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Abstract 

Soil erosion is a major global land degradation challenge that can result in the loss of soil 

productivity of agricultural land and in the reduction of the delivery of ecosystem services. It is 

often aggravated by anthropogenic interferences in land use management and vegetation cover 

changes. Spatiotemporally monitoring the land cover status and estimating the vulnerability of 

arable lands to potential soil erosion, especially for large agricultural landscapes, has become a 

prerequisite to understand other related global phenomena such as such climate change mitigation 

and hydrological processes on a global scale. Yet, these have been paramount tasks in terms of 

resource requirements and efficiency. Erosion models play an important role in such cases. The 

Universal Soil Loss Equation (USLE) is one of the most widely applied models to predict erosion 

risks by considering the land cover and management factor (C factor) in agricultural land. The C 

factor is the most dynamic and primary factor which could prevent soil erosion with the appropriate 

land management planning and execution.  

 

In many cases the C values for large agricultural areas are estimated by traditionally assigning 

static empirical soil loss ratio (SLR) values from literature to a land use/land cover map. This 

method is relatively easy but fails to capture the actual spatiotemporal variations of the vegetation 

covers and hence incurs inaccuracy in the estimation of the C values. When considering the crop 

management practices such as crop rotation, tillage practice in many of the cases it is rare to find 

complete C factor values for all arable crops and their associated management practices. In recent 

decades, using remote sensing data, through the Normalized Difference Vegetation Index (NDVI), 

has proven to help capture the variabilities in large scale studies. However, the sensitivity of the 

NDVI-derived C values to several biophysical variations, such as the vitality condition of the 

vegetation cover, the phenological stages of the crops in question, the soil background differences, 

and variations in topographical features, could hinder its full applicability. Therefore, this thesis 

deals with assessing the spatiotemporal dynamics of the cover and management factor in a large 

agricultural landscape setup by combining multitemporal satellite images with the annually 

updated Integrated Administrative Control Systems (IACS) land-use data. The overall objectives 

of the thesis were 

i) to temporally estimate and compare NDVI based (Cndvi) and literature-based (Clit) values 

so that the deviation can be quantified, 
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ii) to quantify the sensitivity of NDVI based C factor values to biophysical variables in large 

agricultural landscape set up for future accurate estimations, 

iii) to assess the C factor values for crop management namely crop rotational patterns and 

predict the ensuing potential soil erosion rate in a large agricultural landscape,  

iv) to analyse the spatiotemporal variations of the impact of various crop rotation patterns on 

the C factor values in a large landscape scale with the implied application of the results 

for understanding of ecosystem processes at regional scales.   

 

Combining multitemporal images with the IACS land use/cover datasets enhanced the 

quantification of the discrepancies between Cndvi and Clit. The discrepancy in C values between 

Cndvi and Clit was found to be season dependent with a closer relation observed in early spring to 

midsummer, with consistently lower RMSE values for data from June. When it comes to the 

biophysical sensitivity, soil background variation, specifically higher soil erodibility condition, 

was found to be associated with higher Cndvi values. Identifying land cover type to specific species 

level allowed quantifying the sensitivity of Cndvi to soil background heterogeneity in relation to 

crops’ growth stage. Variation in slope curvature also affected the Cndvi values. Convex shaped 

slopes of the study area were found to associate with high Cndvi values compared with concave or 

flat shaped topography. Crop phenological stages variations also affected the calculated Cndvi 

value. In addition, rotating different crops also showed variability on the Cndvi and the subsequent 

soil erosion rate in the study area.    

 

Overall, the results from the research can be useful inputs in improving the capacity of Cndvi 

estimation for landscapes as complex as the present study region as well as an input for agricultural 

land management planning. In addition, utilizing remote sensing data for the purpose of capturing 

spatiotemporal variation in C factor determination and subsequently serving as input factor for 

process-based soil erosion modelling can be enhanced by considering the quantified sensitivity of 

Cndvi estimations. The rotation impact assessment results of this research could also be an input for 

further efficient investigation of agronomic practices and their impact on the environment on a 

large heterogeneous agricultural landscape. 

 

Keyword: Soil erodibility; C factor; topography; IACS; crop rotation; remote sensing; landscape.  
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Abstrakt 

Eroze půdy patří mezi hlavní globální problémy degradace půdy a může vést ke ztrátě produktivity 

půd a ke snížení poskytovaných ekosystémových služeb. V krajině se tento problém zhoršuje 

antropogenními zásahy při využívání půdy a změnami vegetačního krytu. Prostorové 

monitorování stavu půdy a odhad zranitelnosti půdy erozí, zejména v rozsáhlých zemědělských 

krajinách je i prezekvizitou k pochopení řady souvisejících globálních jevů, jako jsou změny 

klimatu a hydrologické procesy v globálním měřítku. Při řešení všech těchto problémů hrají erozní 

modely důležitou roli. Jedním z nejpoužívanějších modelů k předpovědi rizik eroze na základě 

zohlednění krajinného pokryvu a faktoru hospodaření na zemědělské půdě je univerzální rovnice 

ztráty půdy (USLE) a další modely vycházející z ní. Při využívání těchto modelů je velmi důležitý 

C factor vegetačního krytu, který má vliv na zmírnění erozních procesů vhodným územním 

plánováním a realizací protierozních opatření.  

 

V mnoha případech se hodnoty C pro velké zemědělské oblasti odhadují tradičním přiřazením 

hodnot statického empirického poměru ztrát půdy (SLR) z literatury do map “land use a land 

cover”. Tato metoda není sice složitá, ale na druhé straně nedokáže dostatečně zachytit skutečné 

časoprostorové změny vegetačních pokryvů, a způsobuje tedy nepřesnosti v odhadu hodnot C 

faktoru. Při zvažování managementu agrosystémů, jako je střídání plodin, agrotechnika atd. je v 

mnoha případech složité najít správné hodnoty faktoru C pro všechny plodiny na orné půdě a 

související způsoby obdělávání. V posledních desetiletích se ukázalo, že použití dat dálkového 

průzkumu Země prostřednictvím vegetačního indexu normalizovaných rozdílů (NDVI) pomáhá 

zachytit variabilitu ve studiích velkých územních celků. Citlivost hodnot C odvozených z NDVI 

na několik variant zahrnujících stav vegetačního krytu, fenologické fáze jednotlivých plodin, 

rozdíly v půdních podmínkách a variabilitu topografických faktorů by však mohla omezovat 

použitelnost. Proto se tato práce zabývá hodnocením časoprostorové dynamiky vegetačního krytu 

a managementových opatření v rozsáhlých celcích zemědělských krajin, a to kombinací 

multitemporálních satelitních snímků s každoročně aktualizovanými údaji o využívání půdy v 

rámci Integrated Administrative Control Systems (IACS). Jako cíle práce bylo vytýčeno:  

i) odhadnout a porovnat hodnoty založené na NDVI (Cndvi) a údajů z literatury (Clit) tak, 

aby bylo možné odchylku kvantifikovat,  
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ii) kvantifikovat citlivost hodnot C faktorů založených na NDVI a na bio-fyzikálních 

proměnných v rozsáhlé zemědělské krajině a nastavení pro budoucí přesné odhady,  

iii) vyhodnotit hodnoty faktoru C pro konkrétně vzorce střídání a management plodin a 

předpovědět následnou potenciální míru eroze půdy v zemědělské krajině,  

iv) analyzovat časoprostorové variace dopadu různých osevních postupů na hodnoty 

faktoru C v rozsáhlých zemědělských krajinách s možnou aplikací výsledků pro 

pochopení ekosystémových procesů v regionálním měřítku.  

