shared encoder approach analysed 
in [Karita et al., 2018b] aligns and maps the text representations and speech representations 
into a joint space to impose textual knowledge in the encoder. A n extension to the shared 
encoder is carried out using an adversarial training objective in [Drexler and Glass, 2018] 
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to improve the A S R performance. Although these techniques did not improve over the 
existing semi-supervised learning approaches, they created a major impact in proving the 
potential of using unpaired speech and text data. 

2.8 Directions of this Thesis 

In this thesis, the A E D based seq2seq A S R approach is used as it has the advantage over 
hybrid A S R to easily integrate unpaired speech and text data. A closer look at the works 
discussed above shows that: 

• the major effort is towards designing a better model architecture, and 

• the model abstraction (objective/strategy) is fuelled by the autoencoder architecture 

In our work, the autoencoder architecture is simplified by connecting the seq2seq A S R and 
T T S models. This approach directs the focus to proposing a better training objective. 
This idea is also explored in [Tjandra et al., 2017] but without using an efficient training 
objective. The experimental results in our work show that the proposed work provides 
better performance over the existing best performing models. Chapter 3 describes the 
consistency algorithm followed by the introduction of the proposed A S R o T T S architecture 
to train with unpaired speech and text data. Extensive analysis is conducted using the 
W S J corpus to showcase the contribution of training with speech and text independently. 
The final system is tested with LibriSpeech and compared with the related works. The 
performance with LibriSpeech is further improved in chapter 5 by improving the training 
using L M predictions. Finally, the thesis explores the effect of the proposed model under 
realistic low-resource data conditions using BABEL-Swahi l i in chapter 6. 
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Chapter 3 

A S R ^ T T S : Cycle Consistency 

Consistency is all I ask 

-Tom Stoppard 

Requiring parallel data for training a seq2seq A S R system is extortionate. The virtually 
unlimited presence of speech only (SO) or text only (TO) data should be leveraged to reduce 
recognition errors. This can be done by obtaining pseudo-supervised labels from pre-trained 
A S R and TTS models. While pre-trained T T S helps to synthesize speech from T O data, 
the pre-trained A S R can be leveraged to predict pseudo-labels from SO data [Xu et al., 
2020a, Synnaeve et al., 2019, Wang et al., 2007]. While this allows obtaining pseudo-
supervision, it still does not completely exploit the pre-trained models to aid the A S R 
performance. 

To address this issue, a "speech chain" approach was used in [Tjandra et al., 2017] to 
jointly train the A S R with the TTS model in a self-supervised fashion. A sequence of A S R 
and a text-to-encoder (TTE) model [Hori et al., 2019] is analogous to speech chain, and both 
works showed that connecting A S R with T T S / T T E can handle unpaired data to reduce 
A S R recognition errors. This thesis borrows ideas from the above mentioned techniques to 
further improve the A S R by efficiently exploiting the TTS to handle unpaired data using 
consistency training. In our work, the T T S acts as a teacher in guiding the A S R to learn 
from its incorrect predictions. 

This chapter describes a self-supervised A S R training paradigm named " A S R - T T S " 
that exploits the unpaired speech or text data to improve speech recognition performance. 
Its design is based on integrating A S R and T T S modules into a single architecture and 
performing end-to-end differentiable training. The model involves two training pipelines, 
the ASR—»TTS and the TTS—>ASR, for a given an input of speech, xso and text, yto from 
the datasets Vso of SO and Vto of TO, respectively. 

• ASR—»TTS: The SO data samples are exploited using the ASR—»TTS pipeline as in 
figure 3.1. Here, the xso is first fed into A S R and the predicted text sequence y is 
sent to T T S to generate speech xso. 

• TTS—»ASR: The T O data samples are exploited using the TTS—»ASR as shown in 
figure 3.2. This is simply a reversed version of ASR—^TTS where an input text 
sequence yto is sent to T T S to generate speech x which is further processed with A S R 
to predict text sequence yto-
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Both pipelines are trained separately using a consistency training algorithm [Baskar 
et al., 2019]. To jointly train both pipelines, a cycle-consistency training algorithm is 
applied. The proposed A S R - T T S approach is evaluated using the standard LibriSpeech 
corpus [Panayotov et al., 2015] by varying the amount of supervision and unsupervision. 
The efficacy of the model is substantiated by comparing it with existing unsupervised 
techniques. 

Figure 3.1: Consistency training procedure for training with input speech only data x 

Figure 3.2: Consistency training procedure for training with input text only data y 

3.1 Consistency training 
Consistency training aims at learning from unknown things by linking them to things which 
are known. Its objective provides a meta-supervision that does not operate on the data 
directly, but rather focuses on how the data must behave. This objective has been applied to 
a wide range of applications requiring unsupervised learning such as text classification [Xie 
et al., 2019] and image recognition [Verma et al., 2019, Tarvainen et al., 1780]. The 
generalized consistency training objective is computed by performing the following steps as 
in figure 3.1 and 3.2: 

• Given an input x, a function f(x) is used to generate the output y. Another function 
g(y) intakes y to predict x. This is shown in figure 3.1. 

• Consistency loss strives to minimize the divergence between two distributions p(x) 
and p{x) which gradually allows the function f{x) to learn and correct from its own 
imperfections. 

• While the above process helps to model the unpaired input x, the reverse process 
(figure 3.2) shows the procedure to train with unpaired input y. 

The output labels x and y used in this training procedure are the same as the inputs 
or are derived from the inputs as in figures 3.1 and 3.2 respectively. This falls under the 
category of self-supervised learning. 

Figure 3.3, shows the importance of training with consistency loss using a toy dataset 
named moons. The task is to discriminate the two classes using some/lesser supervised 
data and lots of unsupervised data. Here, modelling the discriminator (simple feedforward 
network) with less supervised data (blue line) fails to discriminate the two classes while 
training with unsupervised data using a consistency objective gradually learns a non-linear 
hyper-plane (red-line) to discriminate the classes. 
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(a) (b) (c) 

Figure 3.3: Decision boundaries with supervised (blue line) and consistency (red line) 
training with increasing number of training iterations. Plot (a) shows that during the initial 
training phase have an no decision boundary to classify the two classes., (b) intermediate 
training phase and (c) final phase with consistency objective correctly separating the data. 

3.2 Supervised seq2seq modeling 

ASR: The conventional supervised seq2seq A S R model computes a cross-entropy loss, 
JCASRJ by using input speech (the Mel filter bank features) x, and predicts the text token 
sequence, y in an auto-regressive fashion: 

L 

p(y I x) = 1 1 p(w I yi-.i-i,x). ( 3 . 1 ) 
1=1 

The loss is thus given as: 
L 

£ A S R = - l o g p ( y I x) = - ^2 P(vi I yi-i-i,x). (3.2) 
1=1 

T T S : Tacotron2 described in section 2.5 is used as the T T S model in this work. Tacotron2 
receives the character sequence y = {y{\f=1 as input, predicts the speech (filterbank) fea­
tures x = {xt}f=i with a regression layer and uses the corresponding supervised training 
objective, p(x \ y) The loss of the T T S system is composed of three different loss terms: 

-CTTS = -CMSE + £ L I + - C B C E , (3.3) 

where the mean square error £ M S E ensures the predicted Mel spectrogram estimates x 
are closer to the genuine Mel spectrogram x. £ L x is also used as an auxiliary loss to match 
the actual regression estimate x to the groundtruth and acts robust to outliers [Pesme 
and Flammarion, 2020] compare to £ M S E - £ B C E is the binary cross entropy loss for the 
end-of-sentence prediction. The M S E and L i components of the loss can be interpreted as 
negative log-probabilities of the speech features for Gaussian and Laplace distributions for 
constant scale parameters, i.e. 

T 

£ T T S = -\ogp{x \y) = -J2 logp(x 4 | x1:t-i,y). 
t=i 

Considering the M S E only, 

-logp(xt | x1:t-i,Y) oc \\xt - g(y, x i : i _ i ) | | 2 (3.4) 

where xt — g(y ,xi : t_i) is the T T S model's auto-regressive estimate at time t. 
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3.3 ASR—>TTS: Speech only (SO) data training 

The functions f(x) and g(y) in general figure 3.1 are replaced by A S R and T T S models 
as in figure 3.4a and the final consistency objectives are adapted to suit the A S R training 
with speech only data. The resulting model is denoted as ASR—»TTS pipeline, where the 
interbank features xso from Speech Only (SO) data are converted to text y using A S R and 
this text output is converted back to filter bank features xso using TTS. 

3.3.1 Jointly training A S R and T T S 

Jointly training A S R and T T S with T T S objectives has the following issues and the 
ASR—?^TTS makes two major contributions: 

Issue 1: The central problem in designing this pipeline is that the text bottleneck 
eliminates much information from speech, for example speaker identity. This makes 
the T T S generate input features common to all speakers. 

Solution 1: To mitigate this issue, the T T S receives text y along with speaker 
dependent vectors es in ASR—»TTS as shown in figure 3.4a. This allows the TTS 
to generate speaker dependent filterbank features. Aside from being computationally 
more intensive, this requires solving the problem of passing speaker characteristics 
along with the the text (see figure 3.4a). In order to do so, inspired by [Tjandra 
et al., 2017], the T T S model is augmented with speaker vectors obtained from an 
x-vector network [Snyder et al., 2018]. In this way the M S E criterion of £ T T S (3.4) 
used here is: 

where es = f(x s ) is the x-vector for speaker s implemented using function f(.). Note 
that x-vectors are designed to retain speaker characteristics but not the general struc­
ture of the speech signal. In that sense, the model can not learn to copy x directly 
from input to output. 

Issue 2: Jointly training A S R and TTS as in figure 3.4a is also constrained due 
to another issue: end-to-end differentiability. The text sequence predicted by A S R 
is discrete in nature and this hinders the backpropagation of gradients from T T S to 
A S R as shown in figure 3.4b. These gradients carry essential information about the 
score of the hypotheses and can guide the A S R to learn from its erroneous predictions. 

Solution 2: The consistency training objective in the ASR—?^TTS pipeline incorpo­
rate an expectation likelihood function to impose differentiability in the pipeline. The 
resulting ASR—»TTS objective is defined as: 

Computing an expectation over all possible hypotheses y is intractable and hence an 
approximation is made over a finite set of N hypotheses yi, y~2, ••, yN-

-CMSE l o g p ( x I y,es ) (3.5) 

^ A S R ^ T T S = Ep(£|x s o){<£TTs} (3.6) 

(3.7) 
n=l 
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The approximation is derived using a score function estimator named R E I N F O R C E [Ran-
zato et al., 2015]. The intuition behind this joint training with R E I N F O R C E is 
two-fold: 

— the gradients can be propagated from T T S to A S R through the discrete text 
tokens without hindrance as in figure 3.6b. 

— this enables the discrete the gradients back-propagated from the TTS to suppress 
the distribution of negative samples while simultaneously boosting the distribu­
tion of positive samples. 

(a) Forward flow from ASR to TTS (b) Back-propagation of gradients 

Figure 3.4: Simplified representation of the forward and backward propagation during 
consistency training for unpaired speech data. In figure (b), the red arrow denotes that 
the gradient cannot be propagated and the blue arrow denotes that gradient propagation 
is possible. 

The forward and backward propagation procedure using the R E I N F O R C E objective for 
SO training is designed as shown in figures 3.6a and 3.6b respectively. These figures show 
a modification to allow consistency training with the TTS objective. 

3.3.2 R E I N F O R C E - Score function gradient estimator 

The score function estimator called R E I N F O R C E , helps to define gradients for the non-
differentiable parts of the training pipeline. Figure 3.5 details the working procedure of 
R E I N F O R C E by moving the positive samples from the distribution to improve the scores. 
For instance, when the TTS predicts a score (MSE from the predicted spectra) for a single 
A S R hypothesis, it is actually allowed to predict a probability distribution over TTS scores 
by predicting multiple A S R hypotheses. This is similar to the expected loss function where 
instead of computing loss for one hypothesis, it is computed for multiple hypotheses. In 
figure 3.6a, the A S R is allowed to predict multiple hypotheses yn where n = 1,2, 3,4: 

y = R E A L : ground-truth sequence 

y1 = R E A L , y2 = R E A R , y3 = R E A L , y 4 = R O A R E R : A S R predictions 

Here, the T T S score is computed using the mean squared error £ T T S = \\%n — x\\2 be­
tween the predicted input feature xso and the groundtruth xso. The score errors are low for 
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for the meai 

-1 

P(X) after a parameter update 

-1 

Figure 3.5: Graphical view of the R E I N F O R C E - score function gradient estimator. Left: 
Gaussian distribution p{x) and a few samples from it (blue dots). Plot of the gradient of the 
log probability logp(x) with respect to the Gaussian's mean parameter. The blue arrows 
indicate the directions in which the mean of the distribution should be moved to increase 
the probability of that sample. Middle: Score function / giving -1 everywhere except +1 
in some small regions. Right: after parameter update, the green arrows and the reversed 
red arrows move towards left and towards the bottom. Samples from this distribution will 
now have a higher expected score. In this work, p(x) = p(y\x) and 9 = 6>ASR- The figure 
is adopted from Karpathy's blog on reinforcement learning using R E I N F O R C E algorithm 
and policy gradients.1 

correct predictions y1 and y 3 and high for incorrect predictions y2 and y 4 . Based on the TTS 
score allotted for each hypothesis yn, the hypotheses '$2 = R E A R ' and '$4 = R O A R E R ' 
acts as negative samples, making hypotheses 'y i = R E A L ' and '$3 = R E A L ' with high TTS 
scores more likely. Conventional back-propagation is then performed to update the A S R 
model parameters based on this loss. The gradients of the positive samples are weighted 
higher while the negative samples are provided lower weights. The R E I N F O R C E based ob­
jective £ASR-S-TTS allows the A S R model to consider more variance in hypotheses (random 
sampling) to provide more correct predictions and fewer errors. 

