

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

Bachelor Thesis

Face recognition using Haar Cascades

and Eigenfaces

Denis Kotsyuk

© 2020 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Denis Kotsyuk

Systems Engineering and InformaƟcs
InformaƟcs

Thesis Ɵtle

Face recogniƟon using Haar Cascades and Eigenfaces

ObjecƟves of thesis
The objecƟves of the thesis are:

To describe and demonstrate how the face detecƟon and face recogniƟon work, using haar-like features
and eigenfaces method.

To develop an applicaƟon which detects and recognizes human faces using these methods.

To calculate and compare the relaƟve success rates of face recogniƟon. The influence of addiƟonal face
features will be assessed too.

Methodology

The methodology of the thesis is based on analysis of technical and scienƟfic sources related to face de-
tecƟon and face recogniƟon, in parƟcular haar-like features and eigenfaces. Based on the synthesis of the
gained knowledge, a C# applicaƟon prototype will be implemented using Emgu CV libraries, in order to col-
lect and compute data derived from images of human faces. A comparaƟve analysis based on the relaƟve
success rates will be conducted to idenƟfy differences between face recogniƟon algorithms. The influence
of addiƟonal face features (e.g. glasses, facial hair) on algorithm performance will be evaluated.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
40-50 pages

Keywords
Face recogniƟon, Haar Cascades, Eigenfaces

Recommended informaƟon sources
LÉLIS BAGGIO, Daniel, Emami SHERVIN, David MILLÁN ESCRIVÁ, Ievgen KHVEDCHENIA, Mahmood

NAUREEN, Saragih JASONL a Shilkrot ROY. Mastering OpenCV with PracƟcal Computer Vision
Projects. 1. Birmingham: Packt Publishing, 2012. ISBN 9781849517829.

SHI, Shin. Emgu CV EssenƟals. 1. Birmingham: Packt Publishing, 2013. ISBN 9781783559527.
TANAKA, James, ed. Face RecogniƟon: The Effects of Race, Gender, Age and Species. 1. New York:

Taylor&Francis, 2015. ISBN 978-1-317-65095-9.

Expected date of thesis defence
2019/20 WS – FEM (February 2020)

The Bachelor Thesis Supervisor
Ing. Petr Hanzlík, Ph.D.

Supervising department
Department of InformaƟon Engineering

Electronic approval: 25. 11. 2019

Ing. MarƟn Pelikán, Ph.D.
Head of department

Electronic approval: 25. 11. 2019

Ing. MarƟn Pelikán, Ph.D.
Dean

Prague on 18. 11. 2020

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my bachelor thesis titled "Face recognition using

Haar Cascades and Eigenfaces" by myself and I have used only the sources mentioned at the

end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break

copyrights of any their person.

In Prague on 30.11.2020 ___________________________

Acknowledgement

I would like to thank Ing. Petr Hanzlík, Ph.D., for his advice and support during my

work on this thesis.

 4

Face recognition using Haar Cascades

and Eigenfaces

Abstract

This thesis focuses on one of the most popular robust face detection methods based on the

Viola and Jones framework, that is used on frontal face images, and the face recognition

algorithm based on the Principal Component Analysis using the Eigenface method. The

theory of these methods and the steps for creating an application that implements these

methods are explained. The design of a face recognition system is presented, including

image acquisition, grayscale conversion, face detection, face extraction, application of

Principal Component Analysis, and face recognition. The process of fine-tuning parameters

of the face detector to improve detection accuracy is described and the optimal values of

these parameters are selected to minimize the influence of the detection algorithm on the

performance of the face recognition algorithm.

As a result, a desktop application is designed for face recognition that allows to measure the

performance of the model. The classification performance of resulting model is assessed

with the confusion matrix and studied in relationship with gender and partial facial

occlusions such as glasses and beards.

Keywords: Face detection, face recognition, Viola-Jones framework, Principal Component

Analysis, Eigenface method, C#, EmguCV.

 5

Rozpoznávání tváře pomocí Haarových kaskád a metody

Eigenface

Abstrakt

Tato práce se zaměřuje na jednu z nejpopulárnějších metod detekce obličeje založených na

rámci Violy a Jonese, která se používá pro obrázky tváře z čelního pohledu, a algoritmus

rozpoznávání obličeje založený na analýze hlavních komponent pomocí metody Eigenface.

Je vysvětlena teorie těchto metod a kroky pro vytvoření aplikace, která tyto metody

implementuje. Je představen návrh systému pro rozpoznání obličeje, včetně pořizování

obrázků, převod barevné fotografie do stupňů šedi, detekce obličeje, extrakce obličeje,

aplikaci analýzy hlavních komponent, a výsledného rozpoznání obličeje. Je popsán proces

nastavení parametrů detektoru obličeje pro zlepšení přesnosti detekce a jsou vybrány

optimální hodnoty těchto parametrů tak, aby se minimalizoval vliv detekčního algoritmu na

výkon algoritmu rozpoznávání obličeje.

Výsledkem je desktopové aplikace pro rozpoznávání tváře, která umožňuje měřit výkon

modelu. Přesnost klasifikace výsledného modelu je posouzena pomocí matice záměny a

studována ve vztahu k pohlaví a částečným okluzím obličeje, jako jsou brýle a vousy.

Klíčová slova: Detekce obličeje, rozpoznávání obličeje, rámec Viola-Jones, analýza

hlavních komponent, metoda Eigenface, C #, EmguCV.

 6

Table of content

1 Introduction .. 10

2 Objectives and Methodology ... 11

2.1 Objectives ... 11

2.2 Methodology .. 11

3 Literature Review ... 12

3.1 Computer Vision .. 12

3.2 Face Detection .. 12

3.2.1 Viola-Jones framework ... 13

3.2.2 Haar-like Features ... 14

3.2.3 Integral Image ... 16

3.2.4 PAC learning model .. 18

3.2.5 Weak and strong learnability .. 20

3.2.6 Classification using AdaBoost .. 21

3.2.7 AdaBoost for face detection .. 22

3.2.8 Cascade of classifiers .. 24

3.3 Face Recognition .. 25

3.3.1 Principal Component Analysis ... 25

3.3.1.1 Standardizing ... 27

3.3.1.2 Calculating a covariance matrix .. 28

3.3.1.3 Eigenvectors and eigenvalues .. 28

3.3.2 Eigenface method .. 29

4 Practical part .. 33

4.1 Software ... 33

4.1.1 Microsoft Visual Studio .. 33

4.1.2 EmguCV ... 33

4.1.3 Haar cascade classifier .. 34

4.2 Designing the system ... 34

4.2.1 Training phase subsystem ... 35

4.2.2 Testing phase subsystem ... 36

4.2.3 Full face recognition system ... 37

4.3 Acquisition of images ... 38

4.3.1 Data set of images ... 38

4.3.2 Data organization .. 38

4.4 Converting images to grayscale ... 39

 7

4.5 Face detection... 40

4.6 Face extraction and resampling .. 42

4.7 Pairing faces with labels... 44

4.8 Applying PCA .. 44

4.9 Classifying new faces ... 45

4.10 Classifying face detection results ... 45

4.11 Setting face detection parameters... 47

4.11.1 Figuring out the optimal face detection parameters.................................. 47

5 Results ... 51

5.1 Desktop application .. 51

5.1.1 User interface .. 51

5.2 Overall face recognition rates .. 52

5.3 Classification performance... 54

5.3.1 Classification performance by gender .. 54

5.3.2 Classification performance by occlusion .. 56

6 Discussion .. 57

7 Conclusion ... 60

8 Future work .. 60

9 References ... 61

List of pictures

Figure 1 - Types of Haar-like features (8). .. 14

Figure 2 - Example of a Haar-like feature pixel intensities(authors work) 15

Figure 3 - Example of overlaying Haar-features on the face image (5) 16

Figure 4 - Integral image as sum of pixels to the left and above of point (x, y) (7). 17

Figure 5 - Example of calculating the sum of pixels withing the chosen rectangle (7). 17

Figure 6 - Cascade of classifiers schematic (authors work), inspired by (7). 24

Figure 7 - Example of Principal Component used to find the largest variation of variables

in two-dimensional data (authors work). ... 26

Figure 8 - Example of data projection onto the PC1 axis. ... 26

Figure 9 - Example of grayscale image transformation into a vector (authors work) 30

Figure 10 - Dataflow diagram of the training subsystem (authors work). 35

 8

Figure 11 - Dataflow diagram of the testing subsystem (authors work). 36

Figure 12 - Full recognition system (authors work). ... 37

Figure 13 - Example of grayscale conversion (authors work) ... 39

Figure 14 - Example of correctly detected face (authors work). ... 45

Figure 15 - Example of incorrectly detected face (authors work). 46

Figure 16 - Example of no grouping of found rectangles (authors work) 49

Figure 17 - Example of grouping found rectangles into one (authors work) 49

Figure 18 - User interface of the desktop application (authors work). 51

Figure 19 - The recognition rates of 99 individuals using different number of Principal

Components (authors work). .. 53

List of tables

Table 1 - Face detection results with different values of the minimum neighbors

parameter(authors work). ... 48

Table 2 - Face detection results with different values of the scaling factor parameter

(authors work). ... 50

Table 3 – Comparison of recognition rates of 99 individuals using different number of

Principal Components (authors work). .. 53

Table 4 - Confusion matrix of gender type classification with number of Principal

Component set to equal to 1 (authors work). ... 55

Table 5 - Confusion matrix of gender type classification with number of Principal

Component set to equal to 2 (authors work). ... 55

Table 6 - Confusion matrix of gender type classification with number of Principal

Component set to equal to 3 (authors work). ... 55

Table 7 - Confusion matrix of gender type classification with number of Principal

Component set to equal to 4 (authors work). ... 55

Table 8 - Comparison of recognition rates and gender classification accuracies depending

on the number of Principal Components (authors work). .. 55

Table 9 - Confusion matrix of 4 types of occlusion classes with the number of Principal

Component set to equal to 1 (authors work). ... 56

 9

Table 10 - Confusion matrix of 4 types of occlusion classes with the number of Principal

Component set to equal to 2 (authors work). ... 56

Table 11 - Comparison of recognition rates and occlusion classification accuracies

depending on the number of Principal Components (authors work). 57

List of abbreviations

EmguCV – a wrapper to the OpenCV image processing library.

