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Anomaly Detection in Galaxy Images using
Deep Learning

Abstrakt

Tato prace predstavuje vyzkum v oblasti detekce anomalii
pomoci generativnich modelti. Hlavnim tcelem této prace
je zhodnotit vykon metod detekce hlubokych anomadlii pro
obrazy galaxii.Byla nalezena metoda s dobrym vykonem de-
tekce anomalii pro astronomické obrazy.

Klicova slova: Detekce hlubokych anomalii, generativni sité,
obrazy galaxii

Anomaly Detection in Galaxy Images using
Deep Learning

Abstract

This work presents research in the field of anomaly detection
using generative models. The main purpose of this work is to
evaluate performance of deep anomaly detection methods for
galaxy images. A method with good anomaly detection perfor-
mance for astronomical images was found.

Keywords: Deep anomaly detection, Generative Networks,
Galaxy images
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Introduction

Many astronomical researches aim to identify outliers in the information col-
lected by various modern telescopes. There are various methods for finding
outliers also known as anomaly detection methods. These methods are based
on the theory of normal data distribution. Anomalies are data that do not fol-
low the rules of normal distribution.

The amount of data obtained by astronomical surveys increases exponen-
tially in volume and complexity every year. To analyze such a large amount of
data, it is impossible to process only with the help of human efforts. Modern
methods of anomaly detection are needed. When the data that is being pro-
cessing by these methods increases and becomes more complex, deep learning
methods have been proposed to solve this problem.

The application of deep learning for anomaly detection is increased rapidly,
providing for the study of this area and the development of new architectures of
neural networks. Generative models are one of the most popular trends. The
ability to learn the distribution of data by optimizing a feature learning loss
function has given generative models a widespread in the problem of anomaly
detection.

At the moment, there are a large number of generative models with im-
proved architecture for detecting anomalies. Training and testing these archi-
tectures to assess their performance in specific tasks, such as detecting anoma-
lies in galaxy images, can specify the right direction in improving and creating
modern applications for solving this problem.

The purpose of this work is to test the ability of generative models to detect
anomalies in galaxy images. This work theoretically compares two popular
generative models for detecting anomalies in images: Generative Adversar-
ial Networks and Convolutional autoencoder. According to the preliminary
analysis, two GAN-based architectures were chosen to solve given problem:
GANomaly and f-AnoGAN. These models are specialized in detecting anoma-
lies using only normal data for training. The performance of the models is eval-
uated using standard evaluation metrics of anomaly detection: AUC-ROC and
Fl-score.



1 Overview of existing solutions

For anomaly detection in a large amount of data, it is rational to use deep learn-
ing, since classical methods of machine learning require a lot of work at the
stage of data preparation. One of the most promising ways is to use generative
models. In the field of astronomical data processing, this approach provides
high efficiency.

The basic goal of the Generative models is to learn true data distribution
in order to generate new data points with some variations. In general, the two
most popular and efficient generative approaches:

 Generative Adversarial Networks (GAN);
 Autoencoders (AE).

At the moment, there are several modern solutions for detecting anoma-
lies in astronomical images using generative models.

1.1 Generative Adversarial Networks

1.1.1 Anomaly detection in Hyper Suprime-Cam galaxy images
with generative adversarial networks (AD-HSC)

Method: Wasserstein generative adversarial network (WGAN)
Data: Hyper Suprime-Cam galaxy images

Technology AD-HSC[13] based on an unsupervised anomaly detection
method using a Wasserstein generative adversarial network (WGAN). Galaxy
images obtained from the Hyper Suprime-Cam (HSC) survey (the second pub-
lic data release) were used to train this model.

For the model the standard formulation of a Wasserstein GAN with gra-
dient penalty (WGAN-GP) is used. The generator and the discriminator are
convolutional neural networks.

The authors use a discriminator score based on the residual between the
original and the reconstruction to detect anomalies that distinguish their ap-
proach from the classic one, which uses the generator and discriminator losses.
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Among other things, this solution uses post-processing of anomalous im-
ages to find potentially scientifically interesting images. For this purpose, con-
volutional autoencoder (CAE) is applied in the work. Presumably, the residual
images contain information about why WGAN marked the object as abnormal.
In this solution CAE is used to reduce the dimension of data and highlight sig-
nificant information. This network contains 4 encoding and decoding layers,
uses a standard MSE loss between the real and reconstructed image.

This approach combining WGAN anomaly detection and CAE post-
processing allows obtaining a number of potentially scientifically meaningful
images of galaxies.

1.1.2 Detecting outliers in astronomical images with deep gener-
ative networks

Method: Wasserstein generative adversarial network (WGAN)
Data: Horizon-AGN astronomical images

This work focuses on the ability of deep generative networks for detecting
outliers in astronomical image datasets [4].

For this research, the Horizon-AGN cosmological hydrodynamical simu-
lation data and images from the CANDLES survey are used.

The solution is based on the WGAN theory with Wasserstein-1 distance
as the metric to evaluate the similarity between a real and a generated distribu-
tion. The implementation is CNN architectures for the discriminator and the
generator.

The anomaly detection method is similar to the previous solution. The
idea is that the generator is able to create images identical to the real image from
the sample. Thus it will not be possible to reconstruct a duplicate image when
an image is from the distribution of abnormal images. Therefore, the abnormal
image will have a bigger loss than normal images. An anomaly score is defined
as the loss at the last iteration when the training has converged and the closest
image has been found. The total loss is defined as the sum of a residual loss
and a generator loss.

This solution was tested with isolated galaxy images. The paper showed
that the WGAN defines 8o percent of the test images as anomalous and only
10 percent of the samples are falsely determined as anomalous.

