
VYSOKÉ UCENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV MATEMATIKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF MATHEMATICS

MODELY STOCHASTICKÉHO PROGRAMOVANÍ
A JEJICH APLIKACE
STOCHASTIC PROGRAMMING MODELS WITH APPLICATIONS

DIPLOMOVÁ PRÁCE
DIPLOMA THESIS

AUTOR PRÁCE JAN NOVOTNÝ
AUTHOR

VEDOUCÍ PRÁCE RNDr. PAVEL POPELA, Ph.D.
SUPERVISOR

BRNO 2008

Abstrakt
Diplomová práce se zabývá stochastickým programováním a jeho aplikací na problém
míšení kameniva z oblasti stavebního inženýrství. Teoretická část práce je věnována
odvození základních přístupů stochastického programování, tj. optimalizace se zohledně

ním náhodných vlivů v modelech. V aplikované části je prezentována tvorba vhodných
optimalizačních modelů pro míšení kameniva, jejich implementace a výsledky. Práce
zahrnuje původní aplikační výsledky docílené při řešení projektu G A ČR reg. čís.
103/08/1658 Pokročilá optimalizace návrhu složených betonových konstrukcí a teoretické
výsledky projektu M S M T České republiky čís. 1M06047 Centrum pro jakost a spolehlivost
výroby.

Abstract
The thesis deals with stochastic programming and its application to aggregate blending,
an optimization problem within the area of civil engineering. The theoretical part is
devoted to the derivation of basic principles of stochastic programming (optimization
under uncertainty). The applied part presents a development of suitable mathematical
models for aggregate blending, their implementation and results. The thesis contains
original results achieved in solution of the project G A ČR reg. n. 103/08/1658 Advanced
optimum design of composed concrete structures and it contains theoretical results of
the project from M S M T of the Czech Republic no. 1M06047 Centre for Quality and
Reliability of Production.

Klíčová slova

stochastické programování, dvojstupňové stochastické programování, míšení kameniva

Keywords
stochastic programming, twostage stochastic programming, aggregate blending

NOVOTNÝ, J. Modely stochastického programováni a jejich aplikace. Brno: Vysoké
učení technické v Brně, Fakulta strojního inženýrství, 2008. 52 s. Vedoucí diplomové
práce RNDr. Pavel Popela, Ph.D.

iii

iv

Prohlašuji, že jsem diplomovou práci Modely stochastického programování a jejich
aplikace vypracoval samostatně pod vedením RNDr. Pavla Popely, Ph.D., s použitím
materiálů uvedených v seznamu literatury.

Jan Novotný

v

vi

Rád bych poděkoval RNDr. Pavlu Popeloví, Ph.D. za vedení mé diplomové práce a za
mnoho laskavých a přínosných diskuzí nejen o stochastickém programování. Rád bych též
poděkoval prof. Lino Santovi (Department of Statistics and Operations Research, Univer

sity of Malta) za jeho přátelskou podporu a za otevřený přístup k mnohým matematickým
záležitostem.

I would like to thank to RNDr. Pavel Popela, Ph.D. for supervising my thesis and for
many kind and helpful discussions on stochastic programming and other topics. I would
also like to give my thanks to prof. Lino Sant (Department of Statistics and Operations
Research, University of Malta) for his friendly support and his open attitude to many
mathematical matters.

Jan Novotný

vii

viii

Contents

1 Introduction 1

2 Aggregate blending 2
2.1 Introduction, motivation 2
2.2 Grading curves 2
2.3 Mixture of ingredients 4
2.4 The goal and the objective 4
2.5 Bounds on the objective 5
2.6 Model with 1-norm 6
2.7 Model with oo-norm 7
2.8 Joint objectives 9
2.9 Further refinements 9
2.10 Reasons for a stochastic model 10

3 Stochastic programming 11
3.1 Introduction 11
3.2 Basic considerations 12
3.3 The first approach - wait-and-see 13
3.4 From wait-and-see to here-and now 13
3.5 The second approach - here-and-now 14
3.6 Two-stage models 15

3.6.1 Wait-and-see formulations 15
3.6.2 Formulation of two-stage models 19

3.7 Considerations regarding feasibility 22
3.8 Probabilistic constraints 23
3.9 Two-stage models revisited 26
3.10 Random variables and elements of probability space 27

3.10.1 Data as mappings from f2 27
3.10.2 Data as elements of real space 29
3.10.3 Data as functions of real space 29
3.10.4 The composed case 30
3.10.5 The general case 30
3.10.6 Expected value reformulation 31
3.10.7 Summary 32

3.11 Further properties of two-stage models 32

ix

x Contents

4 Stochastic model of aggregate blending 33
4.1 The randomness and the objective 33
4.2 Here-and-now models 34
4.3 Two-stage model 1 35
4.4 Two-stage model 2 36
4.5 Two-stage model 3 37
4.6 Models with oo-norm 38
4.7 Distribution properties 38

5 Implementation and results 40
5.1 Deterministic models 40
5.2 Stochastic models 40
5.3 Results 41

5.4 Expert modification 42

6 Conclusion 44

A Simulation of grading curves 48

B G A M S implementation 49

C Excerpt from C++ code 51

Chapter 1

Introduction

Stochastic programming provides mathematical models for decision problems under un
certainty or equivalently for problems involving randomness. Historically, stochastic pro
gramming arose from joining the concepts of linear and nonlinear programming with
probability and measure theory. Nowadays its models are being used in various areas
ranging from economics (e.g. portfolio management) to logistics and engineering (e.g.
electric or gas transport network optimization).

This thesis deals with stochastic programming and its application to a problem in civil
engineering, namely the optimization of aggregate blending for the production of con
crete mixture. In Chapter 2 we start by analyzing the aggregate blending problem and
we develop suitable linear programming models. Then we discuss briefly the reasons, why
randomness should be considered in the models, and this leads naturally to an exposition
of the basic principles of stochastic programming, which is presented in Chapter 3.

The presentation of the theory is original to certain extent, since we have adopted a slightly
different approach compared to the standard textbooks (see e.g. [4], [6], [7]). Instead of
introducing the randomness to a mathematical model after it has been built, we start
our model development including the probability space from the beginning. We also give
a correct derivation of the so-called extensive form of stochastic program, which is usu
ally used for implementation. A short discussion is devoted to the probability issues in
stochastic programming with respect to the notation used.

We return to the real application in Chapter 4, where we design stochastic programming
models for the aggregate blending problem and we discuss their properties.

The overview of our achievements is presented in Chapter 5. We discuss some aspects of
our implementation of the models and we also present numerical and graphical results.

1

Chapter 2

Aggregate blending

2.1 Introduction, motivation

The problem of optimizing an aggregate mix arises in civil engineering applications like
concrete or asphalt mixture design. Various physical properties of the mixture can be of
interest, depending on particular application. There is a variety of results and texts on
this topic within the area of civil engineering, see for example Svoboda [15].

One of the possible approaches being used consists in formulating the optimal properties
of the mixture in terms of its grading curve, which represents the distribution of the size
of the particles in the mixture. The justification lies in the fact, that the proportions
of particles of different sizes affect the mechanical properties of the aggregate mix in its
hardened state and also its workability during the preparation process. The formulation
of optimality using the grading curve is suitable for application of mathematical program
ming.

The aggregate blending problem has been dealt by several authors in various settings, for
a brief survey see Bibliography [11], [12], [13], [14], [16], [17] . Generally, models based on
linear programming or genetic algorithms are being used.

2.2 Grading curves

The desired composition of the mixture is defined in terms of its grading curve, which
represents the distribution of the size of particles in the mixture. The idea of the grad
ing curve is very similar to that of the distribution function of a random variable with
bounded range in M. We illustrate this with Figure (2.1).

The size of the particles in the mixture is obviously bounded from below by 0 and the
upper bound on it also exists (the number of particles in the mixture is finite). Let's
denote the upper bound by b. The grading curve / : [0,6] —> [0,1] is then defined by

. mass of particles with size less than x
fix) — .

total mass of the mixture

2

2.2. Grading curves 3

size
0 x b

sieves

Figure 2.1: The grading curve -
- 40% of the particles are smaller than x and fall through the sieves 6 - 14.

By the size of the particle we mean its characteristic size which may be defined as the
diameter of the smallest ball into which the particle fits. Some other characteristics in
cluding the particle's volume may be used as well. These definitions are presented just
to give an idea about the problem to the reader. Practically they are not important. In
practice, the grading curve is estimated by measurement. There is an n-tuple of sieves
with increasing size of mesh ranging from a > 0 to b. The single sizes are specified by
technical standards (ISO), the worldwide standard of today is 14 sieves with sizes 0.063,
0.125, 0.25, 0.5, 1, 2, 4, 8, 11, 16, 22, 32, 45 and 63 mm.

Let's denote the mesh size of the i-th sieve by aj. The practical grading curve g is then
a piecewise linear continuous function determined by the values

mass of particles that fall through the i-th sieve
total mass of the mixture

and represents a piecewise linear approximation for the theoretical grading curve / on the
interval [ai, an}.

If we can guarantee that the particle falls through the i-th sieve if and only if its size
is less than the mesh size aiy we obtain the equality /(aj) = g(cii) of the theoretical
and practical grading curves at the points Oj. In practice, this is satisfied only approx
imately, giving one of the reasons for the development of a stochastic programming model.

In the following, when talking about the grading curve, we will always mean the practical
grading curve. Moreover, we will identify the practical grading curve with the vector
g = (<7(ai))™=1 of its values. We also present a mathematical justification for this (intu

itively clear) approach.

Given an interval [a\, an] C K. and its partition p e M.n, p = (ai, 0 2 , . . . , an) with a* < Oj+i
for i e {1,2,... ,n — 1}, the set of all continuous piecewise linear functions on [ai,a n]
with usual addition and multiplication by a scalar is a vector space over M. of dimension
n, therefore isomorphic to the vector space M™ over M..

4 Chapter 2. Aggregate blending

2.3 Mixture of ingredients

The ingredients available for the production of the mixture are aggregate mixtures them
selves and are characterized by their own grading curves. Suppose we have m ingredients
to choose from. To produce one unit of the mixture, we need to decide the mixing ratios,
that is, we need to fix an m-tuple x = (XJ)J!=1 G M m of real numbers where Xj > 0 for
j G { 1 , . . . , m} and Y^Jj=i xj — 1- F r o m this it follows that Xj < 1 for all j.

Let the ingredients have theoretical grading curves Qj : [0,6] —> [0,1]. Then gj(t) denote
the mass of particles of size less than t in one mass unit of the i-th ingredient. In one unit
of the mixture, the mass of particles of size less than t coming from the i-th ingredient is
therefore Xjgj(t), and the total mass of particles of size less than t is given by Y^jLi xj9j(t)-

We have shown that the grading curve g of the mixture is a convex combination of the
grading curves gj of the ingredients

m
9 = J2xj9j,

i=i

with mixing ratios Xj as the coefficients of the convex combination. We present Figure (2.2)
for illustration.

sieves

Figure 2.2: Convex combination of grading curves.

When dealing with practical grading curves, we construct an n by m matrix A with
columns as grading curves of the ingredients: = gj(a.i). The grading curve g of the
mixture is then given by Ax = g.

2.4 The goal and the objective

Having m different ingredients at disposal, the goal is to produce a mixture of required
properties. That is, given grading curves (gj)™^, the objective is to find the ratios (XJ)^1=1

such that the grading curve Ax = Y^j=i xjSj °f the mixture meets the requested grading
curve g.

Two different situations may arise. First, the required grading curve g belongs to the
convex hull of the grading curves gj. Then there are (possibly infinitely many) choices of

2.5. Bounds on the objective 5

x such that Ax = g. If the cost of one unit of the j-th ingredient is Cj, the optimization
model is

min T C X
s.t. Ax = g

l T x = 1
x > 0

where 1T denotes the vector (1,1,. . . ,1) e W11 and the equation l T x = 1 stands for
Y^jLi xj = 1- The vector c = (CJ)™^ is the vector of cost coefficients. The model seeks
for the mixture with minimal cost.