 

Kombinace multitemporálních snímků s datovými soubory “land use a land cover” zlepšila 

kvantifikaci nesrovnalostí mezi Cndvi a Clit. Výzkumem bylo zjištěno, že nesoulad v hodnotách C 

faktoru mezi Cndvi a Clit je závislý na ročním období s užším vztahem pozorovaným na začátku 

jara, s trvale nižšími hodnotami RMSE pro data z června. Pokud jde o citlivost, bylo zjištěno, že 

variabilita půdního prostředí, konkrétně podmínky erodovatelnosti, souvisí s vyššími hodnotami 

Cndvi. Identifikace typu krajinného pokryvu na úrovni konkrétního druhu umožnila kvantifikaci 

citlivosti Cndvi na heterogenitu půdy ve vztahu k plodinám a jejich fázi růstu. Různé typy svahů 

rovněž ovlivnily hodnoty Cndvi. Bylo zjištěno, že konvexní svahy studované oblasti mají vyšší 

hodnoty Cndvi ve srovnání s konkávními nebo s plochou topografií. Změny fenologických fází 

plodin rovněž ovlivnily hodnotu Cndvi. Kromě toho i střídání různých plodin vykazovalo variabilitu 

Cndvi a míru eroze půdy ve studované oblasti. 

Výsledky předkládaného výzkumu mohou být užitečnými vstupy pro zlepšení odhadu Cndvi v 

krajinách tak složitých, jako je studovaný region, stejně jako pro plánování využití zemědělské 

půdy. Kromě toho lze využit údaje z dálkového průzkumu Země za účelem zachycení 

časoprostorových variací při stanovení C faktoru a následně jako vstupní faktor sloužící pro 

modelování eroze půdy. Výsledky tohoto výzkumu by rovněž mohly být vstupem pro další 

efektivní zkoumání agronomických či agrotechnických postupů a jejich dopadů na životní 

prostředí v zemědělských krajinách. 

 

KLÍČOVÁ SLOVA: Erodovatelnost půdy; Faktor C; topografie; IACS; střídání plodin; dálkový 

průzkum Země; Krajina. 
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1.Introduction  

1.1. Soil erosion and C factor studies in large agricultural landscape   

Soil erosion is a major global land degradation threat which can result in the loss of soil 

productivity of agricultural land and in the reduction of the delivery of ecosystem services (Guerra 

et al. 2020; Pimentel and Burgess 2013; Yang et al. 2003). Although soil erosion is a natural 

occurrence,  it is often accelerated through various land management practices (Borrelli et al. 

2017).  Increased soil loss rates are occurring on arable land than natural environment (Lu et al. 

2003). This is particularly evident in a temporally differing manner when the vegetation cover is 

not enough to protect the soil (Borrelli et al. 2018). Yet, monitoring land cover status and assessing 

the vulnerability of arable land to soil erosion risks, especially for large agricultural landscapes, 

have been paramount tasks in terms of resource requirements and efficiency (Alexandridis et al. 

2015). Erosion models, hence are pertinent tools to predict potential soil erosion risks in such 

condition (Panagos et al. 2014). The Universal Soil Loss Equation (USLE), an empirically based 

model, is one of the most widely applied models to predict erosion risks in agricultural land 

(Wischmeier and Smith 1978). It predicts the long term average annual soil loss rate as a product 

of six compartmentalized factors namely the rainfall factor (R), the soil erodibility factor (K), 

topographic factors (L and S), the vegetation cover and management factor (C), and the support 

practice factor (P). 

The cover and management factor (C factor), along with the rainfall erosivity factor (R-

factor), is the most dynamic factor controlling the rate of soil loss in the USLE model (Panagos et 

al. 2014), for which spatiotemporal variations need to be considered in determining the values. 

The C factor, in association with P factor, is also the primary factor which can prevent soil erosion 

with the appropriate land management planning and execution (Panagos et al. 2014). In addition 

to the USLE, several process-based models such as Soil and Water Assessment Tool (SWAT) and 
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the Agricultural Non-Point Source Pollution model (AGNPS), also employ C factor for erosion 

prediction (Neitsch et al. 2005; Young et al. 1989). 

The C factor is computed based on the soil loss ratios (SLRs) for different crops at different 

growth stages and management (Morgan 2005; Wischmeier and Smith 1978). The SLR, which 

itself is a plot scale measured value, represents the ratio of the soil loss measured on a given land 

covered with specific vegetation type to the corresponding bare soil ploughed along the slope 

gradient. The summation resultant of the SLR value weighted by the corresponding rainfall 

erosivity proportion (
𝑅𝑖

𝑅
) at a given growth stages results in the annual C-factor value (Eq.1). 

𝐶 = ∑ 𝑆𝐿𝑅𝑖
𝑛
𝑖 .

𝑅𝑖

𝑅
  ,          (Eq.1) 

where C (dimensionless) is the annual cover factor, SLRi the soil loss rate at a specified growing 

stage i, Ri the rainfall erosivity during the growth period i and R the annual total rainfall erosivity. 

Field measurement of SLR values by considering all crop types and management practices, 

though it is the appropriate way, requires huge resource and time which rendering it less efficient 

for large agricultural landscape or regional scale assessment (Alexandridis et al. 2015; Schönbrodt 

et al. 2010). In many cases the C values for large agricultural areas are estimated by traditionally 

assigning static empirical SLR derived values from literature to a land use/land cover map. This 

method is relatively easy but fails to capture the actual spatiotemporal variations of the vegetation 

covers and hence incurs inaccuracy in the estimation of the C values. When considering the crop 

management practices such as crop rotation, tillage practice etc., in many of the cases it is rare to 

find complete C factor values for all arable crops and their associated management practices 

(Gabriels 2003; Preiti et al. 2017). On the other hand, accounting for the spatiotemporal variability 

in crop management while determining the C factor has been reported to improve accuracy of soil 

erosion prediction (Borrelli et al. 2018).    
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In recent decades, owing to the availability of remotely sensed data, application of satellite 

born images for the determination of C factor values in particular or identification of erosional 

areas in general has become a widely applicable tool (Vrieling 2006). The application of remote 

sensing images for C factor determination through vegetation indices such as the Normalized 

Difference Vegetation Index (NDVI) has been found to capture the dynamicity of plant cover 

status and associated management practices in predicting soil erosion (Feng et al. 2018; Schmidt 

et al. 2018; Alexandridis et al. 2015). However, the sensitivity of the NDVI derived C values to 

several biophysical variations, such as the vitality conditions of the vegetation cover, the canopy 

structure of the vegetation, the soil background heterogeneity and variations in topographical 

features could hinder its full applicability (de Jong 1994; Montandon and Small 2008; Zou and 

Mõttus 2017). This, as a result, entails optimizing the influences of such biophysical variables on 

NDVI derived C value (Cndvi) estimations for various agricultural landscapes. This study therefore 

investigates the deviation of NDVI based C factor (Cndvi) determination from SLR based literature 

values (Clit) and further quantify the sensitivity of the former to various biophysical variables in a 

large agricultural landscape setup.  

