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Abstract
Soil erosion is a major global land degradation challenge that can result in the loss of soil

productivity of agricultural land and in the reduction of the delivery of ecosystem services. It is
often aggravated by anthropogenic interferences in land use management and vegetation cover
changes. Spatiotemporally monitoring the land cover status and estimating the vulnerability of
arable lands to potential soil erosion, especially for large agricultural landscapes, has become a
prerequisite to understand other related global phenomena such as such climate change mitigation
and hydrological processes on a global scale. Yet, these have been paramount tasks in terms of
resource requirements and efficiency. Erosion models play an important role in such cases. The
Universal Soil Loss Equation (USLE) is one of the most widely applied models to predict erosion
risks by considering the land cover and management factor (C factor) in agricultural land. The C
factor is the most dynamic and primary factor which could prevent soil erosion with the appropriate

land management planning and execution.

In many cases the C values for large agricultural areas are estimated by traditionally assigning
static empirical soil loss ratio (SLR) values from literature to a land use/land cover map. This
method is relatively easy but fails to capture the actual spatiotemporal variations of the vegetation
covers and hence incurs inaccuracy in the estimation of the C values. When considering the crop
management practices such as crop rotation, tillage practice in many of the cases it is rare to find
complete C factor values for all arable crops and their associated management practices. In recent
decades, using remote sensing data, through the Normalized Difference Vegetation Index (NDVI),
has proven to help capture the variabilities in large scale studies. However, the sensitivity of the
NDVI-derived C values to several biophysical variations, such as the vitality condition of the
vegetation cover, the phenological stages of the crops in question, the soil background differences,
and variations in topographical features, could hinder its full applicability. Therefore, this thesis
deals with assessing the spatiotemporal dynamics of the cover and management factor in a large
agricultural landscape setup by combining multitemporal satellite images with the annually
updated Integrated Administrative Control Systems (IACS) land-use data. The overall objectives
of the thesis were

i) to temporally estimate and compare NDVI based (Cnavi) and literature-based (Ciit) values

so that the deviation can be quantified,



i) to quantify the sensitivity of NDVI based C factor values to biophysical variables in large
agricultural landscape set up for future accurate estimations,

i) to assess the C factor values for crop management namely crop rotational patterns and
predict the ensuing potential soil erosion rate in a large agricultural landscape,

iv) to analyse the spatiotemporal variations of the impact of various crop rotation patterns on
the C factor values in a large landscape scale with the implied application of the results

for understanding of ecosystem processes at regional scales.

Combining multitemporal images with the IACS land use/cover datasets enhanced the
quantification of the discrepancies between Cnavi and Cii. The discrepancy in C values between
Cnavi and Ciit was found to be season dependent with a closer relation observed in early spring to
midsummer, with consistently lower RMSE values for data from June. When it comes to the
biophysical sensitivity, soil background variation, specifically higher soil erodibility condition,
was found to be associated with higher Cnavi values. Identifying land cover type to specific species
level allowed quantifying the sensitivity of Cnqvi to soil background heterogeneity in relation to
crops’ growth stage. Variation in slope curvature also affected the Cnavi values. Convex shaped
slopes of the study area were found to associate with high Cnavi values compared with concave or
flat shaped topography. Crop phenological stages variations also affected the calculated Chavi
value. In addition, rotating different crops also showed variability on the Cnqvi and the subsequent
soil erosion rate in the study area.

Overall, the results from the research can be useful inputs in improving the capacity of Chavi
estimation for landscapes as complex as the present study region as well as an input for agricultural
land management planning. In addition, utilizing remote sensing data for the purpose of capturing
spatiotemporal variation in C factor determination and subsequently serving as input factor for
process-based soil erosion modelling can be enhanced by considering the quantified sensitivity of
Cnavi estimations. The rotation impact assessment results of this research could also be an input for
further efficient investigation of agronomic practices and their impact on the environment on a

large heterogeneous agricultural landscape.

Keyword: Soil erodibility; C factor; topography; IACS; crop rotation; remote sensing; landscape.



Abstrakt

Eroze pidy patii mezi hlavni globalni problémy degradace ptidy a mize vést ke ztraté produktivity
pud a ke snizeni poskytovanych ekosystémovych sluzeb. V krajiné se tento problém zhorSuje
antropogennimi zasahy pfi vyuzivani pidy a zménami vegetatniho krytu. Prostorové
monitorovani stavu piidy a odhad zranitelnosti ptidy erozi, zejména v rozsahlych zeméd¢€lskych
krajinach je i prezekvizitou k pochopeni fady souvisejicich globalnich jevu, jako jsou zmény
klimatu a hydrologické procesy v globalnim métitku. Pti feSeni vSech téchto problémt hraji erozni
modely dtlezitou roli. Jednim z nejpouzivanéjsich modelt k predpovédi rizik eroze na zakladé
zohlednéni krajinného pokryvu a faktoru hospodareni na zemed¢€lské puadé je univerzalni rovnice
ztraty pudy (USLE) a dals$i modely vychézejici z ni. Pti vyuzivani téchto modeld je velmi dulezity
C factor vegetaniho krytu, ktery ma vliv na zmirnéni eroznich procesti vhodnym tzemnim

planovanim a realizaci protieroznich opatieni.

V mnoha ptipadech se hodnoty C pro velké zemédélské oblasti odhaduji tradicnim pfifazenim
hodnot statického empirického poméru ztrat pidy (SLR) z literatury do map “land use a land
cover”. Tato metoda neni sice slozita, ale na druhé stran¢ nedokéze dostatecné zachytit skutecné
Casoprostorové zmeény vegetacnich pokryvi, a zpiisobuje tedy nepiesnosti v odhadu hodnot C
faktoru. Pfi zvazovani managementu agrosystémul, jako je stfidani plodin, agrotechnika atd. je v
mnoha pfipadech slozité najit spravné hodnoty faktoru C pro vSechny plodiny na orné puad¢ a
souvisejici zplsoby obdé¢lavani. V poslednich desetiletich se ukézalo, ze pouziti dat dalkového
priazkumu Zemé prostiednictvim vegeta¢niho indexu normalizovanych rozdilit (NDVI) poméha
zachytit variabilitu ve studiich velkych tzemnich celki. Citlivost hodnot C odvozenych z NDVI
na nékolik variant zahrnujicich stav vegetacniho krytu, fenologické faze jednotlivych plodin,
rozdily v pidnich podminkach a variabilitu topografickych faktori by vSak mohla omezovat
pouzitelnost. Proto se tato prace zabyva hodnocenim Casoprostorové dynamiky vegetacniho krytu
a managementovych opatfeni v rozsdhlych celcich zemédélskych krajin, a to kombinaci
multitemporalnich satelitnich snimki s kazdoro¢né aktualizovanymi udaji o vyuzivani pudy v
ramci Integrated Administrative Control Systems (IACS). Jako cile prace bylo vytyc¢eno:

)] odhadnout a porovnat hodnoty zaloZzené na NDVI (Cnavi) a udaju z literatury (Ciit) tak,

aby bylo mozné odchylku kvantifikovat,



i) kvantifikovat citlivost hodnot C faktorti zalozenych na NDVI a na bio-fyzikalnich
proménnych v rozsahlé¢ zemédélské krajin€ a nastaveni pro budouci ptesné odhady,

iii)  vyhodnotit hodnoty faktoru C pro konkrétné vzorce stiidani a management plodin a
predpovedét naslednou potencidlni miru eroze ptidy v zemédelské krajing,

iv) analyzovat Casoprostorové variace dopadu riznych osevnich postupii na hodnoty
faktoru C v rozsahlych zeméd¢€lskych krajinach s moznou aplikaci vysledk pro

pochopeni ekosystémovych procesii v regionalnim méfitku.

Kombinace multitemporalnich snimkii s datovymi soubory “land use a land cover” zlepsila
kvantifikaci nesrovnalosti mezi Cnavi @ Ciit. Vyzkumem bylo zjisténo, Ze nesoulad v hodnotach C
faktoru mezi Cnavi @ Ciit je zavisly na ro¢nim obdobi s uz$im vztahem pozorovanym na zacatku
jara, s trvale niz§imi hodnotami RMSE pro data z ¢ervna. Pokud jde o citlivost, bylo zjisténo, ze
variabilita ptidniho prostfedi, konkrétné podminky erodovatelnosti, souvisi s vyssimi hodnotami
Chavi. Identifikace typu krajinného pokryvu na urovni konkrétniho druhu umoznila kvantifikaci
citlivosti Cnavi na heterogenitu pudy ve vztahu k plodindm a jejich fazi ristu. Rtzné typy svaht
rovnéz ovlivnily hodnoty Cnavi. Bylo zjisténo, ze konvexni svahy studované oblasti maji vyssi
hodnoty Cnavi ve srovnani s konkavnimi nebo s plochou topografii. Zmény fenologickych fazi
plodin rovnéz ovlivnily hodnotu Cnavi. Kromé toho i stfidani riznych plodin vykazovalo variabilitu
Cnavi a miru eroze pudy ve studované oblasti.

Vysledky predkladaného vyzkumu mohou byt uzitecnymi vstupy pro zlepSeni odhadu Chavi V
krajinach tak slozitych, jako je studovany region, stejné¢ jako pro planovani vyuziti zemédélské
pudy. Kromé& toho lze vyuzit udaje z dalkového prizkumu Zemé za Ucelem zachyceni
Casoprostorovych variaci pfi stanoveni C faktoru a néasledné jako vstupni faktor slouzici pro
modelovani eroze pudy. Vysledky tohoto vyzkumu by rovnéz mohly byt vstupem pro dalsi
efektivni zkoumani agronomickych ¢&i agrotechnickych postupti a jejich dopadd na zivotni

prostiedi v zemédelskych krajinach.

KLICOVA SLOVA: Erodovatelnost piidy; Faktor C; topografie; IACS; stiidani plodin; dalkovy
pruzkum Zem¢; Krajina.
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1.Introduction

1.1. Soil erosion and C factor studies in large agricultural landscape
Soil erosion is a major global land degradation threat which can result in the loss of soil

productivity of agricultural land and in the reduction of the delivery of ecosystem services (Guerra
et al. 2020; Pimentel and Burgess 2013; Yang et al. 2003). Although soil erosion is a natural
occurrence, it is often accelerated through various land management practices (Borrelli et al.
2017). Increased soil loss rates are occurring on arable land than natural environment (Lu et al.
2003). This is particularly evident in a temporally differing manner when the vegetation cover is
not enough to protect the soil (Borrelli et al. 2018). Yet, monitoring land cover status and assessing
the vulnerability of arable land to soil erosion risks, especially for large agricultural landscapes,
have been paramount tasks in terms of resource requirements and efficiency (Alexandridis et al.
2015). Erosion models, hence are pertinent tools to predict potential soil erosion risks in such
condition (Panagos et al. 2014). The Universal Soil Loss Equation (USLE), an empirically based
model, is one of the most widely applied models to predict erosion risks in agricultural land
(Wischmeier and Smith 1978). It predicts the long term average annual soil loss rate as a product
of six compartmentalized factors namely the rainfall factor (R), the soil erodibility factor (K),
topographic factors (L and S), the vegetation cover and management factor (C), and the support
practice factor (P).

The cover and management factor (C factor), along with the rainfall erosivity factor (R-
factor), is the most dynamic factor controlling the rate of soil loss in the USLE model (Panagos et
al. 2014), for which spatiotemporal variations need to be considered in determining the values.
The C factor, in association with P factor, is also the primary factor which can prevent soil erosion
with the appropriate land management planning and execution (Panagos et al. 2014). In addition
to the USLE, several process-based models such as Soil and Water Assessment Tool (SWAT) and

1



the Agricultural Non-Point Source Pollution model (AGNPS), also employ C factor for erosion
prediction (Neitsch et al. 2005; Young et al. 1989).

The C factor is computed based on the soil loss ratios (SLRs) for different crops at different
growth stages and management (Morgan 2005; Wischmeier and Smith 1978). The SLR, which
itself is a plot scale measured value, represents the ratio of the soil loss measured on a given land
covered with specific vegetation type to the corresponding bare soil ploughed along the slope

gradient. The summation resultant of the SLR value weighted by the corresponding rainfall

erosivity proportion (%) at a given growth stages results in the annual C-factor value (Eq.1).
C=Y"SLR;. %, (Eq.1)
where C (dimensionless) is the annual cover factor, SLR; the soil loss rate at a specified growing
stage i, Ri the rainfall erosivity during the growth period i and R the annual total rainfall erosivity.
Field measurement of SLR values by considering all crop types and management practices,
though it is the appropriate way, requires huge resource and time which rendering it less efficient
for large agricultural landscape or regional scale assessment (Alexandridis et al. 2015; Schonbrodt
et al. 2010). In many cases the C values for large agricultural areas are estimated by traditionally
assigning static empirical SLR derived values from literature to a land use/land cover map. This
method is relatively easy but fails to capture the actual spatiotemporal variations of the vegetation
covers and hence incurs inaccuracy in the estimation of the C values. When considering the crop
management practices such as crop rotation, tillage practice etc., in many of the cases it is rare to
find complete C factor values for all arable crops and their associated management practices
(Gabriels 2003; Preiti et al. 2017). On the other hand, accounting for the spatiotemporal variability
in crop management while determining the C factor has been reported to improve accuracy of soil

erosion prediction (Borrelli et al. 2018).



In recent decades, owing to the availability of remotely sensed data, application of satellite
born images for the determination of C factor values in particular or identification of erosional
areas in general has become a widely applicable tool (Vrieling 2006). The application of remote
sensing images for C factor determination through vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) has been found to capture the dynamicity of plant cover
status and associated management practices in predicting soil erosion (Feng et al. 2018; Schmidt
et al. 2018; Alexandridis et al. 2015). However, the sensitivity of the NDVI derived C values to
several biophysical variations, such as the vitality conditions of the vegetation cover, the canopy
structure of the vegetation, the soil background heterogeneity and variations in topographical
features could hinder its full applicability (de Jong 1994; Montandon and Small 2008; Zou and
Mdttus 2017). This, as a result, entails optimizing the influences of such biophysical variables on
NDVI derived C value (Cnavi) estimations for various agricultural landscapes. This study therefore
investigates the deviation of NDVI based C factor (Cnavi) determination from SLR based literature
values (Ciit) and further quantify the sensitivity of the former to various biophysical variables in a
large agricultural landscape setup.

In addition, the present study uses remote sensing images to understand the spatiotemporal
impact of crop management practices such as crop rotation patterns on C factor determination and
soil erosion prediction at a large landscape scale. Remote sensing data provide the platform to
study various crop rotation patterns for C factor estimation and subsequent prediction of erosion
risks in an efficient way (Preiti et al. 2017). However, so far researches conducted are far too
insufficient (Bégué et al. 2018). Bégué et al. (2018) point out that less than 10% of remote sensing
studies focused on cropping practices in general. When it comes to crop rotation, the majority of

the studies focused on identifying rotational patterns and classifying the pre-crops and succeeding



crops at large (Conrad et al. 2016; Mueller-Warrant et al. 2016; Kipka et al. 2016; Sahajpal et al.
2014; Martinez-Casasnovas et al. 2005; Pimentel and Burgess 2013; Panigrahy and Sharma 1997).
However, the influence of cropping practices such as the choice of crops to rotate has been reported
to significantly affect soil erosion rates (Simonneaux et al. 2015; Morgan 2005). The present study,
therefore, uses multi-temporal satellite images in combination with the Integrated Administration
and Control System (IACS) land use data to investigate the influences of various crop rotation
patterns on the C factor values and on the subsequent potential soil erosion risks with a broad aim
of utilizing the methods and the remote sensing data for large scale studies of agricultural land

management impacts on agroecosystem functions.

1.2. Objectives of the research
The specific objectives of the study are:

e To temporally estimate and compare NDVI based (Cnavi) and literature-based Ciit values
so that the deviation can be quantified.

e To quantify the sensitivity of NDVI based C factor values to biophysical variables in
large agricultural landscape set up for future accurate estimations.

e To assess the C factor values for various crop rotational patterns and predict the ensuing
potential soil erosion rate in a large agricultural landscape

e To analyse the spatiotemporal variations of the impact of various crop rotation patterns
on the C factor values in a large landscape scale with the implied application of the

results for understanding ecosystem processes at regional scales.



1.3. Organisation of the dissertation
The dissertation is composed of five chapters; the first including the introduction of the

research along with the specific aims of the research and the organisational structure of the
dissertation. The second chapter highlights state-of-the-art review of the applications of remote
sensing for soil erosion and C factor determination studies and the existing gaps in relation to
remote sensing application for erosion studies. The third chapter of the dissertation describes the
study area, data processing and methodology employed to achieve the objectives of the present
study. In the fourth chapter the major findings of the research are highlighted including discussions
of the results. Finally, chapter five draws conclusions and indicates outlook in relation to further

line of work.