Second, the required grading curve g does not belong to the convex hull of the grading
curves gj. Since the vectors gj are nonnegative for j e { 1 , . . . , m} and also g > 0, we
have that g belongs to the convex hull of gj if and only if g belongs to the linear span of
gj. This means that we cannot achieve Ax = g by any choice of x 6 R". But still we
would like the values of Ax to be close to g. Hence it is natural to state the optimization
goal as minimizing the distance between Ax and g. To measure the distance we use the
standard metrics given by norms in M n :

n

the 1-norm: = \xi\,
i=i

the oo-norm: ||^||oo = max \xi\.
i=l,...,n

2.5 Bounds on the objective

Apart from the primary goal, which is to stay with Ax as close to g as possible, there
are two more bounds on Ax imposed. They are the lower bound 1 and the upper bound
u, within which Ax is considered to be acceptable.

sieves

Figure 2.3: Bounds on the grading curve.

This yields two additional constraints for our models, namely

Ax > 1 and Ax < u.

6 Chapter 2. Aggregate blending

In practice, the lower and the upper bound are specified on selected sieves only (and
possibly on different sieves for lower and upper bound). We therefore formulate the
constraints as

A/x > 1 and A u x < u.

where the matrices A; (A u) are obtained from the matrix A by skipping the rows of A
which correspond to the sieves without the lower (upper) bound imposed.

When introducing the constraints to our programs (see next section), we do it in the
standard form, with a nonnegative surplus vector variable yz added to the constraint for
the lower bound and a nonnegative slack vector variable yu added to the constraint for
the upper bound:

A z x - yt = 1, yz > 0,
A u x + y„ = u, y„ > 0.

2.6 Model with 1-norm

Minimizing the 1-norm of Ax — g leads to the following program:

n

min "̂"̂
i=l 3=1

(2.1)

s.t. l T x = 1,
x > 0.

We will reformulate the program to get a linear one. First, we introduce a new variable
y to measure the difference between Ax and g: Ax + y = g. For a fixed x we have
y = g - Ax and some of its components can be negative or positive. That is why we
introduce two nonnegative variables y + and y~ by setting y = y + - y~. We obtain the
program:

n

min J2(y+ + yr) (2.2)
i=l

s.t. Ax + y + - y " = g,
l T x = 1,

x , y + , y - > 0.
For a fixed x, there are infinitely many choices of y + and y~ to make the equation
Ax + y + — y~ = g hold. It is easy to see that among all these, the choice

y + = max (0, g — Ax), y~ = —min (0, g — Ax) (2.3)

minimizes the objective YM=I {vt + Vi \ Moreover we have

| Ax - g| = |y+ - y" | = y+ + y"

for every x and for y + and y~ optimal (given by (2.3))with respect to this x. In particular
this holds for x being the optimal solution of the original program (2.1). With this we

2.7. Model with oo-norm 7

have justified the transition from the nonlinear program (2.1) to the linear one (2.2).

Adding the constraints representing the requested lower and upper bounds on the grading
curve and rewriting the objective YL7=i {vt + Vi~) a s l T y + + lTy~> the final model is

min l T y + + l T y " (2.4)

s.t. Ax + y + - y " = g ;

A/x - y, = 1,
A u x + y„ = u.

l T x = 1,

x, y + , y", yj, y« > 0.

The simplex table corresponding to this linear program is 0 - 1 T - 1 T 0 0
A I - I 0 0 g
A; 0 0 - I 0 1
A u 0 0 0 I u
1T 0 0 0 0 1,

where I denotes the identity matrix of appropriate size (possibly different on each posi
tion), (0) denotes a matrix or vector of zeros (depending on its position) and the vector
of decision variables is

(x \
y +

y
yi

I
Remark: The nonnegativity constraints for all the variables in models (2.2) and (2.4)
are formulated in one expression (as the last row of the constraints). Note that this
formulation is used as a shortcut. The vector variables appearing in the expression can
be of various dimensions and there should be a zero vector 0 of corresponding dimension
for each of them in the right-hand side. The meaning is however clear.

2.7 Model with oc-riorm

Minimizing the oo-norm of Ax — g leads to the following program:

mm max
ie{l,...,n}

(2.5)

s.t. l T x = 1.
x > 0.

We will again seek for an equivalent linear program. We introduce a new nonnegative
scalar variable y and consider the program

8 Chapter 2. Aggregate blending

mm y
s.t. Ax + yl > g,

A x - y l < g,
l T x = 1,

x > 0,
y > o.

From the first two constraints it follows that

(2.6)

and

which yields

y > (g - Ax); = dijXj Vi G { 1 , . . . , n}

y > (Ax - g) i = ^2 dijXj - gi Vi e {1 , . . • , n},

y >
3=1

Vi e { l , . . . , n } ,

and therefore we have

y > max
ie{l,...,n} 3=1

Moreover, for every fixed x, the value y = maxjG{ 1] X l j l i ai,jxj ~ 9i

program and obviously minimizes the objective (miny). We have justified the transition
from the nonlinear program (2.5) to the linear program (2.6).

is feasible in this

To obtain the final version of the program in the standard form, we introduce surplus and
slack vector variables yi, y2 to the first two constraints and add the constraints for the
upper and the lower bound:

min y (2.7)

s.t. A x - y i + y l = g,
Ax + y 2 - yl = g,

A/x - y, = 1,
A u x + y„ = u,

l T x = 1,
x, yi, y 2, yi, y« > 0,

y > o.
The simplex table corresponding to this linear program is

0 0 0 0 0 -1
A - I 0 0 0 1 g
A 0 I 0 0 -1 g
A; 0 0 - I 0 0 1
A u 0 0 0 I 0 u
1T 0 0 0 0 0 1,

2.8. Joint objectives 9

and the vector of decision variables is the vector

/ x \
yi

yi
yu

\y J.
2.8 Joint objectives

Further modeling possibility is to formulate a joint objective function to optimize a cer
tain combination of cost and quality (measured by the norm of Ax — g).

The objective function in (2.4) is then modified in the following way:

min ac Tx + (1 - a) (lTy+ + ! T y~)

and the objective function in (2.7) reads as

min acTx + (1 — a)y,

where the coefficient a G [0,1] allows to adjust the relative proportion of the cost vector
in the objective.

2.9 Further refinements

It may happen that some parts of the grading curve are more important than the others.
We would like to include this preference into the optimization criterion. To achieve
a minimum distance of the curves on the selected parts with priority, we can use weighed
norms:

n

the weighed 1-norm: ||y | |i = Wj\yj\,
i=l

the weighed oo-norm: ||y||oo— m a x wi\lli\-
t=l,...,n

Here w = (wj)™=1 is a vector of positive coefficients. It is reasonable to demand YL7=i W i = n

or Y17=iw* = 1- Scaled norms are obviously equivalent with respect to minimization.

In model (2.4), the objective will change to

min w T y + + wTy~.

On the other hand, the weights will enter into the constraints in model (2.7). The first
two constraints will be modified to

Ax - yi + yw'1 = g,
Ax + y 2 - yw'1 = g,

where w _ 1 stand for the vector of reciprocal values of w.

10 Chapter 2. Aggregate blending

2.10 Reasons for a stochastic model

The input data of the models are the desired grading curve, the bounds and the grading
curves of the ingredients. As was mentioned in the introduction, the grading curves of
the ingredients are determined by measurement on a sequence of 14 sieves.

It is obvious that one cannot obtain identical results when the measurement is performed
repeatedly, and in this case there are two reasons. The first reason is the nature of the
measurement itself and it becomes evident when measuring the same collection of par
ticles repeatedly. The second reason, which is of greater practical importance, is the
non-homogeneity of the aggregate. Choosing different samples of the aggregate for the
measurement and for the mixture certainly gives different results. And differences be
tween two distinct series of production of the aggregate also fall into this category.

For these reasons, it is useful to develop stochastic models for the blending problem.

We return to the models in Chapter 4, after the presentation of stochastic programming
that follows in the next chapter.

Chapter 3

Stochastic programming

Notation

We use the following notation convention. A function / : D —> C is always denoted by /
(with D denoting the domain and C the codomain of /) . The symbol f(x) denotes the
element of C, which is assigned to the element of D denoted by x. The function denoted
by / is then identically the set { (x, f(x)) \ x G D}, where (a, b) denotes an ordered pair of
elements a and b. So, particularly for real functions, f(x) denotes a real number, whereas
/ denotes the (whole) function.

Although this is a standard mathematical convention, we state it explicitly as an infor
mation for the reader, that the text respects this notation and not bearing it in mind can
bring difficulties in understanding.

Vector variables are not marked as boldface in this chapter. One reason is to avoid too
much boldface notation. A more serious justification is that in most cases, the vector
nature of the variables is not of importance in this Chapter.

3.1 Introduction

Mathematical programming is in its nature motivated by practical problems (consider
for example various optimal planning problems, that led to the development of linear
programming, see [2],[8]). Despite of this, it can be treated mathematically in a correct
way, completely disregarding the underlying practical motivation.

Our aim is to present the practical motivations as a reasonable justification for several
concepts of stochastic programming, and then to treat the concepts purely in a mathe
matical sense. Conceptually, we will begin with simple considerations and we will see how
they lead to generalizations.

The usual way of introducing stochastic programming is to present a deterministic pro
gram and then to claim that some of its data (coefficients of the objective function or
constraints) are stochastic, therefore random variables (see e.g. [4], [7]). Further the fact
is revealed, that having introduced random variables into the program, it is no longer

11

12 Chapter 3. Stochastic programming

well-defined (i.e. it does not make sense). In order to cope with this, various reformula
tions are sought for.

We will adopt a different attitude in this text. We will start with probability space and
mathematical program as two basic concepts and we will see how the usual stochastic
programming formulations naturally arise from joining them together.

3.2 Basic considerations

A mathematical programming problem is usually presented in the general form:

The meaning is this: There is a set C and a function / : C —> M. The task is to find the
minimum of the set { f(x) \ x G C } C M, provided that it exists. In the positive case (we
denote the minimum by /*), the task is also to determine the set

the so called set of optimal solutions. We call the member i e C a n optimal solution if
f(x) = /*, and we call /* the value of optimal solution, the optimal value, or simply the
optimum. The set of optimal solutions is usually denoted by C*.

If the mathematical program represents a model of a real problem, the set C represents
a set of feasible solutions (or possible decisions, equivalently) and it is usually specified by
constraints, which have concrete interpretations (e.g. technological constraints). Also the
function / (called the objective function) has a practical meaning (e.g. a cost function).

In practice it often happens, that the conditions, under which the constraints and the
objective function were constructed, change in the course of time. In that case, if we
want to solve the practical problem, we have to change the mathematical program. The
change of the conditions may be random to certain extent. Or in order to take a decision
concerning future, we are forced to create and solve the program in advance, before the
conditions are realized, and we cannot predict them accurately due to some randomness
involved. These considerations lead to the idea of joining mathematical programming
with probability theory in order to obtain useful models for these problems.

It will prove beneficial to identify a mathematical program with its data, that is with the
ordered pair (C , /) :

This might seem strange at first sight. We do it, apart from other reasons, to be able
to speak about programs as mathematical objects and to be able to assign programs
to elements of sets. This approach is not frequent, can be however found (in slight
modification) for example in Kai l [6]. Thus in the following text, the symbol m i n z e c f(x)
just denotes the ordered pair (C , /) . We can still speak about the optimum (minimum)
and about the set of optimal solutions of a given program. To see that this concept is
quite natural and common, consider for example an ordered set (X, <) and the set of its
minimal elements as an analogy.

mm

{ x | x G C and f(x) = f* }

3.3. The first approach - wait-and-see 13

3.3 The first approach - wait-and-see

We try to build a basic probabilistic mathematical program. Let (Q, J7, P) be a probability
space. To every u G Q, we assign a set and a function fu : —> M. For every u G Q
there are three possibilities. The assigned program

has an optimal solution, in which case we denote the optimal value by /*. Or the function
fuj is unbounded from below on Cu, in this case we set f* = — oo. Or finally, = 0, in
which case we set f* — oo.