In addition, the present study uses remote sensing images to understand the spatiotemporal 

impact of crop management practices such as crop rotation patterns on C factor determination and 

soil erosion prediction at a large landscape scale. Remote sensing data provide the platform to 

study various  crop rotation patterns for C factor estimation and subsequent prediction of erosion 

risks in an efficient way (Preiti et al. 2017). However, so far researches conducted are far too 

insufficient  (Bégué et al. 2018). Bégué et al. (2018) point out that less than 10% of remote sensing 

studies focused on cropping practices in general. When it comes to crop rotation, the majority of 

the studies focused on identifying rotational patterns and classifying the pre-crops and succeeding 
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crops at large (Conrad et al. 2016; Mueller-Warrant et al. 2016; Kipka et al. 2016; Sahajpal et al. 

2014; Martínez-Casasnovas et al. 2005; Pimentel and Burgess 2013; Panigrahy and Sharma 1997). 

However, the influence of cropping practices such as the choice of crops to rotate has been reported 

to significantly affect soil erosion rates (Simonneaux et al. 2015; Morgan 2005). The present study, 

therefore, uses multi-temporal satellite images in combination with the Integrated Administration 

and Control System (IACS) land use data to investigate the influences of various crop rotation 

patterns on the C factor values and on the subsequent potential soil erosion risks with a broad aim 

of utilizing the methods and the remote sensing data for large scale studies of agricultural land 

management impacts on agroecosystem functions.   

     

 1.2. Objectives of the research  

The specific objectives of the study are:  

• To temporally estimate and compare NDVI based (Cndvi) and literature-based Clit values 

so that the deviation can be quantified.  

• To quantify the sensitivity of NDVI based C factor values to biophysical variables in 

large agricultural landscape set up for future accurate estimations. 

• To assess the C factor values for various crop rotational patterns and predict the ensuing 

potential soil erosion rate in a large agricultural landscape  

• To analyse the spatiotemporal variations of the impact of various crop rotation patterns 

on the C factor values in a large landscape scale with the implied application of the 

results for understanding ecosystem processes at regional scales.   
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1.3. Organisation of the dissertation  

The dissertation is composed of five chapters; the first including the introduction of the 

research along with the specific aims of the research and the organisational structure of the 

dissertation. The second chapter highlights state-of-the-art review of the applications of remote 

sensing for soil erosion and C factor determination studies and the existing gaps in relation to 

remote sensing application for erosion studies. The third chapter of the dissertation describes the 

study area, data processing and methodology employed to achieve the objectives of the present 

study. In the fourth chapter the major findings of the research are highlighted including discussions 

of the results. Finally, chapter five draws conclusions and indicates outlook in relation to further 

line of work.        

    

2. State of the art  

2.1. Applications of remote sensing for erosion studies in large spatial scale 

The application of satellite observations data for erosion monitoring and assessment at 

regional or large agricultural landscape scale has been proven to be significantly helpful (Magliulo 

et al. 2020). The advantages of using remote sensing data for erosion studies lies on its ability of 

capturing spatiotemporal trends at various scales. Broadly speaking two types of remote sensing 

tools are used for soil degradation studies namely passive and active sensing tools (Goldshleger et 

al. 2010). The passive sensing tools involve utilizing reflected solar radiation while the active 

sensing tools utilize artificial radiation sources such as radar. Freely available satellite images such 

as the Landsat series are dominantly employed in soil erosion researches in large landscape scale 

analysis (Sepuru and Dube 2018). However, the application of high spatial and hyperspectral 

resolution remote sensing data has been gaining momentum in recent years (Bargiel et al. 2013; 

Goldshleger et al. 2010; Wang et al. 2009; Schmid et al. 2016) though their relatively high 

acquisition prices constrains their application for large area coverage researches.       
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More often the images are employed to either indirectly provide inputs, such as C factor 

values, for various erosion prediction models or to directly identify erosion features such as 

depositional sites at the fields (Magliulo et al. 2020; Žížala et al. 2019; Vrieling 2006). At national 

or regional scales, the study of erosion phenomena using remote sensing application requires 

datasets of ground truthing information or expert’s knowledge of the areas being investigated. In 

the case of the direct assessment of erosional features such as soil removal or depositional site 

identification, the soil spectral properties of the fields are used to assess erosional phenomenon 

(Magliulo et al. 2020; Schmid et al. 2016; Chabrillat et al. 2014). It is documented that the spectral 

properties of eroded soils can be differentiated from noneroded soils due to the associated changes 

in mineral or textural compositions of the soils (Žížala et al. 2017; Chabrillat et al. 2014). In this 

particular case, apart from the spatial resolution, the spectral resolution of the remote sensing data 

plays a major role in finely characterizing the soil surface. Shi et al. (2020) indicate that indirectly 

predicting the soil aggregate stability, which is an important soil property that determines soil 

erodibility condition, can be relatively adequately mapped using hyper spectral resolution data. 

However, Žížala et al. (2017) point out that in highly heterogenous areas the applicability of 

hyperspectral data needs to be backed up with locally precise topographic and geological data and 

hence entailing further calibration and validation for various spatial conditions. It can also be noted 

that soil infiltration rates and surface crust formations, attributes that directly influence soil erosion 

rates, can be assessed using hyperspectral data (Goldshleger et al. 2010). The application of these 

high spectral resolution data in large scale studies either through direct assessment of the field 

conditions or indirectly for spatially explicit model input parameters, however, is still not well 

exploited.   
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Synthetic aperture radar (SAR) data has been deployed to detect soil erosion at basin scale 

(Agnihotri et al. 2019; Amitrano et al. 2013). The mechanism behind detecting the degraded land 

using SAR data lies on the loss of physical and chemical properties of the eroded soils such as 

dielectric constant, conductivity and moisture holding capacity as opposed to non-eroded soils. 