OpenCV – Open Source Computer Vision Library.

PAC – Probably Approximately Correct.

PC – Principal Component.

PCA – Principal Component Analysis.

RGB – Color model (Red, Green, Blue).

BGR – Color model (Blue, Green, Red).

JPEG – an image file format of the Joint Photographic Experts Group.

YML – a file extension of the YAML Ain't Markup Language.

XML – Extensible Markup Language.

 10

1 Introduction

Human face detection and face recognition are very fascinating aspects of computer vision

field that are in high demand these days. Even though the research in this area can be traced

back to 1960s, the achieved results were far from satisfactory until only recently. The

problem of machine vision has proved to be more complex than originally assumed and is

still not solved to this day.

 „The first great revelation was that the problems are difficult. Of course, these days this

fact is a commonplace. But in the 1960s almost no one realized that machine vision was

difficult.“ (1)

Nevertheless, a rapid progress has been made in the field of face recognition in recent years.

Due to the fast and steady increase in computational power of the machines - the machine

learning processes required less time for training and evaluating face recognition models.

This contributed to the rate of improvements made in the field. Additionally, a global rapid

spread of the Internet expanded the collaboration between researchers around the world and

provided the venue where multiple image databases could be collected and shared.

Face recognition finds a large variety of applications in the real world. For example, it is

used in law enforcement activities, security surveillance services, biometric identification,

social media and social networking services such as Facebook, e-commerce, mobile

applications. In future the face recognition systems could also be implemented in banking

for account withdrawals or even for registering attendance at workplaces, schools, or

universities.

There exist many face detection and face recognition algorithms and techniques, and

depending on the different conditions and requirements, some may be more suited for a

particular task than others. This thesis covers a robust face detection algorithm based on the

Viola-Jones framework and a face recognition algorithm based on the Eigenface method of

applying Principal Component Analysis to images of faces in frontal view.

 11

2 Objectives and Methodology

2.1 Objectives

The main goal of the thesis is to describe and demonstrate how the face detection and the

face recognition work, using Haar-like features within the Viola-Jones framework and the

Eigenface method of applying Principal Component Analysis to images. The next goal is to

develop an application which detects and recognizes human faces using these methods.

The final goal is to calculate and compare the relative success rates of the face recognition

model. The influence of additional face features will be assessed too.

2.2 Methodology

The methodology of the thesis is based on analysis of technical and scientific sources related

to face detection and face recognition, in particular Haar-like features and Eigenfaces. Based

on the synthesis of the gained knowledge, a C# application will be implemented using Emgu

CV libraries, in order to collect and compute data derived from images of human faces. A

comparative analysis based on the relative success rates will be conducted to identify

differences between face recognition settings. The influence of additional face features (e.g.

glasses, facial hair) on algorithm performance will be evaluated.

 12

3 Literature Review

3.1 Computer Vision

How do you teach a machine to “see”, to have a “vision” on the human level? How can a

machine learn to “understand” images? Such questions have been in computer scientist’s

minds for decades and figuring out answers to these questions required vast knowledge

collected from multiple scientific fields and an enormous amount of work put together.

Computer vision is a discipline that intersects with multiple other scientific fields in pursuit

of integration and automation of a broad collection of processes used for vision perception.

The aim of computer vision is to construct valid, explicit descriptions of physical objects

derived from the images. Such image understanding should not be confused with image

processing, which is all about transformations of images into images. (2) But image

processing is often a useful complement for image understanding (3).

Typical tasks of computer vision include processes of acquiring data from the images,

analysing the gathered data and categorizing it. One of applications of computer vision is

face recognition.

3.2 Face Detection

Face detection is the starting point of any type of a facial recognition system and its success

is crucial to the face recognition processes and results. To be able to recognize faces, we

must first find them. Face detection algorithms are therefore designed to locate human faces

in images.

Techniques to detect faces from a single image can be classified into four categories

suggested by Yang, Kriegman and Ahuja (4):

1. Knowledge-based methods. Such methods rely on the set of rules, which are

derived from a human knowledge of detecting faces, where facial features have

certain relationships with each other, based on the symmetry, position and

distance. The drawback of this approach is the difficulty of composing such

set of rules. If the rules are too generalized or too strict - both these factors may

 13

lead to a lower percentage of detection rate, so it is not so easy to find the

right balance. Additionally, this approach does not do well if the face poses

change, since it so heavily relies on the mentioned feature relationship

measurements.

2. Feature invariant approaches. These methods are based on the extraction of

facial features like lips, nose, eyebrows, eyes and building a statistical model

describing their relationships in different lighting conditions and poses. Such

observations become a training set of data for the classifiers, which then

determine the presence of a face in an input image. This approach is based on

the idea of moving away from a human knowledge of faces and human

assumptions. Factors like illumination and shadows can affect the reliability of

these methods.

3. Template matching methods. This approach is based on the creation of the

predefined templates, which are then compared to input images. Templates are

created from a set of subtemplates of facial features like nose, eyes, mouth or

face outlines. Such templates are defined by functions and face detection is

done through correlation between new input images and predefined templates.

4. Appearance-based methods. Where template matching methods are

predefined by specialists through functions, the appearance-based methods let

the machine learning figure out itself what features, and elements combined

form the human face along with the use of statistical analysis. The appearance-

based methods are the best choice for human face detection in present days,

they are showing the best results in detection rate.

3.2.1 Viola-Jones framework

For the purposes of this work the frontal face detection framework proposed in 2001 by Paul

Viola and Michael Jones (5) has been selected. The framework provides high detection rates

and processing speed, which enables it to detect faces in real-time from video sources or

 14

multiple input images very fast (6). Although training of the classifiers takes a long time,

after such task is complete - these classifiers can be reused in other new applications, created

by anyone else, greatly decreasing the overall computational time of face detection

programs. Therefore, this algorithm is well liked and favoured among many other

algorithms.

The Viola-Jones framework is comprised of the following four main components:

• Haar-like features

• Integral image

• Adaboost

• Cascade of classifiers

3.2.2 Haar-like Features

Human faces have eyes, eyebrows, lips, nose, and edges that are generally darker or lighter

in comparison to the surrounding skin under some source of light due to our face structure.

The Viola-Jones framework uses so called Haar-like features of rectangular shapes,

consisting of black and white regions, in order to determine the presence of the facial

features. The main principle is based on adding and subtracting pixel intensities of different

adjacent regions of the input image (previously converted to a greyscale image) and

comparing the results with ideal values taken from the pre-set Haar-like features (7).

Figure 1 - Types of Haar-like features (8).

 15

Let us use an example from Figure 1, more specifically the Edge feature of type (b) - it

consists of white and black vertical regions. We can represent these regions by pixel intensity

values, where each pixel intensity value of the black region is set to 1 and each pixel intensity

value of the white region is set to 0. Therefore, this Haar-like feature can be expressed by an

array of numbers, where each element of the array represents a pixel density value, as shown

in Figure 2.

Figure 2 - Example of a Haar-like feature pixel intensities(authors work)

The value of the feature is then calculated as a difference between the averages of the black

and white regions:

∆ =
1

𝑛
∑ 𝐼(𝑥) −

1

𝑛

𝑛

𝑑𝑎𝑟𝑘 𝑟𝑒𝑔𝑖𝑜𝑛

∑ 𝐼(𝑥)

𝑛

𝑙𝑖𝑔ℎ𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

where 0 < ∆ < 1.

In an ideal situation the value of a facial feature equals to 1 (∆ = 1). In real life though, we

can’t get such ideal results from the input images of human faces, after they are converted

to grayscale images. Grayscale images can still have up to 256 shades of gray. Therefore,

with real images, the closer the feature value is to 1 - the more likely it is a facial feature,

and on the other hand the closer the value of the feature is to 0 - the less likely it is a facial

 16

feature. To accept any feature as a facial feature the value of this feature would have to

exceed a certain pre-set threshold.

Figure 3 - Example of overlaying Haar-features on the face image (5)

The base resolution of the detector is 24 x 24 pixels and the amount of all possible features

in an input image within the detector sub-window is 160000 (7). This is because areas of

different sizes are evaluated all around the image, shifting through the image pixel by pixel.

Such computational processes are lengthy and if we want to use images of much higher

resolutions - it would take considerably longer time to compute the values of all features in

an image.

In order to reduce the heaviness of the computations - the use of intermediate representations

for the image called the integral image are implemented (7).

3.2.3 Integral Image

The calculation speed of the values of all features for the purposes of detection of the facial

features can be improved by using an algorithm called integral image, which was introduced

by Paul Viola and Michael Jones in 2001 (5). The concept of the integral image is very

similar to an algorithm of using a table of summed up areas, described in an earlier work of

Franklin Crow on texture mapping in 1984 (9). The summed-area table (or the integral

image) is constructed as a representation of the original grayscale image, where the value of

 17

any chosen point (x, y) of the summed-area table is the sum of all pixel intensity values to

the left and above of the point (x, y) of the original image, inclusively:

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥,𝑦′≤𝑦

Where i(x, y) is the original grayscale image and ii(x, y) is the integral image.

Figure 4 - Integral image as sum of pixels to the left and above of point (x, y) (7).

