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Abstract:  

Meningiomas represent more than 20% of all intracranial tumors and their growth rate is 

highly variable. Even some benign forms may grow faster and progress at a later stage. 

Biomarkers that could identify aggressive and potentially recurrent meningiomas early and thus 

allow prediction of their biological behavior are scarce in current clinical practice. 

This thesis is primarily focused on the screening (microarray, NGS) and validation (RT-

qPCR) of new prognostic biomarkers in meningiomas using coding and non-coding ribonucleic 

acids. Moreover, RNA in-situ hybridization was used for the MEG3 tracking within the 

meningioma tissue. Archive tissue samples of surgically removed meningiomas were used in 

all analyses.   

Multivariate Cox models identified decreased miR-331-3p expression and increased lnc-

GOLGA6A-1 expression as the most effective markers for the recurrence risk estimation. 

Additionally, decreased cluster formation and increased nuclear localization of MEG3 were 

correlated with a higher probability of meningioma recurrence.  

Our findings might lead to improvement of postoperative care by optimization of follow-

up surveillance as well as the discovery of new therapeutic targets. 

 

Abstrakt:  

Meningiomy představují více než 20% všech intrakraniálních nádorů a jejich rychlost 

růstu je velmi variabilní. I některé benigní formy mohou rychleji růst a v pozdější fázi 

progredovat. Biomarkerů, které by včasně identifikovaly agresivní a rekurentní meningiomy a 

umožnily tak predikci jejich biologického chování, je v současné klinické praxi nedostatek.  

Tato práce je primárně zaměřena na screening (microarray, NGS) a validaci (RT-qPCR) 

nových prognostických biomarkerů u meningiomů pomocí kódujících a nekódujících 

ribonukleových kyselin. Kromě toho byla pro sledování MEG3 ve tkáni meningiomu použita 

RNA in situ hybridizace. Ve všech analýzách byly použity archivní vzorky tkáně chirurgicky 

odstraněných meningiomů.       

Multivariátní Coxovy modely identifikovaly jako nejúčinnější markery pro odhad rizika 

recidivy sníženou expresi miR-331-3p a zvýšenou expresi lnc-GOLGA6A-1. Navíc snížená 

tvorba klastrů a zvýšená nukleární lokalizace MEG3 korelovaly s vyšší pravděpodobností 

recidivy meningiomu. 

Naše zjištění by mohla vést ke zlepšení pooperační péče v průběhu dispenzarizace a k 

objevu nových terapeutických cílů. 
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1. Detailed introduction to the thesis 

Clinical, histopathological, and biological characteristics of meningiomas and already 

available prognostic markers are described in this chapter. Due to the fact that the experimental 

work is based on the analysis of various types of RNAs (ribonucleic acids), non-coding RNAs 

are also introduced. The emphasis is placed on microRNAs (miRNAs) and long non-coding 

RNAs (lncRNAs) in the context of coding genes, thus messenger RNAs (mRNAs) are included 

as well.  

 

1.1 Meningiomas 

These tumors arise from brain envelopes (meninges), most probably from the arachnoid 

layer, which represents the thinnest and softest meninges [1]. This fact explains, why the 

meningiomas are often localized near to the inner side of the skull (Fig. 1A) and rarely within 

the spine, where meninges are also located [2]. It was generally supposed that these tumors are 

derived from cap cells located in leptomeninges (arachnoid matter and pia mater representing 

soft and thin meninges) [1] [2] [3] [4], but this hypothesis has never been proven and the cellular 

features of these tumors are reflecting various cell types [2] [5]. Only one study, which was 

focused on the origin of meningioma cells experimentally proved that meningiomas are more 

probably originated in meningeal precursor cells with high expression of prostaglandin D 

synthase (PGDS) [6]. Nevertheless, this study was performed using PGDS-Cre model mice and 

only two benign meningioma histological subtypes were derived. Deciphering the origin of 

meningiomas complicates also the fact that meninges can have both mesodermal and neural 

crest histogenetic origin according to their cranial localization [6] [7]. The presence of cancer 

stem cells (CSC) in meningiomas was also identified according to the cultivation experiments 

and expression of the markers such as nestin, vimentin, and CD133 [4]. Yet, the biological 

context of CSC in meningioma pathogenesis is still not fully elucidated, as in the case of the 

other benign tumors [4] [8]. Although approximately 80% of all surgically resected 

meningiomas are benign, grow slowly, and do not invade the brain itself, more aggressive forms 

of those tumors also exist [3] [9]. According to the actualized WHO (World Health 

Organization) classification of brain tumors from 2016, there are three histopathological grades 

of meningiomas according to their degree of differentiation corresponding to their invasiveness, 

growth rate, and the probability of recurrence [9] [10]. Besides benign meningiomas (WHO 

grade I), there are also atypical meningiomas (WHO grade II), which can grow more rapidly 

and can invade the brain itself (18% of diagnosed meningiomas). The rarest cases (2% of 
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diagnosed meningiomas) are represented by malignant, so-called anaplastic meningiomas, 

which recur more frequently than lower grade meningiomas and are typical for their invasion 

into the brain [9] [11] [12]. However, future recurrence itself cannot be estimated only 

according to WHO grade; surgically removed benign tumors can also recur. In approximately 

25% of patients with WHO grade I meningiomas recur during 10 years after surgical resection 

of the tumor [11].  

The extent of surgical resection also influences the probability of meningioma recurrence 

[11]. Total resection is defined as the removal of the whole tumor with attached dura mater (the 

hardest meninges; Fig. 1C) and potentially affected bone. This procedure is not possible to 

perform in each case because of the risk of blood supply disruption, brain injury, or inaccessible 

location of the tumor [13]. Thus, in 1957, Simpson grade (SG) was defined according to extent 

of surgical resection and this parameter is determined by the surgeon [14]. SG I represents total 

resection with the lowest probability of recurrence (Fig. 1B). SG II – III are gross total 

resections, where the tumor itself is removed completely, but parts of the attached structures 

(bone, dura mater) remain [9] [13] [14]. SG IV is incomplete resection of the tumor, where the 

risk of recurrence is almost five times higher than in SG I. Only biopsy and decompression of 

the affected area are marked as SG V [11].  

                  

Figure 1. Pre-operative (A) and postoperative (B) CT scans show a left-sided meningioma-like 

contrast-enhancing tumor, originating at the left sphenoid wing. Postoperative CT scan 1 year 

after surgery shows that the tumor was completely removed and does not recur (images kindly 

provided by Dr. Vladimir Balik). Completely resected meningioma with attached dura mater 

(DM; C) adapted from Shivapathasundram’s review article [4].  

 

Neurosurgery is the most often way how to effectively treat meningiomas, but there is a 

high risk of postoperative complications and further consequences, such as the development of 

anxiety and depression (up to 40% of the patients) [9] [15]. Thus, the “watch and wait“ approach 

is often chosen for patients with non-aggressive, asymptomatic, or mild symptomatic 

A B C 

DM

M 
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meningiomas. Regular medical examinations using computed tomography (CT) and magnetic 

resonance (MRI) serves for the monitoring of these patients. These methods are also used for 

primary diagnostics and pre-operative and post-operative management of the patients [9] [13] 

[15]. 

In case of incomplete resection, presence of inoperable meningioma, or growth slowdown 

of an aggressive tumor, radiotherapy is the next choice in the treatment of these tumors [16]. 

However, ionizing radiation is one of the most significant risk factors for the development of 

meningioma [17]. Because of this paradox, there is an effort to avoid radiotherapy. 

Unfortunately, there is no routinely used systemic therapy of meningiomas. Nevertheless, there 

are few drugs currently in clinical trials. For instance, nivolumab and pembrolizumab are tested 

for treatment of residual and recurrent meningiomas of higher WHO grades [13]. These two 

drugs activate T-lymphocytes and their utility is based on the assumption that higher-grade 

meningiomas have impaired immune microenvironment [13] [18]. Moreover, inhibitors of the 

mTORC1 pathway (everolimus, temsirolimus, vistusertib) showed satisfactory results in the 

treatment of meningiomas even in phase II clinical trials [13]. This pathway is often over-

activated in meningiomas, which is mainly caused by a mutation in the NF2 gene producing a 

protein merlin that influences the mTOR pathway [19].         

NF2 represents the most often altered gene in meningioma with an abundance of more than 

50% cases of sporadic meningiomas of all WHO grades. NF2 is supposed to play a crucial role 

in the proliferation of meningeal cells and is located on a 22q chromosomal locus, often prone 

to alterations in meningiomas [20]. The abbreviation NF2 is derived from the name of the 

disease Neurofibromatosis type II, which is characterized by the germinal mutation in the NF2 

gene leading to a higher probability of development of meningiomas or other tumors [21]. 

Meningiomas without NF2 mutation usually carry at least one of the following described 

mutations. 

Tumor necrosis factor receptor-associated factor 7 (TRAF7) is mutated in about 20% of 

meningiomas and is involved in many signaling pathways. The mutations in KLF4, AKT1, 

SMO, or PIK3CA are typical for meningiomas with an occurrence of less than 10% [3] [20]. 

There are also promotor mutations, such as in the telomerase transcriptase gene (TERT), which 

has a negative prognostic value and is associated with recurrence and progression [20]. Two 

possible alterations have been found in RNA polymerase II (specifically in POLR2A gene for 

the largest protein subunit) exclusively in WHO grade I meningiomas [3] [20]. Other types of 

alterations, such as complex deregulation of signaling pathways also exist. A typical 

representative of this phenomenon in meningiomas is Wnt signaling pathway [22] [23] [24]. 



9 
 

On the chromosomal level, there are various types of alterations, especially on 1, 6q, 10, 14q, 

18, and 22q loci, associated with a worse prognosis including the possibility of recurrence. 

These chromosomal loci have often altered the methylation profiles, which seems to be crucial 

in the development of prognostic tools in meningiomas [25] [26]. Gene expression signature of 

meningiomas seems to be quite complex and variable among different studies and that aspect 

will be discussed in further chapters (1.1.4). Nevertheless, investigation of meningiomas on 

molecular levels helped us to understand the biological substantiality, but there is still a lack of 

specific prognostic and predictive biomarkers and treatment of this disease.  

 

1.1.1. Histopathological classification 

Meningiomas are divided into 15 subgroups according to their morphological features 

based on hematoxylin-eosin FFPE tissue slices staining [4]. These subgroups are divided into 

3 histopathological grades by WHO according to a degree of differentiation [10]. WHO grade 

I, so-called benign, contains 9 subgroups showing a relatively high degree of differentiation 

and signs of organized tissue architecture, which is specific for each subgroup (Fig. 2). These 

subgroups are meningothelial, fibrous, transitional, psammomatous, secretory, angiomatous, 

microcystic, lymphoplasmacyte-rich, and metaplastic meningiomas. Importantly, WHO grade 

I meningiomas do not contain the features of higher grades (Fig. 2), such as increased mitosis, 

spontaneous necrosis, prominent nucleoli, increased cellularity, or higher nucleus to cytoplasm 

ratio [4] [9] [12]. In the final consequence, tumors with those features are clinically more 

aggressive, can recur more frequently, and can invade the brain itself [12]. WHO grade II 

meningiomas, generally called atypical meningiomas include atypical, clear cells, and chordoid 

subtypes and show an 8 times higher recurrence rate than benign meningiomas [11] [12]. The 

most aggressive meningiomas from a histopathological point of view are referred to as 

malignant or anaplastic. There are 3 subtypes in the WHO grade III category: anaplastic, 

papillary, and rhabdoid. WHO grade III meningiomas are the rarest (2-4% of all meningiomas), 

but they are associated with adverse prognosis [11] [12] [27]. Only approximately 30% of WHO 

grade III meningiomas have recurrence-free survival (RFS) higher than 5 years; overall survival 

(OS) usually does not reach 10 years [11]. Nevertheless, even benign lesions after total resection 

can recur in 12-19% within 10 years [28]. The histopathological classification itself is therefore 

insufficient in meningioma prognostication and this type of diagnosis is inaccurate by a 

subjective error. Interestingly, WHO grade III meningiomas can show similar morphological 

patterns as melanomas or carcinomas. Additional markers are currently being introduced in 
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histopathological practice using immunohistochemical (IHC) staining [29]. For instance, the 

combination of somatostatin receptor (SSTR2A) and epithelial membrane antigen (EMA) IHC 

staining can specifically distinguish the meningioma tissue [30]. However, Ki-67 IHC staining 

is the most relevant additional marker routinely used during histopathological classification 

these days. Ki-67 is expressed in the nucleus during the active phase of the cell cycle, and it is 

a tool for determining the proliferation index in various cancers (Fig. 2). Proliferation index > 

4% is associated with worse OS and RFS in meningiomas [29] [31].  

    

 

Figure 2. Selected histopathological features in meningiomas. Certain histological subtype 

with respective image magnification is introduced above each image in the color of respective 

WHO grade (I-blue; II-yellow; III-red). The first line represents morphological variability of 

WHO grade I tumors with a common feature of low cellularity and sparse representation of 

nuclei. Contrary, there are high cellularity, prominent nuclei, and a larger area of nuclei in the 

second line of malignant meningiomas. The black arrows show mitoses. The samples are 

stained with the hematoxylin-eosin method (ping – cytoplasm / intercellular space; dark-blue – 
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nuclei / DNA) and immunohistochemistry (IHC) for proliferation index determination by Ki-67 

marker (brown) co-stained with hematoxylin (dark-blue).       

   

Meningiomas after surgical resection can progress into higher WHO grades if they recur. 

This phenomenon is sometimes called atypical or malignant transformation. There is a 19.5% 

risk of recurrence in all meningioma patients, who need therapeutic intervention. Only about 

1% of recurrent patients will progress [32]. Loss of 1p36 chromosomal loci and CCNB1 and 

CDC2 coding genes are molecular patterns associated with progression. The expression pattern 

of mRNA GREM2 and small nucleolar RNAs (snoRNAs) SNORA46 and SNORA48 can also 

distinguish between benign meningiomas, which will progress, and those, which will not [18]. 

Nevertheless, the complex molecular mechanism of meningioma progression is unknown [3] 

[18].  

Molecular differences among various histological types are also present. For instance, 

gains on chromosome 5 are typical only for angiomatous meningiomas, whereas mutations in 

AKT1, TRAF7, and KLF4 are typical for WHO grade I of all histological subtypes [3] [12]. 

WHO grade I tumors are also more strongly infiltrated by immune system components in 

comparison with higher grades [18]. High-grade meningiomas (WHO grade II and III) exhibit 

a higher mutation rate and more complex chromosomal changes [33]. Regarding proteomic 

characterization, WHO grade I tumors are enriched by proteins for extracellular matrix 

formation and mitochondrial metabolism. Oncogenes involved in RNA metabolism and 

signaling pathways, including TNF-α and c-Myc, were identified in tumors of higher grades 

[27].         

          

1.1.2. Location and histo-genetic origin 

The vast majority of meningiomas are intracranial and extracerebral lesions lining the 

edges of meninges and subdural cavities. Especially WHO grade I meningiomas are 

encapsulated and well-defined [34]. Only less than 2% of meningiomas are spinal [35]. 

Intracranial meningiomas can be divided into central (medial) and peripheral (lateral) tumor 

locations [34]. The most common central meningiomas are falcine and parasagittal, which 

together represent about 25% of all meningiomas [34] [35]. There are also suprasellar and 

olfactory groove locations, both representing 10% of diagnosed meningiomas, whereas central 

meningiomas located intraventricularly and petroclivaly are very rare [35]. Lateral 

meningiomas represent convexity (20%) and posterior fossa (10%). Sphenoid wing tumors can 
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be either central or peripheral, depending on the exact position relative to the sphenoid bone 

[34] [35]. Most often meningioma intracranial locations are summarized in Fig. 3. Central 

meningiomas are associated with worse clinical outcomes because of difficult surgical 

accessibility and dense vascularization within this location [34]. Nevertheless, skull-based 

meningiomas, which are placed at the bottom of the skull (sphenoid wing, posterior fossa, 

olfactory, etc.; Fig. 3) are not generally associated with higher mortality or morbidity due to 

surgical intervention in these days [36]. On the other hand, convexity meningioma, which is 

surgically most accessible, because of its location on the upper side of the brain, is associated 

with the worst outcome. Tumors on the convexity are most often malignant and recurrent in 

comparison with other localizations [34] [37].        

 

Figure 3. Selected usual locations of intracranial meningiomas: Parasagittal (Prs), Olfactory 

groove (OG), Suprasellar (SS), Cerebral (Ce), Falcine (Fl), Convexity (Cx), Intraventricular 

(In), Sphenoid wing (SW) and Posterior fossa (PF). Images were adapted and prepared 

according to the websites hopkinsmedicine.org and cz.pinterest.com.  