2. State of the art

2.1. Applications of remote sensing for erosion studies in large spatial scale
The application of satellite observations data for erosion monitoring and assessment at

regional or large agricultural landscape scale has been proven to be significantly helpful (Magliulo
et al. 2020). The advantages of using remote sensing data for erosion studies lies on its ability of
capturing spatiotemporal trends at various scales. Broadly speaking two types of remote sensing
tools are used for soil degradation studies namely passive and active sensing tools (Goldshleger et
al. 2010). The passive sensing tools involve utilizing reflected solar radiation while the active
sensing tools utilize artificial radiation sources such as radar. Freely available satellite images such
as the Landsat series are dominantly employed in soil erosion researches in large landscape scale
analysis (Sepuru and Dube 2018). However, the application of high spatial and hyperspectral
resolution remote sensing data has been gaining momentum in recent years (Bargiel et al. 2013;
Goldshleger et al. 2010; Wang et al. 2009; Schmid et al. 2016) though their relatively high

acquisition prices constrains their application for large area coverage researches.
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More often the images are employed to either indirectly provide inputs, such as C factor
values, for various erosion prediction models or to directly identify erosion features such as
depositional sites at the fields (Magliulo et al. 2020; Zizala et al. 2019; Vrieling 2006). At national
or regional scales, the study of erosion phenomena using remote sensing application requires
datasets of ground truthing information or expert’s knowledge of the areas being investigated. In
the case of the direct assessment of erosional features such as soil removal or depositional site
identification, the soil spectral properties of the fields are used to assess erosional phenomenon
(Magliulo et al. 2020; Schmid et al. 2016; Chabrillat et al. 2014). It is documented that the spectral
properties of eroded soils can be differentiated from noneroded soils due to the associated changes
in mineral or textural compositions of the soils (Zizala et al. 2017; Chabrillat et al. 2014). In this
particular case, apart from the spatial resolution, the spectral resolution of the remote sensing data
plays a major role in finely characterizing the soil surface. Shi et al. (2020) indicate that indirectly
predicting the soil aggregate stability, which is an important soil property that determines soil
erodibility condition, can be relatively adequately mapped using hyper spectral resolution data.
However, Zizala et al. (2017) point out that in highly heterogenous areas the applicability of
hyperspectral data needs to be backed up with locally precise topographic and geological data and
hence entailing further calibration and validation for various spatial conditions. It can also be noted
that soil infiltration rates and surface crust formations, attributes that directly influence soil erosion
rates, can be assessed using hyperspectral data (Goldshleger et al. 2010). The application of these
high spectral resolution data in large scale studies either through direct assessment of the field
conditions or indirectly for spatially explicit model input parameters, however, is still not well

exploited.



Synthetic aperture radar (SAR) data has been deployed to detect soil erosion at basin scale
(Agnihotri et al. 2019; Amitrano et al. 2013). The mechanism behind detecting the degraded land
using SAR data lies on the loss of physical and chemical properties of the eroded soils such as
dielectric constant, conductivity and moisture holding capacity as opposed to non-eroded soils.
One of the drawbacks of using radar data for large scale application, however, is its inability to
penetrate dense vegetation cover and hence the signals unable to reach the ground in addition to
the sensitivity of the backscatter to terrain undulations (Baghdadi et al. 2008). SAR images have
the advantage of being operable in all weather and temporal conditions.

Remote sensing data have also been widely employed for gully mapping at large landscape
scale analysis (Wang et al. 2020; Arabameri et al. 2020). The advancement of machine learning
techniques are also improving the accuracy of identifying gully formation at regional scale
assessment (Arabameri et al. 2019; Wang et al. 2020). However, the extraction of gully areas at
wider scales using remote sensing images requires ancillary input data particularly topographic
and land use type data (Wang et al. 2020).

The most common application of remote sensing data for large spatial coverage erosion
studies is found to be the indirectly employing of the data to provide model parameter inputs for
soil erosion modelling. Empirical models, particularly the (R)USLE, are widely combined with
remote sensing images for erosion studies on large scale studies (Phinzi and Ngetar 2019; Sepuru
and Dube 2018). In general all the inputs of the USLE model can be parametrized using remote
sensing images (Phinzi and Ngetar 2019). There have been successes of computing the R factor
from radar detected high temporal resolution rainfall data with relatively adequate accuracy at
large landscape (Fischer et al. 2016; Fischer et al. 2018) and regional scale (Alexandridis et al.

2015; Phinzi and Ngetar 2019) studies. The erodibility factor (K) has also been derived from



remote sensing data (Alexakis et al. 2019) with moderately acceptable accuracy, although are very
few in number (Phinzi and Ngetar 2019). Deriving C factor value from remote sensing data for
regional and global scale studies has already become an established practice, as it has been
discussed in section 1.1, for global (Guerra et al. 2020), regional (Alexandridis et al. 2015) and
large landscape scale (Feng et al. 2018) investigations worldwide.

In general, despite there is an increasing trend of utilizing remote sensing data for erosion
monitoring and assessment at larger spatial scales, it is still not sufficient in addressing several
related issues such as spatiotemporal variations in land management practices and the influence
on soil erosion at large (Sepuru and Dube 2018). Alewell et al. (2019) stress that without due
attention to the assessment and understanding of soil erosion rates beyond plot or field scales, it
would be cumbersome to address other related problems such as climate change and carbon
sequestration phenomena. One of the major constraints in applying remote sensing data for erosion
studies at larger area extent is the relatively low frequency of cloud free available images from the
freely available passive remote sensing tools such as the Landsat series. Combining different data
sources (Zizala et al. 2019), for instance the recently launched Sentinel 1 and 2 satellites, can
enhance the accuracy of capturing spatiotemporal variability of soil erosion at large area extent

coverage.



3. Material and Methods

3.1. Study site description
The study takes the Quillow catchment (168km?) in Uckermark district, Brandenburg state

of German, as a case study (Fig.1a). The dominant soil types prevailing in the study area include
Luvisols to Calcaric Regosols (at the hilly areas), Luvisol or Haplic Luvisol (in the plateau), and
Stagnosols (in the valley areas) (Wulf et al. 2016; Lischeid et al. 2016; Deumlich et al. 2010). The
climatic condition of the region is described as temperate and continental type with annual mean
air temperature ranging between 7.8 °C and 9.5 °C and mean annual rainfall of 460.3 mm was
recorded between the years 1992 to 2016 at Dedelow weather station located in the study area
(Vogel et al. 2016). Topographically the area is characterized as gently undulating (Fig.1b) with

altitudinal ranges of 14m to 160 m above sea level (Lischeid et al. 2016).
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Figure 1 Overview of the study area: a) location of the study catchment, b) slope steepness in
percent, ¢) land use/cover identified using IACS 2016 data.

3.2. Data and processing

3.2.1. Remote sensing data
One of the critical challenges of using satellite images, particularly passive remote sensing

sources, for multitemporal investigation of erosion research is acquiring cloud free images. Here

combination of Landsat 7 & Landsat 8 (using path 193, row 23) data along with Sentinel 2 (using



tile ID 33UVV) data were downloaded from the USGS (https://earthexplorer.usgs.gov/) and from
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) respectively. In total 29
time series images from 2013 to 2016 were used in the study. The overview of the images used are
described in table 1. All the Landsat images are level 2A data that are atmospherically corrected.
The Sentinel 2A data are atmospherically corrected using the freely available software Sen2cor
(https://step.esa.int/main/third-party-plugins-2/sen2cor/). All the scenes used for the analysis are
with less than 30% cloud cover.

Table 1 Overview of the multitemporal satellite images used for the analysis

Satellites | Spectral Spectral Spatial Acquired scene dates
bands description | resolution
used
Landsat 7 | Band 3 Visible 30m 10 February 2014; 30 March 2014; 01 May
Red 2014;18 June 2014; 04 July 2014;06 September
Band 4 Near 30m 2014; 08 October 2014;17 March 2015; 05 June
Infrared 2015;27 October 2015;23 June 2016
Landsat 8 | Band 4 Visible 30m 29 October 2013;10 June 2014; 13 August
Red 2014;25 March 2015; 10 April 2015;13 June
Band 5 Near 30m 2015; 03 October 2015;
Infrared
Sentinel- Band 4 Visible 10m 04 July 2015; 03 August 2015; 15 September
2A Red 2015; 31 December 2015; 02 April 2016; 22
Band 8a Vegetation | 20 m April 2016; 02 May 2016; 09 May 2016; 12 May
Red edge 2016; 08 June 2016; 11 June 2016; 21 July 2016

In order to make sure the radiometric and phenological consistency between two
temporally close Landsat and Sentinel images, simple pixel-based correlation analysis was
performed. It is indicated that the mean NDV1 values computed using the two images resulted in
high correlation coefficient (up to r?=0.97) and no statistically significant variation in their mean
values detected (Fig. 2). The Sentinel 2A data were re-sampled to 30 m resolution using the nearest

neighbourhood method, to align with the Landsat images in further analysis.
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Figure 2 Comparison between mean NDVI values derived from two closely sensed Sentinel 2
and Landsat 7 data during May and August. The Values are the averages of each parcel (n =

1130 parcels) extracted using 2016 IACS data.

3.2.2. Land use data

The Integrated Administrative and Control System (IACS) data, provides annually
updating information on land use types at field scale as a single vector dataset (Liker-Jans et al.
2016). The IACS data provides information on agricultural land use types such as arable land or
grass land, specific crop type, field block identification, parcel size, etc. for a single parcel of land
specified by an official numerical codes (Steinmann and Dobers 2013). Datasets from 2013 to
2016 were used to identify crop types and determine crop sequencing patterns in the study area
(see section 3.3. and 3.4). As the focus of this research is on arable lands, other land use types were
excluded from the analysis. The proportion of the majorly grown crops in 2016 in the study area
can be seen from Fig.1c. Winter Wheat(WW), Winter Barley (WB), Winter Rye (WRYy), Winter

Rape (WR), Maize (Mz), Sugar beet (SB) and Summer Cereals (SC) are included for the analysis

in the present study.

11




3.3. C factor determination

3.3.1. SLR based literature values assigning (Ciit)
In this study, periodic SLR values for each specific crop types, determined by the IACS

data, were assigned from long term empirically measured SLR data, as per DIN 19708 (2005).
These SLR values were determined according to the corresponding cropping stages of individual
crops considered and the annual mean Ciit was assigned to each crop type in the end. For temporally
varying Ciisv determination erosivity proportion of each month obtained from Deumlich (1999)

was used to weight SLR values.

3.3.2. NDVI based C factor (Cnavi) computation
First NDVI values from each image scene was calculated using Eq.2:

NIR—-Red
NIR+Red

NDVI=

: (Eq.2)

the NDVI value ranges between -1 and +1; the higher the NDVI value the greener the vegetation
coverage indicating that photosynthetically active vegetation is reflecting much of the near infrared
radiation (NIR) while absorbing the visible range (Red) of the spectrum. The NDVI based C factor
(Cnavi) was then computed from each image scene using the equation (Eq.3) developed by van der

Knijff et al. (1999):

NDVI ]
(B-NDVD Y

(Eq.3)

Chavi = exp [_a-
where o and  are empirical fitting parameters where better goodness of fit was obtained

using a value of 2 for o and 1 for B (van der Knijff et al. 1999).

3.4. Crop rotation identification
Crop rotational patterns are determined by intersecting consecutive IACS data (from 2013

to 2016) through the geoprocessing tools of Arc Map (v10.2.2) which in the end provides an
intersected polygon map for a cropping calendar. The final intersected polygon then will have its

own consecutive years crop history from which the majorly grown crops in the study area were
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taken as succeeding crops to determine their pre-crops through the query building tool in the
ArcGIS environment. In total 21 year to year crop rotation patterns were used for the analysis
based on their proportion of coverage in the study area. The rotations and their coverage proportion

in the entire landscape is depicted in Fig.3.
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Figure 3 Area coverage (%) of crop rotations considered in the analysis disaggregated for each
cropping calendars (2013/14 to 2015/16).

3.5. Soil erosion modelling
The Universal soil loss equation (USLE) was employed in the case of potential erosion

prediction. The equation compartmentalizes the process of soil erosion into six factors
(Wischmeier and Smith 1978) (Eq.4):

A=R-K-L-S-C-P, (Eq.4)
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where A is the predicted annual soil loss in t ha y. R is the rainfall erosivity factor calculated as
the product of the maximum 30-minute rainfall intensity (130) and energy (E) of rainfall event.
Eight-year average (from 2006 to 2013) of Elso (N ht) was calculated using 1x1 km spatial and 5-
minute temporal resolution radar weather data (RADOLAN) obtained from the German Weather
Service (DWD) for the study area. Utilizing radar weather data for rainfall erosivity calculation
and erosion prediction has been found to produce adequate results (Fischer et al. 2016). K
represents the soil erodibility factor (t h ha* N'1), which was calculated according to Wischmeier
and Smith (1978) using data obtained from the German soil appraisal “Bodenschitzung”, a
publicly available data of different soil properties in the study area (\Vogel et al. 2016). The L and
S are the topographic factors which represent the slope length (L), calculated according to Hickey
(2000), and slope steepness (S) calculated based on Nearing (1997) using 5 m spatial resolution
digital elevation model (DEM). The C is the unit free cover and management factor, which is the
ratio of soil loss under known vegetation cover to that of bare soil. The C factor is the main
manipulation factor in this study hence the potential soil erosion prediction is done for both Cnavi
and Ciit values (see section 3.3). The P factor is the soil protecting practice factor; for this region,
a value of 1 is used as no support practice exists.

Finally, the erosion prediction accuracy of using the USLE model was assessed by
comparing the model output against long term (1982 to 1996) measured average soil erosion values
obtained from field trials at the Holzendorf (Latitude 53.386818, Longitude 13.780225) research

station (Deumlich et al. 2018).
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3.6. Statistical analysis

3.6.1. Comparison between Cndvi and Ciit
Simple correlation and Root Mean Square Error (RMSE) were employed to quantify the

deviation of NDVI based C factor (Cnavi) from SLR based C factor values from literature (Ciit) and

the subsequent soil erosion prediction using these two C factor values was compared using RMSE

(Eq.5).

nee . _ 2 n o 2
RMSE; = ’M and RMSE; 2\/21(5LclttnSLcndm) (Eq.5)

where, RMSEc and RMSEs_ are the root mean square error for C factor and soil loss rate

comparison, SLciit is the potential soil loss rates predicted using Ciit, SLcnavi is the soil loss rates

predicted using Cnavi, and n is the number of pixels coinciding in the analysis.

3.6.2. Quantifying the sensitivity of Cnavi to biophysical variables
The sensitivity of NDVI derived C values to various biophysical conditions was assessed

through multiple regression analysis. The biophysical variables used in the study are topographic
features such as slope steepness (degree), slope shape, slope position, slope aspect, edaphic
conditions of the area (proxied through K factor values), and seasonal and crop type variation.

Detailed explanation of the variables and procedures are indicated in Ayalew et al. (2020).

3.6.3. Crop rotational impacts on Cnaviand soil erosion rate
The average C factor values and soil loss rates of each parcel (intersected polygon, section

3.4), representing crop rotations, were extracted using the R spatial analysis package (“extract”).
Analysis of variance (ANOVA) was used to differentiate the impact of different crop sequencing
patterns on C factor values and subsequently on soil erosion rates through the GLM. Means are
also separated using Least Significant Difference (LSD) at 5% probability level. However, to
control unaccounted variation which could arise from differences in soil type and topography

features, six blockings were included. The study area as a result, was divided according to three
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blockings of soil erodibility values, (block 1, K <0.15; block 2, 0.15 < K < 0.3; and block 3, K
>0.30) and three blockings of LS factor, representative of topographic variability, (block4, LS<0.4;

block 5, 0.4<L.S<0.8; block 6, LS>0.8).
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4. Results and discussion

4.1. Comparison between Cndvi and Ciit
The results indicated that the Cnqvi and Ciit gave comparably close estimates in a temporally

varying manner. Better correlation between monthly Cnavi and Ciit values was observed in images
taken in the months between spring and mid-summer (highest r = 0.93), while the lowest
correlation was observed in the months of late summer and autumn (lowest r=-0.58). This can be
explained due to the reduced vitality of many winter-sown crops during the latter part of the year.
Incorporating yellow vegetation indices such as normalized difference tillage index (NDTI), and
normalized difference senescent vegetation index (NDSVI), in the process of formulating the C
factor equation, can improve the C-value estimation across all seasons (Feng et al. 2018). Apart
from seasonal variation, variation in land cover types also played role in the discrepancies between
the two methods. The average annual C factor values computed using the two methods resulted in
higher discrepancies for cereals (up to 85%) than other field crops such as WR (5%) and Mz
(5.3%). This variation among different crop types can be explained because of the variation in
their canopy orientation of the crops considered. Cereals categorized as erectophile canopy
(vertically arranged leaves), reported to trap reflected radiation within the canopy and hence reduce
the NDVI (Jackson and Pinter 1986). Therefore, using high resolution and temporally dynamic
land use data enables to capture discrepancies to individual crop cover type level.

Spatially speaking, classifying the study area according to C factor values indicated
discrepancies between the two C value estimation methods. Ciit resulted in values of less than 0.1
for most of the landscape while using Cnavi resulted in the same category on 13% of the study area.
The average landscape C factor value computed through Cnqavi was 0.204 while Cjit gave average
value of 0.128. The discrepancy was much pronounced on the subsequent potential soil loss rate

prediction. In aggregate, the soil loss rate obtained by employing Cnavi as an input (SLcnavi) for the

17



USLE model resulted in two times higher prediction than using Ciit as an input factor (SLciit).
Spatially, the potential soil loss rates predicted using the two different C factor inputs revealed a
RMSE of as high as 1.17 t ha* y, which was below the maximum tolerable soil erosion limit of
the region (Verheijen et al. 2009). In addition, the spatial distribution of the potential soil erosion
risk predicted using the two C factor methods varied notably. For example, the proportion of the
landscape classified below the maximum tolerable soil loss limit in the case of SLcnavi Was close
to 85%, while the same classification in the case of SLiit accounted for close to 70%. However,
SLenavi can improve the spatially explicit identification of soil erosion risks as opposed to SL.cit
which was indicated from the relatively higher coefficient of variation (CV) 91% compared with
the 84% CV in SLgit. This indicates the potential of utilizing NDVI-based C factor estimation for
physically based erosion models such as SWAT, provided that appropriate modifications applied

to address the discrepancy or sensitivity of it (see section 4.2 for addressing the sensitivity).

