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Abstract: The thesis addresses the identity disclosure privacy problem in pub-
lishing social network datasets. It introduces the topic of anonymization, focusing
on its application on social network datasets. The author reviews the state-of-the-
art anonymization and deanonymization methods and detects three open prob-
lems in this field. This thesis aims to solve the detected problems and answer
the formulated research questions by proposing new procedures and algorithms,
their implementation in the MATLAB programming platform and testing them
on sets of synthetic and real-world social network datasets. The author presents
the composition attack as a novel threat to social network datasets. Moreover, the
well-known k-degree anonymization algorithm is improved with the novel heuris-
tic high-degree noise addition procedure. Finally, the author employs the genetic
algorithm principles in the k-automorphism anonymization approach to develop
a hybrid algorithm for k-automorphism anonymization. A significant aspect of
the evaluation process is to verify the results on relevant data and to provide
outputs that are easily comparable with other researchers. For this reason, the
evaluation tool SecGraph is used to measure data utility and the vulnerability of
anonymization methods to deanonymization attacks.

Keywords: privacy, anonymization, social networks, genetic algorithm, graph
theory

Abstrakt: Disertačńı práce se zabývá problémem reidentifikace uživatel̊u při
zveřejňováńı databáźı sociálńıch śıt́ı. Představuje anonymizaci a jej́ı aplikaci na
databáze sociálńıch śıt́ı. Autorka prezentuje dosud publikované anonymizačńı a
deanonymizačńı metody a stanovuje tři otevřené problémy v této oblasti. Ćılem
práce je vyřešit dané problémy a odpovědět na formulované výzkumné otázky
navržeńım nových metod a algoritmů, jejich implementaćı v programovaćı plat-
formě MATLAB a jejich testováńım na syntetických a reálných datech. Autorka
ukazuje, že kompozičńı útok, který byl dř́ıve představen jako informačńı hrozba
pro relačńı databáze, může být aplikován i na databáze sociálńıch śıt́ı. Dále
autorka navrhuje novou heuristickou metodu přidáváńı šumu do dobře známého
k-stupňového anonymizačńıho algoritmu. Nakonec prezentuje využit́ı princip̊u
genetických algoritmů v k-automorfńı anonymizačńı metodě a navrhuje hybridńı
k-automorfńı anonymizačńı algoritmus. Důraz je kladen na testováńı algoritmů
na relevantńıch datech a produkci výstup̊u, které jsou snadno porovnatelné s
výsledky jiných výzkumů. Z tohoto d̊uvodu je použit ohodnocovaćı nástroj
SecGraph k měřeńı užitečnosti dat či zranitelnosti anonymizačńıch metod v̊uči
deanonymizačńım útok̊um.

Kĺıčová slova: informačńı bezpečnost, anonymizace, sociálńı śıtě, genetický
algoritmus, teorie graf̊u
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List of notation

GA social network graph with users’ attributes
G social network graph without users’ attributes
G∗ anonymized social network graph
G̃ a released social network graph
Q a structural query
E(G) the edge set of G
V (G) the vertex set of G
U(GA) the set of attributes of GA

v ∈ V (G) a node of G
I an user, an individual, an individual in genetic algorithm
v(I) ∈ V (G) the node representing I in G
(vi, vj) ∈ E(G) the edge between nodes vi and vj in G
ui, uvi

r-tuple of attributes associated with the user vi

Att(GA) the list of attributes associated with GA

∼d the equivalence on V (G): v ∼d w ⇔ deg(v) = deg(w)
Q(G), Q(G, v) an ∼d-equivalence class of G
Qa(G∗) an attribute equivalence class of G∗

u(Qa(G∗)) the attributes of Qa(G∗)
degG(v) degree of the node v in G
dG degree sequence of G
δ∗

G,s degree sequence of G anonymized with heu-kDA using s
NG(v) neighborhood of v in G
Nd

G(v) d-neighborhood of v in G
AV D(G) average vertex degree in G
APL(G) average shortest path length in G
LCC(v, G) local clustering coefficient of v in G
ACC(G) average clustering coefficient of G
T (G) transitivity of G
Adj(G) the adjacency matrix of G
λ(G) the largest eigenvalue of G
k anonymization parameter
s the modification parameter of heu-kDA
rs residue
fa anonymization function
L the list of indices
Fj an automorphisms on G∗

gf (s) a frequent subgraph with the minimal support s
H, Pij subgraphs of G
P ′

ij supergraphs of Pij

Qij subgraphs of P ′
ij; E(Qij) = E(P ′

ij) \ E(Pij)
M a matrix
ri(M) the i-th row of M
rc(M) the number of rows of M
Adji the adjacency matrix of P ′

i1, . . . , P ′
ik
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CH the bit part of the chromosome
varCH the part of the chromosome representing the list of vertices
Cost(G, G∗) the total anonymization cost
V Cost(G, G∗) the anonymization cost caused by vertex edits
ExCost(G, G∗) the extension cost
ExCosti(H) the extension cost caused in the i-th round of HAkAu
CECost(G, G∗) the crossing edges cost
FF (I) the fitness function on the individual I
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List of abbreviations

AS Authorities Score
BC Betweenness Centrality
CC Closeness Centrality
CD Community Detection
Deg. Degree Distribution
ED Effective Diameter
EV Eigenvector
HS Hubs Score
Infe. Infectiousness
JD Joint Degree Distribution
NC Network Constraint
PR Page Rank
RX Role Extraction
GA genetic algorithm
SN social network
SNAP Stanford Network Analysis Project
k-DA k-degree anonymization algorithm [84]
heu-kDA k-DA with the heuristic high-degree noise addition method
FkDA fast k-degree anonymization algorithm [86]
tMean t-Means Clustering [141]
Union Union-split Clustering [141]
HAkAu hybrid algorithm for k-automorphism anonymization
KM the KM algorithm [163]
SecGraph the SecGraph evaluation tool [60]
DUEF-GA the DUEF-GA evaluation tool [19]
NS Narayanan-Shmatikov’s attack [104]
Per. Yartseva-Grossglauser’s attack [154]
Rec. Korula-Lattanzzi’s attack [68]
GraMi the graph mining algorithm [31]
SiGraM the single graph miner algorithm [72]
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1. Introduction
A social network describes relationships between individuals or organizations.
The social world can be viewed as an intertwined net of connections through
which individuals are bound together [128]. The social network metaphor serves
social scientists to make the complex and unfamiliar patterns of the social world
comprehensible by relating them to well-understood concepts. Currently, social
relationships are also shared online by online social network services. Benefiting
from social network services is paid with handing over sensitive personal informa-
tion to service providers. The growing popularity of online social network services
has triggered the collection of large amounts of data. The gathered datasets are
full of valuable information for researchers in different fields, such as product mar-
keting, social psychology, information security, and healthcare. Thus, the service
providers share their collected datasets with third parties. While publishing so-
cial network data brings significant advantages, it also causes privacy-preserving
problems since it contains sensitive and private information.

Privacy is a complex concept of protecting sensitive data and information
from unauthorized access. Because of the rapid expansion of computing and
worldwide Internet usage, privacy-preserving techniques have become a frequently
examined issue. Sharing and publishing users’ data indeed threaten the privacy
of individuals consuming online social network services.

Anonymization enables providers to publish their data while preserving in-
dividuals’ privacy. Providers apply an anonymization technique to their dataset
to protect the personal information of individuals and publish the anonymized
version of the dataset. The aim of anonymization techniques is to prevent an
adversary from distinguishing an individual from a group of others or revealing
any sensitive information linked directly to them.

Preserving privacy in a dataset is managed by modifying the original dataset
with a selected anonymization method to provide the required level of anonymity.
Different anonymization methods and different input settings ensure different
levels of privacy protection. However, the aim of anonymization is always to keep
as much data utility as possible in the anonymized dataset such that the dataset is
still valuable for data analysts. Providing a high level of privacy protection usually
implies more dataset modifications or limits access to the released dataset. In
other words, providing a high level of privacy causes more extensive information
loss. Thus, the crucial issue in anonymization is finding the trade-off between
privacy and data utility.

I decided to do my PhD research in the field of anonymization because my
scientific interests are in information security, and I find anonymization to be
a perfect field of study in which I can employ my knowledge of mathematical
methods achieved in my Master’s studies as well as my working experience in
the cybersecurity software company. Since the anonymization of social network
datasets offers many challenging issues and the opportunity for researchers to
identify open problems, my research has been focused on this area.

This thesis focuses on anonymization and deanonymization approaches that
address the privacy-preserving issue of identity disclosure in anonymized social
network datasets. Anonymization approaches aim to protect the users of social
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networks from being linked with the node representing them in the anonymized
graph of the social network. On the other hand, studies in the deanonymization
point out privacy threats and weak spots of anonymization methods to encourage
researchers to improve the methods and develop new anonymization approaches.

In the early stage of my research, when I was preparing a comprehensive lit-
erature review, I identified three open problems. To solve the issues indicated, I
propose three novel methods. All proposed methods are implemented in MAT-
LAB, and their efficiency is evaluated by running experiments on synthetic or
real social network datasets.

As the first contribution, I present the composition attack on social network
datasets, a novel deanonymization approach based on the composition attacks
applied to relational datasets. I propose the concept of the composition at-
tack, implement it and test it on the set of synthetic networks. Furthermore,
I introduce a heuristic noise addition procedure improving the state-of-the-art
k-degree anonymization k-DA algorithm. The procedure is implemented in the
greedy version of the k-DA algorithm. The resultant k-degree anonymization al-
gorithm, named heu-kDA, is experimentally proved to preserve data utility better
than the original algorithm. Finally, I focus on enhancing the k-automorphism
anonymization method to keep data utility better. As a result, I revise the de-
sign of the original k-automorphism anonymization approach and propose the
novel hybrid k-automorphism anonymization algorithm called HAkAu. In the
design of HAkAu, I use a genetic algorithm to solve the NP-hard subtask of the
k-automorphism anonymization problem. Both proposed anonymization meth-
ods, namely heu-kDA and HAkAu, are implemented and tested on real-world
social network datasets. Moreover, the experimental results are evaluated with
the SecGraph evaluation tool to make them easily comparable with any future
research. Except for the mentioned methods, I present some minor findings that
I also find beneficial for this field of study.

The rest of the thesis is organized into seven chapters. The comprehensive
literature review of the state-of-the-art deanonymization and anonymization ap-
proaches is given in Chapter 2. In Chapter 3, the found open problems are
described in detail, research questions are formally defined, and the goals of
the thesis are stated. The necessary backgrounds in graph theory, equivalence
classes, receiver operating characteristic analysis and genetic algorithms are given
in Chapter 4. The proposed composition attack and the corresponding results
are shown in Chapter 5. The heuristic noise addition method and results of
the data utility analysis of heu-kDA are presented in Chapter 6. Finally, the
k-automorphism anonymization algorithm HAkAu and the corresponding exper-
imental results are described in Chapter 7. The thesis is concluded in Chapter
8.
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2. The state of the art
In this chapter, the topic of anonymization is introduced. The emphasis is given
to the anonymization of social network datasets. Furthermore, the system is for-
malized, the basic terms are defined, and the state-of-the-art anonymization and
deanonymization methods and approaches are presented. Except for the studies
and research focusing on anonymization and deanonymization methods, surveys
and tools evaluating anonymized datasets, the literature review also contains
studies focusing on genetic algorithms and their application in social network
analysis and anonymization.

2.1 Social networks
The term social network has become a powerful image of social reality used by
sociologists analyzing social structures since the 1930s [128]. Individuals are tied
to each other by invisible bounds produced by human interactions and their
unintended consequences. All springs between individuals can be joined into a
vast network of connections describing human society [128].

After the rapid growth of computational technologies, the social interactions
between individuals have been partially shifted into a virtual environment. The
first online social networks Classmates and SixDegrees were launched in 1997.
They set up the cornerstone for the multimillion business affecting the human
population worldwide. The number of participants in online social networks (SNs)
steadily grows and is expected to reach 4 billion in 2023 [134]. Since providers
collect various kinds of data about each user, the amount of information in SN
datasets is enormous. SN datasets have become a precious source of information
about human behaviour, establishing relationships, shopping habits and mobility
patterns for academic [90], medical [63, 103], and marketing [47] research all over
the world.

2.1.1 History of online social networks
The first online social network SixDegrees, launched in 1997, was unable to create
a profitable business model due to the poorly developed web technologies and
the fact that the marketing industry was not yet prepared for the expansion to
the online world [52]. In the following years, several more SNs with different
functionalities arose like AsianAvenue, Black-Planet or Live-Journal. Creating
profiles and making lists of friends or guestbooks became part of the offered
service. While the early networks focused mainly on private networking, the first
business networks were founded in 2001. The first business network was Ryze,
which served as the role model for the successive business networks, including
LinkedIn, which was founded in 2003 [52]. The first dating networks like Match
and Friendster were launched too. In Friendster, people could make ties with
friends of their friends. The network was based on the assumption that friends-
of-friends are more likely to build romantic relationships. Its provider restricted
access to other users in Friendster. Users were possible to make links with users
within a four-degree distance. Until 2004, Friendster had been the largest SN
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[52]. However, the popularity of Friendster caused technical problems since the
providers were unprepared for the rapid growth of users and data.

The well-known MySpace network was established in 2003 as a reaction to
users leaving Friendster. Its primary goal was to catch the users leaving from
Friendster. Since the first participants in MySpace were musicians, the connec-
tions between music bands and their fans helped MySpace to build up a large user
community involving young people [52]. In the next few years, many SNs were
founded, aiming for a narrower audience and targeting groups of people with the
same particular interest or living in a common demographic region.

A new era of SNs started with establishing Facebook in 2004. At first, Facebook
was launched as the SN for Harvard students. A year later, the provider opened it
for students from other universities and a broad audience followed shortly after.
With the growing popularity of Facebook, SNs generated increasing economic
interest among investors [52]. In 2010, Facebook was the most popular online
SNs, with more than 800 million users used worldwide, providing communica-
tion platforms in 70 languages. As the response to privacy concerns connected
with Facebook, Unthink and Folksdirect launched with the promise of offering a
privacy-focused environment with easier control of privacy. One of the biggest
attacks on Facebook’s hegemony was establishing Google+ in 2011. However, its
user engagement was lower than its competitor, and its benefit was mainly in
connecting various Google services.

In 2022, Facebook was still the most popular online SN with nearly 3 billion
monthly active users [135]. Closely behind there were Youtube with 2.5 billion and
Whatsapp with two billion users while Instagram, WeChat and TikTok reached
over one billion users [135].

2.1.2 Social network dataset with users’ attributes
In online social networks, users make social ties with other users. Hence, the
online social network can be represented as a graph, where nodes represent users
and edges represent the connections between users. Moreover, users can share
personal and non-personal information with their associates or all social network
users. Personal information related to the user can be represented as the node
labels in the graph.

Semantic anonymization methods, like the class-based anonymization algo-
rithm [12], consider both the graph structure and the user information in their
processes. The social network is represented as an undirected graph with node
labels in this scenario.
Definition 1 (Social network with users’ attributes [138]). The social network
datasets with users’ attributes is represented by an undirected graph
GA = (V (GA), E(GA), U(GA)), where V (GA) = {v1, . . . , vn} is a set of vertices
representing a set of individuals connected within the social network, E(GA) is a
set of edges representing the relationships between the individuals and U(GA) =
{u1, . . . , un} is a set of r-tuples representing the values of attributes characterizing
the individuals. The i-th element ui = (ui1, . . . , uir) is associated with the i-th
vertex vi, i ∈ {1, . . . , n}.

The terms “vertex” and “node” are used interchangeably in the remainder
of the thesis. For simplicity, the graph GA representing a social network is also
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called “a social network GA” or “SN dataset GA”. Without loss of generality, it
is assumed that every individual participating in a social network has only one
account in that social network. Therefore, for every individual I participating in
the social network GA, exactly one node v(I) ∈ V (GA) represents the individual
I. Therefore, the expression “individual v” is also used in this thesis. As usual,
the edge connecting vertices v1, v2 ∈ V (GA) is denoted by (v1, v2) ∈ E(GA). To
simplify the notation, the r-tuple of values of attributes describing the individual
v is denoted by uv.

Let Att(GA) be a list of attributes associated with a graph GA. Attributes in
Att(GA) represent various user characteristics. Typical attributes are age, gen-
der, postcode, birthday, home town, location or political affiliation. A special
attribute, the identifying attribute, appears in every social network and identifies
its users completely (i.e., username, login, first name and surname). Identify-
ing attributes are always removed during the anonymization process before data
publication. However, removing the identifying attributes is not a satisfactory
anonymization method, as presented in [6]. A combination of non-identifying
attributes or a linkage of some non-identifying attributes with available external
data may also cause identity disclosure. The “potentially dangerous” attributes
form quasi-identifiers, as introduced in [35].
Definition 2 (Quasi-identifier [35]). A quasi-identifier is a set of non-identifying
attributes such that at least one individual of the original social network can be
uniquely identified by linking these attributes with an external data item.

Quasi-identifiers constitute attributes that are not generally private; how-
ever, releasing them together in a non-anonymized form could cause information
leakage, leading to a connection between the anonymized data record and a par-
ticular individual. The attributes belonging to the quasi-identifier are called
quasi-identifying attributes. For instance, the combination of age, gender and
postcode can reveal the individual’s identity if the combination is unique in the
dataset.

2.1.3 Social network dataset without users’ attributes
So far, we have discussed the problem of re-identification of users in SN having
users’ attributes. As stated before, even if the identifiers like names or nicknames
are removed from the data, the target user can be re-identified using the combina-
tion of quasi-identifying attributes and information collected from external data
sources. The external information that the attacker has collected before the ac-
tual attack is called his or her background knowledge. The background knowledge
can be extracted from the target SN itself or a source unrelated to the targeted
SN.