  

A possible explanation for the increased aggressiveness of convexity meningiomas is their 

location in the area of exclusive neural crest-derived histogenetic origin. In general, tumors 

arising from the neural crest are more likely aggressive and malignant, because neural crest-

derived cells have a higher capacity of migration and proliferation, and the ability of 

differentiation [38]. Regional variability in the meningeal histogenesis with various meningeal 

progenitors suggests that it plays a role in the development of meningiomas and their variable 

behavior. The precursor is of mesoderm origin at the skull base and of neural crest-derived at 

the convexity [6]. At the early prenatal stage, a neural crest-mesodermal interface is located 

where the frontal neural crest-derived and parietal mesoderm-derived bones meet (Fig. 4). 

When the telencephalon begins to expand caudally, it carries with it the borderline [39]. The 

neural crest-derived meninges thus cover the convexity up to the posterior/caudal edge of 



13 
 

cerebral hemispheres, whereas meningeal layers of the posterior cranial fossa (around brainstem 

and spinal cord) arise from the mesoderm [40]. This process is preceded by neurulation - the 

stage when the neural tube is developed during embryogenesis (Fig. 4). The neural crest cells 

then begin to migrate and later differentiate into other cell types [41]. Nowadays, molecular 

mechanisms of those processes are already well-understood, but it has never been studied in the 

context of meningioma development. 

 

 

 

 

 

 

 

Figure 4. Migration of neural crest-derived cells after the neurulation explains the location-

based histogenetic origin of the skull and potentially developed meningioma. The image of the 

skull is adapted from the Medical Embryology website of Drexel University 

(webcampus.drexelmed.edu) and adjusted according to Méndez-Maldonado’s review [41].          

 

1.1.3. Gender aspects and hormonal dependency  

Women are more likely to be affected by non-malignant meningiomas with a female:male 

ratio of 2.3:1 [42]. Based on 702 aggregated samples, low-grade meningiomas occurred 

significantly more frequently in females [33], while in a cohort of 300 meningiomas, higher-

grade lesions were observed more often in males [43]. Interestingly, spinal meningiomas have 

the strongest female predominance with 75-90% of all diagnosed cases [44]. This male 

predominance in higher-grade lesions was also reported in terms of DNA methylation profile 

[45]. Regarding genotyping, meningiomas with NF2 loss and/or NF2 mutation, but without 

TRAF7, AKT1, KLF4, or PIK3CA mutations were predominantly observed in the male 

population, while TRAF7/KLF4 lesions exhibited female dominance [46]. Testing of affected 

and unaffected relatives of a patient with clear cell meningiomas with a large deletion of the 5′ 

end of SMARCE1 gene identified the same deletion in two affected female siblings and their 

unaffected father, implying incomplete penetrance of meningioma disease in males [47]. On 

the epigenetic level, miR-224 was found to be more expressed in females, most probably 

because miR-224 maps to chromosome X [48]. 
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The most likely explanation for the prevalence of female meningiomas is their hormonal 

dependence: 88% of meningiomas are positive for progesterone receptors (PR) and about 40% 

are positive for androgen (AR) or estrogen receptors (ER). Even though there is no difference 

in hormonal receptor expression according to age and sex [49], there is still a higher risk of 

meningioma development for breast cancer patients, users of progestins, and patients during 

risky pregnancy suggesting the link between meningioma and sex steroid hormones [44]. Also, 

there is a higher expression of PR in meningioma patients treated by cyproterone acetate (anti-

androgen and progestin medication) [44]. Similarly, 83% of women with a special homogenous 

group of spheno-orbital osteomeningiomas exhibits significant exogenous progesterone uptake. 

These tumors are positive for PR in 96% of cases, are benign and recur after surgical resection 

in 25% of cases [50]. Hormonal intake can influence the mutation landscape of the tumor with 

hormonal dependence, which was previously described in breast or endometrial cancers. This 

phenomenon was reported also in meningiomas when long-term progestin therapy results in 

tumors with a higher frequency of PIK3CA mutations and a lower frequency of NF2 mutations 

[51].              

Expression of sex hormonal receptors is more typical for WHO grade I than for higher 

grades. Those receptors are linked with higher proliferation (Fig. 5), which possibly supports 

the phenomenon of recurrence events in benign meningiomas [49].  

 

 

 

 

 

 

 

 

 

 

Figure 5. Progesterone receptor (PR) induces transcription of specific genes after binding of 

progestin. During this process, PR dimer is created and translocated into the cell nucleus, 

where transcription is induced with the binding of PR dimer to the specific DNA region. Lack 

of natural endogenous progestin, mostly composed of progesterone, or more often excess of 

androgen stimulation, can be treated with exogenous progestins. However, tissues with high 
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expression of PR are prone to hormonally induced carcinogenesis after the stimulation with 

progestin. This phenomenon is typical for breast cancer and probably also for meningioma.              

 

1.1.4. New potential molecular prognostic biomarkers 

The molecular and genomic landscape of meningioma is already well-explored, especially 

on the level of DNA (chromosomal abnormalities, small scale mutations, and methylation 

profiles). Regarding transcriptomic and proteomic investigations, there are still a lot of 

uncertainties [3]. Moreover, most of the known molecular patterns cannot be used universally 

for meningioma prognostication. For instance, NF2 is most commonly affected in meningioma, 

but this feature has no prognostic value [3] [26]. Therefore, only the molecular signatures with 

prognostic potential will be discussed within this subchapter. Local recurrence is the most 

relevant prognostic parameter for biomarker discovery in meningioma, thus most of the effort 

in meningioma clinical research is focused on this aspect. Nowadays, only proliferation index 

(Ki-67 or phospho-histone H3 at serine residue 10 staining) is routinely used for meningioma 

prognostication during histopathological evaluation [3].  

On the cytogenetic level, copy number alterations (CNA) on 1p, 6q, 9p, 10, 14q, 17, 18p, 

and 22q chromosomes are associated with recurrence risk [25]. CNA losses on 1p, 6q, and 18q 

and gains on 1q were associated with recurrence in a prognostic unfavorable group according 

to DNA methylation status. This investigation revealed the methylation status of 64 CpG loci 

(Fig. 6), which were identified as important for meningioma prognosis when combined with 

CNA data and adjusting for clinical factors. The identified loci with different methylated status 

depending on the prognosis included 44 genes involved in G-protein coupled receptor signaling, 

axonal guidance signaling, cAMP-mediated signaling, Wnt and AMPK signaling, thrombin and 

glucocorticoid signaling, protein-kinases, PI3K/AKT and PTEN signaling, mTOR, p53, NF-κB 

signaling, and also in interleukin signaling [26]. Focusing on certain genes, TIMP3, CDKN2A, 

and NDRG2 methylation were associated with a shorter time-to-recurrence (TTR). Co-

methylation of homeobox-related genes was also associated with aggressive tumors and 

progression. Hypermethylation of p53 and its binding partners (for instance MEG3 non-coding 

gene) can cause meningioma progression. Last but not least, methylation of IGF2BP1 and 

PDCD1 increases the malignant potential. Most of the methylation sites were found within 

promotor regions (Fig. 6). Hypomethylation of physiologically methylated regions has never 

been studied in terms of meningioma prognostication [52] as well as another DNA epigenetic 
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marker - hydroxymethylation (Fig. 6). CpG methylation represses transcription, but the specific 

biological function of hydroxymethylation remains unknown [53].     

       

 

 

 

 

Figure 6. DNA methylation and hydroxymethylation as a common epigenetic mark with 

potential utility in disease prognostication. Scheme of the frequent biochemical reactions on 

CpG regions, densely represented and already methylated or hydroxymethylated in gene’s 

promotors according to Johnson’s review article [53].  

 

DNA mutation status in meningioma is correlated with histopathological features and 

tumor location, but most of the driver and sporadic mutations, typical for meningioma, have no 

additional benefit in potential prognostication of RFS or OS. Only the previously described 

promotor mutation in the TERT coding gene is associated with poor clinical outcomes, such as 

recurrence and progression. This mutation has an incidence of approximately 9% and leads to 

activation of telomerase activity [3]. NF2 driver mutation is associated with a higher 

proliferation index, increased tumor size, and incidence of vasogenic edema, but it has no 

independent influence on RFS or OS in patients with meningioma [54].      

 Analysis of the coding transcriptome is evolving tool for meningioma prognostication. 

However, there is still a low number of studies, which are limited by a small number of patients 

involved. Moreover, there is a low overlap of the results among those studies [3]. This 

phenomenon can be probably caused by high variability in methodological screening 

approaches including microarray, NanoString, qPCR arrays, and various set-ups for NGS. 

Microarray screening with following independent qPCR validation revealed that 

downregulation of LEPR and upregulation of PTTG1 are associated with worse clinical 

outcomes, including recurrence and progression, independently on WHO grade, gender, or 

extent of resection [55]. Another study introduced a validated panel of 36 genes for recurrence 

risk estimation. The transcriptional signature of those genes, investigated using NanoString pre-

designed cancer panel, is associated with RFS and OS [56]. Patel et al. distinguished 

meningiomas into the 3 molecular subtypes according to their RNA-seq data. The last type, C, 

is characterized by shorter RFS from the clinical point of view and decreased function of the 

DREAM complex on the molecular level. DREAM complex represses the cell cycle activation 
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and contains the proteins, which are bound to Rb-like proteins, and modulate their activity. The 

expression of genes that form the cell cycle-activating DREAM complex is also increased in 

C-type tumors [57]. For instance, FOXM1 is associated with such a function and has also been 

linked to aggressive behavior in meningioma, where it causes activation of Wnt signaling 

leading to increased proliferation [22] [57]. This explains, why C-type tumors showed the 

highest proliferation index [57]. Viaene et al. used the RNA-seq approach as well with further 

RT-qPCR validation. The study identified GREM2 mRNA as a potential marker of the 

progression of benign meningiomas. Additionally, two snoRNAs, SNORA46 and SNORA48, 

showed the same feature [18].  

                        

1.2. Non-coding RNAs 

All RNAs, which are not translated into the proteins are called “non-coding”, thus only 

mRNAs do not fall into this category. There are various types of non-coding RNAs and they 

have usually regulatory and catalytic functions. This type of cellular, intercellular, and distant 

regulation is involved in all-controlling processes in living organisms. Because of the wide 

variability of non-coding RNA species, they are divided into two major groups according to 

their length: small or short non-coding RNAs (< 200 - 300 nt) and long non-coding RNAs (> 

300 nt) [58]. Even though this thesis is focused only on a few specific types of RNAs, the 

following table summarizes also the other most commonly known RNA species (Tab. 1). 

Non-coding transcriptome has developed rapidly with NGS, microarray, and other high-

capacity methods. Further detection and analysis are simplified, despite the low expression of 

some RNA species, by easy and accurate examination with RT-qPCR. These days it is generally 

known that some non-coding RNA species have better-discriminating potential than histology 

and immunohistochemistry. Thus, some non-coding RNAs, especially miRNA and lncRNA, 

are intensively studied in cancer.  

 

Table 1. Overview of selected RNA species according to Cech’s review [59].   

Name Function and characteristics Transcribed by Length 

mRNA Only protein-coding RNA RNApol II 2 - 5 k nt 

tRNA Adaptor connecting an mRNA codon and amino acid RNApol III 70 – 90 nt 

rRNA Ribozyme activity on the ribosome (4 strains); translation RNApol I, III 120 – 5025 nt 

miRNA Endogenous negative regulation of gene expression RNApol II, III 17 - 24 nt 

siRNA Exogenous negative regulation of gene expression - Cca 22 nt 

snRNA Splicing of pre-mRNA in the cell nucleus RNApol II 100 – 300 nt 
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snoRNA Processing and modification of pre-rRNA RNApol II > 60 nt 

scaRNA Modification of other sRNAs (especially snRNA) RNApol II 200 – 300 nt 

piRNA Negative regulation of transcription RNApol II Cca 27 nt 

telomeRNA Template component for telomerase reaction RNApol II 451 nt 

hnRNA Intron-containing pre-mRNA stabilization RNApol II 2 – 40 k nt 

Rnase P RNA Processing of pre-tRNA and RNA degradation  ? 400 nt 

RNA species legend; messenger (mRNA), transfer (tRNA), ribosomal (rRNA), micro (miRNA), small interfering 

(siRNA), small nuclear (snRNA), small nucleolar (snoRNA), Small Cajal body-specific (scaRNA), PIWI-

interacting (piRNA), heterogeneous nuclear (hnRNA) 

    

1.2.1. Small non-coding RNAs (sncRNAs) 

Most of the sncRNAs are involved in the process of maturation, regulation, and 

modification of other RNA species. For instance, there are small nuclear RNA (snRNA), PIWI-

interacting RNA (piRNA), or Small Cajal body-specific RNA (scaRNA). However, there are a 

few exceptions, such as transfer RNA (tRNA), which is crucial in the process of translation 

[59]. Yet, the most intensively studied sncRNAs are miRNAs, which are also involved in the 

process of regulation of other RNA species.  

MiRNAs are sncRNAs (17-24 nt), which negatively regulates most of the known mRNAs 

by antisense RNA interference (RNAi) mechanism. These days, more than 1,100 miRNA 

species have been identified in humans according to the miRBase v22 database, but it is 

estimated that there may be about 2,300 actual human miRNAs [60]. MiRNA-based regulation 

covers most of the processes in mammals, such as apoptosis, differentiation, proliferation, 

immune system, stem-cell features, and neoplastic transformation. Genes for miRNA are 

strongly conserved in genomes, located on all chromosomes (independently or in clusters), 

except Y, and transcribed by RNA polymerase II or III. Good temperature, pH, ribonuclease 

stability, and simple structure make miRNAs ideal candidates for biomarkers from an analytical 

point of view [61].     

 

MiRNA biogenesis and function 

Transcription of miRNA genes leads to primary miRNA transcript with a length of > 80 nt 

(pri-miRNA), which can be composed of one or more final miRNAs [59]. Pri-miRNA is 

processed with a microprocessor complex composed of Drosha and Pasha (DGCR8) proteins. 

This leads to cleavage of the targeted loop from pri-miRNA. The split loop is called precursor 

miRNA (pre-miRNA) with a total length of 60 nt and 2 nt unpaired overlaps at the 3’ termini 

[59] [62]. Pre-miRNA is then actively exported from the nucleus by Exportin-5 (EXP5) through 
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GTP-binding protein. Endonuclease DICER localized in cytoplasm cleaves the terminal loop 

from pre-miRNA, thus double-stranded miRNA is created. This miRNA duplex is loaded into 

the RNA-induced silencing complex (RISC) and one strand is removed (passenger strand). 

Mature one-strand miRNA remains attached to RISC until targeted long RNA is reached. RISC 

with mature miRNA usually binds to mRNA at 3’UTR (untranslated region at the 3’ termini). 

Based on the principle of antisense mechanism, in the case of partial complementarity, 

translation of the targeted mRNA is stopped. In the case of complete complementarity, the 

targeted mRNA is degraded [62] [63]. The whole pathway of miRNA is summarized in Fig. 7.   

   

Figure 7. Simplified scheme of miRNA maturation and function in mammals.  

 

Expression of miRNAs is regulated on the level of transcription by common transcription 

factors, such as p53, c-Myc, or NF-κB, or by promotor methylation, which is typical for 

malignancies. Also, miRNA maturation can be deregulated by influencing the activity of the 

microprocessor complex or DICER. For instance, heterogeneous nuclear ribonucleoprotein A1 

(hnRNP A1) speeds up the processing of pri-miR-18a by a specific increase of accessibility to 

Drosha protein. This works similarly for some other miRNAs, such as the let-7 family [61].    

After the maturation into the single strand miRNAs, they can be released from the cell of 

origin into the extracellular space, which usually results in the elevation of miRNAs in cell-free 

body fluids as circulating miRNA. MiRNAs are released from tissues actively (ATP activity) 

through vesicular particles or passively from the damaged cells, usually due to apoptosis or 

necrosis. Active transport carries miRNAs through exosomes, microvesicles, lipoproteins 

(HDL), or other protein complexes. The probable biological reason for the presence of miRNA 

in cell-free body fluids is distant communication and regulation among tissues in multicellular 
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organisms [64]. Each tissue and cell-free body fluid have a unique miRNA signature, which 

can be used in diagnostics or forensic applications [64] [65]. For instance, it is possible to 

distinguish between menstrual and non-menstrual blood or identify sperm-free semen 

according to specific miRNA signature [65]. The specific content of extracellular miRNA can 

be changed in case of the presence of the tumor or any other disease in the body. This feature 

can be used in non-invasive and easy diagnostics because extracellular miRNAs are stable and, 

in general, have better distinguishing potential than mRNAs [65]. For example, miR-21 is one 

of the most studied cancer-related miRNAs. Increased expression of miR-21 is typical for many 

types of malignant tumors, which is often reflected in plasma or serum of affected patients. 

