
Palacký University Olomouc
Faculty of Science

Department of Optics

Deep neural networks for
polarimetric and imaging

applications

Bachelor’s Thesis

Dominik Vašinka

Palacký University Olomouc
Faculty of Science

Department of Optics

Deep neural networks for
polarimetric and imaging

applications

Bachelor’s Thesis

Author: Dominik Vašinka
Study programme: B1701 Physics
Field of study: General physics and mathematical physics
Form of study: Full-time
Supervisor: RNDr. Miroslav Ježek, Ph.D.

Thesis submitted on:

Univerzita Palackého
Př́ırodovědecká fakulta

Katedra optiky

Vı́cevrstvé neuronové śıtě
s aplikacemi v polarimetrii

a zobrazováńı

Bakalářská práce

Autor: Dominik Vašinka
Studijńı program: B1701 Fyzika
Studijńı obor: Obecná fyzika a matematická fyzika
Forma studia: Prezenčńı
Vedoućı: RNDr. Miroslav Ježek, Ph.D.

Práce odevzdána dne:

Abstract

Artificial neural networks are nowadays widely used algorithms, successfully
utilized in many challenging applications. Unlike the von Neumann architec-
tures, they do not require specifying the exact rules for processing the input
data, which allows for achieving sufficient results even in applications, where all
analytical models fail.

In this thesis, the possibility of utilizing these networks for optics related
applications is explored. Firstly, we use the deep neural networks for modelling
the transformation of the polarization state of light propagated through twisted
nematic liquid crystal modules. Then, convolutional neural networks enhancing
images affected by the diffraction limit and noise are utilized for counting point-
like emitters.

Keywords

machine learning, deep neural networks, convolutional neural networks,

polarimetry, twisted nematic liquid crystals, image enhancement, emitter

counting.

i

Acknowledgments

In the first place, I would like to deeply thank my supervisor RNDr. Miroslav
Ježek, Ph.D. for his guidance, patience and all the advice given to me. Many
thanks go to Mgr. Bc. Martin Bielak for providing me with experimental data
and Mgr. Jan Provazńık for developing and managing computational grid at the
Department of Optics. I would also like to thank all my lectors for sharing their
knowledge with me, and my colleagues for a friendly environment. And last but
not least, a huge thanks goes to my family for their enormous support.

Dominik Vašinka

Declaration

I hereby declare that I have written this Bachelor’s Thesis, and performed all
the presented research tasks by myself, while being supervised by RNDr. Miroslav
Ježek, Ph.D. I also state that every resource used is properly cited. I agree with
the Thesis being used for teaching purposes and being made available at the
website of the Department of Optics.

Signed in Olomouc on .

Dominik Vašinka

ii

Contents

1 Introduction 1

2 Neural network 4
2.1 Neural network fundamentals . 4
2.2 Datasets . 6
2.3 Overfitting . 7
2.4 Hyperparameters and their optimization 9
2.5 Convolutional neural network . 11

3 Liquid crystal polarimetry 13
3.1 Polarization state of light . 13
3.2 Twisted nematic liquid crystals modules 15
3.3 TN LC transformation modelling 16
3.4 Conclusion . 18

4 Image deconvolution 20
4.1 Data generation, convolution and noise 20
4.2 Deconvolution by CNN . 22
4.3 Universal network . 25
4.4 Conclusion . 26

5 Conclusion 27

iii

Chapter 1

Introduction

Behind various current technologies, including email spam filtering and au-
tonomous vehicles, are machine learning algorithms. Even though the term
machine learning was first used much earlier, its big success started only about
a decade ago, which was allowed by discovering new optimization methods and
computing technology becoming progressively more efficient, resulting in a de-
crease of the required computational time.

Machine learning algorithms are different from von Neumann architectures,
where the data are provided along with rules for processing them to receive
an output. In machine learning, the algorithm uses the data to find rules and
patterns. In other words, these algorithms learn from the data, thus the term
machine learning. Its methods divide into three primary groups – supervised,
unsupervised and reinforcement learning. If we provide the algorithm not only
with inputs but also related outputs, we are talking about supervised learning,
typically regression and classification. The supervised algorithm learns a map-
ping between the input and its output, capable of predicting outputs for new
data. Unsupervised algorithms provided only with the inputs are supposed to
find patterns in the data. For example, they can be used to detect anomalies or
to categorize data into groups. And last but not least, reinforcement learning
is based on determining the best actions to take in a particular situation to
maximize a reward, as finding a way through a maze. They are typically used
for autonomous vehicles and in games like chess or Go.

An artificial neural network is an algorithm that learns to perform a non-
linear transformation on its inputs to receive desired outputs. Even though
it can be applied to all three branches of machine learning, we will focus on
artificial neural networks as part of supervised learning, i.e. with known input
and output. They are inspired by the structure and processes in biological brains
but do not represent a model of it. The brain consists of an enormous number
of neurons connected via synapses which they use to communicate. During the
learning process, these synapses alter, some become stronger and other weaker.
The same concept is behind the principles of artificial neural networks. First,
we provide the network with a dataset representing experience, for example,
spam and non-spam emails, each together with its label whether or not it is a
spam. Then, the network learns by finding patterns in these data and altering
its synapses correspondingly. Once the network has seen enough examples, it is
capable of predicting a possibility for a newly received email to be spam.

1

Artificial neural networks have successfully spread to many fields, such as
cybersecurity, speech recognition, banking, business or routing systems and sci-
ence is no exception. In medicine, these networks are used for analysing images
from X-ray and MRI scans [1, 2], as well as for tumour classification [3] and dis-
covering drugs [4, 5]. As another example, chemists successfully applied them
for predicting material properties, for example, of polymers and for analysing
spectroscopic data [6]. Many applications can also be found in physics, for ex-
ample, predicting the energies of atomic nuclei achieving accuracy comparable
to state-of-the-art methods but with a lower computational cost [7]. Cosmolo-
gists utilized neural networks in estimating the photometric redshift [8], finding
gravitational lenses [9], predicting cosmological constraints [10] or classifying of
several astronomical objects like supernovas [11, 12]. Neural networks can also
be utilized in quantum physics, where they are efficiently used as a classifier of
the quantum entanglement without the full information about the states [13], as
well as a classifier distinguishing between single and non-single quantum emit-
ters based on their sparse autocorrelation data [14]. Another application can be
found in the quantum state tomography [15, 16, 17]. For example, the authors
of [15] combine a local-measurement-based QST with artificial neural networks
to effectively reconstruct the full quantum state. These are just a few examples
as significantly more exist.

Lets now focus on optics, where neural networks found their applications, for
example, for classifying objects based on polarimetric radar measurements [18]
or for exploring the properties of liquid crystals based on their optical im-
ages [19]. However, most of the optics related applications can be found in
imaging, where the typical applications consist of image enhancement, image
reconstruction, noise reduction and detection, classification and counting of ob-
jects. Image reconstruction stands for restoring an original image from a speckle
pattern created by propagation of light through scattering media. Neural net-
works have been used to determine the inverse transmission matrix of multimode
fibre from the speckle pattern [20], but also to directly recover and classify the
original image [21]. Another neural network reconstructs images of speckle pat-
terns originating from a wide range of diffusers [22]. The image enhancement
aims to reduce the limitations of the resolution of optical systems caused by the
diffraction limit alongside with optical aberrations. Artificial neural networks
have proved to be an effective method for enhancing the resolution of images.
The authors of [23] applied a neural network to improve a resolution with a
single image and achieved higher output quality compared to state-of-the-art
methods. An example of direct application of an image-enhancing network is
fluorescence microscopy, where it was used for obtaining super-resolution images
under low signal-to-noise ratio [24] as well as significantly faster by requiring
up to two orders of magnitude fewer frames than the state-of-the-art meth-
ods [25]. Many microscopic objects are so small that diffraction limit does not
allow to determine the kind or amount of objects in a picture. These image-
enhancing networks can effectively be modified for classifying or counting the
objects in images, for example, type of cells [26], or for tracking a single particle
as well as multiple particles at the same time under illumination conditions,
where classical algorithms tend to fail [27]. A wide range of other examples
could be mentioned, as every day, many new applications are discovered, where
neural networks overcome the traditional algorithms achieving faster and more
accurate results.