The reasoning for creating such a representation of an image, is that it is calculated only

once and then with its help we can get the sum of pixel intensities of any desired rectangular

area within an image in few easy steps. As shown in Figure 5, if our rectangular sum of

interest is D, then it is calculated by using the values at locations 1, 2, 3, 4 of the integral

image. Then the rectangular sum of D is simply: 4 + 1 – 2 – 3.

Figure 5 - Example of calculating the sum of pixels withing the chosen rectangle (7).

 18

This approach enables us to retrieve the sums of lighter and darker regions of the image

much quicker and more efficiently. Therefore, the integral image simplifies the calculation

of all feature values and thus reduces the overall computation time. Unfortunately, the

amount of all possible features evaluated for each detector sub-window of the image remains

the same and it is rather large, as mentioned earlier it exceeds 160000. Additionally, many

of these identified features may not be much relevant at all in determining a presence of a

face. But the cascade of classifiers, implemented by Viola and Jones, using the Adaboost

algorithm - solved the problem of excessiveness of the features and at the same time

increased the performance and accuracy of simple learning algorithms by combining them

together.

3.2.4 PAC learning model

In 1984, Valiant (10) introduced a computational, distribution-free learning model, known

as PAC (Probably Approximately Correct), which became fundamental for many further

studies of the computational learning models and for creations of new learning algorithms.

In his work he described “learning” as an outside area of an explicit form of programming,

where an algorithm itself acquires skills to perform certain tasks without the human

influence by direct instructions. In this learning model, the ability to identify a previously

unknown concept, otherwise known as a target rule, is confined to realization whether this

concept is true or false for given set of examples.

Such classification that contains only two elements is binary, thus:

𝑐 = {1, 0}, 𝑐 ∈ 𝐶,

where c is the classification of a target concept and C is a classification set.

The goal of this learning method is in figuring out a hypothesis that would correctly classify

new inputs as negative or positive examples of the concept (11).

 19

If an input example x is a positive example of the concept c, then:

c(x) = 1.

Otherwise, if

c(x) = 0,

then it corresponds to x being a negative example of the concept.

A sequence of N training examples x is picked randomly from the domain X, according to

unknown fixed distribution M. Therefore, the training set is formed as:

(𝑥1, 𝑐(𝑥1)), … , (𝑥𝑁 , 𝑐(𝑥𝑁)) , 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑋, 𝑐(𝑥𝑖) ∈ 𝐶, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁.

The learning algorithm then returns a hypothesis, such as

ℎ: 𝑋 → [0, 1], ℎ ∈ 𝐻,

where H is a hypothesis space, and h(x) is the random prediction of the binary classification

of x to be equal to 1, thus 𝟏 − 𝒉(𝒙) is the prediction of x to be equal to 0 (12).

Given a set of inputs 𝒙𝒊 the learner returns random classification predictions 𝒉(𝒙𝒊) of these

training examples:

(𝑥1, ℎ(𝑥1)), … , (𝑥𝑁 , ℎ(𝑥𝑁)) , 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑋, ℎ(𝑥𝑖) ∈ 𝐻, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁.

The error of the hypothesis is then calculated by:

𝑒𝑟𝑟𝑜𝑟(ℎ) = 𝐸𝑥𝑖~𝑀(|ℎ(𝑥𝑖) − 𝑐(𝑥𝑖)|),

where 𝒙𝒊 is selected from the distribution M, and E is the expected value.

 20

According to Kearns and Vazirani, the PAC model is then considered to be learnable if the

following conditions are satisfied (13):

• Given constant inputs ε and δ such as 0 < ε, δ < 1 2⁄ , where ε is called an error

parameter and δ is called the confidence parameter.

• If 𝜀 ≥ 𝑒𝑟𝑟𝑜𝑟(ℎ).

• If a learning algorithm provides a hypothesis 𝒉 ∈ 𝑪 with probability at least 𝟏 − 𝜹.

From stated conditions above, it can be noticed that the error of the hypothesis should be

below 50%, and that a learning algorithm must provide a hypothesis with probability above

50%. Such PAC learning model is of weak learnability.

3.2.5 Weak and strong learnability

According to Kearns (14), a learning model where a hypothesis performs slightly better than

random guessing is referred to as a model of weak learnability. In other words, if a program

is guessing between only two options, whether the concept is true or false, then it is no better

than a flip of a coin and has a 50% chance to classify the concept correctly. The weak

learning algorithm, therefore, tries to improve the hypothesis, so that the correctness of

guessing is just slightly better than 50%. On the other hand, a model of strong learnability

is a model that results in high accuracy of correct classification of the concept.

In 1990, Robert Schapire (11) proved the equivalence of weak and strong learnability and

introduced a hypothesis boosting method, which showed how to turn a single weak learning

algorithm into a strong learning algorithm, hence improving its accuracy by making

alterations to a distribution of examples in order to make the learning algorithm focus on the

most difficult to classify examples of the training data, thus producing a hypothesis that is

making least errors for those hard examples. This approach allowed predictions of new

examples of a concept to be more accurate. During the training process, the configuration of

a hypothesis did not rely on simple examples.

 21

3.2.6 Classification using AdaBoost

Few years later, Freund and Schapire introduced a new and improved boosting algorithm

called AdaBoost or Adaptive Boosting (12). The AdaBoost algorithm combines all weak

learners into a strong learner, increasing an overall accuracy of the learning model. The main

new feature of this algorithm is that it “adapts” to the errors of hypotheses produced by

PAC-type weak learning algorithms, by readjusting the weights assigned to all examples.

The weight readjustment is done in such a way, that the higher weightage is assigned to the

previously misclassified examples and the lower weightage is assigned to the examples of

the correct predictions. Therefore, more attention is given to poor predictions.

This approach is different to a hypothesis boosting method, which was mentioned earlier, as

it does not alter the distribution of the examples in order to focus only on the hardest to

classify examples, rather it uses all of the given examples. Moreover, Adaptive Boosting no

longer relies on the pre-set constants of the PAC model such as error parameter ε, it

introduces its own parameter 𝜷, which is no longer constant and changes in accordance with

the calculated error of the hypothesis during each iteration of the learning process.

Initially each training example has an equal weight W assigned to it, so that W=1/N, where

N is the number of all training examples. The sum of all weights then equals to 1. The next

phase of computations is set in a loop, or a sequence of M iterations, where each cycle of

this loop uses a different training example out of the training set. This phase consists of four

stages (12):

Given the set of training examples (x1, y1), (x2, y2), …, (xn, yn),

where x={0, 1}, x ∈ X, y={0, 1}, y ∈ Y, where x

For m = 1, 2, …, M:

• Calculate the probability distribution by normalization of weights:

𝑝𝑚 =
𝑊𝑚

∑ 𝑊𝑖
𝑚𝑁

𝑖=1

 22

• Calculate the hypothesis hm(x) based on the acquired probability by a weak learning

algorithm.

• Calculate the error of the hypothesis:

𝜀𝑚 = ∑ 𝑝𝑖
𝑚|ℎ𝑚(𝑥𝑖) − 𝑦𝑖|

𝑁

𝑖=1

,

where 𝒚𝒊 is actually 𝒄(𝒙𝒊) of the PAC learning model.

• Assign new weights:

𝑤𝑖
𝑚+1 = 𝑤𝑖

𝑚+1𝛽𝑚
1−|ℎ𝑚(𝑥𝑖)−𝑦𝑖|

, where 𝛽𝑚 =
𝜀𝑚

(1−𝜀𝑚)

After the sequence of M iterations is completed, the final hypothesis is computed as:

ℎ(𝑥) = {
1
0

𝑖𝑓 ∑ (log 1/𝛽𝑚)ℎ𝑚(𝑥)𝑀

𝑚=1 ≥
1
2

∑ log 1/𝛽𝑚
𝑀
𝑚=1

𝑒𝑙𝑠𝑒

This model uses a weak learner in each iteration and after a certain number of iterations all

weak learners are combined to form one strong learner, as a result of this boosting method

- the prediction is much more accurate.

3.2.7 AdaBoost for face detection

In (5) and (7), Viola and Jones were able to successfully implement the AdaBoost learning

algorithm for face detection, using smaller number of features. Such task required slight

modifications of the original algorithm.

 23

The scanning area by which an image is sequentially scanned through is a rectangular area

known as a sub-window, that has a size of 24 by 24 pixels. A sub-window represents a

training example x, containing features 𝒇𝒋. Recalling the original AdaBoost algorithm, which

was described in the previous section - only one weak classifier 𝒉𝒎(𝒙) was trained during

each iteration m of the learning process, but here we need to deal with multiple features for

every input x, that is for every sub-window. A solution was proposed to train a separate weak

classifier for each feature and then to select only the “best” one, which produced the lowest

classification error.

For every feature 𝒇𝒋 - a separate weak classifier 𝒉𝒋 is trained as:

ℎ𝑗(𝑥) = {
1 𝑖𝑓 𝑝𝑗𝑓𝑗(𝑥) < 𝑝𝑗𝜃𝑗

0 𝑒𝑙𝑠𝑒,

where p shows the direction of inequality, 𝜽 is a threshold, and x is a sub-window.

This way each weak classifier deals with only a single feature, so the number of all trained

weak classifiers during each iteration of the algorithm corresponds to the number of all given

features.

The error of each trained weak classifier is then calculated by:

𝜀𝑗 = ∑ 𝑤𝑖|ℎ𝑗(𝑥𝑖) − 𝑦𝑖|
𝑖

,

where 𝒘𝒊 is normalized weight, 𝒚𝒊 = {0, 1} for negative and positive examples.

Only one weak classifier 𝒉𝒎 which produces the lowest error 𝜺𝒎 among all other weak

classifiers is then selected. As a result, for each iteration m of the AdaBoost learning process

- only one single feature is chosen. After the sequence of M iterations is completed - the

final strong classifier is obtained.

