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SUMMARY 
This work deals with the interpretation of the quantitative phase images gained by 
coherence-controlled holographic microscopy. Since the datasets of quantitative phase 
images are of substantial size, the manual analysis would be time-consuming and 
inefficient. In order to speed up the analysis of images gained by coherence-controlled 
holographic microscopy, the methodology for automated interpretation of quantitative 
phase images by means of supervised machine learning is proposed in this work. The 
quantitative phase images enable extraction of valuable features characterizing the 
distribution of dry mass within the cell and hence provide important information about the 
live cell behaviour. The aim of this work is to propose a methodology for automated 
classification of cells while employing the quantitative information from both the single-
time-point and time-lapse quantitative phase images. The proposed methodology was tested 
in the experiments with live cells, where the performance of the classification was evaluated 
and the relevance of the features derived from the quantitative phase image was assessed. 

ABSTRAKT 
Práce se zabývá interpretací kvantitativního fázového zobrazení pomocí techniky koherencí 
řízené holografické mikroskopie. Vzhledem k tomu, že tato technika generuje velké 
množství kvantitativních fázových obrazů o nezanedbatelné velikosti, manuální analýza by 
byla časově náročná a neefektivní Za účelem urychlení analýzy obrazů získaných pomocí 
koherencí řízené holografické mikroskopie je v této práci navržena metodika 
automatizované interpretace kvantitativních fázových obrazů pomocí strojového učení s 
učitelem. Kvantitativní fázové obrazy umožňují extrakci parametrů charakterizujících 
distribuci suché hmoty v buňce a poskytují tak cennou informaci o buněčném chování. 
Cílem této práce je navrhnout metodologii pro automatizovanou klasifikaci buněk při 
využití této kvantitativní informace jak ze statických, tak z časosběrných kvantitativních 
fázových obrazů. Navržená metodika byla testována v experimentech s živými buňkami, 
jimiž byla vyhodnocena výkonnost klasifikace a významnost parametrů získaných z 
kvantitativních fázových obrazů. 
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List of Acronyms 
The following abbreviations are used in the text: 

A N N artificial neural network 
CCD charge-coupled device 
CDF cumulative distribution function 
D H M digital holographic microscopy 
DWT discrete wavelet transform 
E M T epithelial-mesenchymal transition 
FFT fast Fourier transform 
K N N ^-nearest neighbour method 
P A A piecewise aggregate approximation 
PBS phosphate-buffered saline 
PCA principal components analysis 
QPI quantitative phase imaging 
ROI region of interest 
S A X symbolic aggregate approximation 
S V M support vector machines 
TGF-/? transforming growth factor beta 

The following symbols are used in the text: 

a significance level 
y refraction increment (ml.g"1) 
X illumination wavelength (nm) 
fjq, average phase (rad) 
p dry mass density of a cell (pg.um"2) 

standard deviation of the phase 
(p phase in the reconstructed image proportional to the optical path difference 

of the object and reference arm (rad) 
(p0 phase in the object arm (rad) 
(pr phase in the reference arm (rad) 
(ptotai total phase of the cell (rad) 
<Pj approximation coefficients in wavelet transform 
ip mother wavelet in wavelet transform 

A pixel area (um2) 
C concentration of dry protein in the solution (g.ml"1) 
CA convex area (um2) 
d thickness of the cell (mm) 
D directionality of cell motion 
da accumulated distance travelled by the cell (um) 
d-Euciid Euclidean distance travelled by the cell (um) 
EC eccentricity 
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EX extent 
FA footprint area (um2) 
fm number of examples that were not recognized as class examples 
fpi number of examples that were incorrectly assigned to a class 
h thickness of the medium (mm) 
/ indentation 
Kurtq, kurtosis of the phase 
N number of classes 
An difference between the refractive indices of the cellular material and the 

medium 
nc axially averaged refractive index of the cellular material 
nm refractive index of the surrounding medium 
PCA perimeter of the convex area (urn) 
PFA perimeter of the footprint area (um) 
R roundness 
S solidity 
Skewq, skewness of the phase 
t time (s) 
tm number of correctly recognized examples that do not belong to a class 
tpi number of correctly recognized class examples 
v velocity of cell motion (um.s"1) 
Vary variance of the phase 

11 



1. Introduction 
Nowadays, the increasing prevalence of automated image acquisition systems is enabling 
microscopy experiments that generate large image datasets. However, the manual image 
analysis on large datasets has certain limitations. It requires an expert in the field who would 
perform inspection for every image, which needs considerable effort and concentration. 
Moreover, the analysis provided by one person has a tendency to be biased by subjective 
observation. The analysis result therefore largely depends on personal skills, decisions, and 
preferences. Another issue of the manual approach is that it is rather time-consuming. 
Consequently, these aspects impose significant constraints on the speed of the analysis and 
reliable interpretation of the microscopic images. 

One of the approaches to address these limitations is machine learning. The technique 
has nowadays wide applications in different areas including fingerprint analysis, face 
identification, speech recognition, navigation and guidance systems, etc. [1]. Lately, it is 
increasingly being applied also in microscopy to speed up the analysis of microscopy 
images. Machine learning applied to image analysis provides an objective and unbiased 
method of scoring the content of microscopic images in contrast to subjective manual 
interpretation, thus potentially being more sensitive, consistent, and accurate. 

Machine learning being a field within the artificial intelligence, exploits two major 
approaches. In supervised machine learning, a computer system is trained using a set of 
labelled pre-defined examples and then used to distinguish groups of objects based on the 
relevant patterns learned during the training. Supervised machine learning can be seen as a 
classification process, which attempts to assign each input value to one of a given set of 
classes. The other approach to machine learning is unsupervised learning. Here, the 
computer system does not rely on the prior knowledge and is not trained on labelled training 
examples. Instead, the system finds new patterns and subdivides the data by using a set of 
pre-defined general rules. An example of unsupervised learning is clustering, where a 
dataset can be divided into several groups based on prior definitions characterising a cluster, 
or a desired number of clusters. This work focuses solely on the application of supervised 
machine learning to automated analysis of microscopy image datasets. 

During the recent years, Coherence-controlled holographic microscopy (CCHM) [2,3] 
has been developed in the laboratory of Experimental Biophotonics group, CEITEC Brno 
University of Technology. C C H M is a label-free interferometric microscopy technique able 
to provide quantitative phase images of living cells [4]. C C H M enables to detect not only 
the amplitude, but also the phase of the wave transmitted through a specimen. This fact is 
of particular importance while observing the live cells that are considered to be weakly 
scattering and absorbing specimens (termed phase objects). In case of phase objects, the 
phase carries considerably more information about the specimen than the amplitude of 
transmitted light and is, therefore, of great significance. The imaging in C C H M is based on 
the interference of the object and the reference light beams, which enables to detect the 
phase delay induced by the specimen [5]. The phase in the image contains quantitative 
information expressed in radians and is proportional to the optical path difference of the 
object and the reference arm. It has been demonstrated in several publications that the 
measured phase corresponds to the dry mass distribution within the cell [6,7]. Since C C H M 
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enables multidimensional imaging with high acquisition rate, the datasets obtained from the 
experiments are rather large. Therefore, the automated method for microscopic data 
analysis and interpretation is in great demand. 

For the reason stated above, this work focuses on the supervised machine learning and 
its application for the interpretation of the quantitative phase images. The goal of this work 
is to propose a methodology for automated analysis of quantitative phase images by means 
of supervised machine learning and verify the potential of methodology in the experiments 
with live cells. 

Two main approaches for the automated interpretation of quantitative phase imaging 
were proposed. Firstly, the work focuses on the analysis of static quantitative phase images, 
where the methodology for automated classification of cells is proposed. The approach is 
tested in the experiment and compared with the commonly used methods based on bright-
field microscopy images. Furthermore, the methodology for automated analysis of time-
lapse quantitative phase images incorporating the temporal information is proposed and its 
functionality is demonstrated in the experiment. The results and potential of both proposed 
methodologies are critically discussed and, finally, the proposals for further progress and 
improvements are made. 
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2. Review 
This section gives an overview of the state-of-the-art results in the field of supervised 
machine learning applied to microscopic image analysis. Currently available literature and 
techniques related to the topic are mentioned and critically evaluated. The novelty of 
methods used in the thesis is substantiated and the overall purpose of the work is stated. 

Analysis of microscopic images based on machine learning has been attracting 
considerable attention in the past few years. The increasing rate of publications in this topic 
serves as evidence (Figure 1). 
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Figure 1: Number of publications i n recent years regarding "machine learning in microscopy". Source: 
http://www.scopus.com/ 

The beginnings of the machine learning in microscopy can be dated back to the year 
1951, when a paper [8] was published by Mellors and Silver, who have been focusing on 
automatic detection of different types of cells. However, it is only recently that digital 
photography, computer speed, R A M size and secondary storage capacity have made 
machine learning in microscopic images possible. Since then, many works regarding this 
topic were published. Among them can be mentioned the work of Comaniciu et al. [9] on 
image-guided decision support system for pathology, which describes a system designed to 
assist pathologists to discriminate among malignant lymphomas and chronic lymphocytic 
leukemia directly from microscopic specimens. Swolin et al. published work [10] 
describing differential counting of leukocytes in blood samples using bright-field 
microscopy and a decision support system based on artificial neural networks. Rajpoot 
wrote paper [11] about hyperspectral colon tissue cell classification, where the algorithm 
based on supervised support vector machines (SVM) classification between normal and 
malignant tissue cells of the human colon is presented. Machine learning approach for 
classification of erythrocytes in anemia based on morphological changes was presented by 
Das et al. [12]. The automated classification of myeloma cells in microscopic images was 
proposed by Saeedizadeh et al. [13]. In the menstioned studies, the input images for 

14 

http://www.scopus.com/


classification were gained by bright-field imaging of stained cells. The drawback of this 
approach is the necessity of the sample preparation by fixing cells before imaging. The cells 
can undergo different morphological and physilogical changes while being fixed, which 
could possibly affect the measurement. 

Another study [14] presents application of machine learning techniques to analysis of 
cell morphology in phase-contrast microscopy images. However, the images gained by 
phase-contrast microscopy demonstrate halo artifact, which makes the boundaries of the 
cells appear brighter and might lead to challenging and inaccurate segmentation results. 
This may result in a poor accuracy of the machine learning classifier. 

Several publications have focused on classification of cells in the images gained by 
fluorescent microscopy. Automated scoring of diverse cell morphologies by means of 
machine learning was described in [15]. Several automated image analysis methods for 
high-content screening of fluorescent images were summarised in [16]. However, the 
drawback of these techniques is the necessity of sample preparation by fluorescent staining 
of cells before imaging. Moreover, the fluorescent stain is likely to influence the cell 
behaviour as well as the cell morphology, which could possibly affect the experiment and 
classification results. 

In the mentioned approaches, the features extracted from the images are mostly 
representing the cellular shape or the intensity values depending on the stain concentration, 
but they are not quantitative in terms of cell mass. 

In the recent years, digital holographic microscopy (DHM) has proven as a very 
versatile non-invasive tool for the observation of live cells [17-20], while overcoming the 
limitations of previously mentioned approaches. D H M provides quantitative phase images 
(QPI) with high intrinsic contrast without labelling and since the images contain 
quantitative information about cell mass, it may potentially improve the performance of the 
classification. 

Several publications studied cell behavior by monitoring cell features extracted from 
the QPI. Cell life cycle characterization by monitoring of morphometric and quantitative 
phase features was proposed in [21]. Assessment of wound healing by monitoring the 
cellular volume, dry mass and refractive index was presented in [22]. The study of cancer 
cell growth and drug response by monitoring cell dry mass is described in [23]. In the 
mentioned publications, the authors extract quantitative phase features and monitor their 
changes, but do not apply machine learning algorithms for the automated assessment of cell 
behavior. 

Only limited work has been published towards the application of machine learning 
classification algorithms to QPI. Morphology-based classification of red blood cells using 
D H M was presented in [24]. Automated detection and classification of living organisms in 
drinking water resources using D H M was performed in [25]. The automated diagnosis of 
breast and prostate cancer from tissue biopsies was described in [26] and in [27], 
respectively. But to my present knowledge, none of the publications studied the potential 
of QPI for the classification of live adherent eukaryotic cells. 

Great progress has already been made since the early beginnings of the machine 
learning in the field of microscopy. The extent of mentioned publications implies that 
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machine learning applied to quantitative phase images is a current and rather expanding 
topic. However, there is still major scope for further investigation in this research area. 

None of the above mentioned publications studied the effect of using the features based 
on quantitative phase images on the performance of classification. Neither have they 
mentioned analysis of the live adherent eukaryotic cells with the indented boundaries which 
are difficult to define and segment from the background and which subsequently introduce 
high variance within the classified groups. To my present knowledge, there is no reference 
in the literature to the application of machine learning to the time-lapse quantitative phase 
images with the focus on analysis and interpretation of live cell behaviour. 