2

The goal of this thesis is to show the benefits of artificial neural networks to
optics related applications. In the first chapter, deep neural networks are intro-
duced – their structure, the processes behind them and overfitting preventions.
These algorithms are then applied to optic related applications. Namely, the sec-
ond chapter deals with the transformation of the polarization state of light after
passing through twisted nematic liquid crystal devices based on applied volt-
ages. The third chapter focuses on imaging application, where a convolutional
neural network is presented as an effective method for image reconstruction,
noise reduction and emitter counting. In the end, a discussion of the obtained
results and possible future extensions takes place.

3

Chapter 2

Neural network

2.1 Neural network fundamentals

The working principles of a neural network (NN) emulate operations of the hu-
man brain. Basic units, called neurons, are arranged into layers. In a fully,
also called densely, connected NN each neuron is connected to all neurons in
the following layer. The first layer of NN, called an input layer, represents an
entrance for the data and the last one is called an output layer, which results
in the final output. It is common to add so-called hidden layers between them,
creating a deep neural network (DNN), see Fig. 2.1. A NN without any hidden
layers might be limited in its transformations, but adding a single hidden layer
with a finite number of neurons allows it to approximate all continuous func-
tions [28]. It is also possible to include one additional neuron to each layer that
is not connected to any of the previous neurons. This type of neuron is called
bias and always wields a value of 1.

Input Layer Hidden Layer Hidden Layer Output Layer

Figure 2.1: An example of a densely connected neural network with three neu-
rons plus a bias in an input layer, two hidden layers with seven neurons plus
a bias each, and a single neuron in an output layer. The input neurons could
represent age, mileage and horsepower of a car, and the output neuron could be
its price. Such a trained network would then predict the price of a car based on
its parameters.

4

For a future description of a DNN structure, I will use a notation M-N(O)-P,
where M stands for the number of neurons in the input layer, O is the number of
hidden layers each with N neurons and P is the number of neurons in the output
layer. All these numbers are bias excluded. The structure shown in Fig. 2.1 is
then described as 3-7(2)-1.

Each connection has a certain value assigned to it called weight. These are
at initialization random but altered as the NN sees learning examples. Via these
weights, the network performs a transformation on the input data. The value vj
of the neuron j is calculated from an impulse zj received by this neuron. The
impulse is a sum of all neuron values vi in the previous layer multiplied by their
corresponding weight wij,

zj =

N∑
i=1

wijvi. (2.1)

This weighted sum is then used as an input to a so-called activation function f
whose output is the value vj of the considered neuron,

vj = f(zj). (2.2)

An activation function can be a simple linear function, but the network would
be able to perform only linear transformations on its dataset. Usually, the ap-
plications require a more complex transformation than just linear. Even though
many non-linear functions are commonly used, the most popular is ReLU (rec-
tified linear unit)

f(z) = max(0, z), (2.3)

due to its ability to learn very quickly even in a structure with many layers and
connections [29]. Using this function is inspired by operations in brains once
again. Biological neurons only activate themselves when the received nerve
impulse is stronger than a certain threshold. Similarly, the values of artificial
neurons with ReLU are zero if the received signal (2.1) is lower or equal to zero.

Input Layer Hidden Layer Output Layer

4

8

1 1

0.52

0

0.3

0.2

-0.1

0.2

0.1

0.1

0.3

-0.7

0

Figure 2.2: A simple 2-2(1)-1 structure of DNN using ReLU as an activation
function. Each neuron has its value displayed inside – biases always wield the
value 1, while other neuron values can vary – and the smaller numbers near the
corresponding connection represent weights. Values of neurons in the hidden
and output layer are computed using (2.1) and (2.2) where f stands for ReLU
function (2.3).

5

Once the network has performed a transformation on all the input data, it
compares the difference between received and target output in a so-called loss
function to evaluate the error. The backpropagation algorithm [30] then com-
putes a gradient of the loss function with respect to the weights and adjusts
them in the opposite direction leading to a minimum. Usually, complicated
functions have also so-called local minima with lower values than its neighbour-
hood, but higher than the global minimum. A gradient descend algorithm might
get stuck in one of them, but typically, a DNN might consist of hundreds as
well as hundred thousands of neurons arranged into many layers, making the
vector space very high-dimensional. It was shown that local minimum does not
represent a problem in high-dimensional spaces, as they are very close to the
global minimum in their error value [31, 32].

Showing the whole dataset to the network once would by itself allow only one
adjustment to the weights. Instead, we let the network learn from the dataset
multiple times in cycles, called epochs, consisting of performing the transfor-
mation on these data and adjusting weights based on the gradient. Another
useful method is to divide the dataset into smaller parts called batches. Using
small batches leads to better results in the generalization quality, as it converges
to a flat minimum, whereas the numerical evidence suggests that large batches
tend to converge to a sharp one [33]. The network learns from these batches
one at the time and adjusts the weights based on their gradients. The method
of computing gradient for parts of the dataset is called mini-batch stochastic
gradient descent (SGD) and is typically used along with multiple epochs [34].

2.2 Datasets

One of the most important things for training networks is dataset. Not all the
available data examples will be used for training as there have to be enough
data examples for testing the quality of the network. Only approximately 60 %
of the data examples will be a part of the training set. The remaining data
are usually equally split between validation and test set, whose purpose will be
explained in what follows.

The training set should contain the biggest portion of all the available data
as the backpropagation algorithm uses these examples to adjust the weights.
Naturally, the error of the training set will gradually decrease, but that does
not necessarily mean that the network is learning the correct mapping. It is
possible for the network to memorize these examples and predict the required
output. It would fail, however, in predicting output for data examples it has
never seen before. This phenomenon is called overfitting, described in details in
Sec. 2.3, and using a second set of data called validation helps to distinguish its
occurrence.

The validation set allows comparing the training error with a reference one
on the data not used for training. For example, when choosing between different
types of network architectures, validation errors of these trained networks can
be compared to determine which one provides a better generalization mapping.
Another example is evaluating validation error continuously during training,
typically after each epoch, to see how the network can generalize on new data.
An example of training and validation error development after each epoch is
shown in Fig. 2.3.

6

The test set contains the remaining available data that the NN used neither
for training nor during validation. Once the network finishes the entire training,
i.e. no additional weight adjusting will take place, its ability to predict correct
outputs is verified on the test set. This serves as the final check whether the
network can make effective predictions on completely new examples. As the
validation set helps with choosing the architecture of the NN and evaluations
during training, the network might also overfit the validation set to some extent.
Therefore, only the test error is a valid scale for the measurement of the network
generalization capability.

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
ve

 e
rr

o
r

Training set
Validation set

Figure 2.3: An example of a relative error development after each epoch. The
blue curve representing a train set error keeps getting lower as the network learns
better mapping for these examples. On the other hand, the red validation curve
stars rising after a certain number of epochs due to overfitting. After that,
the network only learns how to remember the training set. For this example,
the ideal number of epochs is approximately 280, as to this point, no severe
overfitting is present.