We construct a function /* : Q —> K. by assigning the values f* to the corresponding
events:

We can ask now if /* is measurable (that is, whether it is a random variable) and if it is
integrable. If both questions are answered affirmatively, we can determine the expected
value E(/*) , for example.

Let's discuss this model from the practical point of view. To every event UJ G Í1, which
represents a certain realization of relevant conditions, we have assigned a certain mathe
matical program. The reason for introducing this setting is the fact that different events
can be assignment different programs. Now, we fix certain UJ and solve the assigned pro
gram. We do it for every UJ G Q. For this approach to be of practical relevance, the nature
of the practical problem must make it possible for us to react to the upcoming events and
with each of them to take the corresponding optimal decision. This situation is usually
called wait-and-see. The value E(/*) represents the expected value of optimal solutions.

It can be seen that this approach is nothing more than parametric programming, with
fl being the set of parameters, equipped with the structure of a probability space. This
simple setting does not provide a model for decision under uncertainty, before the real
ization of the conditions becomes known.

3.4 From wait-and-see to here-and now

Suppose we are facing the decision problem under uncertainty. We have to make a deci
sion before the realization of the conditions is known. Having chosen a particular decision,
we will have to face different consequences depending on what conditions will come up.
What decision is now the optimal one?

The choice of the decision should be based on an analysis of all its possible consequences.
We are provided with objective functions fu corresponding to every single UJ G Q, but they
are (taken separately) of no use for us, since we cannot know in advance, which event
will become true. We are lacking a unique objective function F, that would somehow
aggregate the information provided by the single objective functions fu. To set F up, we
would like to carry out the following analysis for every decision x:

14 Chapter 3. Stochastic programming

1. We would like to see how it behaves under all possible conditions.

2. Assign to x a value expressing the plausibility of its a behaviour.

We will give the two points a mathematical meaning:

1. Given a certain decision x, what are the values fu(x) of the objective functions fu for
each possible event to G Q? We may run into trouble here, because (given x) for some uo
this question may not even make sense. The decision x may not belong to Cu. However,
at least for x G f\ien C<J (if nonempty) this question makes sense.

Thus, fixed x G f\ien ^ > w e construct the function hx : Q —> K. defined by

2. If for every x G f)uj&n Cu> the function hx is measurable and integrable (or even square
integrable), we can use the functional E or Var to assign the value E(/ i s) or Var(/i s) to
x, that is, to define a function

F : f| C w - M
wen

by
F(x) = E(hx), or by F(x) = Var{hx).

We can obviously use some general functional H defined on MP to assign the value H{hx)
to x. If we use the expected value E, the resulting value tells us how good (or bad) the
decision is in average, and this might seem as a reasonable objective. If we are afraid of
decisions that would bring a big variability of outcomes, we can use the functional Var.

The final step of solving this model lies in finding the minimum of F on its domain.

3.5 The second approach - here-and-now

If we consider a model, where for all events uo the set C w is the same (let's denote it by
C), or more specially, if Cu = M™ for all uo (this represents an unconstrained problem), the
approach described in the previous section can be well used. We call it the here-and-now
approach. Using the functional E , the mathematical program

min F(x),

where F : C —> M. is given by

F(x) = E(hx) = E({ (u, Ux)) \ueto}),

is usually called the expected objective reformulation (EO reformulation).

In stochastic programming textbooks (see [4], [7], [9]), its usual statement is

minE(/(x ,u;)) .

This notation is incosistent with our notation. The symbol f(x,u) in this notation refers
to our value fu(x), to our function fu (for fixed uS) and to our function hx (for fixed x).
The notation itself doesn't present a problem when one can distinguish the real meaning
in all cases.

file:///ueto}

3.6. Two-stage models 15

3.6 Two-stage models

Further step in our development of stochastic programming lies naturally in joining the
here-and-now and wait-and-see approaches. Suppose the feature of the decision problem
is this: We have to take a certain decision in advance (that is a here-and-now decision,
called also a first stage decision) and then, after the realization of relevant conditions,
take a second stage decision (which is a wait-and-see one). In order to provide a proper
formulation for two-stage models, we need to return to wait-and-see models and discuss
their possible formulations.

3.6.1 Wait-and-see formulations
We have discussed the motivation for wait-and-see model in Section (3.3). For a given
UJ G Q, we have assigned a set C w and a function fu with C w as its domain. The function
/* : Q —> R assigns the optimal value of the program

to u, provided the optimum exists. Otherwise f*(u) = oo or -oo (see Section (3.3)). If
/* is measurable and integrable, we determine E(/*) .

The procedure just described is still not a mathematical program in the sense of Section
(3.2), we haven't obtained the value E(/*) as a minimum of any objective function / on
any underlying set C. In the sequel, we will search for such a program (C, /) .

If we already had (C, /) at hand, we would expect its optimal solution to represent some
optimal decision. But what is an optimal decision in this case? There is in fact a collec
tion of optimal decisions, each of them corresponding to the program (3.2) for different to.
Solving the programs (3.2) separately is sometimes called scenario analysis, with scenario
being a synonym for a random event (i.e. uo).

We can try to construct the program (C, /) in such a way, that its optimal decision con
sists of the "vector" of optimal solutions of the single programs (3.2). This leads us to the
specification of the underlying set C. We will first present the construction on a simple
exapmle.

Example: Let Q = {1,2}, T = V(Q) (the power set of Q), and P be some probability
measure on T. Let

Then /j* = 2 at z\ = 0 and f2 = —8 at z2 = 8. The optimal solution x* of the program
(C, /) (which is still left to be defined), should be the ordered pair x* = (0, 8). This leads
to the idea of defining the underlying set C as some subset of R2, namely the Cartesian
product [0,1] x [3, 8]. Then it is natural to define the objective function / on C as

min fu(x) (3.2)

C i = [0,1] C R and h{z)
C2 = [3,8] C R and f2(z)

3z + 2 for z e C i ,
—z for z G Ci.

f(x,y) = fi(x) + f2(y). (3.3)

16 Chapter 3. Stochastic programming

We emphasize here our notation convention, due to which + in (3.3) means addition of
numbers (as opposed to addition of functions; clearly fi and fi are defined on different
domains). Thus our program reads as

min 3x — y + 2 (3.4)

s.t. (x,y) G [0,1] x [3,8].

What we have done here is that we have "grouped" together the two programs, creating
one which is " separable". In the following, we will give the terms grouped and separable
a precise meaning. The optimal solution x* of (3.4) is x* = (0, 8) with the optimal value
fopt = ft + F2 = 2 - 8 = - 6 .
Let's turn our attention to the probability now. Let the probability measure in this
example be defined by P({1}) = 0.8 and P({2}) = 0.2. We have / * = {(1,2), (2, -8)}
and E(/*) = 0.8 x 2 + 0.2 x (-8) = 0. We see that E(/*) ^ fopt. To fix this inconvenience,
we redefine / in (3.3) as

f(x,y) = P({l})f1(x) + P({2})f2(y),

which modifies the objective in (3.4) to

min 2Ax - 0.2y + 1.6.

The set of optimal solutions is left unchanged, and we get fopt = P ({ l }) / i + P({2})/2 =
= E(/*) . J

We will now formulate the sketched procedure precisely. We will start with the notion
of separability which will prove very useful in later formulations. The usual definition of
separability is this:

Definition 1' (Separable function): Let / : M.n —> M. be a function and J be an index
set: J = { 1 , . . . ,n}. If there exist functions fi : M. —> M. for each i e J such that the
identity f(x\,..., xn) = Y17=i holds for each x — (xi,..., xn) G M.n, we say that /
is separable.

The definition is motivated by the fact, that we would like to call the function / : M 3 —> M
given by f(x,y,z) = x — sin(y) + 5z3 separable, and other "similar" functions as well.
Proper specification of this "similarity" is the main burden of the definition.

For our purposes, we will generalize the domain. Instead of Cartesian product of n-tuple
of sets of real numbers, we will take a Cartesian product of n-tuple of some general sets,
each of them possibly different.

Definition 1 (Separable function): Let J = { 1 , . . . , n} be an index set and let Si de
note some set for each % G J . Let / : n i L i ^ — • K. be a function. If there exist functions
fi : Si —> K. for each % G J such that the identity f((xi,..., xn)) = XT=i fi(xi) holds for
each x — (xi,..., xn) G n i L i w e s a y ̂ hat / is separable.

A special case of this definition might be to take St = Rmi. Then n i L i Si = M m i + - + m " .
We can call a function defined by f(x,y,z) — (x — y)2 + z separable (bearing in mind

3.6. Two-stage models 17

that we separate the domain M3 into I 2 x M). This is usually called block-separability.

Definition 2 (Separable program): We say that a mathematical program (C , /) is
separable, if C is a Cartesian product: C = YYi=i a n d / : C —> M is a separable
function.

Theorem 1 (Equivalence of programs): Let (C, /) be a separable program with
C = nr=i Let's denote the optimum (provided it exists) of (C, /) by /* and the
optima of the programs (Cj, /j) by /* (the functions /j are given as in Definition 1). Let's
denote the sets of optimal solutions of the corresponding programs by C* and C*. Then
/* = ££=1 /* a n d = nr=i C h Provided C* or n™=i C* is nonempty.

Proof: Suppose that ri7=i ^s nonempty. For each i, we construct a function ^ : C —> K
by letting gt(xi,... , x„) = fi(xi). Then the programs (C,gi) and (Cj,/ i) have the same
optima /* and the set G* of optimal solutions of (C, #j) is equal to C i x . . . x C* x . . . x Cn.
Further, the identity / = YL7=i 9* n ° ld s . Therefore

n

min { f(x) | x G C } = min | gi{x) \ x G C j
i=i

and
n n n

min | s-j(x) | x G C | > ^ m i n (ft 0*0 I x e C } = X] #

On the other hand, for x G ri7=i w e n a v e /(^O — S j L i flri(x) = Y17=i /**> a n < ^ therefore
min { f(x) | x G C } < X)I=i ft • So the first equality is established, and moreover for all
x G n i L i Q w e nave f(x) = f* and therefore YU=1 C* C C* (which means that C* is
nonempty).
Now let C* be nonempty and let x G C*. Since /(x) = Xl jLi ft(x)> w e c l a m i that
<7i(x) = min {<7i(y) | y G C} . Suppose it is not true. Then there exists y G C with
fl'i(y) < 9i(x). Since #j(xi,... ,x„) = fi(xi), the i-th projection y, of the member y must
be different from Xj. Moreover, at the point z = (x i , . . . , Xj_ i , yj, Xj+i , . . . ,x„) we have
9i(z) = giiy) < gi(x). For j 7̂ i, we have g-j(z) = g-j(x). Therefore f(z) = YJj=i9j(z) =

9j(x)+gi(z) < YTj=i 9j(x) = f(x)i contradicting the optimality of / at x. This state
ment about optimality of gi holds for each % G J , and therefore at x we have /* = YL7=i fi-
Moreover, since gi is minimal in x, Xj belongs to C*, and we obtain that x belongs to
nr=i^i*- This holds for arbitrary x G C , so we have C C n ^ = 1 C*. This finishes the
proof, J

Especially note, that the proof is valid for arbitrary sets Cj, there is no need to require
them to be subsets of any linear space nor Mn. We are now ready to generalize the ap
proach given in the previous example.

Definition 3 (Product program) : Let J = { 1 , . . . ,n} be an index set and let a pro
gram (Cj, fi)i=1 be assigned to every i G J . Set C = YYi=i Ci and define the function
/ : C —> M by f(xi,..., xn) = YL7=i The program (C, /) is said to be the product
program assigned to the n-tuple of programs (Cj , / j)" = 1 .

18 Chapter 3. Stochastic programming

It is obvious from the definition that the product program (C, /) is separable and there
fore by Theorem 1 we know that the sets of optimal solutions are in exact correspondence.
We are also provided with a relation linking the optimal values.