This thesis focuses on the mentioned issues and is a follow-up to existing results 
reached in the research area. The goal is to propose a methodology for classification of the 
live adherent eukaryotic cells based on QPI and to evaluate the potential of features 
extracted from QPI. In addition, the methodology for cell classification from time-lapse 
QPI will be proposed in order to gain additional context from the temporal information for 
the more accurate interpretation of live cell behaviour. Both methodologies will be 
employed in the experiments with live adherent eukaryotic cells and the results will be 
discussed. 

I expect that the thesis will not only bring the outcomes that are scientifically relevant 
to the field of machine learning in microscopy, but also will serve to assist and speed up the 
analysis and interpretation of live cell behaviour by C C H M and therefore promote C C H M 
as a diagnostic method in biology and medicine. 
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3. Aims of Thesis 
The final objective of this work is to propose a methodology, which would serve for the 
biophysical interpretation of quantitative phase image gained by C C H M in an automated 
fashion. Therefore, the partial aims of this work are the following: 

• acquire datasets of quantitative phase images by C C H M , which are suitable for 
automated interpretation by means of supervised machine learning, 

• propose methodology for classification of cells based on static quantitative phase 
images, 

• propose the appropriate features to be extracted, representing the cell morphology 
in quantitative phase images, 

• apply the methodology in the experiment with live cells, 

• evaluate performance and compare the proposed methodology with the current 
state-of-the-art techniques while estimating the potential of features gained from 
quantitative phase, 

• propose methodology for classification of cells based on time-lapse quantitative 
phase images, 

• propose the appropriate features representing the cell behaviour, exploiting the 
temporal information from the time-lapse quantitative phase images, 

• apply the methodology in the experiment with time-lapse imaging of live cells, 

• evaluate performance of the proposed approach and discuss the potential 
contribution it may have for the interpretation of quantitative phase image gained 
by C C H M . 
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4. Structure of Thesis 
The thesis is organized as follows. The Section 5 explains the basic concept of coherence-
controlled holographic microscopy and the quantitative phase image that it provides. In 
Section 6, machine learning for the interpretation of quantitative phase images is presented. 
The proposed methodology for classification of cells in the static quantitative phase images 
is described. Section 7 presents the application of the proposed methodology in the 
experiment with live cells. In Section 8, the methodology for interpretation of time-lapse 
quantitative phase images is proposed and demonstrated on the experimental data. Finally, 
the conclusions and the future outlook are summarized in Section 9 and 10. 
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5. Coherence-Controlled Holographic Microscopy (CCHM) 
Coherence-controlled holographic microscopy (CCHM) [2,3] is a label-free interferometric 
technique developed at Brno University of Technology. The technique is widely used in the 
laboratory of Experimental Biophotonics (CEITEC BUT) for monitoring of live cell 
behaviour [17,28,29], but also for technical specimens [30]. The main asset of this 
technique is the ability to provide quantitative phase image [4]. During the imaging, not 
only the amplitude, but also the phase of the wave transmitted through the specimen is 
detected. This fact is of particular importance while observing the live cells that are 
considered to be weakly scattering and absorbing specimens. In case of such specimens, the 
phase carries considerable amount of information about the specimen structure and is, for 
that reason, of great significance. The imaging in C C H M is based on the interference of the 
object and the reference light beams, which enables to detect the phase delay induced by 
the specimen. 

The optical set-up of the microscope is based on Mach-Zehnder-type interferometer 
modified for achromatic off-axis holographic microscopy (Figure 2). The illumination 
system is formed by a low coherence source (halogen lamp), interference filters, collector 
lens and beamsplitter, which splits the beam into two arms. Microscope therefore consists 
of two separated nearly identical optical arms - reference and object arm. Both arms contain 
matching condensers, objectives and tube lenses. The reference arm includes diffraction 
grating, which spatially separates light of different wavelengths. Only the +lst order of the 
diffraction grating is separated and interferes with the object arm in the output plane, while 
creating the interference structure - hologram. The hologram is recorded by the CCD 
camera and further reconstructed. 

s 

Object arm L Reference arm 

BS 

Ci ^ 

SP . . . 
01 

TL1-*. - 9 -

• * c 2 

• - - RO 
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Figure 2: Optical setup of coherence-controlled holographic microscope. Light source (S), relay lens (L) , 
beamsplitters (BS), condensers (C), specimen (SP), reference object (RO), microobjectives (O), tube lenses 
(TL) , diffraction grating (DG) , output lenses (OL) , output plane (OP), detector (D) [2]. 
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The numerical reconstruction of the hologram is performed using the house-built 
software. Firstly, the 2D Fourier transform [31] is computed from the hologram (Figure 3a) 
in order to obtain the spatial frequency spectrum (Figure 3b). The object spatial frequency 
spectrum is selected and the zero spatial frequency is shifted to the centre. By applying the 
inverse fast Fourier transform algorithm, the complex amplitude of the object wave is 
obtained. The intensity image (Figure 3c) and the raw phase image (Figure 3d) are then 
reconstructed from the complex amplitude. Since the values in the raw phase image are 
wrapped on the interval (- %, % ), the phase unwrapping algorithm [32,33] is applied. After 
the reconstruction, the image can still be burdened by the optical aberrations of the imaging 
system, imperfect adjustment of the microscope, or possibly by surrounding temperature 
changes. This issue is solved by the subtraction of the compensation surface described in 
detail in [34]. In this way, final unwrapped and compensated phase image is obtained 
(Figure 3e). Such reconstructed quantitative phase image contains values of phase delays 
induced by the specimen expressed in radians and can be visualised as 3D surface plot 
(Figure 3f). 

(0 (e) 

Figure 3: Overview of the Q P I reconstruction process. Hologram (a), spatial frequency spectrum with 

indicated windowing operation (b), intensity image (c), raw phase image (d), unwrapped and compensated 

phase image (e) and 3D surface plot (f). 

In contrast to existing D H M techniques [21,22,24,35], the use of incoherent 
illumination enables high-quality quantitative phase imaging with strong suppression of 
coherent noise and parasitic interferences while providing high temporal stability and 
spatial uniformity of the phase measurement [2]. Using the approach described in [36], the 
temporal and spatial phase sensitivity were determined as 0.0081 rad and 0.0094 rad, 
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respectively. The lateral resolution is comparable with the lateral resolution of conventional 
wide-field optical microscopes, thus twice better than in typical D H M techniques with a 
coherent source of illumination. Moreover, the low illumination power of the incoherent 
source (0.2 uW.cm"2) is not likely to influence the physiological functions of the imaged 
cells, which is very convenient for live cell imaging. 

5.1 Quantitative Phase Image 
The phase in the reconstructed image contains quantitative information and is proportional 
to the optical path difference of the object and reference arm according to the following 
equation [4]: 

(1) <p(x,y) = (p0(x,y) - <Pr(x,y) 
= — Ynm[h - d(x,y)) + nc (x,y)d(x,y)J - —nmh 

2n 2n 
= — d(x,y)(n c (x,y) - n m ) = — d(x,y)An(x,y) , 

where cp0 is phase in the object arm, (pr is phase in the reference arm, X is the illumination 
wavelength, nm is the refractive index of the surrounding medium, h is the thickness of the 
medium, d is the thickness of the cell, nc is the axially averaged refractive index of the 
cellular material and An is the difference between the refractive indices of the cellular 
material and the medium (Figure 4). 

Figure 4: M o d e l of an adhered cell surrounded by the medium observed by C C H M . 

The phase can be also interpreted in terms of cell dry mass. The dry mass of the cell 
consists of its non-aqueous content and was defined as the mass of the cell after evaporation 
of the water. The value of the cell dry mass is dependent mainly on the protein concentration 
within the cell [37]. It has been shown that the refractive index of the cellular material is 
directly proportional to the dry mass of the cell with the proportionality constant y referred 
to as the refraction increment (units of ml.g"1) according to the following equation [7]: 

nc(x,y) = n m + yC(x,y) (2) 

where C is the concentration of dry protein in the solution (in g.ml"1). The refraction 
increment y indicates how much the refractive index of the aqueous solution increases for 
each increase in the dry mass concentration in the solution. Various cell components have 
very similar values of the refraction increment (0.0017 - 0.0019 ml.g"1). It has been 
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published years ago that the measured phase corresponds to the dry mass distribution within 
the cells [6,7,37,38]. The dry mass density of the cell (units of pg.um"2) can be obtained 
from the measured phase as follows: 

P(x,y) =^-<p(x,y). (3) 
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6. Machine Learning in QPI 

6.1 Introduction to Machine Learning 
Machine learning as a field of artificial intelligence, explores the algorithms that have the 
ability to automatically learn and improve from the data and subsequently make predictions 
on the unknown data [1]. In order to gain the general overview, the basic machine learning 
methods are introduced in this part. Machine learning algorithms are often categorized as 
supervised or unsupervised (Figure 5). 

In supervised machine learning [39], the algorithm relies on the prior knowledge and 
is trained from labelled training data. The training data consist of a set of training examples, 
while each example is a pair consisting of an input object (typically a vector) and the desired 
output label (pre-defined class). Based on the training, the supervised learning algorithm 
produces a function that maps the input objects to the output classes. After the training 
phase, the algorithm should correctly determine the class labels for unseen objects. 

In contrast, the unsupervised learning [40] does not rely on any prior knowledge. This 
approach is used, when the training data are neither classified nor labelled. Unsupervised 
learning algorithms (e.g. fc-means clustering, fuzzy c-means clustering, hierarchical 
clustering, Gaussian mixture models, neural networks, hidden Markov models) infer a 
function to describe a hidden structure from the unlabelled data, based on which the data 
are divided into clusters. 

Other approaches to machine learning include semi-supervised learning, which uses 
both labelled and unlabelled data for training, and reinforcement learning, where decisions 
are improved in an iterative process based on feedback and specified scoring. 

However, only supervised machine learning will be employed in this work. Supervised 
learning problems can be further divided into regression and classification problems. In 
classification algorithms (e.g. support vector machines, discriminant analysis, ^-nearest 
neighbour, ensemble methods, decision trees, neural networks, etc.), the output variable is 
a category, while in regression algorithms (e.g. linear/nonlinear regression, Gaussian 
process regression - GPR, support vector regression - SVR, ensemble methods, decision 
trees, neural networks) it is a real value. This work focuses solely on the classification 
algorithms. 
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Figure 5: The overview of the two main types of machine learning with the corresponding categories of 

algorithms. 
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6.2 Classification in QPI 
In this part of thesis, the approach for automated classification of cells in the quantitative 
phase images obtained by C C H M is proposed. In cell classification, the algorithm identifies 
patterns in the input images of cells and trains a model based on class labels which were 
assigned to the cells in the images by expert. Such trained model is able to classify cells in 
new so far unseen images. The essential precondition for the successful classification is a 
sufficiently large database of labelled cell images on which the classifier is trained. 

The classification process starts with image pre-processing of quantitative phase 
images from the database, where the cells are segmented from the background and each cell 
is identified as a separate region of interest (ROI). From each ROI, features representing 
the cell are extracted. There are several types of features generally used, characterising the 
texture, geometry and morphology of cells. Thanks to the quantitative information 
contained in the images obtained by C C H M , it is possible to extract also the features related 
to the dry mass distribution within the cell. These features carry valuable information 
characterizing the cell behaviour. The best features are then selected and the data are split 
into the training and testing set in order to avoid overfitting. The training data are labelled 
by expert biologist and serve as an input for the classification algorithm. After the training 
of the classification algorithm on the labelled data, the testing unlabelled data can be fed 
into the classifier. The overview of the proposed classification process based on QPI is 
shown in Figure 6. In the following chapters, the steps of the classification process will be 
introduced in detail. 

QPI 

Image pre-processing 

images 
• 

Segmentation 

ROI detection 

Feature 
extraction 

Feature 
selection 

Splitting 
data 

training 
data 

; Label l ing 
Classifier 
training 

Classification 
• , • 

testing data 

Figure 6: Overview of the proposed classification process based on QPI . Firstly, image pre-processing is 

carried out. The cells in the image are segmented from the background and identified as regions of interest 

(ROIs). C e l l features are extracted for every R O I and the best features are selected. The data are split into 

training and testing set. The training data are labelled by expert biologist and form an input for the classifier. 

The classifier is trained on labelled data and prepared to perform the classification on testing unlabelled data. 
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6.2.1 Image Pre-processing 

In this stage, the cells in the quantitative phase images are firstly segmented from the 
background. Several methods for the segmentation exist [41], in this work the marker-
controlled watershed segmentation approach [42], implemented in Q-Phase software 
(TESCAN ORSAY HOLDING a.s., Brno, Czech Republic), is applied. The segmented 
cells are then identified as separate ROIs, while each of them is labelled by a unique integer 
number as shown in Figure 7. 

Figure 7: Results of the segmentation of nearly confluent L W 1 3 K 2 cells by marker-controlled watershed 

approach, (a) Original quantitative phase image, (b) Segmented image. Quantitative phase images are shown 

in grayscale in units of p g . u m 2 recalculated from phase (in radians) according to Davies [7]. 