However, even if the identifiers and quasi-identifiers are completely removed
from the SN dataset, the privacy issue of users’ re-identification persists. The
graph structure itself can be considered a quasi-identifier. As shown in [6], the
attacker can gather information about the graph structure around the target
users. For instance, he or she can find the number of users linked to the target
users, disclose their neighbourhoods or collect even more structural information.
Hence, the graph structure can reveal the users identity. Thus, the graph struc-
ture can be considered a quasi-identifier and has to be modified before publishing
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the SN dataset. The situation is illustrated in Figure 2.1. There is the example
of the original network GA with all attributes, GA without identifiers and with
anonymized quasi-identifiers and GA without any attributes. Note that if the at-
tacker knows that his or her target user (Adam) is linked with three other users,
he or she can easily identify Adam in all three versions of G since there is only
one vertex with degree equalling to three.

a) original network GA b) GA with anonymized attributes
c) GA without attributes

Figure 2.1: Social network with attributes. (Source: author’s work [93].)

The deanonymization attacks exploiting only the knowledge about the graph
structure are called structural attacks. Therefore, anonymization methods focused
on preventing structural attacks consider only the graph’s structure (nodes and
edges). The user information represented with node labels is omitted. In this
scenario, the social network dataset is assumed to be unlabelled and contains no
identifying information about users. In other words, the assumption is that all
user information has been removed before applying the anonymization method,
and the anonymization method modifies only the graph structure. The social
network without users’ attributes can be depicted as an undirected unlabelled
graph. Clearly, when the set of attributes is omitted, the labelled graph GA

turns into an unlabelled graph G.

Definition 3 (Social network without users’ attributes [84]). The social net-
work dataset without users’ attributes is represented by an undirected graph
G = (V (G), E(G)), where V (G) = {v1, . . . , vn} is the set of nodes represent-
ing the participating users and E(G) is the set of edges representing the social
relationships between users. The edge between nodes vi and vj is denoted by
(vi, vj).

In this thesis, the research focuses on SN datasets that can be represented
well with undirected graphs. It means that the relationships between users are
assumed to be bilateral. The user u is linked with the user v if and only if the user
v is connected with the user u. Note that some SNs are better represented with
directed graphs. For instance, in Twitter, the user u can follow the user v, but it
is possible that the user v does not follow the user u. Hence, it is more suitable
to represent the Twitter dataset with a directed graph. A similar situation is
in citation networks where nodes represent scientific papers. The edge between
nodes u and v is directed from the paper u toward the paper v in case v is cited
in u [160].

It remains to mention that some social networks can also be described by
edge-labelled graphs. The edge-labelled graphs represent the SNs having addi-
tional information about user interactions. For instance, Bitcoin trust weighted

6



signed network datasets [70, 71] can be represented with the directed edge-labelled
graphs. The datasets contain information about who trusts whom among those
who trade using Bitcoin on particular platforms. Since Bitcoin users are anony-
mous, there is a need for measuring the reputation of users to prevent transac-
tions with fraudulent and risky users [74]. Users of the given Bitcoin platform
rate other users of the platform on a scale of −10 to 10 in steps of 1. Hence, the
directed edges of the corresponding graph are weighted with values in ⟨−10; 10⟩
that represent the source user’s rating for the target user. However, this model
of SN is omitted since the thesis focus on anonymization problems in unlabelled
or node-labelled SNs.

2.1.4 Real-world social network datasets
Real-world social networks are scale-free networks with power-law degree distri-
bution, as presented in [99]. Especially in large SNs, the degrees of vertices follow
the power law distribution. It means there are a few nodes with high degrees,
and most of them have very low degrees. For example, there is shown the degree
distribution of the SN Email Enron [67] with 36,692 nodes in Figure 2.2. For
clarity of the illustration, nodes with the highest and lowest degrees were omit-
ted in Figure 2.2. More precisely, five nodes with a higher degree than 100 are
omitted, and 11,211 nodes with a degree equalling 1, 3,800 nodes with a degree
equalling 2 and 5,167 nodes with a degree value of 3. Nodes with a higher degree
than 100 correspond to 2% of all nodes, while nodes with a lower degree than 4
correspond to 55% of all nodes.

Consequently, many graphs describing SNs are sparse [106]. Thus, they have
much fewer links than the possible maximum number of links within that network.
Moreover, the real-world SNs demonstrate the “small-world phenomenon” [147].
It means that in each SN, any two individuals are likely to be connected through
a short sequence of links. Therefore, the average shortest path between vertices
is often surprisingly small in large SNs. The small-world phenomenon has been
a subject of many sociologist studies [66].

The samples of real SN datasets are available online for academic and re-
search purposes. The largest repository of graph data is the Stanford Large
Network Dataset Collection [74], which is part of the Stanford Network Analysis
Project (SNAP). The SNAP dataset collection consists of more than 50 large
network datasets from tens of thousands of nodes and edges to tens of millions
of nodes and edges. It includes social networks, web graphs, road networks, in-
ternet networks, citation networks, collaboration networks, and communication
networks. Except for the dataset collection, SNAP provides a general-purpose
network analysis and graph mining library which efficiently manipulates large
graphs, calculates structural properties, generates regular and random graphs,
and supports attributes of nodes and edges [75].

Another sizeable comprehensive collection of network data is gathered in Net-
work Repository [122]. The network collection includes relational, attributed,
heterogeneous, streaming, spatial, time series network data, and non-relational
machine learning data. The repository was established to improve and facilitate
the scientific study of networks by making it easier for researchers to interactively
visualize, analyze, and ultimately download an extensive collection of networks.
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Figure 2.2: Degree distribution of Email Enron network. (Source: author’s work.)

Except for SNAP and Network Repository, plenty of other sources provide smaller
data collections like Pajek depository [7] or various GitHub projects.

In producing experimental results, I used 14 real SN datasets differing in
size and network metrics available in the mentioned repositories. More precisely,
from the SNAP library, I employed General Relativity and Quantum Cosmol-
ogy collaboration network (GrQc)[78], Gnutella peer-to-peer network [78, 119],
Wikipedia vote network [80], Caida AS Relationships Datasets [76], High-energy
physics theory citation network (HepTh) [76, 37], Stanford web graph [79], En-
ron email network [79, 67], Amazon product co-purchasing network [77], Epinions
social network [118] and the networks describing the social ties of geosocial net-
works Gowalla [27] and Brightkite [27]. Furthermore, I ran experiments also on
three smaller networks: Polbooks [69], and Polblogs [2] stored in the Network
Data Repository [122], and Prefuse network[50] stored in the GitHub repository
of the Prefuse project (Java-based toolkit for building interactive information vi-
sualization application) [51]. The summary of sizes of the mentioned networks
together with their average clustering coefficient (ACC) and diameter is given
in Table 2.11. Except for the values of ACC and diameter of PolBooks, Prefuse
and Polblogs, all values in Table 2.1 are taken from the website of repositories
[51, 122, 74]. The remaining values were computed.

2.2 Anonymization
As mentioned in the previous section, SN datasets are of great use in academic and
business research. However, sharing and publishing datasets are limited since the
privacy of each individual has to be protected. Anonymization allows providers to
share or publish their datasets while preserving users’ privacy. The basic principle
of anonymization is to modify the original dataset to satisfy the required level of

1The definitions of ACC and diameter can be found in Chapter 4

8



SN dataset #nodes #edges ACC Diameter
Polbooks 105 441 0.488 7
Prefuse 121 169 0.488 4
Polblogs 1,224 16,715 0.313 8
GrQc 5,242 14,496 0.53 17
Gnutella 6,301 20,777 0.011 9
Wiki-Vote 7,115 103,689 0.141 7
Gowalla 19,659 950,327 0.237 14
Caida 26,475 106,762 0.208 17
HepTh 27,770 352,807 0.312 13
Stanford-web 28,190 2,312,497 0.598 674
Email-Enron 36,692 183,831 0.497 11
Brightkite 58,228 214,078 0.172 16
Epinions 75,879 508,837 0.138 14
Amazon 403,394 3,387,388 0.418 21

Table 2.1: List of real SN datasets. (Source: author’s work)

security and keep as much data utility as possible at the same time. The aim
of anonymization techniques is to prevent an adversary from distinguishing an
individual from a group of others. Formally, the anonymization procedure can be
expressed as a function from the input graph to the anonymized one.

Definition 4 (Anonymization [138]). Anonymization of social network data is a
function fa : GA → G∗

A, where GA is a graph describing the original social network
data and G∗

A is a graph describing the anonymized social network data. The
function is denoted by fa = (fV

a , fE
a , fU

a ) such that fV
a : V (GA) → V (G∗

A), fE
a :

E(GA) → E(G∗
A), fU

a : U(GA) → U(G∗
A). The anonymization of unlabelled graph

G is the function fa = (fV
a , fE

a ) such that fV
a : V (G) → V (G∗), fE

a : E(G) →
E(G∗).

The anonymization function fa should have the following properties.

1. G∗ does not contain any direct sensitive information of G

2. G∗ protects the privacy of individuals involved in the social network against
different kinds of attacks

3. The loss of data utility in G∗ is the smallest possible under fulfilling the
previous premises.

Adhere to the first property of fa, identifying attributes, such as username,
login, first name and surname, are always removed in each anonymization method.
Nonetheless, the crucial property is the minimization of information loss caused
by anonymization. Finding the most fitting anonymized graph G∗ to the original
one G is the optimization problem where the output solution G∗ has to satisfy
predefined anonymity property, and the data utility loss is minimal.
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2.2.1 The complexity of anonymization
The anonymization problem can be viewed as the optimization problem of mini-
mizing information loss where the constraint is the required level of privacy. The
required level of privacy affects the complexity of the problem. The complexity
of the optimization problem that arises from trying to find G∗ that satisfies the
k-anonymity property is proven to be NP-hard2 in [45, 46, 44, 15, 8, 9]. The
k-anonymity property and SN anonymization methods based on k-anonymity are
correctly defined in Section 2.3.8.

Hartung et al. proved in [46] that finding k-degree anonymized graph was
an NP-hard problem in case edge addition operations were applied on the in-
put graph. In [8], Bazgan et al. focused on deletion operations. They showed
that the k-anonymity problem is NP-hard when allowing edge or vertex deletion.
Furthermore, they later proved in [9] that the problem was also NP-hard when
edge rotation operations (edge switch operations) were applied. Bredereck et al.
showed in [15] that the problem is NP-hard when considering vertex addition
operations. The complexity of anonymization methods other than k-anonymity
is not widely studied.

2.3 Anonymization methods
Generally, the anonymization methods can be categorized as semantic or struc-
tural. The semantic anonymization methods address the problem of anonymiz-
ing SN with attributes GA. On the other hand, the structural anonymization
methods focus on modifying the graph structure of G. Additionally, GA can
be anonymized by combining the structural SN anonymization method and the
anonymization method for relational datasets [161, 25]. In that case, the set
of vertices V (GA) and the set of edges E(GA) are anonymized using structural
anonymization methods to hide the original graph structure. Then, the attribute
set U(GA) is anonymized with the procedure for relational data anonymization
to fulfil the required level of privacy.

2.3.1 Methods of relational data anonymization
In this section, the fundamental methods of relational data anonymization are
presented. The methods are k-anonymity [125], l-diversity [89], t-closeness [82]
and differential privacy [29]. Many extensions of those methods have been later
published to improve those methods in terms of data utility [91]. However, the
basic principles are still exploited in the state-of-the-art methods of anonymizing
relational and SN datasets. This section uses the terms “table” and “relational
dataset” interchangeably.

Definition 5 (k-anonymity [125]). Let R be a relational dataset. Then R is said
to be k-anonymous if R contains no identifying attributes, and for each record
in R, there exist at least k − 1 other records that have the same quasi-identifying
attributes.

2The definitions of the NP class and the NP-hard problem can be found in Chapter 4
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The probability that an attacker identifies his or her target individual in the
k-anonymized dataset equals 1

k
. The procedures used to achieve k-anonymity

in the relational datasets are generalization and suppression. The principle of
generalization is to substitute the concrete values (ex. married, divorced, widow)
with the more general term (ex. once married). The specific values of attributes
described with numbers (ex. age: 28, 41, 35) can be replaced with intervals (ex.
age: 25-45). Each quasi-identifying attribute in the dataset has several domains of
generalized values that satisfy the domain generalization hierarchy [125]. During
the anonymization, one domain for each quasi-identifying attribute is selected
such that the table is k-anonymized. Since the goal of the anonymization is to
preserve as much data utility as possible, the anonymized table should satisfy the
minimal generalization property. Simplifying the minimal generalization property
means that other k-anonymized versions of the input table contain more general
values.

The complementary method to achieve k-anonymization is the suppression.
Suppressing means removing data from the relational dataset such that they
are not released at all. If the table contains n quasi-identifying attributes that
are represented with n-tuples of values in the table, some elements of each n-
tuples are omitted during suppression. The output of the suppression is the
table with m columns, m < n, and satisfies the k-anonymity property. The best
results are achieved with anonymization methods combining both approaches,
generalization and suppression. Some attributes of R can be generalized, and
others are suppressed.

An example of a relational dataset and its 3-anonymized version, obtained by
generalization and suppression, is given in Figure 2.3. The datasets gather infor-
mation about the spoken language in a social group. The identifying attribute
is obviously removed when the dataset is anonymized. The attribute Language
is the sensitive attribute in the dataset in Figure 2.3a. The sensitive attribute
is the crucial information in the relational dataset and the focus of further data
analysis. On the other hand, the identifiers and quasi-identifiers describe the in-
dividuals whose records are in the table. The sensitive attribute is not modified
during the k-anonymization process. Usually, there is only one sensitive attribute
in the dataset. The same attribute (Language) can play a different role in dif-
ferent datasets. In one dataset, it could be labelled as the sensitive attribute; in
the other, it could be found to be a quasi-identifying attribute. Thus, Language
is not anonymized, unlike the quasi-identifier (Age, Gender, CCode, Marital) in
Figure 2.3b. The final table is 3-anonymized; hence for every record, there are
two other records with the same quasi-identifiers.

The l-diversity, introduced in [89], focuses on protecting sensitive attributes.
The l-diversity approach assumes that the relational dataset already satisfies the
k-anonymity. Thus, there are groups of at least k records having the same values
of quasi-identifiers. The aim of l-diversity is to provide sufficient diversity in the
values of sensitive attributes in the group of k records with the same values of
quasi-identifiers. The approach ensures for each group that the l most frequent
values of the sensitive attributes have roughly the same frequencies [89].

The further extension of the l-diversity approach is t-closeness introduced
in [82]. The t-closeness provides better privacy protection at the cost of more
significant information loss. Given the threshold t, the t-closeness privacy model
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a) relational dataset b) 3-anonymized relational dataset

Figure 2.3: Relational dataset and its 3-anonymized version. The identifying
attribute Id is removed in anonymization. The quasi-identifiers Age and Marital
are generalized, and the quasi-identifier CCode is suppressed. The quasi-identifier
Gender and the sensitive attribute Language are untouched. (Source: author’s
work.)

ensures that the distribution of the values of sensitive attributes in any group
of k records with the same values of quasi-identifiers differs from the overall
distribution in the table by at most t. In other words, the distance between these
two distributions should be smaller than or equal to t.

The information, whether records of an individual are or are not included in
a relational dataset, can also be viewed as sensitive information. This privacy-
preserving issue is addressed by the differential privacy approach [29]. Differential
privacy differs from previous methods by focusing on how the database behaves
with and without an individual’s data instead of comparing what can be learned
about an individual with and without the database. The differential privacy
approach makes no assumptions about the adversary’s background knowledge.
It means that the computational power of the attacker could be unlimited, and
the attacker could have any external information or any structural knowledge
about the original graph, and yet the database satisfying differential privacy is
protected against his or her attack. In other words, the concept of differential
privacy is independent of the attacker’s auxiliary information and computational
power and protects against any kind of attacks [6]. Differential privacy is a
perturbation method. The anonymity property is achieved by adding noise such
that the original data values are replaced with synthetically generated values.
Furthermore, the synthetic values are generated so that statistical information
does not differ much in both datasets [91]. Hence, it provides a solid privacy
guarantee since it is a statistical property. Additionally, the number of queries
on the data stored in the dataset satisfying differential privacy is limited [29].

Definition 6 (ϵ-differential privacy [29]). A randomized function f ensures ϵ-
differential privacy if for all relational datasets R1 and R2 that differs on at most
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one row holds that

∀S ⊆ H(f) : Pr[f(R1) ∈ S] ≤ eϵ · Pr[f(R2) ∈ S],

where H(f) is the range of f

The parameter ϵ determines the degree of privacy. To achieve a high level
of protection, ϵ should be relatively low. However, the low value of ϵ directly
limits the number of queries that can be made on the stored data. The dataset
with ϵ < 1 can only be queried a few times. After that, access to the data is no
longer permitted as privacy cannot be guaranteed [126]. If the data usability is
preferred, ϵ is set to be higher, and the data protection is reduced.

2.3.2 Semantic anonymization methods
Semantic methods of SN anonymization focus on the issue of identity disclo-
sure in SN with attributes. They exploit the principles of anonymization ap-
proaches for relational datasets described in the previous section. Zhou and Pei
focused on anonymizing SN with attributes in [161, 162]. In [161], they introduced
the k-neighbourhood method for anonymization of the graph structure and used
generalization for anonymizing the attributes. The structural k-neighbourhood
anonymity method is described in detail in Section 2.3.8.

Furthermore, they extended their approach with the principles of l-diversity
in [162]. At first, the graph structure is modified to satisfy the k-neighbourhood
anonymity. Let the groups of vertices having isomorphic neighbourhood form
the equivalence class. Then, to protect the privacy of the individuals in the
equivalence class, the distribution of the sensitive values in each equivalence class
should be sufficiently diverse in the sense of l-diversity. Hence, an adversary with
the background knowledge of the neighbourhood structure and no additional
knowledge about the vertex labels only can infer the sensitive label for his or her
target individual with the probability not greater than 1

l
.