For SO training, the A S R parameters #ASR only are updated and TTS parameters 6>TTS 
are fixed. The following equations provides the derivation for gradient computation for 
£ A S R ^ T T S : 

^ A S R ^ T T S = Ep(y\x s o ){£TTs} (3.8) 

1 N 

V f l ^ A S R ^ T T S = V 0 A S R E P ( 0 | S s o ) { £ T T s } N £ T T S 

n=l 

n=l 

n=l 
E

P(y\xso){£TTS V e A S R log p(y I xso)} 
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y1 y2 y3 y4 

-Mogpfa1) 

-Mogp(«/2) 

Mogp(y 3) 

-*-logp(y4) 

(a) Forward flow from ASR to TTS 

V»£A R-S-TTS 

CTTS 

#ASR 

(b) Back-propagation of gradients 

Figure 3.6: Simplified representation of the forward and backward propagation during 
consistency training for unpaired speech data with R E I N F O R C E . In figure (b), the gradients 
smoothly travel from T T S to ASR. 

To reduce the variance in the gradient computation using R E I N F O R C E , a bias term 
B(x) [Ranzato et al., 2015] is introduced to control overall additive shift in loss and perform 
reduction control over the variance: 

V ^ A S R ^ T T S = ^P(y\xso)K^TTS - B (x s o ) ) V # A S R p(y \ xso)} 

= E p ( 0 | * . O ) { R ' ( y > xso) V 0 A S R p(y I xso)}. (3.9) 

The bias term B(x) is calculated as the mean value of xso for each sample. The resulting 
expectation is exponentially large on sentence length and to simplify the expectation over 
all possible hypotheses, an approximation over a limited set of hypotheses is assumed: 

1 N 

] T R ( y , xso) V , A S R log p(yn \ xso) (3.10) 
n = l 

In practical terms, using R E I N F O R C E amounts to sampling multiple sentences from the 
A S R distribution and backpropagating each of them as if they were the ground truth, but 
weighted by the M S E reconstruction loss. 

31 



Algorithm 1 Consistency algorithm with R E I N F O R C E 

Require: Speech input xso G Vso from speech only (SO) dataset Vso, paired speech utter­
ance with text (xs,ys) G Vs from supervised dataset Vs, pre-trained A S R 6>ASR and TTS 
#TTS models, hyper-parameter a, number of samples N, learning rate jt 
repeat 

X g Q £ "^SO* / / Unsupervised t ra ining: Sample a speech sequence 

VsO") VsO! ' " 3 Vso ^ ^('l^'SO; ^ASPl) / / Generate N text sequences according to A S R 

for n = 1,2,.., N do 

^P(-\VSO,0TTS) 
Tn = JCTTS^SO ) X S o ) ~~ B ( x s o ) / / Reward for the n t h sequence 

end for 
N 

£ s o < — ^ r ™ - l o g P ( y n | x s o ) 
n = l 

X g , T^g £E " ^ g / / Supervised t ra ining: Sample a speech wi th corresponding text 

y <- p(.\xs, 9ASR) 

£s < Vs - logp(y\xs) 
C i— Cs + OL • jCso / / F i n a l objective 

if update T T S then 

9TTS 9TTS + 7 " V 6 » T T S £ S O / / T T S update 

end if 

9ASR <- 9ASR + 7 • ^eASR£ II A S R " P d a t e 

until convergence 

3.4 TTS—>ASR: Text only (TO) data training 

The consistency training pipeline used for T O training is obtained by reversing the SO 
training pipeline in figure 3.4a. Figure 3.7a shows the training pipeline where a given 
unpaired text or text only (TO) data yto is sent as input to the T T S model to generate 
filter bank features xtQ. The TTS model is speaker-dependant as it uses an auxiliary input: 
x-vector es where the speaker identity s is randomly sampled for each utterance. The 
resulting point estimate output for an utterance obtained from TTS is: 

xto = argmax{p(x c | yto, es)}. (3.11) 
c 

The generated filter bank features are then sent to A S R to predict text sequence ytQ. 
The final objective is a conventional cross-entropy loss: 

£ T T S ^ A S R = -logPASR,(yto I xto). (3.12) 

Backpropagation of gradients through TTS—?• A S R as shown in figure 3.7b is simpler than in 
the ASR—?^TTS case; the gradients can traverse from TTS to A S R without any hindrance as 
the output of TTS is continuous output and hence the pipeline is end-to-end differentiable. 
The resulting computation graph is simpler than in the ASR—?^TTS case. This pipeline acts 
as an autoencoder and allows simple training of unpaired text only data. The procedure to 
train the TTS—>ASR pipeline is summarized in algorithm 2. 
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(a) Forward flow from TTS to ASR (b) Back-propagation of gradients 

Figure 3.7: Simplified representation of the forward and backward propagation during 
consistency training for unpaired text data. In figure (b), the blue arrows denote the free 
flow of gradients from A S R To TTS 

Algorithm 2 Consistency algorithm: Training with text only (TO) data 

Require: Text input xto G £>to from T O dataset Z>to, Parallel speech utterance with text 

(xs,ys) G Vs from supervised dataset Vs, pre-trained A S R #ASR and T T S 6>TTS models, 

hyper-parameter a, learning rate jt 
repeat 

yto € T>to. 

xto <- T T S ( x t o ) 

yto = A S R ( x t o ) 

A o < yto • log P(yto\xto) 

ys ASR(x s ) 

£s < Vs • log p(y\xs) 

C <r- Cs + a • Cto 

if update T T S then 

OTTS OTTS + 7 • ^eTTS£to 
end if 

9 ASR <~ & ASR + 7 • ^eASR£ 
until convergence 

/ / Sample a text sequence 

/ / Sample speech wi th corresponding text 

/ / F i n a l objecti 1 

/ / T T S update 

/ / A S R update 

3.5 A S R o T T S : SO and T O data training 

Cycle-consistency training is a dual consistency training from both f(x) to g{y) and from 
g{y) to f(x). This procedure does not require joint representation learning to learn the 
correspondence between two domains such as speech and text. Instead, it cycles between 
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two or more input samples to validate matching patterns. The flowchart in figure 3.8 
presents the working procedure of both SO and T O training using the A S R o T T S model. 

Figure 3.8: Flowchart of A S R o T T S model 

In case both unpaired speech and text are available, both ASR—»TTS and TTS—»ASR 
can be trained jointly as in algorithm 3. The final loss £ b o t h is a linear interpolation of the 
loss functions defined in equations (3.8) and (3.12): 

A>oth = ct • / ^ A S R ^ T T S + (1 - a) • £ T T S ^ A S R (3.13) 

where a is a hyper-parameter set by default to a = 0.5. The importance of using the 
cycle-consistency objective in this work is as follows: 

• The encoder component of the A S R model can learn the acoustic information from 
the SO data training using the ASR—»TTS pipeline. 

• The decoder component of the A S R model which acts as an intrinsic language model 
will be better optimized from the T O data training using the TTS—> A S R pipeline. 

Thus, cycling between ASR—»TTS and TTS—»ASR acts complementary to each other and 
helps to improve A S R performance. 

3.5.1 W h y joint training with a differentiable model ? 

A natural way to exploit SO and T O data is by using A S R and T T S in a disjoint setting. 
In this case, the A S R is used to predict pseudo-labels from SO data, and TTS is used 
to generate pseudo-synthesized speech from T O data. The predicted text requires post­
processing to remove the errors [Xu et al., 2020a] before it can be used as pseudo-supervision 
to train a new ASR. The synthesized speech can be directly used as additional pseudo-
supervised data along with supervised data to train an A S R system. While this method 
does not require tedious post-processing as A S R is generating the pseudo text labels, it still 
requires a well-trained T T S system with the ability to generate natural sounding speech. 
Table 3.1 shows the performance of text and speech based pseudo-labels using the W S J 
corpus. 
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Algorithm 3 Cycle consistency algorithm: SO and T O data training 
Require: Speech input xso G T>so and text input xto £ £>to from SO dataset and T O 

dataset Vso and Vto respectively, Paired speech utterance with text (xs,ys) G Vs from 
supervised dataset Vs, pre-trained A S R 6>ASR and TTS 6>TTS models, hyper-parameter a, 
(3, learning rate 

repeat 
A' 

k=l 
£s <—ys • log p(y\xs) 
C <r- Cs + a • Cso + P • Cto 

if update T T S then 

OTTS OTTS + 7 • ^eTTs^sc 
end if 

9ASR <- 9ASR + 7 • ^eASR£ 
until convergence 

/ / Compute consistency loss using a lgo r i t hml 

/ / Compute consistency loss using algori thms 

/ / cycle consistency objective 

/ / T T S update 

/ / A S R update 

Model % W E R 

Baseline 31.1 
Pseudo-speech 30.1 

Pseudo-text 29.2 
Nondifferentiable-ASR^TTS 28.0 

Differentiable-ASR^TTS 26.8 

Table 3.1: Recognition performance in % W E R of different model training types on the 
eval-92 test set using WSJ-si284 (67 hours) as unpaired speech and text data. WSJ-si84 
(14 hours) is used as supervision. The pseudo-supervised models are built using data 
augmentation (supervised data + pseudo speech/text). The jointly trained ASR—»TTS 
directly uses the SO data in addition to supervised data. 

Furthermore, jointly training A S R and TTS is still possible without being end-to-end 
differentiable and it can be done by having a weighted sum of A S R and T T S objectives: 

£ = £ASR(2 / , y ) + £TTSO£ so) XSO ). (3.14) 

Here, the character token sequence y'so is obtained by picking the top-1 character based on 
the probability p(yso\xso): 

L 

Vso =11 argmax logp(yij\xso) (3.15) 
l=i j 

The results of disjoint ASR—?^TTS with consistency training are shown in table 3.1. The 
empirical study shows that similarly to pseudo-labelling, our approach improves over the 
baseline. However, training A S R and TTS jointly improves over pseudo-label models. The 
end-to-end differentiable ASR—>TTS performs better to non-differentiable ASR—»TTS by 
absolute 1.2% W E R . 
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3.6 Comparison to existing works 

Sequence-to-sequence (seq2seq) A S R training directly maps a speech input to an output 
character sequence using a neural network [Graves and Jaitly, 2014, Bahdanau et al., 2016, 
Chan et al., 2016], similar to those used in machine translation [Bahdanau et al., 2014, 
Sutskever et al., 2014]. The model requires a considerable amount of paired speech and 
text to learn alignment and classification [Amodei et al., 2016, Prabhavalkar et al., 2017], 
which limits its use in under-resourced domains. On the other hand, unpaired speech and 
text can be obtained for most domains in large quantities making training with unpaired 
data particularly relevant for seq2seq models. 

Recent works have shown that the problem of seq2seq training in low-resource conditions 
can be addressed using unpaired data. These methods can be classified into three categories 
according to the type of data used. First are methods utilizing only unpaired speech for 
unsupervised training. In this category, [Tjandra et al., 2018] proposes an end-to-end 
differentiable loss integrating A S R and T T S models by the straight-through estimator. 
The work in [Hori et al., 2019] also proposes an end-to-end differentiable loss integrating 
A S R and a text-to-encoder (TTE) model. Both works show that connecting A S R with 
T T S / T T E can process unpaired speech data as well as reduce A S R recognition errors. 

3.6.1 Unpaired Speech training with Text-to-Encoder ( T T E ) 

Figure 3.9 shows the working model of the T T E using the consistency training objective. 

Figure 3.9: Self-supervised learning between A S R encoder outputs and its predictions using 
T T E . 

Here, the unpaired speech is used for encoder-state-level self supervised training as 
in wav2vec2 described in chapter 2. The encoder state sequences of the A S R model are 
generated and used to compute the self supervised loss. Note here that the encoder states 
are predicted by the T T E model instead of waveform or spectral features as in T T S . This 
approach reduces the mismatch between the original and the reconstruction by avoiding 
the problem of missing para-linguistic information in an end-to-end differentiable manner. 
The self-supervised loss is computed based on expected loss approximated with sampling-
based method. The sampling is done to obtain multiple sentences from the A S R model 
to generate encoder state sequences. Finally, the average loss of all the sequences is used 
to backpropagate the error to the A S R model via the R E I N F O R C E algorithm as in our 
approach (see section 3.3.2). This allows to update the A S R system when the T T E is used 
to compute the loss. 

The T T E model can be simply viewed as a TTS model trained to predict the encoded 
speech, H in equation (6.3), instead of speech X directly. Since the encoded speech holds 
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some speech characteristics, it is possible to define the following loss based on the consis­
tency criterion. Similarly to [Hori et al., 2019], we use policy-gradient to back-propagate 
through the expectation in our unpaired speech loss (section 3.3) and update the A S R 
parameters: 

£ A S R ^ T T E = - ^ P a s r ( Y | X ) { ^ T T E } , (3.16) 

where £ T T E is the same as £TTS> but X is replaced by the encoded speech H: 

£ T T E = MSE(/>4, ht) + CL1(ht, ht)EpASR{Ylx){CTTE}. (3.17) 

This loss penalizes the A S R system for transcriptions that, once transformed back into an 
estimate of the encoded speech H by the T T E , differ from the original encoded speech H . 
Such loss does not require having the correct text output y* and is end-to-end differentiable. 
T T E has the disadvantage of having to train a specific network to predict H . The encoded 
speech may also already eliminate some of the speech characteristics making the C C loss less 
powerful. Henceforth, in our work, we to use the loss between filterbank features instead 
of the encoded representations. 

Table 3.2 compares the performance of the T T S loss introduced in our work, to the 
T T E loss in [Hori et al., 2019]. The analysis involved a LibriSpeech setup using 100 hours 
of paired data with 180 and 360 hours of unpaired data for a fair comparison. The results 
shows that the T T S approach improves % W E R over T T E by 2.5% relative (20.7% to 20.1%) 
on 360 hours of unpaired data and 2.9% relative (19.9% to 19.4%) on the 180 hours set. 