6.2.2 Feature Extraction 

After the image pre-processing, each ROI is represented by a set of cell features. 
Representation of the cell by cell features is used in machine learning to overcome the 
problem of high dimensionality of the input image. The representation must be in a form 
suitable for the classification algorithm, mostly a numeric feature vector. The process, in 
which the input data are transformed into a reduced representation by feature vector, is often 
termed feature extraction [43]. In this work, two types of cell features were extracted: 
morphometric and QPI features. 

(a) Morphometric (MO) cell features. The features mostly reflect the shape of the cell 
and are explained as follows. 

(i) Footprint area (FA) is calculated as the sum of the pixels of the projected cell area. 
Pixels belonging to the cell region have the value m = 1, otherwise m = 0. When multiplied 
by the pixel area according to following equation, the resulting value of FA is obtained in 
units of area: 

(a) (b) 

n 
(4) 

t=i 
where n is the number of pixels in the image and A is the pixel area. 

25 



(ii) Perimeter of the footprint area (PFA) is defined as the sum of pixels in the inner 
boundary of the region. When multiplied by the pixel size, the resulting value of PFA is in 
units of length. 

(Hi) Convex area (CA) is calculated as the sum of pixels of the convex cell region, 
multiplied by the pixel area. The boundaries of the convex cell region are defined by the 
smallest convex polygon that contains the region of the cell. 

(iv) Perimeter of the convex area (PCA) is calculated as a sum of pixels in the inner 
boundary of the region, and multiplied by the pixel size. 

(v) Solidity (S) specifies the proportion of the pixels belonging to the cell footprint area 
to those which are contained in the convex area. 

(vi) Roundness (R) determines the deviation of the cell region from the circular shape. 
Roundness depends on the footprint area and its perimeter according to the following 
relationship: 

47T FA 

(vii) Indentation (I) evaluates the level of cell boundary indentation. Indentation can be 
calculated as the ratio of perimeter of the convex area and perimeter of the footprint area as 
follows: 

I (6) 
PFA 

(viii) Eccentricity (EC) specifies the eccentricity of the ellipse that has the same second-
moments as the cell region. The eccentricity is calculated as the ratio of major axis and 
minor axis length. The value of eccentricity is between zero and one, while values close to 
zero describe circular shape and values close to one elongated shape of the region. 

(ix) Extent (EX) is given by the ratio of pixels in the cell region to pixels in the total 
bounding box. Bounding box is the smallest rectangle containing the region. The extent is 
computed as the footprint area divided by the area of the bounding box. 

(b) QPI cell features. The features are extracted from the phase values of the cell in 
quantitative phase image and therefore contain quantitative information about the dry mass 
density distribution within the cell. 

(i) Total phase of the cell (cptotai) is calculated as the sum of phase values (in radians) in 
the pixels belonging to the region of the cell, (p total is calculated as follows: 

k 

(Ptotal = 2_, <Pi> 
i=l 

where k is the number of pixels of the cell region and (pt is the phase value in the zth pixel 
belonging to the region of the cell. 

(ii) Average phase (p<p) specifies the average phase value in the cell region. The average 
phase value is defined as the total phase over the footprint area of the cell. 

(Hi) Variance (Var9) and standard deviation of the phase (af) determine the variation 
of the phase values and therefore also of dry mass distribution within the cell. The variance 
and standard deviation of the phase are calculated as follows: 
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k 

V a T ( p = T ^ i Y u ^ 1 ~ [ i < p ) 2 ' 
(8) 

JPi - v-<p)-> 
i=l 

and 

av = ^Var^. (9) 

(iv) Skewness (Skewq,) is calculated from the histogram of the phase values and 
describes its shape. Skewness measures the symmetry of distribution of the phase values 
from the mean value. The parameter is determined by the following equation: 

,3 
Skew,n = Id=l(<Pi ~ <Pavg) (10) 

* (k - l ) a | • 
The values of skewness close to zero report about symmetrical distribution of phase values, 
which is characteristic for spread and well-adhered cells. 

(v) Kurtosis (Kurt,p) is also derived from the histogram of the phase values and 
quantifies the extent to what shape of the data distribution matches the normal distribution. 
Kurtosis is described as follows: 

Ki.rt - ~ ggggj! (11) 
K U r t * ~ (fc - • 

The distribution matching to normal results in values of kurtosis close to zero. A flatter 
distribution and a more peaked distribution have negative and positive kurtosis value, 
respectively. 

A l l extracted features are summarized into feature vectors, each feature vector 
representing one cell. Each cell feature vector is then assigned one of the class labels 
determined by the expert biologist. The class labels are later used for training of the 
classification algorithm. 

Additional step before the classification is the feature scaling, which is commonly used 
in case that the values of features are not of similar scale. In this process, the feature values 
are scaled to a fixed range from 0 to 1. The main advantage of scaling is to avoid features 
in greater numeric ranges dominating those in smaller numeric ranges [43]. Moreover, 
feature scaling speeds up the training of the classifier, prevents the classifier from getting 
stuck in local optima and is an essential step in the classification for some algorithms. The 
scaling of the features is done via the following equation: 

Y — Y • 
v , „ - — m i n (12) 
1 scaled ~ y _ y ' 

'max 'min 

where Yscaied is the scaled value of the feature, Y is the original value of the feature, Ymi„ is 
the minimum value of the feature, Ymax is the maximum value of the feature. 

6.2.3 Feature Selection 

In general, the variance of features within the class should be small, which means that 
features derived from different samples of the same class should have similar values. Also, 
the interclass separation should be large, i.e. feature values extracted from samples of 
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different classes should differ significantly. In order to evaluate the ability of the extracted 
features to discriminate between the classes, further analysis is performed. Parametric Mest 
for samples with different variances also known as Welch's Mest [44] was chosen for that 
purpose. Statistical parametric tests (including Mest) are based on the assumption that the 
data follows a normal distribution [45]. Therefore, before performing any parametric 
analysis, it should be proved that the data meet this requirement. 

Testing of Data Normality 

It is possible to confirm the normality visually or by significance tests. As a visual method 
for the normality check, box-whisker plot is used in this work (Figure 8). The box-whisker 
plot shows the median as a horizontal line inside the box and the interquartile range 
(between the 25th to 75th percentiles) as the length of the box. The whiskers symbolize the 
minimum and maximum values within 1.5 times the interquartile range. Samples outside 
this range are out of the box-whisker plot and are considered as outliers. A box-whisker plot 
that is symmetric with the median line at approximately the centre of the box and with 
symmetric whiskers suggests that the data may be normally distributed [46]. The notches 
of the box-whisker plot also provide a rough measure of the significance of differences 
between the medians of samples. If the notches do not overlap, then there is evidence that 
the medians are significantly different at the 5% significance level. 

• Outl iers 

Central B o x -

7 5 % Quant i le 

Med ian (50% Quanti le) 

Notch Width 

2 5 % Quant i le 

>Notch Height 

Box Center 

Box Width 

Figure 8: Box-whisker plot representation. 

As a significance test for the normality, the Shapiro-Wilk test [47] is used. The test 
belongs to the correlation tests, which are based on the ratio of two weighted least-squares 
estimates of scale obtained from order statistics. Given an ordered random sample xi< 
X2<...<xn, the test statistic is defined as follows: 

SW = (13) 
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where xi is the ith order of the statistics, x is the sample mean, o»j are the weights which are 
derived from the expected values and covariance matrix of the order statistics of 
independent and identically distributed random variables sampled from the standard normal 
distribution. 

The null hypothesis of the test assumes that the data came from the normal distribution. 
Thus if the ;?-value is less than the chosen significance level, the null hypothesis is rejected 
and there is an evidence that the data tested are not from a normally distributed population. 
Otherwise the null hypothesis that the data are normally distributed cannot be rejected. 

T-test 

As mentioned earlier, the Mest belongs to the parametric tests and hence its precondition is 
the normal distribution of the analysed data. The independent two-sample Mest for samples 
with different variances also known as Welch's Mest was chosen to assess whether there 
have been significant differences between the means of the features of the analysed classes. 
The statistic to test the difference of the samples means is expressed as follows: 

x-y 
t = (14) 

sx | A y 
TiX Tiy 

where x and y are the sample means, sx and sy are the sample standard deviations, 
and tlx and ny are the sample sizes. 

The formula for the degrees of freedom is known as the Welch-Sattertwaite-equation 
[48] and is calculated as 

df = 

(15) 

(nx) , C*y) 
nx — 1 ny — 1 

The null hypothesis assumes that the samples come from populations with equal means 
and equal but unknown variances. The alternative hypothesis is that the samples come from 
populations with unequal means. If the p-value is less than the chosen significance level, 
the null hypothesis is rejected, otherwise it holds. In this specific case, the outcome of the 
Mest indicates the potential of individual features to differentiate between the classes of 
cells. 

Based on the analysis, only the features with the potential to discriminate between the 
classes are kept in the feature vector. The resulting feature vector is then used as input for 
the classifier. 

6.2.4 Supervised Classification Algorithms 

After the feature extraction and selection, the final step is application of the classification 
algorithm. It is well known that the performance of the classification is highly dependent 
on the selection of the classification algorithm [49] and thus we employ several supervised 
machine learning algorithms in this work to correctly assess the performance of the 
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classification. Moreover, each algorithm can be adjusted by setting its parameters and, 
therefore, most of the algorithms are tested in several possible variations. The classification 
was performed in Matlab 2016b (MathWorks, Inc.). A short description of the used 
algorithms is presented below. 

(a) Decision trees. In the decision tree classifier [50], a tree structure is built with root 
node and leaf nodes. The leaf nodes represent the class labels, while the branches represent 
conjunctions of features that lead to those class labels. Every interior node in the tree 
consists of a decision criterion. The features are partitioned based on homogeneity until a 
leaf node is assigned to a particular class label. Three types of decision tree classifiers were 
used in this work: complex, medium and simple tree, with defined maximum number of 
splits: 100, 20 and 4, respectively. 

(b) Discriminant analysis. Discriminant analysis [51] assumes that different classes 
generate data based on different Gaussian distributions. To train a classifier, the fitting 
function estimates the parameters of a Gaussian distribution for each class. We used both 
linear and quadratic discriminant analysis. 

(c) Support vector machines (SVM). S V M [52] classifies data by finding the best 
discriminating hyperplane that separates objects with different class membership as shown 
in Figure 9. Depending on a given problem, larger number of hyperplanes may exist. The 
distance from the hyperplane to the closest data point is called the margin of separation. 
The aim of a support vector machine is to find the particular hyperplane, for which the 
margin of separation is maximized. The hyperplane fulfilling this condition is referred to as 
the optimal hyperplane. The closest data points to the margin of separation are called 
support vectors. The support vectors thus specify the discrimination function. 

Figure 9: Example of a S V M classifier for the case of two linearly separable classes. Dotted lines mark the 

margin and full points represent the support vectors. 

The S V M can handle both linearly separable data and non-linearly separable data using 
kernel functions. The kernel function transforms the training examples of input space into 
a higher dimensional feature space. Here we used linear, quadratic, cubic and Gaussian 
kernel. 
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In this work, the multi-class S V M is applied. This approach exploits one-against-all 
method. If the number of classes is N, the /V-class classification by S V M is accomplished 
by combining /V two-class classifiers, each discriminating between a specific class and the 
rest of the training set. During the classification stage, a pattern is assigned to the class with 
the largest positive distance between the classified pattern and the individual separating 
hyperplane for the N binary classifiers. 

(d) K-nearest neighbour (KNN) classifier. The principle behind k nearest neighbour 
method [53] is to find a predefined number of training samples closest in distance to the 
object, and predict the class label of the object from these. The distance based on which the 
k samples are chosen can, in general, be any metric measure. Euclidean distance is the most 
common choice. A class label is finally assigned to an object based on the majority vote of 
its k neighbours. The number of samples (k) can be a user-defined constant. Here we used 
fine K N N (k = 1, Euclidean distance), medium K N N (k = 10, Euclidean distance), cosine 
K N N (k = 10, cosine distance), cubic K N N (k = 10, cubic distance) and weighted K N N 
(k= 10, weighted by the inverse square of the Euclidean distance). 

(a) (b) (c) 

Figure 10: ^-nearest neighbours of an object x are k data points that have the smallest distance to x. 
(a) 1-nearest neighbour, (b) 2-nearest neighbour and (c) 3-nearest neighbour. 

(e) Ensemble classifiers. Ensemble methods [54] combine multiple learning algorithms 
in order to improve generalization and robustness over a single learning algorithm. 
Common types of ensembles are bagging, boosting and the random subspace ensembles. 

In bagging, abbreviated from the bootstrap aggregating, the driving principle is to build 
several classifiers independently and then to average their results. On average, the combined 
classifier is usually better than any of the single classifier because its variance is reduced. 

Boosting ensemble algorithms create a sequence of models that attempt to correct the 
mistakes of the models before them in the sequence. Once created, the models make 
predictions which may be weighted by their demonstrated accuracy and the results are 
combined to create a final output prediction. 

Random subspace ensembles attempt to reduce the correlation between classifiers in 
an ensemble by training them on random samples of features instead of the entire feature 
set. Subspace ensembles also have the advantage of using less memory than ensembles with 
all predictors. 