 24

3.2.8 Cascade of classifiers

Even though AdaBoost algorithm can produce highly accurate predicitions, the amount of

possible facial features evaluated for each sub-window of an image would still be

enormously large. Therefore, such method of detection would not be very efficient in terms

of time consumption and resource usage. Viola and Jones proposed a solution to this problem

by forming a cascade of strong(boosted) classifiers. It is assumed that most of sub-windows

of any image do not contain a face, therefore if they can be discarded quickly without the

evaluation of all possible features in them, then the computation time will not be wasted on

such examples and would rather be used where it is really needed. For example, the first and

simpler classifier may only use a couple of features, but it can prove sufficient enough to

immediately reject most of the negative sub-windows, leaving harder tasks for later

classifiers. Thus, a cascade or series of classifiers is constructed and arranged in order of

increasing complexity, such that for each next classifier the number of used features is

increased until pre-set detection rate and false positive rate are achieved. The number of

classifiers needed, relies on the overall pre-determined false positive rate, which a cascade

of classifiers should produce. All sub-windows are evaluated by this cascade of classifiers.

If at any stage any classifier does not produce a positive result within its own pre-set

parameters, then the current sub-window under evaluation is rejected completely. (7)

Figure 6 - Cascade of classifiers schematic (authors work), inspired by (7).

 25

3.3 Face Recognition

Patil and Deore have defined face recognition as a visual pattern recognition problem that

typically consists of the following sequential processes (15):

1. Face detection. In this step the face areas within an image are located by rough

estimations. Face detection separates located faces from the rest of the scene. In

addition to face detection a face alignment technique can also be implemented to

achieve more accurate detection of locations and sizes of the faces.

2. Feature extraction. This process provides information about the distinct features of

faces that is helpful for distinguishing between faces of different individuals.

3. Face matching. The extracted facial features of input faces are compared with a

database of already registered facial features. If the face match is found with the

acceptable confidence, the identity of the face is produced, otherwise the face is

declared as unknown.

The Viola-Jones framework already covers the face detection process. The feature extraction

and face matching processes can be performed by the Eigenface method that also uses the

Principal Component Analysis to reduce the dimensionality of the data and to explain its

variance.

3.3.1 Principal Component Analysis

Principal Component Analysis, or in short PCA, is a dimensionality reduction algorithm,

which enables visualization and extraction of the most important information from multi-

dimensional datasets, where each variable represents a different dimension. When dealing

with large datasets, containing numerous quantitative variables, PCA can be used to reduce

the redundancy of the data and explain the variance in the original data by new variables

called Principal Components. These components can be obtained by finding out the

directions of the largest variations in this data. The maximum possible amount of the

Principal Components is equal to the amount of all original variables in any given dataset,

 26

but in order to reduce the dimensionality and get rid of the redundancy of the data - we can

use fewer Principal Components and still be able to explain most of the variance in the

original data. This way we can work with a much smaller dataset of variables derived from

a much larger original dataset. (16)

Figure 7 - Example of Principal Component used to find the largest variation of variables in two-

dimensional data (authors work).

The Principal Components are in fact the eigenvectors of a covariance matrix, and the

eigenvalues are the measurements of variation projection onto the Principal Components.

An example of such projection is shown in Figure 8.

Figure 8 - Example of data projection onto the PC1 axis.

 27

The Principal Component Analysis can be broken down into few stages:

1. Optional Standardization of the variables of a given data.

2. Calculating a covariance matrix from a given data.

3. Obtaining eigenvectors and their corresponding eigenvalues

PCA is used in many fields, including computer vision. Digital images may contain

enormous amounts of data that can hinder the computation speed of face recognition

algorithms. Hence, the data dimensionality reduction is very useful for such task.

3.3.1.1 Standardizing

„Standardizing the variables may be thought of as an attempt to remove the problem of

scale dependence from PCA.“ (17)

Standardization or scaling of the variables in PCA is explained by the desire to measure

the variables of the original data in same units of one range, thus removing the problem

posed by differencies in variances of the variables of different types. Such differencies

in variances can unfairly affect the outcome of the analysis, since some of these

variancies may have a stronger influence on the result than others, therefore such analysis

may not be as accurate as it could be. For example, if the data consists of two types of

measurements, then one type of measurements may have a bigger impact on the outcome

of the analysis than the other, if the range of its possible values is much wider. (17)

Standardizing is performed as follows (16):

𝑥 − 𝑥̅

𝑠(𝑥)
 ,

where 𝒙̅ is the mean of 𝒙 values and s is a standard deviation.

 28

3.3.1.2 Calculating a covariance matrix

Recalling that PCA is performed on multi-dimensional datasets, let such data be defined

as:

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛],

where n is the number of all m dimensional vectors 𝒙𝒊, for 𝒊 = 1,2, … , n.

The covariance matrix C of the given data is then calculated as:

𝐶 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)𝑇

𝑛

𝑖=1

.

This covariance matrix is a square matrix of size m by m, where the mean 𝒙̅ is calculated

by:

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

3.3.1.3 Eigenvectors and eigenvalues

In matrix analysis (18), an eigenvalue is defined as a scalar 𝝀 that fulfils the equation:

𝐴𝑥 = 𝜆𝑥, 𝑣 ≠ 0,

where A is a square matrix and x is a non-zero vector. If such condition is met, then a non-

zero vector x is called an eigenvector. Each eigenvector x of the matrix A is associated with

an eigenvalue 𝝀.

The equation can be also rewritten as:

 29

(𝜆𝐼 − 𝐴)𝑥 = 0,

where I is the identity matrix.

Since an eigenvector must be a nonzero vector, then the equation is satisfied only if the

determinant of (𝝀𝑰 − 𝑨) equals to zero:

𝑝𝐴(𝜆) = 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0.

Such equation is called the characteristic equation, where 𝑝𝐴(𝜆) is the characteristic

polynomial. It is known that the equation provides at most n solutions, where A is an N by

N matrix, hence there are n eigenvalues and n associated eigenvectors of the matrix A.

3.3.2 Eigenface method

In (19) Turk and Pentland came up with a new and more computer vision related term called

“eigenfaces” when referring to Principal Components of the Principal Component Analysis

(also referred to as eigenvectors of the covariance matrix) of the set of face images. In their

work, they described how Principal Component Analysis can be used on a set of face images

in order to retrieve the eigenfaces which best describe the distribution of these face images,

and then how to classify or identify new incoming face images in comparison to the original

set of face images. This section describes their eigenface method of applying PCA on face

images.

The main idea lies in representing a face image as a vector. For example, if a grayscale image

of a face is a 2-dimensional M by M array of 8-bit intensity values ranging from 0 to 255

then it can be represented as a vector of dimension M2. In Figure 9, we can observe an

example of such transformation.

 30

Figure 9 - Example of grayscale image transformation into a vector (authors work)

After transforming all face images into vectors of dimension M2, the common features of

the faces shared among the entire set of vectors are removed. Therefore, each face is left

with its own distinctive features. The common features are defined as an average face of the

set:

Ψ =
∑ Γ𝑖

𝑁
𝑖=1

𝑁

Where Ψ is the average face, N is the number of all face images and 𝚪𝒊 is a face vector from

a set of face vectors 𝚪𝟏, 𝚪𝟐…𝚪𝑵.

Distinctive features of each face are then computed as follows:

Φ = Γ − Ψ

This way we can transform a whole set of face images into a set of vectors with only unique

or distinctive features of the faces and then apply Principal Component Analysis. PCA will

enable us to reduce the dimensionality of our data, while also will provide us with the most

important information from it. It will be up to us then by how many k eigenvectors or

Principal Components we want to describe the original data. The eigenvalues themselves

will be ranked in the descending order in correspondence to the values of their eigenvectors,

 31

thus we will know which eigenvectors are the most important in terms of describing the

variation of the data.

To calculate the eigenvectors, we should calculate the covariance matrix:

𝐶 = 𝐴𝐴𝑇 =
∑ Φ𝑚Φ𝑚

𝑇𝑁
𝑚=1

𝑁
 𝑤ℎ𝑒𝑟𝑒 𝐴 = [Φ1Φ2 … Φ𝑁]

 But it is usually better to calculate the covariance matrix of reduced dimensionality instead:

𝐶 = 𝐴𝑇𝐴 𝑤ℎ𝑒𝑟𝑒 𝐴 = [Φ1Φ2 … Φ𝑁]

The reason that the covariance matrix of reduced dimensionality is usually first used, instead

of a normal covariance matrix where C=AAT, is due to the need of reduction of the heaviness

of the computations. Since matrix A is constructed from the set of N vectors, each of

dimension M2, its size is therefore M2 by N, thus the covariance matrix then would be of the

size M2 by M2, whereas a covariance matrix of reduced dimensionality C=ATA would be a

matrix of the size N by N. Such matrix would consist of N eigenvectors, where each

eigenvector is a vector of dimension N. Hence, through such approach the size of the matrix

C is reduced and so is the maximum possible number of the eigenvectors is reduced, given

that the number of vectors in the matrix A is less than the number of these vector’s

dimensions, N<M2.

In simpler terms, the choice of using a covariance matrix of reduced dimensionality can be

explained by the fact that usually the number of images in any given set would be lower than

the number of pixels within any image of the given set, since all images of the set are of the

same size.

The next step then is choosing k eigenvectors 𝒗𝒊 which best represent the data from the

reduced covariance matrix C=ATA, given that k is less or equal to the number of all face

vectors N. After obtaining these k eigenvectors we can then convert them back into the

eigenvectors 𝒖𝒊 of the covariance matrix C=AAT given that 𝒖𝒊 = 𝑨𝒗𝒊. Such transformation

allows our k best eigenvectors to be returned to the original dimensionality.