The clustering approaches modifying SN with attributes were proposed in [17,
140, 12]. The aim of clustering methods is to aggregate nodes into clusters. Let
C = {v1, . . . , vn} be a cluster aggregating nodes v1, . . . , vn. Assume that there are
m different quasi-identifiers in the network. Then the quasi-identifying attributes
u1, . . . , un describing nodes v1, . . . , vn are anonymized with generalization, such
that for each j = 1, . . . , m, the values u1m, . . . , unm of the same quasi-identifier
are replaced with more generalized value. Similarly, all attributes in all clusters
are processed. As a result, each cluster is described with m-tuple of generalized
values.

A completely opposite approach was introduced in [138]. Sun et al. intro-
duced the splitting anonymization method, where the attributes were anonymized
at first, and the graph structure was anonymized afterwards. In the splitting
method, the attributes are generalized and split into groups. Each vertex is
linked to one attribute group. Then each vertex v is divided into several vertices
according to its degree. More precisely, deg(v)−1 artificial vertices are added into
the graph structure, and the edges connecting the original vertex v to its neigh-
bours are divided between the newly created nodes. It means that deg(v) = 1,
and the degree of each copy of v equals one too. Each newly created vertex is
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linked with the same attribute group as the vertex v. Finally, some edge editing
operations are applied to obtain the final G∗

A.
The k-degree-l-diversity anonymity model protecting the structural informa-

tion and sensitive labels of individuals was proposed by Yuan et al. in [157].
They introduced the methodology based on adding noise nodes. The method
was extended in [23], where the noise node addition method is combined with the
eigenvector centrality concept to preserve the social importance of real nodes.

2.3.3 Differential privacy
The differential privacy technique was also extended to the SN data in [48]. In SN
data publishing and sharing, the aim of the differential privacy is to guarantee that
an adversary having the published result will not be able to determine whether an
individual participated in the network G or whether there exists the edge (u, v)
in G for u, v ∈ V (G) [1]. The differential privacy provides high-level security
anonymization by adding noise to the query results and restricting the structure of
queries on the output dataset. Unlike other anonymization techniques, differential
privacy allows only constrained analysis of the SN datasets, and this approach can
limit the successive data mining of the dataset. The differential privacy methods
compute either node-related or edge-related statistics from G. Therefore, they
are categorized into node-level and edge-level differential privacy methods. The
main goal of the proposed methods is to reduce the amount of noise which has
to be added to meet the requirements of differential privacy.

Sala et al. presented the node level differential privacy method called Pyg-
malion in [123]. Their main idea was to extract the graph structure into degree
correlation statistics and introduce noise in the resulting dataset to produce the
anonymized graph. They focused on reducing the noise necessary to add into G.
Other node-level differential privacy methods were presented in [14, 114, 64].

The relaxed version of differential privacy is proposed in [117]. Rastogi et al.
proposed the edge-level method that enabled sending more expressive queries to
the anonymized dataset, which improved the data utility. Xiao et al. proposed a
Hierarchical Random Graph model to satisfy the requirements of the edge level
differential privacy in [151]. Instead of considering edges, they estimated the link
probabilities among users.

2.3.4 Structural anonymization methods
The structural anonymization methods are categorized according to how it mod-
ifies the original graph structure. Clustering methods transform subgraphs into
super-nodes and replace the original links between users with super-links con-
necting the super-nodes. Noise addition methods are based on adding artificial
nodes into the input graph. Edge editing methods are based on adding, delet-
ing or switching edges. The rest of this section establishes a brief description
of all mentioned anonymization approaches and a review of the state-of-the-art
methods.
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2.3.5 Clustering methods
Clustering methods belong to the class of generalization methods. In the cluster-
ing algorithms, the input SN dataset is partitioned into different clusters, which
are generalized into super-nodes [140]. Given the input graph G, the clustering
algorithms solve the problem of finding the optimal partition of sets V (G) and
E(G) into the minimal number of clusters in which any two vertices are indistin-
guishable from each other [1]. Clearly, the goal is to preserve as much structural
information as possible from G in the clustered network G∗. More precisely,
given the input graph G, the aim is to find the set of clusters C = {C1, . . . , Cn},
Ci ⊆ V (G), such that

1. ∀v ∈ V (G) ∃i ∈ {1 . . . , n} : v ∈ Ci

2. C = ⋃︁n
i=1 Ci = V (G)

3. ∀i, j = 1 . . . , n, i ̸= j : Ci ∩ Cj = ∅

If the anonymized dataset should meet the requirement of k-anonymity, it
means that each vertex should be indistinguishable in the group of k vertices,
then |Ci| ≥ k, ∀i = 1, . . . , n. Hence, the vertices are divided into clusters such
that each cluster contains a subset of at least k vertices having similar structural
features such as a degree or isomorphic neighbourhood. Moreover, the cluster also
contains the edges between those vertices. Those edges are called the inner edges
of the cluster. Let IE(Ci) be the set of inner edges of Ci. The edges connected
vertices from different clusters are external edges. After the vertex partitioning,
the clusters are generalized into super-nodes, and all external edges connecting Ci

and Cj, ∀i, j = 1 . . . , n i ̸= j, are generalized into a single super-edge. Each super-
node Ci is described by the tuple (|V (Ci)|, |IE|) [1]. The resulting anonymized
graph G∗ consists of the super-edges (Ci, Cj), the super-nodes Ci and the tuples
(|V (Ci)|, |IE|).

Clustering methods were proposed in [140, 49, 141, 17]. The greedy algorithm
SaNGreeA proposed in [17] built the clustering greedily, one cluster at a time. It
selects the cluster, then it selects a node and adds the node to the cluster. The
node is selected such that the node addition causes a minimal increment of the
anonymization cost. The process continues until the cluster has the size of k.

The sequential clustering algorithm was proposed in [140]. The algorithm
begins with partitioning vertices from G at random until there are |V (G)|

α
· k

vertices in each cluster, where α is the clustering parameter. Afterwards, the
algorithm repeatedly examines all vertices and moves them between clusters to
minimize the total anonymization cost.

In [141], Thompson and Yao introduced two clustering algorithms, tMeans and
union-split, to classify nodes into clusters based on similar structural features or
similar social roles within SN. Moreover, they proposed an anonymization scheme
for graph data in which edges were added and removed according to nodes’ inter-
cluster connectivity. The scheme was combined with the proposed clustering
algorithms to obtain the anonymized network.

The proposed clustering methods protect against degree-based attacks. The
attacker is considered to have background knowledge of the degrees of nodes
within the given radius of the target node. To achieve the required level of k-
degree anonymity, the graph G is divided into clusters having the size of at least
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k vertices. The two algorithms differ in the way how the graph is divided into
clusters.

Their first solution is built on the conventional t-means algorithm that has
no minimum-size constraint [110]. The tMean algorithm first selects randomly t
vertices to be the cluster centres. Each vertex v ∈ V (G) is added to one of the
clusters. The proper cluster is selected according to a chosen distance metric. If
the selected cluster has k + 1 members after the addition, then a vertex with the
lowest marginal cost is bumped to its surrogate cluster.

The shortage in the design of tMeans is the random selection of the cluster
centres in the first step. The union-split was designed to avoid this issue. In the
first step, each vertex is set to be in its own cluster. Then, it computed all pair-
wise distances between cluster centres and fixed the next nearest cluster for each
cluster. While the size of any cluster is lower than k, it chooses the cluster with
the shortest distance to any other cluster and unions it with its nearest cluster.
While the cluster size after the union is greater than 2k, then the cluster is split
into two.

Once the vertices of the whole graph are clustered, it remains to anonymize
vertices within each cluster. The anonymization approach on the clustered graph,
introduced in [141], was called inter-cluster matching. It takes a clustered graph,
computes the average degree of nodes within each cluster and determines for
each node how many edges it is sufficient to add or remove in order to match the
average degree of its cluster.

Both algorithms, tMeans and union-split are implemented in the SecGraph
evaluation tool [60] as one of the state-of-the-art anonymization methods. I use
both algorithms and the k-DA algorithm to compare their behaviour with the
behaviour of the anonymization method proposed in this thesis.

2.3.6 Noise node addition
As mentioned in Section 2.3.2, noise addition methods adding artificial noise
nodes into the SN dataset with attributes were introduced in [157, 23]. The
structural noise node addition method modifying the original social network to
the k-anonymous one was proposed in [26] by Chester et al.. Their algorithm
aimed to add artificial vertices and link them to the existing vertices. Unlike edge
editing methods, the anonymization cost of noise node addition was computed as
the number of added vertices since anonymity is achieved with vertex addition.

2.3.7 Edge editing methods
Edge editing methods are based on modifying the edge set of the original graph
E(G) to E(G∗) with the sequence of edge editing operations. Modifying the ver-
tex set V (G) is not the prime intention of those methods. However, the desired
anonymity property that should be held in G∗ may also require minor modifi-
cations of the vertex set. Nevertheless, the number of vertex modifications is
negligible to the number of edge set modifications.

Depending on the anonymization approach, E(G) ⊂ E(G∗) or not. If the
anonymization method applies only edge addition operation, then it holds that
E(G) ⊂ E(G∗) since it is not manipulated with any edge from the original graph.
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a) Edge adition. b) Edge deletion. c) Edge removal.

d) Edge rotation (edge switch). e) Edge switch.

Figure 2.4: Edge editing operations. The red (bold) edges are added with the op-
erations, and the green (dashed) edges are removed with the operations. (Source:
author’s work.)

In case that edge deletion or edge switches are allowed, then E(G) \ E(G∗) ̸= ∅
or E(G∗) \ E(G) ̸= ∅. However, the aim of most edge editing methods is to
maximize |E(G) ∩ E(G∗)| and keep as many edges from the original graph as
possible. Since the edge represents the link between users, which is the crucial
information stored in SN, keeping as many edges as possible implies keeping as
much data utility as possible in G∗.

The edge editing operations are illustrated in Figure 2.4. Assume that we
modify the input graph G with a single edge edition operation to obtain the
output graph G∗. Naturally, edge addition means adding a new edge to the
graph structure. More precisely, (u, v) /∈ E(G) ∧ (u, v) ∈ E(G∗) (see Figure
2.4a). Therefore, the degree of both nodes u, v increases by one and |E(G∗)| =
|E(G)| + 1. The edge deletion corresponds to removing an existing edge from
the graph structure. Thus, (u, v) ∈ E(G) ∧ (u, v) /∈ E(G∗) (see Figure 2.4b).
Afterwards, deg(u) and deg(v) decrease by one and |E(G∗)| = |E(G)| − 1.

More structured edition operations can be defined by combining edge addition
and deletion. In [20], an edge removal operation consists of two edge deletions
and one edge addition between four vertices. Assume (u, v), (w, z) ∈ E(G) such
that (u, w) /∈ E(G) (see Figure 2.4c). Then edge removal causes that (u, v) and
(w, z) are deleted and (u, w) is added. Hence, deg(u) and deg(w) do not change,
deg(v) and deg(z) decrease by 1 and |E(G∗)| = |E(G)| − 1.

The definition of edge switch operation varies in the literature. However, the
aim of each edge switch operation is to keep the total number of edges, which
means that |E(G)| = |E(G∗)| after the edge switch operation. In [20], the edge
switch is defined on three vertices. Assume (u, v) ∈ E(G) and (u, w) /∈ E (see
Figure 2.4d). After the edge switch (u, v) /∈ E(G∗) and (u, w) ∈ E. Hence, deg(u)
does not change, deg(v) decreases and deg(w) increases. The same operation is
called edge rotation in [9].
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On the other hand, the edge switch is defined on four vertices in [3]. The
advantage of the second definition is that the degree of all involved vertices is
preserved. Assume (u, v), (w, z) ∈ E(G) such that (u, w), (v, z) /∈ E(G) (see
Figure 2.4e). After the edge switch, (u, v) and (w, z) are deleted and (u, w) and
(v, z) are added, thus (u, v), (w, z) /∈ E(G∗) and (u, w), (v, z) ∈ E(G∗).

The special edge editing method is the anonymization method established
on the random walk proposed in [113] by Mittal et al.. They introduced the
algorithm where every edge (u, v) ∈ E(G) was deleted and replaced with two
edges (u, z), (v, z) ∈ E(G∗) where z was found using the random walk in G.
A random walk from u to v in G is a sequence of steps from u to its random
neighbour u1, then to the random neighbour of u1 and so forth. More precisely, the
random walk is a Markov chain with the transition probability depending on the
node’s degree. The probability that the chain continues from the vertex u to the
vertex u1 equals Pu,u1 = 1

deg(u) if u1 is the neighbour of u and Pu,u1 = 0 otherwise
[113]. The length of the random walk used in the anonymization procedure is
given by the input parameter t. The larger t corresponds to adding more noise
to G∗. To minimize the effect on the degree distribution, the later edge (v, z) is
added into G∗ with a probability smaller than 1.

2.3.8 Methods based on k-anonymity
Most of the edge editing methods are based on the concept of k-anonymity. The
k-anonymity method was initially designed for relational datasets in [125]. The
aim of the k-anonymity is to modify the original dataset such that for every
record, there are at least k −1 other records in the anonymized dataset that have
the same quasi-identifiers, as mentioned in Section 2.3.1. Hence, the probability
that the individual is identified in the anonymized dataset is 1

k
since the user is

unrecognizable in the group of k users having the same quasi-identifiers. The
value of the anonymization parameter k is usually chosen by the dataset provider
depending on the dataset’s size and the requirements of further analysis. To show
the similarity between k-anonymity and the definitions of SN k-anonymization
methods, Definition 5 of k-anonymity introduced in Section 2.3.1 is repeated.

Definition 5 (k-anonymity [125]). Let R be a relational dataset. Then R is said
to be k-anonymous if R contains no identifying attributes, and for each record,
at least k − 1 other records have the same quasi-identifying attributes.

The graph structure can be viewed as a quasi-identifier as revealed in Section
2.1.3. This concept led to the extension of the k-anonymity approach from the
relational dataset to social network datasets [84, 48].

Hay et al. proposed in [48] the anonymity model in which the SN graphs
satisfied the k-candidate anonymity if, for every structure query over the graph,
there existed at least k nodes that match the query. The structure queries checked
the existence of neighbours of the node or the structure of the subgraph linked
to the node. However, they did not develop methods to find k-candidate graphs.

Liu and Terzi introduced in [84] the k-degree anonymity where for each node
in G, there should be at least k − 1 other nodes with the same degree value. The
proper definition of k-degree anonymity requires introducing the k-anonymous
vector. Note that dG denotes the degree sequence of the graph G, where the
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degree sequence is the list of deg(v), ∀v ∈ V (G∗)

dG = (deg(v1), deg(v2), . . . , deg(vn).

Definition 7 (k-anonymous vector [84]). A vector of integers r = (r1, . . . , rn)
is k-anonymous, if every distinct value ri, i = 1, . . . , n, appears in r at least k
times.

Definition 8 (k-degree anonymous graph [84]). A graph G∗ is k-degree anony-
mous if the degree sequence dG∗ is k-anonymous. It means, that for every vertex
v ∈ V (G∗), there exist at least k − 1 other vertices v1, . . . vk−1 ∈ V (G∗) with the
same degree, deg(v) = deg(v1) = · · · = deg(vk−1).

An example of the 2-degree anonymous graph with its degree sequence is given
in Figure 2.5. There is a graph G and its 2-degree anonymized version G∗. Two
edges are removed, and one edge is added to make G∗ 2-degree anonymous. The
degree sequences of both graphs are

dG = (14, 14, 8, 7, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1)

dG∗ = (14, 14, 7, 7, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1)

a) Original graph G. b) 2-degree anonymous G∗.

Figure 2.5: Graph G and its 2-degree anonymized graph G∗. The red (dashed)
edges (4, 13) and (8, 16) were removed, the green (bold) edge (13, 16) was added
to make G∗ 2-degree anonymous. (Source: author’s work.)

Moreover, a systematic framework for graph anonymization is proposed in [84].
Liu and Terzi decomposed the problem of finding k-degree anonymous graph into
two parts: degree anonymization and graph construction.

In the degree anonymization procedure, the degree sequence of G, denoted
by dG, is changed to obtain k-anonymous degree sequence d∗

G. In the graph
construction procedure, the original graph G is modified with the sequence of
edge editing operations to find the k-degree anonymized graph G∗ corresponding
to the found k-anonymous degree sequence d∗

G, dG∗ = d∗
G. They also proposed

the k-DA algorithm solving both degree anonymization and graph construction
tasks.

The original k-DA algorithm applied only the edge addition operations. How-
ever, the idea of using simultaneous edge additions and deletions was also outlined
in [84]. Moreover, they proposed two procedures for the degree anonymization:
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Dynamic programming algorithm and Greedy algorithm. The dynamic program-
ming algorithm is deterministic and finds the optimal solution in O(n2), where
|V (G)| = n. The greedy algorithm is a linear-time alternative with the complex-
ity in O(kn). Even though the greedy algorithm does not guarantee finding the
optimal solution, experiments on real networks proved that the anonymization
cost of the found solution was very close to the optimal one. Hence, the greedy
algorithm was shown to be faster and more efficient for larger networks.

Lie and Terzi provided several variants of the graph construction problem in
[84]. The ConstructGraph algorithm requires the anonymized degree sequence d∗

G

and ensures G∗ with exactly this degree sequence if such a graph exists. Other-
wise, it outputs “No” if such a graph does not exist. Hence, it decides whether
the given dG∗ is realizable. However, the ConstructGraph algorithm does not
guarantee that E(G) ⊂ E(G∗) or at least that |E(G) \ E(G∗)| is negligible. To
solve this issue, the ConstructGraph was extended to Supergraph algorithm in
[84]. The Supergraph searches for the set of edges Ẽ, that should be added into
G, thus E(G∗) = E(G) ∪ Ẽ. Nevertheless, it is not an oracle like the original
construction algorithm. If Supergraph does not find proper G∗, it does not mean
that the graph does not exist.