In this work, the following ensemble classification algorithms were used: bagged trees, 
boosted trees, subspace discriminant and subspace K N N . 
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(f) Artificial Neural Network (ANN). The A N N [55] was inspired by the human learning 
process and is based on combinations of elementary processors (neurons), each of which 
takes a number of inputs and generates an output (Figure 11). Each neuron is associated 
with adaptive weight, i.e. numerical parameter that is tuned by a learning algorithm. The 
output of the neuron is a function of the weighted sum of inputs. Moreover, neuron is 
associated with activation function, which defines the output of that neuron given an input 
or set of inputs. 

Output 

Figure 11: Example of neuron with inputs (xi , X2, X3, xO and corresponding weights (wi, W2, W3, Wi). 

The neural network is formed by the collection of interconnected neurons, usually 
organized in layers, where the output of one neuron becomes the input of other neurons 
(Figure 12). This architecture resembles the high-level interconnections of elementary 
neurons in brain. There are many types of network architectures, the common type feed­
forward neural network was used in this work. 

Input layer Hidden layer 

Figure 12: Example of three-layered feed-forward neural network structure with one output neuron. 

The training process requires a set of labelled examples similarly as in other 
classification algorithms. In the first step of training, the random numbers are assigned to 
the weights of the individual neurons. The outputs are computed for the labelled examples 
serving as a training examples. The outputs are evaluated and compared to given labels 
based on the selected performance function. Commonly used performance function for 
neural networks is mean square error [55]. Therefore, the average squared error between 
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the network outputs and the desired labels is calculated. Afterwards, the weights of neurons 
are modified properly to obtain better classification results by the backpropagation 
algorithm. Once the neural network is trained, it can be used for the recognition of unknown 
input. 

Here we used feed-forward backpropagation neural network with one hidden layer 
containing 10 hidden neurons. The network was trained with scaled conjugate gradient 
backpropagation algorithm and mean square error was applied as a performance function. 

6.2.5 Classifier Performance Evaluation 

For indication of the performance of a classification algorithm, confusion matrices are a 
widely used tool [56]. The confusion matrix compares training class labels with output class 
labels determined by the classification algorithm. Figure 13 shows the example of a 
confusion matrix for a three-class classifier. 
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Figure 13: Example of confusion matrix for a three-class classifier, correctly classified (green) and incorrectly 

classified (red) examples. 

Several performance parameters can be calculated from the confusion matrix for a 
classification algorithm: accuracy, precision, recall and F-score. 

The classification accuracy of a multi-class classifier is calculated as the ratio of the 
sum of the principal diagonal values to the sum of all values in the confusion matrix. The 
accuracy expresses the ratio of correctly classified examples by the classifier and is 
calculated as follows: 

tpt + tnt 

Accuracy 
N 

where N is the number of classes, tpt is the number of correctly recognized class examples, 
tm is the number of correctly recognized examples that do not belong to the class, fpi is the 
number of examples that were incorrectly assigned to the class and fm is the number of 
examples that were not recognized as class examples. 

Precision is the ratio of correctly classified positive examples to the total number of 
positive examples. The precision for multiclass classification task is determined according 
to the equation: 

*N tPi 
i=l 

Precision = tPi + fVt 
N 
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Recall is the ratio of correctly classified positive examples to the all examples in actual 
class. The recall for multiclass classification is determined as follows: 

Recall = - t P i + f U i 

N 
F-score can be interpreted as a harmonic mean of precision and recall, calculated as 

follows: 
2 x Precision x Recall 

1 score Precision + Recall 

K-fo\d cross-validation was used to evaluate the performance of the classification 
algorithms. The data were partitioned into k randomly chosen subsets of roughly equal size. 
One subset (testing set) was used to validate the classifier, which had been trained on the 
remaining subsets (training set). This process was repeated k times, such that each subset 
was used for the validation (we used k = 5). Since cross-validation does not use all of the 
data for training, it is a commonly used method to avoid overfitting. 
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7. Application of Machine Learning to Classification of Cells in 
QPI 

In the last few years, classification of cells by the supervised machine learning became 
frequently used in biology. However, most of the approaches are based purely on 
morphometric features, which are not quantitative in terms of cell mass. This may result in 
poor classification accuracy. The proposed methodology exploiting the quantitative 
information about the dry mass density distribution within the cell will be applied in the 
experiment. The obtained results will be compared with the commonly used approach based 
on the morphometric features. 

7.1 Experiment Design 
Both mentioned classification approaches are tested in the experiment with live adherent 
eukaryotic cells, which are nutritionally deprived in order to manifest different 
morphologies for the classification. Since the dry mass density distribution within the viable 
and nutritionally deprived cells differs markedly, the features extracted from the 
quantitative phase images play an important role in the classification. The cells are 
classified using several supervised machine learning algorithms. There is an assumption 
that most of the classifiers could provide higher performance when quantitative phase 
features are employed. In such case, the methodology could be a valuable help in refining 
the monitoring of live cells in an automated fashion. 

In the following chapters, methodology for classification of cells based on QPI is 
demonstrated on the experimental data. The contribution of features extracted from QPI for 
the classification of cells is evaluated. The approach is compared with a commonly used 
methods based on morphometric features and the results are discussed. 

7.2 Cell Culture Techniques 
In the experiment, LW13K2 cells (spontaneously transformed rat embryonic fibroblasts) 
were exposed to conditions that induce nutritional deprivation. The cells were firstly grown 
attached to a solid surface and maintained in Eagle's minimal essential medium (Sigma-
Aldrich, Czech Republic) supplemented with 10% fetal bovine serum (Sigma-Aldrich, 
Czech Republic) and gentamicin (Sigma-Aldrich, Czech Republic) in an incubator at 37 °C 
and humid 3.5% CO2 atmosphere. The cells were harvested by trypsinization and 
transferred into 5 sterilised observation chambers u-Slide I (Ibidi GmbH, Germany). The 
seeding densities were 20 cells/mm2 in order to achieve sparse coverage for the purposes of 
segmentation of individual cells. The observation chambers were kept in the incubator 
under the same conditions. 

The culture medium was replaced by phosphate-buffered saline (PBS) after two days. 
For the experiment, standard PBS (NaCl 8 g/1, KC10.2 g/1, K H 2 P 0 4 0.24 g/1, N a 2 H P 0 4 1.44 
g/1, pH 7.4) was used. PBS deprives cells of nutrients and causes changes in cell 
morphology. The cells were imaged immediately after PBS application. The same 
procedure was repeated for all 5 observation chambers. 
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7.3 Image Acquisition 
The cells were imaged by C C H M . During the experiment, the samples were illuminated 
with halogen lamp through the interference filter (X = 650 nm, 10 nm FWHM). Microscope 
objectives (Nikon Plan Fluor 20x/0.5) were utilised for the imaging. At least 100 images 
were acquired from each sample in pursuit of collecting enough data for the classification. 
Images were obtained by scanning in a random manner across each sample. A l l images 
were gathered in the database, which was used for the classification. 

Morphological changes of cells appeared in the order of minutes after the application 
of PBS. Most of the cells became slightly deprived after 5 minutes. The majority of cells 
were seriously deprived after 20 minutes. The images of cells were divided by the expert 
biologist into three categories based on their morphology: viable, semi-deprived and 
deprived cells. Viable cells did not exhibit any changes in morphology, cells in semi-
deprived category were influenced by PBS and started to shrink while their boundaries 
became indented. The deprived cells, which were influenced the most, adopted a rounded 
morphology. A l l images of cells were gathered in the database consisting of 1400 cells. 
According to the labels assigned by the expert biologist, the database contained the 
following distribution of class labels based on their morphology: viable (540), semi-
deprived (470) and deprived cells (390). The cells with uncertain class membership were 
excluded from the database. Three distinct types of cell morphologies are shown in Figure 
14. 

(a) (b) (c) 
Figure 14: Morphological changes of L W 1 3 K 2 cells induced by P B S . (a) Viable cells, (b) semi-deprived 

cells and (c) deprived cells. Quantitative phase images are shown i n grayscale i n units o f pg /um 2 recalculated 

from phase (in radians) according to Davies [7]. 

7.4 Image Pre-processing and Feature Extraction 
The cells in the quantitative phase images were segmented from the background by marker-
controlled watershed segmentation approach provided by the house-built software. The 
segmentation has proven to be a crucial step, which affects the performance of the 
classification. Therefore, we did not consider highly overlapping cells where the 
segmentation was not clear. The cells located on the border of the image were excluded as 
well. For the purpose of more accurate cell segmentation, we used sparse seeding densities 
to obtain subconfluently grown cells. The segmentation results in case of more confluent 
cell layer were satisfying as well. However, in case of confluent cell layers, there is a higher 
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chance of less accurate segmentation results, which may lead to poorer performance of the 
classification. Subsequently, the cells were identified as separate ROIs (cells). From each 
cell, two sets of cell features were extracted: morphometric and QPI cell features. Two types 
of feature vectors were composed for each cell, while the first one included only 
morphometric feature set and the second one both sets. Each feature vector was then 
assigned one of the class labels determined by the expert biologist. Prior to the 
classification, the feature values are scaled to a fixed range from 0 to 1 according to 
Equation (12). The image processing was performed in Matlab. 

7.5 Feature Selection 
Before feeding the feature vectors into the classification algorithms, the potential of 
extracted features to discriminate between given classes of cells was evaluated by the 
statistical analysis. 

The independent two-sample Mest for data with different variances was used to assess 
whether there are significant differences between the means of parameters of the three cell 
classes (viable - V , semi-deprived - SD, deprived - D). Since the precondition for parametric 
analysis (including Mest) is the normal distribution of the analysed data, the Shapiro-Wilk 
test was performed to confirm that the values of cell features are normally distributed. For 
a visual confirmation, the box-whisker plots of the individual feature values distributions 
can be seen in Figure 15. 

Afterwards, the Mest was performed for each feature and between all possible pairs 
(viable vs. semi-deprived, viable vs. deprived and semi-deprived vs. deprived) in order to 
investigate whether the defined features are reliable for the distinguishing between the cell 
classes. The results of the independent two-sample Mest for data with different variances 
are shown in Table 1. The feature values of different cell classes with significant differences 
between the means indicate the potential for reliable discrimination between the classes. 

When tested for the pair V vs. SD class, the statistics rejects the null hypothesis about 
the equal means at a = 0.001 significance level in case of most features. In case of feature 
eccentricity (EC), the null hypothesis is rejected at a = 0.05 significance level, which means 
that this parameter is less discriminative between these two classes than the rest of the 
parameters. The exceptions make the features convex area (CA), perimeter of the convex 
area (PCA), total phase of the cell ((ptotai) and kurtosis (Kurtq,), for which the differences 
between the means are not significant and the null hypothesis was not rejected. The situation 
is visible also from the box-whisker plots (Figure 15). This result is not surprising, since 
the similarity of mentioned feature values between these two classes is obvious also from 
the quantitative phase images (Figure 14). The cells in the SD class are more indented, but 
CA is similar to the cells in the V class, and so is PCA. The value of (ptotai should not change 
after the PBS treatment, so it is only expected that the means of this feature will be equal 
between the classes. When tested for the pair V vs. D class, the null hypothesis about the 
equal means is rejected at a = 0.001 significance level in case of all features except (ptotai, 

which was justified earlier. The same results of the Mest statistics can be observed for the 
pair of classes SD vs. D. Therefore, all the features except (ptotai have the potential for the 
discrimination between these two classes. From the overall Mest analysis it is possible to 
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assume, that features provide better discrimination between the classes V vs. D and SD vs. 
D than between the classes V vs. SD. This assumption is in correspondence with the box-
whisker plots as well (Figure 15). 

Table 1: Results o f the independent two-sample f-test for data with different variances (V - viable, S D - semi-
deprived, D - deprived cell class). QPI cell features are highlighted in bold font. 

V vs. S D V vs. D S D vs . D 

FA p < 0.001 p < 0.001 p < 0.001 

PFA p < 0.05 p < 0.001 p < 0.001 

CA p > 0.05 p < 0.001 p < 0.001 

PCA p > 0.05 p < 0.001 p < 0.001 

S p < 0.001 p < 0.001 p < 0.001 

R p < 0.001 p < 0.001 p < 0.001 

I p < 0.001 p < 0.05 p < 0.001 

EC p > 0.05 p < 0.001 p < 0.001 

EX p < 0.001 p < 0.001 p < 0.001 

p < 0.001 p < 0.001 p < 0.001 

(Ptotal p > 0.05 p > 0.05 /? > 0.05 

Var9 p < 0.001 p < 0.001 p < 0.001 

p < 0.001 p < 0.001 p < 0.001 

Skew,p p < 0.001 p < 0.001 /? < 0.001 

Kurtp p > 0.05 p < 0.001 p < 0.001 

It should be noted that QPI cell features derived from the phase (except for <ptotai in case 
of all pairs and Kurtq, in case of pair V and SD) showed much lower p-value (mostly one 
order of magnitude lower) in the Mest than morphometric cell features, which indicates that 
they have a higher discrimination power. This leads to assumption, that the QPI features 
could enhance the performance of the classification in comparison to using only 
morphometric features. 
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Figure 15: Box-whisker plots of the values of features (from the top to the right): footprint area (FA), 
perimeter of the footprint area (PFA), convex area (CA), perimeter of the convex area (PCA), solidity (S), 
roundness (R), indentation (I), eccentricity (EC), extent (EX), average phase value (fiv), total phase value 

(cptotai), variance of the phase (Varv), standard deviation of the phase (av), skewness (Skewv) and kurtosis 

(Kurt,,). 
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7.6 Classification Results 
The feature vectors representing the cells in the quantitative phase images form an input for 
the classification algorithms. Before the training of the classifiers, the feature vectors are 
filtered based on the feature selection in order to contain only discriminative features. 
Therefore, the feature total phase value ((p total) is eliminated. 