 32

The linear combination of the eigenfaces is calculated by:

𝑢𝑖 = ∑ 𝑣𝑖𝑘Φ𝑘 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … , 𝑁

𝑁

𝑘=1

Every face image from the original training set is represented as a linear combination of the

weighted best k eigenfaces:

𝛺𝑇 = [𝑤1𝑤2 … 𝑤𝑘]

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 = 𝑢𝑖
𝑇(Γ − Ψ) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘 .

Each ith eigenface provides its own contribution in representation of the original face image.

Any new incoming face image can also be represented as a vector 𝜴, hence it will be

projected onto the principal component axes of the training set, and then compared to the

previously defined face classes of the training set by calculating the Euclidian distances

between their weight vectors 𝜴:

𝜀𝑖 = ‖𝛺 − 𝛺𝑖‖,

where 𝜴𝒊 is a weight vector of the ith face class of the training set.

A new face will belong to the ith face class where the minimum distance 𝜺𝒊 was observed,

if this distance is lower than some pre-set threshold θ, otherwise a new face will be classified

as “unknown”.

 33

4 Practical part

The practical part of the thesis describes the stages of creation and implementation of a

desktop application designed to perform face detection and face recognition using the

frameworks and the methods studied in the literature review. It starts with the description of

the software tools used to create the application, followed by the presentation of the design

of the recognition system. Based on the proposed design the stages of implementation of the

face recognition system are identified and described, step by step. The characteristics of the

database of images used for this work are presented along with the explanation of how this

data was organized. After all processes of the system are explained, a simple framework is

proposed to fine-tune the detection parameters to minimize the influence of the detection

algorithm on the recognition rate.

4.1 Software

The following software has been used to create a desktop application in order to implement

and test both the face detection algorithm based on Haar-like features and the face

recognition algorithm based on the Eigenfaces method.

4.1.1 Microsoft Visual Studio

Visual Studio is an integrated development environment (IDE) used for software

development; it allows development of applications that run on .NET Framework (20). I

have used a free Visual Studio Community 2017 version to create a Windows desktop

application for face detection and face recognition, written in C# programming language.

4.1.2 EmguCV

EmguCV is a cross platform .NET wrapper for the OpenCV image-processing library. It

allows OpenCV functions to be used by .NET compatible languages such as C#, VB, VC++,

IronPython. The wrapper can be compiled in Mono and used on Windows, Android, iOS,

Windows Phone, Mac OS X and Linux. (21)

 34

Both OpenCV and EmguCV are of open-source type of software. EmguCV provides a set

of libraries that allow my desktop application to perform the following functions:

- Detect faces from images using a pre-trained cascade classifier, based on Haar-like

features.

- Rescale faces using a built-in interpolation technique.

- Train the face recognition algorithm based on the Eigenfaces method.

- Classify new images with reference to the previously trained data.

The application was using an EmguCV of version 3.4.3.3016.

4.1.3 Haar cascade classifier

In this work, I did not train my own Haar cascade classifier for face detection but used an

already existing, pre-trained cascade classifier1, freely provided by the OpenCV. Such

approach allowed me to save some time and to focus more on other aspects of the face

recognition system. As mentioned earlier in the literature review, one of the reasons why the

Viola-Jones framework based on Haar-like features is still so popular is because once the

Haar cascade classifier is trained, it can be repeatedly used by other researchers.

4.2 Designing the system

To develop the application that performs face recognition, I have identified the following

main sequential parts of the face recognition system:

1. Training phase. This phase consists of the series of processes required for using an

Eigenface approach of applying PCA on face images obtained from a training set of

images.

2. Testing phase. The testing phase is composed of the series of processes required for

classifying new images obtained from the testing set of images.

1 https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml

 35

4.2.1 Training phase subsystem

The Figure 10 illustrates the data flow diagram of the prototype application subsystem

dedicated for performing a Principal Component Analysis on a training set of images.

Figure 10 - Dataflow diagram of the training subsystem (authors work).

The training phase consists of the following processes:

1. Setting parameters of a face detector.

2. Acquiring images.

3. Converting acquired images to grayscale.

4. Detecting faces from grayscale images.

5. Extracting and resizing detected faces to specific pre-set pixel height and width.

6. Pairing extracted faces with labels.

7. Training the face recognizer and saving the results to a file.

 36

4.2.2 Testing phase subsystem

The Figure 11 illustrates the data flow diagram of the prototype application subsystem

dedicated for testing the face recognition algorithm.

Figure 11 - Dataflow diagram of the testing subsystem (authors work).

This phase uses a data set specifically prepared for testing the face recognition algorithm.

All stages of this testing phase, prior to making predictions of new faces, are the same as in

a previously described training phase.

 37

4.2.3 Full face recognition system

Both training and testing phases have certain common sequential stages, such as:

1. Image acquisition.

2. Conversion of images to grayscale representations.

3. Face detection.

4. Face extraction and resampling (rescaling).

Therefore, the two subsystems used the same algorithms created for these mentioned stages,

while using different image sets for their cause. After completion of these stages, in the

training phase a PCA (with a chosen number of principal components) was applied on a

training set of images, and in the testing phase new images were projected onto the PCA

space of the training set and classified with respect to the previously defined faces. Figure

12 illustrates the data flow diagram of this face recognition process.

Figure 12 - Full recognition system (authors work).

 38

4.3 Acquisition of images

The acquisition of images is the first stage of the training phase and the testing phase of the

system. This part will describe the data used for this work and how this data was organized

to perform face recognition.

4.3.1 Data set of images

To train and test the face recognizer I have used a part of the database of images face94,

assembled by Dr Libor Spacek (22). The face94 database provides 20 frontal-face view

images for each of the 153 individuals. It mostly consists of pictures of 18 to 20 years old

undergraduate students, but it also has images of older people. The database contains images

of both male and female genders of different racial origins. There are also some images of

bearded male individuals, as well as images of both genders wearing glasses. All pictures of

the individuals were taken against a green mono-coloured background under artificial

lighting with a mixture of tungsten and fluorescent overhead. All images had a resolution of

180 by 200 pixels and were stored in 24-bit RGB, JPEG format.

This data set appeared to be suitable for my work. According to Turk and Pentland, the

background of an image can seriously influence the face recognition performance (19). Since

all images from face94 had a green mono-coloured background, I had assumed that image

background influence was minimal, hence it would not impact the recognition performance

greatly.

4.3.2 Data organization

An entire face94 data set is unbalanced. For example, the number male images not having

any types of occlusions was about 10 times greater than the number of females wearing

glasses, or about 5 times greater than images of bearded males. Therefore, it was decided to

use only a part of the original data set, and work with equal instances of different classes to

measure the performance of face recognition using the Confusion Matrix.

 39

Unfortunately, after downloading the freely provided images for my research purposes,

some of the images appeared to be corrupt for almost every individual, therefore not all of

them could be used. It was then decided to use only 16 images per individual.

The obtained images of human faces from the data set face94 have been separated into two

categories as follows:

1) Images used for the training phase: 11 images per each selected individual

were subject to Principal Component Analysis using the Eigenface method.

2) Images used for the testing phase were images of the same people, consisting

of 5 images per person - they were used to test the performance of the face

recognition algorithm. These images were not used as part of the training data

and were stored separately.

Nearly 70% of all selected images were used in a training set and about 30% of images were

used for testing the face recognition algorithm.

4.4 Converting images to grayscale

Since images taken from the face94 dataset are color images, the conversion of these images

into their grayscale image representations is a requirement for performing face detection

based on Viola and Jones framework. Moreover, it is also a requirement for performing

Principal Component Analysis and classification of the new images, based on the Eigenface

method. Therefore, an implementation of grayscale conversion of acquired images is a

necessary next step after image acquisition, for both training and testing phases of the

proposed face recognition system.

Figure 13 - Example of grayscale conversion (authors work)

 40

In the OpenCV the default color format is BGR (23). Given that EmguCV is a wrapper of

the OpenCV, I have decided that my desktop application will be using images of the BGR

color model. During some experiments, I have encountered few problems myself, when

trying to work with the RGB images. Perhaps it was just my own inability to work with this

color model correctly.

Using the Image<TColor, TDepth> class2 of the EmguCV, the program read every image

file in a BGR color format and obtained a grayscale representation of each loaded image by

performing the following operations written in C#:

Image<Bgr, byte> inputImage = new Image<Bgr, byte>(file);

var grayImage = inputImage.Convert<Gray, byte>().Clone();

The conversion of acquired images to grayscale was the only “pre-processing” step made

prior to face detection. Such proposed model places a certain limitation on the face

recognition performance and leaves room for improvement.

4.5 Face detection

After acquired images were converted to their grayscale representations, it was time to detect

faces.

At first, a new object of the Emgu.CV.CascadeClassifier3 class was created and loaded

with an XML file of the pre-trained Haar Cascade Classifier.

CascadeClassifier HaarClassifier = new CascadeClassifier

(System.IO.Path.GetFullPath

(@"../../data/haarcascade_frontalface.xml"));

2 http://www.emgu.com/wiki/index.php/Working_with_Images#Depth_and_Color_as_Generic_Parameter

3 http://www.emgu.com/wiki/files/3.0.0/document/html/b940bc22-751b-d7bf-e9a4-8798e6f7ccb3.htm

 41

The next step was to call the DetectMultiScale4 method of the earlier mentioned class, that

scanned each given image multiple times at different scales to find rectangular regions that

were expected to contain human faces, using the pre-trained cascade. Trying to detect face

regions in an image at different scales implies that the found face regions may vary in size.

For now, the coordinates and size of each found region were stored in the variable called

“faces”.

var faces = HaarClassifier.DetectMultiScale(grayImage, scaleFactor, minNeighbors);

The variables used by the DetectMultiScale function were:

1. grayImage – This variable stored a grayscale representation of any given color

image, over which the face detection was performed.

2. scaleFactor – Scale factor is a parameter that specifies by how much a rectangular

search area should be increased between subsequent image scans. As an example, if

a scale factor had a value of 1.3, it would mean that on the next scan the rectangular

search area would increase by 30%.