4.2. Quantifying the sensitivity of Cnavi to biophysical variables
The regression analysis indicated that Cnavi was found to respond to variations in edaphic

and topographic conditions of the landscape (Table 2). The sensitivity of Chai values to
heterogenous soil condition of the landscape was consistently captured through the soil erodibility
factor. In the present study, an increase in the value of soil erodibility resulted in incremental
change in the values of Cnavi, though the magnitude varied in different months of a year. Sizeable
influence, in terms of magnitude, was observed during spring and the beginning of the summer
months, when the ground cover contrast was expected to be high. It is well documented that the
soil characteristics such as organic matter content, soil colour, soil texture, surface roughness
influence the spectral properties of a surface (Ding et al. 2014). In the present study, consistent

variations in the reflectance values of both Red and NIR spectrum were observed on soils with an
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erodibility class of greater than 0.3 t h ha*N}(Fig.4). The higher the erodibility values the higher
the estimated Chavi values which could be due to the change in soil condition such as organic matter

content or soil colour.
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Figure 4 Surface reflectance (SR) of NIR and red bands across soil erodibility categories (K
categories: 1, <0.15; 2=0.15 to 0.3; 3 >0.3) and different seasons (adopted from Ayalew et al.
(2020))

The influence of soil heterogeneity on Cnavi values also varied across different cover types
in the study area. Even at the same growth stages, parcels covered with WR showed less sensitivity
to soil erodibility variation as compared to parcels covered with WRy. WR, belonging to the
plagiophile canopy, is reported to have a higher plant area index compared with WRy or WW
(belonging to the erectophile canopy) at the same phenological stage (Truckenbrodt and
Schmullius 2018). Identifying land cover type to specific species level, by coupling remote sensing
data with the IACS data, enabled quantifying the sensitivity of Cnqvi estimation to soil background

heterogeneity in relation to various crops’ growth stage.
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Table 2 Regression results showing the influence of biophysical variables on Chavi across scene
dates.

Biophysical variables

Slope shapes Crop types (with reference to WW)
S < 2 1S
Scene Dates 8 2 8 > g
X S 5 g > 9 £ £ o s
- —2 5 == =2 = = =
29 Oct. 2013 0.4 0.06 0.00 -0.12 -0.11" 0.03" 0.14" -0.24"  -0.02 0.21" 0.25"
10 Feb. 2014 0.6 0.08 0.01" 0.01 -0.10" 0.23" 0.25" -0.17"  -0.13. 0.29 0.22
30 Mar.2014 0.8 0.05 0.01" 0.01 -0.03" 0.40" 0.35" -0.05" -0.03" 047" 0.04"
01May2014 0.8 0.16" 0.00 0.00 -0.02 0.49" 0.02 0.06" -0.01 0.55" -0.01
10June 2014 0.7 0.11" 0.01" 0.00 0.02" 0.19 0.01 -0.00 0.02 0.02° -0.02
04July 2014 0.5 0.09 0.01 -0.02 0.31" 0.01 -0.01 0.08" 0.26" -0.06" 0.05"
13Aug. 2014 0.6 0.07 0.02 -0.01 -0.03" -045"  -0.30° -0.25" -0.11" -0.45 0.42"
06Sept.2014 0.7 0.08 0.04" 0.00 0.04" -043° 021" 0127 0.13" -0.41" 0.40"
080ct.2014 0.4 0.02 0.01 -0.01 0.00 -0.17"  -027" -0.32° -0.17" -0.197 0.38"
25Mar. 2015 0.7 0.17" 0.02" 0.01 -0.06" 0.33" 0.36" -0.06" 017" 0.39" 0.10
10Apr. 2015 0.8 0.16" 0.01" 0.00 -0.05" 0.44" 047" -0.05"  0.15" 0.51" 0.03"
13June 2015 0.8 0.14" 0.01 -0.00 0.03" 0.39" 0.01 -0.00 0.03" 0.20" -0.02
04July 2015 0.5 0.09 0.01" -0.01" 0.27" 0.15*  -0.02 -0.04"  0.09 0.00 0.05"
03Aug. 2015 0.8 0.09 -0.01 -0.02 0.02" -0.50" -0.14" -0.06" -0.02 -0.52" 0.53"
030ct. 2015 0.4 0.13 0.01 0.00 0.02 -0.30° -024" -0.31" -0.09° -0.06" 0.46"
31Dec.2015 0.4 0.28" 0.03" -0.01 -0.14" 0.16" 041" -0.16"  0.06" 0.33" 0.14"
02Apr. 2016 0.6 0.16" 0.05" 0.01 -0.06" 0.31" 0.42" -0.14"  -014" 0427 0.19
22Apr. 2016 0.7 0.15" 0.03" 0.00 0.00 0.49" 0.42" -0.05" -0.09" 0.54" 0.06"
12May 2016 0.9 0.15" 0.01" 0.00 0.00 0.60" 0.06" 0.04 -0.03 0.66" -0.01
08June 2016 0.8 0.21" 0.02 -0.01 0.01" 0.38" 0.00 0.00 -0.01 0.14" -0.04"
23June 2016 0.5 0.02 0.01 -0.01 0.26" 0.04" -0.02 0.00 0.04" -0.02 0.01

“ indicates coefficients statistically significant at P <0.01; coef., regression coefficients. Adopted
from Ayalew et al. (2020)
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Spectral indices other than NDVI, such as enhanced vegetation index (EVI) and soil
adjusted vegetation index (SAVI), have been proposed to enhance the sensitivity to biomass
variation while reducing soil background noise on vegetation spectral property of a landscape
(Huete et al. 2002). However, these indices may present a higher sensitivity to topographic
variability which might take effect in rugged landscapes. Therefore, consideration of all
biophysical variables in calibrating spectral indices for the purpose of environmental monitoring
such as erosion risk assessment remains essential.

In the present study topographic features in the form of slope shape showed consistent
influence on Chavi values. Convex shaped slope, as compared to flat slope, demonstrated
consistently significant incremental implications on Cnavi Values, with the highest coefficient of
0.05 (P<0.01; R?=0.57) predicted on the image taken on 02 April 2016 (Table2). Concave slope,
on the other hand, had a negative relation with the estimated Cnqvi values in a temporally dependant
manner. In general, the influence of topographic variation is explained to be in two direct and
indirect ways. Directly, the landform change (e.g., from flat to hilly topography) on the spectrum
reflectance property of the surface or indirectly through the influence of topographic features on
the greenness of the vegetation cover (Ding et al. 2014; Matsushita et al. 2007). The influence of
concaved slope on Cnavi values was predominantly observed on images taken from the end of June
to August. This can be attributed to the indirect influence of topographic features on vegetation
status. Concave slopes, located towards the depression parts of the study area (Deumlich et al.
2010), are most likely to be cooler in summer as compared to flat land, in addition to their being
depositional sites where by their water drainage pattern and soil properties differ as compared to
erosional sites of the convex shaped slopes. These attributes of the landscape could also play a role

in the status of crop growth and subsequently in Cnavi estimates. In general, while using NDV1 for
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C factor estimations, considerations must be taken into account to accommodate land formation

influences on the status of the vegetation.

4.3. Crop rotation impacts on C factor values
From the intersects of the consecutive IACS data, it was possible to identify that the most

prevalent year to year crop rotations, in terms of their share in the study area, involves WW, WR,
and Mz crops in all the three years considered. The ANOVA result revealed that different crop
rotation patterns had significant implications on both average annual C values and predicted
average annual potential soil erosion rates in all the years considered. Mz and SB, used both as pre
crop and succeeding crops, found to be associated with high average annual C factor values,
particularly self-sequencing of maize year after year. It was also possible to identify the importance
of pre-crops in reducing the C factor values by incorporating WR as a pre crop for Mz cultivation
than using other crops such as SB. The highest average annual C factor value of 0.39 was computed
on SB/Mz rotation parcels.

Crop sequences involving WR inclined to reduce the average annual C values consistently.
The lowest average annual C value, amounting to 0.07, was computed on parcels covered with
WR preceded by pre-crops of winter cereals. Among the pre-crops of WR, however, Mz was found
to result in higher C values when it preceded WR hence rotations composing of Mz and WR
requires a due attention.

Considering the widely grown crop, i.e. WW, when succeeded from WR it was indicated
to have the potential to reduce the annual average C value as compared to succeeded from the
alternative pre-crop of SB or self-sequencing of WW. Peltonen-Sainio et al. (2019), through
regional scale NDVI analysis, also indicate the positive influence of rapeseed as a pre-crop for

various succeeding crops. Therefore, with respect to C factor management and soil erosion
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considerations, sequencing of WW after WR could perform better in the study area as compared
to succeeding from Mz or SB.

The study also indicated the temporal variability of C factor determination in relation to
crop rotation patterns. The temporal variation can be associated with operational timing of
different crops on consecutive cropping years. For example, Table 3 depicts that WW parcels
which were pre-cropped with SB had significantly lower monthly C values than WW parcels
preceded by any other pre-crops during early autumn season (September or October). This could
be due mainly to the fact that parcels covered with SB had not yet been harvested in these months
and hence the vitality of the vegetation cover status of SB remained vital to lower the values.
However, during early spring (March and April), WW succeeded from SB indicated significantly
higher monthly C values (0.29 in March and 0.162 in April) as compared to, for example WR/WW
(0.118 in March and 0.054 in April). This can be attributed to the late sowing dates inflicted on
WW as a consequence of late harvesting operation by the SB pre-crop cultivation (Castellazzi et
al. 2008). Overall, the results indicate the possibility of using remote sensing data for large scale
agricultural operation management in relation to environmental protection objectives in a
temporally explicit manner.

Spatially it was also possible to indicate the association between crop rotation distributions
and their annual C factor values at the parcel level. Again, rotations involving Mz and SB, in
2015/16 cropping calendar, covered around 17% (2,931 ha) of the entire agricultural landscape
which corresponded well with the 21% classification of the landscape into annual C values of
greater than 0.3. the lowest C factor values of less 0.1 corresponded with the spatial distribution

of WR and Gr rotated parcels.
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Table 3 Temporal dynamicity of C factor values in relation to crop rotation patterns

Succeeded Months*

crops Pre-crops  February March April May June July August September October  December
Ww 0.223%cd (0,168 0.079% 0.0604 0.013f 0.098% 0.4982 0.4712 0.363? 0.170%¢
WR 0.199%cd  0.1189 0.054% 0.018¢ 0.007f 0.068° 0.490? 0.473? 0.420° 0.132%¢
Mz 0.3142 0.228¢f 0.128« 0.052¢ 0.034¢f 0.094¢% 0.430%® 0.233%¢ 0.321% 0.296%

Ww WB 0.138% 0.132¢9 0.054% 0.038¢ 0.008f 0.068° 0.4892 0.485%® 0.351% 0.121b¢
SB - 0.290% 0.162¢ 0.009¢ 0.034¢f 0.099¢de 0.469° 0.021° 0.125° 0.361?
SC 0.233%cd  (,141°f9 0.054% 0.026¢ 0.001'f 0.078% 0.354%® 0.385? 0.334% 0.174b¢
WRy 0.298? 0.147% 0.084°®  0.031¢ 0.024f 0.222% 0.470? 0.5642 0.515° -
Www 0.121¢ 0.116¢ 0.037¢ 0.084¢ 0.005f 0.043¢ 0.486° 0.411° 0.179° 0.077¢
WR 0.147% 0.130¢ 0.060¢% 0.035¢ 0.013f 0.041¢ 0.4622 0.4442 0.296% 0.116"

WR Mz 0.282% 0.200f 0.078¢% 0.196¢ 0.019f 0.042¢ 0.305%® 0.337%® 0.293% 0.188%
WB 0.124¢ 0.133¢ 0.043¢ 0.057¢ 0.008f 0.033¢ 0.407% 0.435? 0.190P 0.075¢
WRy 0.120d° 0.095¢ 0.009° 0.097¢ 0.001f 0.077% 0.442% 0.499° 0.391° 0.172%
Www 0.275% 0.342% 0.341° 0.4222 0.383%¢ 0.204° 0.102% 0.303%° 0.171° 0.158%
WR 0.295? 0.260 %f 0.201° 0.249%¢ 0.169¢ 0.171"¢ 0.162°d  0.4452 0.228% 0.130"

Mz Mz 0.4372 0.435P 0.426° 0.4412 0.354¢ 0.171° 0.125%¢  0.106° 0.219%® 0.4432
WB 0.272%c  (.229°% 0.168% 0.369% 0.153¢% 0.14Q°c  0,233b¢ 0.181 0.094° 0.153%
SB - 0.5442 0.5372 0.481° 0.491° 0.265° 0.066 0.028° 0.082° 0.429°
SC 0.5442 0.570% 0.565% 0.369° 0.371« 0.148°d  0.009% 0.325%¢ 0.031° 0.2323b¢

R? 0.44 0.62 0.70 0.62 0.73 0.44 0.61 0.60 0.55 0.35

Means followed by the same letters in a column are not significantly different from each other per LSD (P<0.05). (-) indicates not
considered in the analysis. Adopted from Ayalew et al. (2021)
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4.4. Crop rotation and potential soil erosion rates
The rotational patterns also indicated significant differences among themselves with

respect to average annual soil erosion rates. Crop rotations involving SB and Mz as succeeding
crops consistently and significantly resulted in higher average annual soil loss rates. These crops
are row planted and widely spaced crops. Particularly, self-sequencing of maize (Mz/Mz) resulted
in soil erosion rate as high as 72% compared to self-sequencing of WR and as high as 51%
compared to self-sequencing of WW. This can be explained from the fact that Mz could not be
able to provide year-round soil cover protection unlike WR or winter cereals self-sequencing
patterns which more or less could provide better soil coverage. It is documented that rotations
involving wide spaced row crops like potato, generate highest runoff amount in a plot experiment
(Preiti et al. 2017).

Spatial distribution of the considered rotation patterns and their association with the
potential soil erosion rate also indicated that rotation of root crops (SB) and row cultivated plants
(Mz), need to be considered for rotation scheme on less sloping or flat areas. Overall, the result
from the present study could help in identifying trends of potential soil erosion risks in relation to
crop management patterns, as depicted in Figure 5, in a large agricultural landscape setup

efficiently without requiring to conducting plot scale multi location trials.
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Legend Legend

Crop sequencing patterns Soil Loss Rate(t ha'1y")
WW/WW, WRAWW, WEBNMVW,
[ SCIWW; WRyMWW; WWWAWB: - <0.3
WB/WB
WWWR; WRWR; WB/WR; SC/WR; -
L WRy/WR 0.3-14
WW/IMz; WW/ISB; WRIMz; Mz/\WW; 1.4-5
- Mz/WR; MziMz; Mz/SB; WB/Mz; -
SBAWVY; SBAVB; SBiMz; SB/SB;
SC/Mz: WRy/Mz; Mz/SC; SB/SC - »5
B GrGr

Figure 5 Spatial distribution of rotations and predicted potential soil loss rate.

Modified from Ayalew et al. (2021)

Finally, to validate the accuracy of the USLE model prediction, the output from the current
soil loss prediction of Mz/Mz parcel was compared with a long-term soil erosion rate measured
from maize monocropping experimental plot. The potential soil erosion modelling of the Mz/Mz
sequence in the 2013/14 cropping calendar resulted in an average soil loss rate of 1.87 t halyt a
comparatively close prediction and within the range of the actual measured soil loss rate for Mz

monoculture (1 t hat yb).
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5. Conclusions and outlook
The present research indicated the discrepancy between NDVI based and empirical based

C factor estimation methods and subsequently the importance of quantifying the sensitivity of
NDVI based C factor estimations while dealing with large heterogenous landscapes by utilizing
annually updating land use data and time series optical satellite data. It was presented that
biophysical variables such as soil conditions and topographic features need to be considered in the
process of deriving NDVI based C factor values. In quantifying the sensitivity of Chavi, the soil
erodibility condition (K factor) was reliable and consistent to explain the response of Cnavi values
to soil background heterogeneity. It was also indicated that the relationship between Chavi estimates
and heterogeneous soil conditions can be further dissected according to canopy structure of
different crop cover types. Further research on this regard, with ground measurements, however,
is needed to further understand the relationship of crop canopy structure and NDVI based C factor
value estimation for future. It was also possible to quantify the sensitivity of NDVI based C factor
derivation to topographical variations across different temporal periods.

Combining multitemporal satellite data with land use data enabled to compute C factor
values for various crop rotational patterns and subsequently determine the potential soil erosion
rates at large agricultural landscape level. Interannual variability of the influence of various crop
rotations on C values was captured by the method employed.

For the future, research needs to be directed towards formulating C factor value estimation
by considering all relevant biophysical variables such as spatially explicit temperature and rainfall
data, as the NDVI is directly influenced by temperature in the middle latitude and rainfall in the
tropical areas, along with yellow vegetation indices in order to improve the accuracy of using
remote sensing images for the purpose. In determining the influence of cropping practices on C

factor values and subsequent soil erosion prediction, data including agricultural management
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decisions such as, tillage and residue management practice and fertilization schemes could further
improve. As the study also indicated the spatial and temporal aspect of the crop rotation impacts

it could be feasible to employ process-based models for future endeavours.
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Abstract: The Normalized Difference Vegetation Index (NDVI), has been increasingly used to capture
spatiotemporal variations in cover factor (C) determination for erosion prediction on a larger landscape
scale. However, NDVI-based C factor (C,4y:) estimation per se is sensitive to various biophysical
variables, such as soil condition, topographic features, and vegetation phenology. As a result, Cygyi
often results in incorrect values that affect the quality of soil erosion prediction. The aim of this study is
to multi-temporally estimate Cp4,; values and compare the values with those of literature values (Cjj)
in order to quantify discrepancies between C values obtained via NDVI and empirical-based methods.
A further aim is to quantify the effect of biophysical variables such as slope shape, erodibility, and
crop growth stage variation on C,,4,i and soil erosion prediction on an agricultural landscape scale.
Multi-temporal Landsat 7, Landsat 8, and Sentinel 2 data, from 2013 to 2016, were used in combination
with high resolution agricultural land use data of the Integrated Administrative and Control System,
from the Uckermark district of north-eastern Germany. Correlations between C,4,; and Cj;; improved
in data from spring and summer seasons (up to r = 0.93); nonetheless, the Cp,qyj values were generally
higher compared with Cj;; values. Consequently, modelling erosion using C,,4,; resulted in two times
higher rates than modelling with Cg;. The Cphgyi values were found to be sensitive to soil erodibility
condition and slope shape of the landscape. Higher erodibility condition was associated with higher
Chdvi values. Spring and summer taken images showed significant sensitivity to heterogeneous soil
condition. The C,,4y; estimation also showed varying sensitivity to slope shape variation; values on
convex-shaped slopes were higher compared with flat slopes. Quantifying the sensitivity of Cpgyi
values to biophysical variables may help improve capturing spatiotemporal variability of C factor
values in similar landscapes and conditions.