Table 3.2: Comparison between T T E [Hori et al., 2019] and T T S using the LibriSpeech 
corpus on test-clean set 

Unpaired speech (# Hours) Model % C E R % W E R 

180 T T E 8.8 20.7 
180 TTS 8.7 20.1 
360 T T E 8.6 19.9 
360 T T S 8.4 19.4 

3.6.2 Unpaired Text Training 

Backtranslation-style TTE—>ASR 

[Hayashi et al., 2018] uses this idea of T T E for unpaired text training. Here, the backtrans-
lation technique from machine translation [Sennrich et al., 2015] is adopted into attention 
based E2E-ASR model to exploit large amounts of unpaired text data. Figure 3.10 shows 
the self-supervised training of A S R with T T E using unpaired text data. In the TTE—»ASR 
approach, the A S R is pre-trained with paired training data, and the final layer of the A S R 
encoder is used to extract hidden activation outputs. These are used as labels for training 
T T E using paired data. The unpaired text data is passed through the pre-trained T T E to 
extract hidden activations which are fed into the A S R decoder. Retraining both the A S R 
encoder and decoder resulted in better performance compared to only retraining the A S R 
decoder. The TTS—»ASR used in our work (section 3.4) simplifies this pipeline in two ways: 

• Backtranslation style TTE—^ASR is complex and does not use filterbank features rich 
in speech characteristics. 
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Figure 3.10: Overview of backtranslation style unpaired text data training 

• Paired data is mandatory in this approach and must be used in a multi-task manner 
to recover the connection between A S R encoder and decoder broken by the T T E 
encoder outputs. 

In addition to this work, other notable works have used unpaired text data in ways dif­
ferent from proposed work. For instance, [Renduchintala et al., 2018] attempts to upsample 
the text sequence similar to speech and feeds it as additional input along with the speech 
sequence to a shared encoder. The model learns to bring the encoder representation closer 
to the text representation. In addition to these works, [Liu et al., 2019] used a language 
model (LM) built with unpaired text-only data to jointly train with an ASR. 

Criticizing L M 

The criticizing L M is trained along with A S R as an adversary, where the A S R acts as gen­
erator and the criticizing L M as discriminator. The discriminator is trained to distinguish 
real text from A S R transcriptions. Here, the criticizing L M intakes unpaired text or A S R 
transcriptions as input and outputs the scalar quality score s . The model is trained to 
assign higher scores to real text and lower scores to A S R transcriptions. 

The Wasserstein generative adversarial network (WGAN) training objective is applied 
to reduce the mismatch between real and hypotheses text distribution. 

3.6.3 Unpaired Speech and Text 

Machine Speech Chain 

In the third category, both unpaired speech and text data are exploited. Machine speech 
chain [Tjandra et al., 2017] is the first approach to use a single pipeline to train using both 
unpaired speech x and text y data. Figure 3.11 shows two training pipelines that cascade 
seq2seq A S R and seq2seq TTS models in different ways. The supervised data is used to 
train the A S R and T T S independently via teacher forcing. The unpaired speech features 
are passed into a frozen A S R model to generate the text predictions which are redirected 
to a T T S model to synthesize speech features x. The unpaired text input is fed to the 
frozen TTS model to predict the speech features and then fed to the A S R model to obtain 
text predictions y. Here, both the TTS and the A S R model parameters are updated. The 
idea behind training these two pipelines jointly is that A S R and T T S and can mutually 
teach other with the inclusion of reconstruction loss to the unlabelled data. The training 
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Figure 3.11: Overview of machine speech chain architecture. A S R to T T S pipeline for 
unpaired speech training. T T S to A S R pipeline for unpaired text training. 

objective of the speech chain model is: 

-Cchain = ^ A S R + -^TTS + ^ASR + ^ T T S ' (3.18) 

Here £ A * S R denotes the A S R loss during training with unpaired text data and T T S loss 
with unpaired speech training is denoted by £ T T S - Our proposed ASR-f->TTS differs from 
the machine speech chain in the following ways: 

• We treat the T T S model as the scorer and evaluate the A S R hypothesis based on 
these scores. Our focus is to improve A S R and hence the T T S model is not updated 
reducing the training complexity. 

• The R E I N F O R C E training objective is applied, which intakes several A S R hypotheses 
for loss computation and check variations in predictions to learn effectively. 

• The A S R o T T S training pipeline is end-to-end differentiable with the help of R E I N ­
F O R C E and allows backpropagation of gradients from TTS to the A S R model. 

To overcome the constraints of speech chain, the authors in [Tjandra et al., 2020] introduced 
Gumbel-softmax loss to train unpaired speech data. Gumbel-softmax is applied over the 
A S R outputs to approximate categorical distribution with continuous distribution and the 
gradients are computed using the reparameterization trick. However, the unsupervised data 
and supervised data used in these works are obtained from the same W S J corpus. Moreover, 
our experiments showed that R E I N F O R C E generalizes well to small domain variations due 
to sampling multiple hypotheses from A S R compared to the Gumbel-softmax approach. 

Maximum mean Discrepency ( M M D ) 

In [Karita et al., 2018b], it is proposed to reduce the dissimilarity between encoded speech 
and text using the maximum mean discrepancy (MMD) algorithm. Speech and text are 
encoded using encoders in A S R and TTS models. The speech encoder and text decoder in 
A S R are shared with the T T S model, and both are jointly trained using unpaired speech 
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and text. In comparison to our work, M M D is inferior in performance as learning the 
matching distribution between speech and text is difficult. 

A few other notable works [Drexler and Glass, 2018, Karita et al., 2018b] use adversarial 
training to bring the speech and text encoded representations closer. In [Drexler and 
Glass, 2018], speech encoder and text encoder outputs are adversarially matched to feed 
the text decoder. The speech representations are brought closer to text encodings using 
the discriminator. The authors integrate the denoising autoencoder objective for both text 
and speech with adversarial loss between speech and text encoder. 

Position of our work 

Compared to the above existing works, our work proposes improvements over recent related 
approaches and integrates some of them into a single loss. In addition to this, the cycle-
consistency objective is successful outside of the speech processing area, and has sparkled 
significant progress in other fields such as machine translation [He et al., 2016], which derive 
end-to-end differentiability by using the N-best approach. Moreover, improvements are ob­
served in image processing tasks using cycle-consistency with an adversarial objective [Zhu 
et al., 2017]. 
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Chapter 4 

Cycle Consistency Experiments 

4.1 Database selection 
The proposed A S R o T T S (see chapter 3) framework requires a special way of data selection 
to handle unsupervised and supervised experiments. The LibriSpeech [Panayotov et al., 
2015] and Wall Street Journal (WSJ) [Paul and Baker, 1992] corpora were used in this 
work. Different subsets of data from W S J and LibriSpeech are used during training and the 
evaluation data is set as eval-92 for W S J and test-clean and test-other for the LibriSpeech 
corpus. 

4.1.1 Training - Paired datasets 

The supervised data comes from the following sources: 

. WSJ-si84 (14h) 

. WSJ-si284 (67h) 

• Complete W S J corpus (84h) 

• For analysis on how much paired data is required, the W S J corpus is split into 2, 5 
and 10 hours subsets (2h, 5h, lOh). 

• LibriSpeech data (lOOh) 

• LJSpeech - single speaker dataset for TTS (24h) 

4.1.2 Training - Unpaired datasets 

The unsupervised scenario is extensively analysed using the various sets and data sizes: 

. WSJ-si284 (67h) 

• Complete W S J corpus (84h) 

• 360 hours of LibriSpeech data 

• 500 hours of LibriSpeech data 

• 860 hours of LibriSpeech data 

41 



Table 4.1: List of characters used in all our experiments 

Character ID 

<unk> 1 
! 2 

3 
& 4 

5 
( 6 
) 7 

8 
9 
10 
11 

/ 12 
: 13 
; 14 
<NOISE> 15 
<space> 16 
? 17 
A 18 
B 19 
C 20 
D 21 
E 22 
F 23 
G 24 
H 25 
I 26 
J 27 
K 28 
L 29 
M 30 
N 31 
O 32 
P 33 
Q 34 
R 35 
S 36 
T 37 
U 38 
V 39 
W 40 
X 41 
Y 42 
Z 43 
{ 44 
} 45 
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The data selection is carried out meticulously such that there is no overlap between super­
vised and unsupervised examples. 

4.1.3 Testing - Evaluation datasets 

The models are evaluated using both W S J and Librispeech test sets. 

. WSJ-eval 92 (1.2h) 

• Test-clean from Librispeech (5h) 

• Test-other from Librispeech (5.3h) 

4.2 Feature extraction 

83-dimensional features containing 80 dimensional Mel filter-bank energies appended with 
3-dimensional pitch features are extracted from speech waveforms for both W S J and Lib-
riSpeech. x-vectors [Snyder et al., 2018] are extracted from a T D N N based model pre-
trained with around 2000 hours of Voxcelebl and Voxceleb2 data. These x-vectors act as 
auxiliary information to provide the speaker characteristics of each utterance while training 
the T T S system. 

4.3 A S R and T T S architectures 

The encoder-decoder network described in chapter 2 utilizes location aware attention [Bah-
danau et al., 2016]. Tacotron architecture [Shen et al., 2018] is used to build a T T S model. 
A complete description of A S R and T T S models is presented in tables 4.2 and 4.3. The 
learning rate decay is based on the validation performance computed using the character 
error rate (minimum, edit distance). ESPnet [Watanabe et al., 2018] is used to implement 
and execute all the experiments. 

4.4 Language Models 

45 characters in table 4.1 along with <s> as start of symbol and </s> end of symbol are 
chosen as text tokens for both the W S J and LibriSpeech datasets. Two different types of 
language models are built to decode the A S R models which are: 

• The training data containing 1662964 lines of text with a 65001 vocabulary size is 
used to build a word based language model [Hori et al., 2017]. 

• 116500 lines of training data are obtained from the 360 hours LibriSpeech subset to 
build a character level language model. 

4.5 Training and Decoding 

A multi-task objective [Watanabe et al., 2017b] is employed during training and decoding by 
providing equal weightage of a = 0.5 to C T C and attention (see section 2.4 and eqn. 2.15). 
Shallow fusion [Cho et al., 2018] is used to integrate the R N N L M during decoding. The 
scaling factors for language model probabilities are empirically chosen based on the model 
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Table 4.2: A S R Model configuration 

Encoder 

Type B i - L S T M [Hochreiter and Schmidhuber, 1997] 
# Layers 8 
# Dimensions 320 
# Projection dim 320 

Decoder 

Type L S T M 
# Layers 1 
# Dimensions 320 

Attention 

Type Location based 
Conv. channels 10 
Conv. filters 100 
# Dimension 320 
Window size 5 
Subsampling factor 4 

Training Configuration 

Optimizer AdaDelta [Zeiler, 2012a] 
# Epochs 20 
Batch size 14 

performance. Unsupervised training was performed after conventional supervised training 
of each model. Cycle-consistency utilized five samples in (3.7). A small amount of paired 
data was also used to regularize the model during the unsupervised stage. The eval92 test 
set was kept for evaluations. In LibriSpeech, the 100 hour set is used as paired data and 
the 360 hours set as unpaired data as in [Hori et al., 2019]. 

4.5.1 Pre-trained models 

The A S R and TTS models are initially pre-trained with pre-defined amount of supervised 
data from W S J (14h) and LibriSpeech (lOOh). The proposed A S R o T T S training starts 
with the following pre-trained models: 

• pre-ASR-14h: A S R supervisedly trained with 14 hours WSJ-si84 corpus 

• pre-ASR-lOOh: A S R supervisedly trained with lOOh of Librispeech 

• pre-TTS-lOOh: T T S is first trained with the LJSpeech [Ito and Johnson, 2017] (see 
section 4.1). This model is re-trained with the multi-speaker corpus from LibriSpeech 
(lOOh). Directly training with lOOh did not help as TTS requires a lot of supervised 
data. 
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Table 4.3: TTS Model configuration 

Encoder 

Type B i - L S T M 
# Layers 1 
# Dimensions 512 
# Embedding dim 512 
Conv. filters 5 

Decoder 

Type L S T M 
# Layers 2 
# Dimensions 1024 
Pre-net layers 2 
Prenet units 256 
Postnet layers 5 
Postnet channels 512 
Postnet filters 5 

Attention 

Type Location based 
Conv. channels 32 
Conv. filters 15 
# Dimension 128 
# Heads 4 
Window size 5 

Training Configuration 

Optimizer Adadelta 
# epochs 200 
batch size 32 
subsample 4 
learning rate le-3 
dropout rate 0.5 
zoneout 0.1 
eps (Denominator value in optimizer) le-6 

4.5.2 Baseline experiments 

In this section, the A S R models are prepared with different amounts of supervised data. 
The model configuration mentioned in table 4.2 is used to train on varying amounts of 
training data to maintain consistency. A l l the baseline models are decoded without a 
language model. Figures 4.1 and 4.2 show the % W E R performance of models trained 
with different amounts of supervision. Baseline models trained using W S J show drastic 
improvement from 68.2 % W E R to 41.5 % W E R by increasing from 2 hours to 5 hours as in 
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68.2 
70 r 

2 5 10 14 67 84 
# hrs of supervised data 

Figure 4.1: % W E R of A S R model trained with different amounts of supervised data eval­
uated on the eval-92 test set. 

figure 4.1. In the 5 hours to 14 hours range, the gains slowly decay, finally reaching 31.5 
% W E R . The performance starts to increase after 14 hours and reaches 16.4 % W E R with 
84 hours of training data. The performance of supervised A S R model trained by varying 
the amount of LibriSpeech data as in figure 4.2. The 500 hours subset contains only data 
matching 'test-other' set domain and hence shows gains in test-other but degradation in 
test-clean. There is consistent improvement in the other subsets: 100, 360, 460, 860 and 
960 hours of LibriSpeech data. 

4.6 Experimental Analysis on W S J 

Preliminary experiments are performed using the small W S J dataset. In this section, the 
model is tested with varying amounts of unpaired data: 14 hours and 67 hours, along with 
a certain amount of semi-supervision: 2, 5, 10 and 14 hours of data. The A S R model is 
initialized with the pre-ASR-14h model as described in section 4.5.1. The effects of the 
amounts of paired and unpaired data (table 4.4) are shown on unpaired 'SO', ' T O ' and 
'SO+TO' data using the are shown on ASR—>TTS, TTS—»ASR and A S R o T T S pipelines 
respectively. 

4.6.1 Unpaired Speech Only (SO) Training 

The experiments are performed starting with 2 hours of parallel data and 14 hours of 
unpaired data. As shown in table 4.4 with only 2 hours of parallel data, the model's 
% W E R performance improves from 68.2 in figure 4.1 to 49.8 by only adding 14 hours of 
unpaired speech and improved to 51.9 with 67 hours of unpaired speech . The reason behind 
improvement through training with SO data is two fold: 
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Figure 4.2: % W E R of A S R models trained with different amounts of supervised data from 
LibriSpeech evaluated on test-clean and test-other datasets. 