2.3 Overfitting

Overfitting and underfitting are problems that might occur while representing
a dataset with a function. To sufficiently represent the data, we have to fit
them with a function that not only has a low error on this data but can keep
it low if new examples were provided. If new data points were added to the
dataset and the error increased dramatically, we would talk about overfitting.
In Fig. 2.4 (b), a high order polynomial function is a typical case of overfitting,
as it can interpolate the data, but can not generalize well. On the other hand, if
the error is always very high, no matter what are the parameters of the function,
see Fig. 2.4 (a), then it might be a case of underfitting, and a more complex
function is required for the data. It could also mean that a wrong type of
function is used, for example, sine instead of an exponential function.

In conjunction with DNN, underfitting is not often discussed as a problem
requiring complicated methods to prevent it. If a network suffers from under-
fitting, adding more weights by modifying the architecture can usually solve it.
On the other hand, overfitting represents a serious issue. Let us continue with
Fig. 2.3 from Sec. 2.2 where overfitting occurs after a certain number epochs.

7

Quadratic Fit
Linear Fit
Data Points

Quadratic Fit
High Order Polynomial Fit
Data Points

b)a)

Figure 2.4: An example of a) underfitting and b) overfitting. The dataset
represented by blue dots follows a quadratic function, making it a sufficient
fit. a) A linear function has a high error rate which does not depend on its
parameters. In other words, a linear fit is a typical example of underfitting
as its error is very high no matter what the parameters are. b) A high order
polynomial function can represent the dataset very well, as its error rate is
practically zero. But if new examples appeared, the predictions of this function
would fail, especially in the right part of the picture.

The network had seen the training examples so many times that it was able to
remember them without generalizing. The training error keeps getting lower,
but the validation error starts rising. One of the commonly used methods to
prevent this from happening is called dropout regularization [35]. It assigns each
neuron from an input and hidden layers a value representing a probability p of
dropping this neuron out of the network for one learning iteration, i.e. one back-
propagation cycle. Such a neuron with all its weights is then skipped and does
not receive, nor emit any signals. Even during the backpropagation algorithm,
it acts like it is not a part of the network, and its weights are ignored and stay
identical. After each iteration, the same probability denotes whether the neuron
will be left out again. For the evaluation purpose, the weights of neuron with
probability p are multiplied by (1 − p) value, assuring that the mean output
value during training is equal to the one during testing. In [35], its ability to
lower the test error by reducing the overfitting is explored and compared to
other regularization methods for vision and speech recognition, as well as other
applications.

An especially interesting case of overfitting appears in the context of the
DNN complexity. From the classical understanding of overfitting, increasing
the complexity of the function will decrease the test error rate until a so-called
sweet spot is reached, see the typical regime in Fig. 2.5. Going beyond this
point leads to an increase in the test error rate as the function overfits the data
instead of generalizing. But if the DNN complexity increases even beyond the
point of interpolation, the test error rate starts decreasing again, as shown in
the over-parameterized region in Fig. 2.5 [36, 37]. The network might even
reach a point, where its test error is lower than the one in the sweet spot.
Such behaviour does not have an analogy in classical curve fitting and, to my
knowledge, only appears in the context of DNNs. Typically, the time required
for a DNN to reach minimal error increases with its complexity. However, over-
parameterized networks also report a decrease in the learning time without any
other modifications.

8

Network complexity

R
e
la

ti
ve

 e
rr

o
r

ra
te

Typical regime Over-parameterized

Sweet spot Interpolation threshold

Training set
Test set

Figure 2.5: The double descent curve consisting of typical overfitting regime in
the left part and over-parameterized network in the right part of the figure. The
sweet spot represents the balanced under and overfitting, and the interpolation
threshold is the point of zero training error. The classical understanding of
overfitting only expects the existence of the typical regime, but in the context
of DNN, increasing the complexity of the network beyond the interpolation
threshold leads to a decrease in test error [36].

2.4 Hyperparameters and their optimization

Besides weights as parameters adjusted during training, there are also so-called
hyperparameters, specified at the beginning. These stay the same during train-
ing but affect the final results. The goal is to optimize these hyperparameters
and find the best possible combination evaluated on the validation set. The
network then trains with this combination and its performance on the test set
is the final evaluation of its quality. Among typical examples are the number
of neurons, hidden layers, epochs and data examples in batches, and dropout
probability. In this section, further important hyperparameters and methods of
their optimization are covered.

Alphabetically, the next hyperparameter is an activation function imple-
menting non-linearity to the network’s transformation, see Sec. 2.1. Besides its
typical representative, ReLU function, many others can be used, for example, a
logistic function (sigmoid), arctangent, softmax, hyperbolic tangent or, to some
extent, even linear function. Although ReLU is usually safe to pick due to its
results and ability to learn very quickly, a different one might sometimes achieve
better results. Each layer can have a different activation function, and the right
choice is especially important in the output layer. For example, if you want
your results to be bipolar values, ReLU is not an option, as its outputs are
only non-negative values, but arctangent, multiplied by a constant to extend its
range, might work just fine there. Or in the case of multi-class classification, as
is deciding whether the picture is a dog, cat or mouse, softmax is the correct
choice. In conclusion, for hidden layers, a ReLU function is usually an excellent
pick, but you have to choose the activation function for the output layer very
carefully.

9

Another hyperparameter also mentioned in the same section is a loss func-
tion, evaluating the error between target and obtained output. Typical neural
network applications can be divided into two groups – regression and classifica-
tion. In regression applications, the goal is to make the obtained result values
as close to the target ones as possible and therefore loss functions like mean
squared error (MSE), mean squared logarithmic error or mean absolute error
(MAE) tend to work well. On the other hand, binary cross-entropy and categor-
ical cross-entropy are common examples of the classification loss function. The
aim is choosing the correct category, and these functions provide probabilities
of the input examples belonging to each category.

The last two hyperparameters discussed here are optimizer and learning rate,
specifying what type of SGD the network uses for training and how big changes
to weights does each iteration respectively. I discuss these two together as they
are very closely connected. The plain SGD is described in Sec. 2.1, but other
types with smaller or bigger modifications exist. Typically, they add a form of
adaptiveness to the learning rate, which alters its value during learning. For
example, it might be a decay that slowly decreases the rate after each iteration
or momentum that accelerates it. A bigger value of learning rate corresponds to
more significant weight adjustments during learning and vice versa. Therefore
it is beneficial to have a relatively large learning rate at the start when the
weights are random but lower with more epochs. Typical examples of adjusted
SGD optimizer are RMSprop, Adagrad or very popular Adam, which combines
the benefits of both previous examples [38].

These are the most significant hyperparameters, even though many others
could have been mentioned. Finding their optimal combination is crucial to
achieving the best results. But simply trying different combinations by hand is
not very efficient. The first idea would be to evaluate the error for all possible
combination and choose the one with the lowest error. This method is called
grid search and is very computationally expensive as there usually is an enor-
mous number of combinations and each requires training a different network to
evaluate the error. An alternative to using all combinations is randomly picking
a fraction of those and choose the best result just from this limited sample. The
computational time is reduced, but nothing guarantees to find the optimum
result. For this purpose, more advanced methods were developed, minimizing
the number of evaluations.