Finally, the SimultenousSwap algorithm was proposed that solved the relaxed
version of the k-degree anonymity problem such that E(G) ∩ E(G∗) ≈ E(G)
instead of E(G) ⊂ E(G∗). Hence, it enabled to use also the edge switch operation
in all procedures. Experimental results showed that the power-law distribution
of G∗ found by SimultaneousSwap was much closer to that from G than the one
obtained by algorithms applying only edge additions.

The degree anonymization and graph construction procedures are connected
to the probing scheme, as proposed in [84]. The simple outline of the probing
scheme using the Supergraph construction algorithm is given in Figure 2.6.

Figure 2.6: Scheme of k-DA algorithm. (Source: author’s work.)

Using the probing scheme, the k-DA algorithm performs on G in two steps. At
first, Greedy or Dynamic programming algorithm takes as the input the degree
sequence dG and the anonymization parameter k and finds the k-anonymous
degree sequence d∗

G. Then Supergraph algorithm tries to modify G to construct
G∗ such that dG∗ = d∗

G. In case that the Supergraph algorithm fails, d∗
G is slightly

modified by adding noise and Supergraph runs repeatedly until G∗ is found such
that dG∗ = d∗

G. Since the design of the Greedy procedure is essential for describing
the improvement of the k-DA algorithm proposed in this thesis, the procedure is
outlined in Algorithm 1. Note that dG[i] stands for the i-element of dG.

Later published studies preserved the approach of anonymizing the degree
sequence to obtain d∗

G and then modified to graph structure to fit d∗
G [45, 86, 20,

88, 146]. Although the k-DA algorithm was improved in terms of speed [45, 86]
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Algorithm 1 Greedy procedure in k-DA [84]
Require: anonymization parameter k, the degree sequence dG

Ensure: the k-anonymized degree sequence d∗
G

1: Sort dG in the descending order.
2: Let n be the length of dG.
3: Set d∗

G to be an empty vector of the length of n.
4: Set i := 1 and l := k.
5: while l ≤ n do
6: m := median(dG[i], . . . , dG[l])
7: Set d∗

G[i] := m, d∗
G[i + 1] := m, . . . , d∗

G[l] := m.
8: repeat
9: Compute Cmerge := dG[i] − dG[l + 1] + ∑︁l+k+1

j=l+2(dG[l + 2] − dG[j]).
10: Compute Cnew := ∑︁l+k

j=l+1(dG[l + 1] − dG[j]).
11: Set d∗

G[l] := m and l := l + 1.
12: until Cmerge > Cnew

13: Set i := l and l := i + k − 1.
14: end while
15: Set d∗

G[i] := m, d∗
G[i + 1] := m, . . . , d∗

G[n] := m.
16: Return d∗

G.

or its usability in larger networks [20] by applying different kinds of heuristics,
it is still considered to be the basis of the k-degree anonymization. It is one of
the state-of-the-art anonymization methods implemented in the evaluation tools
SecGraph [60], and ShareSafe [139]. Casas-Roma et al. compared their UMGA
algorithm with k-DA in [20]. Zhang et al. referred to k-DA while mentioning the
k-degree algorithm in the comparison of several SN anonymization techniques in
[158]. Alavi et al. compared their genetic GAGA graph anonymizer with k-DA
and other well-known anonymization approaches in [3]. Finally, k-DA was one
of the examined anonymization algorithms in [42], where the clique-destroying
problem in the network was addressed. Hence, k-DA is still a contemporary
algorithm.

The k-degree anonymization method and k-DA algorithm were the subjects
of theoretical studies investigating its complexity [45, 46]. Moreover, it was pre-
sented in [46] that high-degree nodes increased the anonymization cost signifi-
cantly. The idea was expressed that the high-degree nodes could be potentially
removed from the anonymization process. As far as I know, this idea was not
further investigated.

Lu et al. introduced in [86] Fast k-degree anonymization algorithm (FkDA),
which clustered and anonymized the vertices of V (G) into several anonymization
groups with at least k members. The original graph was modified, so vertices
in each group have the same degree. To reduce the anonymization cost, the
vertices in each group should have similar degrees in the original graph. For this
reason, FkDA clustered vertices in descending order according to their degree in
the original graph, which also corresponded with the scale-free property of real
SNs.

In the degree anonymization procedure, the edges were added simultaneously
to all vertices. Inside one group, FkDA linked vertices with insufficient degrees
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with each other. However, the new degree value should still be lower than the
highest degree in the group. After the edge addition, vertices in the group were
reordered according to the new degrees, and other vertices outside the group
could be added to it as well. The design of the procedure is greedy, and its
implementation has been made to minimize the need for reordering the groups.
Furthermore, there is a relaxed edge addition procedure that was launched where
the deterministic procedure failed to find enough vertices for adding more edges,
and the output graph is still not k-degree anonymous. In summary, the advantage
of FkDA over the original k-DA was that testing the realizability of the degree
sequence and repeating runs of graph construction procedure, which were time-
consuming operations, were avoided; hence FkDA was faster on larger datasets.

Casas-Roma et al. introduced the k-degree anonymization algorithm based
on univariate micro-aggregation to anonymize large SN datasets in [20]. They
preserved the two-step approach and split the task into the problem of de-
gree sequence anonymization and graph modification. The aim of their degree
anonymization method was to modify the values of dG to create sets of k or
more elements. The method used the optimal univariate micro-aggregation [43]
to achieve the optimal set distribution. Then, it computes the values for each
set that minimizes the distance of d∗

G from dG. The greedy approach was also
introduced to reduce the search complexity. In the graph modification algorithm,
the neighbourhood centrality measure was used to quantify the edge relevance
in the network and select auxiliary edges in the edge editing operations (addi-
tion, removal and switch). I used the modified version of their UMGA algorithm
for anonymizing social ties in the geosocial networks in [94]. Instead of using
neighbourhood centrality in the graph modification procedure, I exploited the lo-
cation information stored in the geosocial network and quantified the importance
of edges with the location entropy metric.

The k-degree anonymity is the method with the limited model of the attacker.
The k-degree anonymized dataset preserves privacy against the attacker, knowing
the degree of their target node. If the attacker has larger background knowledge
about the graph structure of the original network, then the individual’s privacy
is not ensured. To address this issue, other methods based on k-anonymity were
proposed to provide more privacy protection after anonymization.

To protect the anonymized network against the attacker who knows the tar-
get’s neighbourhood in the original networks, the k-neighbourhood anonymity
method was introduced in [161, 162]. The proposed approach was extended to
k(d)-neighbourhood anonymity in [3, 101]. The k(d)-neighbourhood anonymity
protects against the attacker with the structural background knowledge about
nodes in the distances up to d from the target node. Before giving the proper
definition of k-neighbourhood and k(d)-neighbourhood anonymity, the terms of
the neighbourhood of the vertex and d-neighbourhood of the vertex are formally
defined.

Definition 9 (Neighbourhood). The neighbourhood of the vertex u ∈ V (G) in
G, denoted by NG(u), is a subgraph of G such that

• V (NG(u)) = {v ∈ V (G) ; (u, v) ∈ E(G)}

• E(NG(u)) ⊆ E(G) such that ∀(u, v) ∈ E(NG(u)) : u, v ∈ V (NG(u))
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Definition 10 (d-neighbourhood). The d-neighbourhood of the vertex u ∈ V (G)
in G, denoted by Nd

G(u), is a subgraph of G such that

• V (Nd
G(u)) = {v ∈ V (G) ; there is a path of the lenght d from u to v in G}

• E(Nd
G(u)) ⊆ E(G) such that ∀(u, v) ∈ E(Nd

G(u)) : u, v ∈ V (Nd
G(u))

Definition 11 (k-neighbourhood anonymous graph [161]). A vertex u ∈ V (G∗)
is k-neighbourhood anonymous in G∗ if there are at least k − 1 other vertices
v1, . . . , vk−1 ∈ V (G∗) such that NG(u), NG(v1), . . . , NG(vk−1) are isomorphic to
each other. The graph G∗ is k-neighbourhood anonymous if ∀u ∈ V (G∗), u is
k-neighbourhood anonymous.

Definition 12 (k(d)-neighbourhood anonymous graph [3]). A vertex u ∈ V (G∗)
is k(d)-neighbourhood anonymous in G∗ if there are at least k − 1 other vertices
v1, . . . , vk−1 ∈ V (G∗) such that Nd

G(u), Nd
G(v1), . . . , Nd

G(vk−1) are isomorphic to
each other. The graph G∗ is k(d)-neighbourhood anonymous if ∀u ∈ V (G∗), u is
k(d)-neighbourhood anonymous.

Clearly, the values of both parameters k, d are set before anonymization and
can not be changed afterwards. The value of k indicates the probability that
an individual can be re-identified in G∗, the value of d corresponds to the size
of the attacker’s knowledge that is not sufficient for the re-identification attack.
However, the size of the background knowledge can change over time. If the
attacker obtains the structure of G including Nd+1

G (v), G∗ becomes vulnerable
against his or her structural attack.

To address this privacy-preserving issue, there were published anonymization
methods that protected against any structural attack: k-isomorphism [25], k-
symmetry [150] and k-automorphism [163]. The protection against any structure
attack in terms of those methods means that for any subgraph of G∗, at least
other k − 1 disjoint subgraphs are isomorphic to it. In other words, even if the
attacker knows the structure of an arbitrarily large subgraph of G or the structure
of several subgraphs of G, then he or she is not able to recognize his or her target
user in the anonymized data G∗. Of course, suppose the attacker gains sufficiently
extensive knowledge about its target from the structure of the original graph G.
In that case, he or she does not need to gain more information about the target
user from the anonymized G∗. However, the leakage of non-anonymized data is
not the subject of this thesis.

The k-isomorphism, k-symmetry and k-automorphism are very similar ap-
proaches. Cheng et al. proved in [25] that k-isomorphic graph is k-automorphic
as well. The hypothesis that k-automorphic graph is k-isomorphic and that both
approaches are equivalent to k-symmetry has not been rigorously proved.

In [25] Cheng et al. addressed not only the problem of identity disclosure but
also the privacy issue of link disclosure which was addressed neither in [163] nor
[150]. They introduced the k-isomorphism anonymization method and proved its
persistence against identity and link disclosure privacy issues. Furthermore, they
proposed a dynamic release mechanism that addresses the privacy-preserving is-
sue caused by repeated releases of the same database over time. The k-isomorphic
graph is defined after the formal definition of graph isomorphism.
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Definition 13 (Isomorphic graphs [163]). Given two graphs P1 and P2, P1 is
isomorphic to P2 (denoted by P1 ⋍ P2), if and only if there exists at least one
bijective function F : V (P1) −→ V (P2) such that for any edge (u, v) ∈ E(P1),
there is an edge (F (u), F (v)) ∈ E(P2). The function F is called the isomorphism
of P1 and P2.
Definition 14 (k-isomorphic graph [25]). A graph G∗ is k-isomorphic, if G∗

consists of k disjoint subgraphs P1, . . . , Pk, where Pi and Pj are isomorphic, i ̸= j,
∀i, j = 1, . . . , k.

The k-isomorphism algorithm proposed in [25] by Cheng et al. partitions
the input graph into k disjoint subgraphs and makes them isomorphic to each
other with edge additions and deletions. The crucial part is to identify those
k subgraphs. They proposed a heuristic procedure where subgraphs Pi, such
that |E(Pi)| ≤ m, were selected as potential anonymization subgraphs. The
threshold m was experimentally set as the average degree in G. Afterwards, at
least k disjoint matches of the selected Pi’s are found in G. Those matches are
removed from G, added into G∗, and the procedure is repeated. If there are not
enough matches of the particular embedding, G is modified with edge additions
and deletions. After the whole G is processed, the disjoint components of G∗ are
linked together such that the final G∗ is k-isomorphic.

The k-isomorphism approach was improved with the method better preserv-
ing communities in the graph in [120]. Rong et al. proposed the k+-isomorphism
method detected communities at first, then partitioned them into n similar sub-
graph clusters. Afterwards, in each cluster, the subgraphs were modified so that
at least k communities are isomorphic to each other. They applied both edge ad-
dition and deletion operations as well as vertex addition and deletion operations.

Wu et al. proposed the k-symmetry method in [150] where the vertices’ prop-
erty “being automorphic” is viewed as the equivalence relation, called automor-
phism equivalence, on the vertex set V (G). The vertex set V (G) is split into
vertex partitions induced by the automorphism equivalence. The graph G∗ is
said to be k-symmetric if every vertex partition contains at least k vertices. The
basic idea of the k-symmetry anonymization algorithm is repeating the procedure
of making duplicate copies of the vertex partitions until the size of each vertex
partition combined with its copies is equal to or larger than k. In [150], Wu et
al. also presented the extension of the algorithm that improved the algorithm
in terms of preserving data utility. Since the formal definition of k-symmetry
requires formally defining several other terms not used in the rest of the thesis,
the definition is omitted with reference to [150].

The k-automorphism approach introduced in [163] is defined with the auto-
morphisms on V (G∗).
Definition 15 (Graph automorphism). Let G be a graph, and the bijective func-
tion F : V (G) −→ V (G) be the isomorphism. Then F is the automorphism on
G.
Definition 16 (k-automorphic graph [163]). Let G∗ be a graph. If there exist at
least k − 1 automorphisms Fj, j = 1, . . . , k − 1 in G∗, and

∀v ∈ V (G∗) : Fj1(v) ̸= Fj2(v) ∀j1, j2 ∈ N : 1 ≤ j1 < j2 ≤ k − 1,

then G∗ is called a k-automorphic graph.
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As mentioned before, each k-isomorphic graph is k-automorphic as well. The
k-automorphism KM anonymization algorithm, proposed by Zou et al. in [163],
is constructed on similar principles as the k-isomorphism algorithm introduced in
[25]. Furthermore, it is also proven to guarantee privacy under dynamic releases.
The problem of finding the k-automorphism graph is divided into two subtasks:
finding the optimal graph partitioning and finding the optimal block alignment.
Both subtasks are proved to be NP-hard in [163] and are solved by heuristic
procedures.

Since one algorithm proposed in this thesis is based on the KM algorithm, its
brief description is given in Algorithm 2. I refer to [163] for its detailed description.
The KM algorithm transforms the input graph G to the k-automorphism graph
G∗. It solves the task as two separate NP-hard problems: finding the optimal
graph partitioning (lines 2-6 in Algorithm 2), finding the optimal graph alignment
(lines 7-9). Both problems are correctly defined in Chapter 7.

Algorithm 2 KM algorithm [163]
Require: anonymization parameter k, input network G
Ensure: k-automorphism network G∗

1: Set i = 1 and C to be an empty set.
2: Find the frequent subgraph gf (k) in G with the minimal support equals to

k. Denote each match of the frequent subgraph gf (k) in G as Pij, j = 1 . . . k.
Let Ui be the set of all subgraphs Pij.

3: Expand subgraphs Pij with some other vertices and edges from G such that
the anonymization cost of the whole block Ui is minimal.

4: Remove all subgraphs Pij in Ui from G: G = G \ Ui.
5: Store all crossing edges into the set C. Crossing edges are edges (v, w) from

G such that v ∈ Pij and w /∈ Pij (for some j).
6: Set i = i + 1.
7: Repeat steps 2-7 until there is no edge in G. After that there are m blocks

U1, . . . Um such that for each i = 1 . . . , m the block Ui contains k subgraphs
Pi1, . . . , Pik.

8: For each set Ui: perform graph alignment procedure on all graphs Pij to
obtain k isomorphic graphs P ′

ij. Denote Fa to be the isomorphism between
P ′

i,a and P ′
i,a+1, a = 1, . . . , k − 1.

9: Replace each block Pij by its alignment block P ′
ij to obtain the anonymized

network G∗. Remove all crossing edges from G∗.
10: For each crossing edge (v, w) from the set C: add (v, w) and k −1 other edges

(Fj(v), Fj(w)) into G∗.
11: Return G∗.

At first, the algorithm starts with finding the frequent subgraph with the given
minimal support by running the grow-and-store SiGraM algorithm [72]. Then, for
fixed i, the KM algorithm first finds k matches of the frequent subgraph gf (k) and
denotes them Pij (line 2). The subgraphs Pij are isomorphic to each other. After
that, the subgraphs Pij are expanded, which means that some neighbourhood
vertices and edges are added to each Pij (line 3). The expansion is necessary
for decreasing the total anonymization cost. The expanded blocks Pij have fewer
crossing edges than the original frequent subgraphs; hence the anonymization
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cost caused by the crossing procedure is smaller. Thus, the subgraphs Pij are
larger but are not isomorphic to each other anymore. However, since the aim
of the algorithm is to obtain k-automorphic graph G∗, its subgraphs have to be
isomorphic. Thus, dummy edges are added to make the expanded subgraphs Pij

isomorphic to each other again (line 8). Subgraphs Pij are removed from G, i
is increased, new frequent subgraphs in G are found and the whole process is
repeated until G is the empty graph. Finally, all disjoint expanded isomorphic
subgraphs Pij, ∀i, j, are isomorphically reconnected with the crossing edges and
their copies (line 10).

Neither Cheng et al. nor Wu et al. did not compare their experimental
results with the results of other known k-anonymity algorithms as Zou et al.
did. Zou et al. compared their results with the results of k-DA algorithm [84],
k-candidate anonymity approach [48] and k-neighbourhood method [161]. Since
the KM algorithm provides higher privacy protection than other algorithms, the
k-neighbourhood approach and k-DA were shown to preserve the data utility
better than KM in [161].

2.3.9 Surveys
A summary of the surveys focusing on the SN anonymization approaches is pro-
vided to complete the literature review of SN anonymization methods. The
state-of-the-art anonymization techniques and approaches were summarized in
comprehensive surveys [34, 1, 21, 61, 91].