Generally, the higher the miR-21 level is associated with a worse prognosis [67]. This can be 

used for the identification of early-stage patients using serum samples [66].               

    

MiRNA nomenclature 

There are no other natural nucleotide species with so unique nomenclature allowing the 

precise deciphering of the origin of the molecule according to the simple naming, as in the case 

of miRNA (Fig. 8). They are named according to the order of discovery, family, and the origin 

direction of the final leading strand after the maturation. There are few exceptions, such as let-

7 or lin28, which were named before the official nomenclature was set up [61]. Most of the 

aspects of miRNA nomenclature are summarized in Fig. 8. 

 

MiRNA in cancer 

MiRNAs can be divided into two groups. Those negatively regulating tumor suppressor 

genes are called oncogenic, whereas those targeting oncogenes are known as tumor suppressors. 

hsa-miR-19b-1-5p 
 

Organism: the first letter of the genus, the other two letters of the species 

Form: mature (miR), precursor (mir) or gene name (MIR) 

Family: relationship of sequence and structure numbered by order of discovery 

Member of the family: similar sequences, but other precursors and loci in the genome 

Predecessor: the same resulting sequence, but different processing 

Mirror sequence: one strand is mature miRNA, the other being degraded (3p or 5p; each miRNA 

can exist in both forms) 

Figure 8. Scheme of the miRNA nomenclature using the example of miR-19b-5p. 
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The typical oncogenic miRNA is miR-21, while suppressor miRNAs are represented by, for 

example, the let-7 family. Usually, there is a balanced stable expression of both groups, but 

when neoplastic transformation starts to appear, the levels of oncogenic miRNAs increase, and 

the levels of tumor suppressors decrease [68]. Loss of miRNA expression during cancer 

development is more common due to damage at the genomic level [61]. The process of cancer 

development is influenced by miRNAs by various mechanisms. Cell proliferation and apoptosis 

suppression are promoted by miR-155. Loss of let-7 or miR-200 can promote cancer stem cell 

production and spread. Epithelial-mesenchymal transition (EMT), important for the creation of 

distant metastases, is blocked by miR-429 and miR-27, but also by miR-200. On the other hand, 

EMT is promoted by miR-9. Tumor cell invasion is promoted by miR-9 or miR-181 but it is 

blocked by miR-15a, miR-145, or miR-340 [69]. As an example of certain molecular targeting, 

miR-138 down-regulates the TERT mRNA level at physiological conditions. However, in 

anaplastic thyroid cancer, miR-138 is down-regulated, resulting in no longer regulated higher 

expression of TERT, which causes cell proliferation and immortalization. Previously described 

oncogenic miR-21 is, on the other hand, targeting many pathways in various types of cancer 

[61].          

Because of their important role in cancer development, stability in FFPE and cell-free body 

fluid samples, and simple structure, miRNAs are ideal candidates for utilization as prognostic 

and predictive biomarkers. For instance, miR-205 was utilized for better classification of lung 

carcinomas, miR-21 is a reliable marker of poor prognosis, especially in colon cancers, and let-

7 increased expression predicts better response to radiotherapy [61] [69]. There is a high 

potential for miRNAs, or RNAi in general, to be used as therapeutic targets or therapeutics 

themselves. There are two general strategies, miRNA inhibition (Anti-miR) and miRNA 

overexpression (miRNA mimic). Inhibition of miRNA was already utilized in the treatment of 

HCV infections, where miR-122 protects the viral RNA against degradation and enables the 

replication of the virus. Miravirsen is a drug, which inhibits the function of miR-122 by 

antisense RNAi mechanism [70]. One of the most promising miRNAs mimics candidates is 

miR-34a. This tumor suppressor miRNA targets many processes important for cancer 

development, such as cell cycle, differentiation, migration, proliferation, or invasion. Thus, it 

was tested in two clinical trials as a drug MRX34 and showed remarkable outcomes in various 

types of cancer. Nevertheless, significant adverse immune reactions appeared. The most 

challenging aspect of RNAi-based therapy remains an effective non-toxic delivery system 

(nanoparticles, liposomes, viral vectors) that will not elicit immune responses and possible 

RNA degradation [71].               
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Brain tumors also showed various miRNA deregulations and important roles of miRNA in 

their formation. Brain tumors differ from the others mainly in that they do not usually form 

distant metastases. This feature is attributed to the blood-brain barrier (BBB), which filters the 

particles needed for secondary tumor formation. Even though BBB does not block the miRNA 

transport, there is still a higher elevation of circulating miRNA in cerebrospinal fluid (CSF) 

than in blood. MiRNA signature, even in cell-free body fluids, can distinguish between healthy 

individuals, high-grade glioma, low-grade glioma, glioblastoma, and patients with other brain 

tumors [72]. There is a wide range of studies focused on miRNA in brain tumors, but there is 

still no clinically utilized targeted therapy or miRNA-based differential diagnostics. For 

instance, Kopkova et al. revealed the panel of 5 miRNAs, which can distinguish healthy 

individuals, brain metastasis, glioblastoma, low-grade glioma, and meningioma patients 

according to the RT-qPCR measurement of CSF samples from those individuals. They also 

showed increased levels of miR-10b and miR-196b associated with shorter OS in glioblastoma 

patients [73]. Nevertheless, there is a low number of studies focused on miRNA especially in 

meningioma [3]. Typically, miR-200a, which targets the Wnt signaling, is strongly down-

regulated in meningioma. Tumor suppressor miR-145, usually down-regulated in various types 

of cancer, is down-regulated in WHO grade II and III meningiomas [3] [74]. Regarding 

oncogenic miRNAs, miR-21 is up-regulated in meningiomas compared to healthy tissue and is 

also up-regulated in WHO grade II and III in comparison with WHO grade I. Another oncogenic 

miRNA, miR-224 is up-regulated in meningioma tissues, especially in WHO grade III. Higher 

expression of miR-224 is also associated with shorter RFS and OS in meningioma patients. 

Nevertheless, serum levels of miR-224 decrease with increasing WHO grade. Most of the 

current studies are focused on the determination of the miRNA profiles distinguishing the 

particular histopathological types or distinguishing the meningioma tissue from the others [74]. 

However, there is a lack of studies focused on the association between meningioma recurrences 

and miRNA expression. For instance, Zhi et al. revealed that high miR-409-3p and low miR-

224 serum levels are associated with higher recurrence rates [48]. Moreover, miR-190a, miR-

29c-3p, and miR-219-5p expression in meningioma tissues were identified as a biomarker of 

the recurrence risk estimation in a multivariate model [75]. Nevertheless, none of the previous 

studies focusing on meningioma recurrence contained unbiased miRNA screening for 

independent selection of the best hits.              
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1.2.2. Long non-coding RNAs (lncRNAs) 

Beyond DNA methylation and miRNA expression, long non-coding RNAs (lncRNAs) 

represent another rapidly evolving field of epigenetics. LncRNAs are structurally similar to 

mRNAs but are not translated. They usually show low expression and complex processing into 

many isoforms. Comparison between mRNA and lncRNA is summarized in Tab. 2. While their 

molecular mechanisms and cellular functions remain largely unknown, the few candidates that 

have been characterized so far often interact by sequence complementarity with other RNA 

species. For instance, they can either bind mRNAs, and inhibit their translation, or miRNAs, 

and block their activity. LncRNA can also bind to and modulate the conformation and activity 

of protein complexes, including those implicated in chromatin formation and regulation [58].  

 

Table 2. Common and different characteristics of mRNA and lncRNA.  

mRNA lncRNA 

Tissue-specific expression 

Form secondary structure 

Undergo post-transcriptional processing, i.e. 5' cap, polyadenylation, splicing 

Important roles in diseases and development 

Protein coding transcript Non-protein coding, regulatory functions 

Well conserved between species Poorly conserved between species 

Present in both nucleus and cytoplasm Predominantly nuclear, others nuclear and/or 

cytoplasmic 

Total 20-24,000 mRNAs More than 50,000 lncRNA transcripts 

Expression level: low to high Expression level: very low to moderate 

Presence of an open reading frame Absence of an open reading frame 

 

LncRNA expression shows exceptional cell and tissue specificity in comparison with other 

RNA species. This may be partially caused by more complex transcription and processing 

regulation. Most lncRNAs are processed in the same way as mRNAs, but they are more 

sensitive to regulatory factors and have some additional regulatory factors. For instance, 

transcription elongation of lncRNA is more sensitive to regulation by the transcription factor 

MYC than mRNA, and this process is additionally regulated by DICER. Also, lncRNA can be 

transcribed into both directions in the genome whereby one of those directions is enhanced by 

the proteins SWI/SNF and repressed by the CAF-1 [58]. This results in the sense (mRNA or 

lncRNA) or antisense (lncRNA) transcripts. When both directions result in the final RNA 

transcript, the particular lncRNA is supposed to be bidirectional. Depending on their position 

on the genome, lncRNA transcripts are intergenic if they do not overlap with the mRNA gene, 
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or intronic if they overlap with the mRNA gene but do not overlap with particular mRNA exons 

at the genomic level. Sense overlapping lncRNAs are located on the same strand as the mRNA 

gene but overlap the exons of particular mRNA. One lncRNA gene may fall into more than one 

of the described categories, but each of the final transcriptional variants can be classified into 

one specific category [76]. All those mentioned lncRNA categories are summarized in the 

following Fig. 9.    

 

 

Figure 9. Five types of lncRNAs are divided according to their positions in the genome 

according to the LNCipedia database version 5.2 [76].   

 

After the transcription mediated by RNA polymerase II, lncRNAs undergo similar 

posttranscriptional processing as mRNAs, such as 5’-capping, 3’-polyadenylation, and splicing. 

Nevertheless, there are various exceptions. For instance, polyadenylation can be replaced by 

RNase P cleavage, which is more typical for tRNA processing. In the case of metastasis-

associated lung adenocarcinoma transcript 1 (MALAT1), the primary transcript has a tRNA-

loop-like structure placed on 3’-termini (Fig. 10). This structure prevents polyadenylation and 

is therefore cleaved by RNase P. This reaction leads to MALAT1‑ associated small 

cytoplasmic RNAs (mascRNAs) and mature MALAT1 with triple helix structure at the 3’-

termini (Fig. 10). This modification makes RNA more stable and durable against endonucleases 

than polyadenylation [58]. Mature MALAT1 is localized in nuclear speckles (Fig. 10), where 

it participates in alternative splicing of mRNAs and is important in ontogenetic development 

[77]. MALAT1 also sponge the tumor suppressor miR-124, which has an oncogenic effect in 

various cancers. MALAT1 is mutated, for example, in bladder and liver cancers. Moreover, this 
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mutation leads to up-regulation of its expression in lung and esophageal cancers as well [78]. 

Nevertheless, the function and biological context of mascRNAs is still unknown.     

 

   

Figure 10. Simplified lncRNA MALAT1 processing and cellular localization were prepared 

according to Quinn’s review [58] and with a microscopic image adapted from Chen’s original 

article [77].   

 

Other examples of alternative lncRNA posttranscriptional processing are more variable 

splicing mechanisms. The most distinctive one is back-splicing leading to the circularized 

RNAs (circRNAs). The process is regulated by the QKI alternative splicing factor and is 

typically associated with EMT [58] [79]. CircRNA is a unique class of lncRNA, usually 

originating from the protein-coding gene, where alternative splicing of the mRNA can lead to 

circRNA. Thus, circRNAs contain both exons and introns from the gene of origin and can be 

transcribed from the same or opposite (antisense) DNA strand. Therefore, various transcripts 

may exist in both linear and circular forms. The main biological role of circRNA, according to 

the current level of knowledge, is miRNA regulation, when one circRNA can have multiple 

binding sites for various miRNAs. For instance, circHIPK3 can sponge at least 9 different 

specific miRNA molecules. This transcript is derived from the coding gene for homeodomain 

interacting protein kinase 3 and is abundantly present in the cytoplasm. CircHIPK3 has 

oncogenic features and was found to be overexpressed in hepatocellular carcinoma [79].       

Besides miRNA sponging, there are various biological functions and roles of lncRNAs. 

Regarding genomic localization, they can be divided into two regulatory groups, the first being 

trans-regulatory mechanisms regulating targets from distant genomic loci, but more common 

and frequent are cis-regulatory mechanisms operating at parallel chromosomal coordinates 

[80]. The second mechanism is typical for antisense lncRNAs, which often bind to their sense 

mRNA transcripts and regulate their function. This type of regulation is usually negative in a 

similar way as in the case of miRNA, thus targeted mRNA can be degraded or its translation is 
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inhibited. However, antisense targeting can also lead to splicing modulation [58] [81]. For 

instance, ZEB2-AS hybridizes its ZEB2 mRNA counterpart in the intron at 5’-untranslated 

termini containing an internal ribosome entry site. This bondage prevents splicing of the 

respective intron and leads to translation of ZEB2, which down-regulates E-cadherin. Down-

regulation of E-cadherin at both mRNA and protein levels leads to the EMT [82]. Nevertheless, 

antisense cis-regulation does not have to be based on hybridization principles. ANRIL lncRNA 

recruits transcriptional repressors PRC1 and PRC2, which block expression of CDKN2B, sense 

for ANRIL, and CDKN2A, which is transcriptionally located behind the CDKN2B on the same 

strand [58].  

Another functional type of lncRNAs is chromatin modifiers, which regulate the 

transcription of surrounding genes on a chromosomal level. These lncRNAs are often 

bidirectional and their expression is linked to the enhancer of the respective mRNA gene. Thus, 

this group of lncRNA is generally called enhancer RNAs (eRNAs) [58] [83]. For example, 

homeobox-related genes are located at the four HOX genomic loci and encode the transcription 

factors important during ontogenetic development. The expression of certain HOX genes is 

accurately regulated mainly by these 4 lncRNAs: HOX antisense intergenic RNA (HOTAIR), 

HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), HOXA transcript at the distal tip 

(HOTTIP), and Mistral. Each of them regulates the expression of certain HOX genes, HOTAIR 

negatively, the others positively. These 4 lncRNAs work as scaffolds for chromatin-remodeling 

complexes recruiting certain regulatory proteins and mediating chemical modifications of 

histones [81]. Chromatin-enriched lncRNAs (cheRNAs) are a subgroup of eRNAs, but they are 

usually longer (cheRNA > 2,000 nt versus other eRNA ~ 350 nt). CheRNAs regulate the 

transcription of surrounding coding genes by interaction with chromatin and RNA polymerase 

II. In comparison with other eRNAs, cheRNAs are not bidirectional but have an intergenic or 

antisense position to the genes they regulate [83] [84]. For example, Xist (X-inactive specific 

transcript) is actively transcribed from one female X-chromosome and transcriptionally 

inactivates surrounding genes, which leads to the inactivation of this chromosome. On the 

second X-chromosome, Xist expression is inactivated by the Tsix lncRNA, thus the second X-

chromosome is active [58]. Nevertheless, most of the intergenic cheRNAs have an activating 

function and antisense cheRNAs have been predicted to have a repressive function [84].    

Besides previously described interaction with other RNAs and chromatin, lncRNAs can 

also interact with other proteins and molecules. Most of their interactions are based on 

secondary structure and folding. The secondary structure of lncRNA is more conserved and its 

primary structure is less conserved compared to mRNA. Therefore, lncRNA can be part of 
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complex ribonucleoproteins (RNPs) serving as a biosynthetic template, structural assembly 

scaffold, or ribozyme catalytic domain [58]. The most common examples are rRNA in 

ribosomes for mRNA translation and TERC in TERT for telomere elongation.  

At the present level of knowledge, the effort to precisely classify lncRNAs into individual 

groups and subgroups is still in vain, also due to the large overlap of functions of individual 

transcripts. Nevertheless, following Fig. 11 summarizes basic and previously discussed 

functional groups of lncRNAs. 

 

Figure 11. Overview of lncRNA known functions adapted from Hu’s review article [81].  

 

LncRNA in cancer 

LncRNAs can induce oncogenic or tumor suppression effects by the regulation of certain 

cellular processes. For instance, previously described ANRIL blocks the expression of cyclin-

dependent kinase inhibitors. Over activation of this process promotes the cell cycle and 

uncontrolled growth leading to neoplastic transformation. Overexpression of ANRIL can be 

caused by mutation; various of those mutations were detected in esophageal cancer, melanoma, 

and acute lymphoblastic leukemia. ANRIL up-regulation was detected also in other types of 

cancer suggesting this transcript as oncogenic. Previously described MALAT1 manifests the 

oncogenic features as well. On the other hand, PCNA-AS1 can serve as an example of tumor 

suppressor lncRNA. This transcript is antisense to proliferating cell nuclear antigen (PCNA), 

which is involved in DNA damage repair. PCNA-AS1 hybridizes to PCNA mRNA and 

stabilizes it. PCNA-AS1 has been found as down-regulated in hepatocellular carcinoma [78].   