Table 4.4: % W E R performance analysis using varying amounts of paired data (supervision) 
and unpaired data on the eval-92 test set using W S J . The 'Data Type' refers to unpaired 
data used and it can be either speech only, text only or both ('SO, T O or SO+TO') 

Unpaired data # Hours of Paired data 

# Hours Data Type 2 5 10 14 

14 
14 
14 
67 
67 
67 

Baseline 
SO 
TO 

SO+TO 
SO 
TO 

SO+TO 

68.2 
49.8 
63.0 
43.7 
51.9 
39.6 
41.4 

41.5 
39.9 
43.6 
35.5 
38.8 
36.8 
34.2 

33.7 
29.8 
34.6 
28.3 
28.4 
29.6 
27.7 

31.5 

28.0 
27.1 
26.2 

• The model trained with 2 hours of paired data acts as a weak initialization for SO 
training leading to performance degradation compared to the T O model. However, 
SO training helps compared to the baseline performance. The results show that 
the weakly initialized (paired 2h) models benefit from T O training compared to SO 
training. 

• The acoustic information is well learnt by the encoder component of the A S R sys­
tem. The SO training helps to correct the errors due to incorrect pronunciations. For 
instance the first sequence in figure 4.3 shows that 'volunerable' is corrected as 'vul­
nerable '. Although this term has imperfect spelling, it is acoustically more similar to 
'vulnerable'. Similar errors such as 'wecan' and 'warmed' are corrected as 'wekends' 
and 'warmenth. 
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R E F E R E N C E : wheat may be vulnerable .. weekend's warmth analysts said 
B A S E L I N E : weak may be volunerable .. we can's warmed analysts said 
A S R o T T S : week may be volnerable .. we kends warmenth analysts said 

R E F E R E N C E : a slimmed down firestone can prosper merely 
B A S E L I N E : a slimmdown fire stonet can prace bere merely 
ASR-f->TTS: is slim down fire stoned can prosper merely 

R E F E R E N C E : he's done very well for ***** stockholders 
B A S E L I N E : eased don't very well for stock holders 
A S R o T T S : eased done very well for stock holders 

R E F E R E N C E : mr. polo also owns the fashion company 
B A S E L I N E : m r < U N K > polo also owned the fashion company 
ASR-f->TTS: m r < U N K > polo also owns the fashion company 

R E F E R E N C E : but other observers aren't so pessimistic 
B A S E L I N E : but other observers aren't so pessibistic 
A S R o T T S : but other observers aren't so passimistic 

R E F E R E N C E : investors are a conservative lot these days she says 
B A S E L I N E : investors are a conservative lat these days she says 
A S R o T T S : in deneral investors are a conservative lot these days she says 

Figure 4.3: Hand-picked sequences from the eval-92 test set containing the reference text 
and the corresponding baseline model predictions. The A S R o T T S predictions are com­
pared with the baseline and the reference. 

• The alignment between the encoder and decoder units is improved to with the aid 
of unsupervised speech data as shown in right plot in figure 4.5. The alignment 
abnormalities in baseline plot are rectified with SO training. 

4.6.2 Unpaired Text Only (TO) training 

Overfitting is observed in the case of SO training, while in the case of T O data, the model 
improved consistently from 63% (paired 14 hours) to 39.6% (paired 67 hours). This suggests 
that the T O training provides a major contribution in a very low-resource scenario. The T O 
training strengthens the decoder component of A S R which improves the implicit language 
model learnt inside the decoder. This is observed in figure 4.3, where 'prosper' is predicted 
as 'prace bere' by the baseline model. Although, both words are acoustically similar, the 
spelling is incorrect; this is overcome with the aid of T O data training which predicts 
'prosper' correctly. Figure 4.5 shows that the alignment learned during T O training is 
better than with SO training. 
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Figure 4.4: Bubble plot shows the impact of % W E R by varying the amount of paired data 
in comparison to amount of the unpaired data 

4.6.3 Unpaired Speech Only and Text Only ( S O + T O ) training 

Interestingly, by including both unpaired speech and text of 14 hours, the % W E R improved 
to 43.7, and with 67 hours of data the model obtained 41.4 % W E R (for 2h of paired data) 
. The pattern emerging here is that, under a very low-resource scenario, the model benefits 
from large amounts of text. However, adding more speech only data leads to a slight 
degradation in performance. This pattern is not observed with 5, 10 and 14 hours of paired 
data conditions as increasing the amount of speech data from 14 hours to 67 hours improved 
by ~ 1 % absolute W E R . Wi th 14 hours of supervision and 67 hours of unpaired speech, text 
and both, the % W E R improved to 28.0, 27.1 and 26.2, respectively. 

In table 4.4, the amount of paired data is varied and the amount of unpaired data is 
fixed as 14 hours and 67 hours. Figure 4.4 shows the effect of ASR-f->TTS performance of 
linearly increasing the sizes of both paired and unpaired data. Here, the unpaired data sizes 
are 14, 30, 50 and 67 hours of SO+TO data, while the paired data sizes are 2, 5, 10 and 
14 hours. In this plot, the size of the bubble represents the improvement in performance 
in-terms of % W E R . The blue bubble denotes the 43.7 % W E R performance obtained with 
2 hours of paired data and 14 hours of unpaired data. Increasing the training data size to 5 
and 30 hours of paired data and unpaired data respectively leads to 36.3 % W E R as noted 
by red bubble. Wi th 50 hours of unpaired data and 10 hours of paired data, the model 
attains better gains - see the yellow bubble (28.7 % W E R ) . Finally, the 67 hours of unpaired 
data and 14 hours of paired data result in 26.2 % W E R as plotted in the green bubble. 
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Encoder Index 

(a) ASR model trained with 100 hrs of Lib­
riSpeech supervised training data. The red box 
shows the selected portion of encoder indices 
(xl=25, x2=75), where the decoder indices por­
tion (yl=80, y2=100). 

LOO 150 2 00 
Encoder Index 

(b) ASR-^TTS trained with 360 hrs of unpaired 
speech data. 

LOO 150 
Encoder Index 

(c) ASR-oTTS trained with 360 hrs of unpaired 
speech and text data. 

Figure 4.5: Attention weights showing the alignment learnt between encoder (x-axis) and 
decoder (y-axis) units by supervised and unsupervised training. The alignment plot is 
obtained by forward propagating the a single utterance in dev-clean evaluation set. Each 
pixel denotes the attention weight an of the t timestep for the I target label as in eqn (3.1). 



4.7 Analysis of Attention alignment 

A location aware attention module is a component of our seq2seq A S R model as described 
in section 2.3. On an example sentence, the encoder output contains 256 timesteps, and the 
decoder output contains 175 labels. In figure 4.5a, the encoder indices (25, 75) are mapped 
to decoder indices (80,100). The attention weights to the same set of encoder indices (25, 75) 
are also assigned to higher for the other set of decoder indices (26, 50). Monotonicity is not 
learnt by this attention module due to lack of input samples. Retraining the same seq2seq 
A S R with unpaired speech data using ASR—»TTS provides alignment weights which follow 
monotonicity as is in figure 4.5b. While, ASR—?^TTS helps to fix the major erroneous 
alignments, it fails to fix certain segments which are corrected with unpaired text training 
using the TTS—»ASR model. Figure 4.5c, shows that the output of A S R o T T S training 
with both unpaired speech and text data provides alignment weights monotonically aligning 
all encoder outputs to decoder labels. 

13.0 3.5 

11.5 2.0 
Baseline ASR->TTS TTS-->ASR ASR<~>TTS Baseline ASR-->TTS TTS->ASR ASR<-->TTS 

25 13.5 

19 11.0 
Baseline ASR -> TTS TTS -> ASR ASR <--> TTS Baseline ASR -> TTS TTS -> ASR ASR <--> TTS 

Figure 4.6: Analysis of deletions, insertions, substitutions and total error rates on eval-92 
test set 

4.8 Analysis of Deletions, Insertions and Substitutions 

In this section, the performance improvements obtained using A S R o T T S are analysed 
based on the percentage of substitution, deletion and insertion errors. Figure 4.6 shows 
that unpaired speech training using ASR—>TTS improves the insertion and substitution 
significantly but degrades in deletion rate. The deletion rate is worse compared to baseline 
for the ASR—»TTS, TTS—>ASR and A S R o T T S models. TTS—»ASR significantly reduces 
the insertion errors and shows slight degradation in substitution rate. Being jointly trained 
with unpaired speech and text A S R o T T S results in complementary behaviour in improving 
the substitution rate. 
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Figure 4.7: Relative improvement of W E R for male and female speakers using A S R model 
trained using proposed A S R o T T S pipeline. The baseline performance is 32.5 % W E R for 
male speakers and 30.4%WER for female speakers. 

4.9 Analysis of Speaker Type 

Figure 4.7 shows that ASR—?^TTS attains high relative improvement in W E R (WERR) 
for male compared to female speakers. Wi th the inclusion of TTS—?^ASR, the % X W E R R 
of female speakers over male speakers showed a 15.8% improvement. This comparison 
shows that unpaired text injection helps to improve female speakers and unpaired speech 
improves male speakers. A S R o T T S based joint training helps to normalize the % X W E R R 
improvements of both male and female speakers, by attaining 16.2% and 17.4% respectively 

4.9.1 Effect of C T C and Attention 

A S R o T T S training involves re-training a pre-trained model using a multi-task objective. 
Thus, the parameters related to both C T C and attention are involved during training 
and decoding. In figure 4.8 , the performance is analysed by enabling and disabling the 
effect of C T C during training and decoding. The C T C scaling factor a is set as 1.0 and 
the attention is hence disabled during training and decoding. In this case only the C T C 
parameters are updated this results in,37.9 % W E R . This is absolute 5% degradation over 
the baseline 32.2 % W E R . In contrast, enabling only attention during training by setting 
a = 0.0 updates only the parameters of attention-related components. Decoding using 
attention only requires careful selection of maxlen and minlen hyper-parameters and it 
achieves 26.3 % W E R . The attention-only training resulted in better gains over the baseline 
33.7 % W E R . 

Comparing attention and C T C shows that re-training only the parameters related to 
attention helps in improving the A S R performance with the A S R o T T S method. Based on 
these observations, two variations of combinations of C T C and attention were analysed: 
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Figure 4.8: % W E R of A S R model trained using our proposed A S R o T T S pipeline by 
changing the effect of C T C and attention (attn.) 

• CTC+attn.: The attention objective is combined with C T C with equal weight dur­
ing training and decoding. This improves over the CTC-only model by reducing the 
% W E R from 37.9 to 36.8. However, it is observed that combining attention with 
C T C did not help and the C T C still suffers with A S R o T T S training. 

• Frozen-CTC+attn.: To mitigate the effect of C T C , the parameters of C T C are 
frozen or not updated during training. The C T C components are only used during 
decoding to exploit the pre-trained information in C T C . A S R o T T S shows minor im­
provement from attention only training by attaining 26.2 % W E R . While the inclusion 
of the frozen-CTC's improvement can be treated as noise, it helps to minimize the 
effect of minlen and maxlen parameters during decoding. 

4.10 Experiments on LibriSpeech 

Table 4.5, shows the results of using both unpaired speech and text data from WSJ-SI284 
and LibriSpeech 360 hours across the literature. In the W S J corpus, the model achieves a 
% W E R of 20.3 with R N N L M and 26.1 without R N N L M . This leaves a relative difference 
of 37.1% compared to Oracle's performance of 16.4%. The Oracle result is our baseline 
performance using test data WSJ-SI284 for training. Note that the performance on WSJ-
SI284 is inferior to our previously reported baseline [Baskar et al., 2018]. This is due to a 
difference in architecture necessary to fit A S R and TTS models into the G P U . 

In the case of LibriSpeech, the table 4.5 shows that training with unpaired audio and 
text data can achieve a % W E R of 17.5, leading to 32.5% relative difference compared 
to the Oracle performance. Table 4.5 also shows that our approach using only unpaired 
text gains 18.0% relative improvement over the backtranslation-TTE [Hayashi et al., 2018] 
approach. Complementary gains of absolute 0.9% were observed by integrating R N N L M 
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Table 4.5: Unsupervised A S R performance across best results in the literature. Type refers 
to type of unpaired data used ' S O / T O / S O + T O ' . The oracle result in W S J table denotes 
the model trained with 84 hours of training data (WSJ-SI84 and WSJ-SI284) 

. In LibriSpeech case, the oracle model is trained with 460 hours of training data. 

WSJ-SI84 (paired) + WSJ-SI284 (unpaired) 

Model Type R N N L M % C E R % W E R 

Speech chain [Tjandra et al., 2017] SO+TO - 9.9 -

Adversarial [Drexler and Glass, 2018] SO+TO yes - 24.9 
this work SO+TO - 9.1 26.1 
this work SO+TO yes 7.8 20.3 
Oracle - - 5.5 16.4 
Oracle [Baskar et al., 2018] - yes 2.0 4.8 

LibriSpeech 100 h (paired) + 360 h (unpaired) 

Backtranslation-TTE [Hayashi et al., 2018] T O - 10.0 22.0 
this work T O - 8.0 17.9 
Criticizing-LM [Liu et al., 2019] T O yes 9.1 17.3 
this work T O yes 8.0 17.0 
Cycle-TTE [Hori et al., 2019] SO yes 9.9 19.5 
this work s o yes 7.8 16.8 
M M D [Karita et al., 2018a] Both yes 8.4 18.0 
this work SO+TO - 7.6 17.5 
this work SO+TO yes 7.6 16.6 
Oracle [Hori et al., 2019] - - 4.6 11.8 

with this approach and the result is compared with criticizing-LM [Liu et al., 2019]. The 
effectiveness of our approach using only unpaired speech only data is shown in table 4.5 
attaining 16.8% W E R . Jointly training unpaired speech and text provided modest gains 
with a % W E R improvement from 16.8 to 16.6. From these results, one can infer that 
training with unpaired SO data has major benefits over T O data on large corpus such as 
LibriSpeech. 