In [34], Fung et al. evaluated various approaches to privacy-preserving data
publishing and studied the challenges in practical data releasing. They clarified
the characteristics and requirements that distinguished those privacy-preserving
issues in data publishing from other related problems.

Recent social network data publishing developments were reviewed in [1].
Abawajy et al. presented state-of-the-art privacy-preserving approaches for pub-
lishing social network data and summarised privacy attacks on anonymized social
network datasets. The survey presented by Casas-Roma et al. in [21] is focused
only on graph modification methods altering the graph structure of the input
network.

Both anonymization and deanonymization techniques were classified in [61].
Existing anonymization methods were classified into six categories with respect
to graph and application utility metrics. Ji et al. examined the performance
of known deanonymization attacks with respect to scalability, practicability and
robustness. Moreover, they also analyzed the resistance of the anonymization
methods against the attacks.

Recently, Majeed and Lee presented in [91] the comprehensive survey of all
known anonymization techniques for privacy-preserving data publishing includ-
ing methods for anonymization relational datasets, SN anonymization methods,
anonymization approach used for application-oriented scenarios as well as the re-
view of evaluation metrics for anonymization algorithms. They also pointed out
the challenges for future research in both fields of anonymization.
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2.4 Deanonymization attacks
Deanonymization attacks are attacks against published anonymized datasets.
This thesis focuses on attacks and deanonymization approaches aiming to re-
identify users in the anonymized data. It means that the aim of the adversary
is to link the target individual I with the node v(I) ∈ V (G∗) that represents
the individual in the anonymized network G∗. This privacy-preserving issue is
called the identity disclosure problem. There are also techniques causing other
kinds of privacy leakage, for example leaking the link privacy; however, there are
not involved in the review since the focus of the thesis is the identity disclosure
problem.

The deanonymization attack can be active, passive, or a combination of both
types. The assumption for active attacks is that the attacker can modify the
target SN before the provider publishes it. For instance, the attacker can create
many fake accounts (Sybil accounts) and link them with each other and with
the target user. When the SN is published, he or she attempts to recognize
the embedded part of the SN, and the recognition simplifies the re-identification
of the target users. However, providers nowadays possess various Sybil defence
techniques and tools for detecting Sybil accounts that can recognize and delete
fake accounts, making this type of attack difficult [60].

On the other hand, passive attacks do not require access to the network before
publishing. Furthermore, they can aim at a large part of SN, and the same
procedure can be repeated, seeking different SN datasets. Before the actual attack
on the target SN dataset, the attacker is assumed to gain some information that
enables him or her to perform the attack. Such information is called the attacker’s
background knowledge. The format of the background knowledge depends on the
kind of attack. In structural attacks, the background knowledge is usually a
graph, for example, the subgraph of G. In this case, the background knowledge
is traditionally called an auxiliary graph.

Assume the provider possesses the graph G representing the SN network. The
provider desires to share or publish the data. The version of G shared or published
is called the released graph G̃. The released graph G̃ equals G or any anonymized
version of G depending on the privacy level guaranteed by the provider. The
identity disclosure occurs if an attacker can identify the target individual in the
released dataset G̃. In other words, the identity is disclosed if the attacker can
link v ∈ V (G̃) with the particular individual represented with v.

Definition 17 (Query [163]). Given a social network G, a query Q represents
any information the attacker can exploit to extract private information from G.
The result of Q is a set of vertices V ′ ⊂ V (G). Each v ∈ V ′ is called a match
vertex.

Definition 18 (Structural attack [163]). Given a released network G̃, if a query
Q over G̃ launched by an attacker has a limited number of match vertices in G̃,
then target individual t might be uniquely identified. The attack is called structural
if Q is based on the structural information about t in G̃.

Structural attacks include degree attacks, subgraph attacks, neighbour-graph
attacks and hub fingerprint attacks [163]. Many sophisticated structural attacks
on SN datasets have been published. In [6], Backstrom et al. introduced the
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model of adversary that could deduce the users’ identity by solving a set of re-
stricted graph isomorphism tasks. Thus, it was proved that the naive anonymiza-
tion of only removing identifiers and attributes set U(G) was insufficient for pre-
serving users’ privacy in the SN dataset. Their work was extended in [6], where
the family of attacks on a single anonymized dataset was presented. It involved
both passive and active attacks, in which the adversary could find whether edges
existed between pairs of targeted nodes.

Narayanan and Shmatikov presented a structural seed-based deanonymization
scheme [104], where the attacker exploited the knowledge of a small part of the
original network called seed and background knowledge about the anonymized
dataset. They also showed how the adversary could gain such a structural back-
ground knowledge which was represented as the auxiliary graph. The simplified
version of their attack was presented in [105].

The divide-and-conquer algorithm based on attacking the network at first
on a community level is introduced in [107]. Nilizadeh et al. performed that
the community-based approach improved the seed-based deanonymization tech-
niques. Peng et al. presented the seed-growing algorithm in [111]. The identified
seed subgraph grew larger based on the attacker’s background knowledge. Simi-
lar attacks were proposed in [68, 154], where the seed subgraph grew iteratively,
mapping a pair of nodes according to the number of their neighbour nodes.

The seed-free deanonymization attack was introduced in [109]. Based on
Bayesian probability, the seed-free attack matched two nodes, one from the at-
tacked network and the other from the auxiliary graph. Instead of exploiting the
side information like the seed, node features such as degree and distances were
used as nodes’ fingerprints. The algorithm ran in rounds where the most likely
pairs were mapped first. Afterwards, these paired nodes subsequently generated
additional features in the fingerprints of other nodes.

Semantic-based deanonymization attacks are proposed in [149, 115]. Won-
dracek et al. exploited the group member information stored in social networks
in [149]. They performed that group memberships could significantly increase the
probability of the correct re-identification of the target user. The web browser
history stealing attacks were used to determine the group membership. Quin et
al. set up knowledge graphs to increase identity disclosure risk in anonymized
networks in [115].

Recently, Ma et al. introduced the random forest classifier in [87] that used the
spectral partition method to partition large graphs into several small subgraphs.
Its output matched candidate nodes from the anonymized network with the ones
from the auxiliary network. A framework examining the interplay between graph
properties and the vulnerability to deanonymization attacks is proposed in [55].
In [24], Chen et al. proposed three heuristic attack strategies: the community
detection attack, the degree-based attack and the modularity Q-Attack based on
a genetic algorithm. They showed that Q-Attack achieved better results than the
other two strategies in reducing normalized mutual information.

The deanonymization approaches mentioned above focused on issues con-
nected to sharing or publishing data from a single social network. They examined
a single anonymized dataset and took advantage of some background knowledge
about the single anonymized dataset. The background knowledge of the attacker
in the form of an auxiliary graph can be a subgraph of the attacked graph or any
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external information gained by the attacker to perform the attack. The exter-
nal information could be any data, including the graph of another anonymized
dataset [104]. However, as far as I know, no research has been yet focused on the
particular situation where the background knowledge is only another anonymized
dataset with the overlapping user community. In this scenario, both anonymized
datasets are threatened since the first can be the auxiliary graph for the latter
and vice versa.

On the other hand, there were published studies that address the problem
of privacy leakage involved in publishing two or more relational datasets with
overlapping records [35, 81, 127]. This attack combing the knowledge of two
anonymized datasets is called the composition attack.

In [35], Ganta et al. investigated an intersection attack, a version of the
composition attack, and experimentally demonstrated the attack’s severity for
many previously proposed anonymization techniques. Their study proved that
several partition-based anonymization schemes, including the k-anonymity and
its variants, are vulnerable to composition attacks.

Sattar et al. proposed a probabilistic (d, α)-linkability method, an efficient ex-
tension of k-anonymization, in [127]. They presented the theoretical background
for reducing the risk of a composition attack on relational datasets. They experi-
mentally proved that the methods based on k-anonymization protect data privacy
adequately and can preserve more utility than alternative privacy models.

Moreover, Li et al. introduced a hybrid algorithm to protect the privacy
of relational datasets against composition attacks in [81]. They proposed an
anonymization algorithm that reduced the risk of composition attacks. They
considered an adversary who knew some personal information about the victim,
while the victim’s records are included in two anonymized datasets independently
published. The attacker exploits the occurrence of the plain value of a sensitive
attribute in anonymized relational datasets. The considered datasets had the
particular property that the value of the sensitive attribute was constant for each
individual over all the anonymized datasets.

2.5 Evaluation tools
Different anonymization approaches provide different levels of security. A high
level of security protects against the attacker with more extensive background
knowledge. However, a higher level of anonymization usually requires more mod-
ifications in the input dataset, causing larger information loss in anonymized
data. Maintaining a balance between privacy and utility loss was addressed in
[108, 146].

Evaluating anonymization methods is a challenging issue as well. Anonymiza-
tion algorithms are usually implemented and tested on synthetic or real-world
datasets. Then, the selected network metrics are measured in the anonymized
datasets. Experimental results published in different research papers are usu-
ally not comparable. The problem of missing methodology for evaluating other
anonymization methods is addressed in [60, 19].

Ji et al. proposed an evaluation tool called SecGraph in [60]. It can be used
by different researchers to analyze the performance of their anonymization al-
gorithms, evaluate anonymized data concerning utility and application metrics,
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anonymize social network datasets or examine the vulnerability of anonymized
data to state-of-the-art deanonymization attacks. Three modules are imple-
mented in SecGraph: anonymization, utility, and deanonymization.

In the anonymization module, graph data anonymization schemes are imple-
mented. The module can be used to anonymize raw graph data. The utility
module can evaluate anonymized data utility concerning utility and application
metrics. Therefore, it can determine how an anonymization algorithm preserves
data utility. In the deanonymization module, data security can be evaluated
with real-world deanonymization algorithms before publishing or sharing. The
effectiveness of an anonymization algorithm can also be examined in this module.
Researchers can test whether the anonymized data of an anonymization algorithm
is resistant to attacks. SecGraph has been recently improved by adding two other
modules, recommendation and security quantification. The second version of the
tool is called ShareSafe [139]. Both tools are available online [59].

A different privacy evaluation framework for graph anonymization is proposed
in [19]. The DUEF-GA framework includes generic and task-specific information
loss measures as well as metrics for the examination of re-identification and risk
assessment. It was designed to help researchers and experts to select the best
parametrization or algorithm to reduce information loss and maximize data util-
ity. The tool is available online [18]. DUEF-GA was published after the publica-
tion of SecGraph; however, the existence of the SecGraph tool was not mentioned
in [19].

SecGraph and DUEF-GA tools commonly focus on evaluating and measur-
ing data utility in anonymized SN datasets. However, their approach differs in
many aspects. DUEF-GA is focused mainly on data utility and information loss
measurement. To evaluate the vulnerability against deanonymization attacks, it
computes only the candidate sets for each vertex to measure the feasibility of
degree-based attacks and computes proportions of vertices that change their set
of neighbours at a distance one to measure the feasibility of 1-neighbourhood-
based attacks. DUEF-GA implementation contains no anonymization algorithm
that can do the actual anonymization of the SN dataset. To produce anonymized
data for testing in [19], Casas-Roma employed the UMGA anonymization algo-
rithm [20]. On the other hand, as mentioned above, SecGraph is focused equally
on evaluating preserving data utility and vulnerability against state-of-the-art
deanonymization techniques.

Focusing on the data utility measurement, both tools provided the measure-
ment of some structural metrics and some application metrics. Furthermore, both
tools require the same input: the original graph G and its anonymized version
G∗, where V (G) = V (G∗). Even though some metrics are measured with both
tools, the methodology is entirely different. For instance, both tools deal with
the shortest path and the clustering coefficient3. DUEF-GA compute the average
shortest path and global clustering coefficient for whole graphs G, G∗ and then
outputs the difference of the measured values. SecGraph calculates the global
clustering coefficient for complete graphs G, G∗ and outputs the ratio of the mea-
sured values. Additionally, it computes the distribution of the shortest path and
local clustering coefficient in G, G∗ and outputs its cosine similarity.

3Metrics mentioned in this section as well as cosine and Jaccard similarities are properly
defined in Chapter 4

30



Focusing on vertex-level structural metrics, both tools compute betweenness
and closeness centrality for each vertex. SecGraph again computes the output
value with the cosine similarity of vectors of vertex values, DUEF-GA combines
the values with root mean square4. Eigenvalues of the adjacency matrices of
graphs are also handled in both tools. SecGraph computes the eigenvalue vectors,
while DUEF-GA measures the largest eigenvalues.

The approaches differ a lot in the measurement of the application metrics.
Page rank is the only application metric computed in both tools, except that
both aim to detect communities and compute the information flow. The author
of DUEF-GA defined the precision index metrics and combined them with four
clustering algorithms to detect communities. He introduced his own metric for
measuring the information flow. On the other hand, SecGraph computes the
authorities and hubs scores and uses the method published in [152] to detect
communities. The information flow is given by infectiousness, influence maxi-
mization, secure routing and the computation of the minimum-sized influential
node set [60].

Except for the mentioned, in SecGraph there are additionally implemented
four other structural metrics (effective diameter, network constraint, degree and
joint degree distribution) and three additional application metrics (role extrac-
tion, reliable email detection and Sybil account detection) [60]. On the other
hand, structural metrics that are implemented only in DUEF-GA are transitiv-
ity, and edge intersection [19].

Both tools were tested on real-world SN datasets; however, the datasets used
for evaluating differ in size. Authors of SecGraph tested the tool on large SN
datasets up to 0.8 million users, while DUEF-GA was tested on smaller graphs
up to 2000 users. In this thesis, the SecGraph tool is used for evaluating the effi-
ciency of the proposed anonymization method since it also focuses on evaluating
the vulnerability to attacks and includes the implementation of state-of-the-art
deanonymization algorithms.

2.6 Genetic algorithms in social network analy-
sis

Genetic algorithms based on mimicking the processes of natural evolution are
powerful tools while addressing NP-hard problems. They were developed by
Holland in [54]. They have been successfully applied to various issues belonging
to the NP class like the travelling salesman problem [41, 56], scheduling problems
[28], or bin packing problem [136]. Many studies describe the application of
genetic algorithms on a wide range of NP-hard problems. However, since the
thesis is focused on social network anonymization, the review contains only studies
dealing with the application of genetic algorithms in social network analysis.

Genetic algorithms have been recently exploited in the SN analysis for commu-
nity detection in large networks [5, 112], graph clustering [11, 16] and predicting
the dynamics of SN [22]. Since the problem of modifying the SN graph with the
minimal amount of edge editing operations to become k-anonymous is NP-hard

4For the definition of root mean square see [19].
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[45], several SN anonymization methods based on genetic algorithms have been
recently presented too.

Sihag proposed the genetic algorithm anonymizing SN by clustering nodes
into super-nodes in [130]. However, the algorithm was tested only on small SNs
(up to 67 nodes) and caused more significant information loss than the previously
published deterministic clustering algorithm Sangreea [17].

Another genetic clustering algorithm was proposed by Yazdanjue et al. in
[155]. They optimized the clustering procedure in the k-anonymity method em-
ploying particle swarm optimization. They presented a hybrid solution that com-
bined particle swarm optimization with genetic algorithms. Their solutions were
represented with binary matrices describing which node belonged to which super-
node. Each chromosome contained all nodes and all super-nodes of the whole
graph. Hence, while anonymizing large networks, it can be used only large val-
ues of the anonymizing parameter k since larger k means fewer super-nodes and
smaller chromosomes.

The genetic k-degree edge modification was introduced by Rajabzadeh et al.
in [116]. At first, the algorithm detected communities in the SN graph and
then modified each community’s edge set with the genetic algorithm. Hence,
the SN graph was anonymized by adding edges between vertices inside detected
communities. The algorithm was tested on real datasets up to 23,133 nodes.
However, the anonymized SN satisfied only k-degree anonymity.

Alavi et al. introduced the k(d)-neighbourhood anonymity approach and pre-
sented GA for graph anonymization called GAGA. The GAGA was the edge
editing algorithm that prioritized edge switching over edge adding or removing.
They showed that the genetic algorithm was an efficient tool for anonymizing
large SNs. Using the SecGraph framework [60] GAGA algorithm proved resis-
tant against five deanonymization attacks. Moreover, the SecGraph was used to
measure information loss after anonymization and compare GAGA with existing
approaches. I agree that evaluating anonymization algorithms with an indepen-
dent tool like SecGraph can lead to a better comparison of proposed algorithms.
However, GAGA is tested only on the subgraph of the DBLP co-authorship net-
work [153], not on the whole DBLP dataset. Since other researchers can not
find which subgraph they used, they can not compare their results with those
published in [3].
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3. Research questions and
objectives
My research in SN anonymization was motivated by the growing need for pri-
vacy protection of personal information in published data from social networks.
Anonymization of social networks is still a promising field of study and gives
researchers the opportunity to find open problems. The most important open
problem is indeed finding a robust SN anonymization method that preserves pri-
vacy such that the anonymized dataset is not vulnerable against the state-of-art
deanonymization attacks and keeps enough data utility such that the anonymized
dataset is still useful for data analysts [61].

Finding the universal anonymization method for SN datasets would be a too
ambitious goal for this thesis. I started my research by studying the state-of-the-
art techniques of SN anonymization and developing the comprehensive literature
review given in Chapter 2. In this early phase of my research, I identified three
nontrivial open problems, the solutions of which are achievable in PhD research
and contribute to the progress in SN anonymization.

In this section, I present the identified problems, formulate the research ques-
tions and formally define the objectives of this thesis. Furthermore, I outline the
proposed solution for each stated problem. The complete solutions are described
in detail in the rest of the thesis.

3.1 Study and research questions
My PhD research mainly focuses on anonymization methods and approaches to
modifying social network datasets. However, since anonymization was initially
developed as the solution to privacy-preserving issues in relational datasets, my
research in anonymization techniques started by studying anonymization and
deanonymization approaches in tabular data. As stated in Section 2.4, several
versions of composition attacks on relational datasets were published. The com-
position attack benefits from combining records from two anonymized datasets
that are published independently of each other. The scenario is as follows.