Utilizing of lncRNAs as biomarkers can be potentially challenging due to their low 

expression. Nevertheless, some of them, such as H19 or HULC, may be detected in cell-free 
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body fluids [78]. HULC is up-regulated in various cancers and its increased expression is 

associated with shorter OS in most of the studied malignancies. HULC activation is caused by 

certain mutations, which are further associated with a high risk of cancer. Mechanistically, 

HULC cancer-associated features are related to the sponging of various tumor suppressor 

miRNAs leading to EMT and cancer progression. Thus, HULC is one of the most promising 

prognostic and diagnostic cancer biomarkers on the level of lncRNA as well as a potential 

therapeutic target [85]. HOTAIR is another lncRNA intensively studied in cancer. It’s up-

regulation is associated with shorter OS in various cancers. HOTAIR may serve as a potential 

prognostic biomarker in both primary tumor tissue and cell-free body fluids. HOTAIR can also 

serve as a predictive biomarker when it’s up-regulation is associated with reduced 

radiosensitivity. Additionally, HOTAIR is a very promising therapeutic target because its 

expression can be modulated with various drugs. For instance, natural compounds, such as 

isoflavones and anthocyanins, can down-regulate HOTAIR levels, but treatment with 

exogenous estrogens leads to HOTAIR up-regulation [86] [87]. HOTAIR is also up-regulated 

in brain tumors, such as gliomas and glioblastomas, and deregulates their cell cycle and 

apoptosis. Moreover, the expression of HOTAIR is associated with the WHO grade of gliomas 

and glioblastomas and can serve as a diagnostic tool in brain tumor classification [88]. 

LncRNAs are intensively studied in brain tumors [88], but there are only a few mechanistic 

studies focused on lncRNA in meningiomas. For instance, LINC00460 expression is increased 

in meningiomas compared to meninges. LINC00460 is also elevated in malignant meningioma 

cell lines (IOMM-Lee and CH157-MN) compared to the benign cell line (Ben-Men-1). Loss of 

LINC00460 function reduces proliferation and increases apoptosis. MiR-539 was identified as 

a potential target of LINC00460 [89]. Several other studies confirm the importance of Wnt 

signaling in meningioma development and the involvement of lncRNAs in this process [23] 

[24]. Nevertheless, MEG3 is the most frequently discussed lncRNA in meningiomas [90].                             

 

MEG3 

Maternally expressed gene 3 (MEG3) is imprinted along the maternal line. One of the two 

alleles is expressed from genes regulated by genomic imprinting, and this mechanism is typical 

in lncRNAs [58] [90]. MEG3 is a gene that consists of 10 exons producing at least 28 potential 

transcriptional variants, according to Ensembl Genome Browser [91]. MEG3 belongs to the 

DLK1-MEG3 locus, which lies in human chromosome 14q (Fig. 12). DLK1 is involved in cell 

signaling and differentiation. It was found that the absence of DLK1 expression correlates with 

loss of differentiation and increased malignancy. DLK1 is paternally expressed and encodes a 
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protein belonging to the growth factor-like family. MEG3 is maternally expressed and produces 

lncRNA [92]. Gene expression of the DLK1-MEG3 region is tightly regulated by imprinted 

control regions (ICRs). The ICR of the DLK1-MEG3 locus is known as IG-DMR [90], which 

is unmethylated on the maternal allele and hypermethylated on the paternal allele of the 

chromosome (Fig. 12). In addition to the IG-DMR region, there is a second methylated region, 

MEG3-DMR [93]. Loss of MEG3 expression in cancer is not associated with genomic 

abnormalities such as gene deletion or mutation. Rather, the loss of MEG3 gene expression is 

attributed to the promoter of the MEG3 gene and the hypermethylation of the enhancer. Thus, 

MEG3 is a gene whose loss of expression may play a crucial role in tumorigenesis [94]. 

 

 

Figure 12. The DLK1-MEG3 locus with imprinted control regions IG-DMR and MEG3-DMR, 

which overlap with the promotor of the MEG3 gene. Both control regions are methylated at the 

paternal allele. 

 

MEG3 is a tumor suppressor transcript, which is expressed in brain tissues, but down-

regulated in meningiomas with more frequent gene methylation in WHO grades II and III 

tumors [95]. MEG3 interacts with other molecules and activates their tumor suppression 

features. The interaction complex of MEG3 with PRC2 and the JARID2 cofactor initiates the 

histone methylation at the MDM2 and CDH1 genes, which leads to the repression of their 

transcription. Reduced levels of CDH1 obstruct the EMT and reduced levels of MDM2 leads 

to p53 activation. MEG3 also activates p53 directly and their binding stabilizes the p53. 

Consequently, decreased MEG3 level promotes proliferation and metastasis and halts the 

apoptosis of cancer cells. MEG3 down-regulation is associated with poor prognosis and worse 

clinical outcomes in several types of cancer [96].  

It was discovered, that MEG3 has a crucial role in p53 functional activation and the proper 

folding of MEG3 is the important factor increasing the p53 activity. Thus, various MEG3 

isoforms have different quantitative activation potentials in terms of p53-induced tumor 

suppression [93]. MEG3 also regulates the retinoblastoma protein (Rb), which is crucial in the 
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transition from the G1 to S phase of the cell cycle and inhibits angiogenesis. Additionally, 

MEG3 interacts with various miRNAs and regulates them both negatively and positively. In 

the case of MEG3 up-regulation, this mechanism contributes to increased sensitivity to 

chemotherapy. Nevertheless, because of plenty of interactions with other molecules, MEG3 

manifests oncogenic features in occasional cases. For instance, MEG3 sponges miR-127, which 

negatively regulates Wnt signaling by targeting ZEB1 mRNA. This process was observed in 

osteosarcomas, where MEG3 promoted proliferation and metastasis [93].  

MEG3 is predominantly localized in the cell nuclei in a similar pattern to that previously 

described for MALAT1. Both non-coding transcripts show a significant co-localization pattern 

suggesting their potential direct or indirect interaction [97].      
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2. Specific aims of the thesis 

The results of this work are divided into 3 main parts, each separately leading to the 

discovery of new potential biomarkers of meningioma recurrence and altogether providing 

novel insight into meningioma biology and pathogenesis.   

 

Aim 1: Identification and validation of miRNAs predicting meningioma recurrence. 

 

Aim 2: Identification and validation of mRNAs and lncRNAs associated with meningioma 

recurrence, histogenesis, sex, and WHO grade. 

 

Aim 3: Characterization of MEG3 crucial features connected to meningioma recurrence 

and pathogenesis.   
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3. Methods and patients 

3.1. Patients description 

This retrospective study was approved by the Institutional Research Ethics Committee and 

includes the patients, who underwent meningioma surgery between 1990 and 2012. FFPE tumor 

tissue samples for this study were preliminary obtained from the Brain Tumor Database of the 

Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky 

University, and University Hospital Olomouc. In total, 330 FFPE samples from 166 patients 

with corresponding clinical data were enrolled. Comprehensive clinical-pathological data were 

obtained from study participants who signed informed consent. All FFPE samples were 

reviewed by the pathologist and proposed WHO grades were verified (ensured by prof. Jiri 

Ehrmann). Recurrence after total or gross total (SG I, II, or III) and incomplete (SG > III) 

resection was defined as a reappearance of the meningioma or any growth of remaining 

meningioma tissue detected during follow-up imaging after primary surgery (3 and 12 months 

after surgery, every 24 - 72 months thereafter). Patients with no such events during at least 5 

years’ follow-up were considered non-recurrent. Meningiomas detected after primary surgery 

with evidence of radiographic recurrence during the follow-up period are called primary 

recurrent samples/tumors. Meningiomas from the recurrent patients obtained after any other 

surgical resections in a sequence are called secondary samples/tumors in this study. All clinical 

data were obtained from the Department of Neurosurgery, Faculty of Medicine and Dentistry, 

Palacky University, and University Hospital Olomouc, Czech Republic (ensured by Dr. 

Vladimir Balik). This included age at diagnosis, sex, body mass index, risk factors, treatment 

details, tumor location and diameter, proposed tumor histogenesis, and other diseases. All 

experiments were performed at the Laboratory of Experimental Medicine, Institute of 

Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacky University 

Olomouc. A description of patient cohorts is listed within the particular subchapters.     

 

3.2. Biological material processing 

Slices with a thickness of 10 μm were cut from each FFPE tissue for nucleic acid 

extractions. Each aliquot contained 5-10 slices depending on the amount of tissue within the 

FFPE block.  Substantially, 33 tissue microarrays (TMA) of original macrodisected FFPE 

blocks were prepared for microscopy-based investigations. Each TMA contained 10 samples in 

doublets and 2 controls in doublets. Thus, each TMA contained 24 tissue samples.  
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Total RNA was isolated from FFPE samples using the miRNeasy Mini kit (Qiagen, Hilden, 

Germany) according to the manufacturer's instructions. Before isolation as such, FFPE sections 

were incubated overnight in 500 µl of Proteinase K mixture at 60 °C. This lysis mixture 

consisted of 1% SDS (Merck Millipore, Burlington, MA, USA), 250 µg Proteinase K (Bioline, 

London, UK), 250 U RNAsin (Promega, Madison, WI, USA), 20 mM EDTA (Serva, 

Heidelberg, Germany), 100 mM Tris-buffer pH 7,4 (Sigma-Aldrich, St. Louis, MO, USA), and 

DEPC water (Ambion, Austin, TX, USA). After thorough mixing, 700 µl of QIAzol Lysis 

Reagent was added to the samples. After mixing and incubation at room temperature, 140 µl of 

chloroform was added and continued according to the manufacturer's standard protocol. The 

resulting total RNA was eluted to a volume of 30 µl by washing the columns twice. 

RNA concentration and purity were assessed using NanoDrop 1000 Spectrophotometer 

(ND 1000) from Thermo Fisher Scientific (Waltham, MA, USA). Data from ND1000 were 

used for the calculations of proper RNA input for all following described analyses. Also, RNA 

integrity and level of degradation were assessed using Bioanalyzer 2100 (Agilent Technologies, 

Santa Clara, CA, USA) with RNA Pico Chips according to the manufacturer's instructions. The 

aim was to select the highest quality RNA samples for advanced applications such as NGS. One 

of the outputs is the RIN (RNA integrity number), from which the degree of RNA degradation 

can be derived. For almost all samples, this value was around 2.0 - 3.5, which indicates a high 

degree of degradation, which is typical for FFPE samples (Fig. 13). Also, DV200(%) values were 

calculated demonstrating the percentage of transcripts longer than 200 nt (Fig. 13). In this way, 

samples applicable to some NGS approaches can be effectively selected.  

 

Figure 13. Representative outputs from Agilent RNA Pico Chips measurements using 

Bioanalyzer 2100 instrument (x-axis: size in nucleotides; y-axis: fluorescence): (A) 

Undegraded RNA sample with distinguishable rRNA subunits. (B) Degraded FFPE sample with 

rRNA spliced into shorter fragments, but efficient numbers of the transcripts are still longer 

than 200 nt. (C) Highly degraded FFPE sample inappropriate for NGS.  
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3.3. Microarray for miRNAs 

The isolated RNA was processed according to the manufacturer's instructions using an 

Affymetrix GeneChip miRNA 4.0 Array (Applied Biosystems, Foster City, CA, USA) with 

130 ng input of total RNA. The FlashTag Biotin HSR RNA Labeling Kit (Applied Biosystems) 

was used to label RNA in samples prior to application to chips. Briefly, RNA samples are first 

polyadenylated and biotinylated. The labeled fragments are then hybridized to an array 

overnight, after which the bound sections are stained. Arrays were scanned using an Affymetrix 

Gene Scanner 7G. The raw data were obtained in .CEL format using the Affymetrix GeneChip 

CommandConsole software. CEL files were then processed using "R" software v. 3.5.0 and the 

Bioconductor package. More detailed information about the processing of microarray data is 

described further (3.7). The miRNA 4.0 Array contained 30,434 probe sets for mature miRNAs. 

The array is suitable for 203 organisms and there are pre-designed 2,578 mature miRNAs, 2,025 

precursor miRNAs, and 1,996 other small RNA species for human samples according to the 

manufacturer. 

 

3.4. Transcriptomic sequencing for long RNAs 

Only the RNA samples with DV200(%) ≥ 30 were selected for cDNA libraries preparation 

for RNA-seq. Samples were diluted to 10 µl using nuclease-free ultra-pure water with 1000 ng 

total RNA input. Then, cDNA library preparation was performed using the TruSeq Stranded 

Total RNA Library Prep Kit with RiboZero Gold - Set A (Illumina, San Diego, CA, USA) 

according to the manufacturer's instructions with adjustment for degraded samples. Briefly, 

denaturation and specific rRNA depletion were performed. Then, fragmentation was performed 

in a cycler at 94 °C for 4 minutes with a subsequent hold at 4 °C only for the samples containing 

RNA fragments above 1000 nt. Furthermore, both strands of cDNA were synthesized 

separately. Adenylation and ligation of specific adapter sequences were then performed. 

Finally, the prepared cDNA was amplified by PCR. Between steps, cDNA samples were 

purified using AMPure XP Beads (Beckman Coulter, Brea, CA, USA). The final solution was 

transferred and stored in 0.2 ml tubes in a volume of 30 µl. Prepared cDNA libraries were stored 

at -20 °C. Quality control was performed using Bioanalyzer 2100 with DNA 1000 Chips. A 

properly prepared cDNA library should report one specific smeared peak with the average size 

of fragments around 260 nt (Fig. 14). Our prepared cDNA libraries had smear peaks at 246 nt 

on average and were quantified using Qubit 2.0 Fluorometer (Thermo Fisher Scientific) for the 

determination of cDNA input of each sample in NGS pools.    
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Figure 14. Representative outputs from Agilent DNA 1000 Chips measurements using 

Bioanalyzer 2100 instrument for high-quality cDNA libraries. Gel-like view of 8 samples and 

detailed processed view of one sample.  

 

Quantified samples of cDNA libraries were pooled based on their molarity using 4 or 5 

samples per pool. After NaOH (0.2M) denaturation, each pool was diluted with HT1 solution 

to a concentration of around 7.5 pM, and pools were clustered in a separate line using the cBot 

2 System and the TruSeq SR Cluster Kit v3 - cBot – HS (Illumina).  Sequencing was performed 

in duplicate on a HiSeq 2500 instrument in single read high output mode with 101 bases and 6 

index bases using the TruSeq SBS Kit v3-HS (50 cycles). The first run yielded 148.2 Gbases 

(>Q30 reflecting efficient quality) and 1.496 x109 pass-filter reads (51.6 million reads/sample 

on average) and the second run yielded 153.9 Gbases (>Q30) and 1.523 x109 pass-filter reads 

(37.1 million reads/sample on average). Both sequencing runs were in good concordance with 

recommended specifications and none of the samples were removed due to low sequencing 

output. FastQ files were generated using BaseSpace (Illumina). All parameters were classified 

as satisfactory for analysis of differentially expressed genes/lncRNA (transcript) according to 

quality control. Sequencing runs were performed in cooperation with Dr. Rastislav Slavkovsky 

at IMTM Genomics Core Facility. The obtained raw FastQ data were transferred to Research 

Centre for Applied Molecular Oncology (RECAMO) at Masaryk Memorial Cancer Institute in 

Brno and processed by Dr. Filip Zavadil Kokas for determination of differentially expressed 

transcripts among studied subgroups and splicing variants analysis. More detailed information 

about the processing of NGS data is described in further chapters (3.7).  

 

3.5. RT-qPCR approaches 

All qPCR reactions were performed on a LightCycler 480 (Roche, Basel, Switzerland) with 

fluorescence detection in the FAM channel. All qPCR reactions were prepared in 384-well 
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plates in a semi-high-throughput regime with Echo 555 (Labcyte, San José, CA, USA) and 

Freedom EVO 150 (Tecan, Männedorf, Switzerland) automatic pipettors (in cooperation with 

Dr. Sona Gurska). All reactions were performed in a volume of 10 µl in triplicates and cDNA 

samples were prepared separately prior to qPCR measurements. The raw qPCR triplets of Ct 

values were summarized by average and normalized against selected reference sequences using 

the ΔCt method.  