1.2 Convolutional autoencoder

1.2.1  Anomaly detection in Astrophysics: a comparison between
unsupervised Deep and Machine Learning on KiDS data

Method: Disentangled Convolutional Autoencoders (DCA)
Data: Kilo Degree Survey Data Release (KiDS DRy)
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Two anomaly detection methods (a Disentangled Convolutional Autoen-
coder and an Unsupervised Random Forest) are reported in this paper to ad-
dress to compare but only one of them relates to the generative model. They
are considered these methods as potentially promising methods to detect pe-
culiar sources. The DCA method has been considered potentially capable of
detecting peculiar objects like interacting galaxies and gravitational lenses.

The authors performed research on Kilo Degree Survey Data Release
(KiDS DR4) data.

The main idea is that the residual images obtained by subtracting the de-
coder output signal from the corresponding input should contain only residual
noise. Thus the statistical estimators calculated on the residual images are fun-
damental for assessing anomalies. The authors use three statistical estimators:

e Median Absolute Deviation (MAD). In the residual image, a median of
the pixel values corresponds approximately to the mean value of the back-
ground. Therefore, MAD is a valid measure of how broadly the residuals
are distributed around the background. A high value could indicate the
presence of substructures or artifacts.

o Skewness. Extraordinary high or low values of this statistical parameter
are able to indicate that there is something odd in the image.

e Maximum. Image artifacts produce the pixels with high brightness in
the residual images.

DCA showed good results in memory and computing time and was able
to detect some peculiar sources, showing substructures that were hidden by
nearly distant galaxy light, as well as objects with extremely small or pale close
companions.

12



2 Anomaly Detection

Anomaly detection is the identification of data that inconsistent to the distribu-
tion of normal data, i.e. does not correspond to normal appearance, semantic
content, quality or expected behavior. The scope of the anomaly search can be
the detection of network intrusions, data quality monitoring, detection of ab-
normal behavior on video, monitoring the quality in manufacturing, detection
of anomalies on X-rays and much more.

The conditions for evaluation anomalies have two main aspects:

1. The normal samples have similar feature distribution in latent space.

2. The distribution of abnormal samples has a large distance from the nor-
mal data.

2.1 Comparison of generative models

The classic way of classification using machine learning is to label a dataset and
use a neural network capable of returning the probability of belonging to a par-
ticular class. In the field of processing large databases, this approach requires
a lot of work of experts at the stage of data preparation and interpretation of
the results of the classifier requires additional work.

An alternative approach is to use deep neural networks which have been
used to detect anomalies in various industries and demonstrate good results.

Recurrent Neural Networks (RNN)

Convolutional Neural Networks (CNN)

Autoencoder (AE)

Generative Adversarial Networks (GAN)

Basically, for most anomaly detection tasks, there are no balanced datasets
in which there are abnormal samples in sufficient amounts, or they are com-
pletely absent. Thus, many deep learning methods face this existing barriers.
However, some types of deep learning models have features that allow them
to show good performance for detecting anomalies even to data with a large
imbalance between abnormal and normal data.
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The ability to fit the distribution give opportunity to generative models
have become one of the best methods for detecting anomalies. Generative
models learn the representations of data samples by optimizing a feature learn-
ing objective function. This model is not originally developed for anomaly de-
tection. However, they capture some key patterns underlying the data, which
contributes to the detection of anomalies. The basic goal of the generative
models is to learn true data distribution to generate new data points.

The two most popular and indicative generative approaches are

1. Autoencoders (AE)
2. Generative Adversarial Networks (GAN)

Autoencoders are popular in the field of anomaly detection. Autoen-
coders is nearly equivalent to Principal Component Analysis (PCA)[16]. PCA
is constrained to a linear dimensionality reduction, autoencoders include lin-
ear and nonlinear transformations. It is more efficient to train multiple layers
using an automatic encoder, rather than training one huge transformation us-
ing PCA. Thus, autoencoder methods show their advantages when data prob-
lems are complex and nonlinear in nature. Autoencoders represent data within
hidden layers by reconstructing the input data. The autoencoders which are
trained using only normal data samples produce a large reconstruction error
and that is an indicator of the anomalous data samples. The types of autoen-
coder architectures promising results in anomaly detection are proposed in
Fig.2.1. The selection of autoencoder architecture depends on the kind of data.
For images, convolution networks are preferred. Autoencoders are simple and
have effective architectures for anomaly detection. However, the performance
is decreased when using low-quality and noisy training data with a high degree
of distortion.

Autoencoders

Images Sequential Data

CAE CNN-AE CNN-LSTM-AE DAE LSTM-AE GRU-AE AE SDAE

Figure 2.1: Autoencoder architectures for anomaly detection

GANs are introduced to effectively learn the input data distribu-
tion. Generative Adversarial Networks-based Anomaly Detection technolo-

14



gies (AnoGAN|[19], Efficient-GAN[10], GANomaly[18],f~AnoGAN[20], AD-
HSC[13], AnoSeg[12]) are provided efficiency for identifying anomalies on
high-dimensional and complicated datasets due to the possibility of learning
input data distribution. GAN exhibits good results in creating realistic images.
It trains using only normal samples and learns the feature representations in
a latent space which makes it possible to detect abnormal samples that have
high residual errors.

2.17.1 GAN

Generative adversarial neural network (GAN) [11] is an architecture consist-
ing of a generator and a discriminator configured to work against each other.
Hence GAN got the name generative-adversarial. In the case of working with
images, a convolutional neural network is used to design the generator and
discriminator.

Standard GAN has two subnetworks: Generator and Discriminator.

o Generator. Generative algorithms model the distribution of individual
classes.

 Discriminator. Discriminative algorithms attempt to classify input data.
Taking into account the features of the data obtained, they try to deter-
mine the category to which they belong.

Real
image AP
Y ‘% Discriminator }—> Real / Fake
: Fake "
Noises —»| Generator . —
image

Figure 2.2: GAN structure

Generator creates new data instances, and the other, a discriminator, eval-
uates them for authenticity. The discriminator decides whether each data in-
stance it considers belongs to a training data set or not.