Keywords: C factor; Landsat 7; Landsat 8; Sentinel 2; soil erodibility; slope shape; soil erosion;
IACS; Germany

1. Introduction

Soil erosion is a major global land degradation threat that can result in the loss of soil productivity
of agricultural land and in the reduction of the delivery of ecosystem services [1]. Although it is an
inevitable natural phenomenon, soil erosion is often aggravated by anthropogenic interference in land
use and changes in vegetation land cover [2,3]. Spatiotemporal monitoring of land cover status and
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estimation of the vulnerability of arable lands to soil erosion risk, especially for large agricultural
landscapes, have become paramount tasks in terms of resource requirements and efficiency [4,5].

Soil erosion risk is usually assessed through erosion prediction modelling. The Universal Soil
Loss Equation (USLE) and its revised form, the Revised Universal Soil Loss Equation, are the most
widely applied models. The USLE, an empirical model, was designed to estimate long-term average
annual soil erosion rates of agricultural land [4,6]. It predicts annual soil loss as a product of six factors:
rainfall erosivity, soil erodibility (K), topography (slope length (L) and slope steepness (S)), cover and
management (C), and support practice (P'). Among these factors, the vegetation cover management
(C) factor is comparatively the most readily influenced by anthropogenic intervention and exhibits a
negative exponential relationship to soil loss rates [7,8]. Apart from the USLE, several process-based
models such as the Soil and Water Assessment Tool (SWAT) through the Modified Universal Soil Loss
Equation [9,10], and the Agricultural Non-Point Source Pollution model (Young et al. [11]) also employ
C factor for erosion prediction.

The C factor is expressed as a soil loss ratio (SLR) of a given plot of land covered with specified
vegetation to a bare seedbed-prepared plot ploughed up and down along the slope gradient [6,12].
For arable farming, the SLR is measured several times (periods) a year corresponding to the different
phenological stages of a given crop starting from seedbed preparation up to harvesting; these periodic
SLR values are weighted by their corresponding proportional R values and the final summation
(Equation (1)) yields the annual C value [13]:

. n R;
C=)" " SLR = 1)

where C is the dimensionless cover management factor, SLR; the soil loss ratio for the month i, R; the
rainfall erosivity of the month i, R is the annual rainfall erosivity, and n is the number of months
(periods) used in the summation.

The C factor intrinsically does not assume static values, but rather reflects various spatial, temporal,
and cover-type conditions if constructed for multiple locations. For a large agricultural landscape scales
or regional scale, however, it is costly and less efficient to perform periodic SLR measurements [14].
Hence, in many cases the C values for large agricultural areas are estimated by traditionally assigning
uniform empirical values from literature to land use/land cover data [15,16]. This method is relatively
easy but fails to capture the actual spatiotemporal variations of the vegetation cover and hence induces
inaccuracy in the estimation of the C values [12]. Utilizing remotely sensed images for generating C
factor maps based on vegetation indices such as the Normalized Difference Vegetation Index (NDVI)
has become a common practice [4,7,14,17,18]. Comparatively, this method allows us to capture
vegetation cover status and spatiotemporal variation in estimating values [4]. However, the sensitivity
of the NDVI-derived C values to several biophysical variations, such as the vitality condition of the
vegetation cover, soil background differences, and variations in topographical features, could hinder
its full applicability [19-22]. This, as a result, entails optimizing the influence of such biophysical
variables on NDVI derived C value estimations for various agricultural landscapes.

In general, efforts to quantify the sensitivity of NDVI-derived C values to biophysical variables
are scant. Few studies have been conducted to quantify the influence of biophysical variables on NDVI
or on NDVI-derived C values. However, some studies employed single-time image analysis [19,23,24],
with less emphasis on the temporal variation of NDVI sensitivity. Despite using multi temporal
images, other studies lack finer scale and dynamic land use/land cover input data and/or appropriate
resolution satellite image data to indicate various cover types and their associated phenological
stage variations and to incorporate spatial heterogeneity [4,25]. Both spatial and temporal scales are
reported to have an influence on capturing the sensitivities in NDVI. Particular for spatial resolution,
Ding et al. [26] reported that spatial resolution beyond 120 m would smother spatial heterogeneity
in NDVI calculations. There is also limited information regarding the influence of the interactions
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of intra-annual variation of different crop cover types in relation to spatial heterogeneity on C value
calculations [27].

It is well documented that, even within similar land use types, species variation influences the
reflectance of different spectra due to the variation in canopy architecture, leaf orientation, etc. [28,29].
In the process of quantifying the sensitivity of NDVI-derived C values, finely resolved and temporally
dynamic land use information is imperative in order to identify plant cover to specific crop type level
and accurately estimate C values for large agricultural landscapes [27]. In addition, topographical
variations within a uniform land use type also affect the NDVI-derived C values. The effect of
topography on vegetation indices is explained by (i) the direct effect of the change landform (e.g., from
flat to hilly) on the spectrum reflectance property of the surface and (ii) by the indirect influence of
topographic features on vegetation cover status and subsequent greenness of the vegetation [19,26].

In the present research, we endeavored to combine multi-temporal high resolution remote sensing
data along with annually-updated land use data, the Integrated Administration and Control System
(IACS), and topographic and soil attributes data to quantify the sensitivity of NDVI-derived C values
in a large agricultural landscape. The first objective of this study is to temporally estimate NDVI-based
C factor values and compare the values with corresponding empirical values in order to quantify the
deviation between the values obtained via the NDVI and empirical based methods. The second objective
is to quantify the sensitivity of effect of biophysical variables such as soil condition, topographic
features, and crop phenological stage variation on Cpq,j values and on soil erosion prediction on an
agricultural landscape scale.

2. Materials and Methods

2.1. Study Area

The Uckermark district of the Brandenburg region (53°21”50" N; 13°48”10°E ), in north eastern
Germany, was the study area (Figure 1a). The land formation of the study region was shaped as a result
of the advancement and cessation of glaciers during the last glaciations [30] resulting in moderately
undulating topography with elevation ranging from 14 m to 132 m above sea level. The land formation
process influenced the pedogenesis in the region, which caused the heterogeneity in soil types across
different topographical forms [31,32]. The main soil type on hill tops and upper slopes ranges from
slightly eroded Luvisols to Calcaric Regosols. The soils at mid slopes and on plateau primarily consist of
Luvisol, Haplic Luvisol, while the depressions consist of Pseudogley (classified as Stagnosols, according
to WRB-IUSS [33] soil types [31,32]. The climate of the region can be characterized as temperate and
continental with an annual average air temperature ranging between 7.8 °C and 9.5 °C [34]. A mean
annual precipitation of 460.2 mm was recorded between the years 1992 to 2016 at Griinow weather
station [35]. Regarding the land use in the region, 75% is used for arable farming [30], predominantly
covered by winter cereals, winter rape, maize, and sugar beet (Figure 1b,c).
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Figure 1. (a) Overview and elevation of the study area (Source country border: http://www.diva-gis.
org/gdata); (b) and (c) IACS data representing the agricultural land use of the study area in the year
2015 and 2016 (masked out are forests, grasslands, and built up areas). WW, winter wheat; WB, winter
barley; Mz, maize; SC, Summer cereals; WR, winter rape; WRy, winter rye; SB, sugar beets.

2.2. Dataset and Processing

2.2.1. Satellite Imagery

Here, we combined Landsat 7 and 8 data with Sentinel 2 data in order to obtain temporally
representative cloud free images. Time series of satellite observations (in total 30 images) Landsat 7
and 8 (using path 193, row 23) and Sentinel 2 (using tile ID 33UVV) data acquisitions from 2013 to 2016
were downloaded from United States Geological Survey (https://earthexplorer.usgs.gov/) and from
the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home), respectively. In order
to represent the different cropping stages (as depicted in Table 1), we included at least one image
from each season of the given considered year. For analysis, scenes were selected with cloud cover
of less than 30%. Most of the images covering the study area were cloud free and all images were
atmospherically corrected. Cloud and snow cover masks (obtained along with the images) were used
to exclude any cloud and snow-covered pixels from further analysis. With respect to the Landsat 7 data,
the Scan Line Corrector failure affected less than 3% of the study area and this did not influence the
result significantly, as indicated by a comparison of the NDVI values from two closely taken Landsat
7 and Landsat 8 images (see Appendix A Figure Al). Radiometric and phenological consistency
between two temporally close Landsat 8 and Sentinel 2 scenes was checked via simple per pixel
correlation analysis. A high correlation coefficient of 0.97 was determined between the mean values of
agricultural parcels and no significant mean variation (p = 0.47) between the two data was observed
(see Appendix A Figure A2).
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Table 1. Different cropping stages of the considered crops along with their measured Soil Loss Ratio
(SLR) value used in the study.

Crop Cropping Stages Annual C

Type Tillage (51) Seedbed (52) 10% Cover (S3) 50% Cover (54) 75% Cover (55) Harvest (S6) Factor *
Dates SLR Dates SLR Dates SLR Dates SLR Dates SLR Dates SLR

WW 0820 032 0922 046 10/20 0.38 04/01 0.03 04/15 .01 08/05 0.0z 0.09
WB 08/30 032 0%/09 046 09/23 0.38 10/30 0.03 04/01 0.01 0716 0.02 0.08
WRy 0805 0.32 0816 046 09/01 0.38 09/20 0.03 10/20 0.01 0729 0.02 .04
WR 0810 032 0820 0.46 09/01 0.38 08,20 0.03 10/10 0.01 0805 0.02 0.11
Mz 1020 0.32 04/15 054 05/20 045 06/05 012 06/20 0.09 09415 0.44 0.34
sSC 10/01 032 03/03 046 0410 0.38 05/02 0.03 05/15 0.01 0803 0.02 0.0
SB 10/01 032 04/05 0.85 05/18 0.45 06,05 0.05 06/15 0.03 1001 0.44 0.22

Dates are expressed as Month/Date; * regional value obtained from Deumlich et al. [36].

2.2.2. Land Use/Land Cover Data

The IACS data provide high spatiotemporal resolution information on arable land use, crop type,
field size and shape, and related aspects in a single vector dataset [37,38]. The TIACS data from 2014 to
2016 were rasterized and sampled to 30 m resolution. As the focus of this research is on arable land,
other land use types were excluded from the analysis. The major crops considered for the study are
displayed in Figure 1b,c.

2.3. C Factor Value Estimation

In this study, periodic SLR values for each specific crop types, determined by the IACS data, were
assigned from long term empirically measured SLR data, depicted in Table 1, as per DIN 19708 [39].
These SLR values were determined according to the corresponding cropping stages of individual
crops considered (Table 2). Then, these values were weighted by their corresponding monthly average
erosivity proportion values (Table 2, 2nd row) adapted from [40], to result in monthly C factor values
(Ciipv).  Finally, the annual literature-based C values (Cjj) of each crop type were assigned from
Deumlich et al. [36], a regional average value for northeast Germany.

In order to estimate C values using NDVI, the index was computed for each image as described
by Tucker [41]:

(NIR — Red)
NDVI = ————+
(NIR + Red)

The NDVI can take values betweenl and +1 (soil: usually 0.1-0.4, vegetation: 0.2-0.9) and—if
observing vegetation—is an expression of the underlying LAI and photosynthetic activity: the higher
the NDVT value, the “greener” the vegetation (coverage), indicating that photosynthetically active
vegetation is reflecting much of the near-infrared radiation while absorbing the visible range of the

spectrum. The NDVI-based C value (C,4,;) was calculated for each image [42]:

@

NDVI
Cndm' = “'XP[_“'( (3)

f—NDVI)

where @ and f are empirical (dimensionless) fitting parameters. Good correlations were obtained when
using a value of 2 for @ and 1 for f [42]. This particular equation has been used in several studies
worldwide to calculate C values [4,17,43—46]. Since the equation was developed using daily images by
comparing against monthly C factor values, it allows us to calculate monthly (Cygyiv), and annual C
values (Cpdvi) by aggregating the average values of the scenes accordingly. Finally, the NDVI-derived
C factor outputs from Sentinel 2 (at 20 m resolution) were re-sampled to 30 m resolution using the
nearest neighborhood method, to maintain the original values, while aligning with the C,q,; from
Landsat 7 and Landsat 8 data for subsequent analysis.
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2.4, Seil Evosion Prediction

Potential soil erosion risk was predicted by employing the USLE (Equation (4)) [6]. In Germany,
employing the USLE (or an adapted form of the equation named “ABAG") to predict soil erosion
risk by water is a recommended practice, especially when precise soil loss rates are not required
but the demand is rather for trends and patterns of soil erosion for the purpose of agricultural land
management [47,48].

A =RKLS5CP (4)

where: A is the predicted average annual soil loss in t ha™' y1. R (N h™?, Newtons per hour,

a commonly used unit in Germany that can readily be converted to M] mm ha~' h~! by multiplying
it by a factor of 10) is calculated as the mean annual sum (Figure 1a) of the product of a maximum
30 min rainfall intensity (I30) and energy (Ei) of a rainfall event (Equation (5)) [6,39]. Eight years
of radar rainfall data (RADOLAN from 2006 to 2013), with 5-min temporal and 1 X 1 km 2 spatial
resolution, obtained from the German Weather Service (DWD), were used to calculate EI30 according
to Wischmeier and Smith [6] as:

Ei = (11.89 + 8.73logl;) « P; + 1073, for I; > 0.05 mm /h
n N
Elzp = Z!_l(EEJ xIygd Ei =0 forl; < 0.05mm/h (5)
Ei = 2833P;+ 107 forI; > 762 mm/h

where i denotes the ith rainfall event, Ei is the kinetic energy (KJ m™2) of the ith rainfall event, Pi is the
total amount of rainfall (mm) of the ith rainfall event, and I; is the rainfall intensity of the ith rainfall
event (mm h™"). Utilizing radar weather data for rainfall erosivity calculation and erosion prediction
has been found to be adequate [49]. K (Equation (6)) is the soil erodibility factor (th ha™l N’l)
calculated according to Wischmeier and Smith [6] using data available from the German Soil Appraisal
“Bodenschitzung” (Figure 2b).

[21+107(12 - a)M" + 3.25(b - 2) +2.5(c - 3)| /100 )

where M is the particle size parameter, a is the percentage of organic matter, b soil structure parameter,
and c is the soil profile permeability class. The topographic factor LS (Figure 2c) represents the slope
length (L) calculated according to Hickey [50] and slope steepness (S) calculated as per Nearing [51],
using a 5-m digital elevation model (DEM). The S and L. (Equations (7) and (8)) are calculated as:

§ =-15+17/[1 + 23010 @)

L= (1/2213)" (8)

where 0 is the slope angle, [ is the cumulative slope length calculated according to Hickey [50], and m
is slope contingent variable, which takes a value of 0.5 if the slope angle is greater than 2.86°, 0.4 on
slopes ranging between 1.72° and 2.86°, 0.3 on slopes between 0.57° and 1.72°, and 0.2 on slopes less
than 0.57°. The dimensionless C factor is the ratio of soil loss under known vegetation cover to that
of bare soil. The C factor is the main manipulation factor in this study and potential soil erosion
prediction is done using both C, 4,; (Equation (3)) and Cy;; values. For the soil-protecting practice factor,
P, a value of 1 was used because no support practice exists for the study region.
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Figure 2. (a) Eight-year annual average rainfall erosivity map, (b) Soil erodibility factor map (c) slope
length and steepness (LS) factor map, and (d) random points generated for the analysis overlaying the
2015 arable land use.

2.5. Statistical Analysis

In order to address the second objective, quantifying the influence of biophysical variables on
Chdvi values, a sample of 5000 spatially balanced random points (Figure 2d), constrained within the
arable land of the study area (using ArcMap, v10.2.2) were generated and further used to extract
multi-values from the considered biophysical explanatory variables (Table 3). The means and standard
deviations of the sample values were compared with the corresponding values from the entire study
area, to check the representativeness of samples, using a t-test analysis (see Appendix B Table Al).
Multiple linear regression analysis was performed using the extracted values against the corresponding
Crdvi values through R (package “stats”) software version 3.6.0 [52].

The biophysical variables used in the study (Table 3) are topographic features such as slope
steepness (degree), slope shape, slope position, slope aspect, edaphic conditions of the area (proxied
through K factor values), and seasonal and crop type variation. A digital elevation model (DEM) of
a 5-m resolution (Figure 1a), derived by airborne laser scanning, was used for the computation of
the topographic features. Slope position and slope shape were calculated through the topographic
positioning index [33]. Soil properties of the study area are proxied by soil erodibility condition in the
form of the K factor values for the reasons that K is calculated by taking into account the soil texture,
soil organic matter content, and particle size distribution of the area [39], in addition to its applicability
in quantitative analysis and explanation [53].
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Table 3. Description of explanatory variables used for regression analysis to investigate the influence

of spatiotemporal and crop type variations on C,g4,; values.

Variables Description Data Type

Dependent variable

Cos Cover management factor derived Continuous
ndvi from satellite images (Equation (3)) ’ i

Biophysical variables

Soil Soil erodibility (K value) (Equation (6))  Continuous

Slope steepness (degree) calculated . )
Slope from 5m DEM using ArcMap 1022 Continuous
Aspect Measure of north - south facing slopes  Continuous

Slope positions

Slope shapes

Crop types

Calculated based on topographic
position indexing [31].
Measure of land undulation [31].