For miRNA expression measurement, 10 ng of total RNA was used for cDNA preparation 

with TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific). DEPC water 

(Ambion) for dilution of the samples and 0.3 µl RNAsin (Promega) in the initial 

polyadenylation reaction were used to avoid RNA degradation during cDNA preparation. All 

following steps were performed according to the manufacturer's instructions. Briefly, ligation 

of a specific adaptor was performed after the polyadenylation. Then, reverse transcription and 

final PCR pre-amplification were conducted. Prepared cDNA samples were stored at -20 °C 

until qPCR measurement. Each miRNA was measured with respective TaqMan Advanced 

miRNA Assay (Thermo Fisher Scientific) in a mixture of TaqMan Fast Advanced Master Mix 

(Thermo Fisher Scientific) and DEPC water (Ambion) according to the manufacturer's 

instructions. The following optimized thermal program was used: 95 °C / 20 s with 1.9 °C / s 

ramp rate, then 40 cycles of 95 °C / 10 s (1.9 °C / s ramp rate) and 60 °C / 40 s (1.6 °C / s ramp 

rate).    

For long RNAs expression measurement, 3,000 ng of total RNA was used for cDNA 

preparation with our in-house developed protocol. The samples were mixed with 300 ng of 

Random Primers (Promega) and diluted with DEPC treated water (Ambion) in a total volume 

of 19.5 µl. Samples were denatured at 70 °C / 5 min, and then immediately placed on ice. Then, 

a freshly prepared reaction mixture (9.75 µl) was added to each sample. The reaction mixture 

for one sample contained 6 µl of RevertAid 5x RT buffer (Fermentas), 3 µl of 10 mM 

deoxyribonucleotide triphosphates (dNTPs), and 0.75 µl of 40 U/µl RNAsin ribonuclease 

inhibitor (Promega). Each sample was incubated for 5 min / room temperature after adding the 

reaction mixture. During the final step, 150 U (0.75 µl) of RevertAid Moloney Murine 

Leukemia Virus reverse transcriptase (Fermentas) was added and the samples were incubated 

at room temperature for 10 minutes. Finally, samples were incubated in a cycler at 42 °C / 60 

min and then at 70 °C / 10 min. Prepared cDNA samples were stored at -20 °C until qPCR 

measurement. Each mRNA and lncRNA were measured with respective TaqMan Gene 

Expression assays (Thermo Fisher Scientific) in the mixture of LightCycler 480 Probes Master 
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(Roche) according to the manufacturer's instructions. Amplification products were verified 

using the Bioanalyzer 2100 with DNA 1000 Chips (Agilent).  

 

3.6. RNA in situ hybridization for MEG3  

Five µm thick FFPE slices were freshly cut from TMA and placed to the positively charged 

microscope slides. Then, the slides were heated at 60 °C / 90 min. RNA in situ hybridization 

(RISH) in single-molecule resolution was performed with ViewRNA ISH Tissue 1-Plex Assay 

and ViewRNA™ Chromogenic Signal Amplification Kit (1-plex) in combination with specific 

probe ViewRNA Tissue Probe Set – MEG3 (Thermo Fisher Scientific) according to 

manufacturer's instructions. Briefly, after deparaffinization, protease treatment was optimized 

for 3.5 µl Protease QF and 40 ºC / 15 min treatment for one microscope slide. Then, specific 

probe and amplifier were hybridized. Prepared oligonucleotide in situ construct was labeled 

with 10.5 mg Fast Red Substrate dissolved in 500 μl Naphthol Buffer. Then, nuclei were stained 

with 300x diluted DAPI (Thermo Fisher Scientific) water solution. After the final wash, 

microscope slides were dried at room temperature for 30 min and mounted with Histomount 

Mounting Solution (Thermo Fisher Scientific). Prepared slides were preliminarily investigated 

using an Axio Observer.Z1/Cell Observer Spinning Disc microscopic system (Zeiss, 

Oberkochen, Germany) with 63x oil objective (Fig. 15). 

 

Figure 15. Representative images of MEG3 visualization in FFPE tumor tissue using a 

confocal spinning disk microscope with a 63x oil objective. MEG3 transcripts are spread in the 

nuclei or around them and presented both in single-transcripts and aggregated clusters.  

 

Images for quantitative evaluation were taken using Olympus IX83 automated fluorescent 

microscope (conducted by Dr. Karel Koberna). The individual tissue images, placed on TMA 

slices, were taken in the DAPI and Cy3 channel, which the system automatically focused on. 
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Using CellSens Dimension software (Olympus), 20 individual images with a size of 2048 x 

2048 pixels (px) were obtained from one tissue sample, and then combined into a larger image 

(overlap of individual images was 20%). During the evaluation process, 3 – 6 regions of interest 

(ROIs) were selected from each image for further analyses. Those ROIs were selected manually 

according to visually evaluated qualities: clear areas of tumor tissue with a good resolution of 

nuclei and signals, without any artifacts such as blood vessels, calcification, connective tissue, 

weak or overexposed fluorescent signals. Subsequently, manual signal thresholding was 

performed for each image separately. After thresholding, the numbers of signals and their areas 

for individual size categories (1, 15, 30, 60, 100, 250, 500 px) were automatically calculated 

for each ROI in all images. The area and location of the nuclei were not taken into account, 

they only helped to orient in the tissue and also to select suitable areas for analysis. However, 

the distribution of the signal from single transcripts (1 – 15 px; more than 60 % of the signal on 

average) was investigated between nuclei and space outside of the nuclei. Single signals were 

manually counted for this type of analysis in newly selected ROIs within the images with the 

best resolution. All image analysis steps were performed by Dr. Ivo Uberall, Department of 

Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University 

Olomouc.          

 

3.7. Data processing  

All data analyses were performed in cooperation with experienced biostatisticians Dr. Jana 

Vrbkova, Dr. Pavla Kourilova, and Dr. Filip Zavadil Kokas. Affymetrix miRNA 4.0 array data 

were normalized with the Robust Multi-Array Average method. The microarray expression 

dataset was analyzed using the univariate Cox proportional regression model of time-to-

recurrence (TTR). The significance threshold was set at a raw p < 0.05, and only mature human 

miRNAs were analyzed. The condition selection of a miRNA for further experiments was that 

the corresponding median of the intensity of fluorescence (IF) on the array was at least five on 

a logarithmic scale (median log2 IF ≥ 5). MiRNAs for data normalization were selected based 

on a non-significant result of Wald’s test in a univariate Cox regression model and IF ≥ 5. 

Pairwise differences of miRNAs IF from arrays corresponding to paired matched primary 

recurrent and secondary recurrent samples of meningiomas were tested with the usage of the 

Wilcox exact one sample test. The significance threshold for the pairwise analysis has been set 

at 1 % (raw p < 0.01). A final set of differently expressed miRNAs in primary recurrent and 

secondary tumors was selected as a subset of significantly changed miRNAs by two additional 
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criteria: the absolute value of the median of the difference log2(IF)secondary – log2(IF)primary > 1 

and minimal value of medians log2 intensities at least IF ≥ 5.    

RNA-seq data were mapped to the reference genome of Homo Sapiens GRCh38.p13 using 

the TopHat2 v.2.0.12 splice-read aligner with default parameters. The reads mapped to the 

transcripts annotated in the reference genome were quantified using HTSeq v.0.6.0 for the 

stranded library. The GTF GRCh38.p13 file from the Ensembl database was used for the 

analysis of differential gene expression. Analysis of lncRNA was performed using a GTF file 

from LNCipedia v5.1 as a reference. The tests for differential expression were performed using 

the DESeq2. A transcript was considered significantly differentially expressed if its adjusted p-

value was ≤ 0.05 and its log2 Fold Change was ≥ 2 or ≤ -2. The presented networks were created 

in Cytoscape 3.7.2 using the differential expression analysis results, the free web tool String 

version 11.0, DAVID Bioinformatics Resources, the Panther Classification System, and 

LNCipedia v5.1 or miRNet 2.0. Coding transcripts and lncRNAs were considered to be 

connected based on their chromosomal coordinates if they were within 10,000 nt of one another.  

The RT-qPCR data were processed using the ΔCt method and further analyzed concerning 

recurrence status, sex, histogenesis, WHO grade, and tumor location using common statistical 

methods (Student’s t-test and the Wilcoxon’s test, or Pearson’s chi-square test and Fisher’s 

exact test for testing marker positivity). For each marker, a univariate Cox regression model of 

TTR was fitted with adjustment for the following clinical factors: age at diagnosis, WHO grade, 

sex, extend of resection, and tumor location (convexity). The models’ outputs were hazard ratio 

(HR) estimates with associated 95% confidence intervals and p-values. The HR is associated 

with a one-unit change in the ΔCt value for the miRNA, mRNA, or lncRNA marker in question. 

The additive effects of measured markers were investigated by creating multinomial logistic 

regression models. Final multivariate Cox regression models were created using stepwise 

selection with fixed or unfixed adjusting clinical factors.   

For statistical processing of MEG3 image data, the number of points of size categories in 

the total number of illuminated points was evaluated for each ROI as shares. The data were 

normalized to the area of all ROIs within the whole data set. Averages were then calculated for 

each sample from the proportions of the individual ROIs for each sample. Student's t-test and 

Wilcoxon's test were used to comparing the proportions of points of each size category to 

recurrence and other clinically relevant factors. Also, Wilcoxon's test was used for signal 

localization distribution (nuclei / outside the nuclei) between recurrent and non-recurrent 

samples. Finally, Cox regression models were created to evaluate the TTR in accordance with 

MEG3 transcript distribution within the meningioma tumor tissue.       
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4. Results 

 

4.1. Aim 1: miRNA profiling 

The purpose of this aim was to identify meningioma patients at high risk of recurrence 

using miRNA-based biomarkers. The data was published at Neurosurgery (Oxford Academic; 

IF: 4.85; [98]) and the article is attached as Appendix 1. Potential biomarkers were selected 

using the initial unbiased microarray screening phase, following the training phase performed 

by RT-qPCR on an independent cohort. Finally, the best hits were validated on the expanded 

cohort of 172 patients. The whole experimental design and description of particular patient 

cohorts are described in detail in the following Fig. 16.   

     

 

Figure 16. Schematic overview of the study designed for selection of an appropriate miRNA-

based model for recurrence risk estimation. Only patients after > 8 years’ follow-up were 

considered non-recurrent in the diagrams, but all patients and their overlap between the 

experimental phases are shown in the circular cohorts-overview visualization. Nevertheless, 

all markers are selected and analyzed using Cox regression models using TTR parameter, thus 

categorization to recurrent and non-recurrent patients is not relevant for this aim and has only 

an informative purpose.   

 

I. Screening phase 

The microarray analysis of primary recurrent and non-recurrent samples revealed that the 

expression of 49 abundant miRNAs strongly correlates with TTR (p < 0.05) in meningiomas at 
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various risks of recurrence, quantified with HR, according to the Cox regression models of TTR 

(Fig. 17). Thirty-seven miRNAs showed down-regulated gene expression with an increased risk 

of recurrence. On the other hand, 12 miRNAs were up-regulated following recurrence. The 

highest HR values were reveled in miR-320 family, particularly for miR-320c (HR = 8.8; p = 

0.003), miR-320b (HR = 8.8; p = 0.005) and miR-320a (HR = 5.7; p = 0.032). On the other 

hand, the most significant miRNA in the Cox model with the lowest HR, reflecting decreased 

expression with a higher risk of recurrence, was miR-7975 (HR = 0.4; p = 0.003).  

 

Figure 17. Hierarchical clustering of 49 mature and highly abundant miRNAs, which have 

their expression dependent on TTR (p < 0.05) according to the univariate Cox regression 

model. Only patients after > 8 years’ follow-up were considered non-recurrent in the heatmap, 

but all patients included in the analysis are shown. Hazard ratio (HR) is marked for each 

miRNA (y-axis) as well as relevant clinical characteristics for each patient (x-axis). 
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Seven highly abundant and biologically relevant miRNAs were subsequently selected for 

the further training phase of the study. That set included miR-15a-5p, miR-19b-3p, miR-30e-

5p, miR-107, miR-146a-5p, miR-320c, and miR-331-3p. Their characteristics from the 

microarray screening are shown in the Fig. 18. Also, four miRNAs that exhibited stable 

expression and did not correlate with recurrence status or other clinical characteristics were 

selected for normalization of RT-qPCR data in the following experimental phases (let-7b-5p, 

let-7c-5p, miR-181b-5p, and miR-1281). 

 

Figure 18. Selected miRNAs for the training phase and their characteristics from a univariate 

Cox regression model of TTR. Hazard ratio (HR) with 95% confidential intervals (CI) are 

showed in the forest plot. 

 

Paired analysis  

Only 10 recurrent patients with available both primary and secondary tumor samples were 

included in this microarray analysis. Forty-one mature miRNAs showed differential expression 

in paired matched primary and secondary recurrent samples (Fig. 19). Twenty-eight miRNAs 

were less expressed in the secondary recurrent samples whereas only 13 miRNAs were more 

strongly expressed in secondary recurrent samples (Fig. 19). Interestingly, the sample pairs 

formed two main clusters according to differentially expressed miRNAs, with some miRNAs 

changing their levels of expression in opposite ways. One of these clusters contained only 

patients with convexity meningiomas who were generally older and had higher WHO 

histopathological grades at diagnosis. Only two miRNAs, miR-193b-3p and miR-27a-3p, were 
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deregulated between primary and secondary recurrent samples and showed dependence on TTR 

in the screening phase comparing the primary recurrent and non-recurrent samples. Both of 

those miRNAs exhibited increased expression in secondary samples in comparison with 

primary recurrent samples and decreased expression in primary recurrent samples in 

comparison with non-recurrent samples (according to the Cox models of TTR). These two 

miRNAs were not chosen for further experimental phases. Interestingly, miR-30c-5p was up-

regulated in secondary recurrent samples, while expression of the closely related miR-30e-5p, 

miR-30b-5p, and miR-30a-5p was found to be dependent on TTR in the screening phase. This 

observation indicates that miR-30 is significantly involved in meningioma pathogenesis and 

was therefore selected for the further training phase. Moreover, the miR-30 family showed 

decreased expression pattern following recurrence. According to this data, miRNAs with tumor 

suppressor features in meningiomas reported increased expression in tumors following 

recurrence.     

 

Figure 19. Hierarchical clustering of 41 mature and highly abundant miRNAs, which exhibited 

differential expression between paired matched primary and secondary recurrent samples.  

 

II. Training phase 

RT-qPCR was performed for 7 candidate miRNA recurrence predictors and 4 candidate 

normalizators. The expression of selected miRNA biomarkers was finally normalized against 

miR-181b-5p that exhibited the most stable basal expression over all samples within the training 



44 
 

cohort. A univariate Cox regression model confirmed the differences in some of the miRNAs 

expression in primary recurrent and non-recurrent samples observed in microarray experiments. 

The following miRNAs exhibited significant dependence on TTR using adjusted or non-

adjusted models in their expression: miR-15a-5p, miR-146a-5p, and miR-331-3p (Tab. 3). Non-

adjusted models are calculated only with certain miRNA as a prognostic factor and the adjusted 

one includes also clinical factors, such as age at diagnosis, sex, WHO grade, tumor location, 

and extent of surgical resection. All 3 miRNAs were selected for the final validation phase. 

 

Table 3. Univariate models for recurrence risk prediction from the training phase for each 

measured miRNA. Significant miRNA-based models are marked with a bold. Hazard ratio (HR) 

is reflecting the one unit of ΔCt increase with respective 95% confidential intervals (CI).  

 Non-adjusted model Adjusted model 

Factor HR 1/HR 95% Cl 

range 

p-value HR 1/HR 95% Cl 

range 

p-value 

miR-107 1.25 0.80 0.86 1.80 0.240 0.94 1.06 0.63 1.41 0.761 

miR-331-3p 1.76 0.57 1.14 2.70 0.010 1.57 0.64 0.93 2.65 0.090 

miR-15a-5p 1.15 0.87 0.97 1.35 0.103 1.25 0.80 1.01 1.55 0.038 

miR-19b-3p 1.27 0.79 0.90 1.78 0.175 1.25 0.80 0.88 1.77 0.214 

miR-30e-5p 1.11 0.90 0.89 1.38 0.357 1.21 0.83 0.90 1.64 0.209 

miR-320c 1.23 0.81 0.79 1.92 0.364 0.89 1.12 0.49 1.62 0.710 

miR-146a-5p 1.55 0.65 1.13 2.13 0.007 1.42 0.70 1.00 2.02 0.053 

 

III. Validation phase  

Three markers, namely miR-331-3p, miR-146a-5p, and miR-15a-5p, were selected for the 

final validation phase and tested in an expanded cohort of 172 patients including cohorts from 

the screening and training phases. Cox regression models were developed using the complete 

set of ΔCt values for this cohort that had an unbalanced reality-like ratio of recurrent and non-

recurrent patients. Adjusting clinical factors, such as age at diagnosis, sex, WHO grade, tumor 

location, and extend of resection, were also included in the final analysis of TTR. Univariate 

analyses confirmed the miR-331-3p as the most promising prognostic factor. Analyzing each 

marker separately, miR-331-3p reports the highest hazard ratio (HR = 1.45) and level of 

significance (p = 0.001) among other miRNA-based univariate models; miR-146a-5p showed 

significant prognostic features (HR = 1.34; p = 0.003), too. Additionally, those analyses were 

performed also for the group of patients with only total resection to exclude the influence of 

such strong prognostic factor with probably no molecular background. Of note, this analysis 

provided similar results. Moreover, miR-15a-5p did not reach statistical significance in the 

presented models. Investigating the influence of clinical adjusting factors, extend of resection 
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has the strongest prognostic value in all models. Results from univariate Cox regression models 

are summarized in the following Tab. 4.  