3. minNeighbors – Minimum neighbors is a parameter for setting up the boundaries

on the grouping of the found neighbouring rectangles that make up an object or in

this particular case – a face. Since an image is scanned multiple times at different

scales and locations during the detection process, this can often lead to multiple

detections of the same object. Grouping of these detected areas and finding out their

average area that makes up an object is based on a pre-set threshold of the

neighbouring rectangles. If the threshold is not bypassed, then such a group of

rectangles is not considered to correspond to a valid object of interest.

Some face alignment technique could be implemented here to further improve the face

recognition rate. In (24), Ekenel and Stiefelhagen showed that face alignment not only

improves face recognition rate for nonoccluded faces, but also can improve the correct face

recognition rate in cases of upper and lower face occlusions. As mentioned earlier, partial

4 http://www.emgu.com/wiki/files/3.0.0/document/html/2b7345cd-2f43-6eb6-a73e-a64382d85d7b.htm

 42

occlusuions like glasses or beards are present in some images of the chosen database. After

I have experimented with the face detection parameters and have seen the recognition results,

I decided that the chosen approach using this particular set of images would suffice. Most of

the extracted face images appeared to be centred.

4.6 Face extraction and resampling

Since the DetectMultiScale method only found areas in images that were likely to contain

faces, I needed to extract these areas from each image. The faces were extracted from each

image using the previously saved information about the coordinates and the size of each

found face region in every given image. Recalling that the detected face areas may vary in

size, the extracted face images therefore may vary in size too. This could pose a problem for

correct classification of the new data. As mentioned earlier in the literature review - in the

Eigenface method, the chosen k best eigenvectors 𝒗𝒊 of a training set of images can be

obtained from calculating the reduced Covariance Matrix, to reduce the computational time,

but eventually these eigenvectors will be converted back into the eigenvectors 𝒖𝒊 of a

Covariance Matrix, and faces will be represented as vectors 𝜴. When new faces from the

testing set will be projected onto the pre-defined face space of the training set, they will also

be represented as vectors 𝜴. Recalling that each weighted eigenface is computed as 𝒘𝒊 =

𝒖𝒊
𝑻(𝚪 − 𝚿), we would need to keep the same dimensionality of the face vectors 𝚪, if we

wanted to calculate the Euclidian distances correctly. Hence, rescaling all extracted face

images to a pre-set size was the next logical procedure. But it needed to be done correctly.

All faces were resized to a pre-set constant width and height in pixels (128 by 150) by an

appropriate method.

An appropriate way of scaling images is using image interpolation techniques to try to

accomplish the best approximation of pixel intensity values of an image (25). The process

of reducing the size of an image by removing pixels is called image downsampling, while

inserting pixels to increase the size of an image is called image interpolation or image

upsampling (26).

 43

A variety of interpolation techniques is provided by the Emgu.CV.CvEnum5 Namespace. I

used an Inter.Cubic method that can downsample or upsample an image. This was a perfect

choice, since the extracted face images could be smaller or bigger in size than the constant

pre-set size.

For every ith input image, the following C# code shows an example of implementation of

grayscale conversion, face detection using pre-set parameters, face extraction, and face

resizing to a pre-set width and height in pixels using Inter.Cubic interpolation and

decimation method:

var grayImage = inputImage.Convert<Gray, byte>().Clone();

var faces = HaarClassifier.DetectMultiScale

(grayImage, scaleFactor, minNeighbors);

int numFaces = 0;

foreach(var face in faces)

{

var processedFace = grayImage.Copy(faces[numFaces]).Resize

(Width, Height, Emgu.CV.CvEnum.Inter.Cubic);

numFaces++;

if (processedFace != null)

{

Faces.Add(processedFace);

Labels.Add(i);

}

}

5 http://www.emgu.com/wiki/files/3.2.0/document/html/eab4d5b4-81bc-52f9-1545-26230079ca30.htm

 44

4.7 Pairing faces with labels

EmguCV lets us train the Eigenface recognizer by pairing the extracted faces with labels.

Labels can only be accepted as an integer value (whole number). Thus, a set of extracted

face images, that belonged to each individual (face class) in the training set of images, was

given its own unique identifier. Later, in the testing phase, these labels were used to evaluate

how well did the model predict the face classes of given new faces.

4.8 Applying PCA

This was the last stage of the training phase. After all grayscale face images from the training

set were extracted and rescaled to a constant pre-set size, they became eligible for Principal

Component Analysis, since they all consisted of the same number of pixels, with pixel

intensity values ranging from 0 to 255, and could be represented as a set of vectors of the

same dimensionality. Given the desired number of Principal components(eigenvalues), it

was then possible to train the EmguCV face recognizer.

An object of the EigenFaceRecognizer6 class was created with a pre-set number of Principal

Components. In the next step, the PCA was applied using the Train() method of the

previously mentioned class, to which all extracted faces and the corresponding labels were

passed. Finally, the results were saved to a YML file.

EigenFaceRecognizer FaceRecognition = new EigenFaceRecognizer

(num_components, double.PositiveInfinity);

FaceRecognition.Train(Faces.ToArray(), Labels.ToArray());

FaceRecognition.Write(YMLPath);

6 http://www.emgu.com/wiki/files/3.0.0/document/html/62795d93-e4b8-3c3a-f11f-42ce97895c0e.htm

 45

The face recognizer was trained multiple times using different numbers of Principal

Components. The YML files were later used in the testing phase for classification of new

face images, depending on the chosen number of Principal Components.

4.9 Classifying new faces

This was the final step of the testing phase, prior to which the images from the testing set

have been already acquired and converted to grayscale, and faces have been detected,

extracted, and re-scaled. In this last stage the processed new faces were projected onto the

PCA space of the trained data. The algorithm predicted to which of the pre-trained face

classes each new face belonged to. Predictions were obtained as label values that have been

used earlier to classify the face images of the training set. For each new face, its predicted

label value was then compared to the real label value of the face class it belonged to, thus

allowing to measure the performance of the face recognition model.

4.10 Classifying face detection results

Accurate face detection is one of the key determinants for successful recognition. To assess

the performance of face detector and fine-tune the setup of parameters, a simple framework

was proposed to classify face detection results into three basic groups:

1. Correctly detected. An outcome, where a detector correctly predicted the presence

of a face and correctly located it. If an image of an extracted face contained a full

centred face of a person or if it contained both eyes, a nose, and a mouth - such image

was considered as a successful prediction made by the face detection algorithm.

Figure 14 - Example of correctly detected face (authors work).

 46

2. Incorrectly detected. An outcome, where a detector incorrectly identified a face.

Images containing only a part of the face, lacking all the required facial features to

fulfil the conditions of the correct detection, or images not containing a face at all –

were considered as incorrectly detected.

Figure 15 - Example of incorrectly detected face (authors work).

3. Not detected. An outcome, where a detector failed to find a face within the given

image at all, but the face was present.

I then defined the successful detection rate as follows:

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑢𝑓𝑢𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑐𝑒𝑠
∗ 100%

Manual evaluation can be very time consuming, therefore, only 5 images for each of 99

individuals from the face94 database were subjectively tested in such a manner to fine-tune

the face detection parameters. A simple algorithm was used by the created desktop

application to count the number of all detected and not detected faces. Correct and incorrect

detections were then counted manually.

 47

4.11 Setting face detection parameters

The prototype application has been developed with the intent of fine-tuning the scaling

factor and minimum neighbors parameters of the face detector to increase the detection

rate. Other parameters were left with their default values during the face detection processes.

After observing the influence of the chosen parameters on the detection rate, using images

from the face94 dataset, the best combination of both parameters was selected and used in

training and testing phases of the face recognition process. It must be said that the results

obtained from these tests depended on the set of images collected for this work, hence, the

results may differ when using other image databases and therefore, this may affect the choice

made on the selection of the optimal values of detection parameters.

4.11.1 Figuring out the optimal face detection parameters

Face recognition rate depends not only on the recognition algorithm itself, but also on the

face detection rate. If we can achieve the best results in detection, it can help improve the

overall recognition results. For example, if some faces did not get detected, then we would

have a lesser sample pool of images of certain people in our training set. After we would

apply the PCA on our training set of images, we would have less data corresponding to these

certain people’s faces, and this could lead to future decline of the recognition rate. Moreover,

we would also want to detect the most, if not all new face images in the testing phase.

As mentioned earlier, the minimum neighbors parameter sets the boundaries on grouping

of the detected rectangular objects as a single rectangular object. In other words, if some

objects were detected within a certain set proximity to each other, they would be counted as

one object, in our case – a face. The image is scanned multiple times during the face detection

process at different scales and the increase of the search area at each iteration is controlled

by the scaling factor. I have manipulated both of these parameters to achieve the best

detection results.

At first, I tried to figure out the optimal minimum neighbors parameter for my data set of

images. The scaling factor was set to 1.4 (the search area was increasing by 40% between

each subsequent scan) for obtaining results a bit faster, and it remained a constant value

 48

during this first test, while I changed the value of the minimum neighbors parameter. For

this test, I used a set of 495 images, where each person out of 99 people in the dataset was

represented by 5 images. The results of this test can be seen in Table 1 below.

Minimum

neighbors

Correct

detections

Incorrect

detections

Not detected Total Correct

detection

rate

0 5618 84 1 5703 98.51%

1 490 7 5 502 97.61%

2 483 5 12 500 96.6%

3 473 3 22 498 94.98%

4 467 1 29 497 93.96%

5 446 0 49 495 90.1%

Table 1 - Face detection results with different values of the minimum neighbors parameter(authors

work).

From the results observed in the Table 1, certain conclusions can be made. The increase of

the value of the minimum neighbors parameter leads to certain advantages and

disadvantages.