Type of Crops grown at a given data
point {identified using IACS data)

Categorical (coded 1 as summit (reference);
2 is upper slope; 4, flat slope; 5, lower slope;
6, depression or valley)

Categorical (coded 0 as flat (reference); 1 as
convex; 2 as concave)

Categorical (1 is WW (reference); 2 is WB;
3is Mz4is SC; 51s WR; 6 is WRy; 7 is 58)

As the data set features some categorical variables such as slope shape, slope position, crop cover
type, the multiple regression model is expressed as:

y = Po+ Proaz + Praas + XfPp ... +¢ (9)

where f12, 13 represent the coefficient expression of the given categorical variables, a2 and a3,
respectively, as compared with a reference variable (a; where its coefficient 1y is set to 0), ap and
a3 represent categorical variables, X is a non-categorical variable, and §5 is the coefficient for the
non-categorical variable [54]. The categorical expression for the different crop types was performed by
taking winter wheat as a reference crop, because winter wheat occupied a large proportion of the study
area in all the considered years. For slope shape and slope position, flat land and the slope summit
categories were taken as reference categorical variables, respectively (Table 3). Changing reference
variables does not make any statistical difference in the final output of the regression analysis; rather,
it facilitates a simpler comparison between variables.

Finally, the performances of satellite-based C factor estimation and soil loss prediction were
assessed by employing root mean square error (RMSE) computation expressed as:

Y (SLewe — SLenior)’

Y (Cre— Cnm')z
n n

and RMSEg;, = (10)
where SL¢y; is the potential soil loss predicted using Cyy, SLcpayi is the soil loss predicted using C,0;,
and n is the number of pixels coinciding in the analysis. Furthermore, the erosion prediction accuracy
of using the USLE model in general, or through the two different C values (SLyu0; and SLg;) in
particular, was discussed by comparing the model output with long term (from 1982 to 1996) average
soil erosion values measured from field experiments at the Holzendorf (Latitude 53.386818, Longitude
13.780225) research station [55]. The experimental set up and measured erosion values can be referred
from Deumlich et al. [55].

3. Results and Discussion

3.1. Comparisons between Cpg, and Cy Estimation

Table 4 indicates the spatial correlation between monthly Cpgyinv and Cypg values of the entire
landscape. Better correlation between Cygyiv and Cyp values was observed in images taken in the
months between spring and mid-summer, with the highest correlation coefficient (r = 0.93) computed
on the image taken on 09 May 2016. The lowest correlation, however, was observed in the months of
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late summer and autumn, while in a few of the images a negative relationship between C, g.iv and
Clipv values was observed. In particular, August, September, and October were the months where the
highest RMSE was computed. This can be due to variations in the vitality of many winter-sown crops
during these periods of the year; NDVI-based C factor values, as opposed to the SLR based values,
which mainly reflect the function of the protective ability of the crops in question, are highly influenced
by the vitality of the plants rather than the crop-cover percentage [20,42]. In these periods, large areas
of the landscape (see Figure 1b,c for proportion of crop cover) are expected to have either maturing
and senescing crops (e.g., August) or early-emerging and less-ground covering crops (e.g., October),
in which case the NDVI values were lower (Appendix A Figure A3), in turn resulting in elevated
monthly Cpqvinm values. One possible solution could be to incorporate yellow vegetation indices such
as normalized difference tillage index (NDTI), and normalized difference senescent vegetation index
(NDSVI), in the process of formulating the C factor equation, for future in order to improve the C value
estimation across all seasons [7]. Overall, lower RMSEs were consistently computed on images taken
during the month of June in each of the three years considered.

Table 4. Comparison between monthly Cpgyin and Cjpy values represented by scene dates, for the
entire study area.

Monthly Mean

Scene Dates Correlation

Cadvim Clitm Coefficients (r) RMSE

10 October 2013 0.205 0.010 0.53 0.185
2 February 2014 0.252 0.010 0.70 0.144
3 March 2014 0.147 0.005 0.589 0.098

1 May 2014 0.158 0.013 0.88 0.119

10 June 2014 0.040 0.004 0.80 0.050

18 June 2014 0.066 0.004 0.67 0.084

4 July 2014 0.100 0.005 —0.05 0.136

8 August 2014 0.240 0.006 0.08 0.241
6 SPPthber 2014 0.312 0.011 0.42 0.251
8 October 2014 0.237 0.007 0.36 0.216
17 March 2015 0.284 0.004 0.74 0.144
25 March 2015 0.216 0.004 0.79 0.118
10 April 2015 0.159 0.003 0.80 0.132

5 June 2015 0.112 0.005 0.90 0.095
13 June 2015 0.083 0.005 0.88 0.076

4 July 2015 0.113 0.005 040 0.125

3 August 2015 0.381 0.004 —.58 0.202
15 September 2015 0.350 0.020 —0.32 0.422
3 October 2015 0.295 0.008 0.39 0.229
27 October 2015 0.276 0.006 0.55 0.199
31 December 2015 0.205 0.008 0.56 0.186
2 Ap?’il 2016 0.277 0.002 0.71 0.175
22 April 2016 0.166 0.004 0.74 0.167

2 May 2016 0.186 0.016 0.89 0.133

9 May 2016 0.177 0.016 0.93 0.107
12 May 2016 0.171 0.016 0.91 0.114

8 June 2016 0.092 0.005 0.84 0.094

11 June 2016 0.059 0.005 0.66 0.096
23 June 2016 0.058 0.007 —0.02 0.110

When comparing Cpqvin values of individual crop-cover types with corresponding Ciipg values,
a better estimation for winter crops was observed in spring months and, to a lesser extent, in the beginning
of summer months (April to the mid of June), while for spring sown crops, better estimation was obtained
on images taken exclusively in summer months (June to September) of the year (Appendix A Figure A3),
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which closely coincided with the expected growth patterns of the crops in the study region. This can
indicate the applicability of the IACS data combining with remote sensing images to capture the temporal
variability in C value determination. In general, there was a tendency of high C value estimation using
NDVI as a tool compared with Cypy value estimation in all the months considered. Almagro et al. [56]
also reported that C values estimated via the NDVI (employing Equation (3)) resulted in over estimation
of C factor values compared with plot scale literature values in tropical conditions.

When it comes to annual C value computations, which is the required input factor for the USLE model,
average Cpgy; calculations resulted in higher values compared with empirical Cy;; values specifically for
winter cereals and summer cereal (Figure 3). The highest discrepancies were observed on parcels covered
with SC (85%) and WRy (80%) while the lowest discrepancy, around 5% and 5.3%, appeared to be on
parcels covered with WR and Mz respectively. Bargiel et al. [57] also noted that C factor determination
through remote sensing application gives better accuracy for summer crops than winter grains (without
considering WR) in a similar condition in Poland. Annual C values of Mz and WR can be captured with a
better accuracy as indicated by the least discrepancy estimated here. Comparatively, the NDVI-derived C
value estimation also performed better for SB compared with winter and summer cereals. This could be
explained to some extent to the variation in patterns of foliar orientation of these crops. WR, Mz and SB
categorized as plagiophile and planophile, respectively, while most cereals categorized as erectophile crops
behave differently with respect to canopy spectral reflectance [58]. Erecophile canopy, leaves arranged in
vertical manner, could trap reflected radiation within the canopy and reduce the NDVI while the opposite
is true for planophile canopy orientation types [29].

0.4+

0.3

0.2

0.1

Mz SB sC WB WR WRy Ww
I Mean C..; I Mean C,

Figure 3, Annual average C factor comparisons between Cp 4, and Cy;; values among different crops.
The Cp gy values are aggregated average values of the three considered years (from 2013 to 2016).

Figure 4 depicts the spatial distribution of C values computed with the two methods.
The classification of the study area indicates discrepancy between the two C value estimations.
In case of Cy;y, areas classified with C values below 0.1 accounted for 51% of the entire landscape, while
Chavi values of the same category was computed on just 13% of the study area. However, proportions
of the landscape falling in the category between 0.1 and 0.2 were comparatively close to each other:
around 33% with Cpgyi and 31% with Cjj. One peculiar thing about the Cpg,4 calculation is that it
produced continuous and spatially varying C factor values within individual parcel as opposed to a
discrete representation by the Cy;;. This obviously can indicate the potential of the NDVI-based C factor
estimation for capturing spatially explicit variation of different cover types for possible implication of
spatially explicit erosion prediction models, provided that the appropriate adjustments are made (see
Sections 3.3 and 3.4 for a further discussion of adjustments).
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Figure 4. Spatial distribution of three years average annual C values calculated from satellite images
(Chavi) and literature values (Cj;¢) over the entire study area.

3.2. Potential Soil Erosion Risk Prediction Using the Two C Estimation Methods

Subsequent modelling of potential soil erosion risk reflected the variation of C factor values.
The three-year average annual potential soil loss rates predicted using Cj;; (SLq;) resulted in values
falling below the maximum tolerable soil loss limit (rates < 1.4 tha™! y‘l) [59] set for European conditions,
as per Verheijen et al., for all crops, except Mz (Figure 5). On the other hand, in the case of SLengyi, only
winter-sown crops fall below this limit. All the spring sown crops, however, predicted high potential soil
loss rates above the tolerable limit using Cp4y; values inputted in the USLE model. WR- and Mz-covered
parcels gave quite close soil loss rates. In recent years, the coverage of bio-energy Mz and WR in the
study region has witnessed an incremental trend, which in turn requires to understand the associated
environmental impact at wider scale [34,60]. In this regard, we have indicated that remotely sensed data
can be reliable input for various environmental monitoring and modelling activities.

Spatially, the potential soil loss rates predicted using the two different C factor inputs revealed an
RMSE as high as 1.17 tha™ y~!, which was below the maximum tolerable soil erosion limit (Figure 6).
However, the spatial distribution of the potential soil erosion risk varied greatly. For example,
the proportion of the landscape classified below the maximum tolerable soil loss limit in the case of
SLendvi Was close to 85%, while the same classification in the case of SL;; accounted for close to 70%.
In aggregate, the soil loss rate obtained by employing C,4y; as a C-factor input for the USLE model
resulted in two times higher prediction than when using Cy;;.
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Figure 5. The three-year average annual potential soil erosion rates computed using Cpayi (SLendvi)
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Figure 6. Spatial distribution of the predicted average annual potential soil loss rates using Cpgyi
(SLengyi) and Cyyy (SLeje) values as inputs in the USLE model.

The accuracy of the USLE model in general was assessed by comparing the potential soil loss rates
against the measured long-term average annual soil loss rates. The measured values ranged from 0.5 to
5tha~! y~!; the lowest value measured from WRy mono cultivation, while the highest was measured
from continuous fallow plots. The SLj;: gave a comparatively closer estimation than the SLcy4yi, with a
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three-year average of 1.11 t ha™! y~! predicted from the WW and WR sequenced parcels located near
the surrounding of the Holzendorf experimental station (see Appendix A Figure A4). The potential
soil loss rate predicted using Cpgyi, however, yielded an average value of 2.13 t ha™! y ™! for the same
cropping sequence. The closest comparison here is WRy monoculture. Given the fact that rainfall
erosivity increased over the recent years in the study area [61] and the variation in C values of the crop
types, WRy had low C factor values compared to WR and WW [36], the model output from SL;; can
be fairly taken as accurate. SL,4y; erosion prediction, on the contrary, overestimated (close to double)
the erosion rate as compared to SLc;.. However, SLendyi can improve spatially explicit identification
of soil erosion risks as opposed to SL;;. This can be inferred from the relatively higher coefficient
of variation (CV) of 91% computed in the case of SLq,i as opposed to 84% in SLg;; (Appendix A
Figure A4). This can indicate the potential of utilizing NDVI-based C factor estimation for physically
based erosion models such as SWAT.

3.3. Influence of Soil Heterogeneity on Cygy;

Multiple regression analysis revealed that C values estimated from the vegetation index were
affected by the biophysical variables considered (Table 5). The sensitivity of Cpgy; estimations to soil
background variation can be explained through the spatial variability of soil erodibility (K) values
in the study area. This is in agreement with the findings of Wang et al. [53], who reported that the
spatial variability of K factor values can be represented by Landsat TM band 7 variability. In the
present study, an increase in the value of soil erodibility resulted in an invariable incremental change
in the values of C, 4, although the magnitude varied in different months of a year. Sizeable impact, in
terms of magnitude, was observed during spring and the beginning of the summer months. These are
the periods when ground cover contrast is expected to be high. Huete et al. [62] indicated that the
influence of soil background on plant canopy spectral reflectance is more pronounced on soils with
75% ground cover than on either fully exposed or less ground-covered soils.

The variation in C,,g,; values resulting from soil background heterogeneity could be well explained
through the Red and Near Infrared (NIR) bands reflectance variation, particularly on the highest soil
erodibility categories (Figure 7). Soil characteristics such as soil texture, organic matter content and
surface roughness are reported to influence the spectrum properties of a landscape [26]. Remarkably
consistent variations in the reflectance values of both Red and NIR spectrum were observed on soils
with an erodibility class of greater than 0.3 t h ha™' N™'. The higher the K value, the higher the red
reflectance, but the lower the NIR reflectance, which could result in low NDVI values, as NDVTI 1s the
normalized ratio of the two bands. This can be attributed to the fact that soils with lower erodibility
characteristics have relatively higher organic matter contents, which in turn gives the soils a darker
color. Soil with a darker color are reported to have higher greenness value than brighter colors [62].
This could, to a degree, explain how soil erosion risk predicted using C,,4vi (SLendvi) yielded higher
values, as opposed to SL.j;;, because of the compounding effect of the K and Cp4y; values in the USLE
model (Figure 6).
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Figure 7. Comparison of surface reflectance (SR) values across soil erodibility (K) categories in different
images (scene dates chosen based on statistically significant impact on Cp,q,; according to Table 4).
K categories: 1, <0.15;2, =0.15t0 0.3; 3, 2 0.3. The notches in the boxes indicate statistical significance in
median reflectance of Red and Near Infrared (NIR) along the K categories at a 95% confidence interval.

The C4vi values responded differentially to soil background heterogeneity across different
crop-cover types and seasons; during winter and spring, the association of C,,4,; with soil condition
was pronounced on lands covered with winter sown crops (with the exception of WR) more during
summer on the lands covered with spring sown crops (Figure 8). This could be explained in relation to
the growth stages of the crops in question, whereby during winter and spring periods, parcels covered
with winter-sown crops, or with spring sown crops during the summer period, would exhibit mixed
spectral characteristics of both the exposed soil and vegetation of not fully-closed canopies. However,
as time proceeded, the canopies of the respective crops in the respective seasons would fully cover the
parcels; hence, the radiometric signal is less dominated by the soil background reflectance [26].
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Figure 8. Impact of soil heterogeneity (categorized as 1, K £0.15; 2, K= 0.15t0 0.3; 3, K = 0.3} on NDVI
values across different crop cover types and seasons in the study area (notches indicate a significant

variation in median NDVI along the K category at a 95% confidence interval).

The least pronounced impact of heterogeneous soil background reflectance on parcels covered with
WR can be explained by the nature of the architectural orientation of the crop canopy. WR, plagiophile
canopy, is reported to have a higher plant area index compared with WW (belonging to erectophile),
even at the same phenological stage [58]. This can also be inferred from Figure 8 in our study, where,
despite both WR and WRy being expected to cover around 75% of the ground in the images dated
02 April 2016 (Table 2), their NDVI values and response to K value categories varied significantly.
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Land surfaces covered with WR showed no significant response to soil heterogeneity and had
comparatively higher NDVI values consistently (Figure 8). However, a further investigation with
ground measurements needs to be done to further understand the relationship of crop canopy structure
and C factor value estimation for future.

Other spectral indices such as the enhanced vegetation index (EVI) and soil adjusted vegetation
index (SAVI) have been developed to increase sensitivity to changes in biomass while reducing the
impact of soil background noise on vegetation spectral property [63]. However, these indices may
introduce a higher sensitivity to topographic variability, which might take effect in rugged/mountainous
areas [19]. Therefore, consideration of all biophysical variables in calibrating spectral indices for the
purpose of environmental monitoring such as erosion prediction remains imperative.

3.4. Influence of Topographic Features on Cpgyi

The regression analysis also revealed that Cpqy; values showed consistently significant response
to varying slope shapes of the landscape (Table 5). Slope aspect, however, did not show any significant
relationship with C,g,; estimation. Matsushita et al. [19] also reported that topographical features
such as aspect do not exhibit significant influence on band ratio indices such as NDVI. Although slope
steepness showed a significant impact on Cyq,; values in just two images, the regression coefficient
was a very small number close to zero; hence, it is not discussed here.

Convex shaped slope, as compared to flat slope, demonstrated significant incremental implications
on Cpqyi values, with the highest coefficient of 0.05 (P < 0.01; R 2=057) predicted on the image taken
on 02 April 2016 (Table 5). Concave shaped slope, on the other hand, revealed to have a negative
relationship with the estimated C,,4,; values compared with the flat slope. The impact of concaved
slope on C,g,; values was predominantly observed on images taken from the end of June to August.
This can be due to the indirect influence of topographic attributes on vegetation status, as concave
slopes, located towards the depression parts of the study area [31], are most likely assumed to be cooler
in summer as compared to flat land; hence, the crops could senescence late and could remain vital for
a longer time. In addition, this could also be due to the fact that drainage patterns vary with slope
shape, bearing implications on soil moisture conditions of a landscape, in such a way that concave
slopes produce less runoff compared with flat and convex slopes [64,65]. In the study area the different
slope shapes also have a complex interaction with prevailing soil types, due to erosion and deposition
processes [55]. Concave part of slope act as depositional sites while the convex parts of the slope are
dominated by eroded soils. These attributes of the landscape could also play a role in the status of crop
growth and subsequently in C,4,; estimates.

Convex slopes seemed to increase C,4,; value estimations, with considerable magnitude recorded
on images taken in winter and early springtime. The impact of varying slope shape varied with crop
growth stages (Figure 9). During springtime (e.g., image 02 April 2016), the impact of slope shape on
the NDVI values was more evident for winter crops, parcels covered with summer crops exhibiting a
typical NDVI value for bare soil. In the middle of the summer season (04 July 2014), when most winter
crops were approaching maturity stage, the impact of slope shape, specifically concave slope, exerted
an influence on the NDVI values of winter crops. Towards August (03 August 2015), the influence of
slope shape variation was entirely limited to summer crops because winter crops had most likely been
harvested. In general, while using NDVI for C factor estimation, considerations must be taken into
account to accommodate for land formation influence on the status of the vegetation.
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Figure 9. Box plots indicating influences of slope shapes on NDVI values across crop categories and
seasons. Winter Crops are composed of WW, WB, WR, and Wry, while Summer Crops are Mz, 5B, and SC.
Notches indicate significant impact between slope shape categories on median NDVI values (the scene
dates are chosen based on statistically significant impact on Cpgy; estimates according to Table 5).