4.11 Summary 

This chapter presented a new approach to exploiting the information in unpaired speech 
and/or unpaired text to improve the performance of seq2seq A S R systems. It is showed 
that under low-resource conditions such as W S J corpus the performance improvements 
are higher compared to a corpus with a sufficient amount of data such as LibriSpeech. 
It is also showed that integrating unpaired speech and text, both as a pipeline loss and 
through shallow integration with a R N N L M , provides additional gains and competitive 
results. Future work will focus on cycle-consistency approaches where A S R and T T S do 
not have matching conditions. Preliminary experiments show that this is a limitation of 
current systems. 
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Chapter 5 

A S R ^ T L M : Language Model 
Prior for A S R ^ T T S 

Consistency training acts as an effective technique to alleviate a lack of sufficient data for 
deep learning models. In chapter 3, the importance of consistency training for handling 
unpaired speech and text data was discussed. In particular, the ASR—»TTS pipeline in 
the A S R o T T S model handling the unpaired speech data faces language related errors 
as shown in figure 4.3. Intuitively, it seems that integration of L M with the ASR—?^TTS 
pipeline during training will help to address these errors. In this chapter, a novel consistency 
training pipeline named ASR—^TLM is proposed by drawing inspiration from a variational 
auto-encoder (VAE) [Kingma and Welling, 2013]. Here, T L M refers to the integration 
of T T S and L M . The chapter initially discusses the relation between ASR—»TTS pipeline 
and variational auto-encoder (VAE), proposes modifications to the architecture and loss 
objective and tests it empirically in the unpaired speech domain, deriving a generative 
model of speech. 

5.1 Pr ior Work and Motivat ion 

Prior to this work, studies such as [Hou et al., 2017, Jha et al., 2018] have imposed the 
consistency objective into V A E . Consistency is treated as a regularizer in [Hou et al., 2017] 
to make the output capture the necessary spatial characteristics of the input. A non-
adversarial consistency objective is used to dis-entangle the latent space of V A E in [Jha 
et al., 2018]. While these studies used consistency as an auxiliary objective to V A E , they 
do not study the relation between both training objectives. To the best of our knowledge, 
our work is the first attempt to show the relation between consistency objective and the 
V A E , and also to fetch motivation from V A E to improve our ASR—^TTS. 

The primary motivation for inserting the notion of V A E into the consistency based 
ASR—?^TTS objective is to improve the representations learned by the A S R . In this work, 
the ASR—?^TLM treats the L M as a penalizer for language errors and contains the final 
loss objective analogous to the V A E objective. The proposed ASR—»TLM model has the 
following credits: 

• Prior knowledge is incorporated analogous to V A E with the aid of L M 

• Including an L M based penalty over the A S R hypothesis is practically valid as it can 
scale predicted probabilities based on penalty score. 
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• The importance of the L M during training is exploited. The gradients from the L M 
score can rectify the imperfections in A S R hypotheses directly by acting complemen-
tarily to the penalty scores from the T T S model. 

• The T T S penalty overcomes the acoustic errors while the L M penalty corrects the 
language-related errors. 

Section 5.2 introduces the V A E framework and its training objective. Section 5.3, 
describes the ASR—^TLM training scheme which is an extension of the proposed A S R ^ T T S 
presented in chapter 3. Finally, the section 5.5 tabulates the results on LibriSpeech and 
shows the efficacy of ASR—>TLM compared to the previous approach. 

5.2 Variational Auto-encoder (VAE) 

V A E is a simple auto-encoding based encoder-decoder model. The encoder /(.) is a non­
linear neural network generating a latent variable z. The decoder g(.) is another neural 
network with or without its parameters being shared with the encoder. The latent variable 
z is decoded by the decoder to reconstruct the input x. A simple reconstruction loss such as 
mean squared error (L2) or mean absolute error (LI) can be used to train this model. The 
nature of V A E differs from a conventional autoencoder in defining the training objective, 
as V A E encourages the latent variables to have a Gaussian distribution. This is done by 
minimizing a Kullback-Leibler (KL) divergence objective between the distribution of latent 
variables and the normal distribution. 

5.2.1 Definition 

Given an input x, the V A E introduces q (z | x) which acts as a parametric model of the 
true-posterior p(z \ x). This is parameterized also by the encoder component /(.) and hence 
the true posterior is denoted as: 

p(z J x) 
p(x I z) • p(z) 

p(x) 
, / I \ i p(x\z)-p(z) (5.1) 
log p(z x) = log v ' 

p(x) 
= logp(x\z) + log p(z) — logp(x) 

Here, p{x) is denoted as the evidence or normalization constant, p{z) is the prior and 
p{x\z) is the likelihood function. Estimating p{z \ x) using Bayes rule is difficult and hence 
variational inference using a family of distributions called q(z\x) is used and the variational 
parameters <f> are learnt using stochastic gradient descent. Henceforth, the estimation of 
the posterior p(z \ x) is tractable by introducing distribution q(z\x) = M(z; x, //, a), where 
/u and a are the mean and standard deviation. Standard normal distribution M(/J,, a) is 
used. Usually, p(x)can then be expressed as: 

/

f q(z\xj p(x zj 

p(x, z) dz = log / p(x, z) • dz = log(E g{ ' }) (5.2) 
J q{z\x) q{z\x) 
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This can be further expanded using Jensen's inequality and K L divergence to calculate the 
evidence lower bound (ELBO) . In case of V A E , K L divergence is used and denoted as: 

VKC{q(z\x)\\p(z\x)} = E z ~ ? { 4 j r r } 

= E ^ g { l o g q(z\x) - logp(z\x)} 
/ I \ / \ (5-3) 

= E^ g{logq(z\x) - log{ — }} 
p(x) 

= E ^ j l o g q(z\x) - logpe(x\z) - logp(z) + logp(x)}. 

Rewriting the above equation to get the variational lower bound or E L B O due to the 
presence of an evidence term results in: 

logp(x) - VKC[q{z\x)\\p{z\x)) = Ez^q[logp(x\z) +logp(z) - logq(z\x)} 
(5.4) 

logp(x) - V)cc{q(z\x)\\p(z\x)} = Ez^q{logpo(x\z)} - VKC{q{z\x)\\p{z)}. 
(5.5) 

Here, the objective is to maximize the evidence or marginal likelihood term p{x). This 
is added with an error term Vfcc[q<f>{z\x)\\p{z\x)\ which tries to bring the distribution of 
latent variables closer to distribution q{z\x). Therefore, reducing the error or learning 
the encoder to produce latent variables matching the distribution leads to maximizing the 
E L B O . Finally, the E L B O can be defined as: 

E L B O = £(x, q) = logp(s) - VKC{q{z\x)\\p(z\x)}. (5.6) 

For p(x) ,we can write: 
logp(x) > C(x,q), (5.7) 

as the K L divergence is non-negative. Based on this assumption, (5.5) can also be used to 
define the E L B O as: 

E L B O = £(x, q) = E^{logp(x\z)} - VKC{q(z\x)\\p(z)} (5.8) 

5.2.2 V A E Training 

Here, the HLz^q\\ogp(x\z)} is the reconstruction error obtained at the end of the decoder. 
The K L divergence Vfcc[q(z\x)\\p(z) acts as a penalty or regularizer to ensure that the 
latent variables produced by the encoder stay within the defined distribution. During the 
training process, the objective is to maximize the marginal likelihood logp(x), this is done 
by indirectly maximizing the evidence lower bound (ELBO) as: 

logp(x) > Ez^q{logp(x\z)} - VKC{q(z\x)\\p(z)} (5.9) 

Henceforth the objective E L B O can be generally defined as: 

logp(x) > Kz^q[logp(x\z) + logp(z) — logq(z\x)] (5.10) 

In summary, the joint distribution between input x and latent variable z, p (x, z) is jointly 
optimized with q(z\x), and to perform this joint optimization, the E L B O objective is 
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used. The variational parameters (j) belonging to the encoder are instrumental in learning 
q(z\x) and the decoder related parameters such as 9 are also optimized. To ensure that the 
gradients from the decoder propagates t i l l the encoder, a reparametrization trick is used 
which removes the hindrance due to sampled latent vectors between encoder and decoder. 

There are many learning methods that optimize E L B O . A n important difference between 
methods is whether the parameters for g (Y | X ) are learnt from scratch at each iteration 
(e.g. E M or stochastic variational inference) or a single function is learnt during the entire 
training. The latter case yields the variational autoencoder (VAE [Kingma and Welling, 
2013]. 

5.2.3 Relation A S R ^ T L M 

The advantage in V A E is that it just implies using the stochastic gradient ascent (or mo­
mentum, A D A M , etc) in eq. (5.10) (usually reformulated to show the encoder and decoder 
more clearly). However in this form it it clear that the V A E loss closely resembles the loss 
for cycle consistency used in £ A S R - S - T T S - We can reformulate equation (5.10) as 

£ V A E = - E L B O = - ^ ( Y | x ) {logp(X | Y ) + logp(Y) - logg(Y | X ) } (5.11) 

or in the more commonly displayed form using the K L divergence as 

£ V A E = - £ , ( Y | X ) {logp(X | Y ) } + K L {q(Y | X ) || p(Y)} (5.12) 

1 

| | Frozen 
| | Trainable 

— ^ Gradient flow 

Figure 5.1: Flowchart showing training pipelines of the V A E and ASR-f->TLM models 

5.3 ASR—>TLM 

In this chapter, we propose A S R ^ T L M , a training pipeline interconnecting A S R with pe­
nalizes such as TTS and language model (LM). This model takes inspiration from the V A E 
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training objective and modifies the ASR—»TTS pipeline proposed in chapter 3 to accommo­
date the language model penalty. The intuition is that during the initial course of training, 
the A S R tends to make some errors which will impose erroneous reconstruction by TTS. 
Apart from having a T T S penalizer to mitigate this problem as discussed in A S R ^ T T S 
(chapter 3 ) , an additional penalty which directly targets the predicted hypotheses can be 
used. The ability of the L M to direct a correct token with a certain probability from the 
previously predicted tokens makes it a viable option to penalize the A S R hypotheses. The 
proposed ASR—»TLM uses a pre-trained L M which intakes the predicted token sequence 
from A S R and outputs its probabilities. Here, the L M acts as a prior in defining the token 
sequences which can be learnt using unpaired text or T O data. 

5.3.1 Relation to V A E 

In this section, the encoder /(.) and decoder g(.) are generalized to simplify the comparison 
between V A E and ASR—»TTTS. Given an input x, the encoder component f(x) produces 
an output y. The decoder component g{y) reconstructs back the input x. The parameters 
9 optimized here are based on the encoder component. The gradients for V A E loss defined 
in (5 .11) are computed as: 

V 0 £ V A E ~ - r ( X , Y ) V e l o g < z ( Y | X ; 0 ) (5 .13) 
Y ~ ? ( Y | X ) 

where 

T ( X , Y ) = logp(X | Y ) + logp(Y) - log q(Y | X ) (5.14) 

In comparison, the gradients of £ A S R - S - T T T S (3.8 equation from chapter 3) are: 
N 

V ^ A S R ^ T T S l ogp T Ts(X | Y ) V e A S R log P A S R ( Y I X ) (5 .15) 
n=l 

Now, if we assume 

• q(Y | X ) is an A S R system, 

• p ( X | Y ) is a TTS system and 

• And we ignore L I or end-of-utterance loss terms for TTS loss for simplicity 

then it is apparent that the l o g p ( Y ) is missing in equation (5 .15) . Including the language 
model p(Y) and rewriting (5 .15) results in: 

V * £ A S R - > T L M ~ - r ( X , Y ) V 0 A S R l o g P A S R ( Y | X ) (5.16) 
Y ~ P A S R ( Y | X ) 

with 
T ( X , Y ) = logpTTs(X | Y ) + l o g p L M ( Y ) - l o g p A S R ( Y | X ) (5.17) 

This is in fact learning a generative model of speech that maximizes logp(X) by a 
variational autoencoder. It corresponds to the cycle consistency loss to which we add a 
Kulback-Leibler regularization term using the language model. 

T ( X , Y ) = /3i logpTTs(X | Y ) + ft l o g p L M ( Y ) - l o g p A S R ( Y | X ) (5.18) 

59 



This new prior term using L M introduces smoothing of the distributions this is equiv­
alent to flattening or sharpening the uncertainty in the language model and A S R distri­
butions. In all our experiments (3\ —> 1.0 and the 02 is varied based on the L M and the 
training dataset. 

5.4 Experimental Setup 

In this section, the experiments are performed using a fixed set of paired and unpaired 
data. Analysis is carried out to compare the SO training using ASR—»TLM with language 
models trained with different datasets. 

5.4.1 Database selection 

Experiments are performed using W S J and LibriSpeech corpora and later evaluated with 
eval-92 for W S J and test-clean from LibriSpeech test sets. The primary component in 
training ASR—?^TLM is the language model which contains a vocabulary of 78 different 
characters. Two different language models, LM-1 and LM-2 , are built: 

• LM-1: 1662964 lines of character level text sequences are used to train an R N N L M . 
The text is specific to W S J and does not overlap with the WSJ-SI84 and WSJ-SI284 
datasets. 

• LM-2: The data for training this R N N L M is obtained from the left-out set of Lib­
riSpeech. The training data contains 40418261 lines of character level text and does 
not overlap with the 960 hours of LibriSpeech dataset. 

14 

12 

10 

11.1-

6.3 

10.7 

0.3 

10.3 

5.2 

0.5 

/?2 scaler 

-a— eval-92 
test-clean 

10.3 

4.9 

0.7 

10.6 

4.9 

0.9 

Figure 5.2: % W E R of ASR—>TLM-2 when decoding using shallow fusion with LibriSpeech 
R N N L M (SF-Lib) by varying the L M penalty factor j32 
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5.4.2 Training 

The training objective contains two hyper-parameters, a and (3. The number of hypotheses 
predicted from A S R is set to iV = 4 and the L M probabilities are obtained for all iV 
hypotheses. The L M is constructed with 2 layers of uni-directional L S T M each with 650 
units. The batchsize is kept at 1024 and the maximum length of each utterance is kept 
as 150 characters. The training is done for 20 epochs using the Adam optimizer. Early 
stopping is done if the perplexity fails to improve within 3 epochs. Two sets of experiments 
are done: 

. ASR—>TLM-1: The A S R - ^ T L M which uses LM-1 during training 

. ASR—>TLM-2: The A S R - ^ T L M which uses LM-2 during training 

During the course of training with both models, the parameters of TTS and L M are frozen 
without being updated. Only the A S R parameters in the model are updated. 