We come to the main goal of this section, that is to the formulation of wait-and-see
stochastic program with finite probability space:

Definition 4 (Wait-and-see program): Let £1 be finite with card(f2) = n and let's
denote the members of Q by Ui, % G { 1 , . . . , n}. Let T = V(Q) and let the probability
measure P : T —> K. be given by P({ui}) = piy where Pi > 0, Y^i=iPi = 1- Let there
be a program (C W i , / w J assigned to every uii G Q. We call the product program (C, /)
assigned to {CUi,pifUi)f=1 the wait-and-see program with finite probability space.

Theorem 2 (Optimum of wait-and-see): The optimum fopt of the wait-and-see
program (C, /) as given in Definition 4 is equal to E(/*) , where the random variable
/* : Q —> K. is given by f*{uii) = /*, provided the programs (CUi, fUi)™=1 have optimal
solutions (with the optimal values denoted by /*).

Proof: If the programs (CUi, fUi)f=1 have optimal solutions, the Cartesian product
nr=i ^ui- °f s e ^ s °f their optimal solutions is nonempty. The programs (CUi,pifUi) are
obtained from the original programs (CUi, fUi) by replacing the original objective functions
fUi with the objective functions pj^ defined by (pifUi)(x) = PifUi(x) on CUi. Clearly,
the sets C*. of optimal solutions are left unchanged by this scaling of objective functions,
since pi > 0. The optimal values /* are scaled to Pif*. By Theorem 1 we then have
foPt = *YTi=\Vift — E(/*) . (The function /* is measurable because T = V(Q)). J

So the optimum of the wait-and-see program (C, /) is given by the expected value of op
timal solutions of the original n-tuple of programs. That is exactly what we wanted to get.

We have constructed the wait-and-see program for the expected value in objective. The
main use of this formulation takes place in two-stage stochastic programming models
(which use the expectation). This formulation of the wait-and-see program is sometimes
called the extensive form of stochastic program (see Birge and Louveaux [4]) and
allows the L-shaped decomposition algorithm to be applied.

We have managed to get the formulation of the wait-and-see model as a mathematical
program in case of finite probability space. We will see now, what difficulties arise when
we turn our attention to the infinite case. There are no problems with infinite Cartesian
products of sets. Recall that the general Cartesian product is defined as

that is the set of all mappings t from J to UieJ ^ o r which t(i) is a member of Cj.

(3.5)

The definition of separable function (see Definition 1) uses addition, which is undefined
for infinite cases. We can try to formulate directly the separable objective function /

3.6. Two-stage models 19

of the wait-and-see program. For simplicity of notation, we identify f2 with J , so that
instead of indexing by iO{ we can index by z. In the finite case we have

n
f(xu... ,Xn) = Y^Pififa)

i=l

for every x — (xi,..., xn) G Yli&j Ci- Thus generally, we would like to have

f{t) = JhtdP,

where the function ht : J —> R is given by

ht(i) = / i (*(«))

for every t G Yli^j C» a s defined by (3.5).

The problem is that the function h is not likely to be measurable nor integrable. Even
if we claim that the sets Cj belong to a common measurable space and the mapping t
is measurable, with hope to obtain the measurability of h by the theorem about mea-
surability of composed mappings, we don't succeed. The function h is not defined by
composition of t with another single mapping.

There is a result by Kai l (see [6]), that shows the measurability of one concrete mapping
h in a special case. It is the case when the programs (Cj, /$) are linear programs with
Ci C M f e for each % G J and the mapping h is the "optimal mapping" defined by h(i) = f*.
Note that it is exactly the mapping /* and its expected value E(/*) , that were of main
interest in this section. Kai l shows that under further assumptions on the data of the
linear programs, /* is also integrable.

To summarize, we managed to assign a mathematical program to the wait-and-see prob
lem in the finite case. In the infinite case, the wait-and-see problem is left without
a mathematical program, but under suitable conditions on the data, we have at least the
mapping /* measurable and integrable. We will shortly return to the measurability of /*
in Section 3.10.

3.6.2 Formulation of two-stage models
As mentioned at the beginning of this section, in two-stage models some of the decisions
are supposed to be here-and-now decisions, while the remaining ones are wait-and-see
decisions. This means that the sets are somehow divided with respect to the interpre
tation of their members (decisions). The first idea would be to take C w = X x with
X the set of here-and-now decisions. This setting would however not be rich enough - we
wouldn't be able to model situations in which the set of second stage decisions possibly
varies with the first stage decision taken, which is quite frequent in practise. Thus we set

C ^ = I J {>} X Dx,u,,

20 Chapter 3. Stochastic programming

where Dx^ is the set of second stage decisions corresponding to the event u provided
that first stage decision x G X has been taken. When referring to the values of our ob
jective functions fu : C w —> R, we will use the notation fu(x, y), with x G X and y G Dx^.

For each x G X and every UJ G Q, using the objective function fu, we define the second-
stage objective functions fXjU1 : Dx^ —> R by

fx,M = fu(x,y) (3.6)

and we consider the programs (DXjU1, fx,w)- This family of programs represents a wait-and-
see model discussed in the previous subsection. In the two-stage setting, we have such a
family assigned to every x G X. For fixed x, we proceed as in the previous subsection.
We denote the optimum of (DXtU, fXtU1) (or ±oo) by f*u and then we construct a function
Qx : n -> R by

Qx(u) = fx,un
which we assume to be an integrable random variable. This allows us to define an objective
function Q : X —> R as

Q(x) = E(Qx). (3.7)

The two-stage program we sought for is then the program (X, Q), minimizing the function
Q over the set of first stage decisions X. Having found the optimal solution x*, the set of
optimal second-stage decisions for each event u is clearly the set D*« U1.

The practical interpretation of the two-stage model is the following. We rate the first-
stage decisions x by taking into account the various situations that may arise when the
uncertain conditions are realized, provided we have taken the decision x. Each of the
situations represents a decision problem, which we solve optimally. We have the expected
value of the optima as the criterion for choosing x.

We will now present how the general linear two-stage model, as stated in various texts
([4],[7],[9]), fits into our formulation.

The linear two-stage model:

min cTx + E ^ m i n (qT(u)y(uj) j (3.8)

s.t. Ax = b,
W(u)y(uj) = h(u)-T(u)x,

x > 0,
y(u) > 0 V w e O .

Here A G M m x n , b G Rm, c G Rn, W(u) G Rrxs, h(u) G Rr, T(u) G Rrxn and q(u) G Rs,
for every to G Q. The variables of the model are x (a variable of Rn) and y(ou) (variables
of M s for each ui G fl).

Observe that the notation in (3.8) is not compatible with our notation convention. The
reasoning is the same as in Section 3.5. The set X of first stage decisions is defined by

X = {xe Rn\Ax = b, x>0}.

3.6. Two-stage models 21

The sets Dx^ of second stage decisions (with x and ui fixed) are specified by

Dx^ = {y e Rs | W{u)y = h{u) - T{u)x, y>0}. (3.9)

The second-stage objective functions fXjU1 are given by the expression

fxAy) = cTx + qT(u)y (3.10)

on DXjU1 (with x and u fixed). The original objective functions fu are given by the same
expression on {Jx&x { x} x DXjU1, with x and u as variables (not fixed).

Important remark: Note the use of y instead of y(ou) in (3.9). At this point it is
revealed, that although the traditional notation y{ui) suggests viewing y as a random
variable, the meaning is definitely different. The notation just means that the programs
{DXtUj, fXjU1) are required to be solved separately, and the way of communicating this con
sists in indexing the variables of the domains (by uo).

The property of indexing can be well seen in the case of finite probability space, when
we can formulate the wait-and-see model of the second stage as a mathematical program.
Then the entire two-stage model can be formulated as a mathematical program (C, f) in
the extensive form. The underlying set C is specified by

c = I J ix} x A w x . . . x DXtUln

xex

and the objective function / on C is defined as

n n

f(x,y1,...,yn) = ^Pifx^iVi) = ^2Pifuu(x,yi). (3.11)
i=l i=l

The second equality in (3.11) follows from the definition of fXjUH(yi) given by(3.6). The
aforementioned indexing property for finite distribution is obvious here.

In case when fUi(x,yi) = F(x) + GUi(yi), we have

n

f(x,y!,...,yn) = F(x) + ^2piGUJi(yi),
i=l

since Y^i=iPi = 1- Here F(x) corresponds to cTx and GWi(Vi) corresponds to q(u)Ty(u)
in the usual formulation (3.8) of the two-stage model.

There is also another usual form of statement of the linear two-stage model, the so called
nested form. We will state it for completeness and relate it to our development of the
two-stage model.

22 Chapter 3. Stochastic programming

The nested form of linear two-stage model

min cTx + K(Q(x,u)) (3.12)

s.t. Ax b.
0 x >

where
Q(X,UJ) = min < qT(uj)y \ W(uj)y

Note that this statement corresponds to our two-stage model (X, Q). The expression
E(Q(x,ou)) should be understood as defining the function Q on X introduced in (3.7).
Altough the notation in (3.12) is again not consistent with the ours, it is not misleading
and we will use it in subsequent statements of two-stage programs.

The usual formulation of two-stage problem, which basically defines all the sets D X U 1 at
once using (3.9), brings some difficulties. It may happen that the expression (3.9) defines
an empty set for some of the first-stage decisions. Various properties of the second-stage
data W(ou), T(u), h(uS) and q(uS) are usually required in order to make sure this does
not happen. With various requirements on the data, we speak about complete, relatively
complete or simple recourse (see e.g. [4], [7]).

In this section we turn our attention to the general here-and-now model as introduced
in Section 3.3. From our discussion of feasibility, we will arrive at probabilistically con
strained programs and we will also derive independently the two-stage model.

Recall that using the here-and-now approach, we were able to deal with unconstrained
problems or problems where all the programs were defined on a common set C. If it is not
the case, we can perform the here-and-now style analysis only for the decisions that are
always feasible, belonging to P) Cu. In some applications, certain decision might still seem
plausible even if it is infeasible in some cases, given their probability is small enough. Or
the infeasibility may seem to be compensated by extremely good behaviour in the feasible
cases. For these reasons, it is useful to extend the objective functions fu outside the sets
CUJ. We will assume in this section that C w C W1 for all u G Q.

We say that fu : Rn —> K. is an extension of / w : C w —> M, if we have fu(x) = fu(x) for
all x G CUJ.

It will be useful to discuss possible forms of extension in more detail. From a mathe
matical point of view, the extension can be arbitrary. From a modelling perspective, we
would like the values fu(x) for x G W1 \ to reflect somehow the infeasibility of x, and
possibly to give a rough information about the distance of x from Cu. The distance might
be viewed as a measure of infeasibility and might be useful from the modelling point of
view.

3.7 Considerations regarding feasibility

3.8. Probabilistic constraints 23

At this point, we will take a look at the usual way of specification of Cu and fu. The
mathematical program assigned to u> might be a linear program or a general nonlinear
program. In the nonlinear case, the set C w is given by a system of inequalities (gUti < 0)™ 1 ;

where gUji : M n —> R are given functions. The precise meaning is this:

m
Cu = (~]{x\x G Rn and gUfi(x) < 0} . (3.13)

i=l

The objective function / w is usually given by an expression, which makes sense for all
x G M n . So it is natural to have the objective function fu : M.n —> M, instead of
/w : Cw —• given by the same expression.

Our fu is extended now, but without including the information about feasibility. This
information is contained in the values of the functions gUji at x. Consider a suitable loss
function tu : M.m+1 —> M. and define fu by composition as

fu(x) = tu(9u,l(x), • • .,gu>,m{x), fu(xJ) V x G

If desired, the function t can be defined in such a way, that fu is indeed an extension of
fu. It is particularly easy to see in case of linear programming model. The linear program
reads as

min | c^x | A^x = and x > 0 j
and the functions gUji are linear and can be represented as

= (A^X - 6 «) . ,

where the index % refers to the i-th component of the right-hand side vector. If we set,
for example, tu(xi,..., xm) = xii the composed mapping fu will coincide with fu

on Cu, because all the functions gUji have zero value on Cu.