4. Conclusions

In the present study, we used annually updated high resolution land use data, high resolution
multi-temporal remote sensing data, and topographic and soil attribute data to quantify deviations
between NDVI based C value estimations (C,gyi) and traditional literature-based C values (Cj;) in
addition to quantifying the sensitivity of C,4,; estimation in large agricultural landscape. Combining
these datasets enhanced the quantification of the discrepancies between C,4,i and Cj;;. A higher
discrepancy was observed among winter cereals than summer crops. The discrepancy in C values
between C, 4y and Cy; was also found to be season dependent with a closer relation observed in
early spring to midsummer, with consistently lowest RMSE values for data from June. Subsequently
modelling soil erosion using C,4vi as input factor could yield higher annual mean soil loss rate values,
while it could potentially improve the spatially explicit erosion risk identification.

In quantifying the sensitivity of Cpqyi, the K factor was reliable and consistent to explain the response
of Cigvi values to soil background heterogeneity. Higher erodibility condition, particularly K values above
0.3 th ha=!N™!, was associated with significantly higher C,4,; value estimation: up to 0.28 times higher.
It was also indicated that the relationship between C, 4,; estimates and heterogeneous soil conditions can
be further dissected according to the canopy structure of different crops; namely, Plagiophile crops, found
to be less response to background soil conditions than erectophile types. Identifying land cover type
to specific species level, by coupling remote sensing data with the IACS data, allowed quantifying the
sensitivity of Cp4,; to soil background heterogeneity in relation to crops” growth stage.

The research also indicated that variable slope shape can be reliably used in quantifying the
sensitivity of C,gy; estimates to topographical variations. Convex and concave slopes were found
to have opposite implications on Cp4y; values, in that the concave slope was associated with lower
Chavi values (up to 0.01 times smaller values compared with flat slope), while the convex slope had
an incremental implication (up to 0.05 times higher values compared with flat slope). The impact of
different slope shapes also showed variability according to season; a more evident implication of the
concave slope was in late summer, while the association of convex slope with higher Cpqy; values
spread from spring to the beginning of autumn. The results can be useful inputs in improving the
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capacity of Cyqyj estimation for landscapes as complex as the present study region. In addition, utilizing
remote sensing data for the purpose of capturing spatiotemporal variation in C factor determination
and subsequently serving as input factor for process-based soil erosion modelling can be enhanced
by considering the quantified sensitivity of Cnqyi estimations. The information obtained from such
modelling practice could also benefit the evaluation of several agricultural land management options
in large and complex agricultural landscapes efficiently and more accurately.

For future research, we suggest to explicitly study C factor determination, including spatially
distributed climatic data along with yellow vegetation indices in order to improve the applicability
and transferability of the C,,4,i method to regions with similar conditions.
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Appendix A

NDVI Landsat 7(03/17/2015)
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Figure A1. Comparison of NDVI values between two closely taken images from Landsat 7 and Landsat
8 satellites, indicating comparably similar distribution and statistics.
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Figure A2. Mean and variance NDVI comparisons between Sentinel 2 and Landsat 7 images; there was
no significant difference between the means (p = 0.47) in these two closely sensed data. Correlation
coefficient was r = 0.97. Values are the averages of each parcel (n = 1130 parcels) from 2016 IACS data
extracted using the R package “raster.”

2014.06.10 20140704
¢ T ] T = T = A==l
s+~ BETTE3 == 5 B+ =L
w | L i - H I -+ | ! ] e s
a2 = . = et = 1 L =
=1 T sl L =
T T T T T T T T T T T
Mz S0 k- WE R WiRy v Mz k=l ¢ o
Crops Crops:
2015.08.08 2015.10.27
] [ =] [ == e
N ' HBEs=aE
) ‘ 1 HE
IR 1 e 1 BHEEEHEEE
o e el —— ] - i | | | | |
T T T T == T T T i T L S— LI E— T ==
Mz E=:] BC wB WR WRy ww Mz 58 8C we R WRy ww
Craps Croos

Figure A3. NDVI variation across different crop cover types in the study area. In June, almost all crop
covers had a median NDVI > 0.5. As the summer progressed, winter-sown crops such as WRy, WB, and
WW showed a decline in median NDVI values, which could elevate the Cy4,; values of the study area.
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Figure A4. Three years average potential soil erosion rate in a catchment around Holzendorf
experimental station: (a) land cover type from 2014 to 2016 cropping year identified through the IACS
data; (b) and (c) erosion predicted using Cy;; (SLy;t) and using Cpayi (SLengyi), respectively. Compared

to the long-term experimental results, which ranged from 0.5 to 5 t ha™! y~7, the values predicted using

the USLE can fairly be taken as representative.

Appendix B

Table Al. Data comparison between randomly extracted data points (samples) and the whole scene
statistics (population). The t-test indicated no statistical difference between the two groups (p = 0.92,
t value = 2.0 for the means; and p = 0.99, t value = 2.0 for standard deviations).

. Mean Standard Deviation
Variables
Sample (# =5000) Population  Sample (n =5000) Population

Slope 252 2.58 1.95 2.14
K value 0.2 0.19 0.07 0.07
LS factor 0.36 0.37 0.38 0.40
Chdvi by scene dates

29 October 2013 0.21 0.19 0.21 0.21
10 February 2014 0.26 0.25 0.20 0.19
30 March 2014 0.14 0.13 0.21 0.20
1 May 2014 0.17 0.14 0.25 0.23
18 June 2014 0.07 0.07 0.12 0.11
4 July 2014 0.12 0.11 0.15 0.15
13 August 2014 0.25 0.24 0.24 0.24
6 September 2014 0.32 0.31 0.27 0.27
8 October 2014 0.24 0.23 0.23 0.23
17 March 2015 0.29 0.29 0.21 0.20
25 March 2015 0.22 0.21 0.19 0.18
10 April 2015 0.16 0.15 0.22 0.21
5 June 2015 0.12 0.10 0.23 0.21
13 June 2015 0.09 0.08 0.17 0.16
4 July 2015 0.11 0.11 0.14 0.14
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Table A1. Cont.

. Mean Standard Deviation
Variables
Sample (1 =5000) Population Sample (n =5000) Population
7 July 2015 0.12 0.11 0.14 0.14
3 August 2015 0.38 0.37 0.25 0.25
3 October 2015 0.30 0.29 0.25 0.25
27 October 2015 0.28 027 0.24 0.24
31 December 2015 0.21 02 022 022
2 April 2015 0.28 0.26 0.25 0.24
22 April 2015 0.21 0.18 0.26 0.25
2 May 2015 0.22 017 0.30 0.28
9 May 2015 0.21 016 0.30 0.28
12 May 2015 0.20 0.16 0.28 0.26
8 June 2015 0.09 0.08 017 0.17
23 June 2015 0.06 0.06 0.11 0.11
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ARTICLE INFO ABSTRACT

Keywords:
Crop rotation
Remote sensing

In arable land management, different crop rotation patterns and sequences, such as changing agricultural land
use to erosion prone crops, or crops providing less ground cover, can greatly influence soil loss rate through their
impact on soil cover status (C factor value). The influence of crop rotation on C value and on erosion rate is often
C factor - . § ) . ! ) )
Soil erosion determined on an experimental plot scale, so the results are often erroneous when extrapolated to large het-
IACS erogeneous landseapes, where they fail to capture the spatiotemporal variability beyond the experimental sites.
In the present study we have endeavored to investizate the impact of various crop rotation patterns on C value
and on subsequent soil erosion rate, at a landscape level, by combining 28 time-series satellite images (from 2013
to 2016) along with annually updated land-use data, via the integrated administration and control system (IACS),
from the Uckermark district of north eastern Germany. In total, 21 different crop sequences were investigated.
Winter wheat (WW), winter rape (WR), and maize (Mz) were found to be the predominant arable crops grown in
the study area. The highest average annual C values were estimated from crop sequences involving Mz and sugar
beet (SB), both as pre-crops and succeeding crops. The highest value of 0.39 was computed from SB/Mz rotation.
On the other hand, crop rotation involving WR gave significantly lower annual C values in all the years
considered, with the lowest average annual C value of 0.07 calculated on WR parcels preceded by winter cereals.
It was also apparent that crop rotation patterns influenced C value in a temporally variable manner. Among the
self-sequencing patterns, WR/WR reduced the C value significantly compared with Mz/Mz and to a lesser extent
compared with WW/WW. Continuous cultivation of Mz increased the potential soil loss rate by as much as 72 %
compared to WR/WR and by 51 % compared to WW/WW. It was also possible to determine the spatial distri-
bution of the impact of erop rotation on soil erosion risk within the study area. The results obtained agreed with
the results of other international and regional studies. Overall, the output from this research could contribute
towards further efficient investigation of the impact of agronomic practices on the environment in a large
agricultural landscape, without the need to set up multi-location experimental plots.

1. Introduction several ways, such as improving long-term soil fertility, soil aggregate

stability and enhancing diversity at landscape level, provided that

In arable lands, decisions of land-use management can have a direct
impact on the rate of soil loss (Preiti et al., 2017). Changing agricultural
land use to incorporate erosion-prone crops and crops providing less
ground cover could significantly accelerate the rate of soil erosion
(Morgan, 2005; Simonneaux et al., 2015). Crop rotation, a decision to be
made by farmers for various intrinsic and extrinsic reasons, is the
sequencing of different crops grown on a given area of land (Castellazzi
et al., 2008; Glemnitz et al., 2011). Rotating different crops has been
reported to have a positive effect on sustainable agricultural practices in

* Corresponding author.
E-mail address: dawitashena

alewD1@upol.cz (D.A. Ayalew).

https://doi.org/10.1016/j.eja.2020.126203

compatible crop types are sequenced (Leteinturier et al., 2006; Morgan,
2005; Peltonen-Sainio et al., 2019; Steinmann and Dobers, 2013). For
instance Jankauskas and Jankauskiene (2003), report that the compo-
sition of crops involved in a rotation system significantly affects the
capacity of the rotation system to prevent soil erosion. Bullock (1992)
also indicates that short-term rotation of maize and soybeans results in
degradation of physical and chemical properties of the soil compared
with rotations comprising of various compatible crops.

There have, however, been worldwide reports of an increasing trend
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Fig. 1. Overview of study area and arable land use according to IACS 2015.
(Geographical location source: http://www.diva-gis.org/gdata)

of growing crops in monoculture, if not in short rotations of less
compatible crops, for economic, technological, and policy-related rea-
sons (Bennett et al., 2012). The decision to rotate different crops, which
is not of a random probability according to Glemnitz et al. (2011) and
Stein and Steinmann (2018), entails a spatiotemporal variation in the
context of the impact it may have on soil erosion rate on a larger land-
scape scale. Therefore, understanding the spatiotemporal dyvnamics of
various crop rotations, in relation to their impact on soil erosion on a
large agricultural landscape scale, is a subject that demands due atten-
tion. There is still a lack of reliable assessment of the impact of various
crop rotation patterns on land degradation in general, or soil erosion in
particular, at a regional level (Lorenz et al., 2013}, while this is funda-
mental in understanding other related phenomena, such as climate
change mitigation and hydrological processes on a global scale (Alewell
et al., 2019).

The influence of crop rotation on soil erosion can be assessed by the
crop cover and management (C-factor) values from the Universal Soil
Loss Equation (USLE) model. More often than not, plot experiments are
laid out to determine C values for specific crop rotations (Deuschle et al.,
2019; Preiti et al., 2017). However, determining crop rotation patterns
at plot level is not only a time consuming and costly practice (Gabriels
et al., 2003; Preiti et al., 2017), but it also fails to accommodate
spatiotemporal variations beyond the area of the experimental location
(Peltonen-Sainio et al., 2019). Even the availability of such information
is limited in many cases (Gabriels et al., 2003; GUO et al., 2015). One of
the key inputs lacking in the assessment of crop rotation systems, and
subsequent use in erosion prediction models on a large heterogeneous
agricultural landscape scale, is spatiotemporally refined agricultural
land-use data, namely information on specific crop sequences (Glemnitz
et al.,, 2011; Lorenz et al., 2013; Waldhoff et al., 2017). In Germany,
where the present study site is based, a number of studies have used
district level statistical cropping data to assign empirical C values in
relation to crop rotation on a large agricultural landscape scale
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(Auerswald, 2002; Deumlich et al., 2005; Koschke et al., 2013) although
the values obtained are static. Yet, assigning empirical C values to
land-use maps is problematic, due to inaccuracy resulting from gaps in
transition periods between two main crops (Auerswald et al., 2003). The
use of remote sensing data for such a purpose is, therefore, topical and
has been suggested by a number of researchers (Leteinturier et al., 2006;
Peltonen-Sainio et al., 2019; Waldhoff et al., 2017) as it incorporates the
spatiotemporal dynamics of rotation systems and their implications on C
values and erosion rates.

Yet, studying cropping practices in general, or crop rotation in
particular, using remote sensing data is not a well-established practice
(Bégué et al., 2018). In their literature review work, Bégué et al. (2018)
indicate that not more than 10 % of remote sensing studies focused on
cropping practices. When it comes to crop rotation, the majority of
studies focused on identifying rotation patterns and classifying the
pre-crops and succeeding crops in general (Conrad et al., 2016; Kipka
et al., 2016; Martinez-Casasnovas et al., 2005; Mueller-Warrant et al.,
2016; Panigrahy and Sharma, 1997; Sahajpal et al., 2014).

In the present research, therefore, we used multi-temporal satellite
images in combination with parcel level land-use data, the Integrated
Administration and Control System (IACS), to investigate the influence
of actually practiced crop rotation patterns on C factor values and the
subsequent impact on potential soil erosion risks across a large hetero-
geneous agricultural landscape. The overarching aim of the research is
to indicate ways of alleviating the problem of determining C values, and
subsequent soil erosion rates, for various crop rotation patterns, with
respect to addressing temporal variability in a large heterogeneous
landscape.

The three specific objectives of the study are to: i) investigate the
impact of various crop rotation patterns on C factor values and on
subsequent potential soil erosion rate; ii) temporally evaluate the in-
fluences of crop rotations on C factor values in order to capture inter-
annual variability in various cropping sequences; iii) assess the spatial
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Table 1

Cropping calendar and representative satellite image allocation in each season.

Cropping calendar

2015/2016

2014/2015

2013/2014

summer

Winter spring summer Autumn Winter Spring

Autumn

Winter Spring Summer

Autumn

06.08.16".
06.11.16",

04.02.16".

09.15.15".
10.03.15%

06.05.15".

03.25.15".

09.06.14".

06.10.14%; 06.18.14".

03.30.14"

04.22.167 05.09.16% 05.12.16 06.23.16°

12.31.157
10.27.15'

06.13.15",
04.10.15” 07.04.15”,
08.03.15

03.17.15'

10.0814'

10.29.13° 02.10.14" 07.04.14".
1
05.01.14 08.13.12

Image dates*™

Dates are expressed as month.day.year.

! Landsat 7 data.
? Landsat 8.

3 Sentinel 2 data,
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distribution of the impact of crop rotation on potential soil erosion risks
in the study area. In the end, the outcome of the study could have im-
plications for large-scale agroecosystem modelling studies in the study
area and beyond.

2. Material and methods
2.1. Study area

The study area is in the Uckermark district of the north eastern part
of the Brandenburg state of Germany (Fig. 1). The area is characterized
as having heterogeneous soil type across varying topographical form;
slightly eroded Luvisols to Calcaric Regosols dominate the hill tops and
upper slopes, while Luvisol or Haplic Luvisol occur mid-slope. In
depression areas Stagnosols prevail (Deumlich et al., 2010; Wulf et al.,
2016). The area has temperate and continental climatic conditions with
annual average air temperature ranging between 7.8 °C and 9.5 °C
(Vogel et al., 2016). An average annual precipitation of 460.3 mm was
recorded at Griinow weather station between the years 1992-2016
(Wetteronline.de, 2018). Land use in the area is predominantly agri-
cultural (Glemnitz et al., 2011), mostly covered by winter cereals,
winter rape, maize, and sugar beet (Lischeid et al., 2016).

2.2. Darta and processing

2.2.1. Satellite imagery

Twenty-eight images from Landsat 7 and Landsat 8 (using path 193,
row 23), and Sentinel 2A (using tile ID 33UVV), covering a period from
2013 to 2016, were downloaded from the USGS (https://earthexplorer.
zov/) and the Copernicus Hub (https://scihub.copernicus.eu/dh
us/#/home) respectively. All images have been atmospherically cor-
rected. In order to represent the four growing seasons, at least one image
from each season was included (See Table 1 for allocation of images
according to cropping calendar). Images showing cloud cover of less
than 30 % were used for the purpose. Most of the images covering the
study area were cloud free, and cloud mask data was used to exclude
cloud covered pixels from further analysis. Finally, the study area was
defined in each image using the IACS shape.

usgs

2.2.2. Crop rotation (sequence) identification

The Integrated Administration and Control System (IACS), which
was implemented by the EU for direct payments, provides parcel level
land-use data (Stein and Steinmann, 2018; Steinmann and Dobers,
2013). IACS data from 2013 to 2016 were used for the present study to
determine crop rotation. The IACS dataset consisted of up to 1127 single
entries (number of parcels) per year for the considered study area. Each
entry provides information on agricultural land use, such as crop type,

Table 2
Proportion (%) of arable land use during the considered years.

percentage of entire arable
Land use Abbreviation  landscape used for given crop

2013 2014 2015 2016  Average

Winter wheat ww 23.3 23.2 22.0 20.7 22.3
Winter Barley WB 6.6 6.6 7.9 5.9 6.8
Winter Rye WRy 4.5 2.4 1.2 1.1 23
Winter Rapeseed WR 12.7 14.0 12.2 11.0 12.5
Maize Mz 10.3 10.7 9.3 10.0 10.1
Sugar Beets SB 0 2.3 1.8 1.3 1.4
Summer Cereals SC 3.2 2.5 25 1.5 24
Grass* Gr 35.0 34.0 325 35.2 34.2
Fruits and FG 0.3 0.8 0.2 0.9 0.5
vegetables
Others** 4.2 3.4 10.5 12.8 7.7

* Grass includes all forms of, annual or permanent, cultivation of grass and
fodder species in the entire agricultural landscape.
** Ineludes potataes, peas, beans, fallow fields, buffer strips.
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Crop sequences (CS) considered for analysis based on the parcel proportion of the specified pre-crop and the landscape coverage (parcel proportion >5% and coverage

=0.5 % considered for analysis).