Stages of GAN work:

» The generator gets a random query and returns an image.

o This generated image is fed into the discriminator along with a stream of
images taken from the actual dataset.

 The discriminator accepts both real and fake images and returns proba-
bilities, numbers from o to 1, with 1 representing a genuine image and o
representing a fake one.
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The discriminator network is a standard convolutional network that can
classify images submitted to it using a binomial classifier that recognizes im-
ages as real or as fake. The generator is in some sense an inverse convolutional
network: although a standard convolutional classifier takes an image and re-
duces its resolution to get a probability, the generator takes a random noise
vector and converts it into an image. The first filters out the data using down-
sampling techniques such as maxpooling, and the second generates new data.
Both networks are trying to optimize the target function or the loss function.
For guiding the discriminator training, loss function is used:

max V (D, G) = Ex.p,,, x[log D(X)|] + E,.p,z)[log(1 — D(G(z)))]

where V' denotes the output value of the loss function, G is a generator
and D is a discriminator, Pata is the real data distribution, P, is the generated
data distribution, and E is the average value.

For guiding the generator training, loss function is used:

minV (D, G) = E, p,»[log(l — D(G(z)))]
The GAN is trained with the following objective:
ming maxp V (D, G) = Ex.p,, . x[log D(x)] + E,.p,2)[log(1l — D(G(z)))]

The vanilla GAN has some problems with training stability and mode
collapse when the gradient of the discriminator vanishes. In order to make it
possible to solve important tasks, it is necessary to compensate for the draw-
backs of the vanilla GAN. Different variants of architecture and losses to decide
these problems have been proposed. Several variations is suitable to decide the
anomaly detection problems:

1. Deep convolutional generative adversarial networks (DCGAN)[3]. DC-
GAN is a GAN architecture with striped convolutions for the discrimina-
tor and fractional-stride convolutions for the generator. This model re-
moves fully connected hidden layers and uses batch normalization. DC-
GAN employs ReLU in a generator and for output generator layer is tanh
activation function. For all discriminator layers LeakyReLU activation
is used.

2. Conditional Generative Adversarial Nets (CGAN)[14]. This is a modified
version of the GAN algorithm, which can be constructed by transmitting
additional data y which is a condition for the generator and discrimina-
tor. y can be any additional information, for example, a class label, an
image, or data from other models, which can allow you to control the data
generation process. Additional information y is supplied to the input of
the generator and discriminator from GAN, for example, the condition
can be represented by an additional input layer. (Fig. 2.3).

In this case, the optimization problem will look like this:
ming maxp mNE log D(x | y)] + Ziﬂ; log(1— D(G(2 | y))]

data

16
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Figure 2.3: Conditional Generative Adversarial Net[14 ]

3. InfoGAN] 21] devides the generator input vector z into two parts: an in-
terpretable latent variable and an incompressible noise vector. The di-
mension of the latent variable corresponds to the semantics of the gener-
ated sample constraining the relation between them. InfoGAN enhances
semantics control of sample generation due to entering information the-
ory. This model adds a regularization term to the standard GAN loss
function:

min max Vi(D,G) = min mgx[V(D, G) — M (c;G(z,c))]

where c is the interpretable latent vector, I(-) means the computation of
mutual information between the latent vector c and the generator output,
and ) is regularization constant.

[ Noise, 2 SNGeRessio

“ooie.c Il

Fake Data Probability input is

Neural Glz, ¢) — — real:

D(x) or D(G(z))

Real Data
b1

Estimation of ¢

Figure 2.4: Information maximizing generative adversarial network. New
components are indicated in red.
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4. Wasserstein generative adversarial networks (WGAN)[4]. WGAN solves
training instability and mode collapse problems that arise in vanilla GAN
using minimizing the Wasserstein distance. There are several versions of
WGAN. One of the most popular is WGAN with gradient penalty for
generator.

WGAN-GP loss function is defined as:
m(%n max V(D,G) = Ezup,2)[D(G(2))] — Exwp,,, (x[D(X)]

+ ApEsre) [(IV:DR)], — 1]

GAN is constantly evolving especially its representational learning abil-
ity that makes this model a priority for anomaly detection. Mostly GAN-based
anomaly detection methods train a network to learn the feature representa-
tion of normal samples. Deep Anomaly detection (DAD) review [8] concludes
generic normality feature representation learning based on GAN ( Fig. 2.5).
The training data x is forward-passed to the network to learn and derive a fea-
ture extractor ¢. The loss function depends on the residual error or an anomaly
measurement is used to detect anomalies. Since during the training period net-
work adopts only normal instances all samples in the latent space store signs
of only normal images, which means that such a network will restore normal
images well, but as soon as there is an abnormal sample at the input, the opti-
mization function will show large losses.

4 7

Reconstruction / Prediction
»| / Anomaly Measure-driven
Loss Function

[49)

Figure 2.5: GAN-based generic normality feature representation learning. [8]

For anomaly detection, in general GAN-based method uses only normal
data to train the network, learn its feature distribution and identify anomalies
using a residual image to compare the reconstructed and given samples using
generator, discriminator, or both. The probability output by the discriminator
can be used as an anomaly score. The stability of the discriminator for anomaly
detection is contentious since it can deteriorate after training.

The advantages and disadvantages of GAN-based anomaly detection ap-
proaches strongly depend on the chosen architecture and the objective func-
tions. Chapter § details two popular approaches and their advantages and
disadvantages, which are used by popular architectures for anomaly detection
described in this section. The pros and cons are summarized here based on
these approaches.

18



Advantages:

o GANs demonstrate excellent ability in generating realistic images, which
helps to detect anomalies that are unsuccessfully reconstructed from the
latent space.

e Most of the existing models and theories based on GAN can be adapted
to detect anomalies.

Disadvantages:

e Vanilla GAN training is prone to problems such as failure to converge
and collapse mode thus it is add difficulties and inaccuracy for anomaly
detection. But there is already a solution for each of these problems and
it is implemented in adapted architectures.

