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Abstrakt 
Diplomová práce se zabývá stochastickým programováním a jeho aplikací na problém 
míšení kameniva z oblasti stavebního inženýrství. Teoretická část práce je věnována 
odvození základních přístupů stochastického programování, tj. optimalizace se zohledně­

ním náhodných vlivů v modelech. V aplikované části je prezentována tvorba vhodných 
optimalizačních modelů pro míšení kameniva, jejich implementace a výsledky. Práce 
zahrnuje původní aplikační výsledky docílené při řešení projektu G A ČR reg. čís. 
103/08/1658 Pokročilá optimalizace návrhu složených betonových konstrukcí a teoretické 
výsledky projektu M S M T České republiky čís. 1M06047 Centrum pro jakost a spolehlivost 
výroby. 

Abstract 
The thesis deals with stochastic programming and its application to aggregate blending, 
an optimization problem within the area of civil engineering. The theoretical part is 
devoted to the derivation of basic principles of stochastic programming (optimization 
under uncertainty). The applied part presents a development of suitable mathematical 
models for aggregate blending, their implementation and results. The thesis contains 
original results achieved in solution of the project G A ČR reg. n. 103/08/1658 Advanced 
optimum design of composed concrete structures and it contains theoretical results of 
the project from M S M T of the Czech Republic no. 1M06047 Centre for Quality and 
Reliability of Production. 
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Chapter 1 

Introduction 

Stochastic programming provides mathematical models for decision problems under un­
certainty or equivalently for problems involving randomness. Historically, stochastic pro­
gramming arose from joining the concepts of linear and nonlinear programming with 
probability and measure theory. Nowadays its models are being used in various areas 
ranging from economics (e.g. portfolio management) to logistics and engineering (e.g. 
electric or gas transport network optimization). 

This thesis deals with stochastic programming and its application to a problem in civil 
engineering, namely the optimization of aggregate blending for the production of con­
crete mixture. In Chapter 2 we start by analyzing the aggregate blending problem and 
we develop suitable linear programming models. Then we discuss briefly the reasons, why 
randomness should be considered in the models, and this leads naturally to an exposition 
of the basic principles of stochastic programming, which is presented in Chapter 3. 

The presentation of the theory is original to certain extent, since we have adopted a slightly 
different approach compared to the standard textbooks (see e.g. [4], [6], [7]). Instead of 
introducing the randomness to a mathematical model after it has been built, we start 
our model development including the probability space from the beginning. We also give 
a correct derivation of the so-called extensive form of stochastic program, which is usu­
ally used for implementation. A short discussion is devoted to the probability issues in 
stochastic programming with respect to the notation used. 

We return to the real application in Chapter 4, where we design stochastic programming 
models for the aggregate blending problem and we discuss their properties. 

The overview of our achievements is presented in Chapter 5. We discuss some aspects of 
our implementation of the models and we also present numerical and graphical results. 

1 



Chapter 2 

Aggregate blending 

2.1 Introduction, motivation 

The problem of optimizing an aggregate mix arises in civil engineering applications like 
concrete or asphalt mixture design. Various physical properties of the mixture can be of 
interest, depending on particular application. There is a variety of results and texts on 
this topic within the area of civil engineering, see for example Svoboda [15]. 

One of the possible approaches being used consists in formulating the optimal properties 
of the mixture in terms of its grading curve, which represents the distribution of the size 
of the particles in the mixture. The justification lies in the fact, that the proportions 
of particles of different sizes affect the mechanical properties of the aggregate mix in its 
hardened state and also its workability during the preparation process. The formulation 
of optimality using the grading curve is suitable for application of mathematical program­
ming. 

The aggregate blending problem has been dealt by several authors in various settings, for 
a brief survey see Bibliography [11], [12], [13], [14], [16], [17] . Generally, models based on 
linear programming or genetic algorithms are being used. 

2.2 Grading curves 

The desired composition of the mixture is defined in terms of its grading curve, which 
represents the distribution of the size of particles in the mixture. The idea of the grad­
ing curve is very similar to that of the distribution function of a random variable with 
bounded range in M. We illustrate this with Figure (2.1). 

The size of the particles in the mixture is obviously bounded from below by 0 and the 
upper bound on it also exists (the number of particles in the mixture is finite). Let's 
denote the upper bound by b. The grading curve / : [0,6] —> [0,1] is then defined by 

. mass of particles with size less than x 
fix) — . 

total mass of the mixture 

2 
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size 
0 x b 

sieves 

Figure 2.1: The grading curve -
- 40% of the particles are smaller than x and fall through the sieves 6 - 14. 

By the size of the particle we mean its characteristic size which may be defined as the 
diameter of the smallest ball into which the particle fits. Some other characteristics in­
cluding the particle's volume may be used as well. These definitions are presented just 
to give an idea about the problem to the reader. Practically they are not important. In 
practice, the grading curve is estimated by measurement. There is an n-tuple of sieves 
with increasing size of mesh ranging from a > 0 to b. The single sizes are specified by 
technical standards (ISO), the worldwide standard of today is 14 sieves with sizes 0.063, 
0.125, 0.25, 0.5, 1, 2, 4, 8, 11, 16, 22, 32, 45 and 63 mm. 

Let's denote the mesh size of the i-th sieve by aj. The practical grading curve g is then 
a piecewise linear continuous function determined by the values 

mass of particles that fall through the i-th sieve 
total mass of the mixture 

and represents a piecewise linear approximation for the theoretical grading curve / on the 
interval [ai, an}. 

If we can guarantee that the particle falls through the i-th sieve if and only if its size 
is less than the mesh size aiy we obtain the equality /(aj) = g(cii) of the theoretical 
and practical grading curves at the points Oj. In practice, this is satisfied only approx­
imately, giving one of the reasons for the development of a stochastic programming model. 

In the following, when talking about the grading curve, we will always mean the practical 
grading curve. Moreover, we will identify the practical grading curve with the vector 
g = (<7(ai))™=1 of its values. We also present a mathematical justification for this (intu­

itively clear) approach. 

Given an interval [a\, an] C K. and its partition p e M.n, p = (ai, 0 2 , . . . , an) with a* < Oj+i 
for i e {1,2,... ,n — 1}, the set of all continuous piecewise linear functions on [ai,a n] 
with usual addition and multiplication by a scalar is a vector space over M. of dimension 
n, therefore isomorphic to the vector space M™ over M.. 
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2.3 Mixture of ingredients 

The ingredients available for the production of the mixture are aggregate mixtures them­
selves and are characterized by their own grading curves. Suppose we have m ingredients 
to choose from. To produce one unit of the mixture, we need to decide the mixing ratios, 
that is, we need to fix an m-tuple x = (XJ)J!=1 G M m of real numbers where Xj > 0 for 
j G { 1 , . . . , m} and Y^Jj=i xj — 1- F r o m this it follows that Xj < 1 for all j. 

Let the ingredients have theoretical grading curves Qj : [0,6] —> [0,1]. Then gj(t) denote 
the mass of particles of size less than t in one mass unit of the i-th ingredient. In one unit 
of the mixture, the mass of particles of size less than t coming from the i-th ingredient is 
therefore Xjgj(t), and the total mass of particles of size less than t is given by Y^jLi xj9j(t)-

We have shown that the grading curve g of the mixture is a convex combination of the 
grading curves gj of the ingredients 

m 
9 = J2xj9j, 

i=i 

with mixing ratios Xj as the coefficients of the convex combination. We present Figure (2.2) 
for illustration. 

sieves 

Figure 2.2: Convex combination of grading curves. 

When dealing with practical grading curves, we construct an n by m matrix A with 
columns as grading curves of the ingredients: = gj(a.i). The grading curve g of the 
mixture is then given by Ax = g. 

2.4 The goal and the objective 

Having m different ingredients at disposal, the goal is to produce a mixture of required 
properties. That is, given grading curves (gj)™^, the objective is to find the ratios (XJ)^1=1 

such that the grading curve Ax = Y^j=i xjSj °f the mixture meets the requested grading 
curve g. 

Two different situations may arise. First, the required grading curve g belongs to the 
convex hull of the grading curves gj. Then there are (possibly infinitely many) choices of 
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x such that Ax = g. If the cost of one unit of the j-th ingredient is Cj, the optimization 
model is 

min T C X 
s.t. Ax = g 

l T x = 1 
x > 0 

where 1T denotes the vector (1,1,. . . ,1) e W11 and the equation l T x = 1 stands for 
Y^jLi xj = 1- The vector c = (CJ)™^ is the vector of cost coefficients. The model seeks 
for the mixture with minimal cost. 

Second, the required grading curve g does not belong to the convex hull of the grading 
curves gj. Since the vectors gj are nonnegative for j e { 1 , . . . , m} and also g > 0, we 
have that g belongs to the convex hull of gj if and only if g belongs to the linear span of 
gj. This means that we cannot achieve Ax = g by any choice of x 6 R". But still we 
would like the values of Ax to be close to g. Hence it is natural to state the optimization 
goal as minimizing the distance between Ax and g. To measure the distance we use the 
standard metrics given by norms in M n : 

n 

the 1-norm: = \xi\, 
i=i 

the oo-norm: ||^||oo = max \xi\. 
i=l,...,n 

2.5 Bounds on the objective 

Apart from the primary goal, which is to stay with Ax as close to g as possible, there 
are two more bounds on Ax imposed. They are the lower bound 1 and the upper bound 
u, within which Ax is considered to be acceptable. 

sieves 

Figure 2.3: Bounds on the grading curve. 

This yields two additional constraints for our models, namely 

Ax > 1 and Ax < u. 
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In practice, the lower and the upper bound are specified on selected sieves only (and 
possibly on different sieves for lower and upper bound). We therefore formulate the 
constraints as 

A/x > 1 and A u x < u. 

where the matrices A; (A u) are obtained from the matrix A by skipping the rows of A 
which correspond to the sieves without the lower (upper) bound imposed. 

When introducing the constraints to our programs (see next section), we do it in the 
standard form, with a nonnegative surplus vector variable yz added to the constraint for 
the lower bound and a nonnegative slack vector variable yu added to the constraint for 
the upper bound: 

A z x - yt = 1, yz > 0, 
A u x + y„ = u, y„ > 0. 

2.6 Model with 1-norm 

Minimizing the 1-norm of Ax — g leads to the following program: 

n 

min "̂"̂  
i=l 3=1 

(2.1) 

s.t. l T x = 1, 
x > 0. 

We will reformulate the program to get a linear one. First, we introduce a new variable 
y to measure the difference between Ax and g: Ax + y = g. For a fixed x we have 
y = g - Ax and some of its components can be negative or positive. That is why we 
introduce two nonnegative variables y + and y~ by setting y = y + - y~. We obtain the 
program: 

n 

min J2(y+ + yr) (2.2) 
i=l 

s.t. Ax + y + - y " = g, 
l T x = 1, 

x , y + , y - > 0. 
For a fixed x, there are infinitely many choices of y + and y~ to make the equation 
Ax + y + — y~ = g hold. It is easy to see that among all these, the choice 

y + = max (0, g — Ax), y~ = —min (0, g — Ax) (2.3) 

minimizes the objective YM=I {vt + Vi \ Moreover we have 

| Ax - g| = |y+ - y" | = y+ + y" 

for every x and for y + and y~ optimal (given by (2.3))with respect to this x. In particular 
this holds for x being the optimal solution of the original program (2.1). With this we 
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have justified the transition from the nonlinear program (2.1) to the linear one (2.2). 