3.8 Probabilistic constraints

The concept of probabilistic constraints naturally follows from the considerations regard
ing feasibility presented in the previous section. Recall that for each u, we have a collection
of m functions g^^, each of them defined on the whole M.n. The set assigned to u is
uniquely specified by (3.13).

It is important to note that every u is assigned the same number m of constraints. The
applications of stochastic programming often arise from deterministic (linear or nonlin
ear) problems by introducing the randomness to the coefficients of the constrains. In this
situation, although the constraints are different for each u, their number stays the same
in all cases.

In the very general situation we obviously don't need to limit ourselves to this setting.
Generally, if there exists an uo* with maximal number of constraints, we can add the ap
propriate number of constraints to the remaining members of Q. These added constraints

24 Chapter 3. Stochastic programming

can be represented by constant functions (with constant value 0 or -1, for example) on the
whole Rn. This guarantees that their adding doesn't affect the original feasible regions .

Our effort up to now has been to extend the objective functions / w to Rn, in order to
be able to evaluate every possible decision, no matter if it is feasible for certain to or
not. Having done this, we can solve the unconstrained problem, using for example the
expected objective approach (see section (3.5)).

Now, we present a possible way of restriction of the domain Rn. For every fixed x e R "
and every i G { 1 , . . . ,m} (recall the fixed number of constraints) we define a function
G X J I : n -> R by

GX,M = g»Ax). (3.14)

Provided all the functions GX^ are measurable, we have obtained a collection of m random
variables at every point x. We will assume the measurability of the functions GX^ in the
sequel.

Consider a particular random variable, say GX*^ and the set Sx* = {UJ\GX*^{US) < 0}.
Since Gx*ti is measurable, the set Sx* C Q belongs to the a-algebra T and has assigned
a probability P(SX*). If all the functions gUti are less or equal than 0 at x*, meaning that
the first constraint is satisfied for all to at x*, then GX*^ < 0 for every to and therefore
Sx — Q and P(SX) = 1. On the other hand, if for some to the first constraint at x* is not
satisfied (gUji > 0), we can expect the the probability of Sx* to be less than 1. If the first
constraint is violated at x* for each u, then obviously Sx* = 0 and P(SX*) = 0.

Let's build a new function, that assigns the probability P(SX) to every x G Rn:

H.-.R^ [0,1], Hx{x) = p({u\GXtl(u) < 0 }) . (3.15)

The function H\ classifies the decisions x according to the probability of the set of events,
for which the first constraint is satisfied at x. So, for example the set {x\H\{x) > 0.95}
has a natural interpretation as the set of decisions, for which the first constraint is satis
fied with probability greater than 0.95.

We will now use a similar construction taking the m-tuple of functions (g^i)^ at once.
For a fixed x, find the set

Sx = {u | GXii(u)) < 0 for i e { 1 , . . . ,m}} =

= {u | GXtl(u) <0}n{u\ Gx,2(ou) <0}n...n{u\ Gx,m{u) < 0} .

The set Sx belongs to J7, being an intersection of sets belonging to T. We define a function
H : Rn -> [0,1] by

H(x) = P(SX) = P ({u | GXii(u) < 0 for i e { 1 , . . . , m}}). (3.16)

For a finite probability space, we have H(x) = 1 if and only if all the constraints are
satisfied at x for all u, that is if and only if x G Cu, meaning that x is always feasible.
We can see that the following identity holds:

H(x) = P({u\xeCu}). (3.17)

3.8. Probabilistic constraints 25

Note that the expression (3.17) itself cannot be used to define the function H. For general
sets CUJ we cannot decide whether {ui \ x G C^} G T. We are able to show or state it with
help of the functions gUti specifying Cu, and definig then H by (3.16).

Example: The program
min f(x)
s.t. H(x) > 0.9,

x > 0,

minimizes the objective function on a set of nonnegative decisions, for which the proba
bility of being feasible is greater or equal 0.9. J

The construction we have described is usually presented in a less clear and more intuitive
way:

H(x) = p({u\Gx>i(u) < 0 f o r z G { l , . . . , m } }) =

= P U G X i i < 0 f o r i e { l , . . . , m } }) =

= P({gu>i(x) < 0 f o r i e { l , . . . , m } }) ,

and for example the equation H(x) > 0.9 is written as

/ 9i(u;,x) <0\
g2(uj,x) < 0

y gm(u,x) < 0 J

> 0.9.

This notation looks like a recipe saying "just add probability". We will summarize our
results and join them with the ideas from the previous section.

Given programs (Cu,fu), with C W1, we use the extensions to define an objective
function / over M.n. If the sets are given by m constraints gUji < 0 as in (3.13) and the
functions GXji given by (3.14) are measurable, we can use the function H defined in (3.16)
to additionally restrict the domain of / to a reasonable subset C of M n . The program
(C, /) then reads as

min f{x)
s.t. H(x) > a,

where a G [0,1], and is called the program with joint probabilistic constraints.

If we use the functions Hi defined as in (3.15) instead of H, we obtain the program

min f(x)
s.t. Hi(x) > «1,

H2(x) > a2,

Hm{xj — cx-m,

which is said to be with separate probabilistic constraints. Obviously, we can pro
duce more general settings by coupling certain subsets of the constraints together.

26 Chapter 3. Stochastic programming

3.9 Two-stage models revisited

One of the possible ways of obtaining a two-stage model is this: We have originally a de
terministic mathematical program (C, /) with C C 1". Then we claim that some of its
data are random, and we in fact make a transition to a collection of models (Cu, fu) for
UJ G Q. We then observe that the sets C w vary with u and therefore there are decisions x
that are feasible for some to while infeasible for others. To cope with this, we follow the
procedure discussed in Section 3.7 about feasibility. We redefine the objective functions
fu, which we assume to be defined over Rn in a special way.

The value of the redefined function will be obtained through a solution of another mathe
matical program. To every x G Rn and u G Q we assign a program (DXjU1, gXjU1) and define
the extension fu as

7« 0*0 = fu,(x) + Q(x,u),

where Q(x, uS) is the optimal value of (DXjU1, gXjUJ)- Further, we may apply the here-and-now
approach and solve the program

where the set X can be specified by probability constraints, by nonnegativity constraints
or simply X = Rn, the domain of the extended functions. For the correct explanation
of the shortcut notation of (3.18) and for the integrability assumptions, please refer to
Section 3.5 about here-and-now formulations.

We will illustrate the sketched approach. Suppose the original problem is a linear one:

min cTx
s.t. Bx = r,

x > 0.

Thus we have (C,f) with C = {x G Rn | Bx = r, x > 0} and / : Rn -> R given by
f(x) = cTx.

Now suppose that some components of B and r are stochastic. We split the equations
Bx = r into the deterministic ones and the stochastic ones obtaining:

min cTx
s.t. Ax = b,

T{uj)x = h(uj),
x > 0.

Thus we have (Cu, fu) with C w = {x G Rn \ Ax = b, T{u)x = h{u), x > 0} and fu = f
for every u G Q. The extensions fu of the objective functions fu will be given by the
program

mm{qT(uj)y\ W(u)y = h(u) -T(u)x, y>0} (3.19)

as
7M = cTx + Q(x,u),

3.10. Random variables and elements of probability space 27

where Q(x,u) is its optimum (or ± 0 0 in infeasible / unbounded case) and we have

E(L0*0) =cTx + E(Q(x,u;)).

If we denote E(Q(x,ou)) by Q(x), the final two-stage program (X,f) reads as

min cTx + Q(x)
s.t. Ax = b (3.20)

x > 0,

where the set {x G Rm | A x = 6, x > 0} corresponds to X in (3.18).
We have obtained the nested form of two-stage stochastic program (see 3.12).

We also see that the constraint W{ui)y = h{ui) — T(uS)x in (3.19) measures the violation
of the original constraint T(uS)x = h{ui). A recourse action y compensates the violation
by W{ui)y at a second-stage cost qT{ui)y. The matrix W{uS) is usually called the recourse
matrix.

3.10 Random variables and elements of probability
space

The aim of this section is to discuss the randomness of the data of the models and the
notation, which is found in several textbooks of stochastic programming (see [4], [7], [9]).
This notation, involving expressions like W(^), W(ou), W(£(UJ)) and W(^S) may be well
clear to an expert in stochastic programming (or in statistics) but at the same time it may
be confusing for a beginner in this area. That is why we decided to give some remarks on
the topic.

Notation: Let (Qi, T\, P\) be a probability space and let (f22, JF2, fi) be an arbitrary mea
surable spaces. We call a measurable mapping / from fii to Q2 a random variable. Partic
ularly, we call random vectors random variables, too. To stress the measurability property
of / , we say that the mapping is T\ — Ti measurable (meaning that f~1(J72) C f i) .

We will be illustrating our discussion on the second-stage program for the two-stage model
(see 3.19).

3.10.1 Data as mappings from £1
In the two-stage problem, the second-stage data q, W, T, h that define the underlying set
Dxu) and the objective function / S j W vary with UJ G Q. Thus we have

q • Q -» Rk,
T : Q -»

W : Q -»
h : Q -»

Very generally, there is no need to claim that the mappings q,T,W,h are random vari
ables, since the only mapping that is needed to be measurable is the mapping Qx : Q —> M.

28 Chapter 3. Stochastic programming

given by Qx{ui) = Q(x,u) for every fixed x. It can be proved however, that the measura-
bility of q,T,W,h is sufficient for Qx to be measurable. So in the sequel we will assume
q, T, W, h to be measurable.

The main direction of attack in showing the measurability of Qx is by the following
Theorem 3, for which we need some preliminary considerations. Consider the linear
program:

min cTx
s.t. Ax = b, (3.21)

x > 0,
where A is a real mxn matrix and c and b are real vectors of dimensions n and m, respec
tively. The program may have optimal solution, be unbounded or infeasible depending
on its data (A,b,c) G]R™x™+™+™.

We define the mapping 7 : M ™ x ™ + m + ™ gr a s f 0 n o w s . For (A, b, c) G]Rm><™+m+™ for which
the objective of (3.21) is unbounded, we set j(A, b, c) = — 0 0 . For (A, b, c) for which (3.21)
is infeasible we set j(A, b, c) = + 0 0 . Otherwise we let j(A, b, c) denote the optimal value
of (3.21).

Theorem 3 (Measurability of /y): The mapping 7 (as defined above) is a Borel mea
surable extended real-valued function.

Remark: We have the codomain M. of 7 equipped with the extended Borel a-algebra B
defined as

l = B U { o U{+oo} |a G l } U { a U { - 0 0 } | a G 1} U {a U { + 0 0 , - 0 0 } | a G 1},

where B is the usual Borel a-algebra on M.. For details, see Bauer [1]. The proof of this
theorem can be found in Kai l [6].

Now, we will see how this implies the measurability of the mapping Qx. For a fixed x and
u, the second stage program reads as

min {q{u)Tx | W{u)y = h{u) - T{u)x, y > 0} . (3.22)

Provided that the mappings q, W,T, h are measurable, the mapping £ : Q —> ^mxk+m+k

obtained by "piecing these mappings together according to (3.22)":

£{u) = {W{u),h{u)-T{u)x,q{u))

is T — Mmxk+m+k measurable.

To see this, recall that a vector mapping is measurable if an only if its components (ob
tained through its composition with projections) are measurable. The measurability of
W and q was supposed, and h — Tx is measurable as a linear combination of measurable
functions (recall that x is fixed).

We have designed the mapping £ in such a way that we can obtain Qx as a composition
of £ and 7 from Theorem 3: Qx = 7 o £. As a composition of two measurable mappings,
Qx is [T — M.) measurable, which is its desired property.

3.10. Random variables and elements of probability space 29

3.10.2 Data as elements of real space
By real space we mean Mn for some n G N . In order to simplify further notation, we set
p = mxk + mxn + m + k, so that we can abbreviate ^ m x k + m x n + m + k by MP.