 

Table 4. Univariate models for recurrence risk prediction from the validation phase for each 

measured miRNA. Significant factors are marked with bold. Hazard ratio (HR) is reflecting the 

one unit of ΔCt increase with respective 95% confidential intervals (CI). 

All patients (n = 172) Patients after total resection (n = 127) 

Factor HR 
  
  

p-value Factor HR 
  
  

p-value 

Age at diagnosis 0.99 0.97 1.01 0.436 Age at diagnosis 1.01 0.98 1.00 0.709 

Sex male 1.68 0.84 3.37 0.142 Sex male 1.15 0.47 2.80 0.759 

WHO grade 1.63 1.07 2.50 0.024 WHO grade 1.86 1.06 3.20 0.029 

Non-convex. loci 0.63 0.33 1.18 0.148 Non-convex. loci 0.54 0.23 1.30 0.150 

Partial resection 3.16 1.67 6.00 4.24E-04 - - - - - 

miR-146a-5p 1.34 1.10 1.63 0.003 miR-146a-5p 1.37 1.07 1.80 0.014 

Age at diagnosis 0.99 0.97 1.01 0.254 Age at diagnosis 0.99 0.97 1.00 0.656 

Sex male 2.77 1.45 5.27 0.002 Sex male 1.69 0.72 4.00 0.228 

WHO grade 1.37 0.91 2.08 0.132 WHO grade 1.85 1.07 3.20 0.027 

Non-convex. loci 0.69 0.37 1.28 0.236 Non-convex. loci 0.65 0.28 1.50 0.310 

Partial resection 3.67 1.92 7.02 8.52E-05 - - - - - 

miR-15a-5p 0.94 0.84 1.05 0.283 miR-15a-5p 0.96 0.82 1.1 0.573 

Age at diagnosis 1.00 0.97 1.02 0.827 Age at diagnosis 1.01 0.98 1.00 0.443 

Sex male 1.43 0.67 3.03 0.354 Sex male 1.12 0.44 2.90 0.811 

WHO grade 1.33 0.86 2.05 0.200 WHO grade 1.53 0.86 2.70 0.146 

Non-convex. loci 0.58 0.31 1.10 0.095 Non-convex. loci 0.46 0.19 1.10 0.085 

Partial resection 3.87 2.03 7.38 4.11E-05 - - - - - 

miR-331-3p 1.45 1.17 1.79 0.001 miR-331-3p 1.43 1.10 1.90 0.007 

 

 

Furthermore, the multivariate model was created to prove that miRNA represents real 

added value in meningioma recurrence prognostication. A stepwise selection method with fixed 

clinical adjusting factors was used to select the most important prognostic factors in this model. 

Final model contains only miR-331-3p with HR = 1.44 and p < 0.001 among other measured 

miRNAs and type of resection is the only significant clinical factor (HR = 3.90; p < 0.001). The 

other clinical factors have only a supportive role. The final model is shown in the Fig. 20.  

95% Cl range 95% Cl range 
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Figure 20. Final multivariate Cox regression model built with factors selected by stepwise 

selection with data from validation phase for 161 patients with complete records. 

Characteristics from the Cox regression model are visualized as forest plot with a hazard ratio 

(HR) and respective 95% confidential intervals (CI).   

 

4.2. Aim 2: longRNA profiling 

The purpose of this aim was to identify meningioma patients at high risk of recurrence 

using mRNAs and lncRNAs as biomarkers. The data will be accepted for publication at 

Neurosurgery (Oxford Academic; IF: 4.65) after few revisions according to the reviewers and 

the article is attached as Appendix 2. This part of the thesis is also focused on transcriptomic 

signatures of WHO grade, sex, and developmental origin of meningiomas. Appropriate 

potential biomarkers were selected using initial unbiased RNA-seq screening, following the 

validation phase performed by RT-qPCR on the independent cohort. The whole experimental 

design and description of particular patient cohorts are described in the following Fig. 21 in 

detail. 
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Figure 21. Schematic overview of the study designed for selection of an appropriate longRNA-

based model for recurrence risk estimation. Only patients after at least 5 years’ follow-up were 

considered non-recurrent. Other patients are not included in the analysis of recurrence but are 

included in other comparisons.  

 

Transcripts of coding and non-coding genes exhibiting differential expression with respect 

to tumor recurrence (primary recurrent vs. non-recurrent and secondary vs. primary recurrent), 

sex (male vs. female), histogenesis (neural crest vs. mesodermal origin), or histopathological 

grade (WHO grade I vs. grades II and III) were studied and aligned separately. Only 

differentially expressed transcripts with log2 fold change > 2 or < -2 and adjusted p-value (q-

value) < 0.05 were analyzed further in respective comparison. The differentially expressed 

RNAs considered to be most prognostically relevant were validated in an independent cohort. 

 

RNA-seq screening phase 

We identified 69 mRNAs and 108 lncRNAs that were differentially expressed in primary 

tumors of recurrent and non-recurrent patients. Many identified transcripts were deregulated 

also among WHO grades or between different developmental origins (Fig. 22A). Only one 

transcript was also deregulated comparing males and females (S100B). Because of such 

interesting overlap, this coding transcript was selected for further validation. Three other 

mRNAs were selected for further validation, due to their biological relevance and high 

distinguishing potential between recurrent and non-recurrent samples (low q-value and high 

absolute log2 fold change). That set included HEPACAM2, TDRD1, and ISLR2. HEPACAM2 

and TDRD1 are independently deregulated between recurrent and non-recurrent patients, 

however ISLR2 is also deregulated between WHO grade III and I tumors. Closely related lnc-
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GOLGA6A-1 reported similar features and was also selected for further validation. Among 

other deregulated lncRNAs, oncogenic transcript CCAT2 and completely biologically 

undescribed transcripts lnc-MAST4-5 and lnc-FAT1-3 were selected for RT-qPCR validation.   

Most of the corresponding genes lie on chromosomes 1-8 (Fig. 22B), but there were also 

five X-chromosomal lncRNAs and one X-chromosomal mRNA (XPNPEP2). Based on 

functional annotation clustering, the coding genes were divided into ten clusters representing 

various biological functions and roles (Fig. 22C). Interestingly, developmental genes, 

immunoglobulin-like and ATP-binding genes were also differentially expressed in tumors of 

different histogenetic origin.  
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Figure 22. Differentially expressed genes among primary tumors in recurrent and non-

recurrent patients. Transcripts upregulated in recurrent patients are shown in blue: (A) 

Network showing the fold changes, overlaps, transcript types, and connections of differentially 

expressed transcripts (B) Chromosomal distribution of differentially expressed transcripts. (C) 

Overview of functional annotation clustering of mRNAs in which the biological significance of 

each cluster is quantified using enrichment scores. 

 

Pathway analysis yielded no statistically significant results, but there were a few of the 

significantly differentially expressed mRNAs belonging to common pathways. The pathway 

with the greatest number of mRNAs exhibiting differential expression between recurrent and 

non-recurrent patients (EPHA3, TF, WNT7B, and SFRP1) was the angiogenesis pathway; the 

Wnt signaling (NKD1, WNT7B, SFRP1) and purine metabolism pathways (XDH, GDA) had 

also multiple differentially expressed RNAs. However, only the angiogenesis and Wnt 

signaling pathways were associated with transcripts exhibiting differential expression in other 

comparisons. Pathways including at least 2 genes differentially expressed between recurrent 

and non-recurrent patients are shown in Fig. 23.  

 

Figure 23. Differentially expressed genes (yellow nodes) belonging to certain pathways 

according to PANTHER Enrichment Test (PANTHER version 15). Only the pathways with at 

least 2 genes deregulated between recurrent and non-recurrent patients are showed.   

 

Additionally, a transcriptomic signature of meningioma developmental origin was 

discovered. There were 79 mRNAs and 76 lncRNAs exhibiting differential expression between 

mesodermal lesions and those arising from the neural crest, most of which were closely 

connected. For instance, there were 45 connections between these mRNAs and lncRNAs based 

on their chromosomal coordinates (Fig. 24). The only significantly up-regulated group of RNAs 

in mesodermal tumors were homeobox-related transcripts; the majority of the remaining 

transcripts were down-regulated. However, a few non-homeobox-related transcripts (4 mRNAs 
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and 11 lncRNAs) were up-regulated in mesodermal tumors. Chromosomes 1, 7, and 17 had the 

greatest numbers of mapped transcripts exhibiting differential expression with respect to 

histogenesis; in addition, there were 3 differentially expressed X-chromosomal mRNAs. 

Functionally, these transcripts were linked to angiogenesis, blood coagulation, neural and 

general development, and 4 were associated with Wnt signaling. All identified groups of 

deregulated transcripts are summarized in the following Fig. 24.  

 

  

Figure 24. Differentially expressed mRNAs and lncRNAs among tumors arising from the neural 

crest and mesodermal cells showing their fold changes, common biological roles, transcript 

types, and connections. Transcripts upregulated in neural crest tumors are shown in blue.   

 

There were 59 non-coding and 12 coding transcripts that were expressed differentially in 

males and females. As expected, most of these transcripts were localized to the Y chromosome. 

However, two autosomal coding genes, S100B and NTM, were also identified. Both of them 

are associated with neural development, and especially with neurite outgrowth. S100B 

exhibited differential expression with respect to WHO grade and tumor recurrence. In addition, 

seven autosomal and 5 X-chromosomal lncRNAs were differentially expressed between males 
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and females. Of these lncRNAs, the autosomal lnc-PXDN-3 and the Y-chromosomal lnc-

BPY2C-4 intergenic transcripts are also differentially expressed with respect to WHO grades. 

Interestingly, the intergenic X-chromosomal lnc-TGIF2LX-1 transcript was expressed more 

strongly in males than in females (q < 0.001). 

Transcriptomic differences among clinically relevant histopathological subgroups were 

also investigated. The WHO grade II and WHO grade III groups were merged because of the 

low number of WHO grade III tumors, involving only three patients, and compared to the WHO 

grade I group in our analyses. The only one WHO grade III-specific transcript, CPE, was 

selected for further validation. The CPE is neural-specific carboxypeptidase down-regulated in 

WHO grade III tumors (q < 0.001). In total, 58 mRNAs and 98 lncRNAs were deregulated 

between WHO grade II+III and WHO grade I. The functional annotation clustering showed 11 

common functional patterns of deregulated mRNAs (Fig. 25). Interestingly, there are also genes 

involved in homeobox and DNA binding and metal ions binding and transport, similarly as in 

previous comparisons. AMH, ECEL1, and CCAT2 were selected for further validation. AMH 

is a coding transcript for the Antimüllerian hormone involved in the gonadotropin-releasing 

hormone receptor pathway. AMH was down-regulated in the WHO grade I group (q < 0.001). 

Two other genes from this pathway were also deregulated (NOS1 up-regulated and PITX1 

down-regulated in WHO grade I). Moreover, neural-specific endopeptidase ECEL1 (q = 0.004), 

up-regulated in WHO grade I, and previously described CCAT2 (q < 0.001), down-regulated 

in WHO grade I tumors were selected for further validation as well. 

 

 

Figure 25. Overview of functional annotation clustering of mRNAs, differentially expressed 

between high grades (WHO grade II+III) and low grade (WHO grade I), in which the biological 

significance of each cluster is quantified using enrichment scores. 
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Recurrent tumors comparison 

Furthermore, samples of recurrent patients were compared with their following tumors (not 

paired-matched analysis). Twenty mRNAs and twelve lncRNAs showed differential expression 

between primary and secondary recurrent tumors. Deregulated mRNAs showed overlap only 

with WHO grades (MT1E and SCN7A). However, lnc-GOLGA6A-1 is down-regulated in 

secondary tumors (q = 0.036) and deregulated also in other comparisons. Additionally, lnc-

ASB3-1 is up-regulated in secondary tumors (q = 0.015) and deregulated in recurrent patients 

in comparison with non-recurrent patients and mesodermal tumors in comparison with tumors 

arising from the neural crest. In general, there is the lowest overall transcriptomic difference 

between primary and secondary tumors from recurrent patients in comparison with all other 

investigated groups.  

 

RT-qPCR validation phase 

Eleven transcripts, exhibiting low q-value and high fold change in certain comparisons, 

were selected for this experimental phase. HEPACAM2, TDRD1, lnc-FAT1-3, and lnc-

MAST4-5 were selected for their exclusive expression differences between recurrent and non-

recurrent samples. ISLR2, lnc-GOLGA6A-1, and CCAT2 exhibited differential expression 

among recurrent and non-recurrent patients and WHO grades. AMH, ECEL1, and CPE showed 

distinguishing potential between particular WHO grades within the RNA-seq data. S100B was 

deregulated according to the recurrence status, WHO grade, and sex. All those markers were 

measured with RT-qPCR on an independent cohort of 90 patients using GAPDH mRNA as a 

normalizator. Measurement of HEPACAM2, TDRD1 and lnc-FAT1-3 did not provide efficient 

RT-qPCR data, even trying 3 different probe sets for each of them, thus these transcripts were 

not analyzed further. Two transcripts exhibited a high number of samples with no amplification 

during RT-qPCR, thus they were analyzed from the qualitative point of view. Those are S100B 

with 28 RT-qPCR negative samples (31.1%) and lnc-MAST4-5 with 34 samples without RT-

qPCR amplification (37.8%).  

Differential expression of the remaining 8 transcripts, exhibiting RT-qPCR positivity, were 

analyzed among all comparisons previously studied within the RNA-seq experiment. ISLR2, 

lnc-GOLGA6A-1, and AMH were up-regulated in recurrent patients and males. Surprisingly, 

S100B did not show any significant quantitative changes among investigated subgroups. Also, 

none of the presumed markers proved differential expression among WHO grades. Only lnc-

MAST4-5 was down-regulated in WHO grade II and III tumors, but this feature was not 
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identified in the RNA-seq experiment. This transcript was also quantitatively down-regulated 

in neural crest tumors. All differences are summarized in the following Fig. 26. 

 

Figure 26. Overview of significantly deregulated transcripts, where the fold change is 

calculated from ΔΔCt values in all comparisons on the level of significance p < 0.05. 

 

Qualitative analysis showed that S100B exhibits more frequent RT-qPCR positivity in 

females (78.9%) than males (51.5%). According to Pearson’s test, this difference is statistically 

significant (p = 0.013). Additionally, lnc-MAST4-5 exhibited statistically significant 

qualitatively reduced expression in groups with unfavorable prognosis, except the group of 

neural crest developmental origin (Fig. 27). 

 

  

Figure 27. Significant differences in the proportion of S100B and lnc-MAST4-5 RT-qPCR 

positive samples among selected groups (* p ≤ 0.05, ** p ≤ 0.01). 
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Univariate Cox regression models of TTR were created for all 8 validated transcripts. 

Adjusting clinical factors (age at diagnosis, extent of surgical resection, tumor localization, sex, 

and WHO grade) were included and fixed in each model. ISLR2, lnc-GOLGA6A-1, and AMH 

significantly influenced TTR survival. Interestingly, expression patterns of those three 

transcripts were correlated across the entire RT-qPCR cohort (the correlation coefficient r 

varied from 0.72 to 0.85) with high significance (p < 0.001). Nevertheless, the extent of surgical 

resection was the most important contributor to the estimated recurrence risk in all the adjusted 

univariate models. Only the models with the validated transcript as a significant factor for 

recurrent risk estimation are shown in the following Tab. 5.  

 

Table 5. Univariate models for recurrence risk prediction for each measured transcript; 

significant factors are marked with bold. Hazard ratio (HR) is reflecting one unit of ΔCt 

increase with respective 95% confidential intervals (CI). 