Adding the constraints representing the requested lower and upper bounds on the grading 
curve and rewriting the objective YL7=i {vt + Vi~) a s l T y + + lTy~> the final model is 

min l T y + + l T y " (2.4) 

s.t. Ax + y + - y " = g ; 

A/x - y, = 1, 
A u x + y„ = u. 

l T x = 1, 

x, y + , y", yj, y« > 0. 

The simplex table corresponding to this linear program is 0 - 1 T - 1 T 0 0 
A I - I 0 0 g 
A; 0 0 - I 0 1 
A u 0 0 0 I u 
1T 0 0 0 0 1, 

where I denotes the identity matrix of appropriate size (possibly different on each posi­
tion), (0) denotes a matrix or vector of zeros (depending on its position) and the vector 
of decision variables is 

( x \ 
y + 

y 
yi 

I 
Remark: The nonnegativity constraints for all the variables in models (2.2) and (2.4) 
are formulated in one expression (as the last row of the constraints). Note that this 
formulation is used as a shortcut. The vector variables appearing in the expression can 
be of various dimensions and there should be a zero vector 0 of corresponding dimension 
for each of them in the right-hand side. The meaning is however clear. 

2.7 Model with oc-riorm 

Minimizing the oo-norm of Ax — g leads to the following program: 

mm max 
ie{l,...,n} 

(2.5) 

s.t. l T x = 1. 
x > 0. 

We will again seek for an equivalent linear program. We introduce a new nonnegative 
scalar variable y and consider the program 
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mm y 
s.t. Ax + yl > g, 

A x - y l < g, 
l T x = 1, 

x > 0, 
y > o. 

From the first two constraints it follows that 

(2.6) 

and 

which yields 

y > (g - Ax); = dijXj Vi G { 1 , . . . , n} 

y > (Ax - g ) i = ^2 dijXj - gi Vi e {1 , . . • , n}, 

y > 
3=1 

Vi e { l , . . . , n } , 

and therefore we have 

y > max 
ie{l,...,n} 3=1 

Moreover, for every fixed x, the value y = maxjG{ 1 ] X l j l i ai,jxj ~ 9i 

program and obviously minimizes the objective (miny). We have justified the transition 
from the nonlinear program (2.5) to the linear program (2.6). 

is feasible in this 

To obtain the final version of the program in the standard form, we introduce surplus and 
slack vector variables yi, y2 to the first two constraints and add the constraints for the 
upper and the lower bound: 

min y (2.7) 

s.t. A x - y i + y l = g, 
Ax + y 2 - yl = g, 

A/x - y, = 1, 
A u x + y„ = u, 

l T x = 1, 
x, yi, y 2, yi, y« > 0, 

y > o. 
The simplex table corresponding to this linear program is 

0 0 0 0 0 -1 
A - I 0 0 0 1 g 
A 0 I 0 0 -1 g 
A; 0 0 - I 0 0 1 
A u 0 0 0 I 0 u 
1T 0 0 0 0 0 1, 
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and the vector of decision variables is the vector 

/ x \ 
yi 

yi 
yu 

\y J. 
2.8 Joint objectives 

Further modeling possibility is to formulate a joint objective function to optimize a cer­
tain combination of cost and quality (measured by the norm of Ax — g). 

The objective function in (2.4) is then modified in the following way: 

min ac Tx + (1 - a) (lTy+ + ! T y~) 

and the objective function in (2.7) reads as 

min acTx + (1 — a)y, 

where the coefficient a G [0,1] allows to adjust the relative proportion of the cost vector 
in the objective. 

2.9 Further refinements 

It may happen that some parts of the grading curve are more important than the others. 
We would like to include this preference into the optimization criterion. To achieve 
a minimum distance of the curves on the selected parts with priority, we can use weighed 
norms: 

n 

the weighed 1-norm: ||y | |i = Wj\yj\, 
i=l 

the weighed oo-norm: ||y||oo— m a x wi\lli\-
t=l,...,n 

Here w = (wj)™=1 is a vector of positive coefficients. It is reasonable to demand YL7=i W i = n 

or Y17=iw* = 1- Scaled norms are obviously equivalent with respect to minimization. 

In model (2.4), the objective will change to 

min w T y + + wTy~. 

On the other hand, the weights will enter into the constraints in model (2.7). The first 
two constraints will be modified to 

Ax - yi + yw'1 = g, 
Ax + y 2 - yw'1 = g, 

where w _ 1 stand for the vector of reciprocal values of w. 
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2.10 Reasons for a stochastic model 

The input data of the models are the desired grading curve, the bounds and the grading 
curves of the ingredients. As was mentioned in the introduction, the grading curves of 
the ingredients are determined by measurement on a sequence of 14 sieves. 

It is obvious that one cannot obtain identical results when the measurement is performed 
repeatedly, and in this case there are two reasons. The first reason is the nature of the 
measurement itself and it becomes evident when measuring the same collection of par­
ticles repeatedly. The second reason, which is of greater practical importance, is the 
non-homogeneity of the aggregate. Choosing different samples of the aggregate for the 
measurement and for the mixture certainly gives different results. And differences be­
tween two distinct series of production of the aggregate also fall into this category. 

For these reasons, it is useful to develop stochastic models for the blending problem. 

We return to the models in Chapter 4, after the presentation of stochastic programming 
that follows in the next chapter. 



Chapter 3 

Stochastic programming 

Notation 

We use the following notation convention. A function / : D —> C is always denoted by / 
(with D denoting the domain and C the codomain of / ) . The symbol f(x) denotes the 
element of C, which is assigned to the element of D denoted by x. The function denoted 
by / is then identically the set { (x, f(x)) \ x G D}, where (a, b) denotes an ordered pair of 
elements a and b. So, particularly for real functions, f(x) denotes a real number, whereas 
/ denotes the (whole) function. 

Although this is a standard mathematical convention, we state it explicitly as an infor­
mation for the reader, that the text respects this notation and not bearing it in mind can 
bring difficulties in understanding. 

Vector variables are not marked as boldface in this chapter. One reason is to avoid too 
much boldface notation. A more serious justification is that in most cases, the vector 
nature of the variables is not of importance in this Chapter. 

3.1 Introduction 

Mathematical programming is in its nature motivated by practical problems (consider 
for example various optimal planning problems, that led to the development of linear 
programming, see [2],[8] ). Despite of this, it can be treated mathematically in a correct 
way, completely disregarding the underlying practical motivation. 

Our aim is to present the practical motivations as a reasonable justification for several 
concepts of stochastic programming, and then to treat the concepts purely in a mathe­
matical sense. Conceptually, we will begin with simple considerations and we will see how 
they lead to generalizations. 

The usual way of introducing stochastic programming is to present a deterministic pro­
gram and then to claim that some of its data (coefficients of the objective function or 
constraints) are stochastic, therefore random variables (see e.g. [4], [7]). Further the fact 
is revealed, that having introduced random variables into the program, it is no longer 

11 
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well-defined (i.e. it does not make sense). In order to cope with this, various reformula­
tions are sought for. 

We will adopt a different attitude in this text. We will start with probability space and 
mathematical program as two basic concepts and we will see how the usual stochastic 
programming formulations naturally arise from joining them together. 

3.2 Basic considerations 

A mathematical programming problem is usually presented in the general form: 

The meaning is this: There is a set C and a function / : C —> M. The task is to find the 
minimum of the set { f(x) \ x G C } C M, provided that it exists. In the positive case (we 
denote the minimum by /*), the task is also to determine the set 

the so called set of optimal solutions. We call the member i e C a n optimal solution if 
f(x) = /*, and we call /* the value of optimal solution, the optimal value, or simply the 
optimum. The set of optimal solutions is usually denoted by C*. 

If the mathematical program represents a model of a real problem, the set C represents 
a set of feasible solutions (or possible decisions, equivalently) and it is usually specified by 
constraints, which have concrete interpretations (e.g. technological constraints). Also the 
function / (called the objective function) has a practical meaning (e.g. a cost function). 

In practice it often happens, that the conditions, under which the constraints and the 
objective function were constructed, change in the course of time. In that case, if we 
want to solve the practical problem, we have to change the mathematical program. The 
change of the conditions may be random to certain extent. Or in order to take a decision 
concerning future, we are forced to create and solve the program in advance, before the 
conditions are realized, and we cannot predict them accurately due to some randomness 
involved. These considerations lead to the idea of joining mathematical programming 
with probability theory in order to obtain useful models for these problems. 

It will prove beneficial to identify a mathematical program with its data, that is with the 
ordered pair ( C , / ) : 

This might seem strange at first sight. We do it, apart from other reasons, to be able 
to speak about programs as mathematical objects and to be able to assign programs 
to elements of sets. This approach is not frequent, can be however found (in slight 
modification) for example in Kai l [6]. Thus in the following text, the symbol m i n z e c f(x) 
just denotes the ordered pair ( C , / ) . We can still speak about the optimum (minimum) 
and about the set of optimal solutions of a given program. To see that this concept is 
quite natural and common, consider for example an ordered set (X, <) and the set of its 
minimal elements as an analogy. 

mm 

{ x | x G C and f(x) = f* } 
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3.3 The first approach - wait-and-see 

We try to build a basic probabilistic mathematical program. Let (Q, J7, P) be a probability 
space. To every u G Q, we assign a set and a function fu : —> M. For every u G Q 
there are three possibilities. The assigned program 

has an optimal solution, in which case we denote the optimal value by /*. Or the function 
fuj is unbounded from below on Cu, in this case we set f* = — oo. Or finally, = 0, in 
which case we set f* — oo. 

We construct a function /* : Q —> K. by assigning the values f* to the corresponding 
events: 

We can ask now if /* is measurable (that is, whether it is a random variable) and if it is 
integrable. If both questions are answered affirmatively, we can determine the expected 
value E(/*) , for example. 

Let's discuss this model from the practical point of view. To every event UJ G Í1, which 
represents a certain realization of relevant conditions, we have assigned a certain mathe­
matical program. The reason for introducing this setting is the fact that different events 
can be assignment different programs. Now, we fix certain UJ and solve the assigned pro­
gram. We do it for every UJ G Q. For this approach to be of practical relevance, the nature 
of the practical problem must make it possible for us to react to the upcoming events and 
with each of them to take the corresponding optimal decision. This situation is usually 
called wait-and-see. The value E(/*) represents the expected value of optimal solutions. 

It can be seen that this approach is nothing more than parametric programming, with 
fl being the set of parameters, equipped with the structure of a probability space. This 
simple setting does not provide a model for decision under uncertainty, before the real­
ization of the conditions becomes known. 

3.4 From wait-and-see to here-and now 

Suppose we are facing the decision problem under uncertainty. We have to make a deci­
sion before the realization of the conditions is known. Having chosen a particular decision, 
we will have to face different consequences depending on what conditions will come up. 
What decision is now the optimal one? 

The choice of the decision should be based on an analysis of all its possible consequences. 
We are provided with objective functions fu corresponding to every single UJ G Q, but they 
are (taken separately) of no use for us, since we cannot know in advance, which event 
will become true. We are lacking a unique objective function F, that would somehow 
aggregate the information provided by the single objective functions fu. To set F up, we 
would like to carry out the following analysis for every decision x: 
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1. We would like to see how it behaves under all possible conditions. 

2. Assign to x a value expressing the plausibility of its a behaviour. 

We will give the two points a mathematical meaning: 

1. Given a certain decision x, what are the values fu(x) of the objective functions fu for 
each possible event to G Q? We may run into trouble here, because (given x) for some uo 
this question may not even make sense. The decision x may not belong to Cu. However, 
at least for x G f\ien C<J (if nonempty) this question makes sense. 