Several supervised machine learning algorithms were employed in this work to 
correctly compare the performance of the classification with two different sets of features. 
To verify the assumption that QPI features improve the classification performance over the 
commonly used morphometric features, two types of feature vectors have been used for the 
classification. In the first case, the feature vector consisted of morphometric features only. 
In the latter case, also QPI features were added. 

Performance measures (accuracy, precision, recall and F-score) of each classification 
algorithm were determined as a mean of the values obtained by 5-fold cross-validation and 
can be found in Table 2. The overall performance of the classification for the two types of 
feature vectors was determined as the mean of performance measure values reached by all 
classification algorithms. The whole classification procedure was performed in Matlab. 

Table 2: Performance of the classification by different supervised machine learning algorithms for two types 

of feature vectors. 

Accuracy Precision Recal l F-score Accuracy Precision Recall F-score 

M O features M O + Q P I features 

Decision trees (complex) 0.896 0.865 0.861 0.863 0.961 0.948 0.945 0.946 

Decision trees (medium) 0.902 0.887 0.879 0.883 0.949 0.935 0.931 0.933 

Decision trees (simple) 0.851 0.824 0.743 0.781 0.931 0.918 0.913 0.915 

Linear discriminant 0.876 0.837 0.743 0.787 0.962 0.949 0.936 0.942 

Quadratic discriminant 0.898 0.872 0.843 0.857 0.953 0.932 0.935 0.933 

S V M (linear) 0.892 0.879 0.870 0.874 0.948 0.928 0.931 0.929 

S V M (quadratic) 0.885 0.840 0.830 0.835 0.958 0.944 0.943 0.944 

S V M (cubic) 0.878 0.842 0.762 0.800 0.965 0.953 0.946 0.949 

S V M (Gaussian) 0.893 0.889 0.855 0.872 0.963 0.957 0.947 0.952 

K N N (fine) 0.878 0.857 0.720 0.783 0.971 0.954 0.953 0.954 

K N N (medium) 0.878 0.849 0.695 0.764 0.948 0.931 0.918 0.924 

K N N (cosine) 0.884 0.831 0.810 0.820 0.979 0.959 0.956 0.957 

K N N (cubic) 0.913 0.894 0.890 0.892 0.953 0.941 0.939 0.940 

K N N (weighted) 0.905 0.885 0.870 0.877 0.965 0.951 0.949 0.950 

Bagged trees 0.872 0.835 0.790 0.812 0.955 0.950 0.941 0.946 

Subspace discriminant 0.905 0.865 0.860 0.862 0.953 0.942 0.935 0.938 

Subspace K N N 0.913 0.884 0.870 0.877 0.938 0.925 0.913 0.919 

Boosted trees 0.873 0.846 0.786 0.815 0.955 0.939 0.925 0.932 

Neural networks 0.884 0.845 0.815 0.830 0.962 0.949 0.939 0.944 

M E A N ± S D 
0.888 + 0.859 + 0.815 + 0.836 + 0.956 + 0.942 + 0.937 + 0.939 + 

M E A N ± S D 
0.015 0.022 0.058 0.039 0.011 0.011 0.012 0.011 
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The overall accuracy of the classification using only morphometry features was 
0.888 + 0.015, which is comparable to values mentioned in the previous studies on cell 
morphology classification [12,14,57]. The overall precision, recall and F-score were 0.859 
± 0.022, 0.815 + 0.058 and 0.836 + 0.039, respectively. The classification using both sets 
of features led to higher performance of the classifier, with the overall accuracy of the 
classification reaching 0.956 + 0.011. In this case, the overall precision, recall and F-score 
were 0.942 + 0.011, 0.937 + 0.012 and 0.939 + 0.011, respectively. 

For comparison of the two classification approaches, the performance results were 
evaluated by statistical hypothesis testing. The Wilcoxon signed rank test [58] was used as 
a paired nonparametric statistical hypothesis test which can reveal the existence of 
significant differences between two distributions. The null hypothesis is that the median 
difference between pairs of observations is zero. P-value 0.05 was considered to be 
statistically significant. The test revealed significant differences between the two 
classification approaches (p < 0.001) in terms of all performance parameters (accuracy, 
precision, recall and F-score). The performance results of both approaches are shown in the 
form of box-whisker plots in Figure 16. The results indicate that QPI cell features enhance 
the performance of the classification. It should be also noted that in case of employing both 
QPI and morphometric cell features, the classification performance of all used algorithms 
has much lower variance than in case of using solely morphometric cell features. 
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Figure 16: Box-whisker plots of overall classification performance for two types of feature vectors: (a) 
accuracy, (b) precision, (c) recall and (d) F-score. W i l c o x o n signed rank test was used for the statistical 
analysis. Symbols indicating significance are placed above (***: p < 0.001). 

In order to study the impact of cell sample preparation and other experimental 
conditions on classification performance, the approach was tested on the data gained from 
another independent experiment. The experiment was identically designed, however, the 
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cell preparation was performed by a different person and the classification algorithms were 
trained on the images of cells from the first experiment. The performance of the 
classification is summarized in Table 3 together with the results from the first experiment. 
The performance of the classification on data obtained in two independent experiments was 
compared by Wilcoxon rank sum test [58], which revealed no significant differences 
between the classification performance in the two experiments. According to the results, 
we assume that cell sample preparation and other experimental conditions do not 
significantly influence the performance of the classification. 

Table 3: Performance of the classification on data obtained in two independent experiments. 

Accuracy Precision Recall F-score Accuracy Precision Recall F-score 

M O features (mean + S D ) M O + Q P I features (mean + S D ) 

1 s t experiment 
0.888 + 0.859 + 0.815 + 0.836 + 0.956 + 0.942 + 0.937 + 0.939 + 

1 s t experiment 
0.015 0.022 0.058 0.039 0.011 0.011 0.012 0.011 

2 n d experiment 
0.872 + 0.846 + 0.809 + 0.827 + 0.949 + 0.933 + 0.929 + 0.931 + 

2 n d experiment 
0.022 0.026 0.056 0.041 0.014 0.016 0.014 0.015 

W i l c o x o n rank 
sum test 

p>0.05 p>0.05 p>0.05 /?>0.05 p>0.05 p>0.05 p>0.05 p>0.05 

Based on the overall results, it can be concluded that the quantitative phase information 
gained by C C H M increases the performance of the classification of cell morphologies in 
contrast to commonly used methods based on morphometric features. The study shows that 
C C H M offers preconditions for an accurate classification of cell morphologies, while the 
main asset of the technique lies in the accurate cell segmentation and the quantitative nature 
of the images it provides. 

Although the performance of the classification in the experiment was rather high, there 
are several options for the further improvement. One of them is enlargement of the training 
set, which would enable the classifier to improve the performance by training based on 
more extensive data. This could however lead to overtraining and worse generalisation for 
the new examples. The other option is to tune the parameters of the classification 
algorithms, however, the algorithm tuning is individual for each application. Another 
options are the extraction of additional features or obtaining extra information from time-
lapse QPI. Implementation of these two options will be the main objective of the following 
chapter. 
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8. Application of Machine Learning to Time-lapse QPI 
In the previous chapter, the cells were classified by supervised machine learning based on 
single-time-point quantitative phase images gained by C C H M . However, some complex 
dynamic processes demand time-resolved live-cell imaging in order to correctly interpret 
the cell states. For that reason, in this chapter the methodology of classification will be 
adjusted in order to gain more information about cell behaviour from the time-lapse images. 
The time-lapse quantitative phase images of cells will be obtained and additional features, 
which represent the dynamic cell behaviour in time, will be extracted. Incorporation of time 
information into the classification process might help overcoming the confusion between 
different cell states with similar morphology and, therefore, could improve the performance 
of the classification of cells. However, it may also allow for classification of dynamic 
cellular processes, or even detection of stages within a process. The applicability of the 
proposed methodology will be demonstrated in the experiment with time-lapse quantitative 
phase images of live cells. 

8.1 Experiment Design 
The proposed approach was tested in the experiment with live adherent eukaryotic cells 
undergoing epithelial-mesenchymal transition (EMT) [59]. The E M T plays important role 
in cancer research. The cells undergoing E M T lose epithelial characteristics and gain 
invasive potential with the increased ability to migrate. Two morphologically distinct 
phenotypes can be observed during EMT: epithelial and mesenchymal. These were the two 
classes discriminated in the classification. 

Most stages of the classification process are similar to those in the classification based 
on static QPI as shown in Figure 17. However, as the input the time-lapse images gained 
by C C H M are used in order to take into account also the temporal context of the cell 
behaviour. In the image pre-processing, the cells are segmented from the background and 
identified as ROIs. Both morphometric and QPI features are extracted for each ROI (cell). 
Since the cells were recorded in time, the feature values in several time-instants provide a 
time series. 

There are two possible ways for the representation of time series. In the first one, the 
values of time series itself represent the input for the classification, which will be referred 
to as value-based approach. On the other hand, in the feature-based approach, the time series 
is further represented by the newly defined time-lapse features, which subsequently form 
time-lapse feature vector. The time-lapse feature vector therefore represents a unique 
behavioural pattern of a cell and creates an input for the classification. Even though there 
is an assumption that the feature-based approach is more robust and less sensitive to the 
amount of noise in the time series than the value-based approach, both options are examined 
in this work. 

In both approaches, the data are further split into training and testing set, while the 
training data are labelled by expert biologist. The features with the highest potential to 
distinguish between the given classes are selected and form an input for the classifier. The 
same set of supervised machine learning algorithms was used for the classification as in the 
previous case with static QPI. 
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To compare the perspective of value-based and feature-based approach, both 
approaches were applied on the data from the experiment with cells undergoing E M T and 
their performance was evaluated. In order to correctly evaluate the benefit of incorporating 
the temporal information over the classification based solely on the static QPI, the 
classification was performed also on the static quantitative phase images from the same 
experiment. The image processing, feature extraction and classification was performed in 
Matlab. 
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Figure 17: Overview of the proposed feature-based classification process based on time-lapse QPI . Firstly, 

image pre-processing is carried out. The cells in the image are segmented from the background and identified 

as regions of interest (ROIs). C e l l features are extracted for every R O I . Feature values in several time-instants 

create a time series. Dynamic features are extracted from the time series, while creating the feature vectors 

representing behaviour of cells. The data are split into training and testing set. The training data are labelled 

by expert biologist and after the feature selection form an input for the classifier. The classifier is trained on 

labelled data and prepared to perform the classification on testing unlabelled data. 

8.2 Epithelial-Mesenchymal Transition 
The epithelium is one or more layers of cells with different functions (e.g., cover, 
respiratory, etc.). The epithelial cells are closely adjacent and take on polyhedral shapes, 
while being connected by different types of intercellular connections. Epithelial tissue rests 
on thin extracellular film of fibrils called a basement membrane, which acts as a scaffolding 
on which epithelium can grow. The basement membrane acts as a selectively permeable 
membrane that determines which substances will be able to enter the epithelium. Epithelial 
cells have apical-basal polarity. Such arrangement ensures epithelial integrity and does not 
allow cells to migrate. On the other hand, the mesenchymal cells are characterized by 
increased migration capacity, invasiveness and increased production of extracellular matrix 
components. 

In the process of organism development, epithelial-mesenchymal transition (EMT) 
plays an important role. During EMT, the cells lose their epithelial features and acquire 
mesenchymal, fibroblast-like properties. Mesenchymal cells show reduced intercellular 
adhesion and increased motility, which allows them to move away from their epithelial cell 
community and to infiltrate into surrounding tissue, even at remote locations. 
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While being an essential process during development, E M T is also occurring under 
pathological conditions, particularly in fibrosis, wound healing and in invasion and 
metastasis of carcinomas. For that reason, E M T is considered as an important step in tumour 
progression and metastatic cascade. 

Normal epithelium lined by a basement membrane can proliferate locally to give rise 
to an adenoma as shown in Figure 18. Additional transformation by epigenetic changes and 
genetic modifications leads to a carcinoma in situ, still outlined by an intact basement 
membrane. Subsequently, the carcinoma cells can be locally disseminated after undergoing 
EMT. After the EMT, the cells weaken their intercellular adhesion and gain mobility which 
results in increased cellular migration and tissue changes. After the basement membrane 
becomes fragmented, the cells can penetrate into the bloodstream (intravasation) allowing 
them the transport to distant organs (extravasation). At secondary locations, the carcinoma 
cells that retain the ability to survive and divide can form a new carcinoma by means of a 
complementary process called mesenchymal-epithelial transition (MET) [60]. 