At first, we considered implementing a so-called genetic algorithm [39] in-
spired by Darwin’s natural selection theory. Described without unnecessary
details, the first generation of examples, hyperparameter combinations, is cho-
sen randomly and then evaluated. The best results are selected for breeding
new individuals that replace the weak ones in the next generation. Together
with a mutation, i.e. a small chance to slightly alter the examples, this method
achieves better results than random-sampling search with the same number
of evaluations. A considered alternative method is a black-box optimization
software called Nomad [40]. It was developed for optimizing functions, whose
evaluations are highly computationally expensive. Implementing Mesh Adap-
tive Direct Search algorithm [41], Nomad allows finding the best solution with a
relatively small number of evaluations. The hyperparameters can be real values,
integers or even text-like objects, for example, a type of SGD method. For this
reason, we used this method during the NN optimization process.

10

2.5 Convolutional neural network

In this section, a particular type of neural network called convolutional [42] is
introduced, typically used in imaging applications. Its significant advantage is
the invariance of object location in the image, due to the shared-weights archi-
tecture. In other words, it does not matter which direction is a man looking or
in which section of the picture is he situated. The convolutional neural network
(CNN) can locate this object and extract its relevant information anywhere in
the picture. This feature makes them an ideal candidate for an image or even
video reconstruction and classification as well as several other applications.

To describe a layer of a CNN, I will use the notation AxBxC, where B and C
are numbers of neurons in a channel, and A is the number of channels. An RGB
coloured picture with 1600 by 1200 pixels is then represented as 3x1600x1200,
whereas a black and white version of this image would be 1x1600x1200. A CNN
consists of two types of layers, namely convolutional and pooling, performing
a different operation to determine the values of their neurons. A convolutional
layer applies a filter, unique for each channel, represented by an X by Y matrix
of values. These values are the only parameters adjusted during the learning
process, just as were the weights in a fully-connected DNN. A pooling layer
purpose is to reduce the dimensionality of the channels, as well as making the
network invariant to small translations. Its parameters are fixed and represent
a size of the area of a channel reduced to a single neuron. A max-pooling layer
keeps only the highest value of these neurons, whereas an average-pooling layer
keeps their average. These layers can be arranged in any order and even mixed
with dense layers, as shown in Fig. 2.6 to create a classifier.

Convolution Pooling Dense

3x1280x1280
8x1280x1280

8x640x640

1x256

1x128

1x10

3x1280x1280

Figure 2.6: An example of a classification convolutional neural network predict-
ing a type of animal in an image. At first, the picture is separated to 3 channels
corresponding to a red, green and blue intensity of each pixel. Then, a con-
volutional layer applies different types of filters, with sizes 160x160, expanding
the number of channels to 8. After that, a pooling layer performing a 2x2 re-
duction decreases the dimensions of the picture. The final part of this network
consists of three dense layers whose outputs are probabilities for ten predefined
categories, i.e. types of animals.

A specific kind of convolutional neural network is an autoencoder, that learns
to output a copy of its input. This task could be trivial, but autoencoder
consists of a so-called bottleneck, see Fig. 2.7, which is a part with a reduced
amount of neurons compared to the input. The bottleneck forces the network
to extract only the relevant information and reconstruct the image from this
fraction of data. An autoencoder is a part of unsupervised learning as only input

11

data are presented, and the network searches for patterns in the data without
the necessity of having the training examples labelled. A typical application
for an autoencoder is a reduction of noise, as a well-trained autoencoder does
not let the noise pass through the bottleneck. Another application is image
classification using the first part of the network and replacing the second half by
a dense network. The convolutional part extracts the relevant information about
an image and fully-connected part uses them to assign the correct category.

3x1280x1280 8x640x640

24x320x320

8x640x640 3x1280x1280

24x320x320

Bottleneck

Figure 2.7: An example of an autoencoder with 3x1280x1280 input layer and
24x320x320 neurons in the bottleneck. This network downsamples the number
of neurons to one half and then upsamples back to the original amount. Each
layer consists of convolution and pooling, as the dimensions are reduced and the
number of channels increased. The second half could be replaced with dense
layers to transform this autoencoder into a classifier.

12

Chapter 3

Liquid crystal polarimetry

A polarization state of light plays a significant role in many optical systems and
application, and therefore its precise preparation, modulation and detection are
vital. In this chapter, the polarization state and Stokes parameters as a way to
describe it are explained. Then, polarization modulators consisting of nematic
crystal modules are introduced, and a deep neural network is applied to model
a transformation of polarization state after passing through these modules. At
the end of this chapter, the results obtained using DNN and using conventional
methods are compared.

3.1 Polarization state of light

Polarization state is defined for a transverse wave as a development of electric
and magnetic field vectors in time and space. Typically, we focus on the vector
of an electric intensity ~E in a plane perpendicular to the direction of the wave.
If the endpoint of this vector moves on a well-defined trajectory, we speak about
a polarized wave, whereas disordered movement corresponds to an unpolarized
one. A mixture of these waves is partially polarized, and we use a degree of
polarization p to characterize the fraction of a polarized wave. There are six
basis states of fully polarized light based on trajectories of vector ~E: horizontal
H, vertical V, diagonal D and anti-diagonal A, all with lines as trajectories in
corresponding directions, and right-hand circular R and left-hand circular L
following a circle in clockwise and anti-clockwise directions respectively.

Using Stokes parameters to describe a polarization of light is advantageous
as it can cover both fully and partially polarized states. The first parameter S 0

represents the intensity I of the light beam, whereas parameters S 1, S 2 and S 3

express the differences between intensities of two related basis states

S0 = I,

S1 = IH − IV ,
S2 = ID − IA,
S3 = IR − IL.

(3.1)

The parameter S 0 does not affect a type of polarization and can be normal-
ized, S0 = 1. Remaining parameters S 1, S 2 and S 3 after the normalization can

13

possess only values from interval 〈−1, 1〉, and
√
S2

1 + S2
2 + S2

3 = p. Examples
of Stokes parameters for basis polarization states are shown in Tab. 3.1. These
three parameters can be used as a Cartesian coordinate system displaying fully
polarized states on a surface of a sphere with a centre in the origin and a radius
of 1, and partially polarized states inside this sphere, as shown in Fig. 3.1.

Polarization state H V D A R L

Stokes parameters

1

0

0

−1

0

0

0

1

0

 0

−1

0

0

0

1

 0

0

−1

Table 3.1: A table with the six basis polarization states of light and their cor-
responding Stokes parameters S 1, S 2 and S 3.

L
S2

S3 S1

V

R
H

D

A

Figure 3.1: A Poincaré sphere in a Cartesian coordinate system of Stokes pa-
rameters with basis states in corresponding positions. Fully polarized states of
light are positioned on the surface of this sphere, partially polarized are inside
it, and unpolarized light is situated in the origin of a coordinate system.

Using the Stokes parameters, we can define a density matrix, which is an-
other way of describing a polarization state, as

ρ =
1

2

(
1 + S1 S2 − iS3

S2 + iS3 1− S1

)
, (3.2)

where i stands for the imaginary unit. To determine the closeness or similarity
of two polarization states, we typically use the fidelity F, defined as

F (σ, ρ) =

[
Tr

(√√
ρσ
√
ρ

)]2

, (3.3)

where σ and ρ are the density matrices of two polarization states. A fidelity can
possess a value from interval 〈0, 1〉, where F (ρ, ρ) = 1. Multiplying the fidelity
by a factor of 100 allows expressing its value as a percentage.