Let R1, R2 be two relational datasets. Each dataset contains information
about a group of individuals. Let I(R1) and I(R2) be the set of individuals
whose data are included in R1 and R2, respectively. Let R∗

1 and R∗
2 be the

anonymized versions of R1 and R2, respectively. Assume that R∗
1 and R∗

2 were
released by different providers. The data provider publishing R∗

1 does not have
the knowledge about releasing R∗

2 such that I(R1) ∩ I(R2) ̸= ∅. Since generaliza-
tion, suppression, or perturbation do not change the number of rows in datasets,
it holds that I(R∗

i ) = I(Ri), i = 1, 2. Hence, there may exist two published
anonymized datasets R∗

1 and R∗
2 and the non-empty set of individuals I(R∗

1, R∗
2)

such that I(R∗
1, R∗

2) = I(R∗
1)∩I(R∗

2). In other words, there exist some individuals
whose records are included in the two anonymized databases. This situation sig-
nificantly decreases the level of security provided by the applied anonymization
methods. Even if R1 and R2 were anonymized well and R∗

1 and R∗
2 provide high

privacy protection, combining anonymized records from R∗
1 and R∗

2 can lead to
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re-identification of users in I(R∗
1, R∗

2) [81].
This problem has not been widely studied in social network datasets. Assume

social network datasets GA,1, GA,2 such that V (GA,1) ∩ V (GA,2) ̸= ∅ and their
anonymized versions G∗

A,1, G∗
A,2. As there are several social networks and more

than half of Internet users participate in more than one social network [144, 148],
an individual is likely to appear in more than one anonymized social network
dataset. Thus, two anonymized social network datasets published independently
of each other will likely have overlapping user communities.

Assume an attacker that wants to re-identify the user v(I) ∈ V (GA,1) in
the released G∗

A,1. The background knowledge of the attacker in the form of an
auxiliary graph Aux(G∗

A,1) can be a subgraph of GA,1 or any external information
gained by the attacker which includes G∗

A,2 or its subgraphs [104].
However, as far as I know, no research has been yet focused on the particular

situation where Aux(G∗
A,1) = G∗

A,2. When two anonymized datasets of social net-
works having overlapping user communities are published independently of each
other, similarly to relational datasets, they can be vulnerable to a composition
attack. Formally, the goal is to answer the following research question:

Question 1. What modifications should be done to the design of the
composition attack such that the attack becomes applicable to the
social network data?

To solve this issue, I study the published composition attacks on relational
datasets [35, 81, 127], analyze in detail their approaches and apply them to SN
datasets. I indicate the privacy risk associated with the situation and describe the
attacker’s goals and motivations for realizing the attack. Moreover, I present and
implement a new composition attack algorithm. The algorithm takes as input
two graphs representing the anonymized social network data and finds pairs of
vertices, one from each graph, describing the same individual participating in
both social networks. Its feasibility is experimentally proved by testing it on
synthetic scale-free networks generated using the Barabasi-Albert (B-A) model.
The detailed description of the proposed approach, the composition attack, and
the experimental results are given in Chapter 5.

While studying SN anonymization methods, it is crucial to know the k-DA
algorithm proposed in [84]. The k-DA algorithm is considered to be the basis of
the k-degree anonymization. Moreover, it is still a contemporary algorithm, as
shown in Section 2.3.8.

Except for the k-DA algorithm, I have also studied its improved versions
[86, 20] and its complexity [45, 46]. As mentioned in Section 2.3.8, Hartung et al.
presented in [46] that high-degree nodes significantly increased the anonymiza-
tion cost of k-DA. Furthermore, they proposed removing the high-degree nodes
from the anonymization process since they might be well-known anyway. It did
not mean the high-degree nodes should be removed from the graph during the
anonymization procedure. The high-degree nodes would be kept in the graph,
but they would not be anonymized. In other words, the few high-degree values
would remain untouched by the anonymization procedure.

However, the assumption that high-degree nodes represent well-known indi-
viduals is too strong in the case that we focus on developing an anonymization

34



method that is independent of the dataset itself. Nevertheless, the idea moti-
vated me to study the degree anonymization procedure of the k-DA algorithm
more closely.

In the degree anonymization procedure of k-DA, the degree sequence is ordered
decreasingly, and degree values are split according to merging rules into several
groups of at least k elements. In each group, all elements are set to have the
same anonymized value. In the original k-DA algorithm, the anonymized value
is the median of the k values in the group. However, the median can be distant
from the highest values in the group. The problem is the most significant in the
groups where high-degree nodes are put together with lower-degree nodes. If the
median value belongs to a lower-degree node, setting the higher values to the
median causes a significant decrement in degree. In that case, many nodes linked
to the high-degree nodes in G cannot be connected to them in G∗. Hence, the d∗

G

is often unrealizable since there are not enough potential neighbours for all those
nodes.

The noise addition strategy significantly impacts the speed and efficiency of
the whole k-DA algorithm. It corrects d∗

G so that it becomes realizable and helps
keep data utility in the anonymized graph. I propose the improvement of the
noise addition procedure such that the anonymized degree value of high-degree
nodes is kept closer to their original values. The noise addition procedure corrects
the anonymized value only in those groups of d∗

G where the difference between the
highest and the lowest original value is significant. Moreover, the correction is not
constant for all groups, but it also depends on the values in the group. It could
decrease the probability that Supergraph fails to find G∗. Thus, it could positively
affect the efficiency of the whole k-DA algorithm. I formulate the hypothesis into
the following research question:

Question 2. What effect does the correction of the anonymized values
in groups of d∗

G have on the efficiency of the k-DA algorithm?

To solve this issue, I propose the heuristic improvement of the noise addition
procedure of k-DA. The proposed noise addition approach considers the power-
law distribution of real social networks. The proposed procedure is shown to
better handle the anonymization of high-degree nodes by flexibly correcting the
anonymized values in their groups. Moreover, I implement the procedure in the
greedy version of the k-DA algorithm. To show the applicability and efficiency
of the improved k-DA algorithm, I run experiments on a set of different real-
world social networks. The detailed description of the heuristic high-degree noise
addition method and its usability, information loss and data utility analysis is
given in Chapter 6.

Since the model of the attacker is limited in the k-degree method and the
method was proven to be vulnerable against deanonymization attacks [60], I also
studied methods providing privacy protection against any structural attack. I
focused mainly on k-automorphism since its authors compare their results with
the results of k-DA.

The k-automorphism approach was proposed by Zou et al. in [163], where
the k-automorphism anonymization algorithm called KM algorithm was also de-
signed. Zou et al. proved that the proposed k-automorphism KM algorithm
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provides higher privacy protection than the other algorithms. Nevertheless, k-
DA and k-neighbourhood methods were shown to preserve the data utility better.

The KM algorithm proceeds in the following steps. At first, KM finds at
least k isomorphic subgraphs in the given graph. The isomorphic subgraphs are
isomorphically extended such that the anonymization cost of the final anonymized
graph is minimized. Then the extended isomorphic subgraphs are removed from
the input graph, and the process is rerun on the smaller graph. After the whole
input graph is processed, we get the set of disconnected graphs such that for
every graph, there are at least k − 1 other graphs that are isomorphic to it. The
disconnected graphs are linked together in such a way that the final graph is
k-automorphic.

Both subtasks, finding the isomorphic subgraphs and extending them iso-
morphically, are proved to be NP-hard in [163]. They are solved with heuristic
approaches in the KM algorithm. Moreover, the KM algorithm applied only edge
addition operation to modify the graph structure. Therefore, the anonymization
significantly affected the degree distribution of the final anonymized network.
The simultaneous use of edge addition and deletion operations in anonymization
methods reduces the number of edges added to the resultant network. Thus, the
degree distribution of the graph that will be anonymized with a k-automorphism
method applying both edge edition operations is likely to be closer to the degree
distribution of the original graph. Other network metrics could be positively af-
fected too. Moreover, since no deterministic algorithms exist to solve the NP-hard
subtask in the k-automorphism method, there is also scope for improving the KM
algorithm. Overall, the aim of my research in k-automorphism anonymization is
to improve the k-automorphism method to preserve data utility better and there-
fore raise its usability in real SN datasets, as formulated in the following research
question:
Question 3. What modifications improve the k-automorphism method
in terms of preserving data utility?

To address this question, I propose and implement a novel Hybrid Algorithm
for k-Automorphism anonymization (HAkAu). The algorithm uses both edge
addition and deletion operations and addresses NP-hard tasks with a genetic
algorithm. More precisely, the NP-hard subtasks of finding isomorphic subgraphs
and extending them isomorphically are merged into a single NP-hard subtask
which is solved with the genetic algorithm.

The motivation for using the genetic algorithm to solve the NP-hard task arises
from the fact that genetic algorithms are powerful tools while addressing NP-
hard problems, and they have already been successfully applied to improve the
k-degree anonymization method [116], k-neighborhood anonymization method [3]
and a clustering anonymization algorithm [155].

The proposed HAkAu algorithm modifies the given social network to obtain
the k-automorphism one. The algorithm is based on the structure of the KM
algorithm. Unlike the KM algorithm, it solves the NP-hard subtask of find-
ing isomorphic graph extensions with the genetic algorithm, uses edge deletion
operation and employs the known GraMi algorithm [31] for finding frequent sub-
graphs. The HAkAu algorithm is evaluated by running experiments on real so-
cial networks. The data utility in the anonymized network is measured with the
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SecGraph tool [60]. Moreover, the SecGraph tool is also used to analyze the pro-
tection against deanonymization attacks. Using the SecGraph tool and running
tests on the datasets available online makes the experimental results comparable
to any future research. The detailed description of the proposed solution and all
findings and experimental results are given in Chapter 7.

3.2 Objectives of the dissertation thesis
In my PhD research, I focus on anonymization methods and approaches that
modify social network datasets to preserve individuals’ privacy in the published
data. During my research, I have identified three open privacy-preserving issues
related to k-anonymization methods, their ability to preserve data utility well
and their vulnerability to deanonymization attacks.

The goal of this thesis is to solve the detected problems and answer the for-
mulated research questions by the proposal of new procedures and algorithms
and their implementation in the MATLAB programming platform. The work in-
cluded testing the applicability and efficiency of the proposed algorithms on sets
of synthetic and real-world social network datasets, measuring the data utility in
the anonymized networks and comparing the experimental results with the results
of the state-of-the-art algorithms. A significant aspect of the evaluation process
is to verify the results on relevant data and to provide outputs that are easily
comparable with other research. For this reason, great efforts have been made
to find a proper evaluation method. Therefore, the evaluation tool SecGraph is
used to measure data utility and the vulnerability of anonymization methods to
deanonymization attacks.

The main contributions of the thesis are the improvement of two well-known
anonymization methods and the proposal of the new deanonymization method.
More precisely, the work introduces the composition attack as a novel type of
deanonymization attack on social network datasets and improves the k-DA algo-
rithm and the k-automorphism anonymization method in terms of preserving the
data utility.

Furthermore, while designing the HAkAu algorithm, some minor findings were
made that can be beneficial for this field of study. A novel chromosome represen-
tation for k-anonymization problems solved by genetic algorithms was proposed.
The chromosome representation preserves the k-anonymity property of the chro-
mosomes by “design”; hence, testing the k-anonymity property with fitness or
selection function is unnecessary. Then the novel “divide and conquer” procedure
for effective selection of vertex-disjoint subgraphs is introduced. Additionally, as
far as I know, this is the first work where the GraMi algorithm is applied in the
anonymization method.

Finally, even if the evaluation of data utility measurement and testing the
resistance against deanonymization attacks with the SecGraph tool has been used
in [3], the usage of an external evaluation tool and the emphasis on making the
experimental results comparable in any future research is not very common in
published anonymization studies.
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4. Preliminaries
In this chapter, there are given definitions of terms that are used in the rest of this
thesis. It starts with providing terms from graph theory, including the Barabasi-
Albert model, which is used to produce synthetic SN networks in experiments
in Chapter 5 and introducing all network metrics used in evaluating results in
Chapters 6, 7. Then, it defines equivalence classes in GA, establishes matrix
notation and introduces receiver operating characteristic analysis that is used
for evaluating the efficiency of the proposed composition attack in Chapter 5.
Since few NP-hard problems are discussed in Chapters 7 and one stated problem
is proved to be NP-hard in the same chapter, this chapter also includes the
definition of NP-hard problems and polynomial reducibility. Finally, in order not
to burden the basics while defining the special features of the proposed genetic
algorithm in Chapters 7, this chapter ends with describing the basic principles of
the genetic algorithm.

4.1 Graph theory
The definitions of well-known terms like graph, degree of the vertex, degree dis-
tribution, and adjacency matrix of the graph are omitted with reference to [13].
This section begins with the definitions of the subgraph, supergraph and frequent
subgraph with minimal support.

Definition 19 (Subgraph [13]). Let G = (V (G), E(G)) be a graph. Then H =
(V (H), E(H)) is said to be a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
The property of “being a subgraph” is denoted by H ⊆ G.

Definition 20 (Supergraph [13]). If H is a subgraph of G, then G is said to be
a supergraph of H.

The terms isomorphism and automorphism are frequently used in Chapter
7. The same function Fj is marked as isomorphism in one paragraph and auto-
morphism in another. To explain the double marking, Lemma 1 is formulated
below. Due to the lemma and its proof, graph automorphism and isomorphism
definitions from Section 2.3.8 are recapitulated.

Definition 13 (Isomorphic graphs [163]). Given two graphs P1 and P2, P1 is
isomorphic to P2 (denoted by P1 ⋍ P2), if and only if there exists at least one
bijective function F : V (P1) −→ V (P2) such that for any edge (u, v) ∈ E(P1),
there is an edge (F (u), F (v)) ∈ E(P2). The function F is called the isomorphism
of P1 and P2.

Definition 15 (Graph automorphism). Let G be a graph, and the bijective func-
tion F : V (G) −→ V (G) be the isomorphism. Then F is the automorphism on
G.

Lemma 1. Let P1, P2 ⊂ G be disjoint subgraphs of G and let F : G −→ G be an
automorphism on G such that F (P1) = P2. Then the restriction F |P1 of F on P1
F |P1 : P1 −→ P2 is the isomorphism from P1 to P2.
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Proof. If F is the automorphism of G and P1 is the subgraph of G, then for
all edges (u, v) ∈ E(P1) holds that (F (u), F (v)) ∈ E(P2). The same condi-
tion holds under the restriction of F : for all edges (u, v) ∈ E(P1) holds that
(F |P1(u), F |P1(v)) ∈ E(P2). Moreover, since F (P1) = P2, then for all u ∈ V (P1)
its image F (u) ∈ V (P2) and for all v ∈ V (P2) its preimage F −1 ∈ V (P1). Hence,
the restriction F |P1 maps P1 to P2, and it is a bijection, since F is a bijection.
Thus, F |P1 is the isomorphism from P1 to P2.

Thus, if F is the automorphism of G, then its restriction on a particular
subgraph P1 is the isomorphism of P1 and P2. To simplify the notation in Chap-
ter 7, the notation for the restriction is omitted, and the same functions Fj are
characterized both as automorphisms and isomorphisms. Note that Fj are auto-
morphisms on G∗, but when we focus on subgraphs displayed with Fj, then Fj

are isomorphisms of these subgraphs.

Definition 21 (Frequent subgraph with minimal support [72]). Given a graph G
and the minimum support s, a graph gf (s) is called a frequent subgraph of G if
and only if there exist s subgraphs of G, P1, . . . , Ps, that are isomorphic to gf (s)
and

E(Pi) ∩ E(Pj) = ∅ i ̸= j ∀i, j ∈ N : 1 ≤ i < j ≤ s.

The graphs P1, . . . , Ps are called the matches of gf (s) in G.

In large graphs, there can be several frequent subgraphs with given support
s. In that case, the k-automorphism algorithms take the frequent subgraph with
the largest number of edges. Note that matches of the frequent subgraphs are
isomorphic to each other since there are instances of the graph gf (s).

Definition 22 (Crossing edge). Let G be a graph and P the subgraph of G. Each
edge (u, v) ∈ E(G) such that u ∈ V (P ) and v ∈ V (G) \ V (P ) is called a crossing
edge between P and G.

The crossing edges are essential when subgraph P is separated from G. The
situation is illustrated in Figure 4.1. Assume that all edges and all vertices
depicted in Figure 4.1 belong to the graph G. When its subgraph P depicted
with red (bold) lines is separated from G, the crossing edges have to be removed
from G since one of their ending vertices belongs to P and is removed. The
crossing edges are depicted with dashed lines in Figure 4.1.

In case two graphs P1, P2 are separated from G, then the set of crossing edges
can be defined as {(u, v) ∈ E(G); ∃j ∈ {1, 2} : u ∈ V (Pj) ∧ v /∈ V (Pj)}. A
similar situation happens when more than two graphs are separated from G.

Finally, I briefly describe the Barabasi-Albert model for generating random
scale-free networks using a preferential attachment mechanism. Social networks
are proven to belong to the class of scale-free networks having power-law degree
distribution [99]. The Barabasi-Albert model is one of several proposed models
that generate synthetic scale-free networks. Hence, this model is used to generate
synthetic testing datasets in this thesis.

According to the model, the graph generation process sequentially adds ver-
tices. The model includes two important concepts, growth and preferential at-
tachment, differentiating the real networks from the purely random ones. Growth
is represented by adding a new vertex at each step. The new vertex is linked to
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Figure 4.1: Separation of the subgraph P from G. (Source: author’s work.)

the network with m new edges connecting it to m vertices already present in
the network. Preferential attachment is a probabilistic rule determining that the
new vertex connects to an existing vertex v with a probability proportional to
its degree. More precisely, the probability that a new vertex is connected to the
node vi is given by the following formula

pi = deg(vi)∑︁n
j=1 deg(vj)

Hence, the vertices with higher degrees are likely to quickly accumulate even
more new links, while nodes with a lower degree are unlikely to receive new
neighbours.