Normal epithelium Dysplasia/adenoma Carcinoma in situ 

Figure 18: The role of E M T and M E T in the progression of carcinoma. Normal epithelia on the basement 

membrane can proliferate to give rise to an adenoma. Further transformation may lead to a carcinoma. The 

E M T can induce local dissemination of carcinoma cells, while the basement membrane becomes fragmented. 

The cells penetrate into lymph or blood vessels and can transport to distant organs. A t secondary sites, 

carcinoma cells can extravasate and form a new carcinoma through M E T [60]. 

The transformation of epithelial cells into mesenchymal (Figure 19) is regulated by a 
sequence of strictly controlled molecular processes. At first, the intercellular junctions 
break down, then the apical-basal polarity changes to front-rear, the cytoskeleton is 
reorganized and the cell shape changes. The epithelial gene program is attenuated and the 
genes determining the mesenchymal phenotype are activated. The cells have increased cell 
mobility and invasiveness including the ability to produce extracellular matrix (ECM). Cells 
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that have undergone E M T have increased resistance to cell aging and apoptosis 
(programmed cell death). 

(a) (b) (c) 

Figure 19: The steps of epithelial-mesenchymal transition ( E M T ) . Polarized epithelial cells (a) lose their 

epithelial characteristics and reduce intercellular junctions and polarity (b). The cells acquire mesenchymal 

phenotype (c). The change is accompanied by degradation of the basal membrane [59]. 

E M T in cells may be induced by different physical, chemical or biological factors. 
EMT-inducing molecules include growth factors, cytokines, hormones, and E C M . The 
most well-known and most explored growth factor inducing E M T is transforming growth 
factor beta (TGF-P). The E M T in various epithelial cells can be induced by adding TGF-P 
to epithelial cells in culture [61]. 

The process of E M T is still not well understood and remains a subject for further 
research. The automated analysis of cells undergoing E M T based on QPI could have a 
significant meaning for the its study. 

8.3 Cell Culture Techniques 
The experiment was performed in cooperation with the research group "Molecular cancer 
and stem cell therapeutics" at Karolinska Institutet. For the experiment, N M u M G cells 
(normal murine mammary gland epithelial cells) provided by Karolinska Institutet were 
used. The cells were firstly grown attached to a solid surface and maintained in Dulbecco's 
modified Eagle's medium (Sigma-Aldrich, Czech Republic) supplemented with 
GlutaMAX™ (Life Technologies, Czech Republic), 10% fetal bovine serum (Sigma-
Aldrich, Czech Republic), 100 U/ml penicillin and 0.1 mg/ml streptomycin (Life 
Technologies, Czech Republic). The cells were grown in an incubator at 37°C and humid 
3.5% CO2 atmosphere. The cells were harvested by trypsinization and transferred into 
6 sterilised observation chambers u-Slide I (Ibidi GmbH, Germany). The seeding densities 
were 50 cells/mm2 in order to achieve sparse coverage for the purposes of segmentation of 
individual cells. The observation chambers were kept in the incubator under the same 
conditions. The chambers were imaged the next day after. The first three chambers were 
directly imaged, while in the other three chambers, TGF-P with the concentration 5ng/ml 
was added prior to the imaging. The cells were imaged immediately after TGF-P 
application. 

8.4 Image Acquisition 
The N M u M G cells were imaged by C C H M . During the experiment, the samples were 
illuminated with halogen lamp through the interference filter (X = 650 nm, 10 nm FWHM). 
Microscope objectives (Nikon Plan Fluor 20x/0.5) were utilised for the imaging. For the 
purpose of classification, it was essential to acquire reasonably large number of cells 
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undergoing EMT, therefore, six fields of view were imaged with the interval 5 minutes. 
Each chamber was imaged for 48 hours to obtain the time-lapse QPI for the classification. 
The cells in three chambers (control) were imaged in the cultivation media without any 
intervention. In the other three chambers, the cells were exposed to the TGF-P during 
imaging. 

The cells in the control chamber preserved characteristic epithelial morphology for the 
whole duration of the experiment. The cells in the chamber with added TGF-P started to 
change the morphology approximately 17 hours after the application of TGF-P . The cells 
became elongated and adopted mesenchymal morphology. These two morphologies later 
represented the categories for the classification. 

A l l time-lapse images of cells were gathered in the database. The database consisted of 
six 48 hour-long records. Since none of the cells remained in the field of view for the whole 
imaging, 150 minutes (30 time-lapse images with interval 5 minutes) were determined as 
an optimal length of the time-lapse record for one cell. 100 cells were chosen for the 
monitoring. Based on their morphology, the cells were labelled by the expert biologist as 
either epithelial (48 cells) or mesenchymal (52 cells). The cells with uncertain class 
membership were not considered and were excluded from the database. The two types of 
classified cell morphologies are shown in Figure 20. 

(a) (b) 

Figure 20: Examples of quantitative phase images of epithelial (a) and mesenchymal (b) phenotype gained 
by C C H M . 

8.5 Image Pre-processing and Feature Extraction 
The cells in the time-lapse quantitative phase images were segmented from the background 
by marker-controlled watershed segmentation in the same way as in the previous case with 
static images. The individual cells were tracked using the cell tracking algorithm scripted 
in Matlab. The algorithm performs cell tracking by linking every segmented cell in the 
given frame to the nearest cell in the next frame. Again, we did not consider highly 
overlapping cells where the segmentation was not clear. The cells located on the border of 
the image were excluded as well. We also considered only cells staying in the field of view 
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for the whole time determined by the experiment design. Subsequently, the cells were 
identified as separate ROIs (cells). 

Two types of cell features were extracted from each ROI: morphometric and QPI 
features. Each cell in one time instant is therefore represented by a feature vector composed 
of these cell features. Since every cell was recorded in time, each cell feature provides a 
univariate time series composed of the values of cell features over time. Considering all cell 
features therefore gives rise to a multivariate time series. The example of the multivariate 
time series composed of 11 time-lapse images of one cell can be seen in Figure 21. 

t [min] 

Figure 21 : Example of the multivariate time series segment. Each univariate time series is composed of the 

feature values obtained within 50 min with 5 min interval. Footprint area (FA), perimeter of the footprint area 

(PFA), convex area (CA), perimeter of the convex area (PCA), solidity (S), roundness (R), indentation (/), 

eccentricity (EC), extent (EX), total phase of the cel l ((ptotai), average phase (jiv), variance (Varv) and standard 

deviation of the phase (av), skewness (Skewv), kurtosis (Kurt,?), centroid X (X), centroid Y (Y). 

8.5.1 Time-lapse Feature Extraction 
In order to explain the formation of the final time-lapse feature vector in the feature-based 
approach, the brief notation will be introduced. Let X = [Xi, X2, XQ} represent 
a collection of Q multivariate time series, where Q is the number of cells in the experiment. 
Each multivariate time series X is formed by n observations (n is the number of time points) 
and J-dimensional variable (d is the number of cell features) as shown in Figure 22. The 
multivariate time series Xi can be written as 

Xi = {Xijt} , for j = 1,d; t = 1 , n , (16) 

with the total number of observations dnQ. 
We will consider the7-th component of the i-th time series Xij = [Xyi, Xij„} to be a 

univariate time series. Therefore, the univariate time series will be composed of the values 
of one cell feature recorded in time. For each univariate time series X>, a partial time-lapse 
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feature vector M = (mi, mi, mi) is formed, where each m is a time-lapse feature extracted 
from the time series and L is the number of time-lapse features. In this way, each time series 
Xij is transformed into a partial time-lapse feature vector My. 
Each multivariate time series is therefore transformed into d M-vectors. The vectors are 
then concatenated into a final time-lapse feature vector of dL dimensions. Such feature 
vector therefore represents a unique behavioural pattern of a cell. 

Multivariate time series 

Cell 3 1 
03« 2 

Cell 1 

Univariate t ime series 

Time instants 

Figure 22: Illustrative demonstration of the multivariate time series representing cel l behaviour. Each cell is 

represented by the multivariate time series composed of univariate time series (formed by cel l feature values 

obtained within a defined time period). 

There are several possible methods used for dealing with feature-based representation 
of the time series. The employed feature extraction techniques are briefly described in the 
following paragraphs. 

(a) Statistical features 
The statistical features carry the information about the time series in terms of global picture. 
The following metrics were chosen in order to statistically represent the structure of the 
time series: mean value, median value, standard deviation, minimum value, maximum 
value, skewness and kurtosis. 

(b) Fourier transform features 
The basic idea of spectral decomposition is that any time series can be represented by the 
superposition of a finite number of sine (and/or cosine) waves, where each wave is 
represented by a single complex number known as a Fourier coefficient as illustrated in the 
Figure 23. The Fourier transform [62] therefore generates an approximation to a time series 
using as a basis cosine and sine functions with frequency 0)j. The Fourier transform 
approximates a time series as follows: 

X(t) = ^ ( o / cos o) ;t + bj sin a) ;t), (17) 
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where X(t) is a time series which creates an approximation to X(t), B is a subset of the 
frequencies within the basis, aj is the coefficient related to the cosine basis function with 
frequency o)j, and bj is the coefficient related to the sine basis function with frequency o)j. 
Fast Fourier transform (FFT) algorithm was employed for the time series representation. 
The features extracted by the Fourier transform for the purpose of classification contain the 
coefficient pairs aj and bj for each frequency 0)j in B. The representation of the time series 
is therefore in the frequency domain. There are many advantages to that, one of them is data 
compression. A signal of length n can be decomposed into n sine/cosine waves that 
approximate the original time series. However, many of the Fourier coefficients have very 
low amplitude and thus contribute little to approximation of the time series. Only the largest 
coefficients are chosen and are stored as the time-lapse features, thereby producing 
compression. 

_ i 1 , 1 — ^ 

Time 

Figure 23: The illustration of application of the Fourier transform on the time series. The first four Fourier 

bases can be combined in a linear combination to produce X, an approximation of the time series X. 

(c) Wavelet transformation features 
The wavelet transform [63] uses a basis containing waveforms that are localized in space 
and, therefore, is more suitable for approximating time series including local structures than 
Fourier transformation. The wavelet transform uses a basis including n (length of the time 
series) waveforms. The basis waveforms are derived from scaling and translations of a 
mother wavelet ip. The wavelet transform can be thought as a cross-correlation of a signal 
with a set of wavelets of various scales at different time positions. The transforms are 
ordered based on the degree of localization in the resulting basis waveform such that j is 
the / * transform. With the increasing j, the basis waveforms become more localized 
(detailed). The wavelet transformation approximates a time series as follows: 

X(i)=Yj<t>jM>j(t). (18) 
jeB 

50 



where X(t) is a time series which creates an approximation to X(t), B is a subset of the 
transforms of ip within the basis, and <pj is the coefficient related to the basis waveform ipj. 
Algorithm computing discrete wavelet transform (DWT) was employed for the time series 
representation. The features extracted by the wavelet transform contain the approximation 
coefficients <pj for each transform j in B. While the first few coefficients contain an overall, 
coarse approximation of the data, the additional coefficients represent the details in the 
original time series. The approximation better represents the data as the number of 
transforms in B increases. The largest coefficients are chosen and saved as the time-lapse 
features. 

(d) Trend 
The trend is represented by the coefficients obtained by the linear least squares fitting of 
the time series. The trend characterizes a long-term change in the mean value of the cell 
feature. 

(e) Entropy 
Approximate entropy is a method for estimating the complexity of time series data. It 
quantifies the unpredictability of fluctuations in the time series. The presence of repetitive 
patterns of fluctuation in a time series renders it more predictable than a time series in which 
such patterns are absent. A time series containing many repetitive patterns has a relatively 
small approximate entropy while a less predictable process has a higher value. 

(f) Symbolic aggregate approximation features 
The symbolic aggregate approximation (SAX) method [64] has been developed to reduce 
the dimensionality of a time series into a short chain of symbols. S A X is composed of two 
steps: piecewise aggregate approximation (PAA) [65] and the conversion of a P A A 
sequence into a string composed of letters. P A A divides the original time series of 
length n into w equally spaced segments and computes the mean values for each segment. 
The sequence assembled from the mean values is the P A A representation of the original 
time series where the number of dimensions was reduced from n to w. Each segment is 
subsequently mapped into a symbol (letter) corresponding to the region in which it resides. 
The length of segments and alphabet size (number of symbols used) are two parameters to 
be specified. As such, the original time series is converted to a symbol string. 

A l l so far mentioned time-lapse features were extracted from each of the univariate 
time series and created a partial time-lapse feature vector as shown in Figure 24. 

Stat ist ical FFT D W T S A X 
1 

Trend 
Entropy 

Figure 24: Time-lapse feature extraction from the univariate time series. Extracted time-lapse features are 

assembled into a partial time-lapse feature vector. Individual segments represent the group of time-lapse 

features obtained by the particular extraction technique. The length of the segments indicates the approximate 

number of extracted time-lapse features for the particular group. 