14

3.2 Twisted nematic liquid crystals modules

A preparation of polarization states of light is typically done using half-wave
and quarter-wave plates. This approach requires rotating these plates, which
takes a certain amount of time and might cause vibrations to the optical system.
An alternative is to replace these plates with modules made of twisted nematic
liquid crystals (TN LC), typically used in displays, controlled by applied volt-
ages. Replacing the plates with these modules would both speed up the process
and get rid of vibrations caused by motorized rotation stages. A downside is the
lack of accurate analytical description of polarization transformation of TN LC.
Numerical modelling can help, to some extent, with the prediction of polariza-
tion state from the control voltages but is inefficient in the inverse task. As the
precision of polarization state preparation and measurement is the key to many
applications, we will present an alternative approach of TN LC modelling using
a deep neural network. But first, in this section, the vital information about
these modules are covered.

A TN LC module consists of liquid crystal molecules enclosed between two
perpendicular alignment layers, which causes them to arrange in a twist. On
the outer side of these layers are electrodes, which create a control electric field,
see Fig. 3.2. Once applied, this electric field forces the molecules to change their
orientation in the direction of the created field. After the field is switched off,
the molecules return to their original positions. The orientation of molecules
affects the refractive index causing a phase shift between the polarization com-
ponents in a plane perpendicular to the propagation of light. Therefore, the
polarization transformation can be controlled by the applied voltage. A single
TN LC module is restricted in the range of polarization states that can prepare.
To sufficiently cover the Poincaré sphere, the module must be aligned with other
optical components or more TN LC modules have to be used [43].

Electrode

Alignment layer

a) b)

V

Electrode

Alignment layer

Liquid crystals

Electrode

Alignment layer

Electrode

Alignment layer

Liquid crystals

Figure 3.2: a) A structure of a TN LC module with liquid crystals forming a
twist while enclosed between two perpendicular alignment layers and two elec-
trodes. b) When a voltage is applied, the molecules of liquid crystals are forced
to change orientation based on the electric field created by these electrodes. In
both cases, the light propagates from the bottom to the top.

All the experimental tasks related to creating a dataset of polarization states
of light were performed by Martin Bielak [43] using an optical system pictured
in Fig. 3.3. The obtained dataset consists of more than 20,000 combinations of

15

voltages, each ranging uniformly from 0 to 10 V, labelled with their correspond-
ing Stokes parameters.

LC

analyzer

re
ad
o
ut

LC

V V driver

LC

V1 2 3

1 2 3

polarizerlight
source

Figure 3.3: A schema of optical system assembled for preparing a dataset of po-
larization states of light using three TN LC devices connected to corresponding
control voltages. The light beam propagates through a polarizer preparing the
H state, which is then transformed in the modules by applied voltages and the
analyzer based on rotating wave plates then precisely characterizes the obtained
polarization state.

3.3 TN LC transformation modelling

In this section, the results obtained by using the analytical model, by linearly
interpolating these data and by training a fully-connected deep neural network
are presented. The dataset is randomly shuffled to contain 12,000 examples
in the training set, 5,000 in the validation set and remaining approximately
3,000 in the test set, required for training and testing the neural network. The
training and validation sets are used together for the interpolation method.

V1 V2 V3

H

L
S2

S3 S1

V

R
H

D

A

Figure 3.4: A representation of the direct network, i.e. predicting the Stokes
parameters from control voltages.

First, we will focus on modelling the prediction of polarization state from
the control voltages. The analytical model advanced in [43] reaches an average
relative error of Stokes parameters δ = 6.11 %, which was evaluated as a mean
absolute error (MAE) normalized by the range of Stokes parameters,

δ =
MAE

2
· 100% =

1

2 · 3N

N∑
i=1

3∑
j=1

|yij − xij | · 100%, (3.4)

16

where yij is the target j-th Stokes parameter of the i-th data example, and xij is
the same configuration for the obtained output. Because we are interested in the
closeness of obtained and target polarization states, the error was also evaluated
as mean fidelity and reached the value F = (96.9 − 2.6 + 1.9) %, where the
numbers refer to the mean value, the first decile and the ninth decile respectively.
This result is highly inefficient as for preparing a certain polarization state
using this model, we would have to at first manually search for the correct
voltages, and then we would only prepare a state with this fidelity. These two
disadvantages together make the analytical model unacceptable for practical use.
The alternative approach of interpolating the dataset can be performed quite
sufficiently because it contains a relatively large amount of examples. Evaluating
the interpolation on the test set reaches the relative error δ = 1.05 %, which
is equivalent to a mean fidelity F = (99.5 − 1.3 + 0.5) %. As we can see, this
is much better than the previous result of the analytical model, and that is
including a tiny percentage of samples being extrapolated.

The third tested TN LC model is based on a DNN. The results of opti-
mizing hyperparameters using Nomad determined optimal network with con-
figuration 3-92(10)-3, i.e. with over 75,000 connections. Using ReLU as an
activation function in hidden layers and linear function, for bipolar values,
in the output layer, together with an adaptive learning rate and dropout in
each layer reaches the highest score on the validation set. Once trained, this
network predicts polarization state from control voltages with a relative er-
ror δ = 0.14 % on the test set, which evaluated using mean fidelity is equivalent
to F = (99.996− 0.002 + 0.04) %. This approach is significantly more accurate
than previous methods. A visual representation of these results on the Poincaré
sphere is shown in Fig. 3.5.

V D

H

R

L

A

DV

H

R

L

A

DV

H

R

L

A

Figure 3.5: A comparison of an analytical model (blue), an interpolation method
(red) and a deep neural network (green) predicting the measured polarization
state (black), where the control voltage V3 is varied. As we can see, the highest
overlap with required polarization states is met by the neural network.

Modelling the inverse task, i.e. prediction of control voltages preparing the
target polarization state, is more challenging, as implies the absence of any
analytical model. In certain ranges, altering the control voltages causes almost
no difference to the polarization state, which is one of the reasons that the model
cannot be inverted. This also presents a problem for evaluating the results, as
even a relatively high error in control voltages might prepare a very similar
polarization state. For this purpose, the inverse and direct models are joined

17

together, as shown in Fig. 3.6, and the mean fidelity of the combined network
is evaluated. This allows approximately estimating the mean fidelity of inverse
models, as the errors propagated from direct models are, in this case, negligible
compared to the errors of combined networks.

V1 V2 V3

H

L
S2

S3 S1

V

R
H

D

A

L
S2

S3 S1

V

R
H

D

A

DirectInverse

Figure 3.6: A representation of the combined network, i.e. predicting the control
voltages for target Stokes parameters and then using the direct model with the
predicted voltages.

As there is no analytical model, there is also nothing to evaluate for this
method. On the other hand, interpolating the dataset for the combined task
achieves the relative error δ = 2.55 %, which is equivalent to the mean fi-
delity F = (98.1 − 1.3 + 1.9) %. This is even better than the results of the
analytical model for the direct task, which only highlights the insufficiency of
the analytical model. Now moving to the DNN, the optimization for inverse
transformation using Nomad resulted in a network with structure 3-104(12)-3
and the same combination of hyperparameters as previously. The combined net-
work achieves a relative error of control voltages δ = 4.82 %, which is equivalent
to the mean fidelity F = (96.2− 5 + 3.8) %. As we can see, the results for the
DNN are a bit worse than those of the interpolation method. In other words,
interpolating the dataset presets a more reliable method for the inverse task,
however, we plan to keep working on this problem even further and possibly
improve the DNN performance to overcome the interpolation method.

Furthermore, for the direct as well as the inverse task, the average computa-
tional time for predicting one sample using a DNN is approximately t = 50 µs,
which is almost 200 times faster than the interpolation method with the aver-
age required time t = 9 ms per sample. Therefore implementing a DNN with
TN LC modules would speed up the preparation and measurement of polariza-
tion states even further, which is another reason for improving the fidelity of
the inverse network.