 The generator can be confused and generates images out of the manifold
of normal data. This can happen if the data distribution is complex or
outliers appear in the training data.

e Anomaly score may be suboptimal because it is based on a generator with
a purpose intended for data generation rather than anomaly detection.
This problem is also easily solved by making changes to the standard
GAN.

2.1.2 CAE

Autoencoder (AE) is a neural network that copies input data to output. The
model has similar in architecture to a perceptron. Autoencoders compress in-
put data to represent them in latent space, and then restore output from this
representation. The goal is to get the response closest to the input on the out-
put layer. At the time when the autoencoder copies the input to the output,
the latent space h obtains useful properties. Thus, autoencoders are able to ex-
tract the feature from the data. A distinctive feature of autoencoders is that the
number of neurons at the input and output are the same. Autoencoders use-
ful for various problems such as dimensionality reduction, noise cancellation,
feature extraction or data generation.

Autoencoder consists of two parts:

e The encoder is responsible for compressing the input to latent-space.
Transformation from original input to the latent representation is de-
noted by the encoding function h = f(x).

 The decoder is designed to recover input from latent space. Transforma-
tion from latent representation to reconstructed output is denoted by the
decoding function r = g(h).

19
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Figure 2.6: Autoencoder structure.

Encoder takes the raw data and maps to a latent or compressed represen-
tation a deterministic function. The obtained results is code which contains
important information about input data. Using the code and a reverse map-
ping decoder reconstruct the input.

A convolutional autoencoder is a particular case of autoencoder which
is employed for images and Convolutional Neural Networ (CNN) is used in
the structure of the autoencoder in the encoding and decoding parts. The CNN
structure allow to extract the features in the input image. This specificity gives
opportunity to use autoencoders for classification and anomaly detection.

At the training stage only the normal data is used to train the CAE. Since
it is necessary to optimize the CAE model to minimize the reconstruction error
for the input and resulting image. Thus, the model will show high reconstruc-
tion error if the input image is anomalous. It minimizes the reconstruction
error e between input x; and output y; by adjusting its parameters as shown by
the loss function

e(x,y, W) = 5 37 [[x; — yill; + AW,

At the testing stage two main problems should be solved:

1. The metrics of the reconstruction error between the real and recon-
structed images should be defined to compute the anomaly score.

2. The threshold (standard deviation, ¢) of the reconstruction error should
be determined in order to classify the input image as normal or anomaly
data. (Fig. 2.8).

This several could be also used as the reconstruction error

20
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Figure 2.7: CAE stucture.

e Mean Squared Error (MSE)
MSE = 72 Y s G 5) = K (i)
e Structural Similarity Index (SSIM)

— (2#1#y+01)(20'zy+02)
SSIM(z,y) = (s rer) (o2 o ses)

 Binary cross-entropy
H(P,Q) = =, P(r)log Q(z)
L=~ t:log(p) = ~[tlog(y) + (1~ 1) log(1 —p)

where t; is the truth value taking a value o or 1 and p; is the Softmax
probability for the it* class,

Advantages:

o CAE is simple and universal for various types of data.

e The CAE models and their improvements can be employed to perform
anomaly detection.

» CAE is good at reconstruction of images from latent space.

Disadvantages:
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Figure 2.8: The concept of the reconstruction error for anomaly detection.

 The feature representations can be biased due to rare patterns outliers in
the training samples.

 The loss function is more designed for dimension reduction, denoising,
classification, or image compression than anomaly detection. For this rea-
son, the resulting representations are a general presentation of the main
patterns from which it is difficult to extract important and specific in-
formation from code. But this problem is being solved by replacing the
decoder CNN with a specified function which creates a synthetic model
of the input data.

o CAE produces really smooth images which absence the noise properties
of the real data. This property is not suitable for astronomical images and
anomaly detection.

Summarize

GAN is more appropriate for solving the problem of detecting anomalies in
astronomical images compared to CAE.

1. GAN is primarily designed to learn the data distribution of the input im-
ages and it demonstrates excellent quality in the reconstruction of real
images. That means during training GAN receives complete information
in the normal data distribution, which allows him to identify outliers from
it. CAE is designed to emphasize the most relevant and significant infor-
mation from the image to compress it without considerable losses.
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2. CAE smooths the input data which is a serious disadvantage for astro-
nomical images. Since this feature of the model can erase subtle anoma-
lies it is not suitable for anomaly detection in galaxy images.

3. At present GAN models are better suited for detecting anomalies, pre-
sumably because of the original purpose for which they were created.
GAN models provide better performance and find more interesting
anomalies since it allows to use of the feature space for quantitative as-
sessment of anomalies.
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3 Tested architectures

This chapter discuss two state-of-the-art methods more in depth. Two genera-
tive approach are described.These methods were selected since they are state-
of-the-art in anomaly detection, at the same time have an accessible practical
implementation and good performance in other problems.

3.1 GANomaly

GANomaly[18] is anomaly detection architecture based on a conditional gen-
erative adversarial network. This is a modified version of the GAN algorithm,
which can be constructed by transmitting additional data, which is a condi-
tion for the generator and discriminator. The model learns the generation of
high-dimensional image space and the inference of latent space.

The network is able to map the input image to a lower dimension vector,
which is then used for reconstructing the generated output image fixing the
distribution of training data both in the image and in the latent vector space by
adversarial autoencoder within an encoder-decoder-encoder subnetwork for
generator. Inlearning the data distribution for normal samples, it is important
to minimize distances from these images and latent vectors during training.
This is the reason for which, at inference time, a larger distance metric from
this learned data distribution at inference time is indicative of an outlier from
that distribution, that is, an anomaly. This adversarial training architecture
such provides higher performance from both a statistical and computational
point of view.