One of the drawbacks of using radar data for large scale application, however, is its inability to 

penetrate dense vegetation cover and hence the signals unable to reach the ground in addition to 

the sensitivity of the backscatter to terrain undulations (Baghdadi et al. 2008). SAR images have 

the advantage of being operable in all weather and temporal conditions.        

Remote sensing data have also been widely employed for gully mapping at large landscape 

scale analysis (Wang et al. 2020; Arabameri et al. 2020). The advancement of machine learning 

techniques are also improving the accuracy of identifying  gully formation at regional scale 

assessment  (Arabameri et al. 2019; Wang et al. 2020). However, the extraction of gully areas at 

wider scales using remote sensing images requires ancillary input data particularly topographic 

and land use type data (Wang et al. 2020).                                

 The most common application of remote sensing data for large spatial coverage erosion 

studies is found to be the indirectly employing of the data to provide model parameter inputs for 

soil erosion modelling. Empirical models, particularly the (R)USLE, are widely combined with 

remote sensing images for erosion studies on large scale studies (Phinzi and Ngetar 2019; Sepuru 

and Dube 2018). In general all the inputs of the USLE model can be parametrized using remote 

sensing images (Phinzi and Ngetar 2019). There have been successes of computing the R factor 

from radar detected high temporal resolution rainfall data with relatively adequate accuracy at 

large landscape (Fischer et al. 2016; Fischer et al. 2018) and regional scale (Alexandridis et al. 

2015; Phinzi and Ngetar 2019) studies. The erodibility factor (K) has also been derived from 
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remote sensing data (Alexakis et al. 2019) with moderately acceptable accuracy, although are very 

few in number (Phinzi and Ngetar 2019). Deriving C factor value from remote sensing data for 

regional and global scale studies has already become an established practice, as it has been 

discussed in section 1.1, for global (Guerra et al. 2020), regional (Alexandridis et al. 2015) and 

large landscape scale (Feng et al. 2018) investigations worldwide.                  

In general, despite there is an increasing trend of utilizing remote sensing data for erosion 

monitoring and assessment at larger spatial scales, it is still not sufficient in addressing several 

related issues such as spatiotemporal variations in land management practices and the influence 

on soil erosion at large (Sepuru and Dube 2018). Alewell et al. (2019) stress that without due 

attention to the assessment and understanding of soil erosion rates beyond plot or field scales, it 

would be cumbersome to address other related problems such as climate change and carbon 

sequestration phenomena. One of the major constraints in applying remote sensing data for erosion 

studies at larger area extent is the relatively low frequency of cloud free available images from the 

freely available passive remote sensing tools such as the Landsat series. Combining different data 

sources (Žížala et al. 2019), for instance the recently launched Sentinel 1 and 2 satellites, can 

enhance the accuracy of capturing spatiotemporal variability of soil erosion at large area extent 

coverage.      
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3. Material and Methods 

3.1. Study site description 

The study takes the Quillow catchment (168km²) in Uckermark district, Brandenburg state 

of German, as a case study (Fig.1a). The dominant soil types prevailing in the study area include 

Luvisols to Calcaric Regosols (at the hilly areas), Luvisol or Haplic Luvisol (in the plateau), and 

Stagnosols (in the valley areas) (Wulf et al. 2016; Lischeid et al. 2016; Deumlich et al. 2010). The 

climatic condition of the region is described as temperate and continental type with annual mean 

air temperature ranging between 7.8 °C and 9.5 °C and mean annual rainfall of 460.3 mm was 

recorded between the years 1992 to 2016 at Dedelow weather station located in the study area 

(Vogel et al. 2016). Topographically the area is characterized as gently undulating (Fig.1b) with 

altitudinal ranges of 14m to 160 m above sea level (Lischeid et al. 2016).   

 

Figure 1 Overview of the study area: a) location of the study catchment, b) slope steepness in 

percent, c) land use/cover identified using IACS 2016 data.  

3.2. Data and processing  

3.2.1. Remote sensing data 

One of the critical challenges of using satellite images, particularly passive remote sensing 

sources, for multitemporal investigation of erosion research is acquiring cloud free images. Here 

combination of Landsat 7 & Landsat 8 (using path 193, row 23) data along with Sentinel 2 (using 
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tile ID 33UVV) data were downloaded from the USGS (https://earthexplorer.usgs.gov/) and from 

Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) respectively. In total 29 

time series images from 2013 to 2016 were used in the study. The overview of the images used are 

described in table 1. All the Landsat images are level 2A data that are atmospherically corrected. 

The Sentinel 2A data are atmospherically corrected using the freely available software Sen2cor 

(https://step.esa.int/main/third-party-plugins-2/sen2cor/). All the scenes used for the analysis are 

with less than 30% cloud cover. 

Table 1 Overview of the multitemporal satellite images used for the analysis 

Satellites Spectral 

bands 

used  

Spectral 

description 

Spatial 

resolution  

Acquired scene dates  

Landsat 7 Band 3 Visible 

Red 

30 m 

 

10 February 2014; 30 March 2014; 01 May 

2014;18 June 2014; 04 July 2014;06 September 

2014; 08 October 2014;17 March 2015; 05 June 

2015;27 October 2015;23 June 2016 
Band 4 Near 

Infrared 

30 m 

Landsat 8 Band 4  Visible 

Red 

30 m 

 

29 October 2013;10 June 2014; 13 August 

2014;25 March 2015; 10 April 2015;13 June 

2015; 03 October 2015; Band 5 Near 

Infrared 

30 m 

 

Sentinel- 

2A 

Band 4 Visible 

Red 

10 m 

 

04 July 2015; 03 August 2015; 15 September 

2015; 31 December 2015; 02 April 2016; 22 

April 2016; 02 May 2016; 09 May 2016; 12 May 

2016; 08 June 2016; 11 June 2016; 21 July 2016 
Band 8a Vegetation 

Red edge 

20 m 

 

In order to make sure the radiometric and phenological consistency between two 

temporally close Landsat and Sentinel images, simple pixel-based correlation analysis was 

performed. It is indicated that the mean NDVI values computed using the two images resulted in 

high correlation coefficient (up to r2=0.97) and no statistically significant variation in their mean 

values detected (Fig. 2). The Sentinel 2A data were re-sampled to 30 m resolution using the nearest 

neighbourhood method, to align with the Landsat images in further analysis.           
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Figure 2 Comparison between mean NDVI values derived from two closely sensed Sentinel 2 

and Landsat 7 data during May and August. The Values are the averages of each parcel (n = 

1130 parcels) extracted using 2016 IACS data. 

 

3.2.2. Land use data 

The Integrated Administrative and Control System (IACS) data, provides annually 

updating information on land use types at field scale as a single vector dataset (Lüker-Jans et al. 