Thus, fixed x G f\ien ^ > w e construct the function hx : Q —> K. defined by 

2. If for every x G f)uj&n Cu> the function hx is measurable and integrable (or even square 
integrable), we can use the functional E or Var to assign the value E( / i s ) or Var(/i s ) to 
x, that is, to define a function 

F : f| C w - M 
wen 

by 
F(x) = E(hx), or by F(x) = Var{hx). 

We can obviously use some general functional H defined on MP to assign the value H{hx) 
to x. If we use the expected value E, the resulting value tells us how good (or bad) the 
decision is in average, and this might seem as a reasonable objective. If we are afraid of 
decisions that would bring a big variability of outcomes, we can use the functional Var. 

The final step of solving this model lies in finding the minimum of F on its domain. 

3.5 The second approach - here-and-now 

If we consider a model, where for all events uo the set C w is the same (let's denote it by 
C), or more specially, if Cu = M™ for all uo (this represents an unconstrained problem), the 
approach described in the previous section can be well used. We call it the here-and-now 
approach. Using the functional E , the mathematical program 

min F(x), 

where F : C —> M. is given by 

F(x) = E(hx) = E( { (u, Ux)) \ueto}), 

is usually called the expected objective reformulation (EO reformulation). 

In stochastic programming textbooks (see [4], [7], [9]), its usual statement is 

minE(/(x ,u; ) ) . 

This notation is incosistent with our notation. The symbol f(x,u) in this notation refers 
to our value fu(x), to our function fu (for fixed uS) and to our function hx (for fixed x). 
The notation itself doesn't present a problem when one can distinguish the real meaning 
in all cases. 

file:///ueto}
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3.6 Two-stage models 

Further step in our development of stochastic programming lies naturally in joining the 
here-and-now and wait-and-see approaches. Suppose the feature of the decision problem 
is this: We have to take a certain decision in advance (that is a here-and-now decision, 
called also a first stage decision) and then, after the realization of relevant conditions, 
take a second stage decision (which is a wait-and-see one). In order to provide a proper 
formulation for two-stage models, we need to return to wait-and-see models and discuss 
their possible formulations. 

3.6.1 Wait-and-see formulations 
We have discussed the motivation for wait-and-see model in Section (3.3). For a given 
UJ G Q, we have assigned a set C w and a function fu with C w as its domain. The function 
/* : Q —> R assigns the optimal value of the program 

to u, provided the optimum exists. Otherwise f*(u) = oo or -oo (see Section (3.3)). If 
/* is measurable and integrable, we determine E(/*) . 

The procedure just described is still not a mathematical program in the sense of Section 
(3.2), we haven't obtained the value E(/*) as a minimum of any objective function / on 
any underlying set C. In the sequel, we will search for such a program (C, / ) . 

If we already had (C, / ) at hand, we would expect its optimal solution to represent some 
optimal decision. But what is an optimal decision in this case? There is in fact a collec­
tion of optimal decisions, each of them corresponding to the program (3.2) for different to. 
Solving the programs (3.2) separately is sometimes called scenario analysis, with scenario 
being a synonym for a random event (i.e. uo). 

We can try to construct the program (C, / ) in such a way, that its optimal decision con­
sists of the "vector" of optimal solutions of the single programs (3.2). This leads us to the 
specification of the underlying set C. We will first present the construction on a simple 
exapmle. 

Example: Let Q = {1,2}, T = V(Q) (the power set of Q), and P be some probability 
measure on T. Let 

Then /j* = 2 at z\ = 0 and f2 = —8 at z2 = 8. The optimal solution x* of the program 
(C, / ) (which is still left to be defined), should be the ordered pair x* = (0, 8). This leads 
to the idea of defining the underlying set C as some subset of R2, namely the Cartesian 
product [0,1] x [3, 8]. Then it is natural to define the objective function / on C as 

min fu(x) (3.2) 

C i = [0,1] C R and h{z) 
C2 = [3,8] C R and f2(z) 

3z + 2 for z e C i , 
—z for z G Ci. 

f(x,y) = fi(x) + f2(y). (3.3) 
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We emphasize here our notation convention, due to which + in (3.3) means addition of 
numbers (as opposed to addition of functions; clearly fi and fi are defined on different 
domains). Thus our program reads as 

min 3x — y + 2 (3.4) 

s.t. (x,y) G [0,1] x [3,8]. 

What we have done here is that we have "grouped" together the two programs, creating 
one which is " separable". In the following, we will give the terms grouped and separable 
a precise meaning. The optimal solution x* of (3.4) is x* = (0, 8) with the optimal value 
fopt = ft + F2 = 2 - 8 = - 6 . 
Let's turn our attention to the probability now. Let the probability measure in this 
example be defined by P({1}) = 0.8 and P({2}) = 0.2. We have / * = {(1,2), (2, -8)} 
and E(/*) = 0.8 x 2 + 0.2 x (-8) = 0. We see that E(/*) ^ fopt. To fix this inconvenience, 
we redefine / in (3.3) as 

f(x,y) = P({l})f1(x) + P({2})f2(y), 

which modifies the objective in (3.4) to 

min 2Ax - 0.2y + 1.6. 

The set of optimal solutions is left unchanged, and we get fopt = P ( { l } ) / i + P({2})/2 = 
= E( /* ) . J 

We will now formulate the sketched procedure precisely. We will start with the notion 
of separability which will prove very useful in later formulations. The usual definition of 
separability is this: 

Definition 1' (Separable function): Let / : M.n —> M. be a function and J be an index 
set: J = { 1 , . . . ,n}. If there exist functions fi : M. —> M. for each i e J such that the 
identity f(x\,..., xn) = Y17=i holds for each x — (xi,..., xn) G M.n, we say that / 
is separable. 

The definition is motivated by the fact, that we would like to call the function / : M 3 —> M 
given by f(x,y,z) = x — sin(y) + 5z3 separable, and other "similar" functions as well. 
Proper specification of this "similarity" is the main burden of the definition. 

For our purposes, we will generalize the domain. Instead of Cartesian product of n-tuple 
of sets of real numbers, we will take a Cartesian product of n-tuple of some general sets, 
each of them possibly different. 

Definition 1 (Separable function): Let J = { 1 , . . . , n} be an index set and let Si de­
note some set for each % G J . Let / : n i L i ^ — • K. be a function. If there exist functions 
fi : Si —> K. for each % G J such that the identity f((xi,..., xn)) = XT=i fi(xi) holds for 
each x — (xi,..., xn) G n i L i w e s a y ̂ hat / is separable. 

A special case of this definition might be to take St = Rmi. Then n i L i Si = M m i + - + m " . 
We can call a function defined by f(x,y,z) — (x — y)2 + z separable (bearing in mind 
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that we separate the domain M3 into I 2 x M). This is usually called block-separability. 

Definition 2 (Separable program): We say that a mathematical program ( C , / ) is 
separable, if C is a Cartesian product: C = YYi=i a n d / : C —> M is a separable 
function. 

Theorem 1 (Equivalence of programs): Let (C, / ) be a separable program with 
C = nr=i Let's denote the optimum (provided it exists) of (C, / ) by /* and the 
optima of the programs (Cj, /j) by /* (the functions /j are given as in Definition 1). Let's 
denote the sets of optimal solutions of the corresponding programs by C* and C*. Then 
/* = ££=1 /* a n d = nr=i C h Provided C* or n™=i C* is nonempty. 

Proof: Suppose that ri7=i ^s nonempty. For each i, we construct a function ^ : C —> K 
by letting gt(xi,... , x„) = fi(xi). Then the programs (C,gi) and (Cj,/ i) have the same 
optima /* and the set G* of optimal solutions of (C, #j) is equal to C i x . . . x C* x . . . x Cn. 
Further, the identity / = YL7=i 9* n ° ld s . Therefore 

n 

min { f(x) | x G C } = min | gi{x) \ x G C j 
i=i 

and 
n n n 

min | s-j(x) | x G C | > ^ m i n ( ft 0*0 I  x  e  C } = X ] # 

On the other hand, for x G ri7=i w e n a v e /(^O — S j L i flri(x) = Y17=i /**> a n < ^ therefore 
min { f(x) | x G C } < X)I=i ft • So the first equality is established, and moreover for all 
x G n i L i Q w e nave f(x) = f* and therefore YU=1 C* C C* (which means that C* is 
nonempty). 
Now let C* be nonempty and let x G C*. Since /(x) = Xl jLi ft(x)> w e c l a m i that 
<7i(x) = min {<7i(y) | y G C} . Suppose it is not true. Then there exists y G C with 
fl'i(y) < 9i(x). Since #j(xi,... ,x„) = fi(xi), the i-th projection y, of the member y must 
be different from Xj. Moreover, at the point z = ( x i , . . . , Xj_ i , yj, Xj+i , . . . ,x„) we have 
9i(z) = giiy) < gi(x). For j 7̂  i, we have g-j(z) = g-j(x). Therefore f(z) = YJj=i9j(z) = 

9j(x)+gi(z) < YTj=i 9j(x) = f(x)i contradicting the optimality of / at x. This state­
ment about optimality of gi holds for each % G J , and therefore at x we have /* = YL7=i fi-
Moreover, since gi is minimal in x, Xj belongs to C*, and we obtain that x belongs to 
nr=i^i*- This holds for arbitrary x G C , so we have C C n ^ = 1 C*. This finishes the 
proof, J 

Especially note, that the proof is valid for arbitrary sets Cj, there is no need to require 
them to be subsets of any linear space nor Mn. We are now ready to generalize the ap­
proach given in the previous example. 

Definition 3 (Product program) : Let J = { 1 , . . . ,n} be an index set and let a pro­
gram (Cj, fi)i=1 be assigned to every i G J . Set C = YYi=i Ci and define the function 
/ : C —> M by f(xi,..., xn) = YL7=i The program (C, / ) is said to be the product 
program assigned to the n-tuple of programs (Cj , / j )" = 1 . 
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It is obvious from the definition that the product program (C, / ) is separable and there­
fore by Theorem 1 we know that the sets of optimal solutions are in exact correspondence. 
We are also provided with a relation linking the optimal values. 

We come to the main goal of this section, that is to the formulation of wait-and-see 
stochastic program with finite probability space: 

Definition 4 (Wait-and-see program): Let £1 be finite with card(f2) = n and let's 
denote the members of Q by Ui, % G { 1 , . . . , n}. Let T = V(Q) and let the probability 
measure P : T —> K. be given by P({ui}) = piy where Pi > 0, Y^i=iPi = 1- Let there 
be a program ( C W i , / w J assigned to every uii G Q. We call the product program (C, / ) 
assigned to {CUi,pifUi)f=1 the wait-and-see program with finite probability space. 

Theorem 2 (Optimum of wait-and-see): The optimum fopt of the wait-and-see 
program (C, / ) as given in Definition 4 is equal to E(/*) , where the random variable 
/* : Q —> K. is given by f*{uii) = /*, provided the programs (CUi, fUi)™=1 have optimal 
solutions (with the optimal values denoted by /*). 

Proof: If the programs (CUi, fUi)f=1 have optimal solutions, the Cartesian product 
nr=i ^ui- °f s e ^ s °f their optimal solutions is nonempty. The programs (CUi,pifUi) are 
obtained from the original programs (CUi, fUi) by replacing the original objective functions 
fUi with the objective functions pj^ defined by (pifUi)(x) = PifUi(x) on CUi. Clearly, 
the sets C*. of optimal solutions are left unchanged by this scaling of objective functions, 
since pi > 0. The optimal values /* are scaled to Pif*. By Theorem 1 we then have 
foPt = *YTi=\Vift — E(/*) . (The function /* is measurable because T = V(Q)). J 

So the optimum of the wait-and-see program (C, / ) is given by the expected value of op­
timal solutions of the original n-tuple of programs. That is exactly what we wanted to get. 