3.1.1 GANomaly architecture

GANomaly pipeline contains three sub-networks: autoencoder, encoder, and
discriminator networks.

1. Autoencoder network that behaves as the generator G. Encoder Gg
learns the input data representation and a decoder G reconstructs the
input image.Network use convolutional layers followed by batch-norm
and leaky Rectified Linear Unit (ReLU) activation function. Encoder of
the generator part downscales input image = by compressing it to a latent
vector z = Gg(x) supposing the lowest dimension containing the best rep-
resentation of input image. To upscales the vector and reconstruct image
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the decoder of the generator part employs model of a DCGAN][3] gener-
ator which contains convolutional transpose layers, ReLU() and batch-
norm and tangent activation functions. Thus Genrator generates image
=G D(Z)

. Encoder network E to compress the image & which is reconstructed by the
generator network. It has similar architectural details as encoder of the
generator part with different parametrization. Encoder downscales gen-
erator image & to find the feature representation 2 = E(2). The encoder
network explicitly learns to minimize the distance by its parametrization
and this minimization is used for anomaly detection at the test time.

. Discriminator network D to identify the input = and the output Z as real
or fake images. This sub-network adopts the standard discriminator net-
work from DCGAN[3].
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Figure 3.1: The architecture of GANomaly[18]

3.1.2 GANomaly training

The network is trained only on normal samples thus it is not able to reconstruct
anomaly image by obtained parametrization. Therefore, the vectors z and z will
have significant distinguish when the network is fed anomaly image since gen-
erator and encoders networks has missed abnormal feature representation.

In order to track dissimilarity within latent vector space the objective

function is formed by combining the loss functions using individual subnet-
works optimization.

e Adversarial Loss
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The network updates generator G using the internal representation of D.
Let f be a function that outputs an intermediate layer of the discrimina-
tor D for a given input « drawn from the input data distribution px. The
feature matching computes the L2 distance between the feature represen-
tation of the real and the generated images.

Eadv = mfvprf(x) - EENPXf(G(x)HQ

e Contextual Loss

The generator should be optimized to process contextual information
about the input images. It can be realize by contextual loss. The net-
work employs measuring the L1 distance between the input image x and
the generated image G(z) to penalize generator G.

‘Ccon = Erfvpx”‘r - G(x)||1

¢ Encoder Loss

An additional encoder loss minimize the distance between the bottleneck
features of the input 2 = Gg(z) and the encoded features of the generated
image 2 = E(G(x)).

‘Cenc = Em~px| |GE(':E) - E(G(l’)) | |2

Thus, such a loss function system allows the network to produce images
that are realistic and contextually justified. Otherwise minimizing the distance
between the original and the generated images is unfeasible for anomaly sam-
ples due to optimization only to normal samples.

Objective function for the generator the following:

E = wadvﬁadv + wconﬁcon + wencﬁenc

where Wody, Weon, Wene are the weighting parameters regulating the influence of
each losses to the total objective function.

3.1.3 GANomaly testing

The network tests given sample with encoder loss equation to compute
anomaly score A(Z) for a test sample Z using reconstruction error.

A(#) = [|Ge(E) — E(G(@))]];-

Total evaluation of anomaly performance is define as set of anomaly scores for
each test sample Z in the test set D

S = {Si : A(SL’AZ),I’AZ € ,ZA)}
scaling within the probabilistic range of [0, 1].

o s; —in(S)
' max(S) — min(S)

Eventually the total evaluation of the test set D is an anomaly score vector S’ .
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3.2 f-AnoGAN

f-AnoGAN]|20] is a fast unsupervised GAN based anomaly detection archi-
tecture based on a Wasserstein GAN network. This approach uses a generative
model of normal training data and a fast mapping technique of new data to the
latent space of the GAN network using trained encoder. For anomaly detection
the network employs a combined anomaly score based on a discriminator fea-
ture residual error and an image reconstruction error. Discriminator does not
have an output sigmoid function an outputs a scalar score not a probability.

-
Model training Y Anomaly detection )

@ Generative adversarial training

- Generator

.-“'i @ i[ Discriminator
7

ﬁ‘ By Erider ]

\_ Normal data @ Encoder training y, Unseen data

IH

Figure 3.2: Anomaly detection by f-AnoGAN

3.2.1 f-AnoGAN architecture

f-AnoGAN contains two parts: Wasserstein GAN and Encoder.

1. The GAN model contains two networks that are generator and discrimi-
nator. This part uses the Wasserstein GAN model which uses the Wasser-
stein loss to keep stabilized training. The interaction to limit the weight
and the cost function can lead to the vanishing or explosion of gradients.
In order to this problem introduces a gradient penalty for the generator
part to improve stability. The type of such model is known as a WGAN-
GP.

2. Encoder is used for a fast mapping approach. That is meant fast mapping
of given data to the latent space of the WGAN model. It maps images to
locations in the latent space that map to the normal input image, when
forward-pass as input to the trained generator. For normal image, map-
ping from image space to the latent space by the encoder and back to im-
age space by the generator gives low deviation. Otherwise, for anomaly
image the degree of deviation will indicate an anomaly. This degree de-
fines anomaly score.
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3.2.2 f-AnoGAN training

f-AnoGAN anomaly detection framework has two serial training stage using
only normal images: WGAN and Encoder training.

1. WGAN training. At this stage only unlabeled normal data are used.
WGAN is being trained for learning a nonlinear mapping function from
latent space Z to the manifold X in the image space that represents the
variability of normal training images. The generator G and the discrim-
inator D are simultaneously optimized. The generator learns to recon-
struct images of the training distribution capturing normal variability.
The discriminator gives an evaluation of the fit of reconstructed images
to the distribution of normal images. The generator and discriminator
with fixed weight are used for subsequent encoder training.