2016). The IACS data provides information on agricultural land use types such as arable land or 

grass land, specific crop type, field block identification, parcel size, etc. for a single parcel of land 

specified by an official numerical codes (Steinmann and Dobers 2013). Datasets from 2013 to 

2016 were used to identify crop types and determine crop sequencing patterns in the study area 

(see section 3.3. and 3.4). As the focus of this research is on arable lands, other land use types were 

excluded from the analysis. The proportion of the majorly grown crops in 2016 in the study area 

can be seen from Fig.1c. Winter Wheat(WW), Winter Barley (WB), Winter Rye (WRy), Winter 

Rape (WR), Maize (Mz), Sugar beet (SB) and Summer Cereals (SC) are included for the analysis 

in the present study.     
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3.3. C factor determination 

3.3.1. SLR based literature values assigning (Clit)  

In this study, periodic SLR values for each specific crop types, determined by the IACS 

data, were assigned from long term empirically measured SLR data,  as per DIN 19708 (2005). 

These SLR values were determined according to the corresponding cropping stages of individual 

crops considered and the annual mean Clit was assigned to each crop type in the end. For temporally 

varying ClitM determination erosivity proportion of each month obtained from Deumlich (1999) 

was used to weight SLR values.       

3.3.2. NDVI based C factor (Cndvi) computation 

First NDVI values from each image scene was calculated using Eq.2: 

NDVI=
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
  ,          (Eq.2) 

the NDVI value ranges between -1 and +1; the higher the NDVI value the greener the vegetation 

coverage indicating that photosynthetically active vegetation is reflecting much of the near infrared 

radiation (NIR) while absorbing the visible range (Red) of the spectrum. The NDVI based C factor 

(Cndvi) was then computed from each image scene using the equation (Eq.3) developed by van der 

Knijff et al. (1999): 

𝐶𝑛𝑑𝑣𝑖 = 𝑒𝑥𝑝⁡ [−𝛼.
𝑁𝐷𝑉𝐼

(𝛽−𝑁𝐷𝑉𝐼)
],          (Eq.3)  

where α and β are empirical fitting parameters where better goodness of fit was obtained 

using a value of 2 for α and 1 for β (van der Knijff et al. 1999).      

3.4. Crop rotation identification 

Crop rotational patterns are determined by intersecting consecutive IACS data (from 2013 

to 2016) through the geoprocessing tools of Arc Map (v10.2.2) which in the end provides an 

intersected polygon map for a cropping calendar. The final intersected polygon then will have its 

own consecutive years crop history from which the majorly grown crops in the study area were 
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taken as succeeding crops to determine their pre-crops through the query building tool in the 

ArcGIS environment. In total 21 year to year crop rotation patterns were used for the analysis 

based on their proportion of coverage in the study area. The rotations and their coverage proportion 

in the entire landscape is depicted in Fig.3.   

 

       
Figure 3 Area coverage (%) of crop rotations considered in the analysis disaggregated for each 

cropping calendars (2013/14 to 2015/16).   

3.5. Soil erosion modelling  

The Universal soil loss equation (USLE) was employed in the case of potential erosion 

prediction. The equation compartmentalizes the process of soil erosion into six factors 

(Wischmeier and Smith 1978) (Eq.4): 

𝐴 = 𝑅 ∙ 𝐾 ∙ 𝐿 ∙ 𝑆 ∙ 𝐶 ∙ 𝑃 ,         (Eq.4) 
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where A is the predicted annual soil loss in t ha-1 y-1. R is the rainfall erosivity factor calculated as 

the product of the maximum 30-minute rainfall intensity (I30) and energy (E) of rainfall event. 

Eight-year average (from 2006 to 2013) of EI30 (N h-1) was calculated using 1x1 km spatial and 5-

minute temporal resolution radar weather data (RADOLAN) obtained from the German Weather 

Service (DWD) for the study area. Utilizing radar weather data for rainfall erosivity calculation 

and erosion prediction has been found to produce adequate results (Fischer et al. 2016). K 

represents the soil erodibility factor (t h ha-1 N-1), which was calculated according to Wischmeier 

and Smith (1978) using data obtained from the German soil appraisal “Bodenschätzung”, a 

publicly available data of different soil properties in the study area (Vogel et al. 2016).  The L and 

S are the topographic factors which represent the slope length (L), calculated according to Hickey 

(2000), and slope steepness (S) calculated based on Nearing (1997) using 5 m spatial resolution 

digital elevation model (DEM). The C is the unit free cover and management factor, which is the 

ratio of soil loss under known vegetation cover to that of bare soil. The C factor is the main 

manipulation factor in this study hence the potential soil erosion prediction is done for both Cndvi 

and Clit values (see section 3.3). The P factor is the soil protecting practice factor; for this region, 

a value of 1 is used as no support practice exists.   

   Finally, the erosion prediction accuracy of using the USLE model was assessed by 

comparing the model output against long term (1982 to 1996) measured average soil erosion values 

obtained from field trials at the Holzendorf (Latitude 53.386818, Longitude 13.780225) research 

station (Deumlich et al. 2018).  
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3.6. Statistical analysis  

3.6.1. Comparison between Cndvi and Clit 

Simple correlation and Root Mean Square Error (RMSE) were employed to quantify the 

deviation of NDVI based C factor (Cndvi) from SLR based C factor values from literature (Clit) and 

the subsequent soil erosion prediction using these two C factor values was compared using RMSE 

(Eq.5). 

𝑅𝑀𝑆𝐸𝐶 = √∑ (𝐶𝑙𝑖𝑡−𝐶𝑛𝑑𝑣𝑖)
𝑛
1

2

𝑛
  and  𝑅𝑀𝑆𝐸𝑆𝐿 = √∑ (𝑆𝐿𝐶𝑙𝑖𝑡−𝑆𝐿𝐶𝑛𝑑𝑣𝑖)

𝑛
1

2

𝑛
     (Eq.5) 

where, RMSEC and RMSESL are the root mean square error for C factor and soil loss rate 

comparison, SLClit is the potential soil loss rates predicted using Clit, SLCndvi is the soil loss rates 

predicted using Cndvi, and n is the number of pixels coinciding in the analysis.  

 

3.6.2. Quantifying the sensitivity of Cndvi to biophysical variables 

The sensitivity of NDVI derived C values to various biophysical conditions was assessed 

through multiple regression analysis. The biophysical variables used in the study are topographic 

features such as slope steepness (degree), slope shape, slope position, slope aspect, edaphic 

conditions of the area (proxied through K factor values), and seasonal and crop type variation. 

Detailed explanation of the variables and procedures are indicated in  Ayalew et al. (2020).  

3.6.3. Crop rotational impacts on Cndvi and soil erosion rate  

The average C factor values and soil loss rates of each parcel (intersected polygon, section 

3.4), representing crop rotations, were extracted using the R spatial analysis package (“extract”).   