Subsequently, the partial time-lapse feature vectors obtained from each univariate time 
series were concatenated into a final time-lapse feature vector, while other extracted time-
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lapse features (principal components analysis and motion features) were added on the tail 
as shown in Figure 25. The principal components analysis and motion features were 
extracted in a different way, which will be described in the next sections. 

... + 
1 \ 

PCA features 
Motion features 

Figure 25: F ina l time-lapse feature vector construction. The final feature vector representing a single cell is 
formed by concatenation of partial time-lapse feature vectors obtained from univariate time series of QPI and 
morphological cel l features. In addition, the motion and P C A features are added. 

(g) Principal components analysis features 
Principal components analysis (PCA) [66] is a statistical technique used to eliminate the 
less significant components (features) and reduce the data representation only to the most 
significant ones. While the other mentioned time-lapse feature extraction techniques were 
applied on the univariate time series formed by the cell feature values recorded in time, 
PCA was applied on the whole multivariate time series. PCA maps the multivariate data 
into a lower dimensional space. Given n observations of d features in the multivariate time 
series, the goal of PCA is to reduce the dimensionality of the data matrix by finding r new 
variables, where r is less than d. Termed principal components, these r new variables 
together account for as much of the variance in the original n variables as possible while 
remaining mutually uncorrelated and orthogonal. After the PCA, the values in the columns 
are coefficients of the principal components that are related to each of the n time points. 
Only the first k principal components are kept stored in the final time-lapse feature vector, 
since they contain most of variance in the data. 

(h) Motion features 
The motion characteristics such as accumulated distance, Euclidean distance, motion speed 
or directionality of the cell movement were calculated from the cell centroids. 

Accumulated distance is the overall distance travelled by the cell between the initial 
and the end point as shown in Figure 26 and is calculated as 

n 

da = ^ V ( x i - X i - i ) 2 + (yi-yt-i)2, 
i=l 

where n is the number of time points in which the x and y coordinates were recorded. 

Time-lapse features Time-lapse features Time-lapse features 

extracted from FA extracted from P F A extracted from CA 

Euclidean distance is defined as the length of the straight line between the cell starting 
and end point and is calculated as 

n 

d-Euclid = ^ V \ x end~ x in i ) 2 + (.yend~yini)2 • 
i=l 
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y n 

Figure 26: Representation of the Euclidean distance and accumulated distance. The red line depicts the 

accumulated distance and the blue line Euclidean distance. 

Velocity of the cell motion is calculated as the overall distance travelled by the cell over 
the elapsed time: 

da 

v = —. 
t 

Directionality of the cell motion is calculated by comparing the Euclidian distance to 
the accumulated distance as follows: 

_ dEuclid 

da 

The values of directionality closer to zero report about indirect motion, while he values 
close to one indicate straight motion. The described motion characteristics were added into 
the final time-lapse feature vector. 

In the value-based approach, the extraction of time-lapse features is omitted, since the 
final time-lapse feature vector is composed of the raw data (values in each time point) 
contained in the multivariate time series. The final time-lapse feature vector is created by 
concatenating the univariate time series behind each other. 

In both approaches, the final time-lapse feature vector represents a unique behavioural 
pattern of a cell. Before passing the vectors to the classification algorithms, the time-lapse 
feature values are scaled to a fixed range from 0 to 1 according to Equation (12). The 
example of a set of final time-lapse feature vectors gained by feature-based approach can 
be seen in Figure 27, where the first 32 rows represent feature vectors extracted from 
epithelial cells and the other 35 rows from mesenchymal cells with the columns 
representing individual time-lapse feature values. The data are further split into training and 
testing set, while the training data are labelled by expert biologist. Since the final time-lapse 
feature vectors are of substantial size, the next step is the selection of features with the 
highest potential to distinguish between the given classes, which would then form an input 
for the machine learning classification algorithms. 
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Figure 27: Example of the final time-lapse feature vectors concatenated into matrix. Elements of the matrix 

contain the (normalized) time-lapse feature values, and are visualized using colour: from blue (low values) to 

yel low (high values). First 32 rows represent time-lapse feature vectors extracted from epithelial cells and the 

other 35 rows from mesenchymal cells. 

8.6 Feature Selection 
In case of classification of cells based on static QPI, the feature selection was done by 
statistical analysis of each feature, which would estimate the potential of the particular 
feature to distinguish between given classes. Since here the time-lapse feature vectors are 
composed of considerably higher number of features (more than 660 and 500 features in 
feature-based and value-based approach, respectively), the feature selection is performed in 
an automated and more effective manner. 

Moreover, in this case, when the number of observations is limited in comparison to 
large number of features, the large amount of features is not desirable for producing a 
desired learning result and the limited observations may lead the learning algorithm to 
overfit to the noise. Reducing the number of features is therefore in this case an essential 
step before the classification. Moreover, the reduction of features leads to lower 
computation complexity, which makes the whole process less time-consuming. 

Several methods exist for the feature selection [67] and can be clustered into two 
groups: filter methods and wrapper methods. Filter methods depend on general 
characteristics of the data in the evaluation and selection of features, while not involving 
the learning algorithm. On the other hand, the wrapper methods use the performance of the 
chosen learning algorithm to evaluate the potential of individual features. Wrapper methods 
search for features better fit for the chosen learning algorithm, which leads to the final 
reduced set of feature optimized for the specific classification algorithm. Since we use 
several algorithms for the classification in this work, this is not desirable. Moreover, the 
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wrapper methods can be significantly slower than filter methods. For that reason, we apply 
the filter approach for the feature selection. 

Firstly, the f-test was applied on each feature and the p-value for each feature was 
compared as a measure of the feature's ability to discriminate between the two classes. To 
estimate the order of class separation by the features, the empirical cumulative distribution 
function (CDF) of the p-values was plotted. CDF of the p-values for the feature-based 
approach is shown in Figure 28. There are approximately 15% of features, which have the 
p-values close to zero and 30% of features having the p-values smaller than 0.05. It can be 
concluded that there are roughly 200 features in the original time-lapse feature set, which 
have a potential to separate the two cell classes. 
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Figure 28: Cumulative distribution function of the p-values for al l time-lapse features gained by feature-
based approach. 

In the value-based approach (Figure 29), there are approximately 18% of features, 
which have the p-values close to zero and 30% of features having the p-values smaller than 
0.05. CDF of the p-values showed that there are roughly 150 features from the original time-
lapse feature set having rather high discriminative power. 
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Figure 29: Cumulative distribution function of the /^-values for a l l time-lapse features gained by value-based 
approach. 

The features were subsequently ordered by their p-values. In order to define the 
appropriate number of features to be selected, the classification error (the number of 
misclassified observations divided by the number of observations) as a function of the 
number of features was plotted. To obtain the classification error, several classification 
algorithms were employed. The results of the classification error in feature-based and value-
based approach when using S V M are shown in Figure 30 and Figure 31, respectively. The 
classification error was computed for different numbers of features between 2 and 30. The 
final number of selected features was determined as the mean value of the results produced 
by employing different classification algorithms. 

In feature-based approach, the filter feature selection method obtains the smallest 
classification error when 10 features are engaged. Only these 10 features with the highest 
discriminative power are kept in the reduced time-lapse feature vectors used for the 
classification. In value-based approach, 12 features were determined as optimal. 
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Figure 30: The classification error as a function of the number of features (using S V M classifier) in feature-

based approach. 
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Figure 31: The classification error as a function of the number of features (using S V M classifier) in value-

based approach. 

8.7 Classification Results 
After the features with the highest potential to distinguish between the epithelial and 
mesenchymal cell classes were selected, they create the input for the classification 
algorithms. The same set of supervised machine learning algorithms was used for the 
classification as in the previous case with static QPI. 

The classification was firstly performed on the reduced time-lapse feature vectors 
gained by value-based approach. The same procedure was repeated for the reduced time-
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lapse feature vectors gained by feature-based approach. Moreover, the classification was 
performed also on the features extracted from the static images in order to evaluate the 
potential of the methodology based on time-lapse QPI. 

Performance measures (accuracy, precision, recall and F-score) of each classification 
algorithm were determined as a mean of the values obtained by 5-fold cross-validation. The 
overall performance of the classification was determined as the mean of performance 
measure values reached by all classification algorithms. The whole classification procedure 
was performed in Matlab. 

The performance of the classification implementing the value-based approach is 
summarized in Table 4. The overall accuracy of the classification was 0.924 + 0.054. The 
overall precision, recall and F-score were 0.908 + 0.052, 0.883 + 0.089 and 0.894 + 0.071, 
respectively. 

Table 4: Performance of the classification by different supervised machine learning algorithms using the 

value-based approach. 

Accuracy Precision Recal l F-score 

Decision trees (complex) 0.782 0.832 0.628 0.716 
Decision trees (medium) 0.883 0.842 0.828 0.835 

Decision trees (simple) 0.893 0.862 0.831 0.846 

Linear discriminant analysis 0.972 0.958 0.954 0.956 

Quadratic discriminant analysis 0.915 0.896 0.886 0.891 
S V M (linear) 0.950 0.941 0.933 0.937 

S V M (quadratic) 0.971 0.961 0.952 0.956 
S V M (cubic) 0.982 0.978 0.972 0.975 
S V M (Gaussian medium) 0.986 0.982 0.979 0.980 

K N N (fine) 0.948 0.939 0.924 0.931 
K N N (medium) 0.918 0.896 0.889 0.892 

K N N (cosine) 0.936 0.892 0.876 0.884 

K N N (cubic) 0.891 0.854 0.843 0.848 

K N N (weighted) 0.882 0.832 0.828 0.830 

Bagged trees 0.822 0.826 0.703 0.760 

Subspace discriminant 0.954 0.938 0.943 0.940 

Subspace K N N 0.978 0.961 0.959 0.960 

Boosted trees 0.936 0.914 0.908 0.911 

Neural networks 0.958 0.941 0.939 0.940 

M E A N ± SD 
0.924 + 0.908 + 0.883 + 0.894 + 

M E A N ± SD 
0.054 0.052 0.089 0.071 

The performance of the classification using the feature-based approach is summarized in 
Table 5. Representing the cell behaviour by the time-lapse features led to higher 
performance of the classifier as in the case of value-based approach, with the overall 
accuracy of the classification reaching 0.976 + 0.011. In this case, the overall precision, 
recall and F-score were 0.966 + 0.014, 0.960 + 0.013 and 0.963 + 0.014, respectively. 
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Table 5: Performance of the classification by different supervised machine learning algorithms using the 

feature-based approach. 

Accuracy Precision Recal l F-score 

Decision trees (complex) 0.979 0.968 0.961 0.964 

Decision trees (medium) 0.985 0.978 0.971 0.974 

Decision trees (simple) 0.988 0.982 0.979 0.980 

Linear discriminant analysis 0.966 0.958 0.952 0.955 

Quadratic discriminant analysis 0.979 0.963 0.957 0.960 

S V M (linear) 0.948 0.948 0.942 0.945 

S V M (quadratic) 0.988 0.984 0.979 0.981 

S V M (cubic) 0.987 0.986 0.972 0.979 

S V M (Gaussian medium) 0.989 0.986 0.981 0.983 

K N N (fine) 0.968 0.958 0.942 0.950 

K N N (medium) 0.986 0.982 0.965 0.973 

K N N (cosine) 0.984 0.979 0.969 0.974 

K N N (cubic) 0.966 0.954 0.948 0.951 

K N N (weighted) 0.968 0.949 0.946 0.947 

Bagged trees 0.985 0.98 0.969 0.974 

Subspace discriminant 0.978 0.961 0.952 0.956 

Subspace K N N 0.959 0.94 0.938 0.939 

Boosted trees 0.968 0.951 0.948 0.949 

Neural networks 0.976 0.965 0.958 0.961 

M E A N ± SD 
0.976 + 0.966 + 0.960 + 0.963 + 

M E A N ± SD 
0.011 0.014 0.013 0.014 

In order to correctly evaluate the benefit of incorporating the temporal information over 
the classification based solely on the static QPI, the classification was performed also on 
the static quantitative phase images of cell undergoing EMT. The static QPI images were 
obtained from the time-lapse data by selecting one image from each time-lapse sequence. 
The classification of epithelial and mesenchymal cells based on the static QPI was 
performed according to the methodology described in Section 6.2. The performance of the 
classification based on single-time-point QPI is summarized in Table 6. The overall 
accuracy of the classification was 0.890 + 0.052. The overall precision, recall and F-score 
were 0.874 + 0.054, 0.839 + 0.100 and 0.855 + 0.078, respectively. 
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Table 6: Performance of the classification by different supervised machine learning algorithms using the 

static QPI . 