The training process of WGAN is illustrated Fig.3.3

e )

WGAN training

Real image x

Generated
image G(z) .‘

I
Z

Generator G Discriminator D
R ¥

Figure 3.3: WGAN training

2. Encoder training using the trained WGAN. Inverse mapping is needed
for anomaly detection. This is achieved by using training a deep encoder
network E. The encoder is trained with architectures image-z-image izi;
by a discriminator. The izi; approach simultaneously guides encoder
training in the image space and in the latent space. The residual in the
feature space obtained with the discriminator is a reliable basis to detect
anomalous images, which is an essential term in the encoder training ob-
jective. This approach calculates image statistics of the real image and
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the reconstructed image. The loss function for discriminator guided izi;
encoder training is:

Liziy(x) = 3 - [x = GE®)|* + ;5 - [1f(x) = F(G(EX)))I?

where discriminator features f() of an intermediate layer are used
as statistics of a given input, n, is the dimensionality of the intermedi-
ate feature representation, and is a weighting factor.

izi_f encoder training

> [ . .

[ VA
Encoder E G

Real
image x

Figure 3.4: Encoder training

3.2.3 f-AnoGAN testing

The anomaly detection stage involves the evaluation of the degree of the devia-
tion between given images and corresponding images produced by the genera-
tor. For this stage, the results from the previous two stages are used. Anomaly
detection uses training WGAN and encoder to compute anomaly score.

The anomaly score explicitly depends on the loss function used to train
the encoder part. f-employs the discriminator guided izi; encoder architecture.
The total anomaly score A(x) for input image = is defined as Reconstruction
error + Discriminator error:

A(z) = Ag(2) + & - Ap(2),
where is a weighting factor and
Ap(x) = 3 - [x = G(EX)|?,

n

Ap(x) = 5. - If () = A(GEX)]?

This definition of the anomaly score include a discriminator term since
the specific architecture for encoding training (Fig.3.4).

This approach provides high anomaly scores for images with anomalies
and low anomaly scores for normal images. That is related to the model being
only trained on normal data, thus training model is capable of only generat-
ing an image similar to the input image, that is, images without anomalies,
incoming on the manifold of normal data. The ability to reconstruct an image
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indicates the type of image and the degree of deviation classifies normal and

anomaly data.
For pixel-level anomaly localization, the absolute value of pixel-wise

residuals is defined as:
Ap(x) = |x — G(E(x))|
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4 Data

For this research the Galaxyio DECals Dataset [9] which creating due the
Galaxy Zoo DECaLS [15] is used. Galaxy Zoo data is a really popular database
with various versions. A lot of high-quality data allows to solve different tasks
and perform experiments.

Galaxy Zoo is a scientific project on the morphological classification of
large numbers of various types of galaxies. This project was created to sep-
arate galaxy images by classification tree and citizens to help in scientific re-
search. In order to classify galaxies was used a series of questions and at least
40 volunteers for each image to obtain a probability for each parameter.

Galaxy Zoo DECals employs data from Dark Energy Camera Legacy Sur-
vey DESI[7].DECaLS employs the Dark Energy Camera (DECam) at the 4m
Blanco telescope at Cerro Tololo Inter-American Observatory, close to La Ser-
ena, Chile.The DECaLS survey contributes to target images for the Dark En-
ergy Spectroscopic Instrument (DESI). DECaLS observes the DESI footprint
in the Southern Galactic Cap and the <34 region of the Northern Galactic
Cap.

DECaLS provides galaxy data with increased resolution, image quality,
and visibility of detailed morphology regarding the previous Galaxy Zoo 2
project (Fig. 4.1). The DECaLS images with r = 23.6 reveal features not previ-
ously visible. This dataset also has a high signal-to-noise ratio.

Galaxy Zoo DECals contains about 17000 galaxy images with 256x256
pixels size which was classified to 10 classes by volunteer votes and labels from
Galaxy Zoo (Fig. 4.2).

Galaxy1o dataset (17736 images):

e Class o - Disturbed Galaxies (1081 images)

Class 1 - Merging Galaxies (1853 images)

Class 2 - Round Smooth Galaxies (2645 images)

Class 3 - In-between Round Smooth (2027 images) Galaxies

Class 4 - Cigar Shaped Smooth ( 334 images) Galaxies

Class 5 - Barred Spiral Galaxies (2043 images)

Class 6 - Unbarred Tight Spiral Galaxies (2043 images)
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Figure 4.1: Comparison of GZ2 and GZ DECaLS images[15].

e Class 7 Unbarred Loose Spiral Galaxies (2628 images)
e Class 8 - Edge-on Galaxies without Bulge (1423 images)
e Class g - Edge-on Galaxies with Bulge (1873 images)

Disturbed Merging Round Smooth In-between Round Smooth Cigar Round Smooth

Barred Spiral Unbarred Tight Spiral Unbarred Loose Spiral Edge-on without Bulge Edge-on with Bulge

/

Galaxy10 DECals: Henry Leung/jo Bovy 2021, Data: DECals/Galaxy Zoo

Figure 4.2: Example of each class from Galaxyio DECals.

For this work the Hubble sequence to separate galaxies is used. It divides
regular galaxies into three broad classes: elliptical, spiral and lenticular. The
number of images in each class of Galaxyio DECals Dataset is not evenly dis-
tributed. In order to balance the classes for detecting anomalies, the following
separation was made:
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« Elliptical (E) - Class 2 and Class 3 (Fig. 4.3.a)
e Spiral (S) - Class 5 and Class 6 (Fig. 4.3.b)
e Lenticular (S0) Class 8 and Class g (Fig. 4.3.c)

(a) (b) (@

Figure 4.3: Example of each galaxy type for final dataset.
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5 Experiments

This chapter describes the training of selected architectures for evaluating the
performance of the anomaly detection problem for galaxy images.