Analysis of variance (ANOVA) was used to differentiate the impact of different crop sequencing 

patterns on C factor values and subsequently on soil erosion rates through the GLM. Means are 

also separated using Least Significant Difference (LSD) at 5% probability level. However, to 

control unaccounted variation which could arise from differences in soil type and topography 

features, six blockings were included. The study area as a result, was divided according to three 
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blockings of soil erodibility values, (block 1, K <0.15; block 2, 0.15 < K < 0.3; and block 3, K 

>0.30) and three blockings of LS factor, representative of topographic variability, (block4, LS<0.4; 

block 5, 0.4<LS<0.8; block 6, LS>0.8).  
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4. Results and discussion  

4.1. Comparison between Cndvi and Clit 

The results indicated that the Cndvi and Clit gave comparably close estimates in a temporally 

varying manner. Better correlation between monthly Cndvi and Clit values was observed in images 

taken in the months between spring and mid-summer (highest r = 0.93), while the lowest 

correlation was observed in the months of late summer and autumn (lowest r=-0.58). This can be 

explained due to the reduced vitality of many winter-sown crops during the latter part of the year. 

Incorporating yellow vegetation indices such as normalized difference tillage index (NDTI), and 

normalized difference senescent vegetation index (NDSVI), in the process of formulating the C 

factor equation, can improve the C-value estimation across all seasons (Feng et al. 2018). Apart 

from seasonal variation, variation in land cover types also played role in the discrepancies between 

the two methods. The average annual C factor values computed using the two methods resulted in 

higher discrepancies for cereals (up to 85%) than other field crops such as WR (5%) and Mz 

(5.3%). This variation among different crop types can be explained because of the variation in 

their canopy orientation of the crops considered. Cereals categorized as erectophile canopy 

(vertically arranged leaves), reported to trap reflected radiation within the canopy and hence reduce 

the NDVI (Jackson and Pinter 1986). Therefore, using high resolution and temporally dynamic 

land use data enables to capture discrepancies to individual crop cover type level.  

Spatially speaking, classifying the study area according to C factor values indicated 

discrepancies between the two C value estimation methods. Clit resulted in values of less than 0.1 

for most of the landscape while using Cndvi resulted in the same category on 13% of the study area. 

The average landscape C factor value computed through Cndvi was 0.204 while Clit gave average 

value of 0.128. The discrepancy was much pronounced on the subsequent potential soil loss rate 

prediction. In aggregate, the soil loss rate obtained by employing Cndvi as an input (SLcndvi) for the 
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USLE model resulted in two times higher prediction than using Clit as an input factor (SLclit). 

Spatially, the potential soil loss rates predicted using the two different C factor inputs revealed a 

RMSE of as high as 1.17 t ha-1 y-1, which was below the maximum tolerable soil erosion limit of 

the region (Verheijen et al. 2009). In addition, the spatial distribution of the potential soil erosion 

risk predicted using the two C factor methods varied notably. For example, the proportion of the 

landscape classified below the maximum tolerable soil loss limit in the case of SLcndvi was close 

to 85%, while the same classification in the case of SLclit accounted for close to 70%. However, 

SLcndvi can improve the spatially explicit identification of soil erosion risks as opposed to SLclit 

which was indicated from the relatively higher coefficient of variation (CV) 91% compared with 

the 84% CV in SLclit. This indicates the potential of utilizing NDVI-based C factor estimation for 

physically based erosion models such as SWAT, provided that appropriate modifications applied 

to address the discrepancy or sensitivity of it (see section 4.2 for addressing the sensitivity).  

  

4.2. Quantifying the sensitivity of Cndvi to biophysical variables  

The regression analysis indicated that Cndvi was found to respond to variations in edaphic 

and topographic conditions of the landscape (Table 2). The sensitivity of Cndvi values to 

heterogenous soil condition of the landscape was consistently captured through the soil erodibility 

factor. In the present study, an increase in the value of soil erodibility resulted in incremental 

change in the values of Cndvi, though the magnitude varied in different months of a year. Sizeable 

influence, in terms of magnitude, was observed during spring and the beginning of the summer 

months, when the ground cover contrast was expected to be high. It is well documented that the 

soil characteristics such as organic matter content, soil colour, soil texture, surface roughness 

influence the spectral properties of a surface (Ding et al. 2014). In the present study, consistent 

variations in the reflectance values of both Red and NIR spectrum were observed on soils with an 
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erodibility class of greater than 0.3 t h ha-1N-1(Fig.4). The higher the erodibility values the higher 

the estimated Cndvi values which could be due to the change in soil condition such as organic matter 

content or soil colour.   

   

Figure 4 Surface reflectance (SR) of NIR and red bands across soil erodibility categories (K 

categories: 1, ≤0.15; 2= 0.15 to 0.3; 3 ≥0.3) and different seasons (adopted from Ayalew et al. 

(2020)) 

The influence of soil heterogeneity on Cndvi values also varied across different cover types 

in the study area. Even at the same growth stages, parcels covered with WR showed less sensitivity 

to soil erodibility variation as compared to parcels covered with WRy. WR, belonging to the 

plagiophile canopy, is reported to have a higher plant area index compared with WRy or WW 

(belonging to the erectophile canopy) at the same phenological stage (Truckenbrodt and 

Schmullius 2018). Identifying land cover type to specific species level, by coupling remote sensing 

data with the IACS data, enabled quantifying the sensitivity of Cndvi estimation to soil background 

heterogeneity in relation to various crops’ growth stage.  
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Table 2 Regression results showing the influence of biophysical variables on Cndvi across scene 

dates. 

 

Scene Dates 

  R2 

Biophysical variables 

 Slope shapes  Crop types (with reference to WW)  

  
K
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29 Oct. 2013 0.4 0.06 0.00 -0.12 -0.11* 0.03* 0.14* -0.24* -0.02 0.21* 0.25* 