Advantages of increasing the value of minimum neighbors parameter:

- Decrease of the number of incorrect detections (false positives).

Disadvantages of increasing the value of minimum neighbors parameter:

- Decrease of the number of correct face detections (also called true positives).

- Increase of the number of not detected faces (false negative, when an algorithm could

not find any face at all, but a face was present).

When the minimum neighbors parameter is set to 0, it means that there is no grouping of

neighbouring objects at all, which leads to drastic increase of the number of objects detected,

yet the majority of those detections may correspond to the same face, but with slightly

 49

different positioning and sizing of the rectangular detection area over that face. Additionally,

such parameter settings returned the highest number of false positive detections. Therefore,

the correct detection rate in this case may be very misleading. While having a higher correct

detection rate is a good thing, such repetitive detections of the same object would also lead

to multiple extractions of this same object into the training set. Such number of the extracted

face images would not only take up more storage space but also would slow down the entire

processing time of resizing of the images and of Principal Component Analysis. After

analysing the results from the Table 1, it was decided to select the option where the

minimum neighbors parameter was set to 1.

Figure 16 - Example of no grouping of found rectangles (authors work)

Figure 17 - Example of grouping found rectangles into one (authors work)

Now it is time to test the scaling factor in range from 1.1 to 1.6, starting from 1.1 and

incrementing it by 0.1, while the minimum neighbors parameter will remain to be equal to

1.

 50

Scaling factor Correct

detections

Incorrect

detections

Undetected Total Correct

detection

rate

1.1 496 1 0 497 99.8%

1.2 495 0 0 495 100%

1.3 497 0 1 498 99.8%

1.4 490 7 5 502 97.61%

1.5 466 3 28 497 93.76%

1.6 511 2 23 536 95.34%

Table 2 - Face detection results with different values of the scaling factor parameter (authors

work).

In the Table 2 we can see the face detection results when fine-tuning the scaling factor. It

can be noticed, that when we increase this parameter, we get more undetected and incorrectly

detected faces. This is due to the fact, that between each subsequent scan the scanning area

is substantially increased, enough to sometimes miss the facial features within an image to

successfully detect the face. On the other hand, a decision to set the scaling factor quite high

can be explained by the need to decrease the overall computation time during the face

detection process. An interesting observation can be made by comparing the results where

the scaling factor was equal to 1.1 and to 1.2. It shows that when the search was performed

too thoroughly, it resulted in finding an additional incorrectly predicted face. After analysing

the results from the Table 2, it was decided to set the scaling factor parameter to 1.2, where

a perfect result was observed.

Given the chosen settings of the two parameters a 100% detection rate was achieved. Such

great results could probably be explained by the absence of a complex background in images,

frontal face views and good lighting conditions.

 51

5 Results

5.1 Desktop application

To perform all the experiments a Windows desktop application was developed based on the

proposed face recognition design using previously described software tools and methods.

Using the face94 database of images of individuals, the application has performed face

detection using a pre-trained Haar cascade classifier, with manipulation of such parameters

as minimum neighbors and scale factor. The program counted the number of detected and

not detected faces and stored the detected face images in JPEG file format for further

evaluation. Additionally, the application used the Eigenface method to learn faces from the

training set of images and stored the results in YML file format. The program then predicted

to which of the known face classes did the new inputs from the testing set of images belong

to. The obtained predictions were used to measure the performance of the model.

5.1.1 User interface

The following Figure 18 illustrates the user interface of the developed desktop application.

Figure 18 - User interface of the desktop application (authors work).

 52

The user interface of the application allows us to train and test the recognizer. In Figure 18,

the region number 1 lets us set the face detection parameters. After these parameters are set,

we can start the training phase or the testing phase. For the training phase, we continue to

the region number 2, where our pre-arranged training data will be automatically processed.

This automated data processing includes such stages as image acquisition, grayscale

conversion, face detection, face extraction, resampling, and assignment of labels. In step 3,

we set the number of principal components for the PCA and train the recognizer. To test the

recognizer, we need to use the same detection parameters once again, after that we will

proceed to the region 4 to load the images from the testing set. Finally, in the region 5, we

will set the number of Principal Components and call the face recognizer to predict our

testing data. Loaded images will be automatically processed as in the training phase,

excluding the processes of automatic image acquisition and pairing faces with labels.

“Detect and save” button, in region 6, will detect and save extracted faces from loaded

images to separate files for further manual evaluation.

5.2 Overall face recognition rates

In this section the overall face recognition rates are shown regardless of the genders type or

occlusion type, using different number of Principal Components. The face recognition rate

was calculated as follows:

𝐹𝑎𝑐𝑒 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑓𝑎𝑐𝑒𝑠
∗ 100%

I used a dataset of images of 99 individuals, where each individual was represented by 11

images in the training set and by 5 different images in the testing set. The minimum

neighbors detection parameter was set to 1 and the scaling factor to 1.2.

 53

Number of principal

components

Correctly classified

individuals

Face recognition rate

1 87/495 17.58%

2 372/495 75.15%

3 469 94.06%

4 481 97.17%

5 488 98.59%

6 489 98.79%

7 489 98.79%

8 490 98.99%

9 491 99.2%

10 491 99.2%

11 495 100%

12 495 100%

Table 3 – Comparison of recognition rates of 99 individuals using different number of Principal

Components (authors work).

Figure 19 - The recognition rates of 99 individuals using different number of Principal

Components (authors work).

 54

5.3 Classification performance

To measure the classification performance of the model, depending on the number of

Principal Components used for training and testing the data, I used the confusion matrix and

such performance metric as accuracy. The recognition rates of the model were also measured

depending on the number of PCs used.

The face recognition rate was calculated as follows:

𝐹𝑎𝑐𝑒 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑓𝑎𝑐𝑒𝑠
∗ 100%

The Confusion Matrix accuracy was calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where

- TP is the number of true positive cases.

- TN is the number of true negative cases.

- FP is the number of false positive cases.

- FN is the number of false negative cases.

5.3.1 Classification performance by gender

For this experiment, I used a dataset of images of 26 individuals, comprised of 13 males and

13 females. The recognizer was trained using 286 images, where each individual of the

training set was represented by 11 images. The testing set consisted of 130 images, where

each individual was represented by 5 images that have not been used in the training phase.

Hence, the split of the data was around 70% for the training phase and 30% for the testing

phase. The minimum neighbors detection parameter was set to 1 and the scaling factor to

1.2. The confusion matrix was created to evaluate the performance of the model based on

gender classification.

 55

Table 4 - Confusion matrix of gender type classification with number of Principal Component set

to equal to 1 (authors work).

Table 5 - Confusion matrix of gender type classification with number of Principal Component set

to equal to 2 (authors work).

Table 6 - Confusion matrix of gender type classification with number of Principal Component set

to equal to 3 (authors work).

Table 7 - Confusion matrix of gender type classification with number of Principal Component set

to equal to 4 (authors work).

Principal components Recognition rate Gender classification

accuracy

1 60% 90%

2 92.3% 99.23%

3 99.2% 99.23%

4 100% 100%

Table 8 - Comparison of recognition rates and gender classification accuracies depending on the

number of Principal Components (authors work).

Principal Components = 1 Male Female

Male 92.31% 7.69%

Female 12.31% 87.69%

Principal Components = 2 Male Female

Male 100% 0%

Female 1.54% 98.46%

Principal Components = 3 Male Female

Male 100% 0%

Female 1.54% 98.46%

Principal Components = 4 Male Female

Male 100% 0%

Female 0% 100%

 56

5.3.2 Classification performance by occlusion

In this experiment I used images of 12 male individuals. The equal number of individuals

was separated into the following four classes:

1. No facial occlusions.

2. Partial upper occlusion (wearing reading glasses).

3. Partial lower occlusion (bearded individuals).

4. Partial double occlusion (bearded individuals wearing glasses).

The recognizer was trained using 132 images and the testing set consisted of 60 images,

using the same nearly 70/30 data split as in the previous experiment. The detection

parameters also remained the same.

PC=1 No occlusion Upper occlusion Lower occlusion Double

occlusion

No occlusion 73.3(3)% 0% 0% 26.6(6)%

Upper

occlusion

13.3(3)% 86.6(6)% 0% 0%

Lower

occlusion

0% 0% 100% 0%

Double

occlusion

6.6(6)% 6.6(6)% 0% 86.6(6)%

Table 9 - Confusion matrix of 4 types of occlusion classes with the number of Principal

Component set to equal to 1 (authors work).

PC=2 No occlusion Upper occlusion Lower occlusion Double

occlusion

No occlusion 100% 0% 0% 0%

Upper occlusion 0% 100% 0% 0%

Lower occlusion 0% 0% 100% 0%

Double occlusion 0% 0% 0% 100%

Table 10 - Confusion matrix of 4 types of occlusion classes with the number of Principal

Component set to equal to 2 (authors work).

 57

Principal components Recognition rate Classification accuracy

1 81.66% 86.66%

2 95% 100%

3 100% 100%

Table 11 - Comparison of recognition rates and occlusion classification accuracies depending on

the number of Principal Components (authors work).

6 Discussion

Table 3 and Figure 19 demonstrate an overall performance of the model using an unbalanced

dataset of images of 99 individuals of different genders, with and without partial facial

occlusions. The results from this first experiment show that the model required no less than

11 Principal Components to describe this data in order to achieve the perfect result of 100%

face recognition rate.

In the second experiment, a balanced dataset of images of 26 individuals was used for

measuring the performance of the model based on gender classification. The results from the

Table 8 show that the model required only 4 Principal Components to arrive at 100%

recognition rate.

In Table 11, a perfect recognition result is achieved using just 3 PCs, where a balanced

dataset of images of 12 individuals was used for measuring the performance of the model

based on occlusion classification.