4.2 Utility metrics
This section contains the definitions of structural and application utility met-
rics used to evaluate experimental results. In all following definitions G =
(V (G), E(G)) is a graph with the vertex set V (G) = {v1, . . . , vn} and the edge
set E(G).

Definition 23 (Average vertex degree [20]). The average vertex degree in G is
defined as

AV D(G) =
∑︁n

j=1 deg(vj)
n

.

The average vertex degree is necessary for computing the sensitive value in
graphs representing social networks with vertex labels in Chapter 5. In the rest of
the thesis, the average vertex degree is computed using the number of its vertices
and the number of its edges (see Lemma 3). The formula is derived from the
“handshaking lemma”, which was proposed and proved in [10].

Lemma 2 (Handshaking lemma [10]).
n∑︂

j=1
deg(vj) = 2|E(G)|
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Proof. Since each edge connects two vertices, it increases the degree of two
vertices by 1. Thus, each edge increases the sum of all degrees by two and∑︁n

j=1 deg(vj) = 2|E(G)|.

Lemma 3. Let G be a graph with the vertex set V (G), and the edge set E(G).
Then

AV D(G) = 2|E(G)|
|V (G)| .

Proof. Combining the Definition 23 and Lemma 2 we get AV D =
∑︁n

j=1 deg(vj)
n

=
2|E(G)|

n
= 2|E(G)|

|V (G)|

Definition 24 (Average shortest path length [20]). The average shortest path
length APL(G) of the graph G is defined as

APL(G) =
∑︁n

i,j=1 dist(vi, vj)(︂
n
2

)︂
where dist(vi, vj) is the length of the shortest path from vi to vj, meaning the
number of edges along the path from vi to vj.

Definition 25 (Clustering coefficient [65]). The local clustering coefficient of the
vertex v denoted LCC(v) is defined as follows

LCC(v, G) = the number of triangles connected to v in G

the number of triplets centred on v in G

The average clustering coefficient ACC(G) of the graph G is defined as the aver-
age of local clustering coefficients of all vertices v ∈ V (G):

ACC(G) =
∑︁n

i=1 LCC(v, G)
n

Note the difference between a triangle connected to v and a triplet centred
on it. A triangle connected to v is the subgraph of G consisting of three vertices
v, u, w ∈ V (G) such that (u, v), (v, w), (u, w) ∈ E(G) (see Figure 4.2a). On the
other hand, a triplet centred on v is the subgraph of G consisting of three vertices
v, u, w ∈ V (G) such that (u, v), (v, w) ∈ E(G) (see Figure 4.2b). In other words,
a triplet includes v and its two neighbour vertices u, w with the edges (u, v), (v, w)
linking u and w to v. Hence, LCC(v) measures the neighbourhood density of v.
The parameter LCC(v) is higher in the case that for many pairs of v’s neighbours
u, w, there exists the edge (u, w) ∈ E(G) too. Thus, LCC(v) is higher if many
triplets centred on v are also triangles.

Definition 26 (Transitivity [20]). The transitivity T (G) of the graph G is defined
as

T (G) = 3 ∗ (number of triangles on G)
(number of connected triples of vertices in G)

The transitivity is the probability of revealing the existence of tightly con-
nected communities in the network. It measures the presence of local loops near
the vertex [39] and describes the graph interconnectedness [62].
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a) a triangle connected to v b) a triplet centered on v

Figure 4.2: Example of a triangle and a triplet. (Source: author’s work.)

Definition 27 (Largest eigenvalue [20]). Let G be a graph and Adj(G) be its
adjacency matrix. The non-zero vector b is called eigenvector if

Adj(G) · b = λ · b

where λ is a scalar multiplier. The scalar λ is an eigenvalue of Adj(G). Then the
largest eigenvalue of G, denoted by λ(G), is such an eigenvalue that λ(G) ≥ λi for
all eigenvalues of Adj(G). The corresponding eigenvector is denoted with EV .

The largest eigenvalue λ(G) of the adjacency matrix of G is a spectral measure
which encodes the information about the cycles of the networks and their diameter
[20]. Now, there are definitions of network metrics implemented in the SecGraph
evaluation tool [60].

Definition 28 (Betweenness centrality [33]). Betweenness centrality of the vertex
vi in the graph G is given by

BC(vi, G) =
∑︁

j<l djl(vi)
djl

, j, l = 1, . . . , n

where djl is the number of shortest paths linking vertices vj and vl and djl(vi) is
the number of the shortest paths containing the vertex vi.

Definition 29 (Closeness centrality [33]). Closeness centrality of the vertex vi

in the graph G is given by

CC(vi, G) = 1∑︁n
j=1 dist(vi, vj)

, j ̸= i

where dist(vi, vj) is the distance of vi from all other vertices in the graph.

The betweenness centrality is higher when the vertex is more frequently in-
between the shortest paths that connect every other couple of vertices [33]. The
closeness centrality expresses the inverse of the distance of a vertex from all the
others in the network, considering the shortest paths that connect each couple of
vertices [33].

Definition 30 (Effective diameter [62]). Diameter is the length of the maximum
shortest path between any pair of connected vertices. Effective diameter ED is
the length of the path separating a given percentage of connected vertex pairs
(commonly 90%).
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The effective diameter is more robust than the diameter, and both metrics
express the graph width. Moreover, visualizing the relationship between the
chosen threshold and the effective diameter may provide additional insight into
the patterns of graph connectivity [62].

Definition 31 (Joint degree distribution [133]). Degree distribution (Deg.) is
the probability that the vertex degree equals l, l = 1, . . . , maxv∈V (G)(deg(v)). Joint
degree distribution (JD) is the probability that a randomly selected edge will be
between vertices of degree j and l, j, l = 1, . . . , maxv∈V (G)(deg(v)).

The joint degree distribution uniquely defines the degree distribution of the
graph up to isolated vertices [133]. However, graphs with the same degree distri-
bution may have very different joint degree distributions [133].

Definition 32 (Network constraint coefficient [145, 159]). The network con-
straint coefficient for the vertex vi is defined as

NC(vi, G) =
∑︂
j ̸=i

(︂
pij +

∑︂
q ̸=i,q ̸=j

piq · pqj), i, j, q = 1 . . . , n

where pij is the strength of the tie between vertex vi and its neighbour vj. In the
case of unweighed graphs, pij = 1 for all ties. The network constraint coefficient
for the whole graph is defined as

NC(G) =
n∑︂

i=1
NC(vi, G)

Higher values of NC(vi, G) indicate that vi acts as less of a structural hole
[145]. Moreover, NC(vi, G) represents the information and control advantages
of the vertex vi in the network structure [159]. The lower the total NC(G), the
more structural holes are occupied by vertices [159].

In the experimental results in Chapter 7, a few application metrics are mea-
sured with SecGraph. Since their formal definition would require defining terms
not further discussed in the thesis, I describe them briefly, emphasizing their
significance for network analysis.

Infectiousness (Infe.) measures the number of users infected by the disease
in an infectious disease spreading model where each user transmits the disease to
its neighbours with some infection rate [3]. Hence, it characterizes the communi-
cation channels in the network. Page rank (PR) measures the importance of each
vertex within the graph based on the number of links and the importance of the
linked vertices. A high PR value means the vertex is connected to many other
vertices with high PR. The page rank metric is another measure of centrality for
the vertices of the graph [40]. Role extraction (RX) approach summarized the
behavior of vertices in large graphs [53]. Without any background knowledge,
it determines the underlying roles in the network and assigns the mixed mem-
bership of these roles to each vertex in the graph [53]. It benefits applications
like network transfer learning, measuring structural similarity, understanding the
underlying behaviour in a network or network visualization [53].

Hubs score (HS) and Authorities score (AS) are defined together in a recursive
way. The vertex is assigned a hub score equalling the sum of authorities scores of
all neighbour vertices [137]. On the other hand, a vertex is assigned an authority
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score equalling the sum of hubs scores of all neighbour vertices [137]. A vertex
is given the authority score based on the number of hub vertices connected to it
(and vice versa). For instance, assume that G is the graph of webpages and their
links (u ∈ V (G) is a webpage, (u, v) ∈ E(G) if there is a link leading to v on u).
Then HS(u, G) is the number of links to other webpages that occurs on u and
AS(u, G) is the number of webpages with the link leading to u.

Furthermore, SecGraph detects and compares communities in the given pair of
graphs. The comparison is summarized in the community detection metric (CD).
A community is a group of vertices with more connections amongst its members
than between its members, and the remainder of the graph [152]. Communities
in a single graph overlap since vertices usually belong to more than one group at
once [152]. The detection of communities enables the comprehensive analysis of
a network structure and supports applications line classification or information
propagation in the network [60].

The SecGraph measures the difference in preserving a particular metric m in
the original graph G and the anonymized graph G∗. It measures the values of
m in both G and G∗. The result of the measurement is the distribution of the
metric between all vertices (or all pairs of vertices) in the graph. Hence, it is the
vector of values. Let denote the distribution of the metric m in the graph G as
m(G). Then, for most metrics, SecGraph measures the cosine similarity between
m(G) and m(G∗) to evaluate the similarity in preserving m in both graphs. Only
for CD, it measures the Jaccard similarily between m(G) and m(G∗). Exceptions
from this practice are ED and EV metrics, which are measured for the whole
graph. SecGraph computes the ratio of m(G) and m(G∗) for those metrics. For
completeness, there are the definitions of cosine and Jaccard similarities.

Definition 33 (Cosine similarity [124]). Let a = (a1, . . . , an) and b = (b1, . . . , bn)
be two non-zero vectors. Then the cosine similarity is defined as

SC(a, b) = a ◦ b
||a|| · ||b||

=
∑︁n

i=1 ai · bi√︂∑︁n
i=1 a2

i ·
√︂∑︁n

i=1 b2
i

Definition 34 (Jaccard similarity [143]). For any two finite sets A and B, Jac-
card index is defined as the ratio of the size of the intersection over union:

J(A, B) = |A ∩ B|
|A ∪ B|

= |A ∩ B|
|A| + |B| − |A ∩ B|

For both similarities, their values lie between 0 and 1, 0 ≤ SC(a, b) ≤ 1 and
0 ≤ J(A, B) ≤ 1. The higher value displays more similarities between vectors
(sets), and the value 1 indicates that both vectors (sets) are equal [143].

4.3 Equivalence classes in GA

This section begins with defining the equivalent class from the set theory.

Definition 35 (Equivalence class [98]). Let S be a set, and ∼ be an equivalence
relation on S. Then the ∼-equivalence class of the element a ∈ S is the set

Q(S, a, ∼) = {b ∈ S; a ∼ b}
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The equivalence ∼ splits the elements of S into several ∼-equivalence classes.
When necessary, they are distinguished by indexing: Qi(S, ∼), i ∈ N.

Assume a vector z = (z1, . . . , zm) of integer values that are ordered decreas-
ingly, zi ≥ zj for each 1 ≤ i < j ≤ m. Then the vector can be viewed as the
ordered list of =-equivalence classes where each equivalence class contains the
elements of z having the same value, Q1(z, =), Q2(z, =), . . . , Ql(z, =) for some
l ≤ m. For example, let z = (5, 5, 4, 3, 3, 1, 1, 1), then Q1(z, =) = {5, 5}, Q2(z, =
) = {4}, Q3(S, =) = {3, 3} and Q1(z, =) = {1, 1, 1}. These equivalence classes
are used in the description of the algorithm proposed in Chapter 6.

Assume a graph G and the relation ∼d on V (G) “having the same degree”.
More precisely, for two vertices v, w ∈ V (G) ∼d is defined on V (G) such that
v ∼d w iff deg(v) = deg(w). Clearly, ∼d is transitive, symmetric and reflexive;
thus, it is the equivalence on V (G). We can consider the ∼d-equivalence classes

Q(V (G), v, ∼d) = {w ∈ V (G); v ∼d w} = {w ∈ V (G); deg(w) = deg(v)}

Given that usually not all vertices have the same degree, there are several
equivalence classes in the graph. The degree of vertices in Q(V (G), ∼d) is denoted
by deg(Q(V (G), ∼d)), and therefore, deg(Q(V (G), v, ∼d)) = deg(v).

Equivalence classes Q(V (G), v, ∼d) can be considered in labelled and unla-
belled SN graphs as well as in original and anonymized SN graphs. They are
significant for demonstrating k-anonymity in SNs in Chapter 5.

Unlike ∼d-equivalence classes, which are worth defining for each graph struc-
ture, the term attribute equivalence class is worth defining only in anonymized
graphs with attributes G∗

A. It is based on the definition of an equivalence class
over an anonymized relational dataset introduced in [81].

Definition 36 (Attribute equivalence class [81]). Let G∗
A be an anonymized graph

with attributes. An attribute equivalence class Qa(G∗
A) is a set of vertices having

the same anonymized r-tuple u ∈ U(G∗
A). Let vi ∈ V (G∗

A), then the attribute
equivalence class containing the r-tuple uvi

is denoted by Qa(G∗
A, vi); more pre-

cisely,
Qa(G∗

A, vi) = {vj ∈ V (G∗
A); uvi

= uvj
}.

The same tuple of values of attributes describes all vertices belonging to the
same attribute equivalence class. Therefore, the value of the tuple of attributes
of vertices in Qa(G∗

A) is denoted by u(Qa(G∗
A)). Thus, for a fixed v ∈ V (G∗

A) it
holds that u(Qa(G∗

A, v)) = uv, uv ∈ U(G∗
A). For simplicity, u(Qa(G∗

A)) is called
the attributes of Qa(G∗

A).
The equivalence classes are based on the graph structure, whereas attribute

equivalence classes are associated with the attribute table U(G∗
A). There is no

relationship between the number of ∼d-equivalence and attribute equivalence
classes. For example, the anonymized graph G∗

A in Figure 4.3 has four equiv-
alence classes Q1(G∗

A) = {6}, Q2(G∗
A) = {3, 4, 5}, Q3(G∗

A) = {1} and Q4(G∗
A) =

{2}, and three attribute equivalence classes Qa
1(G∗

A) = {1, 4}, Qa
2(G∗

A) = {2, 6}
and Qa

3(G∗
A) = {3, 5}. Their attributes are u(Qa

1(G∗
A)) = (57 − 65, ∗, 50 ∗ ∗∗),

u(Qa
2(G∗

A)) = (25 − 31, ∗, 50 ∗ ∗∗) and u(Qa
3(G∗

A)) = (57 − 65, ∗, 120 ∗ ∗) re-
spectively. A close relationship exists between the size of the smallest attribute
equivalence class and k-anonymity.
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a) G∗
A with attributes b) G∗

A without attributes

Figure 4.3: Social network G∗
A. (Source: author’s work [93].)

Proposition 1. Let G∗
A be an anonymized graph. Then, an anonymized set

U(G∗
A) satisfies the k-anonymity iff the size of the smallest attribute equivalence

class is at least k.

Proof. The attribute set U(G∗
A) satisfies the k-anonymity ⇔ for every ui ∈

U(G∗
A): |{uj ∈ U(G∗

A); ui = uj}| ≥ k ⇔ |{vj ∈ V (G∗
A); ui = uj}| ≥ k ⇔

|Qa
i (G∗

A, v)| ≥ k, ∀i ∈ {1, . . . , n}.

4.4 Matrix notation
Since the description of the algorithm proposed in Chapter 7 uses matrices and
manipulates with their rows, the following definition introduces the necessary
notation.

Definition 37 (Matrix notation). Let M(m, n) be a matrix with m rows and n
columns. Then rc(M) denotes the number of rows of M and ri(M) denotes the
i-th row of M. The fact that the element e is contained in the i-th row of M is
denoted by e ∈ ri(M). Adding the vector r as the last row if M is denoted by
M ∪ r. Removing the row r from M is denoted by M \ r.

4.5 Receiver operating characteristic analysis
The receiver operating characteristic (ROC) analysis introduced in [32] is used to
evaluate the accuracy of the deanonymization algorithm in Chapter 5.5. Thus, a
classifier and true and false positive rates are defined in this section.

Definition 38 (True/False Positive/Negative [32]). Consider a classification
problem using two predicted classes {Y, N} (Y equals positive and N negative).
Let {I; I instance} be a set of instances. Some instances are ‘true’, and oth-
ers are ‘false’. Formally, each instance I is mapped to one element of the set of
positive and negative class labels {p, n}. A classifier provides a mapping from a
set of instances to predicted classes {Y, N}. Given an instance I, the classifier
has four possible outcomes. If I has positive label p and is classified as Y , it is
counted as true positive (TP ). If I has positive label p and is classified as N , it
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is counted as false negative (FN). If I has negative label n and is classified as
Y , it is counted as false positive (FP ). If I has negative label n and is classified
as N , it is counted as true negative (TN).

Given a classifier and the set of instances, a confusion matrix can be composed
(see Figure 4.4). It represents the distribution of the set of instances and forms the
basis for many metrics of the classifier, including the true and false positive rates.
The true positive rate is estimated as the ratio of positive instances correctly
classified and the total positive instances. On the other hand, the false positive
rate is given by the ratio of negative instances correctly classified to all negative
instances.

True classes
p n

Predicted
classes

Y TP FP

N FN TN

Figure 4.4: Confusion matrix of a classifier. (Source: author’s work.)

Definition 39 (True/False positive rate [32]). A true positive rate of a classifier
is estimated as

TPrate = TP

TP + FN
.

A false positive rate of a classifier is estimated as

FPrate = FP

FP + TN
.

4.6 NP-hard problems
In this section, I define the NP-hard and NP-complete problems, the NP class
and polynomial reducibility. The definition of the Turing machine is omitted with
reference to [131].

Definition 40 (NP class [131]). NP is the class of decision problems that can be
decided by the nondeterministic Turing machine in polynomial time.