3.4 Conclusion

Modelling the transformation of TN LC crystal with neural networks appears
to be an effective method for predicting the Stokes parameters based on applied
control voltages, as to suggest both numerical results and overlap of polarization
states in Fig. 3.5. Compared to the analytical model, the network predicts
polarization states with fidelity higher by three orders of magnitude, which is
a significant improvement. The fidelity of this network is also higher by two
orders of magnitude compared to the interpolation method. For the direct
task, the DNN proved to be a very accurate model, and we plan to progress

18

towards its detailed experimental verification. The inverse task, i.e. predicting
the necessary control voltages for preparing the target polarization state, is a
challenge even for the DNN. On the other hand, there was no analytical model,
to begin with, and the only other applicable method was an interpolation. As
we saw in the previous section, the interpolation achieves slightly higher fidelity,
but both of them are of the same order of magnitude. Based on these results, we
plan to improve DNN performance even further by using Nomad for optimizing
the combined network as a whole, instead of only the separated inverse part.
We believe that this optimization could improve the performance of the inverse
DNN and maybe even overcome the results of the interpolation method.

19

Chapter 4

Image deconvolution

In this chapter, convolutional neural networks enhancing a resolution and count-
ing emitters in an image are presented. Firstly, the generation of a dataset and
its relations to real-life measurements is described. Then, the deterministic de-
convolution is introduced, and other possible methods are mention. The main
section of this chapter is focused on the performance of an optimized convolution
network and its comparison to the deterministic deconvolution.

4.1 Data generation, convolution and noise

Every optical system is affected by a diffraction limit causing imperfections of
the imaging. A typical example is microscopy, where objects might be too small
for the microscope to resolve them and end up being blurred. Besides the fun-
damental diffraction limit, the optical system is affected by optical aberrations
which can be to some extent eliminated in exchange for a more complex and
expensive optical system. If we know the parameters of an imaging device at
least partially, we can apply deconvolution methods to improve the quality of
an image, like a convolutional neural network. But to train it, a dataset of
low-quality images with their corresponding improved versions is required. One
way to achieve this is by collecting real-life images from experiments. In this
thesis, a dataset based on the numerical simulation of the diffraction effect and
noise is generated. This way, in the end, the network can be tested on real-life
data to evaluate not only its performance but also the appropriateness of the
generated dataset.

We start with a 28x28 pixel image with up to 20 point-like emitters. Their
number and locations in the picture are generated randomly with uniform dis-
tribution so that the ideal images might look like the one in Fig. 4.1 a). Each
emitter is assigned with a random number from a Poisson distribution with
mean value N, characterizing its intensity by the number of detected photons.
After that, the image is blurred correspondingly to the diffraction limit of the
optical system, which can be simulated using a point spread function (PSF). It
characterizes the imperfections caused to a point source by the optical system
as a convolution of an image with this function. Typically, the real PSF of a
dipole is complicated but can be approximated using a normalized Gaussian
function

20

f(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
, (4.1)

where σ is a parameter characterizing the width of the function, and therefore for
future references will be called the point spread function width (PSF width) [44].
The image in Fig. 4.1 b) represents the convolved version of a) using (4.1) with
the PSF width σ = 1.

In a real optical system, this is not the only imperfection because we are also
limited in knowing the exact value of σ. To implement this uncertainty to the
data generation, instead of using a fixed value of σ, a random number is chosen
from the Gaussian distribution with σ as its mean value and a certain standard
deviation ∆σ. I will refer to this deviation as the uncertainty of the point spread
function width. The whole image is convolved using this particular σ, and for the
next picture, a new σ is generated. The last step is adding noise, which occurs in
every experiment. The type of noise considered for this data generation is a so-
called shot noise caused by the discrete nature of electric charge in a camera or
other detection components. The noise intensity in each pixel follows the Poisson
distribution with a mean value n. This type of noise appears in a camera and,
therefore, is not convolved. A signal-to-noise ratio parameter (SNR), defined
as SNR = N/n, characterizes the ratio between emitter signal intensity and the
noise. In Fig. 4.1 c), a convolved example with camera noise is shown.

a) c)b)

Figure 4.1: An example of a generated image with 15 point-like emitters a)
before any imperfections were implemented, b) after convolution with Gaussian
PSF of σ = 1, c) convolved and with added noise of SNR = 100.

With a fully-known point spread function width, a direct approach for decon-
volving an image is deterministic deconvolution based on the Fourier transform
of convolution. The process of implementing imperfections can be described as

y = h ∗ x+ ω, (4.2)

where y is the convolved image created by a convolution of the input image x
with a PSF h and adding noise ω. By applying a Fourier transform, we get

Y = HX + Ω, (4.3)

where Y,H,X and Ω are the Fourier transforms of y, h, x and ω respectively.
We can divide this expression by H to obtain

X =
Y

H
− Ω

H
. (4.4)

21

As we can see, without any noise, this would allow perfectly reconstructing
the original image. Unfortunately, the term Ω

H can create a divergence, and
the uncertainty of PSF width makes h inaccurate, which together significantly
lowers the ability of deterministic deconvolution to restore the original image.

Because our data are represented by matrices, we have to use the discrete
version of convolution. To implement the convolution numerically, we multiplied
the original matrix x from left and right with a 28x28 symmetric Toeplitz ma-
trix T , whose row and column values correspond to a two-dimensional Gaussian
function, see Fig. 4.2 a),

y = TxT + ω, (4.5)

where ω represents noise and y is the convolved image. Therefore, the determin-
istic deconvolution can be implemented by multiplying the convolved matrix y
from each side by the inverse Toeplitz matrix, shown in Fig. 4.2 b). As we can
see, the same noise limitation holds also for the discrete deconvolution.

b)a)

Figure 4.2: An example of a) a symmetrical Toeplitz matrix, b) an inverse
Toeplitz matrix.

As the performance of deterministic deconvolution is strictly limited by the
mentioned imperfections, more advanced approaches of deconvolving an image
have been developed. For example, various types of regularization techniques
might improve the performance of deterministic deconvolution, as they aim to
decrease the destructive effect of noise [45]. In the future, we plan to use one of
these methods to compare its results to the convolutional neural network. For
now, the CNN approach is compared to a simple deterministic deconvolution.

4.2 Deconvolution by CNN

The convolutional network is optimized with a dataset containing 25, 000 ex-
amples in the training set and 10, 000 in both validation and test set. These
data were generated using an emitter signal with the mean number of pho-
tons N = 104, and the PSF width σ = 1 with the uncertainty ∆σ = 0.02.
Because the mean value of noise photons is set to n = 1, the SNR = N . The
final structure of the CNN is shown in Fig. 4.3. The convolutional part of the
network is responsible for both deconvolution and noise reduction, whereas the
two dense layers serve as a classifier counting emitters in the image.

22

1x28x28
4x28x28

8x28x28

16x14x14
8x28x28

4x28x28
1x28x28

2

21

Figure 4.3: The architecture of the convolutional neural network trained for the
parameters described above. The first part of this network performs deconvolu-
tion as well as noise reduction and outputs enhanced images, in which the dense
layers determines the number of emitters as a classification task.