10 Feb. 2014 0.6 0.08 0.01* 0.01 -0.10* 0.23* 0.25* -0.17* -0.13* 0.29* 0.22* 

30 Mar.2014 0.8 0.05 0.01* 0.01 -0.03* 0.40* 0.35* -0.05* -0.03* 0.47* 0.04* 

01May2014 0.8 0.16* 0.00 0.00 -0.02* 0.49* 0.02 0.06* -0.01 0.55* -0.01 

10June 2014 0.7 0.11* 0.01* 0.00 0.02* 0.19* 0.01 -0.00 0.02* 0.02* -0.02* 

04July 2014 0.5 0.09* 0.01 -0.02* 0.31* 0.01 -0.01 0.08* 0.26* -0.06* 0.05* 

13Aug. 2014 0.6 0.07 0.02 -0.01 -0.03* -0.45* -0.30* -0.25* -0.11* -0.45* 0.42* 

06Sept.2014 0.7 0.08 0.04* 0.00 0.04* -0.43* -0.21* 0.12* 0.13* -0.41* 0.40* 

08Oct.2014 0.4 0.02 0.01 -0.01 0.00 -0.17* -0.27* -0.32* -0.17* -0.19* 0.38* 

25Mar. 2015 0.7 0.17* 0.02* 0.01 -0.06* 0.33* 0.36* -0.06* 0.17* 0.39* 0.10* 

10Apr. 2015 0.8 0.16* 0.01* 0.00 -0.05* 0.44* 0.47* -0.05* 0.15* 0.51* 0.03* 

13June 2015 0.8 0.14* 0.01 -0.00 0.03* 0.39* 0.01 -0.00 0.03* 0.20* -0.02* 

04July 2015 0.5 0.09* 0.01* -0.01* 0.27* 0.15* -0.02 -0.04* 0.09* 0.00 0.05* 

03Aug. 2015 0.8 0.09* -0.01 -0.02* 0.02* -0.50* -0.14* -0.06* -0.02 -0.52* 0.53* 

03Oct. 2015 0.4 0.13 0.01 0.00 0.02 -0.30* -0.24* -0.31* -0.09* -0.06* 0.46* 

31Dec.2015 0.4 0.28* 0.03* -0.01 -0.14* 0.16* 0.41* -0.16* 0.06* 0.33* 0.14* 

02Apr. 2016 0.6 0.16* 0.05* 0.01 -0.06* 0.31* 0.42* -0.14* -0.14* 0.42* 0.19* 

22Apr. 2016 0.7 0.15* 0.03* 0.00 0.00 0.49* 0.42* -0.05* -0.09* 0.54* 0.06* 

12May 2016 0.9 0.15* 0.01* 0.00 0.00 0.60* 0.06* 0.04* -0.03 0.66* -0.01 

08June 2016 0.8 0.21* 0.02* -0.01 0.01* 0.38* 0.00 0.00 -0.01 0.14* -0.04* 

23June 2016 0.5 0.02 0.01 -0.01 0.26* 0.04* -0.02 0.00 0.04* -0.02 0.01 

* indicates coefficients statistically significant at P <0.01; coef., regression coefficients. Adopted 

from Ayalew et al. (2020) 
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Spectral indices other than NDVI, such as enhanced vegetation index (EVI) and soil 

adjusted vegetation index (SAVI), have been proposed to enhance the sensitivity to biomass 

variation while reducing soil background noise on vegetation spectral property of a landscape 

(Huete et al. 2002). However, these indices may present a higher sensitivity to topographic 

variability which might take effect in rugged landscapes. Therefore, consideration of all 

biophysical variables in calibrating spectral indices for the purpose of environmental monitoring 

such as erosion risk assessment remains essential. 

In the present study topographic features in the form of slope shape showed consistent 

influence on Cndvi values. Convex shaped slope, as compared to flat slope, demonstrated 

consistently significant incremental implications on Cndvi values, with the highest coefficient of 

0.05 (P<0.01; R2=0.57) predicted on the image taken on 02 April 2016 (Table2). Concave slope, 

on the other hand, had a negative relation with the estimated Cndvi values in a temporally dependant 

manner. In general, the influence of topographic variation is explained to be in two direct and 

indirect ways. Directly, the landform change (e.g., from flat to hilly topography) on the spectrum 

reflectance property of the surface or indirectly through the influence of topographic features on 

the greenness of the vegetation cover (Ding et al. 2014; Matsushita et al. 2007). The influence of 

concaved slope on Cndvi values was predominantly observed on images taken from the end of June 

to August. This can be attributed to the indirect influence of topographic features on vegetation 

status. Concave slopes, located towards the depression parts of the study area (Deumlich et al. 

2010), are most likely to be cooler in summer as compared to flat land, in addition to their being 

depositional sites where by their water drainage pattern and soil properties differ as compared to 

erosional sites of the convex shaped slopes. These attributes of the landscape could also play a role 

in the status of crop growth and subsequently in Cndvi estimates. In general, while using NDVI for 
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C factor estimations, considerations must be taken into account to accommodate land formation 

influences on the status of the vegetation.        

 

4.3. Crop rotation impacts on C factor values  

From the intersects of the consecutive IACS data, it was possible to identify that the most 

prevalent year to year crop rotations, in terms of their share in the study area, involves WW, WR, 

and Mz crops in all the three years considered. The ANOVA result revealed that different crop 

rotation patterns had significant implications on both average annual C values and predicted 

average annual potential soil erosion rates in all the years considered. Mz and SB, used both as pre 

crop and succeeding crops, found to be associated with high average annual C factor values, 

particularly self-sequencing of maize year after year. It was also possible to identify the importance 

of pre-crops in reducing the C factor values by incorporating WR as a pre crop for Mz cultivation 

than using other crops such as SB. The highest average annual C factor value of 0.39 was computed 

on SB/Mz rotation parcels.  

Crop sequences involving WR inclined to reduce the average annual C values consistently. 

The lowest average annual C value, amounting to 0.07, was computed on parcels covered with 

WR preceded by pre-crops of winter cereals. Among the pre-crops of WR, however, Mz was found 

to result in higher C values when it preceded WR hence rotations composing of Mz and WR 

requires a due attention.  

Considering the widely grown crop, i.e. WW, when succeeded from WR it was indicated 

to have the potential to reduce the annual average C value as compared to succeeded from the 

alternative pre-crop of SB or self-sequencing of WW. Peltonen-Sainio et al. (2019), through 

regional scale NDVI analysis, also indicate the positive influence of rapeseed as a pre-crop for 

various succeeding crops. Therefore, with respect to C factor management and soil erosion 
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considerations, sequencing of WW after WR could perform better in the study area as compared 

to succeeding from Mz or SB. 

The study also indicated the temporal variability of C factor determination in relation to 

crop rotation patterns. The temporal variation can be associated with operational timing of 

different crops on consecutive cropping years. For example, Table 3 depicts that WW parcels 

which were pre-cropped with SB had significantly lower monthly C values than WW parcels 

preceded by any other pre-crops during early autumn season (September or October). This could 

be due mainly to the fact that parcels covered with SB had not yet been harvested in these months 

and hence the vitality of the vegetation cover status of SB remained vital to lower the values. 

However, during early spring (March and April), WW succeeded from SB indicated significantly 

higher monthly C values (0.29 in March and 0.162 in April) as compared to, for example WR/WW 

(0.118 in March and 0.054 in April). This can be attributed to the late sowing dates inflicted on 

WW as a consequence of late harvesting operation by the SB pre-crop cultivation (Castellazzi et 

al. 2008). Overall, the results indicate the possibility of using remote sensing data for large scale 

agricultural operation management in relation to environmental protection objectives in a 

temporally explicit manner.   