Let's define the mapping £ : Q —> Mp by

= (W{u),T{u),h{u),q{u))

By the measurability assumption on the data, the mapping £ is measurable, and therefore
it induces a probability measure Pj on Mp given by

PI{B) = p({u\£{u)eB})

for every set B G Mp. The index I reminds, that Pj is sometimes called an image measure
(see Bauer [1]).

We can discard the original probability space (fi, JF, P) and make a transition to the new
one (RP B P , P /) .

In this setting, the data q,W,T,h are no longer random variables. In fact, we have
a mathematical program (Cz, fz) assigned for every z G Mp. The program

min {qTx \ Wy = h — Tx, y > 0}

is assigned to the vector z = (q, W, T, h). So q, W, T and h are just variables (vector and
matrix variables).

The major difference lies in this observation: Consider Q to be finite. Then we have
a finite number of programs (Cu,fu) with fixed (q(u>), W(u), T(u), h{ui)) G MP for each of
them. After the transition, we have a program for every possible (fixed) (q, W, T, h) G MP.

If we allow ourselves to write u instead of z, we see that we arrive back at our previous
notation. Some authors use indexing by £ instead. In here it should be noted that having
discarded the original probability space, £ cannot denote a mapping any more. Instead,
we have that £ denotes a variable in MP and £ = (q, W, T, h). This is not an equality of
fixed vectors, it is merely a statement of the notation convention (all the symbols included
are variables).

3.10.3 Data as functions of real space
Another alternative is to keep the previous setting and introduce projection mappings.

Example: Let t = (x\,x2, x 3) G M3 and define z : M3 —> M by z(t) = x 3 . J

In the sense of the previous example, we can have q, W, T, h as appropriate projection
mappings from MP to Mk, Mmxk, Mmxn and Mm, respectively.

30 Chapter 3. Stochastic programming

Since (M.p,Mp,Pi) is our new probability space and projection mappings are continuous.
q, W, T and h are random variables. Then the notation again reads as

min {q(uj)Tx \ W(u>)y = h(uS) — T(UJ)X, y > 0}

or
min {q(0Tx | Wffiy = M O - Tffix, y > 0} ,

depending on our choice of the symbol (u> or £) to denote the member of Q — Mp.
(Especially note that still in here £ is not a random variable.)

3.10.4 The composed case
If we wish so, we can keep the original space (f2,jF, P) , have £ as a random variable
£ : Q —> Mp and q, W, T, h as the appropriate projection mappings. The notation then
reads as:

min {q(^))Tx | W{£{u))y = h{£{u)) - T{£{u))x, y>0} (3.23)

and is meaningful.

3.10.5 The general case
It is also possible to keep the previous setting, but instead of having q, W, T, h as projec
tion mappings, to have them as some general (though concrete) mappings.

Example: Frequently (Birge and Louveaux [4], Kai l and Wallace [7]) h is required to be
a linear mapping from Mr to Mk defined as

r

h = h0 + y^jaihi,
i=l

where hi G Mk for % G { 0 , . . . , r} and (ttj)[= 1 G W is the vector variable of the domain of
h. J

This resembles a situation in parametric programming, where some of the program data
are treated as linear functions of a parameter space. Note that in the context of para
metric programming, the definition of linear mapping allows for an additive constant (as
is the situation with linear functions in real analysis).

We see that for this approach, it is no longer necessary to keep the codomain of £ as R p .
Instead, we can just have £ : Q —> Mr for a suitable r. And q, W, T, h are (possibly linear)
mappings from Mr to the corresponding codomains. The notation reads again as in (3.23).

If we now discard the original ft as discussed before, the notation reads as

min {q(0Tx | W(£)y = h(£) - T(£)x, y > 0} ,

where £ is not a mapping but a variable of the parameter space Mr.

3.10. Random variables and elements of probability space 31

3.10.6 Expected value reformulation
One of the reasons of discussing these concepts lies in the use of the so called Expected
value reformulation. Roughly speaking, one of the intuitive approaches to modelling un
der uncertainty is to substitute the random data by their expectations.

In our very general case, fl is some general set and we have a family of programs (Cu, fu)
assigned to every to G fl. We don't use any random variables and therefore we cannot ap
ply this intuitive approach. Its analogy (loosely speaking) would be to solve the program
corresponding to to with the biggest probability in the discrete case (this looks more like
a "mode" reformulation).

If we however use the concept of random variables in the programs:

min {q(i(uj))Tx \ W{Z{u))y = h{£{u)) - T{£{u))x, y > 0} , (3.24)

we can solve the program

min {g(E(0) T x | W(E(£))y = h(E(0) - T(E(£))x, y > 0} (3.25)

instead, since it is well defined. Note as an interesting observation, that this program
possibly wasn't originally assigned to any of the events u G fl (it is particularly easy to
see for finite fl).

In case when we discard the original fl, the notation reads as

min {q(0Tx | W(£)y = h(0 - T(£)x, y > 0} (3.26)

and the expected value program is written as

min {q(E^))Tx | W(E^))y = h(E^)) ~ T(E^))x, y > 0} . (3.27)

Here denotes the expected value as a functional on the new probability space, that is
with respect to the image measure Pj.

It is interesting to compare the two cases (3.25) and (3.27). In the first one, £ stands for
a given random variable £ : T —> W. In the second one, it is just a symbol - a variable.
For £ to be possible to figure in the domain of Eg, it must however denote a random vari
able. In this case, the random variable is the identity mapping id : W —> W. (Compare
to the same situation in real analysis where x is a variable and at the same time denotes
an identity function onR.)

So the expected value program would be better stated as

min {q(E((id))Tx | W(E((id))y = h(E((id)) - T(E((id))x, y>0} (3.28)

to avoid confusion. It would be also incorrect to view £ as the original random variable
from the discarded probability space, since then we would have to use E instead of Eg,
obtaining the case (3.25).

32 Chapter 3. Stochastic programming

3.10.7 Summary
We have seen many alternatives of correct treatment of the subject. In textbooks, all of
them are generally used next to each other, leaving the reader to choose or recognize the
proper or suitable one. From what has been showed, it follows that the situation is quite
clear in its nature. In spite of this, the diversity may present and frequently presents
a source of confusion for readers who are not accustomed to the field. For this reason we
have presented the above discussion.

3.11 Further properties of two-stage models

At the end of our presentation of stochastic programming, we will give a brief informative
overview of further properties of linear two-stage programs.

The two-stage program as stated in its nested form (3.12) minimizes the sum of the first
stage objective function cTx and the recourse function Q, which is given by expectation
as Q(x) = E(Q(x,ou)) for x fixed. Q(x,u) can be elegantly defined as

The infimum always exists (inf 0 = oo), and we possibly have Q(x,ou) = ±oo. The set of
x for which Q(x) is well defined and the properties of Q are of main interest.

First, the function Qx, that maps u to Q(x,u) with x fixed, must be measurable. We
have shown this in Section 3.10.1, under the assumption of measurability of q,W,T and
h. Second, the integral E(Q S) must exist and the case when E(Q S) < oo is of interest.
A necessary condition for E(Q S) < oo to hold is

In case of fixed recourse, when W is constant with respect to u, Kai l [6] shows, that the
square integrability of q, T and h implies E(Q S) < oo on the set K of those x, for which
(3.30) holds. It can be shown that K is a convex set, and Q is a convex function on K.
Under further assumptions on the probability measure P and the integrability of Qx, the
Lipschitz continuity and differentiability of Q on K can be proved.

This means that, in principle, numerical algorithms of nonlinear optimization can be used
to solve the two-stage program. The evaluation of Q and its gradient is however compu
tationally too demanding in practice. Decomposition algorithms for discrete distributions
are being used instead (see [2],[4]).

The requirement Q(x,u) < oo is equivalent to

which holds if and only if h(uS) — T(uS)x belongs to posW, the positive hull of the columns
of the recourse matrix W. This is surely guaranteed if W — [I, —I] (with I denoting the
identity matrix), in which case we speak about complete simple recourse. Generally, it is
guaranteed if posIU = M f c (with k as the dimension of the column space of W). Then we
speak about complete recourse.

Q(x,u>) = inf {q{u)Tx | W{u)y = h{u) - T{u)x, y > 0} . (3.29)

(3.30)

{y e Rm I W{u)y = h(u) - T(cu)x, y > 0} ^ 0,

Chapter 4

Stochastic model of aggregate
blending

In the development of stochastic programming models for the blending problem, we start
with the deterministic models of Chapter 2. In order to design a suitable stochastic
model, we need to introduce the randomness, formulate the objective and choose one of
the approaches discussed in Chapter 3.

4.1 The randomness and the objective

We begin with analysis of the randomness in the problem. There are m ingredients (ag
gregates), each of them available in a sufficient amount. Their grading curves form the
matrix A. We select the mixing ratios x = (XJ)1JL1 and we extract Xj units of the j-th
ingredient out of its available amount. Then we perfectly mix the extracted amounts and
measure the grading curve of the obtained mixture. Every time we repeat this procedure,
we get a slightly different result. Suppressing the factor of the measurement, we see that
the main reason is the non-homogeneity of the ingredient combined with the extraction.

The grading curve of the mixture that we expect to obtain is Ax. Because of the non-
homogeneity, the grading curves of the extracted amounts differ from A. We can try to
model them as random variables, denoting them by A(o>). The resulting grading curve
of the mixture is then A(a>)x, depending on u. As a reasonable probability space, we
can choose Q = M n x m

; equipped with the Borel a-algebra B n x m and some probability
measure P. We can fix the random variable A to be the identity mapping on] R n x m . The
probability measure P then represents also the distribution of A, and it is the only part
of the model that is left to be specified. We will discuss it briefly in section (4.7).

When choosing the appropriate stochastic model, we note that the decision on x is made
before performing the mix. It is a here and now decision. Thus we choose a here-and-now
or a two-stage model. As we shall see, the choice of two-stage models is natural in our case.

The objective is, analogously to the deterministic case, based on the distance of A(a>)x
from g determined as ||A(o;)x — g||p with p = 1 or p = oo.

33

34 Chapter 4. Stochastic model of aggregate blending

4.2 Here-and-now models

In the deterministic case, our basic models (before finding their linear equivalents and
introducing the constraints for the lower and the upper bound) were

min 11 Ax — g||p (4-1)

s.t. l T x = 1,
x > 0.

Compare this model to (2.1) for p — 1 and to (2.5) for p = oo.

After introducing the randomness to the model by setting A = A (a;) in (4.1), we get
a family of programs (X,fu) (for the notation refer to Chapter 3), where the set X is
given as

I = { x 6 l m | l T x = l , x > 0 }

and the objective function fu : X —> K. is defined as

/ w = | | A (w) x - g | | p . (4.2)

We are in position to apply the expected objective here-and-now model as introduced in
Section (3.5).

The here-and-now blending model:

min E (| |A (w)x -g | | p) (4.3)

s.t. l T x = 1,
x > 0.

The model optimizes the expected quality of the mixture. When adding the constraints
for the lower and the upper bound into (4.1), the situation changes. The model reads as

min | | A x - g | \p

s.t. Az(w)x > 1,
AU(UJ)X < u

l T x 1,
X > 0.

(4-4)

When setting A = A(o>), Ai = Ai(u) and Au = Au(ou) in (4.4), we get a family of
programs (Cu,fu) with

Cw = {x e Rm | l T x = 1, A u(w)x < u, Az(w)x > 1, x > 0}

and with fu as in (4.2). Recall that the matrices Au(ou) and Ai(ou) represent a selection
of certain rows of the matrix A (a;) (the same selection for each uo).

We cannot apply the here-and-now model directly because the sets Cw vary with u. The
solution is to apply a two-stage model or a model with probabilistic constraints.

4.3. Two-stage model 1 35

4.3 Two-stage model 1

The easiest way of formulating a two-stage model is to start with the deterministic pro
gram (2.4). As was shown in Section 2.6, it is a linear program equivalent to the program
(4.1) with p — 1. We restate it at this point with aim to provide its direct comparison
with the two-stage program build on its base.