Two architectures for anomaly detection were chosen for the experiment:
GANomaly and f-AnoGAN. These models were trained using a dataset contain-
ing images from Galaxy 10 DECals. The dataset is divided into three classes
containing images of regular galaxies: elliptical (E), spiral (S), lenticular (S0).
Only normal data was used to train both models. Abnormal and normal data
in a balanced ratio were used for testing. This experiment allows to evaluate
the selected models for their application as detection of anomalous images in
large astronomical data.

To evaluate the performance of the models and compare the work of algo-
rithms for given task, two metrics that are common for the anomaly detection
task are used. These are AUC-ROC and F1-score metrics which is decribed in
the Section 5.1.

5.1 Evaluation metrics

In machine learning tasks, metrics are used to evaluate the quality of models
and compare different algorithms. Before calculating performance metrics, it
is necessary to obtain a Confusion matrix that contains predicted and actual
values (Fig. 5.1). It is simple table to obtain the performance of algorithms for
classification problem.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Predicted Values

Negative (0) FN TN

Figure 5.1: Confusion Matrix.
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Terminology for confusion matrix:

P (condition positive) is the number of positive cases;

N (condition negative) is the number of negative cases;

« TP (true positive) is the number of images with an anomalies for which
the model gives an estimate that there is an anomaly;

« FP (false positive) is the number of images without anomalies for which
the model gives an estimate that there is an anomaly;

e TN (true negative) is the number of images without anomalies for which
the model gives an estimate that there is no anomaly;

e FN (false negative) is the number of images with anomalies for which
the model gives an estimate that there is no anomaly.

Performance metrics are accuracy, recall, precision, F1-score, AUC-ROC
which are computed on the basis of the based on the above TP, TN, FP and FN
values. The most commonly used performance evaluation metrics for anomaly
detection problem according to these values is the area under the curve (AUC)
of the receiver operating characteristics (ROC)[6] and F1-score metric.

To calculate the AUC-ROC metric, it is required to calculate true posi-
tive rates (TPR), which corresponds to the ability of the model to recognize
images with an anomaly, and false positive rates (FPS), which corresponds to
the ability of the model not to take a normal image for an abnormal one.

The ROC[17] curve is a graph that allows you to evaluate the quality of
classification, displays the ratio between the proportion of objects from the
total number of containing of feature correctly classified as containing of fea-
ture (true positive rate, TPR is the sensitivity of the classification algorithm),
and the proportion of objects from the total number objects that do not con-
tain a feature, mistakenly classified as containing a feature (false positive rate,
FPR, the value of 1 — F'PR is called the specificity of the classification algo-
rithm) when the threshold of the decisive rule is varied.

¢ True Positive Rate is also known as recall.

TPR = TPJ-}—PFN

e False Positive Rate

FPR = TNF+PFP

Quantitative interpretation of ROC gives the AUC metric. AUC is the
area bounded by the ROC curve and the axis of the proportion of the false-
positive axis. The higher the AUC is the better the model. This shows how
much the model is able to recognize anomalies and at the same time not define
normal data as abnormal. A value of 0.5 demonstrates the unsuitability of
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Figure 5.2: ROC curve with FPR and TPR [5].

the chosen anomaly detection method (corresponds to random prediction).
A good model has an AUC value close to 1, which means a high degree of
detection.

The AUC value for a anomaly detection problem with two cases (normal
and abnormal) can be calculated as:

P r—P(P11)/2
AUC = &=l

where r; is the rank of ith positive sample in the ranking table according
to the probability of the normal class [17].
AUC has two main advantages :

e Scale-invariance. AUC measures not the absolute values of prediction,
but rather how correct these are ranked.

o Classification-threshold-invariance. AUC measures the model’s predic-
tion quality regardless of the classification threshold choice.

F1-score is harmonic mean of the recall and precision. To calculate the
F1-score it is necessary to compute two important value recall and precision
which is also related with predicted and actual values.

Precision is the proportion of objects which the classifier called as posi-
tive and concurrently which is really being positive. Recall demonstrates the
proportion of objects of a positive case of all objects of a positive class that was
found. Recall shows the skill of the algorithm to identify the class overall. The
precision presents the skill to separate one class from other classes.

... TP
precision = 75
_ TP

recall = TPLEN
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_ _ precision * recall
F1 score = 2% ( precision + recall >

The Fi1-score reaches a maximum with precision and recall equal to one,
and is close to zero if one of the arguments is close to zero. Fi-score takes values
in the range from o to 1. The precision and recall values are perfect if Fi-score
is equal to 1.

F1-score has problems when evaluating unbalanced classes, for this reason
sometimes modifications of the dataset are necessary.

5.2 Training and Anomaly detection

The training of the models are performed using cloud service. The Google
Colaboratory Pro was used to train both selected models. The Google Colab-
oratory allows to write and execute python code by web browser. This service
is perfect for deep learning tasks it is one of the best ways to perform high
performance computing since Colab Pro gives access to a graphics processing
unit (GPU).

Colab Pro offers two GPUs Tesla P-100, Tesla T4 with 16 gigabytes of
memory, 4 cores of CPU, huge RAM memory and CUDA version 11.2. Colab
Pro limits the session time to 24 hours. This solution is suitable for a large
number of tasks. Colab Pro interacts well with Google drive, which simplifies
the work and makes it possible to automate the learning process.

Before the anomaly detection performing, it is necessary to determine
the anomaly detection assumption. The training and test data are divided ac-
cording to the normal and abnormal data. That is it is necessary to set how to
divide the dataset into normal and abnormal data, which classes belong to nor-
mal data, and which to abnormal. There are several approaches to solve this
problem. The different datasets to separate into normal and abnormal data
can be used, it is also known as multiple sata sets. However, this approach
is more often used for the out-of-distribution detection task. Another assump-
tion is to use multi-class that means the one class of the dataset is considered
as abnormal data, and others are considered as normal data. This approach
is used for anomaly detection and novelty detection prblems. There is also
a so called one-class assumption. This approach consider one class as normal
and the other classes are anomalous. This research employs the one-class single
dataset assumption.