We have constructed the wait-and-see program for the expected value in objective. The 
main use of this formulation takes place in two-stage stochastic programming models 
(which use the expectation). This formulation of the wait-and-see program is sometimes 
called the extensive form of stochastic program (see Birge and Louveaux [4]) and 
allows the L-shaped decomposition algorithm to be applied. 

We have managed to get the formulation of the wait-and-see model as a mathematical 
program in case of finite probability space. We will see now, what difficulties arise when 
we turn our attention to the infinite case. There are no problems with infinite Cartesian 
products of sets. Recall that the general Cartesian product is defined as 

that is the set of all mappings t from J to UieJ ^ o r which t(i) is a member of Cj. 

(3.5) 

The definition of separable function (see Definition 1) uses addition, which is undefined 
for infinite cases. We can try to formulate directly the separable objective function / 
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of the wait-and-see program. For simplicity of notation, we identify f2 with J , so that 
instead of indexing by iO{ we can index by z. In the finite case we have 

n 
f(xu... ,Xn) = Y^Pififa) 

i=l 

for every x — (xi,..., xn) G Yli&j Ci- Thus generally, we would like to have 

f{t) = JhtdP, 

where the function ht : J —> R is given by 

ht(i) = / i (*(«)) 

for every t G Yli^j C» a s defined by (3.5). 

The problem is that the function h is not likely to be measurable nor integrable. Even 
if we claim that the sets Cj belong to a common measurable space and the mapping t 
is measurable, with hope to obtain the measurability of h by the theorem about mea-
surability of composed mappings, we don't succeed. The function h is not defined by 
composition of t with another single mapping. 

There is a result by Kai l (see [6]), that shows the measurability of one concrete mapping 
h in a special case. It is the case when the programs (Cj, /$) are linear programs with 
Ci C M f e for each % G J and the mapping h is the "optimal mapping" defined by h(i) = f*. 
Note that it is exactly the mapping /* and its expected value E(/*) , that were of main 
interest in this section. Kai l shows that under further assumptions on the data of the 
linear programs, /* is also integrable. 

To summarize, we managed to assign a mathematical program to the wait-and-see prob­
lem in the finite case. In the infinite case, the wait-and-see problem is left without 
a mathematical program, but under suitable conditions on the data, we have at least the 
mapping /* measurable and integrable. We will shortly return to the measurability of /* 
in Section 3.10. 

3.6.2 Formulation of two-stage models 
As mentioned at the beginning of this section, in two-stage models some of the decisions 
are supposed to be here-and-now decisions, while the remaining ones are wait-and-see 
decisions. This means that the sets are somehow divided with respect to the interpre­
tation of their members (decisions). The first idea would be to take C w = X x with 
X the set of here-and-now decisions. This setting would however not be rich enough - we 
wouldn't be able to model situations in which the set of second stage decisions possibly 
varies with the first stage decision taken, which is quite frequent in practise. Thus we set 

C ^ = I J {>} X Dx,u,, 
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where Dx^ is the set of second stage decisions corresponding to the event u provided 
that first stage decision x G X has been taken. When referring to the values of our ob­
jective functions fu : C w —> R, we will use the notation fu(x, y), with x G X and y G Dx^. 

For each x G X and every UJ G Q, using the objective function fu, we define the second-
stage objective functions fXjU1 : Dx^ —> R by 

fx,M = fu(x,y) (3.6) 

and we consider the programs (DXjU1, fx,w)- This family of programs represents a wait-and-
see model discussed in the previous subsection. In the two-stage setting, we have such a 
family assigned to every x G X. For fixed x, we proceed as in the previous subsection. 
We denote the optimum of (DXtU, fXtU1) (or ±oo) by f*u and then we construct a function 
Qx : n -> R by 

Qx(u) = fx,un 
which we assume to be an integrable random variable. This allows us to define an objective 
function Q : X —> R as 

Q(x) = E(Qx). (3.7) 

The two-stage program we sought for is then the program (X, Q), minimizing the function 
Q over the set of first stage decisions X. Having found the optimal solution x*, the set of 
optimal second-stage decisions for each event u is clearly the set D*« U1. 

The practical interpretation of the two-stage model is the following. We rate the first-
stage decisions x by taking into account the various situations that may arise when the 
uncertain conditions are realized, provided we have taken the decision x. Each of the 
situations represents a decision problem, which we solve optimally. We have the expected 
value of the optima as the criterion for choosing x. 

We will now present how the general linear two-stage model, as stated in various texts 
([4],[7],[9]), fits into our formulation. 

The linear two-stage model: 

min cTx + E ^ m i n (qT(u)y(uj) j (3.8) 

s.t. Ax = b, 
W(u)y(uj) = h(u)-T(u)x, 

x > 0, 
y(u) > 0 V w e O . 

Here A G M m x n , b G Rm, c G Rn, W(u) G Rrxs, h(u) G Rr, T(u) G Rrxn and q(u) G Rs, 
for every to G Q. The variables of the model are x (a variable of Rn) and y(ou) (variables 
of M s for each ui G fl). 

Observe that the notation in (3.8) is not compatible with our notation convention. The 
reasoning is the same as in Section 3.5. The set X of first stage decisions is defined by 

X = {xe Rn\Ax = b, x>0}. 
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The sets Dx^ of second stage decisions (with x and ui fixed) are specified by 

Dx^ = {y e Rs | W{u)y = h{u) - T{u)x, y>0}. (3.9) 

The second-stage objective functions fXjU1 are given by the expression 

fxAy) = cTx + qT(u)y (3.10) 

on DXjU1 (with x and u fixed). The original objective functions fu are given by the same 
expression on {Jx&x { x} x DXjU1, with x and u as variables (not fixed). 

Important remark: Note the use of y instead of y(ou) in (3.9). At this point it is 
revealed, that although the traditional notation y{ui) suggests viewing y as a random 
variable, the meaning is definitely different. The notation just means that the programs 
{DXtUj, fXjU1) are required to be solved separately, and the way of communicating this con­
sists in indexing the variables of the domains (by uo). 

The property of indexing can be well seen in the case of finite probability space, when 
we can formulate the wait-and-see model of the second stage as a mathematical program. 
Then the entire two-stage model can be formulated as a mathematical program (C, f) in 
the extensive form. The underlying set C is specified by 

c = I J ix} x A w x . . . x DXtUln 

xex 

and the objective function / on C is defined as 

n n 

f(x,y1,...,yn) = ^Pifx^iVi) = ^2Pifuu(x,yi). (3.11) 
i=l i=l 

The second equality in (3.11) follows from the definition of fXjUH(yi) given by(3.6). The 
aforementioned indexing property for finite distribution is obvious here. 

In case when fUi(x,yi) = F(x) + GUi(yi), we have 

n 

f(x,y!,...,yn) = F(x) + ^2piGUJi(yi), 
i=l 

since Y^i=iPi = 1- Here F(x) corresponds to cTx and GWi(Vi) corresponds to q(u)Ty(u) 
in the usual formulation (3.8) of the two-stage model. 

There is also another usual form of statement of the linear two-stage model, the so called 
nested form. We will state it for completeness and relate it to our development of the 
two-stage model. 
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The nested form of linear two-stage model 

min cTx + K(Q(x,u)) (3.12) 

s.t. Ax b. 
0 x > 

where 
Q(X,UJ) = min < qT(uj)y \ W(uj)y 

Note that this statement corresponds to our two-stage model (X, Q). The expression 
E(Q(x,ou)) should be understood as defining the function Q on X introduced in (3.7). 
Altough the notation in (3.12) is again not consistent with the ours, it is not misleading 
and we will use it in subsequent statements of two-stage programs. 

The usual formulation of two-stage problem, which basically defines all the sets D X U 1 at 
once using (3.9), brings some difficulties. It may happen that the expression (3.9) defines 
an empty set for some of the first-stage decisions. Various properties of the second-stage 
data W(ou), T(u), h(uS) and q(uS) are usually required in order to make sure this does 
not happen. With various requirements on the data, we speak about complete, relatively 
complete or simple recourse (see e.g. [4], [7]). 

In this section we turn our attention to the general here-and-now model as introduced 
in Section 3.3. From our discussion of feasibility, we will arrive at probabilistically con­
strained programs and we will also derive independently the two-stage model. 

Recall that using the here-and-now approach, we were able to deal with unconstrained 
problems or problems where all the programs were defined on a common set C. If it is not 
the case, we can perform the here-and-now style analysis only for the decisions that are 
always feasible, belonging to P) Cu. In some applications, certain decision might still seem 
plausible even if it is infeasible in some cases, given their probability is small enough. Or 
the infeasibility may seem to be compensated by extremely good behaviour in the feasible 
cases. For these reasons, it is useful to extend the objective functions fu outside the sets 
CUJ. We will assume in this section that C w C W1 for all u G Q. 

We say that fu : Rn —> K. is an extension of / w : C w —> M, if we have fu(x) = fu(x) for 
all x G CUJ. 

It will be useful to discuss possible forms of extension in more detail. From a mathe­
matical point of view, the extension can be arbitrary. From a modelling perspective, we 
would like the values fu(x) for x G W1 \ to reflect somehow the infeasibility of x, and 
possibly to give a rough information about the distance of x from Cu. The distance might 
be viewed as a measure of infeasibility and might be useful from the modelling point of 
view. 

3.7 Considerations regarding feasibility 
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At this point, we will take a look at the usual way of specification of Cu and fu. The 
mathematical program assigned to u> might be a linear program or a general nonlinear 
program. In the nonlinear case, the set C w is given by a system of inequalities (gUti < 0)™ 1 ; 

where gUji : M n —> R are given functions. The precise meaning is this: 

m 
Cu = (~]{x\x G Rn and gUfi(x) < 0} . (3.13) 

i=l 

The objective function / w is usually given by an expression, which makes sense for all 
x G M n . So it is natural to have the objective function fu : M.n —> M, instead of 
/w : Cw —• given by the same expression. 

Our fu is extended now, but without including the information about feasibility. This 
information is contained in the values of the functions gUji at x. Consider a suitable loss 
function tu : M.m+1 —> M. and define fu by composition as 

fu(x) = tu(9u,l(x), • • .,gu>,m{x), fu(xJ) V x G 

If desired, the function t can be defined in such a way, that fu is indeed an extension of 
fu. It is particularly easy to see in case of linear programming model. The linear program 
reads as 

min | c^x | A^x = and x > 0 j 
and the functions gUji are linear and can be represented as 

= (A^X - 6 « ) . , 

where the index % refers to the i-th component of the right-hand side vector. If we set, 
for example, tu(xi,..., xm) = xii the composed mapping fu will coincide with fu 

on Cu, because all the functions gUji have zero value on Cu. 

3.8 Probabilistic constraints 

The concept of probabilistic constraints naturally follows from the considerations regard­
ing feasibility presented in the previous section. Recall that for each u, we have a collection 
of m functions g^^, each of them defined on the whole M.n. The set assigned to u is 
uniquely specified by (3.13). 

It is important to note that every u is assigned the same number m of constraints. The 
applications of stochastic programming often arise from deterministic (linear or nonlin­
ear) problems by introducing the randomness to the coefficients of the constrains. In this 
situation, although the constraints are different for each u, their number stays the same 
in all cases. 