Coverage of the CS as propertion of entire landscape (%)

Specified pre-crop as a proportion of the CS (%)

Succeeding crops Pre-crops
2013/14 2014/15 2015716 2013/14 2014/15 2015/16
ww 6.6 6.7 7.6 228 26.9 27.1
WR 10.1 11.7 11.8 54.7 65.6 72.1
Mz 4.4 3.7 3.1 41.2 36.0 33.7
wWw WB 1.3 1.7 1.6 17.9 14.6 16.4
SB - 1.1 0.6 - 34.1 40.0
WRy 1.2 - - 31.4 - -
sC - - 0.6 - - 26.2
WR 1.7 1.5 1.2 8.9 8.6 7.6
ww 89 5.9 6.6 31.3 239 23.6
WR Mz 0.6 0.5 0.8 5.6 5.0 8.3
WB 4.7 5.3 4.9 64.2 45.2 51.4
WRy 0.9 - - 26.7 - -
sC 0.9 - - 33.3 - -
Mz 27 2.9 3.3 25.2 28.6 35.9
ww 3.9 2.5 5.0 13.8 10.0 17.9
Mz WR 1.9 0.8 1.1 10.6 5.0 6.7
SB - 0.8 - - 25.0 -
WB - - 1.2 - - 12.9
WRy 0.6 0.7 0.3 15.1 39.2 11.3
ww 6.3 6.3 3.9 21.8 254 14.0
WB WB - 0.9 0.7 - 7.7 7.1
WR 3.7 1.9 - 19.8 10.7 -
SB ww 1.3 1.2 0.8 5.0 5.1 5.0
Mz 0.9 - - 8.4 - -
(-) CSs did not fulfill the threshold, hence not considered for analysis.
Pre-crops, Prooe L I‘h
Lo ]
v\\’rvv% 2013/14 V\O’\ﬁ 201415 v‘o’eﬁ — 2015/16
Mz f— Wom i
Ww  WB ww ‘B R ww YBE
Wry Gri Grp
Gra SC SC
sc Wry Wry
— W — S —
_— V\éR — V\éR j—
o a WR @GR 2 WR SR
Mz = Mz .
& & S8 & S8
S S SC S SC
g 2 Wry 4 wry
b B 1Viz — 3 1Mz —
8 8 WV — 2 WV —
g g V\?FE —] 5 \AFRr =
@ @ f— @
M2 'SE M2 SE
Wry Wry
we m we m
SCh sCp
Gr Gr
‘EC " u?c ]
Gr WRr Gr Wr
wB WB
Mz Mz
T T T SB T T T T SB T T
0 20 40 60 80 0 20 40 60 80 100 0 20 40 60 80 100
% of succeeding crops % of succeeding crops % of succeeding crops

Fig. 2. Proportion of pre-crops, of the principal land use types, in the study area.

parcel area, etc. for a single parcel of land specified by an official nu-
merical code (ID). A number of researchers have pointed out that there is
a potential change of parcel identification number from year to year,
which could result in a mismatch for rotation study (Leteinturier et al.,
2006; Stein and Steinmann, 201 8). However, to avoid any mismatch, we
used the crop ID, through query builder of the AreGIS10.2.2, to identify
crop sequence patterns.

Crop sequences in the study area were determined by intersecting
consecutive IACS shape files through the Geoprocessing tool, which then
provided an intersected polygon map for each cropping calendar (See
Table 1 for cropping calendar). The final intersected polygon then has its
own consecutive years’ crop history, from which the predominant/
major crops in the study area were taken as succeeding crops to deter-
mine their pre-crops by means of the query building tool in the AreGIS
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environment. A similar approach was applied by Leteinturier et al.
(20006), using IACS datasets to formulate crop sequence indicators. The
percentage of the land-use pattern in the study area is depicted in
Table 2. Winter wheat (WW), Grass (Gr), Winter Rape (WR), and Maize
(Mz) are considered as predominant/major crops as they covered more
than 10 % of the landscape in the study periods; while the others (WB,
WRy, SB, and SC) were taken as minor crops. All possible single vear
crop sequences of the indicated land cover types, except fruits and
vegetables, were determined, and hence a total of 64 sequences (i.e. 8
crop types in sequence with 8 different crop types, including
self-sequencing) could be obtained (Appendix Table A1)

Year on year proportions of each crop sequence, and its share of the
entire landscape, were calculated (see Appendix Table A1). As analysis
of all 64 crop sequences would not be feasible, a threshold was set. Crop
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B 0.4-0.8 (Block 5)
I >0.4 (Block 6)

2013114
d) cropping calendar
,“ 201415
3 cropping calendar
2015/16
Cropping calendar
Crop sequences
B WWWW; WRAWW: MW W; WB/WW; SB/WW: SC/WW; WRy/WW
[ WW/WB; WR/WB
0 WW/WR; WR/WR; M2/WR; WB/WR; SC/WR; WRy/WR N
B\ WMz WRIVIZ; Mz/Mz; WB/Mz; SB/Mz; SC/MZ; WRy/Mz
B \VwisB; MzSB ] 5 10Km
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Fig. 3. Map of a) Rainfall erosivity, b) soil erodibility, ¢) slope length and steepness (LS) blocking, and d) crop sequences considered in the analysis from 2013 to
2016 cropping calendars (the shape of the map in each year varies due to the spatial variation of the cropping patterns in each year’s ICAS shape).

sequences with a proportion of more than 5% of the specified pre-crop in
that particular year, and coverage of at least 0.5 % of the entire agri-
cultural landscape (a sum of more than 75 ha of parcels [3 standard
deviation] in each cropping calendar year) were selected for the final
analysis. As a result of variations in the year on year proportion of minor
crops, a slightly different set of crop sequences was considered in each
cropping calendar (Table 3).

When it comes to the pre-crops of the predominant/major crops,
there appeared to be year on year variation (Fig. 2), apart from grass
(Gr). Most of the grass-covered parcels (close to 90 %) retained the same
land-use throughout the entire study period; as a result, Gr was not
included in the analysis of crop rotation.

2.3. Potential soil erosion modelling and C factor determination

The USLE predicts annual soil erosion rate through six compart-
mentalized factors, e.q.1, (Wischmeier and Smith, 1978):

A=RKLSC.P M

where, A is predicted annual soil erosion rate (t ha™! y“').

e R is rainfall erosivity factor (N h™", unit commonly used in Germany
and can easily be converted to Metric units by increasing it by one
order of magnitude). We used average erosivity over eight years
(2006-2013), calculated using 1 km? spatial and 5-minute temporal
resolution radar data (RADOLAN) obtained from the German
Weather Service (Fig. 3a). The use of radar weather data for rainfall
erosivity estimation and soil erosion modelling has been found to be
satisfactory (Fischer et al., 2016).

K stands for the soil erodibility factor (t h ha™' N~') (Fig. 3b), which
was determined using data obtained from the German soil appraisal

“Bodenschétzung” (DIN 19708, 2005DIN 19708, 2005; Vogel et al.,
2016) by employing the equation developed by Wischmeier and
Smith (1978).

L and S are the topographic factors which indicate the slope length
(L) (calculated according to Hickey (2000) and steepness of the slope
(S) (determined according to Nearing (1997) using a 5 m resolution
digital elevation model (Fig. 3c).

C stands for the cover and management factor, which is the concern
of this study. The USLE C factor values for crop rotations are calcu-
lated using the Soil Loss Ratio (SLR), representing the ratio of soil
loss under a specific crop cover to that of bare soil of similar topo-
graphic and edaphic conditions (Morgan, 2005; Wischmeier and
Smith, 1978). The measurement is repeated several times (periods)
in a growing year, corresponding to different phenological stages of
the given crop, from ploughing to harvesting. Finally, these SLR
values are weighted by the corresponding percentage mean annual
rainfall erosivity (R) values and the final summation provides the
annual C-value (eq.2).

c= Z sue,-.% @

where, C is the annual C-factor, SLR; the soil loss ratio for the period i, R;
is the rainfall erosivity of the month i, R is the annual rainfall erosivity,
and n is the number of periods used in the summation. As pointed out
earlier, while dealing with large scale investigations, measurement of
SLR for each and every crop type and rotation is inefficient and costly
(Gabriels et al., 2003; Panagos et al., 2015). van der Knijff et al. (1999)
suggested employing an NDVI-(normalized difference vegetation index)
based equation (Eq.3) for regional scale C-factor determination
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Fig. 4. The impact of different crop rotations on mean annual C factor values (a) 2013/14, b) 2014/15, ¢) 2015/16 cropping calendar; columns followed by the same
letter(s) are not significantly different from each other according to LSD (P < 0.05).

(3

NDVI
C= (’xp[ —a ]

(= NDVI)

where, a and p are parameters of the NDVI-C correlation by which values
2 and 1 are found to yield reasonable results. This method has been
employed by several studies worldwide (Durigon et al., 2014; Pechanec
et al., 2018; Vatandaslar and Yavuz, 2017; Vijith et al., 2018). The C
factor values are, then, determined using eq.3 from each crop sequence
pattern (Fig. 3d) for the USLE model.

« P is soil support practice factor, such as contour farming or terracing,
for this region a value of 1 is applied as support practices are not
implemented.

The USLE model was executed in GIS environment. Finally, the
performance of the erosion model was validated by comparing the
model output with a long-term (1984-1996) plot-scale experiment
output of different crop rotation schemes conducted at Holzendorf
research site (Fig. 1). Crop rotations involving Mz/Mz and WRy/WRy
were considered for validation. Details of the composition of the
experimental rotation scheme can be found in the results of Deumlich
etal. (2018) and the long-term measured erosion rates are also depicted
in the Appendix Fig. BI.

2.4. Sratistical analysis

In order to look into the impact of various crop rotations on C-factor
values, and on the subsequent soil erosion rates, Analysis of Variance
(ANOVA) through the Generalized Linear Model (GLM) was employed,
using the R statistical software (R Core Team, 2019). The average C
factor value and soil loss rate of each parcel were extracted using the R
spatial analysis package (“extract”). The extracted values are the
average values of each agricultural parcel. This method enhanced the
capacity to trace back values through the parcel ID. However, in order to
control variations which could arise from differences in soil type and
topographical features rather than mere crop rotation, we used three
blocks of soil erodibility values, considered to represent the heteroge-
neous soil condition of the study area, (block 1, K < 0.15; block 2, 0.15 <
K < 0.3; and block 3, K > 0.30) and three blocks of LS factor (block4, LS
< 0.4; block 5, 0.4 < LS < 0.8; block 6, LS > 0.8) (Fig. 3b and c). These

blocking categories were determined after running regression analysis of
C values against several topographic and soil variables in the study area
(Ayalew et al., 2020). These two variables were found to correlate well
with NDVI-derived C values in the study area. Additionally, in analyzing
the impact of crop rotations on potential soil erosion risk, to avoid dis-
crepancies which could result from spatial variation of R factor values, a
uniform eight-year average R value of 73 N h~" was used to normalize
the soil erosion output. Finally, statistical significance differences be-
tween the various crop rotations were determined through the Least
Significance Difference (LSD) mean separation test at P < 0.05.

3. Results and discussion
3.1. Crop rotations and C values

The most prevalent year on year crop rotations (sequences), in terms
of their share in the agricultural landscape, were found to be those
involving WW, WR, and Mz crops in all the three years considered
(Table 3). Similar findings have been reported by Steinmann and Dobers
(2013) in a crop rotation study conducted in northern Germany. How-
ever, incorporation of Mz in the rotation (crop sequencing) scheme can
be considered as a recent trend. A decade ago Mz was not commonly
included in the crop rotation system in the study area, as per Prager etal.
(2011). The importance of Mz is also expected to increase in the future,
due to the demand for energy preduction (Lorenz et al., 2013). For WW,
the main pre-crops were WR (42 %) followed by self-sequencing of WW
(27 %) and MZ (14 %). For WR the main pre-crops were WW (44 %) and
WB (31 %), while for Mz the main pre-crops were found to be WW (34.5
%), self-sequencing of Mz (28 %), and WR (12 %). So, among arable
crops, WW and Mz were the most self-sequenced crops, with respect to
area coverage, the three-year average amounting to 7% and 3%,
respectively, of the entire landscape (Appendix Table A1). More or less
similar findings on the proportion of pre-crops of WW has been reported
by Lorenz et al. (2013) for the Saxony region of Germany.

The ANOVA result revealed that different crop sequence patterns had
significant implications for both average annual C values (Fig. 4) and
predicted average annual potential soil erosion rates in all the years
considered. The highest average annual C values were estimated for crop
sequences involving Mz and SB, as both pre-crops and succeeding crops.
The maximum average annual C value of 0.39 (Fig. 4b) was computed
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Table 4
Intra-annual variation of crop rotation impact on monthly mean C values.
Pre- | Months*
Succeedi | cro | Februa | Marc Augus | Septemb | Octob | Decemb
ng crop p Iy h April [ May | June | July t er er er
w 0.223* | 0.168" [ 0.079¢ | 0.060 | 0.013 | 0.098¢
w . g ¢ d f ¢ 0.498* | 0471" 0.363* | 0.170™
0.199" | 0.118 | 0.054% | 0.018 | 0.007
WR | < & ° d f 0.068° | 0.490* | 0.473* 0.420° | 0.132%
0.228 | 0.128¢ | 0.052 | 0.034 | 0.094¢ | 0.430° 0.321*
Mz |0314¢ | ; ¢ ef e : 0233 |t 0.296
WW 0.132 | 0.054¢ | 0.038 | 0.008 0.351*
WB | 0.138 | ¢ ¢ ¢ f 0.068° | 0.489" | 0.485" | ° 0.121%
0.290 | 0.162° | 0.009 | 0.034 | 0.099¢
SB - © d d of ot 0.469* | 0.021° 0.125° | 0.361°
0233® | 0.141 | 0.054Y | 0.026 | 0.001 | 0.078 | 0.354° 0.334°
sSC cd efg e d if e b 0.385¢" b 0_[74bv
WR 0.147" | 0.084¢ | 0,031 | 0.024 | 0.222°
y 0.298 | ¢ de d ’ b 0470" | 0.564" 0515 | -
w 0.116 0.084 | 0.005
W |o0a21¢ | ¢ 0.037¢ | ¢ f 0.043° | 0.486" | 0411* | 0.179* | 0.077°
0.130 | 0.060¢ | 0.035 | 0.013 0.296°
WR | 0.147¢ | ¢ ¢ d f 0.041¢ | 0462* | 0.444* : 0.116
WR 0.200f [ 0.0789 | 0.196 | 0.019 0.305° 0.293%
Mz | 0282 |¢ ¢ ¢ f 0.042¢ | ® 0.337%® o 0.188>
0.133 0.057 | 0.008 0.407*
WB |0.124¢ | ¢ 0.043¢ | ¢ f 0.033¢ | b 0435" | 0.190° | 0.075¢
WR | 0.120d | 0.095 0.097 | 0.001 | 0.077 0.442*
y ¢ & 0.009° | ¢ f de b 0.499* 0.391* | 0.172%
W 0.342 0422 | 0.383 0.102¢
w 0.275% | « 0.341° | @ be 0.204> | ¢ 0.303% | 0.171° | 0.158™
0.260 0249 | 0.169 | 0.171° | 0.162" 0.228*
WR | 0.295% | o 0.201¢ | ™ d ¢ o 04450 | °® 0.130%
0435 | 0426 | 0441 | 0.354 0.125° 0219
Mz Mz | 0437% |°® ¢ B ¢ 0.171° | 0.106° b 0.443%
0272% 1 0.229 | 0.168° | 0.369 | 0.153 | 0.140° | 0.233
WB © efg d ab de cde C 0 1 8 1 bc 0094b 0 . I. 53bc
0.544 0.481 | 0491 0.066¢
SB - ! 0.537* | * ! 0.265° | 4 0.028°¢ 0.082° | 0.429°
0.570 | 0.565% | 0.369 | 0.371 | 0.148" | 0.009¢
SC | 05440 | *® b 4 od cde d 0.325% | 0.031° | 0.232%*
R? 044 0.62 0.70 0.62 0.73 0.44 0.61 0.60 0.55 0.35

Mean values followed by the same letter(s) in a column are not significantly different from each other as per LSD (P < 0.05). (-) indicates not considered in the analysis.
“The months are represented by individual satellite images which were selected according to best coefficient of determination values (r*); and the missing months are

due to unavailability of representative cloud free images.

for SB/Mz sequencing, in the 2014/15 cropping calendar. Among the
major crops, Mz was found to exhibit higher C values. Specifically, when
Mz was sequenced after SB or Mz, higher C factor values were observed.
However, if WR was used as a pre-crop for Mz, the values declined
significantly and consistently compared with pre-crops of either SB or
Mz itself. The importance of incorporating rapeseed in a rotation scheme
has been discussed widely for major crops such as wheat (Pelto-
nen-Sainio et al., 2019; Weiser et al., 2017). Weiser et al. (2017) indicate
that wheat preceded by an oil seed crop yields higher than wheat pre-
ceded by other cereals. Peltonen-Sainio et al. (2019), employing NDVI
based pre-crop value determination, also found that rapeseed enhanced
the pre-crop value for many succeeding crops in Finland. In the present
study, it is also demonstrated that WR, used as a pre-crop for Mz, can
significantly enhance the cover status of Mz covered parcels,

particularly compared with self-sequencing of Mz or succeeding a
pre-crop of SB (Fig. 4b).