The original model:

Two-stage model 1:

min l T y + + l T y

s.t. A x + y + - y~
A x - y;

A u x + yu

l T x
x, y + , y" , yi, yu >

g,
1,
u,
1,
0.

(4.5)

min E (Q(x, ÜÜ))

s.t. l T x = 1,
x > 0.

(4.6)

<5(x, uo) = min l T y + + l T y

s.t. A(w)x + y + - y -
A z (o ;) x - y /

A u (u;)x + y„
y i y i Yu Yu >

i ,
u,
0.

(4.7)

Note than in every second stage program (4.7), x and uo are fixed. When we relate (4.7)
to the general form of second-stage program

min {qT(cu)y | W(cu)y + T(cu)x = h(uo), y > 0 } ,

we see that

T(uo)

and

A H
Muo)
AJuo)

W(uo

q{uo)

I - I 0 0
0 0 - I 0

\ 0 0 0 i

1 1 ^ (y+ \
1 y
0 y = yl

w V yu /

\ 8 \ , h(uo) =
1 1 u)

where y is the vector of second stage variables.

(4-

The original deterministic program (4.5) is in fact a "deterministic two-stage program"
with x as first stage variables and y as the second stage variables. We can get it back

36 Chapter 4. Stochastic model of aggregate blending

easily from the stochastic two-stage model (4.6) in case of a single-element Q. Since we
have identified Q with M m x n

; this situation rather corresponds to having P as the Dirac
^-distribution: P(B) = 5({y})5(B) for B G B m x " (S is the characteristic function of
given set, y G R m x n fixed). This is clearly of no practical relevance. On the other hand,
solving (4.6) in the E V reformulation as introduced in Section 3.10.6, we solve exactly
the program (4.5) with expected values of the (matrix) random variables A , A ; , A U at
positions of the original deterministic data. If we look at the original deterministic data
as point estimates (determined by averaging a finite number of measurements), we see
that the E V reformulation and the deterministic program are very closely related.

Notice that the recourse matrix W(a>) (constant with respect to uS) of the second stage pro
grams (4.7) doesn't guarantee their feasibility in general. We may have h — Tx ^ posW.
This is not a surprise. When analyzing the feasibility of the original deterministic pro
gram (4.5), we can see that for certain data A;, Au and 1, u, the program may not be
feasible. Practically, it may be impossible to fit the mixture's grading curve between the
lower and the upper bound with the ingredients available. In the deterministic case, this
simply means that we have to choose different ingredients. For the stochastic program,
some cases may be feasible while other may not.

Suppose we have a finite probability space. Then we can solve the two-stage model (4.6)
in the extensive form (see Section 3.6). If one of the second-stage programs is not feasi
ble, then the whole program is not feasible as well. So we see that the model as stated
requires a solution which always respects the bounds (for a finite Q). We can however
adopt a different attitude leading to a modification of (4.6).

Suppose the production works as follows. When the producer realizes that the grad
ing curve of the mixture violates the bounds, he performs a recourse action, modifying
the mixture by adding other ingredients in order to force the grading curve between the
bounds. This leads naturally to a stochastic multistage program and opens a possible
direction of investigation. In our treatment, we will comfort ourselves with a simpler
concept. Instead of incorporating the recourse action into the model, we observe that
there is a penalty cost related to it. We will include only the penalty for the violation to
the model. If no recourse action is available, the penalty is just the cost of the wasted
ingredients.

We will see how the penalty concept relates to the original objective:

4.4 Two-stage model 2

original constraint
Ax = g
A , x > l

A„x < u

relaxed constraint penalty
Ax + y + - y " = g l T y+ + l T y - ,

(4.9)
Ajx + y,+ - y , =1 rlTyl,

A u x + y + - y " = u r l T y " .

The original 1-norm objective may be viewed as a penalty objective for violation of the
first constraint in (4.9). The penalties for the bound constraints are associated only with

4.5. Two-stage model 3 37

the appropriate variables (y~, y z

+) , which measure the distance in the direction of viola
tion (up for the upper bound and down for the lower bound). The variables y+ and y[~
are introduced in order to obtain a standard form of linear program. The penalty cost as
stated is a linear function of the violation scaled by a factor r > 0 (other choices possible).

Two-stage model 2:

min E(Q(x,w)) (4.10)
s.t. l T x = 1.

x > 0,

Q(x,u;)=min l T y + + l T y " + r l T y z

+ + r l T y ~ (4.11)

s.t. A(a;)x + y + - y - = g,
A i (w)x + y + - y j - = 1,
A«(w)x + y+ - y - = u,

y + , y", y + , y~, y « , y « , > 0

Looking at the recourse matrix W of this model, we see that

W = (I - I) , (4.12)

provided the vector y of second stage variables is ordered as
T I +T +T +T -T -T -T\

and the matrix I (—1) corresponds to the three first (last) components of y. This means
that the model is with complete simple recourse and the second stage program is always
feasible.

4.5 Two-stage model 3

Another possibility of getting a two-stage program with simple recourse from (4.6) is to
require the constraints A /x > 1 and A u x > u to be satisfied P almost surely (with prob
ability one). For discussion on probabilistic constraints refer to Section 3.8. We obtain
the following model.

Two-stage model 3:

min E (Q(x, u))

V A u (w)x < u J

l T x = 1,
x > 0,

Q(x.,u) = min l T y + + l T y ~

s.t. A(w)x + y + - y - = g,
y + , y" > o.

The recourse variables are only y + and y~ in this case.

38 Chapter 4. Stochastic model of aggregate blending

4.6 Models with oo-norm

The stochastic models we presented up to now used the 1-norm in the objective. We can
develop similar models with the oo-norm on the base of the deterministic program (2.7).
The only difference compared to the previous models is the following. We substitute the
constraint

A(u;)x + y+ - y " =g

by the two constraints

A(w)x +ŷ
A M x -y" +yl

g,
g-

In Two-stage model 1 (4.6), the recourse matrix W changes accordingly to

W

/ 1 0 0 0 -1 \
0 - I 0 0 1
0 0 - I 0 0

0 0 I

and in Two-stage model 2 (4.10) to

W =
I
0

0 -1
-I 1

Compared to (4.12), we see that we don't have complete simple recourse any more. It
can be shown however, that the recourse is complete. The equation Iy — lz = g has
a nonnegative solution (y,z) for arbitrary right-hand side g = (gi)k

=1- It is sufficient to
set z > | mim gi\. Then y = g + lz and y > 0. The same holds for the other part of W.

4.7 Distribution properties

The probability distribution of the stochastic entries of the models is an important fea
ture of the problem. As was discussed before, the stochasticity is involved due to non-
homogeneity of the ingredients and due to the nature of the measurement.

Basically there are three possibilities of assessment of the distribution. First, to perform
a physical analysis. Determine the distribution by considerations on the physical and
mechanical properties of the ingredients and on the mechanism of the measurement of
grading curves. Second, to perform a simulation based on the above considerations. The
third one is a practical approach. The producer performs repeated measurement on the
ingredients to get an estimate of the distribution, which is then entered to the model. The
range of types of ingredients that can be directly dealt with this approach is not limited,
which might generally not be true for the approaches using physical analysis.

We proposed the following simulation. The grading curve of the mixture or of the ingredi
ent is in fact a distribution function of the size of its particles (see Figure 2.1). Extracting
some amount of the ingredient then can be modeled as a random sample from this dis
tribution. We implemented a short code in Matlab (see Appendix A) and we present
graphical results in Figure (4.1).

4.7. Distribution properties 39

sieves

Figure 4.1: Simulation of grading curves.

The figure shows distribution of 8 samples (red curves) of size 200 from the distribu
tion given by the blue distribution function. The simulation provides a useful tool for
generation of reasonable random data for testing of the stochastic models.

Chapter 5

Implementation and results

5.1 Deterministic models

We have implemented the deterministic models (2.4) and (2.7). As a linear solver, we
have implemented the Simplex algorithm in C++ using Microsoft Visual Studio 2005.
The following remarks on the implementation are addressed to readers familiar with the
Simplex method.

Since the simplex tables of our models are relatively small (at most 50 rows and 200
columns) and we couldn't take advantage of sparseness, we decided to perform the oper
ations with the entire simplex tableau (in contrast to the usual revised simplex method -
see [2]).

To maintain numerical accuracy, we periodically recompute the basis inverse using the
L U decomposition. The main difference of our implementation compared to the usual
"by hand" operations on the tableau consists in the way of computation of the vector
of reduced costs. We compute it at each step as c ^ B _ 1 N — from the original data
c T = (c^,c^) using the actual basis inverse B _ 1 . This guarantees that the numeri
cal accuracy is the accuracy of the revised simplex method, which computes the reduced
costs in the same way. We also use row scaling of the orginal data to enhance the accuracy.

The implemented method is the two-phase primal simplex method. The situation when
artificial variables remain in basis at zero level after the first stage is also resolved by the
algorithm. For the choice of the pivot column, Dantzig's rule, Bland's (cycle preventing)
rule and the Steepest edge rule are available. The Steepest edge rule speeds up the
convergence and its use is conditioned by updating the entire simplex tableau at each
step, which is our case.

5.2 Stochastic models

We have implemented the Two-stage model 2 (4.10) in the modeling language G A M S for
both the 1-norm and the oo-norm objective. Our implementation uses the extensive form
of the stochastic program and is capable to deal with discrete distributions of the data

40

5.3. Results 41

(or equivalently to solve the model in case of finite probability space).

The running time for a model with 1000 scenarios (card(fi) = 1000) is about 2 minutes
on Pentium CoreDuo 1.86 Ghz.

5.3 Results

We present representative numerical and graphical results. Table (5.1) shows results of
mixture optimization with given ingredients. The grading curves of the ingredients are
contained in the first four numerical rows. The ingredients themselves are denoted by
their technical specifications (HDK16-22K8, . . .) and the sieves by standard designations
(S00-063, . . .) . The optimal solution for given bounds and given goal curve is presented.
Moreover, we give a comparison to an expert solution, which was provided by civil engi
neers. The mixing ratios (both optimal and expert values) are further presented, together
with the value of the optimization criterion (the min max criterion in this case). Due to
engineering conventions, the values are given in percents, so that the range of the grading
curves is the interval [0,100] instead of [0,1].

S00-063 S00-125 S00-25 S00-5 S01 S02 S04 S08 S i l
HDK16-22K8 1.00 1.20 1.40 1.50 1.60 1.60 1.60 1.60 1.60
HDK8-16K7 0.70 0.80 0.80 0.90 0.90 0.90 0.90 1.30 9.80
HTK4-8M6 1.30 1.70 2.30 2.50 2.60 2.90 8.40 87.90 100.00
DTKO-4011 1.80 2.60 9.10 34.90 61.20 76.50 87.60 98.50 100.00
lower - - 2.00 5.00 9.00 16.00 28.00 45.00 -
upper 2.00 6.00 16.00 28.00 40.00 53.00 65.00 78.00 -
goal 0.00 0.00 9.00 17.00 26.00 38.00 51.00 67.00 -
optimal 1.43 1.96 5.35 18.17 31.20 38.84 45.77 72.21 77.43
expert 1.35 1.83 4.95 16.88 29.01 36.10 42.03 59.05 63.43

S16 S22 S32 S45 S63 optim ratios expert ratios
HDK16-22K8 9.90 80.10 100.00 100.00 100.00 0.090 0.170
HDK8-16K7 94.20 100.00 100.00 100.00 100.00 0.152 0.220
HTK4-8M6 100.00 100.00 100.00 100.00 100.00 0.264 0.150
DTKO-4011 100.00 100.00 100.00 100.00 100.00 0.494 0.460
lower 73.00 - 90.00 - -
upper 91.00 - - - -
goal - - - - -
optimal 91.00 98.21 100.00 100.00 100.00 /* = 5.21
expert 83.41 96.62 100.00 100.00 100.00 fexp — 8.97

Table 5.1: Numerical results for oo-norm.

The optimal value (the minimum absolute distance from the goal) is /* = 5.21 compared
to the expert solution value fexp = 8.97.