In the very general situation we obviously don't need to limit ourselves to this setting. 
Generally, if there exists an uo* with maximal number of constraints, we can add the ap­
propriate number of constraints to the remaining members of Q. These added constraints 
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can be represented by constant functions (with constant value 0 or -1, for example) on the 
whole Rn. This guarantees that their adding doesn't affect the original feasible regions . 

Our effort up to now has been to extend the objective functions / w to Rn, in order to 
be able to evaluate every possible decision, no matter if it is feasible for certain to or 
not. Having done this, we can solve the unconstrained problem, using for example the 
expected objective approach (see section (3.5)). 

Now, we present a possible way of restriction of the domain Rn. For every fixed x e R " 
and every i G { 1 , . . . ,m} (recall the fixed number of constraints) we define a function 
G X J I : n -> R by 

GX,M = g»Ax). (3.14) 

Provided all the functions GX^ are measurable, we have obtained a collection of m random 
variables at every point x. We will assume the measurability of the functions GX^ in the 
sequel. 

Consider a particular random variable, say GX*^ and the set Sx* = {UJ\GX*^{US) < 0}. 
Since Gx*ti is measurable, the set Sx* C Q belongs to the a-algebra T and has assigned 
a probability P(SX*). If all the functions gUti are less or equal than 0 at x*, meaning that 
the first constraint is satisfied for all to at x*, then GX*^ < 0 for every to and therefore 
Sx — Q and P(SX) = 1. On the other hand, if for some to the first constraint at x* is not 
satisfied (gUji > 0), we can expect the the probability of Sx* to be less than 1. If the first 
constraint is violated at x* for each u, then obviously Sx* = 0 and P(SX*) = 0. 

Let's build a new function, that assigns the probability P(SX) to every x G Rn: 

H.-.R^ [0,1], Hx{x) = p({u\GXtl(u) < 0 } ) . (3.15) 

The function H\ classifies the decisions x according to the probability of the set of events, 
for which the first constraint is satisfied at x. So, for example the set {x\H\{x) > 0.95} 
has a natural interpretation as the set of decisions, for which the first constraint is satis­
fied with probability greater than 0.95. 

We will now use a similar construction taking the m-tuple of functions (g^i)^ at once. 
For a fixed x, find the set 

Sx = {u | GXii(u)) < 0 for i e { 1 , . . . ,m}} = 

= {u | GXtl(u) <0}n{u\ Gx,2(ou) <0}n...n{u\ Gx,m{u) < 0} . 

The set Sx belongs to J7, being an intersection of sets belonging to T. We define a function 
H : Rn -> [0,1] by 

H(x) = P(SX) = P ( {u | GXii(u) < 0 for i e { 1 , . . . , m}}). (3.16) 

For a finite probability space, we have H(x) = 1 if and only if all the constraints are 
satisfied at x for all u, that is if and only if x G Cu, meaning that x is always feasible. 
We can see that the following identity holds: 

H(x) = P({u\xeCu}). (3.17) 



3.8. Probabilistic constraints 25 

Note that the expression (3.17) itself cannot be used to define the function H. For general 
sets CUJ we cannot decide whether {ui \ x G C^} G T. We are able to show or state it with 
help of the functions gUti specifying Cu, and definig then H by (3.16). 

Example: The program 
min f(x) 
s.t. H(x) > 0.9, 

x > 0, 

minimizes the objective function on a set of nonnegative decisions, for which the proba­
bility of being feasible is greater or equal 0.9. J 

The construction we have described is usually presented in a less clear and more intuitive 
way: 

H(x) = p({u\Gx>i(u) < 0 f o r z G { l , . . . , m } } ) = 

= P U G X i i < 0 f o r i e { l , . . . , m } } ) = 

= P({gu>i(x) < 0 f o r i e { l , . . . , m } } ) , 

and for example the equation H(x) > 0.9 is written as 

/ 9i(u;,x) <0\ 
g2(uj,x) < 0 

y gm(u,x) < 0 J 

> 0.9. 

This notation looks like a recipe saying "just add probability". We will summarize our 
results and join them with the ideas from the previous section. 

Given programs (Cu,fu), with C W1, we use the extensions to define an objective 
function / over M.n. If the sets are given by m constraints gUji < 0 as in (3.13) and the 
functions GXji given by (3.14) are measurable, we can use the function H defined in (3.16) 
to additionally restrict the domain of / to a reasonable subset C of M n . The program 
(C, / ) then reads as 

min f{x) 
s.t. H(x) > a, 

where a G [0,1], and is called the program with joint probabilistic constraints. 

If we use the functions Hi defined as in (3.15) instead of H, we obtain the program 

min f(x) 
s.t. Hi(x) > «1, 

H2(x) > a2, 

Hm{xj — cx-m, 

which is said to be with separate probabilistic constraints. Obviously, we can pro­
duce more general settings by coupling certain subsets of the constraints together. 
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3.9 Two-stage models revisited 

One of the possible ways of obtaining a two-stage model is this: We have originally a de­
terministic mathematical program (C, / ) with C C 1". Then we claim that some of its 
data are random, and we in fact make a transition to a collection of models (Cu, fu) for 
UJ G Q. We then observe that the sets C w vary with u and therefore there are decisions x 
that are feasible for some to while infeasible for others. To cope with this, we follow the 
procedure discussed in Section 3.7 about feasibility. We redefine the objective functions 
fu, which we assume to be defined over Rn in a special way. 

The value of the redefined function will be obtained through a solution of another mathe­
matical program. To every x G Rn and u G Q we assign a program (DXjU1, gXjU1) and define 
the extension fu as 

7« 0*0 = fu,(x) + Q(x,u), 

where Q(x, uS) is the optimal value of (DXjU1, gXjUJ)- Further, we may apply the here-and-now 
approach and solve the program 

where the set X can be specified by probability constraints, by nonnegativity constraints 
or simply X = Rn, the domain of the extended functions. For the correct explanation 
of the shortcut notation of (3.18) and for the integrability assumptions, please refer to 
Section 3.5 about here-and-now formulations. 

We will illustrate the sketched approach. Suppose the original problem is a linear one: 

min cTx 
s.t. Bx = r, 

x > 0. 

Thus we have (C,f) with C = {x G Rn | Bx = r, x > 0} and / : Rn -> R given by 
f(x) = cTx. 

Now suppose that some components of B and r are stochastic. We split the equations 
Bx = r into the deterministic ones and the stochastic ones obtaining: 

min cTx 
s.t. Ax = b, 

T{uj)x = h(uj), 
x > 0. 

Thus we have (Cu, fu) with C w = {x G Rn \ Ax = b, T{u)x = h{u), x > 0} and fu = f 
for every u G Q. The extensions fu of the objective functions fu will be given by the 
program 

mm{qT(uj)y\ W(u)y = h(u) -T(u)x, y>0} (3.19) 

as 
7M = cTx + Q(x,u), 
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where Q(x,u) is its optimum (or ± 0 0 in infeasible / unbounded case) and we have 

E(L0*0) =cTx + E(Q(x,u;)). 

If we denote E(Q(x,ou)) by Q(x), the final two-stage program (X,f) reads as 

min cTx + Q(x) 
s.t. Ax = b (3.20) 

x > 0, 

where the set {x G Rm | A x = 6, x > 0} corresponds to X in (3.18). 
We have obtained the nested form of two-stage stochastic program (see 3.12). 

We also see that the constraint W{ui)y = h{ui) — T(uS)x in (3.19) measures the violation 
of the original constraint T(uS)x = h{ui). A recourse action y compensates the violation 
by W{ui)y at a second-stage cost qT{ui)y. The matrix W{uS) is usually called the recourse 
matrix. 

3.10 Random variables and elements of probability 
space 

The aim of this section is to discuss the randomness of the data of the models and the 
notation, which is found in several textbooks of stochastic programming (see [4], [7], [9]). 
This notation, involving expressions like W(^), W(ou), W(£(UJ)) and W(^S) may be well 
clear to an expert in stochastic programming (or in statistics) but at the same time it may 
be confusing for a beginner in this area. That is why we decided to give some remarks on 
the topic. 

Notation: Let (Qi, T\, P\) be a probability space and let (f22, JF2, fi) be an arbitrary mea­
surable spaces. We call a measurable mapping / from fii to Q2 a random variable. Partic­
ularly, we call random vectors random variables, too. To stress the measurability property 
of / , we say that the mapping is T\ — Ti measurable (meaning that f~1(J72) C f i ) . 

We will be illustrating our discussion on the second-stage program for the two-stage model 
(see 3.19). 

3.10.1 Data as mappings from £1 
In the two-stage problem, the second-stage data q, W, T, h that define the underlying set 
Dxu) and the objective function / S j W vary with UJ G Q. Thus we have 

q • Q -» Rk, 
T : Q -» 

W : Q -» 
h : Q -» 

Very generally, there is no need to claim that the mappings q,T,W,h are random vari­
ables, since the only mapping that is needed to be measurable is the mapping Qx : Q —> M. 
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given by Qx{ui) = Q(x,u) for every fixed x. It can be proved however, that the measura-
bility of q,T,W,h is sufficient for Qx to be measurable. So in the sequel we will assume 
q, T, W, h to be measurable. 

The main direction of attack in showing the measurability of Qx is by the following 
Theorem 3, for which we need some preliminary considerations. Consider the linear 
program: 

min cTx 
s.t. Ax = b, (3.21) 

x > 0, 
where A is a real mxn matrix and c and b are real vectors of dimensions n and m, respec­
tively. The program may have optimal solution, be unbounded or infeasible depending 
on its data (A,b,c) G ]R™x™+™+™. 

We define the mapping 7 : M ™ x ™ + m + ™ gr a s f 0 n o w s . For (A, b, c) G ]Rm><™+m+™ for which 
the objective of (3.21) is unbounded, we set j(A, b, c) = — 0 0 . For (A, b, c) for which (3.21) 
is infeasible we set j(A, b, c) = + 0 0 . Otherwise we let j(A, b, c) denote the optimal value 
of (3.21). 

Theorem 3 (Measurability of /y): The mapping 7 (as defined above) is a Borel mea­
surable extended real-valued function. 

Remark: We have the codomain M. of 7 equipped with the extended Borel a-algebra B 
defined as 

l = B U { o U{+oo} |a G l } U { a U { - 0 0 } | a G 1} U {a U { + 0 0 , - 0 0 } | a G 1}, 

where B is the usual Borel a-algebra on M.. For details, see Bauer [1]. The proof of this 
theorem can be found in Kai l [6]. 

Now, we will see how this implies the measurability of the mapping Qx. For a fixed x and 
u, the second stage program reads as 

min {q{u)Tx | W{u)y = h{u) - T{u)x, y > 0} . (3.22) 

Provided that the mappings q, W,T, h are measurable, the mapping £ : Q —> ^mxk+m+k 

obtained by "piecing these mappings together according to (3.22)": 

£{u) = {W{u),h{u)-T{u)x,q{u)) 

is T — Mmxk+m+k measurable. 

To see this, recall that a vector mapping is measurable if an only if its components (ob­
tained through its composition with projections) are measurable. The measurability of 
W and q was supposed, and h — Tx is measurable as a linear combination of measurable 
functions (recall that x is fixed). 

We have designed the mapping £ in such a way that we can obtain Qx as a composition 
of £ and 7 from Theorem 3: Qx = 7 o £. As a composition of two measurable mappings, 
Qx is [T — M.) measurable, which is its desired property. 
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3.10.2 Data as elements of real space 
By real space we mean Mn for some n G N . In order to simplify further notation, we set 
p = mxk + mxn + m + k, so that we can abbreviate ^ m x k + m x n + m + k by MP. 