All experiments show that the recognition rate increased with the increase of the number of

Principal Components used, until reaching 100% recognition rate. Hence, the more Principal

Components or Eigenfaces were chosen, the better the face recognition results were

achieved. Additionally, the number of Principal Components required to achieve better

results increased with the increase of the size of the dataset. Given that image data can be

much more complex than the one used for this thesis - the optimal number of PCs to explain

the variance of the data and to achieve good recognition results will differ. In fact, the

experiments in this work show that the chosen database is very simplistic.

 58

Since the proposed model was the most basic one and I did not even implement a good

amount of image processing techniques that are often used to improve the performance of

face recognition models - the achieved results were beyond my own expectations.

Confusion Matrix Tables 4, 5, 6, 7, show the rates at which the actual two gender classes

were predicted by the model using from 1 to 4 (incrementing by 1) Principal Components

respectively. Table 8 shows a comparison of recognition rates and gender classification

accuracies of the model depending on the number of PCs. It shows that the classification

performance of the model and the identification rate of each individual were increasing with

the increase of number of PCs. Additionally, the results of the experiments demonstrate that

prior to achieving a 100% recognition rate, the gender classification accuracy was always

higher than the identification rate of the individuals. The performance of the model showed

that it could classify the images by gender well.

Confusion Matrix Tables 9, 10 show the rates at which the actual 4 occlusion classes were

predicted by the model using from 1 to 2 (incrementing by 1) Principal Components

respectively. The results using 3 PCs were not included, since they were identical to the

results when using 2 PCs. Table 11 shows a comparison of recognition rates and occlusion

classification accuracies depending on the number of PCs. Just like with the gender

classification, the performance of the model was increasing with the increase of the number

of Principal Components used. Prior to reaching a 100% recognition rate, the model has

shown the same performance trend – it performed well, and the classification accuracy was

always ahead of the recognition rate.

The experiments revealed that the model has performed very well using the face94 database

of images.

Such great results were achieved most likely due to the simplicity of the database of images

chosen for this work. These results can probably be explained by the following possible

factors:

- Each image had a simple monocoloured background without any additional

environmental objects. As mentioned earlier, this factor has been shown by previous

researchers to be influential on the recognition rate.

 59

- Images contained the frontal views of human faces with little face angle deviation

and little variation of facial expressions.

- The lighting conditions and shadows did not to pose any serious issues.

- The model has learnt faces too well. Further manual and subjective inspection of the

database of images used for this thesis led me to believe that perhaps the testing

samples did not differ much from the samples used in training the model, due to the

nature of how pictures were taken using a camera. Although, all pictures were

different, it seems like the pictures of each individual were taken in one session with

some pre-set delay in-between. Without knowing the exact facts, I will subjectively

assume that the delay was rather short, hence not allowing much deviation in facial

expressions and poses, or maybe such was the initial plan of taking pictures of people

with little variation in mentioned factors.

All of the factors mentioned above show that the experiments performed in this work cannot

be related to the real-world scenario, where the complexity or the variation of the

surrounding environment, lighting conditions, facial expressions and face angles is much

greater. The results show that the model works for the given database of images and due to

the low number of image samples and the simplicity of the dataset - these results cannot be

really accepted as statistically significant in drawing conclusions about the population. Here

I refer to population as to all possible images of humans taken, in different scenarios, for the

purposes of face recognition. For example, cameras in airports, stores, universities, or in

ATMs would be taking pictures at different angles, at different times of day and night, with

different surroundings. A model that could better fit the real-world scenario would need to

include many other techniques that would provide solutions to all these mentioned problems.

 60

7 Conclusion

The literature review has described the Viola-Jones framework for face detection using

Haar-like features, and face recognition using the Eigenface method by applying Principal

Component Analysis to face images. In the practical part of the thesis, the design of the

proposed model and the stages of implementation of the recognition system were

demonstrated and described. Following the design of the proposed recognition system a

desktop application was created with C# using EmguCV libraries, based on the gained

knowledge from the study of related scientific and technical sources. The program has

collected, and computed data derived from the database of images of human faces, and

successfully performed face detection and face recognition of the given images using the

previously studied methods.

The best parameters of the face detection algorithm were selected to minimize its influence

on the face recognition rate. The predictions made by the program were then used to evaluate

the influence of gender and of such facial features as glasses and beards on the proposed

model and measure its performance. The differences between face recognition settings, such

as using different number of Principal Components, have been identified and the relative

success rates were compared.

The model developed for this work and the algorithms which have been studied – are serving

only as a basis of face detection and face recognition, leaving much room for improvements.

The model does not provide solutions to the real-world scenarios and can be used only as a

starting point in this direction.

8 Future work

The future development of the face recognition model could include implementation of

solutions to such problems as different lighting conditions of the images and shadows

interfering with correct facial feature identifications and classifications. To solve these

problems, it would be needed to investigate the algorithms which help rebalance the light

and the dark regions of the images and the algorithms that improve the contrast of the images.

Additionally, a variety of human poses from different angles and the surrounding complex

environment (which was absent in the data set that used for this work) could greatly

 61

challenge both face detection and face recognition algorithms in ability to produce satisfying

results. Some of these obstacles could be removed with certain image manipulations like

image rotation, straightening, normalization, and face alignment. If in the future work a

different database of images would be used, then implementation of these mentioned

techniques would probably be required to achieve good results. Moreover, the labelled face

images could be also connected to a database where additional personal information of each

individual would be stored.

9 References

1. Marr, David. Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. s.l. : The MIT Press, 2010. 978-0262514620.

2. Ballard, Dana H. and Brown, Christopher M. Computer vision. s.l. : Prentice Hall, 1982.

0131653164.

3. Shapiro, Linda and Stockman, George. Computer vision. s.l. : Pearson, 2001. 978-

0130307965.

4. Detecting Faces in Images: A Survey. Yang, Ming-Hsuan, Kriegman, David J. and

Ahuja, Narendra. 1, s.l. : IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE, 2002, Vol. 24.

5. Rapid object detection using a boosted cascade of simple features. Viola, Paul and

Jones, Michael. s.l. : IEEE, 2001, Proceedings of the 2001 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1. 1063-6919.

6. A Study of Various Face Detection Methods. Gupta, Ms. Varsha and Sharma, Mr.

Dipesh. 5, s.l. : International Journal of Advanced Research in Computer and

Communication Engineering, 2014, Vol. 3. 2278-1021.

7. Robust Real-Time Face Detection. Viola, Paul and Jones, Michael J. 2, s.l. : Kluwer

Academic Publishers, 2004, Vol. 57. 137-154.

8. Cascade Classification. docs.opencv.org. [Online]

https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html?highlight=g

rouprectangle.

 62

9. Summed-Area Tables for Texture Mapping. Crow, Franklin C. 3, New York :

Association for Computing Machinery, 1984, Computer graphics, Vol. 18, pp. 207–212.

0097-8930.

10. A Theory of the Learnable. Valiant, G. L. New York : Association for Computing

Machinery, 1984. Proceedings of the Sixteenth Annual ACM Symposium on Theory of

Computing. pp. 436–445. 0897911334.

11. The strength of weak learnability. E., Robert and Schapire. Boston : Kluwer Academic

Publishers, 1990, Machine Learning, Vol. 5, pp. 197–227.

12. A Decision-Theoretic Generalization of On-Line Learning and an Application to

Boosting. Freund, Yoav and Schapire, Robert E. 1, s.l. : Elsevier, 1997, Journal of

Computer and System Sciences, Vol. 55, pp. 119-139. 0022-0000.

13. Kearns, Michael and Vazirani, Umesh. An introduction to computational learning

theory. s.l. : The MIT Press, 1994. 9780262111935.

14. Kearns, Michael J. The Computational Complexity of Machine Learning. s.l. : MIT

Press, 1990. 0262111527.

15. Video-based face recognition: a survey. Patil, Shailaja A and Deore, Pramod J. 4,

2012, World journal of science and technology, Vol. 2, pp. 136-139. 2231-2587.

16. Kassambara, Alboukadel. Practical guide to principal component methods in R. s.l. :

CreateSpace Independent Publishing Platform, 2017. 1975721136.

17. Jolliffe, I.T. Principal Component Analysis. 2. s.l. : Springer, 2002. 0387954422.

18. Horn, Roger A. and Johnson, Charles R. Matrix analysis. 2. s.l. : Cambridge University

Press, 2012. 978-0-521-83940-2.

19. Eigenfaces for recognition. Turk, Matthew and Pentland, Alex. 1, 1991, Journal of

Cognitive Neuroscience, Vol. 3, pp. 71-86. 1530-8898.

20. Overview of visual studio. docs.microsoft.com. [Online] https://docs.microsoft.com/en-

us/visualstudio/get-started/visual-studio-ide?view=vs-2019.

21. Shi, Shin. Emgu CV Essentials. s.l. : Packt Publishing Ltd, 2013. 978-1-78355-952-7.

22. Spacek, Libor. Libor Spacek's Facial Images Databases. [Online]

http://cmp.felk.cvut.cz/~spacelib/faces/.

23. Baggio, Daniel Lélis, et al. Mastering OpenCV with Practical Computer Vision

Projects. s.l. : Packt Publishing, 2012. 978-1-84951-782-9.

 63

24. Ekenel, Hazim and Stiefelhagen, Rainer. Why is facial occlusion a challenging

problem? 2009. pp. 299-308.

25. A Review: Image Interpolation Techniques for Image Scaling. Parsania, Pankaj and

V.Virparia, Dr. Paresh. 12, 2014, International Journal of Innovative Research in

Computer and Communication Engineering, Vol. 2. 2320-9801.

26. Interpolation-Dependent Image Downsampling. Zhang, Yongbing, et al. 11, s.l. : IEEE

Signal Processing Society, 2011, IEEE Transactions on Image Processing, Vol. 20, pp.

3291-3296.