5.5 Results and analysis 

A l l results on W S J and LibriSpeech using the proposed ASR—»TLM showed faster conver­
gence when compared to the ASR—?^TTS model. Initial experiments are conducted on both 
W S J and LibriSpeech by varying 02 from 0.0 to 1.0 the performance is shown in figure 5.2. 
For both datasets,the results show consistent gain until j3 reaches 0.7. 
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28 I • No-fusion 
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7.7 8.4 

5.4 
7.5 7.1 6.7 

4.9 

ASR—»TTS ASR—»TLM-1 ASR—»TLM-2 

Figure 5.3: % W E R of A S R model trained using our proposed ASR-f->TTS pipeline and 
evaluated on eval-92 test set with shallow fusion using LM-1 (SF-WSJ) and LM-2 (SF-Lib) 
respectively. 

5.5.1 Analysis on W S J 

The proposed ASR—»TLM is compared with the ASR—»TTS model on the W S J corpus. The 
training data contains 14 hours of supervision and 67 hours of SO data. Figure 5.3 shows 
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Figure 5.4: % W E R of A S R model trained using our proposed ASR-f->TTS pipeline and 
evaluated on test-clean set with shallow fusion using LM-1 (SF-WSJ) and LM-2 (SF-Lib) 
respectively. 

that the ASR—^TLM-1 model definitely enjoys the benefit of the LM-1 penalty by improving 
from 28.0% W E R to 8.4% W E R . Directly using LM-1 during decoding with shallow fusion 
provides 7.7% W E R and is better than using it for the ASR—^TLM-1 model. The primary 
reason for this scenario is that during shallow fusion, the L M encounters predictions of well 
trained ASR, while LM-1 in ASR—^TLM-1 is used from the initial training stage and does 
not affect the final hypotheses. Shallow fusion with LM-2 attains better gain with 5.4%. 
W E R , which is absolute 2.3% W E R improvement over L M - 1 . The drastic improvement is 
due to the presence of LM-2 with better perplexity over LM-1 in the development set of 
W S J . 

The ASR—?^TLM training proves to be complementary to shallow fusion with the same 
L M , that is L M - 1 . This is observed in figure 5.3, where the W E R of ASR—»TLM-1 im­
proves from 8.4% to 7.5%. Shallow fusion with LM-2 achieves 5% W E R due to the same 
effect as observed in ASR—>TTS. ASR—^TLM-2 attains 15.4% relative improvement over 
ASR—^TLM-1 which showcases the importance of using L M trained with a significant 
amount of text data. Decoding ASR—^TLM-2 with shallow fusion attains 5% relative 
improvement over model without fusion. However, ASR—^TLM-1 attains 10% relative im­
provement with shallow fusion. This is because ASR—^TLM-2 uses a bigger LM-2 over 
LM-1 during training and decoding with LM-1 did not provide noticeable gains as observed 
in ASR—»TLM-1. 

5.5.2 Analysis on LibriSpeech 

The ASR—»TLM-1 and ASR—»TLM-2 did observe gains over the baseline ASR—»TTS model 
on LibriSpeech as shown in figure 5.4. This experiment was conducted with LibriSpeech to 
show the impact of LM-1 when used along with 360 hours of SO data. Moreover, a larger 
model such as LM-2 , was used to improve the ASR—?^TLM performance. Shallow fusion 
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of A S R - ^ T T S with LM-2 attained 33.3% relative improvement, while using A S R ^ T L M - 2 
only gained 17.2% relative improvement over the ASR—?^TTS with no fusion. This shows 
the limitation of ASR—^TLM-2 and indicates that the complete advantage of LM-2 can 
be exploited by training with of SO data. Morever, the advantage of LM-2 is still incor­
porated in ASR—^TLM-2 with shallow fusion by attaining 10.3% W E R , which shows the 
complementary nature of ASR—?^TLM training. 

5.6 Conclusion 

Usage of an L M has always played a major role in providing gain in recognition performance 
irrespective of the change in A S R architecture. The seq2seq models have also greatly 
benefited from shallow fusion with LMs . In addition to usual use of L M only during 
decoding the ASR—»TLM proposed in this chapter , integrates the L M with A S R during 
training. This allows the A S R to learn from its own errors this claim is substantiated by 
the recognition performance on W S J and LibriSpeech corpora. The experimental results 
show that the ASR—?^TLM proves to be complementary to the shallow fusion technique as 
different parts of errors are handled by incorporating L M during training and decoding. 
The L M penalizer acts as a regularization term in ASR—?^TLM and helps to improve over 
ASR—»TTS. 

63 



Chapter 6 

Enhanced ASRf+TTS (EAT) 

The ASR-H-TTS model was proposed in chapter 3 with experiments in chapter 4 and its im­
proved counterpart ASR—?^TLM was described in chapter 5. The recognition performance of 
these models showed significant gains when evaluated using W S J and LibriSpeech datasets. 
However, attempts to evaluate the A S R o T T S against other datasets did not lead to reason­
able gains. Existing works on semi-supervised learning such as machine speech chain [Tjan-
dra et al., 2017] and other unsupervised training methods [Wang et al., 2020a, Rossenbach 
et al., 2020] have also evaluated the model performance only with certain datasets such as 
W S J or LibriSpeech. Evaluating using these datasets projects the importance of the model 
only under in-domain conditions but fails to showcase the importance of the approach on 
other low-resource languages or under data mismatched conditions. This chapter discusses 
the issues of A S R o T T S under mismatched conditions and provides suitable solutions. This 
chapter also provides improvements to A S R and T T S model architecture and their training 
schedules. 

6.1 Out-of-domain (OOD) condition 

The primary focus in this chapter is to understand the model behaviour when the SO+TO 
data does not match the data used to pre-train the A S R and T T S model. To facilitate this 
study, a low-resource language Swahili recorded in real-time conditions is obtained from the 
B A B E L corpus. Swahili script uses ASCII characters and can be easily used with models 
pre-trained with LibriSpeech (English). Hence, BABEL-Swahi l i is treated as mismatched 
data or OOD data. 

A n empirical analysis of A S R o T T S with BABEL-Swahi l i is conducted separately for 
ASR—»TTS and TTS—>ASR pipelines. The results in table 6.1 show that the TTS—»ASR 
pipeline degrades in performance when compared to ASR—>TTS. 

Problem with TTS—>ASR pipeline 

In ASR—?^TTS TTS operates in the training mode. The auto-regressive training in T T S uses 
teacher-forcing and allows the ground-truth labels as previous tokens (filter-bank features) 
to predict the current token. This enables the TTS to provide reasonable reconstructed 
features even when OOD data is used. In the case of TTS—>ASR, the TTS operates in 
decoding mode where the teacher-forcing is not possible. Instead, TTS relies on its own 
predictions to obtain the previous tokens and passes them to the decoder to predict the 
current token. Since the TTS is pre-trained with English speech, it learns the acoustic 
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context variations from an in-domain dataset such as LibriSpeech, exposing the pre-trained 
T T S to Swahili which contains acoustic contexts different from English. Swahili is chosen 
as OOD as it uses ASCII characters and is easier to plug into an existing English model. 

A straight forward approach to solving this problem is to train a TTS with OOD data. 
However the T T S training requires a significant amount of training data (atleast 1000 
hours) to obtain reasonable reconstructions. Using an exotic language such as Swahili, 
which contains a very limited amount of supervised data, hampers building a robust TTS 
for Swahili. Multilingual T T S [Zhang et al., 2019] should be a simple solution to building 
a speech synthesizer for low-resource languages but it is still in research stages and not 
flexible to adaptations using consistency training. 

Table 6.1: Comparison of recognition performance of different A S R models trained with 
BABEL-Swahi l i . 

Model % W E R 

Topline - 40 hrs 52.4 
A S R o T T S 66.2 
TTS—> A S R 74.1 
ASR—»TTS 67.6 

Baseline 71.4 

Proposed Solutions 

To counter this limitation, a well trained TTS must be adapted for a target language such 
as Swahili, with a limited amount of supervised data. Instead of directly adapting the 
T T S model with OOD data, an auxiliary model is used to guide the T T S to learn the new 
acoustic context variations in the OOD data. This reduces the burden of T T S by learning 
the target directly from the data. 

• A hyper-parameter a is introduced to attenuate the influence of the A S R encoder by 
scaling the attention-encoded context. This allows reducing the focus on acoustic in­
formation when the synthesized speech quality is poor, effectively alternating between 
A S R and a more language-model-like behaviour. 

• A new text-only training pipeline named TTS—?^AFV is proposed integrating feat2vec1 

[Baevski et al., 2020] to the existing TTS—»ASR pipeline in chapter 3. Here, A F V 
refers to the A S R and feat2vec model. The feat2vec model acts as a penalizer to TTS 
outputs. The contrastive loss objective in feat2vec is integrated along with the exist­
ing TTS—?• A S R pipeline. This model encounters the incorrect T T S predictions, and 
guides them to produce reasonable reconstruction outputs. The proposed TTS—»ASR 
model addresses T O data effectively. 

6.1.1 Handling T T S problem with O O D data 

In this section, a quick analysis is performed to show the problem faced by T T S during 
prediction of TTS outputs when fed with OOD data. Figure 6.1 plots the distribution of 
three different types of input text to show how a domain change in text leads to a change 

1feat2vec is the variant of wav2vec2 with input as filterbank features 
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in T T S predictions. Figure 6.1 also shows the limitations of T T S in handling OOD data 
such as Swahili when it is trained with an English corpus. For instance, the distribution 
of predictions (red) when ground-truth (in-domain) text is provided has its mean centred 
around 0.39. The A S R hypotheses containing slight variations (with 16% word errors) 
from the ground-truth result in predictions (green) with their mean slightly shifted from 
the red distribution. However, the A S R hypotheses still lie under the in-domain category 
as the context does not vary from the in-domain text. In the case of the ground-truth 
Swahili (out-of-domain) text, the distribution (blue) diverges much farther from the green 
and red distributions as the M S E error increases due to increase in difference between the 
English and Swahili contexts. For example, the word 'hizo' in Swahili does not occur in 
the LibriSpeech corpus. These factors make the Babel-Swahili P D F mean \x = 0.94 widely 
deviating from the original \x = 0.39. In addition to this, the Swahili has a higher variance 
of a = 0.58 compared to both the LibriSpeech groundtruth and hypotheses. 

6.1.2 Attention context scaler a 

A n adhoc way to handle the OOD problem with synthesized speech is to scale the output 
of T T S by a hyper-parameter and vary it based on the heuristic knowledge regarding how 
the target text varies from the text used to pre-train T T S . Instead of directly scaling the 
filter bank output from T T S , the output of the attention component in A S R is suppressed 
to reduce the effect of acoustic context. The idea behind this approach is to exploit the 
T O data to train the decoder component of the A S R for improving its implicit language 
model. Figure 6.2 shows the architecture of TTS—?• A S R with a hyper-parameter a to scale 
the attention context output of the ASR. 
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yto 

Figure 6.2: Block diagrammatic view of TTS—?• A S R with attention context scaler a 

The TTS—> A S R cycle-consistent T O training objective from section 3.4 exhibits a major 
weakness when training with out-of-domain data. T T S is less robust to out-of-domain data 
and generates poor log-mel filterbank (fbank) frames in this conditions. In this pipeline, 
features X are predicted by T T S as 

X = a r g m a x { p T T S ( X | Y ) } , (6.1) 

encoded in the A S R encoder as H = Encoder(A) and sent to the attention component to 
obtain the attention context vector q as 

ci = ^aitht, (6.2) 
t 

where, t and I denote the timestep and token ID, respectively. The final loss is then given 
by 

L 

CTO = -logpASR,(Y* I X ) = - ^ l o g D e c o d e r ( Q , y z _ i ) . (6.3) 
l 

The primary reason behind this is that the ground truth is available in ASR—?^TTS 
to perform teacher-forcing. However in TTS—>ASR, the ground truth is not available for 
TTS , and thus the reconstructed output deviates from the ground truth. Even the speech 
silence, segmentation may be wrongly predicted in the TTS—?^ASR pipeline. Therefore, we 
modify (6.2) to: 

ci = a y~] aitht (6.4) 
t 
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52 1 1 

T U 0.3 0.5 0.7 0.9 
a scaler 

Figure 6.3: % W E R of TTS—> A S R with attention context scaler a on Swahili with 5 hours 
and 10 hours of supervision 

If a = 0, no encoder features are used and only the decoder component of the A S R 
model is trained to learn the language model information implicitly. This prevents the 
erroneous T T S generated features from providing a misleading signal, while still allowing 
gradient updates only to the A S R decoder. The value of a is chosen heuristically based on 
the difference in domains between data used to train T T S and the T O data. The final loss, 
used both for speech only and text only data (ST) is given by summing the loss functions 
£ S T = £ s o + £ T O of the above pipelines as introduced in section 3.5. 

Figure 6.3 shows how a affects the recognition performance on Swahili when semi-
supervised with 5 hours and 10 hours of target data. The plot justifies the idea that 
increasing a after 0.3 degrades the performance of Swahili for both 5 and 10 hours of semi-
supervised training. 10-hours of semi-supervision proved to be more sensitive to an increase 
in a from 0.5 to 0.7 when compared to 5-hours model. The details of the experiments are 
given in the experimental section 6.4.3. 

6.1.3 T T S ^ A F V : Need of regularizer for T T S ^ A S R 

The significant improvement in performance obtained by scaling the attention context with 
a shows the negative impact of passing the OOD acoustic information predicted by the in-
domain T T S model. To mitigate this issue conceptually, the TTS needs to be re-trained or 
fine-tuned with a large amount of paired data which is harder to obtain for languages such 
as Swahili. A straightforward way to solve this inconsistency of domains is to use models 
such as multilingual T T S or low-resource T T S , but these models are still in research stage 
and cannot be easily integrated with other models. 