To evaluate GANomaly and f-AnoGAN models the Galaxy Galaxy
Zoo DECaLS data and Galaxyio DECaLS dataset was used. The collected
dataset consists of three classes according to the classification of regular galax-
ies: Elliptical (E), Spiral (S), Lenticular (So).

A total of six experiments were performed for this dataset. Three training
sessions were done for each model. Each class from the dataset was alternately
selected as normal, and the rest as abnormal. Therefore, three combinations
were used:
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e E as normal + S, So as abnormal;
e S as normal + E, So as abnormal;

e So as normal + E, S as abnormal.

GANomaly and f-AnoGAN have been trained for every case. For training
models only normal samples is used. For testing the normal and abnormal
samples is used.

5.2.1 GANomaly

GANomaly is GAN-based Semi-Supervised Anomaly Detection model which
using adversarial training. For evaluation GANomaly model an implementa-
tion based on the PyTorch framework was chosen [2].

The model allow set three losses for anomaly detection using weighting
parameters:

e Adversarial loss (waav)
o Contextual loss (weon)

 Encoder loss (wenc)

Training configuration:
o Image size: 256
o Batch size: 4
e Number of epochs: 40

The remaining settings are defined in accordance with the standard imple-
mentation. The model uses Adam optimization algorithm with initial learning
rate [, = 0.0002 and momentums 3; = 0.5, 52 = 0.999. Loss function is realized
with weight values w4, = 1, wy.. = 50 and wye,. = 1. The dimension of the
latent space is equal to 100.

5.2.2 f-AnoGAN

f-AnoGAN is GAN-based Unsupervised Anomaly Detection model which has
three-component architecture that include an encoder, generator and discrimi-
nator. One of the significant traits of the model is a serial training process. The
two adversarial networks (GAN) and Encoder are trained independently. The
structure allows to compute of an anomaly score using discriminator residual
error and an image reconstruction error. For evaluation f~AnoGAN architec-
ture an implementation based on the PyTorch framework was selected [1].
Training configuration for WGAN:
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o Image size: 256
o Batch size: 4

e Number of epochs: 150

Training configuration for encoder:
o Image size: 256
o Batch size: 4
e Number of epochs: 100

The others settings for WGAN and encoder training are defined in the
same way as for GANomaly: Adam - /[, = 0.0002, 5; = 0.5, 82 = 0.999. The
dimension of the latent space is 100.

5.2.3 Results

Two different methods mentioned in the previous section were tested. Each
method was tested on three cases for one dataset. Alternately, one of the classes
was called normal, and the rest abnormal.

In order to evaluate and compare the models the Area-Under-the-Curve
(AUC) of the Receiver-Operating-Characteristic (ROC) curve was employed.
The mean performance across all classes was calculated for each of the models.
The results of the evaluation can be seen in Table. 5.1 and Table. tab:resi.

Table 5.1: AUC-ROC values for GANomaly and f-AnoGAN

E S So | mean
GANomaly 0.85 | 0.64 | 0.61 | 0.7
f-AnoGAN 0.89 | 0.82 | 0.30 || 0.84

Table 5.2: Fl-score values for GANomaly and f-AnoGAN

E S So || mean
GANomaly 0.87 | 0.79 | 0.80 || 0.82
f-AnoGAN 0.74 | 0.71 | 0.71 || 0.72

The tables show the results for 6 cases for 2 models and § classes.

The GANomaly model has well reconstructed a class with elliptical galax-
ies. But for the other two classes, the model could not correctly determine the
distribution of features. The distribution of abnormal and normal images for
the test data strongly overlap.
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The f-AnoGAN turned out to be more responsive to anomalies. It showed
good results in detecting abnormal images for all classes. This model recon-
structed all three classes well and showed the correct distribution of data be-
tween them for all classes. Some graphs are presented in appendix A.

The f-AnoGAN architecture has provided better results for detecting
anomalies than the GANomaly architecture. Presumably it related with struc-
ture of f-AnoGAN which allows to compute of an anomaly score using dis-
criminator residual error and an image reconstruction error. This improves its
performance for this task and for many others.
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Conclusion

The main goal of the current research was to estimate specialized deep learning
methods for astronomical images. In this work, generative methods were in-
vestigated as a way to detect anomalous behavior in images of galaxies without
labels.

In the course of the work, an overview of existing solutions was per-
formed. The overview showed that the existing solutions for anomaly detection
in astronomical images do not apply adapted deep anomaly detection archi-
tectures. In this regard, a theoretical comparative analysis of two generative
models was conducted , which demonstrated that Generative Advesireal Net-
works are more appropriate for anomaly detection in astronomical images than
Convolutional Autoencoders.

The study showed that currently there are a large number of GAN-based
architectures to solve given problem. In this work, two popular models for
detecting anomalies were studied and trained: GANomaly and f-AnoGAN.
GANomaly is developed on the basis of DCGAN, f-AnoGAn is developed on
the basis of WGAN-GP. These models have been trained using Galaxy Zoo DE-
Cals Dataset.

Testing of models has shown that f-AnoGAN gives performance results
better than GANomaly. Perhaps this is due to the GANomaly architecture
based on DCGAN, which is prone to colaps mode and also because of the
architectural features of f-AnoGAN that allow anomalies to be analyzed using
reconstruction error and discretionary error.

This study has found that f-AnoGAN is able to perfectly reconstruct astro-
nomical images and learn the true distribution of data in given samples. This
model is appropriate for anomaly detection in galaxy images.
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Appendix

A. Results for each class of galaxy

In the images Fig.1-6 is illustrated results for the f-AnoGan model.
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Figure 1: ROC curve for Elliptical class
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Figure 2: The distributions of normal and abnormal data for Elliptical class

45



Figure 4:
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Figure 3: ROC curve for Spiral class
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Figure 5: ROC curve for Lenticular class
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Figure 6: The distributions of normal and abnormal data for Lenticular class
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