Crop sequences involving WR showed a tendency to consistently
reduce the average annual C value. The lowest average annual C value,
amounting to 0.07, was determined on parcels covered with WR, with
pre-crops of winter cereals (Fig. 4a). On the other hand, Mz was found to
result in higher C values when it preceded WR. In the study region SB
rarely preceded WR during the vears considered (Fig. 2) so it was not
possible to determine pre-crop influence of SB on WR. Glemnitz et al.
(2011) also indicated that SB and WR are taken as alternative pre-crop
options in crop sequencing schemes in the study region.

When it comes to WW, by far the major cash crop grown in the re-
gion, it consistently resulted in higher annual average C values when
preceded by Mz or SB. However, crop sequencing of WR/WW could have
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Fig. 5. a) spatial distribution of crop sequence patterns in 2015/16 cropping calendar; b) the corresponding distribution of average annual C values; c) the cor-

responding distribution of potential soil loss rates.

the potential to reduce the annual average C value compared with the
alternative pre-crop of SB or self-sequencing of WW (Fig. 4a, b, and c).
Therefore, with respect to C factor management and soil erosion con-
siderations, sequencing WW after WR could do better in the study area
compared with succeeding Mz or SB. Winter rape, however, as a blank
seed in a fine seed bed is highly susceptible to erosion during thunder-
storms in August (discussed below).

Among the self-sequencing patterns, WR/WR gave the lowest
average annual C values in all the three considered cropping calendars,
resulting in a value of 0.11, which was significantly lower than Mz/Mz
(0.35) and WW/WW (0.19). Gabriels et al. (2003) report that continuous
cropping of Mz in a rotation scheme, conducted at watershed scale in
Belgium, resulted in highest annual C factor values. This could be due to
the longest period of uncovered soil conditions resulting from Mz
cultivation, in contrast with WR’s almost year-round soil coverage.

The influence of crop rotation patterns on C values, however, was
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found to vary intra-annually, as can be inferred from Table 4. WW
parcels which were pre-cropped with SB had significantly lower
monthly C values (Table 4, light-grey shaded columns) than WW parcels
preceded by any other considered pre-crops during early autumn
(September or October). This could be due mainly to the fact that parcels
occupied by SB had not yet been harvested in these months, and hence
the vegetation cover of SB remained vital lowering the values. However,
during early spring (March and April), WW succeeding SB showed
significantly higher monthly C values (0.29 and 0.162 respectively)
compared with, for example, WR/WW (0.118 and 0.054 respectively).
This could be explained as a result of the late sowing date for WW as a
consequence of later harvesting of the SB pre-crop (<opt COMMENT
id="optOghWoi3z5WVXb7deD4fpTmKGTwsy2vSV">The name of the
journal is Agricultural Systems.Castellazzi et al., 2008; Frielinghaus and
Bork, 2000). Regarding WR, despite consistently giving the lowest
annual C values when succeeding winter cereals (Fig. 4), during late
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summer (August) and early autumn (September) the values calculated
were found to be higher (Table 4). This could be due to the early
phenological stages of WR in which the crop cover status is not expected
to be more than 10 % (DIN 19708, 2005DIN 19708, 2005). Parcels
covered with Mz, however, showed the exact opposite of crop
sequencing involving WR. Parcels changing from Mz or SB to a suc-
ceeding crop of Mz showed the lowest monthly C values in August and
September (Table 4, dark-gray columns); this could be attributed to the
vegetation vitality status of the respective pre-crops which still effec-
tively increased NDVI values, which in turn reduced the calculated C
values. The results of the present study could indicate the importance of
explicit consideration of temporal variability of crop rotation, with
respect to protecting agricultural land against the impact of soil erosion
by water (Preiti et al., 2017); and particularly essential for the study
region, as Gericke et al. (2019), modelling rainfall erosivity in relation to
climate change, report a likely incremental trend in rainfall erosivity in
the future. The results could also show the possibility of employing
multi-temporal satellite to capture temporal variability of C factor
determination, with the implication for large scale ecosystem modelling
studies. Process-based environmental impact assessment models, such as
the Soil and Water Assessment Tool (SWAT), which require temporally
explicit crop rotation input data, can benefit from such a practice.

When we consider the spatial distribution of C values in relation to
different crop sequences, crop rotation components incorporating Mz
and SB within the entire agricultural landscape corresponded with
higher mean annual C values (Fiz. 5a and b). In the 2015/16 cropping
calendar, around 17 % (2931 ha) of the entire agricultural landscape
involved these crops, as both preceding and succeeding crop sequencing
components, which in turn corresponded well with the 21 % classifi-
cation of the landscape with annual C values greater than 0.3. The
spatial distribution of the lowest annual C values (< 0.1), on the other
hand, corresponded with crop sequences involving WR and Gr.

3.2. Crop rotation and potential soil erosion risk

With respect to the prediction of potential soil erosion, crop rotation
patterns involving SB and Mz as succeeding crops consistently and
significantly resulted in higher average annual soil loss rates (Fig. 6).
Specifically, SB has slow early growth and establishment rate, which can
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contribute to the calculated high soil loss rate. Additionally, Koch et al.
(2018), reported that SB succeeding Mz and WW produced a smaller leaf
area index compared with SB succeeding peas in a field trial conducted
in Germany. This may influence the canopy cover status of SB following
such pre-crops as Mz. The second highest soil erosion rate was calculated
in a Mz/Mz pattern. Self-sequencing maize (Mz,/Mz) resulted in 72 %
higher soil erosion rates compared with self-sequencing of WR and 51 %
higher compared with self-sequencing of WW (Fig. 6¢). This is in
agreement with the findings by Koschke et al. (2013), in
scenario-based model conducted in Germany, that silage corn performed
worst in soil erosion prevention with regard to crop rotation manage-
ment; and by Lorenz et al. (2013), whose findings indicate that crop
rotation patterns incorporating Mz and SC are associated with higher
erosion risk. This can be attributed to the fact that Mz is not able to
provide year-round soil cover protection, unlike the self-sequencing
pattern of WR, or winter cereals which, more or less, provide better
soil coverage. Similarly, Preiti et al. (2017) report that rotations
involving potatoes, a wide spaced and row planted crop like maize,
generated the highest amounts of runoff in a plot experiment conducted
in the Mediterranean climate.

Yet, the intluence of various pre-crops on major succeeding crops
varied from year to vear (Figs. 4 and Fig. 6). The variation could be
associated with inter-annual weather variability, crop management
variability (such as tillage methods, soil fertility management) and
variation in the physical condition of the parcels (Peltonen-Sainio et al.,
2019). For instance, the majority (close to 75 %) of the WW/SB crop
rotation in 2013/14 covered parcels with an average LS factor < 0.4
(block 4; see section 2.4 for block descriptions) while in 2014/15 only
60 % of the rotation took place on parcels under block 4 category. Ro-
tations of root crops (SB) and row cultivated plants (Mz), therefore need
to be considered for rotation on less sloping or flat areas in accordance
with the good agricultural practice (Auerswald, 2002; Gutzler et al.,
2015). The results indicate the possibility of deriving cultivation rec-
ommendations for sloping areas, by taking into account the risk of
erosion and thus helping to reduce the risk of nutrient and pesticide
input to other ecosystems (such as water) or damage to infrastructures.

However, interpreting the predicted soil erosion results requires
caution as the coefficients of determination (12) were relatively small in
all the three considered cropping calendars (Fig. 6a, b, and ¢). This could

a
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Fig. 7. Predicted potential soil loss rate in relation to crop rotation pattern at and near Holzendorf research site: a) crop rotation pattern (from 2013 to 2016); b)
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be due to the smothering effect of the extraction method on spatial
variability of the USLE input factors used, as the output of the soil
erosion was the average of a given parcel. The results from the present
study, however, could help in identifying trends of potential soil erosion
risk in relation to crop management patterns, as depicted in Fig. Sc.

When it comes to the model validation, the USLE model predicted a
three-year average potential soil loss rate of 1.89 t ha~' y~! for several
crop rotation patterns (Fig. 7a and b) in and around the Holzendorf
experimental site. The potential soil loss rates predicted in the present
study showed reasonably acceptable outputs compared with the
measured soil erosion rates (Appendix Fig. B1) for the two considered
crop rotation patterns. The long-term crop rotation plots consisted of,
among others, monocultures of winter rye and maize and continuous
fallow plots (Deumlich et al., 2018). The continuously fallowed exper-
imental plot produced the highest average soil loss rate of 5 t ha™'
(Fig. B1). The lowest long-term average soil loss rate of 0.5 t ha™' was
recorded on the WRy monoculture plot while the Mz monoculture plot
experienced an average soil loss rate of 1.0 tha~'. The measured soil loss
rate on Mz monocropping plot varied annually from almost nil up to 4 t
ha™' coinciding with the rainfall depth pattern of the study area
(Deumlich et al. 2018). In this regard, our potential soil erosion
modelling of the Mz/Mz sequence in the 2013/14 cropping calendar
resulted in an average soil loss rate of 1.87 t ha~l'y™! (Fig. 7¢), a
comparatively close prediction and within the range of the actual
measured soil loss rate for Mz monoculture (Fig. B1).

On the other hand, the WR/WR sequence in the 2014/15 cropping
calendar, considered to be representative of the WRy monoculture of the
experimental set-up, since both crops have a comparable canopy cover
pattern in the study area (DIN 19708, 2005DIN 19708, 2005), resulted
in a slightly higher average soil loss rate,1.4 t ha~' y~!(Fig. 7c), than the
long-term recorded average soil loss rate (Fig. B1). Though the predicted
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average value showed a slight over-estimation compared with the
long-term measured average, which could be attributed to the
inereasing trend of rainfall erosivity over the years (Gericke etal., 2019),
the spatial distribution of the potential soil loss rate indicated that 60 %
of the parcel was classified below the maximum tolerable soil loss rate of
1.4 t ha~'y~! (Verheijen et al., 2009) rendering the model output to be
fairly acceptable.

Overall, using remote sensing data for C value calculation of various
rotation patterns and subsequently modelling erosion rates can be taken
as a valid practice to predict erosion risk trends in relation to land
management practice in a spatiotemporally distributed manner. More
often, the C factor assessment is carried out using empirical values
representing a cross-sectional period of certain degrees of soil cover in
conjunction with the proportion of the rainfall erosivity derived from
long-term studies. The NDVI derived method, on the other hand, can
variably capture the actual soil cover status. In the future, however,
validation using erosion data representing the current erosivity condi-
tions of the study area will be essential.

Finally, the applicability of results from crop rotation research has a
far-reaching significance in sustainable management of resources and
sustainable agricultural practices (Schonhart et al., 2011). Crop rotation
has been found to enhance the capacity of ecosystems to provide basic
services to human beings, such as in water supply (Lei et al., 2019) as
well as providing regulating services (IKoschke et al., 2013). The
employment of satellite images for the study of crop rotation is also
pertinent in understanding the influence of pre-crops on several aspects
of the agronomic performance of subsequent crops, as discussed by
Peltonen-Sainio et al. (2019) in addition to quantifying the effect of
rotation on yield benefit (Beal Cohen et al., 2019). The results of the
present research, therefore, may also be useful in determining the
impact of different agricultural management systems on the
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Table Al
All erop sequences (CS) identified using the IACS data and their proportion (%) from the entire landscape and the parcel propartion (%) of the specified pre-crop.
cs Coverage of the CS as proportion of entire landscape (%) Specified pre-crop as a proportion of the CS (%)
Succeedingcrops Pre-crops 2013/14 2014/15 2015/16 2013714 2014/15 2015716
ww 6.5 6.7 7.6 228 27.0 27.1
WR 10.4 11.7 11.8 54.7 65.6 72.1
Mz 4.4 3.7 3.1 41.2 36.0 33.7
WB 1.3 1.7 1.6 17.9 14.6 16.4
ww SB 0.0 1.1 0.6 0.0 34.1 40.0
SC 0.2 0.4 0.6 7.6 20.0 26.2
WRy 1.2 0.2 0.1 31.4 11.8 5.0
Gr 0.5 0.8 0.8 1.8 2.9 3.5
ww 2.0 5.9 6.6 31.3 239 23.6
WR 1.7 1.5 1.2 9.0 8.6 7.6
Mz 0.6 0.5 0.8 5.6 5.0 8.3
WR WB 4.7 5.3 5.0 64.2 45.2 51.4
SB 0.0 0.2 0.0 0.0 5.7 0.0
sC 0.9 0.2 0.3 33.3 7.3 12.3
WRy 1.0 0.1 0.3 26.7 3.9 10.0
Gr 0.7 0.6 0.2 2.6 2.3 0.8
ww 4.0 25 5.0 13.8 10.0 18.0
WR 2.0 0.8 1.1 10.6 4.5 6.7
Mz 2.7 3.0 3.3 25.2 28.6 36.0
Mz WB 0.5 0.3 1.2 6.4 2.8 13.0
SB 0.0 0.8 0.4 0.0 25.0 30.0
sc 0.1 0.2 0.1 4.6 9.1 3.1
WRy 0.6 07 0.8 15.1 39.2 27.5
Gr 0.4 0.9 0.3 1.5 3.3 1.5
ww 6.3 6.3 3.9 21.8 25.4 14.0
WR 3.7 1.9 0.6 19.8 10.7 3.4
Mz 0.3 0.7 0.9 3.2 6.7 9.5
WB WB 0.4 0.9 0.7 5.2 7.7 7.1
SB 0.0 0.0 0.0 0.0 1.1 2.5
SC 0.3 0.3 0.8 12.1 16.4 34.0
WRy 0.4 0.0 09 10.5 0.0 32.5
Gr 0.4 0.1 0.2 1.5 0.4 0.8
ww 0.4 0.1 0.3 1.3 0.4 1.1
WR 0.6 0.4 0.0 3.5 21 0.2
Mz 0.7 0.6 0.2 6.8 6.0 27
WB 0.0 1.6 0.0 0.0 13.6 0.0
WRy SB 0.0 0.0 0.0 0.0 0.0 0.0
sC 0.3 0.0 0.0 9.1 0.0 0.0
WRy 0.3 0.0 0.3 7.0 2.0 11.3
Gr 0.2 0.0 0.1 0.7 0.1 0.5
ww 1.3 0.8 1.2 4.4 3.4 4.2
WR 0.1 0.1 0.1 0.7 0.4 0.4
Mz 0.9 0.2 0.1 8.4 1.4 0.8
WB 0.1 0.5 0.4 1.7 4.3 4.3
SB SB 0.0 0.1 0.0 0.0 3.4 25
SC 0.1 0.2 0.0 3.0 7.3 1.5
WRy 0.2 0.2 0.0 5.8 11.8 0.0
Gr 0.1 0.4 0.0 0.3 1.4 0.2
ww 0.3 0.3 0.2 1.0 1.0 0.6
WR 0.0 0.2 0.0 0.0 1.0 0.0
Mz 0.3 0.7 0.1 2.4 6.7 1.5
WB 0.0 0.4 0.0 0.6 3.4 0.4
sc SB 0.0 0.1 0.1 0.0 3.4 7.5
SC 0.3 0.0 0.1 9.1 0.0 3.1
WRy 0.0 0.0 0.1 1.2 2.0 2.5
Gr 0.3 0.1 0.2 1.3 0.4 1.1
Gr 234 21.8 20.6 90.2 812 90.4
ww 0.7 0.2 0.5 2.5 0.6 1.9
WB 0.3 0.2 0.3 4.1 1.2 2.9
WR 0.2 0.2 0.7 0.9 0.8 4.4
Gr Mz 0.6 0.2 0.3 5.6 1.4 3.8
WRy 0.0 0.2 0.0 0.0 9.8 0.0
SB 0.0 0.1 0.2 0.0 3.4 17.5
SC 0.6 0.4 0.3 19.7 21.8 12.3
environment in general, and on the capacity of the environment to 4. Conclusions
provide ecosystem services. In addition, for large and complex agricul-
tural landscapes, it may serve as an efficient and cost-effective means of The study utilized time-series remotely-sensed data, along with fine-
determining crop rotation patterns without the need to conduct vast resolution land-use data to investigate the influence of short-term crop
numbers of plot-scale experiments across multiple locations, particu- rotation or sequencing patterns on cover and management factor (C)
larly for areas with limited availability of relevant crop rotation data. values, and on subsequent soil erosion rate in a large agricultural

landscape. The results obtained agreed with established experimental
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rotation output worldwide. Therefore, such an approach can be useful
for areas with limited availability of established rotation data. Among
the considered rotations, self-sequencing Mz was found to increase the
soil loss rate compared with self-sequencing WR and WW. WR, on the
other hand, as a preceding crop to both Mz and WW, can improve annual
C values and subsequently reduce annual soil loss rate. The influence of
rotation patterns was also found to vary intra-annually. In this regard,
using SB as a pre-crop to winter cereals resulted in significantly higher C
values during winter and early spring months, while reducing C values
in late summer and early autumn. On the other hand, when used as
either a pre-crop or succeeding crop, WR consistently resulted in lower
annual C values, but higher values were computed during the early
establishment period of the crop. This can provide the basis for erosion
modelling studies in temporally explicit and spatially resolved models.

Overall, the results of this research could be an input for further
efficient investigation of agronomic practices and their impact on the
environment on a large heterogeneous agricultural landscape scale. The
results could also be helpful as an input for agricultural land manage-
ment planning. However, the variations considered in the present study
could not include management practice variations resulting from indi-
vidual farm decisions. For the future, therefore, the use of disaggregated
data, including agricultural management decisions, such as tillage, res-
idue management practice and fertilization schemes, could further
improve the output.
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