Factor HR 1/HR 95% Cl range p-value 

ISLR2 – based model 

Age at diagnosis 1.0 1.0 0.98 1.03 0.747 

WHO grade II+III 2.4 0.4 1.12 5.19 0.025 

Sex (Male) 0.6 1.6 0.29 1.40 0.261 

Partial resection 6.3 0.2 2.18 18.45 0.001 

Tumor location (convexity) 1.9 0.5 0.71 5.23 0.200 

ISLR2 0.6 1.7 0.38 0.86 0.007 

AMH – based model 

Age at diagnosis 1.0 1.0 0.98 1.04 0.656 

WHO grade II+III 3.0 0.3 1.29 6.90 0.011 

Sex (Male) 0.6 1.6 0.28 1.39 0.246 

Partial resection 5.8 0.2 1.82 18.23 0.003 

Tumor location (convexity) 2.5 0.4 0.87 7.33 0.089 

AMH 0.4 2.5 0.20 0.82 0.012 

Lnc-GOLGA6A-1 – based model 

Age at diagnosis 1.0 1.0 0.98 1.03 0.751 

WHO grade II+III 2.3 0.4 1.08 5.06 0.031 

Sex (Male) 0.6 1.7 0.27 1.30 0.190 

Partial resection 6.6 0.2 2.19 19.76 0.001 

Tumor location (convexity) 2.3 0.4 0.82 6.24 0.115 

Lnc-GOLGA6A-1 0.7 1.4 0.59 0.87 0.001 

 

The final multivariate model was created by stepwise selection using the Bayesian 

information criterion and featured lnc-GOLGA6A-1 as the sole significant recurrence risk 

factor, with 1/HR = 1.31 and p = 0.002. A model in which the clinical factors were fixed was 

identical to the adjusted univariate model for lnc-GOLGA6A-1 in the Tab. 5. Thus, TTR 
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survival was analyzed separately for patients expressing lnc-GOLGA6A-1 at low and high 

levels. The influence of the categorized lnc-GOLGA6A-1 marker on TTR was studied by 

estimating an optimal cut-off value for GOLGA6A-1 with respect to TTR using the maximally 

selected rank statistics method implemented in the survminer R package (ver. 0.4.8). In this 

case, the TTR survival values for subgroups of patients with higher expression of lnc-

GOLGA6A-1 (ΔCt ≤ 2.34) and lower expression (ΔCt > 2.34) were estimated by the Kaplan-

Meier method and compared using the log-rank test. Meningioma patients whose expression of 

lnc-GOLGA6A-1 was below the cut-off (ΔCt > 2.34) had significantly longer TTR survival (p 

= 0.001; Fig. 28). 

 

 

Figure 28. Time-to-recurrence (TTR) survival analysis for patients expressing lnc-GOLGA6A-

1 at low (ΔCt > 2.34) and high levels (ΔCt ≤ 2.34).  

 

4.3. Aim 3: MEG3 profiling 

Identification of the clinically relevant features of MEG3 in meningioma is the main 

objective of this aim. The data has not been published yet.  For this purpose, transcriptomic data 

from the Aim 2 were analyzed. MEG3 was not differentially expressed among studied 

parameters (changes according to WHO grade, sex, recurrence, and developmental origin of 

the tumor). Thus, splicing variants (isoforms) of MEG3 were differentially analyzed with 

respect to mentioned subgroups. This analysis revealed 27 annotated MEG3 isoforms according 

to the GRCh38.p13 file from the Ensembl database. Differential analysis of those isoforms 

showed significant deregulation of some isoforms among studied subgroups. Nineteen isoforms 

were deregulated in at least one comparison at the level of significance q < 0.05. MEG3 

isoforms were most frequently deregulated among WHO grades, but those changes were 

quantitatively weak. Only one isoform was deregulated between recurrent and non-recurrent 

patients. This transcript (MEG3-016) was up-regulated in recurrent patients and also in the 
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subgroup of mesodermal tumors. This isoform contains 9 exons and the final length is 1,726 nt. 

The 5-6 exon junction provides the unique sequence contained only in this isoform. This region 

can be used for the specific detection of MEG3-016. The results of the analysis of splicing 

variants are summarized in the Fig. 29.  

 

Figure 29. Overview of significantly deregulated transcripts, where the fold change is 

calculated from RNA-seq data in all comparisons on the level of significance q < 0.05. 

 

Subcellular localization and tissue distribution of MEG3 were studied. For that purpose, 

RISH was performed for 123 samples on TMA. Image analyses were performed for 82 samples 

in doublets with efficient MEG3 signal and sufficient preparation quality. In the remaining 41 

samples, no or poorly evaluable signal was detected. In higher size categories (> 15 px), clusters 

of MEG3 gene transcripts were supposed to be formed. The amount and distribution of the 

signal were correlated with recurrence and TTR. For the analysis of the size categories, 5% of 

samples with the smallest number of signals and samples containing less than 3 analyzed ROIs 

were excluded. This cohort included 73 samples from 60 patients, thus also secondary tumor 

samples were analyzed with respect to recurrence, but only the primary recurrent samples were 

used for Cox models of TTR. Nevertheless, recurrence status with 5 years’ follow-up was set 

up only for 58 patients/samples. Only the highest quality images were selected for the analysis 

of the signal distribution between nuclei and surroundings (non-nuclei) because this analysis 

was performed manually. This set included 64 samples from 55 patients and recurrence status 

with 5 years’ follow-up was set up for 49 patients/samples. Again, the secondary samples were 

excluded from TTR analyses. Overview of the RISH study with representative images is 

summarized in the following Fig. 30.  



57 
 

         

Figure 30. Schematic overview of the study designed for selection of appropriate MEG3 feature 

for recurrence risk estimation according to the RISH image data. DAPI is shown in green for 

better visibility of the red MEG3 signal. Only patients after at least 5 years’ follow-up were 

considered non-recurrent. Signal location analysis differentiates between nuclear and non-

nuclear localization of MEG3 transcript and Signal size analysis shows the proportion among 

single signals and MEG3 clusters of various sizes.   

 

Most of the signals were distributed in single transcripts (> 60%), clusters of various sizes 

(> 15 px) were less frequent (Fig. 31A). Importantly, the distribution of single transcripts and 

their clusters correlated significantly with recurrence status in all size categories up to 250 px. 

The proportion of single transcripts (1 – 15 px) was the most significant. Samples from recurrent 

patients exhibited a higher proportion of single transcripts than their non-recurrent counterparts 

(p < 0.001). On the other hand, the proportion of the clusters (15 – 250 px) was significantly 

lower in recurrent patients (Fig. 31A-B). This phenomenon was typical for the following size 

categories; 15 – 30 px (p = 0.032), 30 – 60 px (p = 0.020), 60 – 100 px (p < 0.001) and 100 – 

250 px (p = 0.008). The differences in the proportion of single signals and clusters had also the 

same trends after dividing only into two categories (Fig. 31B); > 15 px and < 15 px. Samples 

with a signal percentage < 15 px greater than 72.7% were more likely to come from recurrent 

patients (p < 0.001). The cut-off of 72.7% was set up according to TTR. The Cox model of TTR 

also showed a significantly higher probability of recurrence in patients with a higher proportion 
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of single transcripts than this cut-off value (HR = 5.2; p = 0.002). According to the survival 

analysis, the TTR differs significantly for groups of patients with a lower or higher proportion 

of individual transcripts in the size category 1 - 15 px (p < 0.001; Fig. 31C).        

  

 

Figure 31. Signal size analysis of MEG3 transcript in meningioma tissue: (A) Proportion of 

points in individual categories within the data set expressed as boxplots. MEG3 clusters (> 15 

px) are marked with white arrows in the representative image. MEG3 signal is shown in red 

and nuclei in green.  (B) The second boxplot shows the same data, but the size is divided only 

into two categories; single MEG3 transcripts (< 15 px) and MEG3 clusters (> 15 px). (C) Time-

to-recurrence (TTR) survival analysis for patients with the low proportion of single transcripts 

(< 72.7%) and the high proportion of single transcripts (> 72.7%). Characteristics from the 

Log-rank test and Cox regression model are showed; p-value, hazard ratio (HR), and respective 

95% confidential intervals (CI).  

 

Regarding the signal location analysis, Cox regression models showed a significant 

correlation between TTR and the nuclear location of the MEG3 signal. Only the signals from 

the single transcripts were included in the analysis, because of discrepancy during the 
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estimation of the exact location of clusters, which often exhibited strong over-illuminated 

signals (Fig. 32A). A 10% increase in the proportion of signal in the nucleus significantly 

increases the probability of early recurrence according to the univariate Cox regression model 

(HR = 1.47; p = 0.003; Fig. 32B). As previously described, the influence of the categorized 

parameter on TTR was again studied by estimating an optimal cut-off value for the proportion 

of the signal within the nuclei with respect to TTR using the maximally selected rank statistics 

method. The resulted cut-off value was a 64% representation of the single signals of MEG3 in 

the nuclei. The Cox model of TTR showed a significantly higher probability of recurrence in 

patients with a higher proportion of single transcripts in the nuclei than this cut-off value (HR 

= 4.7; p = 0.009). According to the survival analysis, the TTR differs significantly in groups of 

patients with a lower or higher proportion of individual transcripts in the nuclei (p = 0.004; Fig. 

32D).   

 

 

Figure 32. Signal location analysis of MEG3 transcript in meningioma tissue: (A) MEG3 signal 

distribution both inside and outside the nuclei. MEG3 signal is shown in red and nuclei in green 

channels. Location was determined only for the single transcripts, clusters with questionable 

locations are shown by white arrows. (B) Recurrent tumor tissue with strong nuclear 

accumulation of MEG3. (C) Tissue with a higher proportion of MEG3 localized outside of the 

nuclei. (D) Time-to-recurrence (TTR) survival analysis for patients with low (< 64%) and high 

(> 64%) proportion of single transcripts in the nuclei. Characteristics from the Log-rank test 

and Cox regression model are showed; p-value, hazard ratio (HR), and respective 95% 

confidential intervals (CI).  
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5. Discussion  

Despite the fact that histopathological features and Simpson grade (SG) evaluation are 

routinely used prognostic markers, WHO grade I meningiomas may recur even after adequate 

total resection, whereas the WHO grade II and III tumors may not [12]. This calls into question 

the value of histology in predicting their recurrence. It has recently emerged that epigenetics-

based classifications predict meningiomas’ biological behavior more accurately than 

morphology-based taxonomies. For example, DNA methylation profiling was shown to identify 

WHO grade I meningiomas at high risk of recurrence as well as those with a low tendency to 

recur despite having morphological features of WHO grade II lesions [45]. Also, abnormalities 

in genomic DNA have been already included in routine prognostication of other brain tumors. 

Most of the investigated abnormalities include the mutational status of coding loci in DNA, 

such as IDH1 status in glioblastomas [99].  These aspects have been recently investigated also 

in meningioma. For instance, Hedgehog activation, including oncogenic SMO and SUFU 

mutations, as well as TRAF7 mutations, exhibit elevated risk of recurrence in WHO grade I 

meningiomas. PI3K activating mutations shorten the TTR too [100]. On the other hand, KLF4 

mutations were associated with a low recurrence rate and longer progression-free survival. 

Nevertheless, a further multivariate Cox regression model identified only the Hedgehog 

activation as an independent negative risk factor for meningioma recurrence (HR = 2.7; p = 

0.046) among all others studied mutations [100]. The main intention of this thesis was to find 

the biomarkers of meningioma recurrence on the level of non-coding RNAs. Currently, there is 

no other unbiased study properly addressing this issue. A link between aberrant miRNA 

expression and meningioma recurrence has so far been identified in only three studies. 

However, none of these miRNAs overlap with the set of 49 deregulated miRNAs identified 

during the screening phase of the presented thesis [48] [75] [101]. All those studies were 

performed on the Chinese population and only one study included proper screening not using 

predesigned panel [48]. During our miRNA study, potential markers of recurrence were 

screened with an unbiased microarray method. The final validation set of markers included 

miR-15a-5p, miR-146a-5p, and miR-331-3p. Cox multivariate model with stepwise selection 

identified the predictive miR-331-3p-based model as the most effective. The validation cohort 

included the patients from previous experimental phases and was expanded by 75 patients, 

which were not previously included. Thus, the validation phase is not independent and 

represents a potential limitation. This approach was selected because of lack of the samples 

from recurrent patients. 
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Both miR-15a-5p and miR-331-3p are tumor suppressors playing the role in various 

cancers and cancer-related signaling pathways. According to TarBase v7.0, those miRNAs are 

also significantly related to viral infections, protein and fatty acids processing, and hormone-

mediated oocyte development. Thus, it was found that miR-15a-5p and miR-331-3p influence 

both mitosis and meiosis [102]. Which proteins are crucial targets of these miRNAs in 

meningiomas remains unclear, yet there are some most probable relations. For instance, it has 

been found that EGF signaling, HRAS, hypoxia, and angiogenesis are involved in the 

progression of benign meningiomas [18]. EGFR and RASL10B are the direct targets of miR-

331-3p and angiogenesis is strongly regulated by miR-15 [103]. Regarding mentioned fatty 

acids metabolism, meningiomas with proposed unfavorable prognosis exhibit the higher 

expression of fatty acid synthase and brain fatty acid-binding proteins. Those molecules are 

associated with higher aggressiveness of tumors because they allow the acceleration of 

metabolism in cancer cells by increasing cellular fatty acid uptake, processing, and transfer 

[104]. This suggests that miR-331-3p in particular, which plays such an important role in the 

meningioma prognostication, may largely suppress the described oncogenic properties and 

pathways in meningioma.  

The second most effective predictive model was identified as the one involving miR-146a-

5p. Interestingly, miR-146a-5p is not only an effective prognostic biomarker, but also an ideal 

candidate for a predictive marker and therapeutic target. MiR-146a acts as a tumor suppressor 

in gastric cancer cells and metastases [105], and complete suppression of its expression in 

C57BL/6 mice leads to the development of myeloid sarcoma and lymphoma [106]. Studies 

using glioma cell lines have reported that combined treatment with gamma-linolenic acid 

(GLA) and ionizing irradiation leads to overexpression of miR-146a (Fig. 33) [107]. Because 

surgical resection in combination with irradiation is the standard therapy for recurrent 

meningiomas, it would be beneficial to determine whether GLA and radiotherapy would have 

a similar positive therapeutic effect on miR-146a-5p expression in meningiomas. Decreased 

expression of miR-146b leads to increased expression of the NF-κB gene causing increased 

production of IL-6, which activates STAT3 [108]. STAT3, which exhibited overexpression in 

meningiomas with a worse prognosis, is indirectly affected by miR-146b, which decreases 

expression of NF-κB leading to down-regulation of IL-6 production (Fig. 33). In addition, a 

strong activating phosphorylation signal of STAT3 has been observed predominantly in 

recurrent tumors [109]. Although suppression of IL-6 by miR-146a leading to decreased 

STAT3 expression has not yet been demonstrated in meningiomas, current knowledge on the 

relationship between STAT3 and miR-146 suggests potential therapeutic use of miR-146a as a 
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targeted treatment for these tumors. Combination therapy with GLA and radiation may be an 

effective strategy to increase the expression of this miRNA, thus inactivating the JAK/STAT 

signaling pathway (Fig. 33), which could lead to a reduced risk of recurrence in meningioma.   

 

 

Figure 33. The proposed mechanism of the treatment with gamma-linolenic acid (GLA) in 

combination with ionizing radiation (IR) leading to the overexpression of the miR-146 family, 

which targets NF-κB, important for recruiting the cytokines. Interleukin-6 (IL-6) is the crucial 

cytokine for activation of the JAK/STAT signaling. Dimerized and phosphorylated (P) STAT3 

acts as an oncogenic transcription factor.  

 

Besides miRNA profiling, long RNA profiling was ensured by RNA-seq. The differences 

among various clinical subgroups of meningiomas were investigated. Also here we focused 

mainly on meningioma recurrence. Only three markers showed significant deregulation 

between recurrent and non-recurrent tumors and proved their prognostic features in adjusted 

Cox regression models of TTR. Those are ISLR2, lnc-GOLGA6A-1, and AMH. The expression 

of those three oncogenic transcripts mutually correlates among the whole RT-qPCR validation 

cohort (p < 0.001). Here, we have found a clear explanation for this phenomenon. ISLR2 and 

lnc-GOLGA6A-1 have a synergic oncogenic effect, and both may play important roles in neural 

and brain tumor development. It was observed in neuroblastomas that ALK mutation and 

MYCN amplification were both associated with elevated lnc-GOLGA61-1 and ISLR2 levels 

[110]. Mutual upregulation of both ISLR2 and lnc-GOLGA61-1 can be caused by the fact that 

those transcripts are mapped to the same locus and are both controlled by the regulatory 

sequence GH15J074130, according to the interaction analysis from GeneCards [111] and 

Ensembl [91] databases (Fig. 34). Additionally, ISLR2, lnc-GOLGA6A-1, and AMH are 

regulated by many common transcription factors including KLF4 (Fig. 34). Noteworthy, KLF4 

was previously reported to carry activating mutations in meningiomas [3].         