Table (5.2) shows the results obtained with the 1-norm criterion (only a part of the input
data from Table (5.1) is repeated).

42 Chapter 5. Implementation and results

S00-063 S00-125 S00-25 S00-5 SOI S02 S04 S08 S i l
lower - - 2.00 5.00 9.00 16.00 28.00 45.00 -
upper 2.00 6.00 16.00 28.00 40.00 53.00 65.00 78.00 -
goal 0.00 0.00 9.00 17.00 26.00 38.00 51.00 67.00 -
optimal 1.39 1.90 5.19 17.75 30.51 37.98 44.54 66.99 72.14
expert 1.35 1.83 4.95 16.88 29.01 36.10 42.03 59.05 63.43

S16 S22 S32 S45 S63 criterion
lower 73.00 - 90.00 - -
upper 91.00 - - - -
goal - - - - -
optimal 91.00 98.29 100.00 100.00 100.00 /* = 18.82
expert 83.41 96.62 100.00 100.00 100.00 fexp — 29.19

Table 5.2: Numerical results for 1-norm.

The vector of the optimal mixing ratios is x* = (0.086, 0.215, 0.215, 0.484) in this case, the
expert ratios are as in Table (5.1). The minimal sum of absolute differences is /* = 18.82,
whereas the value of this criterion in the expert case is fexp = 29.19.

We present a graphical illustration of the data of Table (5.1):

sieves
Figure 5.1: The result of the optimization.

The blue curve represents the grading curve of the optimal mixture, fitted to the requested
grading curve (the red curve) and respecting the imposed bounds indicated by the black
triangles. As mentioned in Chapter 2, the goal and the bounds are given on selected
sieves only.

5.4 Expert modification

From the discussions with civil engineering professionals, it turned out that the notion
of optimality is sometimes judged also from different points of view, reflecting the expert
attitudes and the experience of the engineers. A desirable property of the mixture was
formulated in terms of minimizing the variance of absolute differences between the re
quested grading curve and the grading curve of the mixture.

5.4. Expert modification 43

We have formulated a linear model that incorporates this requirement. We present its
core part, the whole model formulation being an analogy of formulations in Chapter 4.
The constrains concerning the distance from the goal and the bounds are

Ax + y+ - y" =
A;x -yi >

A„x + y„ <
nya - l T y + - l T y " =

y+ - lya =
y" - i y a =

where n denotes the dimension of the second-stage decision vector y, and the scalar vari
able ya represents the average absolute deviation. The variables y + + , y + ~, y~ + , y then
measure the absolute difference between the deviations y + , y~ and the average absolute
deviation ya.

The term to be added to the objective function for minimization is given by

i T (y + + + y + " + y" + + y ~) -

g,
i ,
u,
0,
y + + - yH

y + - y"

Chapter 6

Conclusion

We have dealt with stochastic programming as a suitable tool for mathematical modeling
of problems involving uncertainty. In Chapter 3 we presented a theoretical development
of stochastic programming. The usual approach of many textbooks (e.g. [4], [7], [9])
is to introduce the randomness to a deterministic program and then to seek for its re

formulations. We presented a development that involves the probability space from the
beginning. The leading idea was to simplify the initial considerations, abstracting from
particular forms of the programs and treating them as sets and objective functions as

signed to elements of probability space. We managed to obtain the usual concepts of
stochastic programming with this approach.

We applied stochastic programming to a civil engineering problem, namely the opti

mization of aggregate blending. We first developed deterministic models of the blending
problem in Chapter 2, then we discussed the stochastic features and we returned to for

mulation of suitable stochastic models in Chapter 4. We provided hereandnow and
twostage stochastic models with various objectives.

We have implemented the deterministic models in C++ together with our own linear
solver. We have used the modeling language G A M S to implement the stochastic models
and we also performed simulations in Matlab to get a reasonable random data for our
models. We presented numerical and graphical results in Chapter 5.

The deterministic models with various objectives, corresponding to the expected value
reformulations of the stochastic models, have been, together with our solver, incorporated
into a specialized software. The software was developed by the company Computer M C L
Brno, spol. s r.o., for the civil engineering enterprise Českomoravský beton, a.s. Our
models are now being used for the optimization of concrete mixtures.

44

Bibliography

[1] B A U E R , H.: Probability Theory and Elements of Measure Theory, Second English
Edition, Academic Press, A Subsidiary of Harcourt Brace Jovanovich, Publishers,
1981

[2] B A Z A R A A , M . S., JARVIS, J. J., SHERALI , H. D.: Linear Programming and Net-

work Flows, John Wiley & Sons, Inc., 1990

[3] B A Z A R A A , M . S., SHERALI H. D., S H E T T Y , C. M . : Nonlinear Programming -

Theory and Algorithms, Second Edition, John Wiley & Sons, Inc., New York, 1993

[4] BIRGE, J. R., L O U V E A U X , F.: Introduction to Stochastic Programming, Springer

Verlag New York, 1997

[5] C A P I N S K Y , M . , K O P P , E.: Measure, Integral and Probability, Second Edition,
SpringerVerlag London, 2004

[6] K A L L , P.: Stochastic Linear Programming, SpringerVerlag Berlin Heidelberg New
York 1976

[7] K A L L , P., W A L L A C E , S. W.: Stochastic Programming , John Wiley & Sons, Chich

ester, 1994

[8] PLESNÍK, J., DUPAČOVÁ, J., V L A C H , M . : Lineárne Progarmovanie, A L F A ,
Bratislava, 1990

[9] R U S Z C Z Y N S K Y , A. , SHAPIRO, A.: Stochastic Programming, Handbooks in Oper

ations Research and Management Science, Volume 10, E L S E V I E R 2003

[10] T A Y L O R , H. M . , K A R L I N , S.: An Introduction to Stochastic Modelling, Third Edi

tion, Academic Press, San Diego, 1998

[11] E A S A , S. M . , C A N , E. K.: Optimization Model for Aggregate Blending, J. Construc

tion Engineering and Management, A S C E , 111, 216231, 1985

[12] M A R K S W., P O T R E B O W S K I J.: Multicriteria Optimization of Structual Concrete
Mixes, Arch.Civil Engineering 38(4), pp.7701, 1992

[13] N E U M A N N , D. L.: Mathematical Method for Blending Aggregates, Journal of Con

struction Division, A S C E , 90, 113., 1964

[14] SHILSTONE, Sr. J .M. : Concrete Mixture Optimization, A C I Concrete International
12.6: 3339., 1990

45

46 Bibliography

[15] SVOBODA, L.: Design of Aggregate Mix, C T U Rep., Proceedings of Workshop 2002,
vol.6, pp. 606-607, Prague 2002, ISBN 80-01-02511-X.

[16] T O K L U , Y . C . : Aggregate Blending Problem - An Arena of Applications of Optimiza
tion Methods, ICCCBE- IX The 9th International Conference on Computing in Civi l
and Building Engineering, Taipei, Taiwan; 3-5 April 2002

[17] T O K L U , Y . C . : Aggregate Blending Using Genetic Algorithms, Computer-Aided Civil
and Infrastructure Engineering, , Vol. 20, No:6, November 2005, pp. 450-460.

List of symbols

s.t. such that
J end of proof or example
e element of, C subset (proper or not)
M real numbers, Mn n-dimensional real numbers, R extended real numbers
< less or equal in M or Mn (componentwise), > greater or equal
o composition of mappings
—> maps to
|x| absolute value
| |x| \p p-norm of x in Mn

oo, — oo plus infinity, minus infinity
Q, Qi, f22 sets of events
00 random event
£ random vector
J- sigma-algebra
B Borel sigma-algebra in M, B N Borel sigma-algebra in Mn

B extended Borel sigma-algebra
P probability measure, Pj image probability measure
E expected value functional, Yar variance functional
\i measure
1 identity matrix
id identity mapping
W, W recourse matrix
T, T technology matrix
q, q recourse cost vector
h, h vector in second-stage constraints
Q recourse function
g grading curve as vector; the goal
g grading curve as function; nonlinear function (in constraints)
A matrix of grading curves, A;, Au row selections from A
1 lower bound (vector), u upper bound (vector)
/ extension of /
C set of decisions
/ objective function
7 mapping from program data to its optimum

47

Appendix A

Simulation of grading curves

°/
0
. . . the distribution function (piecewise linear):

g = [0 0 9 17 26 38 51 67 74.5 82 88.5 95 97.5 100]/100;

N = 8; number of performed simulations

M = 300; sample size

for i=l:N

for j=l:14

gsim(i,j)=0; %... contains the simulated curves

end

end

for ns = 1:N

for k = 1:M

x = rand();

y = 14;

for i=l:14

if x <=g(15-i)

y = 15-i-l;

end

end

for j=y+l:14;

gsim(ns,j)=gsim(ns,j)+l; %... updating the simulated curve

end

end

gsim(ns,:) = gsim(ns,:) / gsim(ns,14); %... limit to 1

end

hold off

plot(l:14,g,'b-','LineWidth',3);

hold on

plot(1:14,gsim,'r-');

axis([l 14 0 1.02]);

/,. . . 14 sieves (world-wide standard)

°/
0
. . . falling throught the 15-i th sieve

48

Appendix B

G A M S implementation
of Two-stage model 2

The presented model uses the 1-norm in the objective.

$eolcom //

Scalar num_scenarios /1000/;

Set s /1*1000/; //scenarios

Scalar bigM / 100 /;

Set i /1*14/; //number of sieves

Set j /1*4/; //number of ingredients

Set setL(i);

Set setC(i);

Set setU(i);

Positive variable x(j);

Positive variables Yplus(s,setC)

Yminus(s,setC)

Lv(s,setL)

Uv(s,setU);

Parameters boundL(i)

boundU(i)

boundC(i);

Parameter A(s,i,j);

$include "dataSSBeng.gms"; //input f i l e with data

Variable z; //objective variable

Equations EQobjective

49

50 Appendix B. GAMS implementation

EQgoal(s,setC)

EQupper_bound(s,setU)

EQlower_bound(s,setL)

sumal;

EQobjective .. z =e= sum(s,l/num_scenarios*(sum(setC,Yplus(s,setC)) +

sum(setC,Yminus(s,setC))+

bigM*sum(setL,Lv(s,setL)) +

bigM*sum(setU,Uv(s,setU))));

EQgoal(s,setC) .. sum(j,A(s,setC,j)*x(j)) - boundC(setC) =e= Yplus(s,setC) -

Yminus(s,setC);

EQlower_bound(s,setL) .. sum(j,A(s,setL,j)*x(j)) - Lv(s,setL) =g= boundL(setL);

EQupper_bound(s,setU) .. sum(j,A(s,setU,j)*x(j)) - Uv(s,setU) =1= boundU(setU);

sumal .. sum(j,x(j)) =e= 1;

Model angelina / a l l / ;

Solve angelina minimizing z using lp;

Display x . l , z . l , A;

Appendix C

Excerpt from CH—h code

The entire code (solver + model) has approximately 2000 lines.

void UrciSloupec(int pravidlo, double** &AA, double* &cc

int* febasis, boolfe opt, int& s, int m, int n){

const double epsCol = le-14;

int j,k;

double res,maxi;

s=0; opt=false;

switch(pravidlo){

case 0: //klasicky Dantzig - hleda maximalni cc

maxi=epsCol;

for(j=l;j<=n;j++){

if((basis[j]==0) kk (cc[j]>=maxi)){
maxi=cc [j] ;

>
} break;

case 1: //steepest edge

maxi=0;

for (j=l; j<=n;

if ((basis[j]==0) kk (cc [j]>=epsCol)){
res=l;

for(k=l; k<=m; k++){ res=res+AA[k] [j]*AA[k] [j]

if ((cc[j]/res) > maxi){

maxi=cc[j]/res;

s=j;

}

>
} break;

case 2: //Blandovo pravidlo

3=0;

while(j<=n kk s==0){

51

52 Appendix C. Excerpt from C++ code

i f ((basis [j]==0) && (cc [j]>epsCol)){ s=j; >

} break;

}
if(s==0){ opt=true; }

}