Spatially it was also possible to indicate the association between crop rotation distributions 

and their annual C factor values at the parcel level. Again, rotations involving Mz and SB, in 

2015/16 cropping calendar, covered around 17% (2,931 ha) of the entire agricultural landscape 

which corresponded well with the 21% classification of the landscape into annual C values of 

greater than 0.3. the lowest C factor values of less 0.1 corresponded with the spatial distribution 

of WR and Gr rotated parcels. 
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Table 3 Temporal dynamicity of C factor values in relation to crop rotation patterns 

Succeeded 

crops Pre-crops 

Months* 

February March April May June July August September October December 

WW 

WW 0.223abcd 0.168fg 0.079de 0.060d 0.013f 0.098de 0.498a 0.471a 0.363a 0.170bc 

WR 0.199abcd 0.118 g 0.054de 0.018 d 0.007f 0.068e 0.490a 0.473a 0.420a 0.132bc 

Mz 0.314a 0.228ef 0.128cd 0.052 d 0.034ef 0.094de 0.430ab 0.233bc 0.321ab 0.296ab 

WB 0.138cd 0.132g 0.054de 0.038 d 0.008f 0.068e 0.489a 0.485ab 0.351ab 0.121bc 

SB  - 0.290de 0.162cd 0.009 d 0.034ef 0.099cde 0.469a 0.021c 0.125b 0.361a 

SC 0.233abcd 0.141efg 0.054de 0.026 d 0.001if 0.078de 0.354ab 0.385a 0.334ab 0.174bc 

WRy 0.298a 0.147fg 0.084cde 0.031 d 0.024f 0.222ab 0.470a 0.564a 0.515a - 

WR 

WW 0.121d 0.116 g 0.037e 0.084d 0.005f 0.043 e 0.486a 0.411a 0.179b 0.077c 

WR 0.147cd 0.130 g 0.060de 0.035d 0.013f 0.041 e 0.462a 0.444a 0.296ab 0.116bc 

Mz 0.282ab 0.200fg 0.078de 0.196c 0.019f 0.042 e 0.305ab 0.337ab 0.293ab 0.188bc 

WB 0.124d 0.133 g 0.043e 0.057d 0.008f 0.033 e 0.407ab 0.435a 0.190b 0.075c 

WRy 0.120dc 0.095 g 0.009e 0.097d 0.001f 0.077 de 0.442ab 0.499a 0.391a 0.172bc 

Mz 

WW 0.275ab 0.342cd 0.341b 0.422a 0.383bc 0.204b 0.102cd 0.303abc 0.171b 0.158bc 

WR 0.295a 0.260 def 0.201c 0.249bc 0.169d 0.171bc 0.162bcd 0.445a 0.228ab 0.130bc 

Mz 0.437a 0.435b 0.426 c 0.441a 0.354c 0.171b 0.125bcd 0.106c 0.219ab 0.443a 

WB 0.272abc 0.229efg 0.168cd 0.369ab 0.153de 0.140bcde 0.233bc 0.181bc 0.094b 0.153bc 

SB  - 0.544a 0.537a 0.481a 0.491a 0.265 a 0.066cd 0.028c 0.082b 0.429a 

SC 0.544a 0.570ab 0.565ab 0.369a 0.371cd 0.148bcde 0.009cd 0.325abc 0.031b 0.232abc 

R2  0.44 0.62 0.70 0.62 0.73 0.44 0.61 0.60 0.55 0.35 

Means followed by the same letters in a column are not significantly different from each other per LSD (P<0.05). (-) indicates not 

considered in the analysis. Adopted from Ayalew et al. (2021) 
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4.4. Crop rotation and potential soil erosion rates 

The rotational patterns also indicated significant differences among themselves with 

respect to average annual soil erosion rates. Crop rotations involving SB and Mz as succeeding 

crops consistently and significantly resulted in higher average annual soil loss rates. These crops 

are row planted and widely spaced crops.  Particularly, self-sequencing of maize (Mz/Mz) resulted 

in soil erosion rate as high as 72% compared to self-sequencing of WR and as high as 51% 

compared to self-sequencing of WW. This can be explained from the fact that Mz could not be 

able to provide year-round soil cover protection unlike WR or winter cereals self-sequencing 

patterns which more or less could provide better soil coverage. It is documented that rotations 

involving wide spaced row crops like potato, generate highest runoff amount in a plot experiment 

(Preiti et al. 2017).  

Spatial distribution of the considered rotation patterns and their association with the 

potential soil erosion rate also indicated that rotation of root crops (SB) and row cultivated plants 

(Mz), need to be considered for rotation scheme on less sloping or flat areas. Overall, the result 

from the present study could help in identifying trends of potential soil erosion risks in relation to 

crop management patterns, as depicted in Figure 5, in a large agricultural landscape setup 

efficiently without requiring to conducting plot scale multi location trials.  
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             Figure 5 Spatial distribution of rotations and predicted potential soil loss rate.  

Modified from Ayalew et al. (2021) 
 

Finally, to validate the accuracy of the USLE model prediction, the output from the current 

soil loss prediction of Mz/Mz parcel was compared with a long-term soil erosion rate measured 

from maize monocropping experimental plot. The potential soil erosion modelling of the Mz/Mz 

sequence in the 2013/14 cropping calendar resulted in an average soil loss rate of 1.87 t ha-1y-1 a 

comparatively close prediction and within the range of the actual measured soil loss rate for Mz 

monoculture (1 t ha-1 y-1).    
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5. Conclusions and outlook 

The present research indicated the discrepancy between NDVI based and empirical based 

C factor estimation methods and subsequently the importance of quantifying the sensitivity of 

NDVI based C factor estimations while dealing with large heterogenous landscapes by utilizing 

annually updating land use data and time series optical satellite data. It was presented that 

biophysical variables such as soil conditions and topographic features need to be considered in the 

process of deriving NDVI based C factor values. In quantifying the sensitivity of Cndvi, the soil 

erodibility condition (K factor) was reliable and consistent to explain the response of Cndvi values 

to soil background heterogeneity. It was also indicated that the relationship between Cndvi estimates 

and heterogeneous soil conditions can be further dissected according to canopy structure of 

different crop cover types. Further research on this regard, with ground measurements, however, 

is needed to further understand the relationship of crop canopy structure and NDVI based C factor 

value estimation for future. It was also possible to quantify the sensitivity of NDVI based C factor 

derivation to topographical variations across different temporal periods.   

Combining multitemporal satellite data with land use data enabled to compute C factor 

values for various crop rotational patterns and subsequently determine the potential soil erosion 

rates at large agricultural landscape level. Interannual variability of the influence of various crop 

rotations on C values was captured by the method employed.    

For the future, research needs to be directed towards formulating C factor value estimation 

by considering all relevant biophysical variables such as spatially explicit temperature and rainfall 

data, as the NDVI is directly influenced by temperature in the middle latitude and rainfall in the 

tropical areas, along with yellow vegetation indices in order to improve the accuracy of using 

remote sensing images for the purpose. In determining the influence of cropping practices on C 

factor values and subsequent soil erosion prediction, data including agricultural management 
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decisions such as, tillage and residue management practice and fertilization schemes could further 

improve. As the study also indicated the spatial and temporal aspect of the crop rotation impacts 

it could be feasible to employ process-based models for future endeavours.         
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