 



63 
 

 

Figure 34. Proposed explanation of transcriptional correlation and regulation of the 

expression of ISLR2, AMH, and lnc-GOLGA6A-1. ISLR2 and lnc-GOLGA6A-1 share the 

genomic loci and regulatory sequence GH15J074130. ISLR2, AMH, and lnc-GOLGA6A-1 

expression are mostly regulated by the common transcription factors. KLF4, often mutated in 

meningiomas, also transcriptionally regulates ISLR2 and AMH expression.       

 

Despite the strong prognostic significance of those three transcripts, only lnc-GOLGA6A-

1 was determined by the stepwise selection as the most significant factor for recurrence risk 

estimation in the multivariate Cox regression model of TTR. Although the exact function of 

this lncRNA is currently unknown, there is considerable evidence for its oncogenic properties 

in brain tumors. Besides bioinformatics investigation from the previously mentioned 

neuroblastoma study [110], lnc-GOLGA6A-1 promoter methylation was also associated with 

longer OS in patients with IDH1-wild-type glioblastomas [99]. In any case, it would be 

beneficial to determine the exact role of lnc-GOLGA6A-1 in brain tumors and utilize it in 

personalized medicine.   

Probably because of partly degraded RNA within the FFPE samples, some of the 

transcripts were completely undetectable by RT-qPCR (HEPACAM2, TDRD1, and lnc-FAT1-

3). Two transcripts often exhibited RT-qPCR negativity, thus the qualitative categorization to 

positivity and negativity of those RNAs was correlated with investigated clinical aspects. 

According to RNA-seq data, downregulated S100B within the prognostically unfavorable 

groups (males, recurrent patients, WHO grade II+III) showed only a lower proportion of RT-

qPCR positive samples from males within the validation cohort. S100B serum level was 

previously associated with poor outcomes in patients after meningioma resection [112]. 

However, its expression is also affected by brain injury and a course of surgery [112], which 

may introduce bias when comparing results across different patient cohorts. On the other hand, 
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qualitative categorization showed lnc-MAST4-5 as significantly downregulated in the 

prognostically unfavorable groups (males, recurrent patients, WHO grade II+III). This potential 

prognostic biomarker with very low basal expression within both of our cohorts should be 

validated in the future using non-FFPE samples with higher RNA quality – either fresh-frozen 

tissue or samples that have undergone RNase inactivation.          

Furthermore, the functional aspects of deregulated genes have been studied during Aim 2 

of this thesis. Here we identified coding genes, and potentially related non-coding genes, 

involved in ATP and metal binding, general and neural development, Homeobox domain, Wnt 

signaling, angiogenesis, and immunoglobulin-like fold as crucial for meningioma development 

and aggressiveness. Similar molecular patterns were previously reported and especially the 

importance of Wnt signaling in meningioma is often mentioned [22] [26] [113]. Interestingly, 

the importance of Wnt signaling and angiogenesis was also reported in canine meningiomas 

[25]. Additionally, this is the first study to examine differences in expression profiles between 

meningiomas of different histogenetic origins. Here, we found out that especially 

developmental and homeobox-related genes are deregulated between mesodermal and neural 

crest meningiomas. Expression of homeobox-related genes, including the lncRNA HOXA-

AS2, which was also deregulated between the mesoderm and neural crest within our data set, 

was associated with specific clinical outcomes in meningioma [113]. Moreover, 

hypermethylation of homeobox-related genes was observed in more aggressive and malignant 

meningiomas, but this phenomenon did not have efficient prognostic power [26].            

As an example of the link between our miRNA and lncRNA data, the connection between 

CCAT2, prognostically unfavorable according to our RNA-seq data, and the prognostically 

favorable miRNAs according to Aim 1, was identified. CCAT2 is a known non-coding 

oncogenic transcript associated with a worse prognosis in many malignancies. It is crucial in 

carcinogenesis and influences the cell cycle as well as RNA biogenesis and degradation [114]. 

Most of its effects on signaling pathways are exerted via miRNAs. For example, it blocks the 

maturation and nuclear export of the tumor suppressor miR-145 [115]. Interestingly, miR-

146a/b and miR-15a can be similarly inhibited and were identified as the tumor suppressors in 

meningioma. Thus, the regulation between CCAT2 and miR-146a-5p can be crucial in 

meningioma development and pathogenesis.     

Additionally, we also conducted a detailed investigation of the lncRNA MEG3 in 

meningioma and found out that its isoforms and localization within the tumor cells change as a 

function of the risk of recurrence. MEG3 is expressed in arachnoid cells, which are likely to 

give rise to meningiomas. On the other hand, MEG3 is not expressed in most human 
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meningiomas, respectively human meningioma cell lines such as IOMM-Lee or CH157-MN. 

Functionally, MEG3 suppresses DNA synthesis and stimulates p53. Loss of MEG3 expression, 

as well as deletion of MEG3 gene copies, is more commonly observed in higher-grade 

meningiomas [116]. This is consistent with our observation that MEG3 gene expression was 

often difficult to detect in tumor cells. However, the overall expression of MEG3 is not 

significantly changed among defined clinically relevant patient subgroups according to our 

RNA-seq data. Nevertheless, the distribution of various isoforms is changed among studied 

subgroups. Most importantly, the MEG3-016 isoform was significantly up-regulated in 

recurrent tumors (q < 0.001). The human MEG3 gene contains ten exons, which can produce 

27 splicing variants / isoforms [91]. Individual splicing variants differ in their ability to 

stimulate the p53 pathway. Tumor tissue expresses different isoforms than healthy tissue and 

has a different splicing mechanism [117]. Thus, it is in accordance with previous investigations, 

that resolution among individual MEG3 isoforms could be clinically beneficial. For instance, 

splicing variant analysis in breast cancer recently revealed 25 alternative exons, functionally 

related to EMT, which can serve as accurate biomarkers for the identification of aggressive 

behavior of triple-negative breast cancer [118].    

In addition to splicing variant analysis, we performed a single-molecule resolution RISH 

for MEG3. LncRNAs are most often detected by RT-qPCR, but we used a single-molecule 

RNAscope method that is considered very accurate and specific [119]. The RT-qPCR method 

is not able to distinguish cell types, their individual populations in the tissue, and the location 

of the transcripts. Thanks to the RISH method, histological and morphological information can 

be combined with the localization and expression of lncRNA. According to Tripathi et al., 

understanding the localization and expression of lncRNA may be useful in developing more 

effective therapeutic approaches [120]. Because different lncRNAs can exhibit various cellular 

localization and clustering patterns [97], we hypothesized, that this feature can be potentially 

used in disease prognostication. This study showed that the size and the location of a signal 

from MEG3 transcripts are associated with meningioma recurrence. Univariate Cox regression 

models revealed that 10% share increase of nuclear MEG3 fraction in size category 1 – 15 px 

significantly shorten the TTR (p = 0.003). Also, 10% share increase of the signals in size 

category 1 – 15 px (single transcripts) is associated with shorter TTR (p = 0.025). Thus, the 

increased share of single transcripts and decreased share of MEG3 clusters of various size 

categories are associated with recurrence. According to our knowledge, this is the first study to 

examine the localization and cluster formation as the disease prognostic biomarker.                   



66 
 

6. Conclusion 

Meningiomas belong to common tumors of the central nervous system. A common issue 

in these cancers is their recurrence even in benign forms within 5 to 10 years, which cannot be 

accurately estimated. This suggests an existence of key regulators that affect their biological 

behavior independently on WHO grade. The presented thesis provides evidence that coding and 

non-coding RNAs might play such a regulatory role. Significant differential expression of 

mRNAs, miRNA, and lncRNAs was observed between recurrent and non-recurrent tumors of 

differing WHO grades. The most effective miRNA-based predictive model was selected 

including the miR-331-3p expression, the extent of tumor resection, and its localization as 

significant predictors of meningioma recurrence. These findings might lead to improvement of 

postoperative care by optimization of follow-up surveillance. Moreover, identification of the 

patients that might benefit from early irradiation and gamma-linolenic acid administration has 

been shown to result in upregulation of miR-146a-5p, the second most important factor for 

recurrence risk estimation identified in our study. However, this effect must be proven in 

meningiomas yet. The expression of the lnc-GOLGA61-1 was also found to be a more reliable 

predictor of meningioma recurrence than well-known predictors including WHO grades and 

the extent of tumor resection. Furthermore, transcripts encoding developmental and homeobox-

related genes were differentially expressed in lesions with different proposed histogenesis, 

providing the first evidence of transcriptomic differences between meningiomas with different 

developmental origins. Further analysis of the biological processes associated with these 

differentially expressed transcripts may reveal pathways that could be targeted by innovative 

therapies. Additionally, important features of lncRNA MEG3 were identified to estimate the 

risk of recurrence. One of these is the splicing mechanism leading to the higher elevation of the 

MEG-016 isoform; however, this phenomenon has to be further validated using RT-qPCR. 

Also, a decreased pattern of cluster formation and nuclear localization of MEG3 transcripts are 

associated with a higher risk of recurrence. This is the first evidence of lncRNA localization 

pattern in disease prognostication.  
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7. List of abbreviations 

3’UTR   Untranslated Region at the 3’ termini 

ALK   Anaplastic Lymphoma receptor tyrosine Kinase 

AMH   Anti-Mullerian Hormone 

AMPK   AMP-activated, alpha 2 catalytic subunit, protein Kinase 

ANRIL  Antisense Noncoding RNA in the INK4 Locus 

AR / ER / PR  Androgen / Estrogen / Progesterone Receptors 

ATP   Adenosine Triphosphate 

BBB   Blood-Brain Barrier 

CAF-1   Chromatin Assembly Factor 1 

cAMP   cyclic Adenosine Monophosphate 

CCAT2  Colon Cancer Associated Transcript 2 

CCNB1  Cyclin B1 coding gene 

CDC2   Cell Division Control protein 2 

CDH1   Cadherin 1 coding gene 

CDKN2A/B   Cyclin-Dependent Kinase inhibitor 2A or 2B 

cDNA   complementary Deoxyribonucleic Acid 

cheRNA  chromatin-enriched Ribonucleic Acid 

circRNA  circularized Ribonucleic Acid 

CNA   Copy Number Alteration 

CPE   Carboxypeptidase E 

CSC   Cancer Stem Cells 

CSF   Cerebrospinal Fluid 

Ct   Cycle-threshold  

CT   Computed Tomography 

Cy3   Cyanine 3 (tetramethylindo(di)-carbocyanines) 

DAPI   4′,6-Diamidino-2-Phenylindole 

DEPC   Diethylpyrocarbonate 

DGCR8   DiGeorge syndrome Critical Region 8 

DICER  Double-stranded RNA-specific Endoribonuclease 
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DLK1   Delta Like Non-Canonical Notch Ligand 1 

DREAM complex Dimerization partner, RB-like, E2F and Multi-vulval class B complex 

ECEL1  Endothelin-Converting Enzyme-Like 1 

EGFR   Epidermal Growth Factor Receptor 

EMA   Epithelial Membrane Antigen 

EMT   Epithelial-Mesenchymal Transition 

EPHA3  Ephrin Type-A Receptor 3 

eRNA    enhancer Ribonucleic Acid 

EXP5   Exportin-5 

FAM   Fluorescein Amidite 

FFPE   Formalin-Fixed Paraffin-Embedded 

FOXM1  Forkhead Box M1 

GDA   Guanine Deaminase 

GLA   Gamma-Linolenic Acid 

GREM2  Gremlin 2 coding gene 

HDL   High-Density Lipoprotein 

HEPACAM2  HEPACAM family member 2 

HIPK3                        Homeodomain Interacting Protein Kinase 3 

hnRNP A1  heterogeneous nuclear Ribonucleoprotein A1 

HOTAIR  HOX (homeobox) antisense intergenic RNA 

HOTAIRM1  HOX antisense intergenic RNA myeloid 1 

HOTTIP  HOXA Transcript at the Distal Tip 

HR   Hazard Ratio 

HULC   Hepatocellular Carcinoma Up-regulated Long Non-Coding RNA 

ICRs   Imprinted Control Regions 

IDH1  Isocitrate Dehydrogenase (NADP(+)) 1 

IF   Intensity of Fluorescence 

IG-DMR  Intergenic Differentially Methylated Region 

IGF2BP1  Insulin-like Growth Factor 2 Binding Protein 1 coding gene 

IHC   Immunohistochemistry  
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IL-6   Interleukin 6 

IMTM   Institute of Molecular and Translational Medicine 

ISLR2   Immunoglobulin Superfamily containing Leucine Rich Repeat 2 

JAK/STAT  Janus Kinases/Signal Transducer and activator of Transcription proteins 

JARID2  Jumonji And AT-Rich Interaction Domain containing 2 

KLF4   Kruppel Like Factor 4 

LEPR  Leptin Receptor 

lncRNA  long non-coding Ribonucleic Acid 

MALAT1  Metastasis-Associated Lung Adenocarcinoma Transcript 1 

mascRNAs  MALAT1‑associated small cytoplasmic Ribonucleic Acids 

MDM2  Mouse Double Minute 2 

MEG3   Maternally Expressed Gene 3 

miRNA  micro Ribonucleic Acid 

mRNA   messenger Ribonucleic Acid 

MT1E   Metallothionein 1E 

mTOR   mechanistic Target Of Rapamycin 

MYCN  N-myc proto-oncogene  

ND1000  NanoDrop 1000 spectrophotometer 

NDRG2  N-Myc Downstream-Regulated Gene 2 

NF2   Neurofibromatosis type 2  

NF-κB   Nuclear Factor Kappa B 

NGS   Next Generation Sequencing  

NOS1   Nitric Oxide Synthase 1 

NTM   Neurotrimin coding gene 

OS   Overall Survival 

PCNA   Proliferating Cell Nuclear Antigen 

PDCD1  Programmed Cell Death 1 coding gene 

PGDS   Prostaglandin D Synthase 

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-Kinase Catalytic subunit 

Alpha 

piRNA   PIWI-interacting Ribonucleic Acid  
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PITX1   Pituitary homeobox 1 

PRC1/2  Protein Regulator of Cytokinesis 1 or 2 

PTEN   Phosphatase and Tensin homolog 

PTTG1  Pituitary Tumor-Transforming Gene 1 

QKI   Quaking alternative splicing factor 

RASL10B  RAS-Like family 10-member B 

Rb   Retinoblastoma protein 

RECAMO  Research Centre for Applied Molecular Oncology 

RFS   Recurrence-Free Survival 

RIN   RNA Integrity Number 

RISC   RNA-Induced Silencing Complex 

RISH   RNA In Situ Hybridization 

RNAi   RNA interference 

RNA-seq  RNA/transcriptomic sequencing 

RNPs   Ribonucleoproteins 

ROI   Region Of Interest 

rRNA   ribosomal RNA 

RT-qPCR  Reverse Transcriptase quantitative Polymerase Chain Reaction 

S100B   S100 calcium-binding protein B 

scaRNA  Small Cajal body-specific RNA 

SCN7A  Sodium voltage-gated Channel Alpha subunit 7 

SFRP1   Secreted Frizzled Related Protein 1 

SG   Simpson grade 

SMARCE1 SWI/SNF-related Matrix-associated Actin-dependent Regulator of 

Chromatin subfamily E member 1 

SMO   Smoothened, frizzled class receptor 

sncRNAs  small non-coding RNAs 

snRNA / snoRNA  small nuclear / small nucleolar RNAs 

SSTR2A  Somatostatin Receptor type 2A 

SUFU   Suppressor of Fused homolog 

SWI/SNF  SWItch/Sucrose Non-Fermentable (chromatin remodeling complexes) 
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TDRD1  Tudor Domain containing 1 coding gene 

TERC   Telomerase RNA Component 

TERT   Telomerase Reverse Transcriptase 

TF   Transferrin coding gene 

TIMP3  Tissue Inhibitor of Metalloproteinase 3 

TMA   Tissue Microarray 

TNF-α   Tumor Necrosis Factor Alpha  

TRAF7   Tumor necrosis factor Receptor-associated Factor 7  

Tsix   XIST Antisense RNA 

TTR   Time-to-recurrence   

WHO   World Health Organization 

Wnt  Wingless-type family members and signaling 

WNT7B  Wnt family member 7B 

XDH   Xanthine Dehydrogenase 

Xist   X inactive specific transcript 

XPNPEP2  X-Prolyl Aminopeptidase (Aminopeptidase P) 2 

ZEB1/2  Zinc finger E-box Binding homeobox 1 or 2 
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