Accuracy Precision Recal l F-score 

Decision trees (complex) 0.886 0.837 0.832 0.834 

Decision trees (medium) 0.892 0.863 0.885 0.874 

Decision trees (simple) 0.926 0.931 0.921 0.926 

Linear discriminant analysis 0.958 0.944 0.941 0.942 

Quadratic discriminant analysis 0.895 0.845 0.823 0.834 

S V M (linear) 0.916 0.899 0.882 0.890 

S V M (quadratic) 0.885 0.963 0.951 0.957 

S V M (cubic) 0.945 0.935 0.928 0.931 

S V M (Gaussian medium) 0.938 0.915 0.908 0.911 

K N N (fine) 0.897 0.872 0.846 0.859 

K N N (medium) 0.763 0.811 0.620 0.703 

K N N (cosine) 0.895 0.866 0.852 0.859 

K N N (cubic) 0.794 0.795 0.622 0.698 

K N N (weighted) 0.793 0.760 0.658 0.705 

Bagged trees 0.869 0.838 0.772 0.804 

Subspace discriminant 0.893 0.852 0.841 0.846 

Subspace K N N 0.942 0.922 0.902 0.912 

Boosted trees 0.938 0.921 0.912 0.916 

Neural networks 0.889 0.842 0.838 0.840 

M E A N ± SD 
0.890 + 0.874 + 0.839 + 0.855 + 

M E A N ± SD 
0.052 0.054 0.100 0.078 

The performance of the classification obtained by the mentioned classification 
approaches were compared by statistical hypothesis testing. The Wilcoxon signed rank test 
was used in order to reveal the significant differences between the three distributions. The 
null hypothesis is that the median difference between pairs of observations is zero. P-value 
0.05 was considered to be statistically significant. The test revealed very significant 
differences between the feature-based and value-based time-lapse classification approaches 
(p < 0.001) in terms of all performance parameters (accuracy, precision, recall and F-score). 
Significantly different results (p < 0.001) were obtained also from the classification based 
on static QPI and the classification based on time-lapse QPI employing the feature-based 
approach. According to the test, the classification based on static QPI and the classification 
based on time-lapse QPI using the value-based approach provided different performance of 
the classification with a lower significance (p < 0.01 for precision and p < 0.05 for other 
performance parameters). The methodology based on time-lapse QPI employing the 
feature-based approach appears superior in terms of the classification performance in 
comparison to other two approaches. The classification based on time-lapse QPI using the 
value-based approach reached slightly lower performance, however it outperforms the 
classification based on static QPI, which does not consider the temporal information. The 
performance results of all approaches are shown in the form of box-whisker plots in Figure 
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32. It should be noted that the methodology based on time-lapse QPI employing the feature-
based approach shows much lower variance of the classification performance achieved by 
different algorithms than other two approaches. 
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Figure 32: Box-whisker plots of overall classification performance of classification based on static QPI , time-

lapse QPI (value-based and feature-based approach): (a) accuracy, (b) precision, (c) recall and (d) F-score. 

W i l c o x o n signed rank test was used for the statistical analysis. Symbols indicating significance are placed 

above (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

Several conclusions can be drawn from the results of the classification. The 
classification based on time-lapse QPI using either value-based or feature-based approach 
outperforms the classification based on static QPI, which does not consider the temporal 
information. Hence, taking into account the time information appears to improve the 
classification of the two cell phenotypes. 

However, when it comes to the classification based on time-lapse QPI, the feature-
based approach outperforms the value-based approach. The low performance values in the 
value-based approach can be a consequence of many factors. The main reason might be that 
the features, which are in this case the raw time series data, do not fully represent the cell 
behaviour. The other possibility is the increased sensitivity of this approach to the amount 
of noise in the time series. 

Although the performance of the classification based on time-lapse QPI using the 
feature-based approach was rather high, further improvement could be achieved by 

61 



enlargement of the time-lapse QPI dataset, which would allow the classification algorithms 
to improve the training based on more extensive data. 

Even though the methodology was demonstrated only in the experiment with cells 
undergoing EMT, the approach might also contribute to higher performance when it comes 
to different classification tasks. 

Furthermore, it should be noted that the results of the experiment also have the 
significant meaning for the study of EMT. Even these days, the process of E M T is still not 
well understood and therefore it is a subject for many currently performed studies. To my 
present knowledge, this has been the first time the cells undergoing E M T were monitored 
by digital holographic microscopy. The classification of cell phenotypes and therefore 
determining the E M T stages based on QPI may contribute to the study of E M T mechanisms 
and help understand the whole process, which would unquestionably play important role 
for the cancer research. 
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9. Conclusions 
The thesis focuses on the application of supervised machine learning for the interpretation 
of the quantitative phase images obtained by C C H M . The objective was to define a 
methodology, which would assist during the analysis of live cell behaviour by means of 
C C H M , exploiting the quantitative nature of the images it provides. Several partial steps 
were achieved towards this objective. 

Firstly, the methodology for the classification of cells in the single-time-point 
quantitative phase images was proposed. Two types of cell features characterising the cell 
behaviour were defined and extracted from the quantitative phase images. Commonly used 
morphometric features, describing mostly the shape and morphology of the cell, represent 
the first type. The ability of C C H M to provide quantitative phase contrast enables to extract 
the other type of features, which are based on the phase distribution in the cell region and 
provide information about the dry mass density distribution within the cells. These features 
are referred to as QPI features. The performance of the proposed methodology was 
demonstrated in the experiment with deprived cells, while three types of cell morphologies 
were being distinguished. After the pre-processing steps, both mentioned types of cell 
features were extracted from the quantitative phase images and their potential to 
discriminate between defined classes was assessed both visually using box-whisker plots 
and statistically by Welch's Mest. Several supervised machine learning algorithms were 
used for the classification. The results from the classification based on QPI features were 
compared with the classification based on commonly used morphometric features. Based 
on the results it was assumed that the classification employing also quantitative phase 
information outperforms the commonly used method based solely on the morphometric 
features. 

However, in order to take into account also the dynamics of monitored cells, the 
methodology based on time-lapse quantitative phase images was proposed. In this method, 
the time-lapse features representing the cell dynamic behaviour were proposed and 
extracted, with the best features selected for the classification. Two approaches for the time-
lapse feature extraction were used: value-based and feature-based approach. Both 
approaches were tested and compared in the experiment with live cells undergoing 
epithelial-mesenchymal transition. Moreover, both approaches were compared with the 
methodology based on the single-time-point quantitative phase images. The results showed, 
that the methodology based on time-lapse images exploiting the feature-based approach 
outperforms the other methods. Despite of the challenging time-lapse feature extraction, the 
proposed approach based on incorporating the temporal information into the classification 
process provides a novel, yet efficient way to classify the cells in quantitative phase images 
with promising performance results. 

However, it is worth to note that even though considering of the temporal context 
resulted in better performance in this particular experiment, it is highly possible, that the 
methodology based on single-time-point images may be sufficient or even become superior 
in case of different classification tasks. Such outcome may occur in the classification tasks, 
where the temporal information does not play important role and the morphology of cells 
belonging to different classes is clearly distinguishable from one image. In such case, where 
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the single-time-point image is a sufficient source of information, one should prefer this 
approach in order to avoid the extra complexity of the time-lapse approach. The 
performance of both methodologies might be, therefore, dependent on the particular 
classification task. 

Even though the interpretation of cell behaviour in quantitative phase images by means 
of supervised machine learning was presented only for the two specific classification tasks, 
both proposed methodologies might also contribute to higher performance when it comes 
to different tasks. There are several applications for which the methodology could mean a 
valuable help, e.g. the monitoring of cell live cycle, cell death, reaction of cells to treatment, 
interaction of cells with material (biocompatibility testing), detection of different 
experimental conditions or distinguishing different cell lines. The detailed description of 
possible applications are provided in Section 10. 

Although the performance of the classification in the experiments was rather high, there 
are several options for the further improvement, e.g. enlargement of the training set, tuning 
of the classification algorithms or extraction of additional features. The foremost goal of 
the future work will be the implementation of these proposals, which will be further 
discussed in Section 10. 

The overall outcomes suggest that C C H M offers strong preconditions for an accurate 
automated analysis of live cell behaviour, while the main asset of the technique lies in the 
quantitative nature of the images it provides. I believe that this work might provide a 
stepping stone for the high-throughput automated analysis of specific cell behaviour by 
means of C C H M . The future aim is to define a complex tool, which would provide 
assistance during the analysis of live cell behaviour in the laboratory of Experimental 
Biophotonics. I believe that such tool could strengthen the role of C C H M as a valuable 
microscopy technique for automated analysis of live cell behaviour, and contribute to the 
promoting this microscopy technique as a standard diagnostic method in biology and 
medicine. The next steps, which are necessary for further progress towards this direction 
are summarized in the future outlook. 

It should be noted, however, that this work does not represent a complete summary of 
my work during the PhD study, but rather a major part of it. During that period of time, I 
focused on several other projects in the Experimental Biophotonics research group, e.g. the 
study of adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma 
polymers by C C H M [28], quantitative phase imaging of plasmonic metasurfaces [30] or 
vortex topographic microscopy for full-field reference-free imaging and testing [68]. Part 
of the results gained during my PhD study were published in 4 peer-reviewed scientific 
journals with impact factor and presented at 8 conferences (6 foreign and 2 domestic). The 
complete list of publications can be found in Section 12. 
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10. Future Outlook 
The proposition and implementation of the methodology for classification of cells by means 
of machine learning in both time-lapse and single-time-point quantitative phase images 
serves as a solid foundation for continuing research in the field of automated interpretation 
of quantitative phase images. As was already mentioned in the previous section, there are 
several options for the further improvement. This section contains a discussion of some of 
those options along with the proposed solutions. 

First of all, future work could focus on adding new types of features found to be useful 
for time series classification, since there are several other features discussed in the literature, 
which could lead to higher performance of the classification. 

It is possible that different classification algorithms will achieve different results 
depending on the classification task. It would be beneficial to know which algorithm 
performs the best in a specific task. To address this issue, experiments can be performed to 
map the most appropriate classification algorithms to the specific applications, so that each 
application would have a preferred algorithm that is likely to be most effective. 

The other option is the refinement of the classification algorithms by tuning their 
parameters. However, the parameters of an algorithm might be also dependent on the 
classification task. Further experiments could clarify the best possible tuning for specific 
applications. 

So far, the classification of time series data was performed on rather small number of 
examples. The enlargement of the database of quantitative phase images and, therefore of 
the training set, might enable the classifier to improve the performance by training based 
on more extensive data. This could however lead to overtraining and worse generalisation 
for the new examples. The additional experiments are needed to evaluate the potential 
contribution of additional training data. 

Another important issue regarding the classification based on time-lapse data is the 
determination of appropriate intervals for image acquisition. The suitable intervals might 
be different when it comes to diverse dynamic cell processes and each classification task 
should have the determined interval to be used. In future, intervals with variable length will 
be tested and the appropriate intervals will be estimated for the specific classification tasks. 

Furthermore, the feature selection process could be enhanced. So far, only filter 
approach was implemented in order to select the features with the highest discriminative 
power. Future work might therefore involve the application of wrapper methods, which 
would consider the performance of a specific classification algorithm for a particular 
classification task. 

So far, only the supervised machine learning algorithms were implemented for the 
classification. In the future, the potential of unsupervised machine learning and deep 
learning (by convolutional neural networks) will be studied. 

Another possible improvement can be seen in optimization of the Matlab code. 
Maximizing code performance might speed up the whole process. 
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As it has been already mentioned previously, the presented methodology can also be 
used for investigating other cell states or events. Example of further applications may 
include the following: 

• Detection of apoptosis. Apoptotic cells exhibit characteristic changes related to 
cell shrinkage and nuclear fragmentation. Detection of these changes could 
contribute to automated analysis of cell viability during various experiments. 

• Classification of apoptotic versus oncotic cells. The classification of these two 
types of cell death could be important for diagnostics, dose-response, and 
toxicological studies. Some experiments have already been performed 
regarding the distinction between apoptosis and oncosis by means of QPI [69], 
however machine learning has not been employed so far. 

• Drug testing. Testing the drugs by monitoring of cell reaction to the applied 
treatment is a commonly used method in cancer therapy. The classification of 
treated versus resistant cells would help to automate drug testing, which would 
make the personalised cancer therapy more feasible in the future. 

• Biocompatibility assessment. The interaction of cells with engineered 
biomaterials plays an important role for the biomaterials development and 
bioengineering. Here the automated evaluation of material biocompatibility 
could be applied by classifying viable versus less viable cells interacting with 
the material. 

• Mitosis detection. Detection of mitosis, or its stages could contribute to 
automated monitoring of cell live cycle. 

• Cancer diagnostics. Several classification tasks that could contribute to 
diagnosis of cancer are proposed here: 

• classification of healthy versus cancer cells, 

• classification of primary cancer cells versus metastatic cells (the 
capability of QPI to differentiate between the classes has already been 
studied in [70]), 

• distinguishing cells with different metastatic potential (the pilot study 
has been performed in [71]). 

• Detection of different experimental conditions based on altered cell behaviour. 

• Indication of diseased cells. It has been shown that information measured by 
QPI can be used as an effective indicator to quantitatively analyse the 
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physical and chemical alterations in diseased red blood cells [72]. The 
process has not been yet automatized by machine learning. 

The future work will focus on employing the proposed methods in the mentioned 
experiments, while the ultimate goal will be development of the complex system for the 
assistance during the analysis and interpretation of live cell behaviour by C C H M . 
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