The trained network predicting the number of emitters from convolved im-
ages achieves an accuracy AC = 99.28 % on the test set, which was evaluated
as

A =
Number of correctly predicted samples

Number of all samples
, (4.6)

where the samples in our context refer to the test set. This result is significantly
higher than the accuracy of the deterministic deconvolution AD = 61.41 %,
whose low performance is caused by the presence of the camera noise and the
uncertainty of PSF width, as described in Sec. 4.1. A Fig. 4.4 shows a confusion
matrix of the mentioned network.

Predicted category

T
ru

e
ca

te
g
or

y

Figure 4.4: A confusion matrix of the network with accuracy AC = 99.28 %.

To explore the dependence of the network architecture on the mean value of
emitter photons, new networks with the same combination of hyperparameters
were trained on datasets with a different mean value of emitter photons, but
without any uncertainty of PSF width. Then they were tested for SNR ranging

23

from 1 to 105, and the results are shown in Fig. 4.5 a). From this picture,
we can see that the network trained with N = 104 can efficiently work even
for lower SNR until its performance rapidly decreases. On the other hand, the
deterministic deconvolution starts decreasing at SNR higher by two orders of
magnitude. We can also see that networks trained on lower SNR can work
relatively well in the corresponding regions.

a) b)

σSNR

c)

Δσ

Figure 4.5: Dependence of the accuracy of neural networks trained on a dataset:
a) with different emitter intensities, i.e. SNR, b) with different PSF width val-
ues, c) with different uncertainties. The black line represents random guessing,
numbers in a legend stand for a value used for training the corresponding neural
network, and the DD stands for deterministic deconvolution.

The same idea is behind the graphs shown in Fig. 4.5 b) for networks trained
with different values of a PSF width and c) its uncertainties, only without any
noise. As we can see in the second graph, networks trained with a certain fixed
value of PSF width are efficient in the corresponding regions, just as in the case
of intensities. This behaviour suggests that the same network could be trained
and used even for a slightly different value of PSF width and still keeps its
accuracy. All the curves show better performance in the left part than in the
right part of the graph. This is caused by higher σ values corresponding to more
blurred images, and therefore a more complex task. From the third graph, we
can see that the network trained on a dataset with a fixed ∆σ = 0 and no noise
has approximately the same accuracy as deterministic deconvolution. On the
other hand, if it sees a small ∆σ during training, it can keep its high accuracy
even for larger uncertainties in exchange for a slightly worse performance for
lower values, whereas training with too big uncertainty significantly lowers the
performance for all its values. From this knowledge, we can deduce that with
the correct value of ∆σ, we can achieve an optimal performance of the network.

24

4.3 Universal network

Based on results from the previous section, the goal now is to come up with a
network universal across intensities, whose accuracy would be comparable to the
best results of networks shown in Fig. 4.5 a). For this purpose, the new network
was trained under the same circumstances as in Fig. 4.5 a). Instead of using a
fixed value of the SNR, the dataset of approximately 425,000 samples containing
SNR values ranging from 1 to 106 was generated. The distribution of those val-
ues was linearly increasing under a logarithmic scale, and approximately 17.5 %
of samples did not contain any noise. The dataset was a result of optimizing the
distribution to achieve the highest accuracy across the SNR range. This dataset
was divided into 290,000 samples for the training set, 70,000 for the validation
set and approximately 65,000 for the test set.

SNR

Figure 4.6: The accuracy of the universal network across the SNR range, to-
gether with accuracies of relevant previous models.

As we can see in Fig. 4.6, the universal network successfully achieves results
comparable to previous individual networks, reaching the mean accuracy over
the flat region AU = 99.34 %. Fig. 4.7 shows an example deconvolved by the
universal network compared to the deterministic deconvolution. Furthermore,
the average computational time for predicting one sample by the CNN is ap-
proximately tC = 80 µs, which is almost four times higher than the average time
required by deterministic deconvolution tD = 18 µs. However, this difference in
the computational speed does not compensate the extreme difference in their
accuracy.

a) b) c) d)

Figure 4.7: a) An example of an original image, b) convolved with a Gaussian
PSF of width σ = 1 and SNR = 100 for camera noise, c) deconvolved by the
universal network, d) deconvolved by the deterministic deconvolution.

25

4.4 Conclusion

In this chapter, image enhancement and emitter counting as an application of
convolutional networks were discussed. The goal was to train a network capa-
ble of successfully deconvolving an image together with counting the point-like
emitters across a certain range of SNR values. First, the performance of individ-
ual networks working only for a fixed intensity was compared to deterministic
deconvolution and proved to be more accurate in their predictions. These re-
sults served as a foundation for the universal network, which achieved relatively
high accuracy across a broad range of SNR values, as shown in Fig. 4.6. Based
on these results, convolutional neural networks appear to be an effective method
for this task, and in the future, we plan to improve their performance even fur-
ther and under more challenging conditions. Our next goal after implementing
regularization techniques to the deterministic deconvolution is to explore the
possibility of training a network capable of effectively deconvolving images not
only independently of the point-like emitter intensity, but also the value of the
PSF width.

26

Chapter 5

Conclusion

In this thesis, the goal was to introduce artificial neural networks and their
optics related applications. At the beginning of the work, the structure and
processes of a deep neural network are introduced. After that, the methods for
hyperparameter optimization and overfitting reduction are discussed. Also, a
specific type called convolutional neural network is introduced together with its
benefits to imaging applications.

The first application of a deep neural network in this thesis is modelling the
transformation of the polarization state of light after passing through twisted
nematic liquid crystal modules, which cannot be accurately modelled analyt-
ically. A fully-connected neural network can predict polarization states from
control voltages that compared with the actually measured states have a mean
fidelity of 99.996 %, which is by three orders of magnitude more accurate than
the analytical model. For the inverse task, i.e. prediction of necessary control
voltages to prepare the target polarization state, no analytical model exists, and
a neural network achieves a relative error of 6.5 % of control voltages. The di-
rect network proves to be a more efficient method of modelling twisted nematic
liquid crystal modules even compared to interpolating the dataset, which we
now aim to achieve also for the inverse network.

The second application of deep neural networks deals with enhancing the
resolution of images with several point emitters and counting them using a con-
volutional neural network. At first, a dataset based on a physical understanding
of diffraction limit and shot noise is modelled. Then, convolutional neural net-
works for deconvolving the images and counting the emitters are trained for
certain combinations of data imperfection parameters. After this, the perfor-
mance of a single universal network that could work across a broad range of
emitter intensities is explored. This universal network achieves sufficiently high
accuracy compared to the previously mentioned networks.

We plan to keep working with convolutional neural networks and extend
their application in imaging. At first, we want to implement regularization
methods to the deterministic deconvolution to improve its performance and
compare the network with a more advanced and robust technique than the
straightforward deterministic deconvolution. We aim to train a convolutional
network independent not only of the emitter intensity but also of the point
spread function width. After that, the new goal will be implementing another
type of noise to the data representing a stray light or substrate fluorescence.

27

The difference between this noise and the already implemented camera noise is
that the stray light is convolved by the imaging system. The stray light would
make the deconvolution significantly more challenging in the case of a very low
SNR, as it would be hard to decide whether the detected photon comes from
an emitter or stray light. We plan to incorporate other statistical methods to
facilitate reliable emitter counting.

28

Bibliography

[1] A. Kalinovsky and V. Kovalev, “Lung image segmentation using deep learn-
ing methods and convolutional neural networks,” in XIII International
Conference on Pattern Recognition and Information Processing, Oct. 2016.

[2] J. Bernal, K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Mart́ı, and
X. Lladó, “Deep convolutional neural networks for brain image analysis on
magnetic resonance imaging: a review,” Artificial Intelligence in Medicine,
vol. 95, pp. 64–81, Apr. 2019.