Let's define the mapping £ : Q —> Mp by 

= (W{u),T{u),h{u),q{u)) 

By the measurability assumption on the data, the mapping £ is measurable, and therefore 
it induces a probability measure Pj on Mp given by 

PI{B) = p({u\£{u)eB}) 

for every set B G Mp. The index I reminds, that Pj is sometimes called an image measure 
(see Bauer [1]). 

We can discard the original probability space (fi, JF, P) and make a transition to the new 
one (RP B P , P / ) . 

In this setting, the data q,W,T,h are no longer random variables. In fact, we have 
a mathematical program (Cz, fz) assigned for every z G Mp. The program 

min {qTx \ Wy = h — Tx, y > 0} 

is assigned to the vector z = (q, W, T, h). So q, W, T and h are just variables (vector and 
matrix variables). 

The major difference lies in this observation: Consider Q to be finite. Then we have 
a finite number of programs (Cu,fu) with fixed (q(u>), W(u), T(u), h{ui)) G MP for each of 
them. After the transition, we have a program for every possible (fixed) (q, W, T, h) G MP. 

If we allow ourselves to write u instead of z, we see that we arrive back at our previous 
notation. Some authors use indexing by £ instead. In here it should be noted that having 
discarded the original probability space, £ cannot denote a mapping any more. Instead, 
we have that £ denotes a variable in MP and £ = (q, W, T, h). This is not an equality of 
fixed vectors, it is merely a statement of the notation convention (all the symbols included 
are variables). 

3.10.3 Data as functions of real space 
Another alternative is to keep the previous setting and introduce projection mappings. 

Example: Let t = (x\,x2, x 3 ) G M3 and define z : M3 —> M by z(t) = x 3 . J 

In the sense of the previous example, we can have q, W, T, h as appropriate projection 
mappings from MP to Mk, Mmxk, Mmxn and Mm, respectively. 
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Since (M.p,Mp,Pi) is our new probability space and projection mappings are continuous. 
q, W, T and h are random variables. Then the notation again reads as 

min {q(uj)Tx \ W(u>)y = h(uS) — T(UJ)X, y > 0} 

or 
min {q(0Tx | Wffiy = M O - Tffix, y > 0} , 

depending on our choice of the symbol (u> or £) to denote the member of Q — Mp. 
(Especially note that still in here £ is not a random variable.) 

3.10.4 The composed case 
If we wish so, we can keep the original space (f2,jF, P ) , have £ as a random variable 
£ : Q —> Mp and q, W, T, h as the appropriate projection mappings. The notation then 
reads as: 

min {q(^))Tx | W{£{u))y = h{£{u)) - T{£{u))x, y>0} (3.23) 

and is meaningful. 

3.10.5 The general case 
It is also possible to keep the previous setting, but instead of having q, W, T, h as projec­
tion mappings, to have them as some general (though concrete) mappings. 

Example: Frequently (Birge and Louveaux [4], Kai l and Wallace [7]) h is required to be 
a linear mapping from Mr to Mk defined as 

r 

h = h0 + y^jaihi, 
i=l 

where hi G Mk for % G { 0 , . . . , r} and (ttj)[= 1 G W is the vector variable of the domain of 
h. J 

This resembles a situation in parametric programming, where some of the program data 
are treated as linear functions of a parameter space. Note that in the context of para­
metric programming, the definition of linear mapping allows for an additive constant (as 
is the situation with linear functions in real analysis). 

We see that for this approach, it is no longer necessary to keep the codomain of £ as R p . 
Instead, we can just have £ : Q —> Mr for a suitable r. And q, W, T, h are (possibly linear) 
mappings from Mr to the corresponding codomains. The notation reads again as in (3.23). 

If we now discard the original ft as discussed before, the notation reads as 

min {q(0Tx | W(£)y = h(£) - T(£)x, y > 0} , 

where £ is not a mapping but a variable of the parameter space Mr. 
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3.10.6 Expected value reformulation 
One of the reasons of discussing these concepts lies in the use of the so called Expected 
value reformulation. Roughly speaking, one of the intuitive approaches to modelling un­
der uncertainty is to substitute the random data by their expectations. 

In our very general case, fl is some general set and we have a family of programs (Cu, fu) 
assigned to every to G fl. We don't use any random variables and therefore we cannot ap­
ply this intuitive approach. Its analogy (loosely speaking) would be to solve the program 
corresponding to to with the biggest probability in the discrete case (this looks more like 
a "mode" reformulation). 

If we however use the concept of random variables in the programs: 

min {q(i(uj))Tx \ W{Z{u))y = h{£{u)) - T{£{u))x, y > 0} , (3.24) 

we can solve the program 

min {g(E(0) T x | W(E(£))y = h(E(0) - T(E(£))x, y > 0} (3.25) 

instead, since it is well defined. Note as an interesting observation, that this program 
possibly wasn't originally assigned to any of the events u G fl (it is particularly easy to 
see for finite fl). 

In case when we discard the original fl, the notation reads as 

min {q(0Tx | W(£)y = h(0 - T(£)x, y > 0} (3.26) 

and the expected value program is written as 

min {q(E^))Tx | W(E^))y = h(E^)) ~ T(E^))x, y > 0} . (3.27) 

Here denotes the expected value as a functional on the new probability space, that is 
with respect to the image measure Pj. 

It is interesting to compare the two cases (3.25) and (3.27). In the first one, £ stands for 
a given random variable £ : T —> W. In the second one, it is just a symbol - a variable. 
For £ to be possible to figure in the domain of Eg, it must however denote a random vari­
able. In this case, the random variable is the identity mapping id : W —> W. (Compare 
to the same situation in real analysis where x is a variable and at the same time denotes 
an identity function onR.) 

So the expected value program would be better stated as 

min {q(E((id))Tx | W(E((id))y = h(E((id)) - T(E((id))x, y>0} (3.28) 

to avoid confusion. It would be also incorrect to view £ as the original random variable 
from the discarded probability space, since then we would have to use E instead of Eg, 
obtaining the case (3.25). 
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3.10.7 Summary 
We have seen many alternatives of correct treatment of the subject. In textbooks, all of 
them are generally used next to each other, leaving the reader to choose or recognize the 
proper or suitable one. From what has been showed, it follows that the situation is quite 
clear in its nature. In spite of this, the diversity may present and frequently presents 
a source of confusion for readers who are not accustomed to the field. For this reason we 
have presented the above discussion. 

3.11 Further properties of two-stage models 

At the end of our presentation of stochastic programming, we will give a brief informative 
overview of further properties of linear two-stage programs. 

The two-stage program as stated in its nested form (3.12) minimizes the sum of the first 
stage objective function cTx and the recourse function Q, which is given by expectation 
as Q(x) = E(Q(x,ou)) for x fixed. Q(x,u) can be elegantly defined as 

The infimum always exists (inf 0 = oo), and we possibly have Q(x,ou) = ±oo. The set of 
x for which Q(x) is well defined and the properties of Q are of main interest. 

First, the function Qx, that maps u to Q(x,u) with x fixed, must be measurable. We 
have shown this in Section 3.10.1, under the assumption of measurability of q,W,T and 
h. Second, the integral E(Q S ) must exist and the case when E(Q S ) < oo is of interest. 
A necessary condition for E(Q S ) < oo to hold is 

In case of fixed recourse, when W is constant with respect to u, Kai l [6] shows, that the 
square integrability of q, T and h implies E(Q S ) < oo on the set K of those x, for which 
(3.30) holds. It can be shown that K is a convex set, and Q is a convex function on K. 
Under further assumptions on the probability measure P and the integrability of Qx, the 
Lipschitz continuity and differentiability of Q on K can be proved. 

This means that, in principle, numerical algorithms of nonlinear optimization can be used 
to solve the two-stage program. The evaluation of Q and its gradient is however compu­
tationally too demanding in practice. Decomposition algorithms for discrete distributions 
are being used instead (see [2],[4]). 

The requirement Q(x,u) < oo is equivalent to 

which holds if and only if h(uS) — T(uS)x belongs to posW, the positive hull of the columns 
of the recourse matrix W. This is surely guaranteed if W — [I, —I] (with I denoting the 
identity matrix), in which case we speak about complete simple recourse. Generally, it is 
guaranteed if posIU = M f c (with k as the dimension of the column space of W). Then we 
speak about complete recourse. 

Q(x,u>) = inf {q{u)Tx | W{u)y = h{u) - T{u)x, y > 0} . (3.29) 

(3.30) 

{y e Rm I W{u)y = h(u) - T(cu)x, y > 0} ^ 0, 



Chapter 4 

Stochastic model of aggregate 
blending 

In the development of stochastic programming models for the blending problem, we start 
with the deterministic models of Chapter 2. In order to design a suitable stochastic 
model, we need to introduce the randomness, formulate the objective and choose one of 
the approaches discussed in Chapter 3. 

4.1 The randomness and the objective 

We begin with analysis of the randomness in the problem. There are m ingredients (ag­
gregates), each of them available in a sufficient amount. Their grading curves form the 
matrix A. We select the mixing ratios x = (XJ)1JL1 and we extract Xj units of the j-th 
ingredient out of its available amount. Then we perfectly mix the extracted amounts and 
measure the grading curve of the obtained mixture. Every time we repeat this procedure, 
we get a slightly different result. Suppressing the factor of the measurement, we see that 
the main reason is the non-homogeneity of the ingredient combined with the extraction. 

The grading curve of the mixture that we expect to obtain is Ax. Because of the non-
homogeneity, the grading curves of the extracted amounts differ from A. We can try to 
model them as random variables, denoting them by A(o>). The resulting grading curve 
of the mixture is then A(a>)x, depending on u. As a reasonable probability space, we 
can choose Q = M n x m

; equipped with the Borel a-algebra B n x m and some probability 
measure P. We can fix the random variable A to be the identity mapping on ] R n x m . The 
probability measure P then represents also the distribution of A, and it is the only part 
of the model that is left to be specified. We will discuss it briefly in section (4.7). 

When choosing the appropriate stochastic model, we note that the decision on x is made 
before performing the mix. It is a here and now decision. Thus we choose a here-and-now 
or a two-stage model. As we shall see, the choice of two-stage models is natural in our case. 

The objective is, analogously to the deterministic case, based on the distance of A(a>)x 
from g determined as ||A(o;)x — g||p with p = 1 or p = oo. 

33 
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4.2 Here-and-now models 

In the deterministic case, our basic models (before finding their linear equivalents and 
introducing the constraints for the lower and the upper bound) were 

min 11 Ax — g||p (4-1) 

s.t. l T x = 1, 
x > 0. 

Compare this model to (2.1) for p — 1 and to (2.5) for p = oo. 

After introducing the randomness to the model by setting A = A (a;) in (4.1), we get 
a family of programs (X,fu) (for the notation refer to Chapter 3), where the set X is 
given as 

I = { x 6 l m | l T x = l , x > 0 } 

and the objective function fu : X —> K. is defined as 

/ w = | | A ( w ) x - g | | p . (4.2) 

We are in position to apply the expected objective here-and-now model as introduced in 
Section (3.5). 

The here-and-now blending model: 

min E ( | |A (w )x -g | | p ) (4.3) 

s.t. l T x = 1, 
x > 0. 