We propose simple yet effective approach to overcome this issue by regularizing the 
T T S model to provide reasonable context with an auxiliary model. The auxiliary model 
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acts as a penalizer to correct the context learned by the T T S during the course of T O 
based training. In this section, a feat2vec based penalizer is incorporated into TTS—?• A S R 
to guide the TTS in learning newly encountered context variations and provide reasonable 
reconstructed features to A S R as input. 

Feat2vec Model 

The feat2vec model provides acoustic context representation by learning from the input 
filter-bank features. The model is a variant of the wav2vec 2.0 model proposed in [Baevski 
et al., 2020]. Wi th speech waveform as input (as in chapter 2) it directly predicts context 
representations. The input component of wav2vec 2.0 is modified to intake the filter-bank 
features instead of waveform to fit into the TTS—?• A S R model pipeline. The feat2vec model 
encodes the incoming filter-bank features via self-attention layers inside the transformer 
encoder to capture contextual information. The model is trained in a self-supervised fashion 
using contrastive loss objective to match the quantized targets with the transformer encoder 
outputs: 

C t = - log e x P ( s i m ( c u Qt) k)  
C°nt J2q&QexP(sim(ct,q)/k)' 

Here, ct and qt are the transformer encoder output and quantizer output obtained by by 
feeding filterbank features as input. More details are in section 2.6.1. Figure 6.4 shows a 
block diagram view of the feat2vec model. 

Procedure 

Feat2vec primarily focuses on capturing accurate context information at every time instant 
present in the feature input. The contrastive loss training objective provides an estimate 
of the accuracy of the context predicted by the feat2vec model. This characteristic of the 
feat2vec makes it an attractive auxiliary model to correct the inconsistent context predicted 
by the T T S model. 

The TTS—»ASR is incorporated with the feat2vec model as a plug and play module and is 
named the TTS—»AFV (TTS—>ASR + feat2vec) pipeline. Figure 6.5 shows the TTS—»AFV 
model architecture with the attention context scaler inside A S R (see figure 6.3) and feat2vec 
integrated in parallel to the A S R model. Given a text input from the T O data yto, the TTS 
generates filterbank frames x which are passed to both the A S R and feat2vec models. The 
final objective C of the TTS—?^AFV is determined as: 

C <r- Cs + a • £ T T S ^ A F V (6.6) 

where the semi-supervision objective Cs to the A S R is 

Cs = CE(yto,yto). (6.7) 

The unsupervised training objective £ T T S - S - A F V for T O training is determined as: 

£TTS->AFV = £ A S R + C-cont- (6.8) 

Here, the Cs and £ A S R are different as Cs is trained with supervised data containing parallel 
speech and text. While the £ A S R is determined using the speech generated by the TTS 
and the text from the T O data. 
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Figure 6.4: Feat2vec model architecture. Ccont is the feat2vec loss which is the constrastive 
objective to match the model predictions from transformer encoder with quantized targets 
from quantizer. 

6.1.4 Training procedure 

Algorithm 4 shows the complete procedure involved in training the TTS—>AFV pipeline. 
The feat2vec Qpv is initially pre-trained with a huge amount of unsupervised data and the 
parameters are not updated (kept frozen) during the complete training process. The TTS 
provides the feature vectors X and they are passed simultaneously to the feat2vec and the 
A S R models. 

Feat2vec produces the quantized output and the encoder output capturing acoustic 
context. These are used to compute the contrastive loss as defined in (6.5). The A S R 
module provides the cross-entropy loss £ A S R and the contrastive loss £Cont is computed with 
feat2vec. The gradients of contrastive loss do not impact the parameters of A S R and only 
update the TTS related parameters. The gradients of the cross-entropy objective should 
impact both the T T S and A S R related parameters. Our assumption is that the gradients 
backpropagated from A S R will help the TTS to correct its language related errors, while 
the gradients propogated through feat2vec updates will aid the T T S to fix the imperfections 
in predicting acoustic contexts. 
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yto 

Figure 6.5: TTS—»AFV model: TTS—>ASR training pipeline integrated with feat2vec 

6.2 Enhanced A S R o T T S (EAT) 

In this section, the upgraded models namely ASR—^TLM from chapter 5 and TFV—>ASR 
from the previous section are integrated to perform both SO and T O training as introduced 
in chapter 3. The updated model is termed as enhanced A S R o T T S (EAT) and in addition, 
incorporates the following changes over our previous approach: 

• Transformer architecture is incorporated into the encoder layers of seq2seq A S R and 
TTS of the A S R o T T S model. The previous framework was constructed using re­
current architectures that limited the learning of longer context during training. The 
recently proposed transformer architecture [Vaswani et al., 2017] is capable of cap­
turing longer context and helps in generalizing across temporal characteristics using 
the self-attention layers in both the A S R [Zeyer et al., 2019, Karita et al., 2019] and 
TTS [Li et al., 2019, Hayashi et al., 2020] models. 

• Specaugment [Park et al., 2019] based augmentation strategy is introduced into our 
E A T model to empirically prove that consistency training is complementary to aug­
mentation techniques and also leads to improved performance. 

• Inconsistency between the amount of unpaired and paired data is addressed by propos­
ing different annealing techniques during training. 

The experiments are conducted on LibriSpeech and BABEL-Swahi l i and compared with 
the state-of-the-art (SoTA) baseline A S R systems. The analysis proves the importance of 
using transformer based architecture, specaugment and annealing strategy. 
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Algorithm 4 TTS—»AFV training algorithm 

Require: Text input yto G £>to from T O dataset P t o , paired speech utterance with text 
(xs,ys) G VS from supervised dataset V S , pre-trained A S R #ASR and T T S OTTS models, 
pre-trained feat2vec OFV model, attention context scaling hyper-parameter a, learning 
rate 7 

repeat 

yto € T>to-
x <- T T S ( y t o ) 
yto = Attention Context Scaled ASR(x) 

£ A S R < log P(yto I x) 
C-cont = feat2vec(a;) 

- ^ T T S ^ A F V = ^ A S R + £-cont 

y <- ASR(x s ) 
£ s < log p ( y I xs) 

C <^ £s + / ^ T T S ^ A F V 

if update T T S then 

OFV <— OFV 

OTTS QTTS + 7 • V 6 » T T S £ 

end if 

OASR <- 0AS.R + 7 • ^eASR£ 
until convergence 

/ / Sample a text sequence 

/ / Sample speech wi th corresponding text 

/ / F i n a l objective 

/ / Feat2vec parameters are not updated 

/ / T T S update 

/ / A S R update 

6.3 Experimental Setup 

LibriSpeech [Panayotov et al., 2015] and BABEL-Swahi l i [Karafiát et al., 2016] datasets are 
used in our experiments. WSJ-sI284 is used to pre-train the A S R and TTS models. 5 and 
10 hours of paired data are obtained from 39.74 hours of BABEL-Swahi l i data and the rest 
of the dataset is used as unpaired data. In BABEL-Swahi l i , the 40 hours of training data is 
partitioned to pairec (5h, lOh) and unpaired (30h, 35h) without any overlap between paired 
and unpaired utterances. The test set is based on the original split in the corpus [Karafiát 
et al., 2016]. Table 6.2 shows the number of utterances in Swahili training and test splits. 

Table 6.2: B A B E L Swahili corpus description with training (both supervised and unsuper­
vised) and test splits 

Type # Hours # Utterances 

Paired Train split 5.0 5000 
Paired Train split 9.9 10180 
Paired Train split 40 40053 
Unpaired Train split 350 30000 
Unpaired Train split 35 35000 
Test split 1.84 1991 
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83 dimensional filterbank features are extracted and used to train our A S R and TTS 
systems. R N N L M for LibriSpeech is built with 460 hours of clean data and 500 hours of 
other data. R N N L M for Swahili is built with external text containing 83k utterances and 
a 62k vocabulary size. 

Our experiments are performed using ESPnet toolkit and the code is published on 
Gi tHub.Al l experiments are conducted with R N N L M during testing. 

Evaluation with LibriSpeech is carried out on dev-clean, dev-other, test-clean and test-
other as such variability can showcase the effectiveness of E A T . 

6.3.1 Feat2vec pre-training 

The C N N component in feat2vec contains two 2D convolutional layers: a) the first layer 
with 512 dimensional input and output channels, kernel size of 3 and stride factor of 2. 
b) the second layer contains both input and output channels with size of 512, kernel size 
of 3 and stride of 2. Outputs of both convolutional layers are subject to R e L U activation 
functions. 

The transformer encoder module contains 12 encoder layers, each with 2048 dimensions. 
Each encoder layer contains a multi-head attention component with 8 heads and 512 at­
tention dimensions. Two feed-forward layers, each with 2048 dimensions are applied after 
multi-head attention component to capture position-wise information. Layer normalization 
is applied after the above procedure before proceeding to the next layer of the encoder. 

The masking and quantization hyper-parameters are kept similar to wav2vec2.0 [Schnei­
der et al., 2019]. The masking is done over NM = 10 timesteps with a probability of 0.065 
over all time samples to choose the starting indices / . The quantization with Gumbel-
softmax is performed with a temperature parameter varying from r = 2 to r = 0.5 with 
increases in training iterations. The number of groups G = 2 and the number of variables 
M is set as 320. The number of distractors for contrastive loss in equation (6.5) is chosen 
empirically as 50. 

The feat2vec model training is performed with both contrastive loss and diversity loss, 
and the contrastive loss is only used after integrating with TTS—?• A S R . The feat2vec model 
is pre-trained with the following open-source corpora: 

• 1000 hours of Libri-light data. The Libri-light data does not overlap with the 960 
hours of LibriSpeech data used for TTS—»AFV fine-tuning. 

. 500 hours of T E D talks [Rousseau et al., 2012]. 

• 2000 hours of Fisher corpus [Cieri et al., 2004]. 

The above datasets are used in a completely unsupervised fashion as only the speech data 
is required. The models are trained with a batch size of 15 million bins [Watanabe et al., 
2018] for a maximum of 500 epochs. 

6.3.2 E A T Architecture and Training its Improvements 

Model Architecture 

The A S R and TTS architecture in the E A T model is meticulously designed as it plays 
a major role in attaining improved performance. The motivation is to keep the model 
light-weight and simple to easily fit in G P U memory during training. 
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ASR: The A S R component in the E A T model is equipped with a location based multi-
head attention component [Karita et al., 2019]. Instead of R N N layers in the encoder, 
self-attention layers are used to reduce model complexity. The decoder is built with R N N 
layers as before, since the transformer decoder is more difficult to implement with our 
training objective. In these experiments, 2 V G G [Simonyan and Zisserman, 2015] layers 
followed by 6 self-attention layers each with 800 dimensions are used. The encoder output 
is sent to attention component with 10 heads and 512 dimensions. 10 convolution channels 
with 100 filters are used in this attention to be location specific. Adadelta optimizer [Zeiler, 
2012b] is used and the training proceeds with batch size 20. Our experiments shows that 
multi-head attention and self-attention layer based encoder provided performance gains. 

TTS: Transformer-based TTS [Hayashi et al., 2020, L i et al., 2019] is used in this work, 
as we found that the transformer consumes less memory and is effective in out-of-domain 
conditions when compared to Tacotron architecture [Hayashi et al., 2020]. The TTS is 
multi-speaker based and handles each speaker input by providing an x-vector [Snyder et al., 
2018] as speaker embedding. The transformer architecture contains 6 encoder and decoder 
layers, each with 1536 units, respectively. The attention component contains 4 attention 
heads, each with 384 attention dimensions. 2 pre-net layers with 256 units and 5 post-net 
layers with 256 channels are used. The output frames reduction factor is set to 1 as all 
frames are required during self-supervised training. Speaker embeddings are added to the 
encoder output before sending to the decoder. The pre-training of transformer T T S is done 
using 24 hours of LJSpeech (single speaker T T S dataset) [Ito and Johnson, 2017] and the 
training is carried out using its standard optimizer with 10000 warmup steps for 100 epochs. 

Data Augmentation 

Specaugment: In A S R o T T S , simple Gaussian noise is used as augmentation to stabilise the 
training; it provides minor gains but is inconsistent across datasets. In this work, the E A T 
model is trained with the specaugment [Park et al., 2019] approach. The frequency mask 
and time mask are applied using a window width of 30 consecutive log-Mel frequency chan­
nels and 40 consecutive timesteps respectively. The recognition performance of the E A T 
model with specaugment is shown in table 6.4. Specaugment approach attains consistent 
gains using self-supervised training with SO and ST (SO + TO) data. No augmentation is 
done during training with T O data. 

in general investors are a conservative l o t these days she says (ground-
truth) 
in general investors are a conservative l a t these days she says (baseline) 
in deneral investors are a conservative l o t these days she say ( A S R o T T S ) 

Figure 6.6: A n example of text sequence predicted by baseline and A S R o T T S compared 
with the ground-truth 

Data Annealing 

In A S R o T T S model training, alternating between large amounts of unpaired data and less 
paired data is difficult. The paired training of certain labels can result in over-fitting, which 
hinders the effect of unsupervised training [Xie et al., 2019] as shown in figure 6.6. 

Here, 'general' in reference text is correctly predicted in baseline training. During ASR-
T T S training, the supervised samples from baseline and unsupervised samples are provided 
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alternately in a linear fashion. Although, in chapter 3 we repeated the supervised data 
to reduce the under-fitting, it still resulted in incorrect predictions due to overfitting from 
supervised data and also increased the training time due to redundancy. To mitigate this, 
the supervised samples are released only when the probability PASR(VI \ x) of a particular 
label is greater than a threshold I: 

PASROJI I x) > -ft (6.9) 

Here the hyper-parameter, jt = rjt x (1 — -ĵ ) + x rjt, where K is the number of classes. 
For log schedule: 

m = 1 - e x p ( | • 5) (6.10) 

and exp((^ — 1) x 5) for exponential schedule, where T is the number of training steps. 
Table 6.3 shows that linear and exponential schedules are better than log schedule, as release 
of supervised data is high initially and reduces at the end of training. The performance of 
E A T trained using exponential schedule outperforms linear schedule as the supervised data 
is mostly released at the final stage of training, paving a smoother way for training with 
unsupervised data. 