[3] N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, and T. R.
Mengko, “Brain tumor classification using convolutional neural network,”
in IFMBE Proceedings, pp. 183–189, Springer Singapore, May 2018.

[4] L. Scotti, H. Ishiki, F. M. Júnior, M. da Silva, and M. Scotti, “Artificial
neural network methods applied to drug discovery for neglected diseases,”
Combinatorial Chemistry & High Throughput Screening, vol. 18, pp. 819–
829, Sept. 2015.

[5] H. Chen, Y. W. O. Engkvist, M. Olivecrona, and T. Blanchke, “The rise of
deep learning in drug discovery,” Drug discovery today, vol. 23, pp. 1241–
1250, Jan. 2018.

[6] V. Goncalves, K. Maria, and A. B. F. da Silv, “Applications of artificial
neural networks in chemical problems,” in Artificial Neural Networks - Ar-
chitectures and Applications, InTech, Jan. 2013.

[7] R.-D. Lasseri, D. Regnier, J.-P. Ebran, and A. Penon, “Taming nuclear
complexity with a committee of multilayer neural networks,” Physical Re-
view Letters, vol. 124, Apr. 2020.

[8] R. Stivaktakis, G. Tsagkatakis, B. Moraes, F. Abdalla, J.-L. Starck, and
P. Tsakalides, “Convolutional neural networks for spectroscopic redshift
estimation on euclid data,” IEEE Transactions on Big Data, pp. 1–1, 2019.

[9] A. Davies, S. Serjeant, and J. M. Bromley, “Using convolutional neural
networks to identify gravitational lenses in astronomical images,” Monthly
Notices of the Royal Astronomical Society, vol. 487, pp. 5263–5271, May
2019.

[10] J. Fluri, T. Kacprzak, A. Refregier, A. Amara, A. Lucchi, and T. Hof-
mann, “Cosmological constraints from noisy convergence maps through
deep learning,” Physical Review D, vol. 98, Dec. 2018.

29

[11] R. Carrasco-Davis, G. Cabrera-Vives, F. Förster, P. A. Estévez, P. Hui-
jse, P. Protopapas, I. Reyes, J. Mart́ınez-Palomera, and C. Donoso, “Deep
learning for image sequence classification of astronomical events,” Publica-
tions of the Astronomical Society of the Pacific, vol. 131, p. 108006, Sept.
2019.

[12] A. Kimura, I. Takahashi, M. Tanaka, N. Yasuda, N. Ueda, and N. Yoshida,
“Single-epoch supernova classification with deep convolutional neural net-
works,” in 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), IEEE, June 2017.

[13] J. Gao, L.-F. Qiao, Z.-Q. Jiao, Y.-C. Ma, C.-Q. Hu, R.-J. Ren, A.-L. Yang,
H. Tang, M.-H. Yung, and X.-M. Jin, “Experimental machine learning of
quantum states,” Physical Review Letters, vol. 120, June 2018.

[14] Z. A. Kudyshev, S. Bogdanov, T. Isacsson, A. V. Kildishev, A. Boltasseva,
and V. M. Shalaev, “Rapid classification of quantum sources enabled by
machine learning,” 2019.

[15] T. Xin, S. Lu, N. Cao, G. Anikeeva, D. Lu, J. Li, G. Long, and B. Zeng,
“Local-measurement-based quantum state tomography via neural net-
works,” npj Quantum Information, vol. 5, Nov. 2019.

[16] A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D.
Biamonte, and S. Kulik, “Experimental neural network enhanced quantum
tomography,” npj Quantum Information, vol. 6, Feb. 2020.

[17] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Car-
leo, “Neural-network quantum state tomography,” Nature Physics, vol. 14,
pp. 447–450, Feb. 2018.

[18] R. Soleti, L. Cantini, F. Berizzi, A. Capria, and D. Calugi, “Neural net-
work for polarimetric radar target classification,” in Proceeding of the 14th
European Signal Processing Conference, Sept. 2006.

[19] H. Y. D. Sigaki, E. K. Lenzi, R. S. Zola, M. Perc, and H. V. Ribeiro,
“Learning physical properties of liquid crystals with deep convolutional
neural networks,” Scientific Reports, vol. 10, May 2020.

[20] P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission
of natural scene images through a multimode fibre,” Nature Communica-
tions, vol. 10, May 2019.

[21] N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through
multimode fibers,” Optica, vol. 5, pp. 960–966, Aug. 2018.

[22] Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning
approach toward scalable imaging through scattering media,” Optica, vol. 5,
pp. 1181–1190, Sept. 2018.

[23] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 38, pp. 295–307, Feb. 2016.

30

[24] E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-STORM:
super-resolution single-molecule microscopy by deep learning,” Optica,
vol. 5, pp. 458–464, Apr. 2018.

[25] W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep learn-
ing massively accelerates super-resolution localization microscopy,” Nature
Biotechnology, vol. 36, pp. 460–468, Apr. 2018.

[26] W. Xie, J. A. Noble, and A. Zisserman, “Microscopy cell counting and
detection with fully convolutional regression networks,” Computer Methods
in Biomechanics and Biomedical Engineering: Imaging & Visualization,
vol. 6, pp. 283–292, May 2016.

[27] S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy en-
hanced by deep learning,” Optica, vol. 6, pp. 506–513, Apr. 2019.

[28] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[29] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics, Oct. 2011.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct.
1986.

[31] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,
“Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization,” in Advances in neural information processing
systems 27, June 2014.

[32] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The
loss surfaces of multilayer networks,” in Conference on AI and Statistics,
Nov. 2014.

[33] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. Tang,
“On large-batch training for deep learning: Generalization gap and sharp
minima,” in The International Conference on Learning Representations,
2017.

[34] F. Chollet, Deep Learning with Python. Manning Publications Co., 2018.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
The Journal of Machine Learning Research, vol. 15, p. 1929–1958, Jan.
2014.

[36] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-
learning practice and the classical bias–variance trade-off,” Proceedings of
the National Academy of Sciences, vol. 116, pp. 15849–15854, July 2019.

[37] G. Valle-Pérez, C. Q. Camargo, and A. A. Louis, “Deep learning generalizes
because the parameter-function map is biased towards simple functions,”
in The International Conference on Learning Representations, Apr. 2019.

31

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in The International Conference on Learning Representations, 2015.

[39] A. Eiben and J. Smith, Introduction to Evolutionary Computing. Springer
Berlin Heidelberg, 2015.

[40] S. L. Digabel, “Algorithm 909,” ACM Transactions on Mathematical Soft-
ware, vol. 37, pp. 1–15, Feb. 2011.

[41] C. Audet, A. L. Custódio, and J. E. Dennis, “Erratum: Mesh adaptive
direct search algorithms for constrained optimization,” SIAM Journal on
Optimization, vol. 18, pp. 1501–1503, Jan. 2008.

[42] Y. LeCun, “Generalization and network design strategies,” in Connection-
ism in perspective (R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, eds.),
Elsevier, 1989.

[43] M. Bielak, “Polarization state generation, measurement and control using
liquid-crystal modulators.” Master’s Thesis, Palacký University, 2019.

[44] S. Stallinga and B. Rieger, “Accuracy of the gaussian point spread function
model in 2d localization microscopy,” Optics Express, vol. 18, pp. 24461–
24476, Nov. 2010.

[45] G. Peyré, “The numerical tours of signal processing - advanced compu-
tational signal and image processing,” IEEE Computing in Science and
Engineering, vol. 13, no. 4, pp. 94–97, 2011.

32