The model optimizes the expected quality of the mixture. When adding the constraints 
for the lower and the upper bound into (4.1), the situation changes. The model reads as 

min | | A x - g | \p 

s.t. Az(w)x > 1, 
AU(UJ)X < u 

l T x 1, 
X > 0. 

(4-4) 

When setting A = A(o>), Ai = Ai(u) and Au = Au(ou) in (4.4), we get a family of 
programs (Cu,fu) with 

Cw = {x e Rm | l T x = 1, A u(w)x < u, Az(w)x > 1, x > 0} 

and with fu as in (4.2). Recall that the matrices Au(ou) and Ai(ou) represent a selection 
of certain rows of the matrix A (a;) (the same selection for each uo). 

We cannot apply the here-and-now model directly because the sets Cw vary with u. The 
solution is to apply a two-stage model or a model with probabilistic constraints. 
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4.3 Two-stage model 1 

The easiest way of formulating a two-stage model is to start with the deterministic pro­
gram (2.4). As was shown in Section 2.6, it is a linear program equivalent to the program 
(4.1) with p — 1. We restate it at this point with aim to provide its direct comparison 
with the two-stage program build on its base. 

The original model: 

Two-stage model 1: 

min l T y + + l T y 

s.t. A x + y + - y~ 
A x - y; 

A u x + yu 

l T x 
x, y + , y" , yi, yu > 

g, 
1, 
u, 
1, 
0. 

(4.5) 

min E (Q(x, ÜÜ)) 

s.t. l T x = 1, 
x > 0. 

(4.6) 

<5(x, uo) = min l T y + + l T y 

s.t. A(w)x + y + - y -
A z ( o ; ) x - y / 

A u (u;)x + y„ 
y i y i Yu Yu > 

i , 
u, 
0. 

(4.7) 

Note than in every second stage program (4.7), x and uo are fixed. When we relate (4.7) 
to the general form of second-stage program 

min {qT(cu)y | W(cu)y + T(cu)x = h(uo), y > 0 } , 

we see that 

T(uo) 

and 

A H 
Muo) 
AJuo) 

W(uo 

q{uo) 

I - I 0 0 
0 0 - I 0 

\ 0 0 0 i 

1 1 ^ (y+ \ 
1 y 
0 y = yl 

w V yu / 

\ 8 \ , h(uo) = 
1 1 u ) 

where y is the vector of second stage variables. 

(4-

The original deterministic program (4.5) is in fact a "deterministic two-stage program" 
with x as first stage variables and y as the second stage variables. We can get it back 
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easily from the stochastic two-stage model (4.6) in case of a single-element Q. Since we 
have identified Q with M m x n

; this situation rather corresponds to having P as the Dirac 
^-distribution: P(B) = 5({y})5(B) for B G B m x " (S is the characteristic function of 
given set, y G R m x n fixed). This is clearly of no practical relevance. On the other hand, 
solving (4.6) in the E V reformulation as introduced in Section 3.10.6, we solve exactly 
the program (4.5) with expected values of the (matrix) random variables A , A ; , A U at 
positions of the original deterministic data. If we look at the original deterministic data 
as point estimates (determined by averaging a finite number of measurements), we see 
that the E V reformulation and the deterministic program are very closely related. 

Notice that the recourse matrix W(a>) (constant with respect to uS) of the second stage pro­
grams (4.7) doesn't guarantee their feasibility in general. We may have h — Tx ^ posW. 
This is not a surprise. When analyzing the feasibility of the original deterministic pro­
gram (4.5), we can see that for certain data A;, Au and 1, u, the program may not be 
feasible. Practically, it may be impossible to fit the mixture's grading curve between the 
lower and the upper bound with the ingredients available. In the deterministic case, this 
simply means that we have to choose different ingredients. For the stochastic program, 
some cases may be feasible while other may not. 

Suppose we have a finite probability space. Then we can solve the two-stage model (4.6) 
in the extensive form (see Section 3.6). If one of the second-stage programs is not feasi­
ble, then the whole program is not feasible as well. So we see that the model as stated 
requires a solution which always respects the bounds (for a finite Q). We can however 
adopt a different attitude leading to a modification of (4.6). 

Suppose the production works as follows. When the producer realizes that the grad­
ing curve of the mixture violates the bounds, he performs a recourse action, modifying 
the mixture by adding other ingredients in order to force the grading curve between the 
bounds. This leads naturally to a stochastic multistage program and opens a possible 
direction of investigation. In our treatment, we will comfort ourselves with a simpler 
concept. Instead of incorporating the recourse action into the model, we observe that 
there is a penalty cost related to it. We will include only the penalty for the violation to 
the model. If no recourse action is available, the penalty is just the cost of the wasted 
ingredients. 

We will see how the penalty concept relates to the original objective: 

4.4 Two-stage model 2 

original constraint 
Ax = g 
A , x > l 

A„x < u 

relaxed constraint penalty 
Ax + y + - y " = g l T y+ + l T y - , 

(4.9) 
Ajx + y,+ - y , =1 rlTyl, 

A u x + y + - y " = u r l T y " . 

The original 1-norm objective may be viewed as a penalty objective for violation of the 
first constraint in (4.9). The penalties for the bound constraints are associated only with 
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the appropriate variables (y~, y z

+ ) , which measure the distance in the direction of viola­
tion (up for the upper bound and down for the lower bound). The variables y+ and y[~ 
are introduced in order to obtain a standard form of linear program. The penalty cost as 
stated is a linear function of the violation scaled by a factor r > 0 (other choices possible). 

Two-stage model 2: 

min E(Q(x,w)) (4.10) 
s.t. l T x = 1. 

x > 0, 

Q(x,u;)=min l T y + + l T y " + r l T y z

+ + r l T y ~ (4.11) 

s.t. A(a;)x + y + - y - = g, 
A i (w)x + y + - y j - = 1, 
A«(w)x + y+ - y - = u, 

y + , y", y + , y~, y « , y « , > 0 

Looking at the recourse matrix W of this model, we see that 

W = ( I - I ) , (4.12) 

provided the vector y of second stage variables is ordered as 
T I +T +T +T -T -T -T\ 

and the matrix I (—1) corresponds to the three first (last) components of y. This means 
that the model is with complete simple recourse and the second stage program is always 
feasible. 

4.5 Two-stage model 3 

Another possibility of getting a two-stage program with simple recourse from (4.6) is to 
require the constraints A /x > 1 and A u x > u to be satisfied P almost surely (with prob­
ability one). For discussion on probabilistic constraints refer to Section 3.8. We obtain 
the following model. 

Two-stage model 3: 

min E (Q(x, u)) 

V A u (w)x < u J 

l T x = 1, 
x > 0, 

Q(x.,u) = min l T y + + l T y ~ 

s.t. A(w)x + y + - y - = g, 
y + , y" > o. 

The recourse variables are only y + and y~ in this case. 
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4.6 Models with oo-norm 

The stochastic models we presented up to now used the 1-norm in the objective. We can 
develop similar models with the oo-norm on the base of the deterministic program (2.7). 
The only difference compared to the previous models is the following. We substitute the 
constraint 

A(u;)x + y+ - y " =g 

by the two constraints 

A(w)x +ŷ  
A M x -y" +yl 

g, 
g-

In Two-stage model 1 (4.6), the recourse matrix W changes accordingly to 

W 

/ 1 0 0 0 -1 \ 
0 - I 0 0 1 
0 0 - I 0 0 

0 0 I 

and in Two-stage model 2 (4.10) to 

W = 
I 
0 

0 -1 
-I 1 

Compared to (4.12), we see that we don't have complete simple recourse any more. It 
can be shown however, that the recourse is complete. The equation Iy — lz = g has 
a nonnegative solution (y,z) for arbitrary right-hand side g = (gi)k

=1- It is sufficient to 
set z > | mim gi\. Then y = g + lz and y > 0. The same holds for the other part of W. 

4.7 Distribution properties 

The probability distribution of the stochastic entries of the models is an important fea­
ture of the problem. As was discussed before, the stochasticity is involved due to non-
homogeneity of the ingredients and due to the nature of the measurement. 

Basically there are three possibilities of assessment of the distribution. First, to perform 
a physical analysis. Determine the distribution by considerations on the physical and 
mechanical properties of the ingredients and on the mechanism of the measurement of 
grading curves. Second, to perform a simulation based on the above considerations. The 
third one is a practical approach. The producer performs repeated measurement on the 
ingredients to get an estimate of the distribution, which is then entered to the model. The 
range of types of ingredients that can be directly dealt with this approach is not limited, 
which might generally not be true for the approaches using physical analysis. 

We proposed the following simulation. The grading curve of the mixture or of the ingredi­
ent is in fact a distribution function of the size of its particles (see Figure 2.1). Extracting 
some amount of the ingredient then can be modeled as a random sample from this dis­
tribution. We implemented a short code in Matlab (see Appendix A) and we present 
graphical results in Figure (4.1). 
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sieves 

Figure 4.1: Simulation of grading curves. 

The figure shows distribution of 8 samples (red curves) of size 200 from the distribu­
tion given by the blue distribution function. The simulation provides a useful tool for 
generation of reasonable random data for testing of the stochastic models. 



Chapter 5 

Implementation and results 

5.1 Deterministic models 

We have implemented the deterministic models (2.4) and (2.7). As a linear solver, we 
have implemented the Simplex algorithm in C++ using Microsoft Visual Studio 2005. 
The following remarks on the implementation are addressed to readers familiar with the 
Simplex method. 

Since the simplex tables of our models are relatively small (at most 50 rows and 200 
columns) and we couldn't take advantage of sparseness, we decided to perform the oper­
ations with the entire simplex tableau (in contrast to the usual revised simplex method -
see [2]). 

To maintain numerical accuracy, we periodically recompute the basis inverse using the 
L U decomposition. The main difference of our implementation compared to the usual 
"by hand" operations on the tableau consists in the way of computation of the vector 
of reduced costs. We compute it at each step as c ^ B _ 1 N — from the original data 
c T = (c^,c^) using the actual basis inverse B _ 1 . This guarantees that the numeri­
cal accuracy is the accuracy of the revised simplex method, which computes the reduced 
costs in the same way. We also use row scaling of the orginal data to enhance the accuracy. 

The implemented method is the two-phase primal simplex method. The situation when 
artificial variables remain in basis at zero level after the first stage is also resolved by the 
algorithm. For the choice of the pivot column, Dantzig's rule, Bland's (cycle preventing) 
rule and the Steepest edge rule are available. The Steepest edge rule speeds up the 
convergence and its use is conditioned by updating the entire simplex tableau at each 
step, which is our case. 

5.2 Stochastic models 

We have implemented the Two-stage model 2 (4.10) in the modeling language G A M S for 
both the 1-norm and the oo-norm objective. Our implementation uses the extensive form 
of the stochastic program and is capable to deal with discrete distributions of the data 
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(or equivalently to solve the model in case of finite probability space). 

The running time for a model with 1000 scenarios (card(fi) = 1000) is about 2 minutes 
on Pentium CoreDuo 1.86 Ghz. 

5.3 Results 

We present representative numerical and graphical results. Table (5.1) shows results of 
mixture optimization with given ingredients. The grading curves of the ingredients are 
contained in the first four numerical rows. The ingredients themselves are denoted by 
their technical specifications (HDK16-22K8, . . . ) and the sieves by standard designations 
(S00-063, . . . ) . The optimal solution for given bounds and given goal curve is presented. 
Moreover, we give a comparison to an expert solution, which was provided by civil engi­
neers. The mixing ratios (both optimal and expert values) are further presented, together 
with the value of the optimization criterion (the min max criterion in this case). Due to 
engineering conventions, the values are given in percents, so that the range of the grading 
curves is the interval [0,100] instead of [0,1]. 