6.3.3 E A T setup 

The experiments are primarily conducted to evaluate the TTS—^AFV model on OOD data. 
The A S R and T T S models are pre-trained with conventional English data from WSJ-si284 
which contains clean speech. The model is tested under two separate conditions: 1) when 
the unpaired text data (text from T E D talks) is taken from other datasets to evaluate 
English speech from LibriSpeech test sets (target), and 2) when the amount of paired data 
is limited for exotic language such as Swahili compared to language English corpora. This 
helps to show the importance of unsupervised training with very minimal supervision. In 
addition to this, the T T S systems used to train Swahili are still pre-trained with English 
speech due to lack of a sufficient amount of Swahili data. This analysis provides the effect 
of the model under the same language but OOD with respect to the vocabulary and the 
acoustic contexts. Two distinct experimental setups are suggested by varying the datasets 
from which the T O data is chosen: 

• Libri-TO: 500 hours (268083 lines) of training text from the T E D dataset is used 
to train the TTS—^AFV model in an unsupervised fashion as described in chapter 3. 
The T E D corpus is chosen as the vocabulary used in the T E D talk dataset which is 
different from LibriSpeech test sets. This allows for analysing the effect of TTS—>AFV 
under OOD condition with the English dataset. 

• Swahili-TO: The T O data for Swahili is obtained from the open-source corpus named 
A L F F A , containing 9.9 hours (10180 lines) of training text and around 70 hours (30053 
lines) of text from the BABEL-Swahi l i dataset. 

During training, the Libr i -TO is mixed with semi-supervised data taken from 100 hours 
of LibriSpeech corpus similar to previous experiments on chapters 3 and 5. For Swahili-
TO, the semi-supervision is performed with either 10 or 20 hours of data selected from the 
BABEL-corpus. These two datasets are used to train two separate TTS—»AFV models to 
evaluate the LibriSpeech (test-clean, test-other) and BABEL-Swahi l i test sets. 
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6.4 Results and Discussion 

6.4.1 Ablat ion studies on E A T using W S J and LibriSpeech 

E A T was initially tested with different data annealing schedules to choose the best training 
schedule for the remainder of the experiments. A total of 360 hours of both speech only 
and text only (SO+TO) data is used during E A T training and the results for log, linear 
and exponential schedules are in table 6.3. The results show that exponential schedule is 
better and thus was used in rest of our experiments. Table 6.4 shows the effect of data 

Table 6.3: % W E R performance of log, linear and exp based annealing schedules data during 
self-supervised training using E A T 

360 SO+TO dev-clean dev-other test-clean test-other 

log 7.7 23.5 6.9 24.3 
linear 7.1 22.7 6.9 23.6 
exp 6.9 22.5 6.9 22.1 

augmentation by specaugment. SO training with 360 hours of data attained consistent 
gains on all evaluation sets. The 360 SO+TO denotes that the 360 hours of speech only and 
text only data were used simultaneously for training E A T . The performance improvements 
obtained by SO and SO+TO with augmentation shows that the E A T model training is 
complementary to the specaugment approach. 

6.4.2 LibriSpeech 

The attention context vector in A S R is scaled by a = 0.7 for LibriSpeech and attains 15.9% 
W E R on test-other when compared to 24.1% W E R without a scaler. The E A T model is 
further improved with the proposed TTS—?^AFV resulting in 4.3% W E R on test-clean and 
14.7% W E R on test-other. The oracle experiment is done by training an A S R with 460 
hours of supervised data and it attains 3.5 % W E R on test-clean and 12.6 % W E R on test-
other. The simple, yet effective method of integrating ASR—?^TLM and TTS—?^AFV has 
allowed E A T to further improve its performance proving that SO and T O pipeline are 
complementary to each other. 

6.4.3 Swahili 

The key results of the E A T are shown on BABEL-Swahi l i as it helps to focus on the impact 
of ASR—?^TLM and TFV—>AR compared to our previous A S R o T T S model. The reason 
behind the difficulty is that building a multi-speaker TTS model for Swahili is challenging 
and hence our previous work failed to provide reasonable TTS scores. The E A T model 
mitigates this problem by modifying its TTS architecture and reducing the importance of 
synthesized speech from TTS by feat2vec. Here, the pre-trained TTS is retrained during 
the T O training with a = 0.3. Table 6.4 shows that with 5 hours of paired data, the effect 
of T O is higher compared to SO, but with 10 hours the T O obtains comparable gains as 
SO. Wi th a in T O the model obtains 58.8 % W E R and further reduced to 58.5 % W E R with 
SO+TO training. Here, Oracle in the table denotes the performance of the A S R model 
trained with a complete (39.75 hours) training set in Swahili. Wi th 10 hours of paired data 
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Table 6.4: Detailed comparison of recognition performance of E A T model trained using 
360 hours of SO, T O and SO+TO data with 100 hours of supervision for English and 5h, 
lOh of supervision for Swahili. Oracle model for LibriSpeech is trained with 460 hours 
of supervised data and oracle Swahili model is trained with 40 hours of supervised data. 
Shallow fusion is not performed. Pretrained L M (PT L M ) is used in ASR—?^TLM. 

Model Training Description 

Libripeech 
100 hrs paired 

360 hrs unpaired 

Swahili 
5hrs paired lOhrs paired 

35 hrs unpaired 30 hrs unpaired 
dev dev-other test test-other test test 

Baseline 
Supervised (100 hrs) 16.7 40.4 17.5 41.3 71.4 64.7 

Baseline 
+ trans, enc, specaug 14.3 36.4 14.4 36.9 70.1 63.5 

ASR—>TTS 
SO pipeline 
+ specaug 

11.0 
9.1 

32.4 
24.2 

10.6 
8.9 

33.6 
25.0 

63.9 
61.4 

61.1 
55.0 

ASR—>TLM + P T L M 6.0 18.6 5.8 19.0 60.1 54.8 

TTS—>ASR TO pipeline 
+ a scaler 

8.9 
4.5 

23.0 
15.8 

8.6 
4.7 

24.1 
15.9 

62.2 
61.7 

60.9 
54.0 

TTS—>AFV + P T feat2vec 4.3 13.5 4.5 13.1 58.8 53.7 

A S R ^ T T S SO+TO pipeline 7.9 23.4 8.1 24.4 63.1 60.4 

+ trans, enc, specaug 7.5 23.0 7.5 24.0 60.1 53.6 
+ annealing 6.9 22.5 6.9 23.6 59.7 53.0 

E A T + a scaler 5.2 19.5 5.3 20.4 58.5 52.5 
+ P T L M (ASR—>TLM) 4.3 14.9 4.3 15.2 58.4 51.6 
+ feat2vec (TTS—>AFV) 4.2 13.6 4.3 14.7 57.0 50.1 

Oracle Supervised 3.7 12.7 3.6 12.9 49.0 
+ specaug 3.7 12.3 3.5 12.6 47.6 

and SO+TO training, the E A T model attained 50.1 % W E R which is only absolute 2.4% 
less compared to Oracle's 47.6 % W E R . 

6.4.4 Related Works 

Some of the recent works using A S R and TTS to handle unpaired speech and text data 
have raised the performance benchmark on LibriSpeech. 

Local Prior Matching (LPM) 

L P M [Hsu et al., 2020a] is a technique integrating L M P L M ( Y ) with A S R P A S R ( Y | X ) to 
train using a SO dataset. Given an utterance X from SO, the A S R model first generates a 
possible set of hypotheses (model distribution). The resulting hypotheses Y are sent to the 
L M to produce a target distribution. L P M objective minimizes the cross entropy between 
the target distribution and the A S R model distribution: 

£ L P M = - sr P L M ( Y ) / V n • l ogPASR(Y |X) (6.11) 

Here, B is the set of beam search hypotheses generated by the A S R model. 
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Global Style Tokens (GST) 

A simple and naive approach to using the T O data is proposed in [Rossenbach et al., 2020]. 
Tacotron T T S trained with unsupervised speaker embeddings named global style tokens 
(GST) is used to synthesize speech to train the A S R model. 

Generative Consistent Predictions (GCP) 

In G C P [Wang et al., 2020b], real and synthesized speech are used to provide consistent 
predictions. A consistency loss term is applied to reduce the difference between the predic­
tions. Synthetic speech is generated using the T O data. SO data is also used with pseudo 
labels generated by another A S R model. The final G C P training objective is a combination 
of consistency loss and cross entropy loss using pseudo labels. 

Comparison of Results 

Table 6.5 compares the recognition performance of the related literature with our proposed 
E A T approach. The existing works in literature can be classified as models trained with 
SO and T O data respectively. 

Training with SO data: The self-training approaches [Synnaeve et al., 2019, X u et al., 
2020b], uses a pre-trained A S R to predict the hypotheses from the SO data. The predicted 
pseudo-labels are used to retrain the A S R in supervised way. Self-training approach attains 
reasonably better performance on all dev and test sets over the baseline model. The errors 
in pseudo-labels were further corrected with a language model using L P M objective [Hsu 
et al., 2020a] and led to improvements in dev-other and test-other while the performance 
slightly degrades in dev-clean and test-clean. Our E A T model outperforms the self-training 
model on all evaluation sets as noted in table 6.5. 

Table 6.5: Comparison of SotA results in literature with E A T model 

Method Type 
dev 

clean other 
test 

clean other 

Self-training Pseudo [Xu et al., 2020b] 
L P M [Hsu et al., 2020b] 

5.41 
5.69 

20.31 
20.22 

5.79 
5.99 

21.63 
20.93 

Synthesis 
GST [Rossenbach et al., 2020] 

G C P [Wang et al., 2020a] 
7.4 
4.1 

25.7 7.9 
4.1 

26.7 

Cycle 
A S R o T T S 11.0 32.4 10.6 33.6 

Cycle E A T 4.2 13.6 4.3 14.7 

Training with T O : The GST method synthesizes speech from T O data to train the 
A S R model and improves the synthesis quality using GST based speaker embeddings. This 
model attains 7.4%WER and 7.9%WER on dev-clean and test-clean, respectively, these 
results are not spectacular due to the small language model used. In the case of G C P , 
the authors synthesize speech and use consistency loss together to attain 4.1% W E R on 
dev-clean and 4.1% W E R on test-clean. This is better than our E A T model because the 
G C P uses 460 hours of paired data while we use only 100 hours of paired data. The effect 
of penalizer, attention context scalar and other training strategies make our E A T model 
attain 4.2%WER on dev-clean and 4.3% on test-clean. Our model also attains the best 
performance in more difficult conditions such as dev-other and test-other. 
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Chapter 7 

Conclusion 

Summary 

The aim of this thesis is presented in chapter 1 with emphasis on using unpaired speech and 
text to improve A S R . Introduction to A S R and a brief survey of related semi-supervised 
learning techniques are covered in chapter 2. 

Objectives of this thesis 

• End-to-end differentiable training pipeline by integrating seq2seq A S R and TTS re­
spectively. The architecture is simple to construct and allows usage of existing A S R 
and T T S models. 

• Synergise both unpaired speech and text data to reduce A S R errors by generalizing 
across: 1) acoustic variations 2) language variations. 

• Understand the cycle-consistency objective for A S R and propose improvements to 
handle different data domains by analysing performance on harder test sets (eg: 
BABEL-Swahi l i ) . 

Proposed Approaches and their Implications 

ASR—?^TTS inherits R E I N F O R C E based score function estimator to obtain improved per­
formance by learning from multiple A S R hypotheses while providing end-to-end differen­
tiability. Extensive analysis based on gender, C T C or Attention, amount of paired and 
unpaired data is done. The results show that ASR—»TTS improves the alignment capabil­
ity, reduces language related errors and leads to consistent gains on test conditions closer to 
paired and unpaired data. The last two chapters 5 and 6 focus on improving in SO training 
pipeline (ASR—»TTS) and T O training pipeline (TTS—»ASR): 

A S R Training with L M : The T T S synthesizes speech based on the A S R predictions 
in ASR—?• T T S model. While the acoustic variations are handled by the help of TTS scores, 
language related errors persists when unpaired data unseen by A S R is used during training. 
Integration of L M to correct the A S R hypotheses using ASR—?^TLM architecture solves 
this issue and further improves recognition performance on standard test sets. The model 
performance is complementary to shallow fusion by obtaining 16.9% and 17.4% relative 
improvement with and without shallow fusion respectively. 
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Training with Feat2vec: TTS—> A S R struggles when fed with unseen text data se­
quence leading to incorrect scores. The proposed TTS—»AFV model integrates a pretrained 
feat2vec model to finetune T T S under OOD conditions. This training does not require 
additional supervised data for fmetuning T T S . Evaluation is done using test set ( B A B E L -
Swahili). Swahili is a good candidate for OOD evaluation as it is written in ASCII characters 
but the context in text sequence is different from English words. Further improvements 
to architecture and training strategy reduces the gap between paired and unpaired data 
training in Swahili from 10.4% to 2.5%. 

Future Considerations 

Due to both the time and space limitations, a trainable T T S with speaker-embedding 
extractor and applying E A T for pseudo-label generation and voice conversion have not 
been explored. 

In future, the E A T should be updated to perform synthesis with better and more TTS 
training data. E A T model's backbone is based on the pretrained A S R and T T S models. 
Pretraining has provided significant benefits for E A T in enabling greater accuracy, faster 
training, increased flexibility, and reduced data requirements. Incorporating latest and 
robust pretrained models is an important possible improvement to E A T in near future. 

The performance gains in E A T have shown the importance of jointly training an A S R 
with multiple modalities such as speech and text. Two possible extensions to this will be 
to 1) have a shared encoder to jointly train with speech and text. 2) upsample the text 
sequence to resemble speech sequence or downsample the speech sequence to resemble text 
sequence. In this work, the primary focus was on improving A S R performance. Few works 
on machine translation and speech translation [Khadivi and Ney, 2008, Karafiát, 2021, L i 
and Specia, 2019] have shown the importance of using A S R for either correcting hypotheses 
or as data augmentation. Dialogue task [Dhole et al., 2021, Jianfeng et al., 2019] is another 
downstream case which can benefit from better A S R . This can be useful for a variety of 
applications, including chatbots, voice assistants, and customer service systems. 
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