S00-063 S00-125 S00-25 S00-5 S01 S02 S04 S08 S i l 
HDK16-22K8 1.00 1.20 1.40 1.50 1.60 1.60 1.60 1.60 1.60 
HDK8-16K7 0.70 0.80 0.80 0.90 0.90 0.90 0.90 1.30 9.80 
HTK4-8M6 1.30 1.70 2.30 2.50 2.60 2.90 8.40 87.90 100.00 
DTKO-4011 1.80 2.60 9.10 34.90 61.20 76.50 87.60 98.50 100.00 
lower - - 2.00 5.00 9.00 16.00 28.00 45.00 -
upper 2.00 6.00 16.00 28.00 40.00 53.00 65.00 78.00 -
goal 0.00 0.00 9.00 17.00 26.00 38.00 51.00 67.00 -
optimal 1.43 1.96 5.35 18.17 31.20 38.84 45.77 72.21 77.43 
expert 1.35 1.83 4.95 16.88 29.01 36.10 42.03 59.05 63.43 

S16 S22 S32 S45 S63 optim ratios expert ratios 
HDK16-22K8 9.90 80.10 100.00 100.00 100.00 0.090 0.170 
HDK8-16K7 94.20 100.00 100.00 100.00 100.00 0.152 0.220 
HTK4-8M6 100.00 100.00 100.00 100.00 100.00 0.264 0.150 
DTKO-4011 100.00 100.00 100.00 100.00 100.00 0.494 0.460 
lower 73.00 - 90.00 - -
upper 91.00 - - - -
goal - - - - -
optimal 91.00 98.21 100.00 100.00 100.00 /* = 5.21 
expert 83.41 96.62 100.00 100.00 100.00 fexp — 8.97 

Table 5.1: Numerical results for oo-norm. 

The optimal value (the minimum absolute distance from the goal) is /* = 5.21 compared 
to the expert solution value fexp = 8.97. 

Table (5.2) shows the results obtained with the 1-norm criterion (only a part of the input 
data from Table (5.1) is repeated). 
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S00-063 S00-125 S00-25 S00-5 SOI S02 S04 S08 S i l 
lower - - 2.00 5.00 9.00 16.00 28.00 45.00 -
upper 2.00 6.00 16.00 28.00 40.00 53.00 65.00 78.00 -
goal 0.00 0.00 9.00 17.00 26.00 38.00 51.00 67.00 -
optimal 1.39 1.90 5.19 17.75 30.51 37.98 44.54 66.99 72.14 
expert 1.35 1.83 4.95 16.88 29.01 36.10 42.03 59.05 63.43 

S16 S22 S32 S45 S63 criterion 
lower 73.00 - 90.00 - -
upper 91.00 - - - -
goal - - - - -
optimal 91.00 98.29 100.00 100.00 100.00 /* = 18.82 
expert 83.41 96.62 100.00 100.00 100.00 fexp — 29.19 

Table 5.2: Numerical results for 1-norm. 

The vector of the optimal mixing ratios is x* = (0.086, 0.215, 0.215, 0.484) in this case, the 
expert ratios are as in Table (5.1). The minimal sum of absolute differences is /* = 18.82, 
whereas the value of this criterion in the expert case is fexp = 29.19. 

We present a graphical illustration of the data of Table (5.1): 

sieves 
Figure 5.1: The result of the optimization. 

The blue curve represents the grading curve of the optimal mixture, fitted to the requested 
grading curve (the red curve) and respecting the imposed bounds indicated by the black 
triangles. As mentioned in Chapter 2, the goal and the bounds are given on selected 
sieves only. 

5.4 Expert modification 

From the discussions with civil engineering professionals, it turned out that the notion 
of optimality is sometimes judged also from different points of view, reflecting the expert 
attitudes and the experience of the engineers. A desirable property of the mixture was 
formulated in terms of minimizing the variance of absolute differences between the re­
quested grading curve and the grading curve of the mixture. 
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We have formulated a linear model that incorporates this requirement. We present its 
core part, the whole model formulation being an analogy of formulations in Chapter 4. 
The constrains concerning the distance from the goal and the bounds are 

Ax + y+ - y" = 
A;x -yi > 

A„x + y„ < 
nya - l T y + - l T y " = 

y+ - lya = 
y" - i y a = 

where n denotes the dimension of the second-stage decision vector y, and the scalar vari­
able ya represents the average absolute deviation. The variables y + + , y + ~, y~ + , y then 
measure the absolute difference between the deviations y + , y~ and the average absolute 
deviation ya. 

The term to be added to the objective function for minimization is given by 

i T ( y + + + y + " + y" + + y ~ ) -

g, 
i , 
u, 
0, 
y + + - yH 

y + - y" 



Chapter 6 

Conclusion 

We have dealt with stochastic programming as a suitable tool for mathematical modeling 
of problems involving uncertainty. In Chapter 3 we presented a theoretical development 
of stochastic programming. The usual approach of many textbooks (e.g. [4], [7], [9]) 
is to introduce the randomness to a deterministic program and then to seek for its re­

formulations. We presented a development that involves the probability space from the 
beginning. The leading idea was to simplify the initial considerations, abstracting from 
particular forms of the programs and treating them as sets and objective functions as­

signed to elements of probability space. We managed to obtain the usual concepts of 
stochastic programming with this approach. 

We applied stochastic programming to a civil engineering problem, namely the opti­

mization of aggregate blending. We first developed deterministic models of the blending 
problem in Chapter 2, then we discussed the stochastic features and we returned to for­

mulation of suitable stochastic models in Chapter 4. We provided here­and­now and 
two­stage stochastic models with various objectives. 

We have implemented the deterministic models in C++ together with our own linear 
solver. We have used the modeling language G A M S to implement the stochastic models 
and we also performed simulations in Matlab to get a reasonable random data for our 
models. We presented numerical and graphical results in Chapter 5. 

The deterministic models with various objectives, corresponding to the expected value 
reformulations of the stochastic models, have been, together with our solver, incorporated 
into a specialized software. The software was developed by the company Computer M C L 
Brno, spol. s r.o., for the civil engineering enterprise Českomoravský beton, a.s. Our 
models are now being used for the optimization of concrete mixtures. 
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List of symbols 

s.t. such that 
J end of proof or example 
e element of, C subset (proper or not) 
M real numbers, Mn n-dimensional real numbers, R extended real numbers 
< less or equal in M or Mn (componentwise), > greater or equal 
o composition of mappings 
—> maps to 
|x| absolute value 
| |x| \p p-norm of x in Mn 

oo, — oo plus infinity, minus infinity 
Q, Qi, f22 sets of events 
00 random event 
£ random vector 
J- sigma-algebra 
B Borel sigma-algebra in M, B N Borel sigma-algebra in Mn 

B extended Borel sigma-algebra 
P probability measure, Pj image probability measure 
E expected value functional, Yar variance functional 
\i measure 
1 identity matrix 
id identity mapping 
W, W recourse matrix 
T, T technology matrix 
q, q recourse cost vector 
h, h vector in second-stage constraints 
Q recourse function 
g grading curve as vector; the goal 
g grading curve as function; nonlinear function (in constraints) 
A matrix of grading curves, A;, Au row selections from A 
1 lower bound (vector), u upper bound (vector) 
/ extension of / 
C set of decisions 
/ objective function 
7 mapping from program data to its optimum 

47 



Appendix A 

Simulation of grading curves 

°/
0
. . . the distribution function (piecewise linear): 

g = [0 0 9 17 26 38 51 67 74.5 82 88.5 95 97.5 100 ]/100; 

N = 8; number of performed simulations 

M = 300; sample size 

for i=l:N 

for j=l:14 

gsim(i,j)=0; %... contains the simulated curves 

end 

end 

for ns = 1:N 

for k = 1:M 

x = rand(); 

y = 14; 

for i=l:14 

if x <=g(15-i) 

y = 15-i-l; 

end 

end 

for j=y+l:14; 

gsim(ns,j)=gsim(ns,j)+l; %... updating the simulated curve 

end 

end 

gsim(ns,:) = gsim(ns,:) / gsim(ns,14); %... limit to 1 

end 

hold off 

plot(l:14,g,'b-','LineWidth',3); 

hold on 

plot(1:14,gsim,'r-'); 

axis([l 14 0 1.02]); 

/,. . . 14 sieves (world-wide standard) 

°/
0
. . . falling throught the 15-i th sieve 
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Appendix B 

G A M S implementation 
of Two-stage model 2 

The presented model uses the 1-norm in the objective. 

$eolcom // 

Scalar num_scenarios /1000/; 

Set s /1*1000/; //scenarios 

Scalar bigM / 100 /; 

Set i /1*14/; //number of sieves 

Set j /1*4/; //number of ingredients 

Set setL(i); 

Set setC(i); 

Set setU(i); 

Positive variable x(j); 

Positive variables Yplus(s,setC) 

Yminus(s,setC) 

Lv(s,setL) 

Uv(s,setU); 

Parameters boundL(i) 

boundU(i) 

boundC(i); 

Parameter A(s,i,j); 

$include "dataSSBeng.gms"; //input f i l e with data 

Variable z; //objective variable 

Equations EQobjective 
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EQgoal(s,setC) 

EQupper_bound(s,setU) 

EQlower_bound(s,setL) 

sumal; 

EQobjective .. z =e= sum(s,l/num_scenarios*( sum(setC,Yplus(s,setC)) + 

sum(setC,Yminus(s,setC))+ 

bigM*sum(setL,Lv(s,setL)) + 

bigM*sum(setU,Uv(s,setU)) ) ); 

EQgoal(s,setC) .. sum(j,A(s,setC,j)*x(j)) - boundC(setC) =e= Yplus(s,setC) -

Yminus(s,setC); 

EQlower_bound(s,setL) .. sum(j,A(s,setL,j)*x(j)) - Lv(s,setL) =g= boundL(setL); 

EQupper_bound(s,setU) .. sum(j,A(s,setU,j)*x(j)) - Uv(s,setU) =1= boundU(setU); 

sumal .. sum(j,x(j)) =e= 1; 

Model angelina / a l l / ; 

Solve angelina minimizing z using lp; 

Display x . l , z . l , A; 



Appendix C 

Excerpt from CH—h code 

The entire code (solver + model) has approximately 2000 lines. 

void UrciSloupec(int pravidlo, double** &AA, double* &cc 

int* febasis, boolfe opt, int& s, int m, int n){ 

const double epsCol = le-14; 

int j,k; 

double res,maxi; 

s=0; opt=false; 

switch(pravidlo){ 

case 0: //klasicky Dantzig - hleda maximalni cc 

maxi=epsCol; 

for(j=l;j<=n;j++){ 

if((basis[j]==0) kk (cc[j]>=maxi)){ 
maxi=cc [j] ; 

> 
} break; 

case 1: //steepest edge 

maxi=0; 

for (j=l; j<=n; 

if ( (basis[j]==0) kk (cc [j]>=epsCol)){ 
res=l; 

for(k=l; k<=m; k++){ res=res+AA[k] [j]*AA[k] [j] 

if ((cc[j]/res) > maxi){ 

maxi=cc[j]/res; 

s=j; 

} 

> 
} break; 

case 2: //Blandovo pravidlo 

3=0; 

while( j<=n kk s==0 ){ 
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i f ( (basis [j]==0) && (cc [j]>epsCol) ){ s=j; > 

} break; 

} 
if(s==0){ opt=true; } 

} 