A decision problem is a question whose answer is “yes” or “no” [13]. A solution
to the problem in NP is impossible to find in polynomial time. However, if for any
instance of the problem whose answer is “yes”, there is a certificate validating the
fact, it is possible to verify the answer in the polynomial time [13]. For instance,
deciding whether two graphs are isomorphic is a well-known NP problem [13]. It
is impossible to decide in polynomial time whether two graphs are isomorphic.
However, if someone gives us the isomorphism, we can verify in polynomial time
whether it really maps the given graphs on each other or not.
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Definition 41 (Polynomial reduction [13]). A polynomial reduction of a Problem
P to a Problem Q is a pair of polynomial-time algorithms, one of which transforms
each instance of Problem P to an instance of Problem Q. The other one transforms
a solution for the instance of Problem Q to a solution of the instance of Problem
P.

Definition 42 (NP-hard problem [131]). Problem is NP-hard if all problems in
NP class are polynomial time reducible to the Problem, even though Problem may
not be in NP itself.

The NP-hard term is used for measuring the complexity of the optimization
problems in which the optimal solution to the given problems is searched. For
instance, optimization NP-hard problems connected with the graph theory are
travel salesman problem, finding the maximum clique or the maximum stable set
in the given graph [13].

Lemma 4. For showing that Problem P is NP-hard, it is enough to reduce a
known NP-hard problem to the Problem P in the polynomial time.

Proof. Assume that Problem Q is a known NP-hard problem. According to the
Definition 42, all problems in the NP class are polynomial reducible to Problem
Q. Hence, for each NP problem, there exists an algorithm working in polynomial
time that transforms its instances to instances of Problem Q.

Pick an arbitrary NP problem and polynomial reduction AlgNP that trans-
forms instances of NP problem to the instances of Problem Q. We can show that
Problem Q is polynomially reducible to Problem P. Therefore, there exists the al-
gorithm Alg1 working in polynomial time that transforms instances of Problem Q
to instances of Problem P. Now, define algorithm Alg2 such that on each instance
of the NP problem it works as AlgNP and on the found instances of Problem Q, it
works as Alg1 outputting instances of Problem P. Hence, Alg2 can transform all
instances of NP problem to instances of Problem P. The same reasoning can be
given for the polynomial reduction of results. Hence, all problems in the NP class
are polynomial time reducible to Problem P; thus, Problem P is NP-hard.

Definition 43 (NP-complete problem). A problem is NP-complete if it is NP-
hard and belongs to NP.

4.7 Genetic algorithm
Genetic algorithms are a heuristic approach based on evolutionary principles:
stronger individuals are more likely to participate in creating a new generation of
individuals, and each generation is better than the previous one. The search for
a suitable solution to a given problem is viewed as the competition amongst the
whole population of individuals representing potential solutions to the problem.
These individuals are encoded as chromosomes of fixed length.

Finding the optimal solution to the given problem with the genetic algorithm
begins with creating initial population of individuals. The initial population can
be generated randomly or according to fixed rules. All individuals in the initial
population are evaluated with the fitness function. The evaluation of individuals
forms the basis of their chance to be selected for survival and reproduction. The
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selection function is employed to emulate the processes of natural selection where
the fitter individuals are given a higher chance to be selected. Individuals with a
higher fitness function value are more likely to be selected; however, “worse” indi-
viduals also have a nonzero chance to participate in reproduction. Consequently,
the selected individuals go through the process of reproduction.

The reproduction operators used in this thesis are crossover and mutation.
Crossover is two-parent operation. It combines two parent individuals into a sin-
gle child individual. When the individual in the new generation is the offspring of
two parent individuals, it naturally inherits its features from its parents. Mutation
is an asexual recombination operator maintaining genetic diversity between gen-
erations. If the individual was created with a single-parent individual mutation,
its features were affected by the random process of mutating.

After a new population is created, the process is repeated. All individuals
are evaluated, a subset is selected to participate in reproduction, and the next
generation of individuals is produced. When the evolutionary process is repeated
many times, the current generation contains individuals with high fitness function
values. Such individuals represent the acceptable or even optimal solution to the
given problem. The number of repetitions of the evolutionary process depends
on the given problem and the computational and time capacities. The process
can be repeated at least ten times, usually a hundred or a thousand times [57].

Randomness is contained in the reproduction process and the selection pro-
cedure or the creation of the initial population. It plays an essential role in the
design of genetic algorithms. It helps keep the diversity in the population and
prevents from converting to the local optimal solution of the given problem in-
stead of the global optimal one. The randomness naturally causes each run of the
genetic algorithm offers a unique solution, even if it is run several times on the
same input. Hence, the behaviour of the genetic algorithm on the given problem
is evaluated with the statistics summarizing its best, worst and average values of
the monitored parameters [58]. The principles of genetic algorithms taken from
[58] are formally described in Algorithm 3.

Algorithm 3 Basic scheme of a genetic algorithm.
Require: optimalization problem P , a set of termination criteria T C
Ensure: the acceptable solution of P

1: Set t = 0.
2: Generate (randomly) the initial population P (0).
3: Compute the evaluation of each individual in P (0) with the fitness function.
4: while any element in T C is true do
5: Select pairs of individuals from P (t) and create their offsprings. Let P ′(t)

be the set of offspring.
6: Evaluate each individual in P ′(t).
7: Create the new population P (t + 1) from P (t) and P ′(t).
8: t = t + 1
9: Evaluate each individual in P (t).

10: end while
11: Return P (t).

The termination criteria stopping the evaluation process can be various. The
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most common criterium is setting the maximal number of generations [58]. More
precisely, it is defined tMAX ∈ N and the genetic algorithm stopps if t = tMAX .
The insufficient diversity in P (t) is the other termination criteria [58]. It depends
on the representation of the problem and the individuals and how the diversity is
measured. However, when the diversity in P (t) is low, the individuals in P (t + 1)
are too similar to the individuals in P (t). In other words, there is no significant
evolution in the process and no need to keep it on. The genetic algorithm is
also stopped if it has already found the acceptable solution in P (t). The suitable
termination criteria are based on the feature of the problem and the required
quality of the wanted solution. Various termination criteria have been widely
studied in [85].

The complexity of the genetic algorithm is determined by the complexity of its
fitness function, selection function and reproduction operators. Let g denote the
number of generations the genetic algorithm runs and n the number of chromo-
somes in a generation. Let FF represent the complexity of the fitness function,
SF the complexity of selecting one individual with the selection function and RO
the complexity of reproduction operators. Since the fitness function is applied on
each chromosome in each generation, the evaluation takes O(g · n · FF ) in total.
The reproduction operators are also applied in each generation. The number of
reproduction operations in one generation depends on the methodology of select-
ing and pairing parents. However, the set of parents usually equals to c ·n, c ∈ R;
thus, the complexity of reproduction operations is in O(g · n · RO). Similarly, the
selection procedure is applied for selecting parents in each generation; hence its
total complexity is O(g ·n·SF ). Finally, it is necessary to consider the complexity
of creating the initial population. When the population is created randomly, its
complexity is in O(n · lCH) where lCH is the length of a chromosome. Total, the
complexity of the whole genetic algorithm is in O(n ·lCH +g ·n ·(SF +FF +RO)).
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5. Composition attack
In this chapter, a potential threat for anonymized social network datasets called
a composition attack is presented and described in detail. The proposed compo-
sition attack is designed as a potential threat to SNs with attributes. Therefore,
the two attacked SNs with attributes should be denoted by GA,1 and GA,2. How-
ever, such a notation would make the formulas in this chapter too complicated
to read. Thus, to simplify the notation in this chapter, instead of GA,1 and GA,2,
the attacked pair of SNs with attributes are denoted by G1 and G2. At first,
the motivation for considering such a threat and its effects on the privacy of SNs
are described. Before giving a detailed description of the proposed attack, there
are presented assumptions about SN datasets and the behaviour of their users
under which the proposed composition attack works. The attack is implemented
in MATLAB and tested on synthetic datasets to test its success rate. Finally, the
design of the proposed composition attack against the SN dataset is compared
with the design of the composition attack against the relational dataset presented
in [81], and Question 1 is answered. This chapter is based on [93].

5.1 Motivation
Recently presented deanonymization methods were focused on issues connected to
sharing or publishing data from a single social network. As there are several social
networks and more than half of Internet users participate in more than one social
network [144, 148], an individual is likely to appear in more than one anonymized
social network dataset. Thus, two anonymized social network datasets published
independently of each other likely have overlapping user communities.

In general, a data publisher providing a collection of anonymized data of indi-
viduals is primarily unaware of a second anonymized dataset containing records
of the same individuals. Even if the anonymized dataset preserves privacy well,
there is no guarantee combining its records with records of a second anonymized
dataset satisfies the same level of anonymity, as considered in [81]. An adversary
who knows that two published anonymized datasets contain the records of the
same individual and has access to each of them can conduct a composition attack.

The composition attack was presented as the privacy threat for relational
datasets with overlapping records [35, 81, 127]. In this chapter, I show that this
kind of attack is also applicable to SNs with attributes having overlapping user
communities.

5.2 Effects of the attack on preserving privacy
The composition attack can be applied to a pair of SNs with overlapping user
communities. It is possible that the user communities of three or more social
networks also overlap, although the attack could always be applied to a pair of
them. The presented composition attack does not completely deanonymize the
networks. Still, it recognizes a subset of users participating in both anonymized
networks and obtains pairs of vertices, one from each network, representing the
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same individual. Thus, the two vertices, one from each network, representing the
same individual, are called the corresponding vertices.

Each social network gathers users’ data on its own and obtains data of different
types from its users. When the adversary connects the records of an individual
from two separate sources, it clearly gains more information about the individual.
Although the obtained data are still anonymized, the combination of records
from two different anonymized sources does not always satisfy the same level
of anonymity as when the records are tested separately. Thus, the composition
attack could simplify a further reidentification attack.

Additionally, when one of the considered SNs is compromised by another
deanonymization method, the second social network could also be compromised.
The situation is illustrated on Figure 5.1. Assume that the attacker aims to
deanonymize the social network G2, although the attacker cannot access any
auxiliary information connected to this network. However, the attacker can link
a subset of nodes with identifying information in a second anonymized social
network G1 (see Figure 5.1a). In other words, the attacker possesses an auxiliary
subgraph Aux to deanonymize G1. Then, the attacker applies the composition
attack on G1 and G2 (see Figure 5.1b). If the attacker finds the corresponding
vertices in G2 for nodes in Aux, he or she can gain the auxiliary subgraph of G2
to deanonymize G2 (see Figure 5.1c).

The magnitude of the attack is based on the fact that the attacker does not
have to possess any special background knowledge to realize the composition at-
tack. The attacker knows only that two anonymized social networks with overlap-
ping user communities are anonymized with the same anonymization technique.
The attacker has no access to any non-anonymized information. Moreover, the
attacker has no knowledge about any user or the graph structure of the attacked
networks.

5.3 Assumptions about the social behaviour of
social network users

More than half of Internet users participate in more than one SN, as noted in
[144, 148]. Therefore, two independent SNs are likely to have overlapping user
communities. Users’ online behaviour on social network sites varies among user
communities. Some users are more active than others, visiting their profiles daily
and spending considerable time communicating with other users, and frequently
sharing personal information. Many factors influence the usage of SNs. How-
ever, a user’s personality and gender are highly related to social network use, as
demonstrated in [4, 102]. This thesis considers that a user’s characteristics, such
as personality or gender, influence the user’s behaviour in the same manner on all
SNs in which the user participates. For example, extroverts tend to be members
of more groups on Facebook, as presented in [121]. Thus, extroverts are assumed
to behave similarly to other SNs. It is assumed that if an individual tends to
make an above-average number of relationships on a particular SN, he or she will
act similarly on other SNs. Additionally, the number of individuals who can be
reached through the SN depends on the size of the social network, as mentioned
in [100]. Thus, the probability of finding users with similar interests is higher in
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a) Two anonymized social network graphs with overlapping user communities. The attacker owns auxiliary

information (the subgraph Aux with red dashed edges), which could be used to deanonymize G2.

b) Attacker finds pairs of corresponding vertices by the composition attack.

c) Attacker gains auxiliary information for deanonymization of G2.

Figure 5.1: Gaining auxiliary information on G2 by a composition attack.
(Source: author’s work [93].)

larger networks, and an individual is likely to have more relationships in larger
SNs.
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Based on the previous considerations, it is assumed that, in proportion to the
size of the social network, the number of users with whom an individual has a
relationship is nearly constant over all social networks in which the individual
participates. In other words, for every individual, the ratio of the number of
relationships to the average number of relationships in the network is constant
up to small δ over all social networks in which the individual participates. For
example, let G1 be a network with |V (G1)| = 100 and |E(G1)| = 500 and G2
be a network with |V (G2)| = 50 and |E(G2)| = 300. Then, the average degree
AV D(G1) = 2∗500

100 = 10 and the average degree AV D(G2) = 2∗300
50 = 12. If an

individual I is connected with 10 other people in G1, then degG1(I) = 10. I
assume that degG1 (I)

AV D(G1) = degG2 (I)
AV D(G2) ± δ, and therefore,

degG2(I) = degG1(I)
AV D(G2)

· AV D(G2) ± δ = 12 ± δ

and the individual I is likely to have 12 (±δ) connections in G2.
In addition, I assume that if an individual I has a relationship with an indi-

vidual J on a social network G1 and both individuals participate in the second
social network G2, they will have a relationship also in G2. In other words, if there
exist v1, v2 in G1 and w1, w2 in G2 such that v1 = v(I), v2 = v(J), w1 = w(I) and
w2 = w(J) and there exists the edge (v1, v2) ∈ E(G1), then there exists the edge
(w1, w2) ∈ E(G2). The assumptions about the social behaviour of social network
users are summarized as follows.

Assumption 1. For every individual I and every G, the ratio of the number of
edges (v(I), ·) ∈ E(G) to the average number of relationships in G is constant
(up to small δ) over all social networks G in which I participates.

Assumption 2. Let I, J be individuals and G1,G2 be SNs. Let ∃v1, v2 ∈ V (G1),
∃w1, w2 ∈ V (G2) such that v1 = v(I), v2 = v(J), w1 = w(I), w2 = w(J) and
(v1, v2) ∈ E(G1). Then, (w1, w2) ∈ E(G2).

The composition attack on relational datasets exploits the fact that both
independently published datasets have plain sensitive values in their anonymized
versions. The sensitive value is assumed to be constant for each individual in both
anonymized datasets. Moreover, values of sensitive attributes are not modified
during the anonymization.

The attribute table U(G1) and U(G2) usually contain information describ-
ing the users of SNs. Hence, all their attributes are usually considered quasi-
identifiers and are anonymized during the process. The crucial information in SN
datasets is the graph structure. Therefore, a new sensitive value based on the
graph structure is defined to perform a composition attack on SN data.

Definition 44. Let G∗
A be an anonymized social network and AV D(G∗

A) the
average vertex degree in G∗

A. Then, for every v ∈ V (G∗
A) a sensitive value S(v)

is defined as
S(v) = deg(v)

AV D(G∗
A) .

Based on Assumption 1, the sensitive value S(v(I)) is assumed to be constant
(up to small δ) overall SNs in which the individual I participates. Although the
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sensitive value S(v) is artificially created and represents no real characteristic of
the individual v, it introduces a new feature of v. Every vertex is now described
by edges (v, ·) connecting the vertex with the rest of the network, its degree
deg(v), its attributes uv and its sensitive value S(v).

5.4 The proposed algorithm
The detailed description of the proposed composition attack algorithm is pre-
sented in Algorithm 4. It consists of the preprocessing stage (see lines 1-9 in
Algorithm 4), the composition stage (see lines 10-20) and the postprocessing stage
(see lines 21-25). The algorithm requires two anonymized SNs G∗

1 and G∗
2 and the

parameter δ as the input. It returns the set R of pairs of corresponding vertices
[v, w], v ∈ V (G∗

1), w ∈ V (G∗
2) that are suspected to represent the same individual

v(I) = w(I).

Algorithm 4 Composition attack
Require: social networks G∗

1, G∗
2, the parameter δ

Ensure: the set of pairs of matching vertices R
1: Set R = ∅.
2: Find Att(G∗

1, G∗
2) = Att(G∗

1) ∩ Att(G∗
2) and set r = |Att(G∗

1, G∗
2)|.

3: for each u ∈ U(G∗
i ), i ∈ {1, 2} do

4: Order the elements of the ri-tuple u such that its first r elements corre-
spond to the ordered list Att(G∗

1, G∗
2).

5: end for
6: for each v ∈ V (G∗

i ), i ∈ {1, 2} do
7: Compute S(v).
8: end for
9: Divide the elements of V (G∗

i ) into particular attribute equivalence classes
Qa

1(G∗
i ), . . . , Qa

mi
(G∗

i ), i ∈ {1, 2}
10: for j := 1, . . . , m1 do
11: for l := 1, . . . , m2 do
12: if uz(Qa

j (G∗
1)) ∩ uz(Qa

l (G∗
2)) ̸= ∅, ∀z ∈ {1, . . . , r} then

13: for each v ∈ Qa
j (G∗

1) and each w ∈ Qa
l (G∗

2) do
14: if S(v) ∈ [S(w) − δ; S(w) + δ] then
15: the pair of vertices [v, w] is added into R
16: end if
17: end for
18: end if
19: end for
20: end for
21: for each [v1, w1] in R do
22: if ∄[v2, w2] ∈ R : (v1, v2) ∈ E(G∗

1) ∧ (w1, w2) ∈ E(G∗
2) then

23: remove [v1, w1] from R
24: end if
25: end for
26: Return R.

To simplify the notation, Q(G, v) = Q(V (G), v, ∼d), since ∼d is the only
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considered equivalence in the chapter. Thus, Q(G, v) is the set of the vertices
from G having the same degree as the vertex v. For simplicity, ∼d-equivalence
classes are called simply equivalence classes.

The first step in the preprocessing stage is the unification of U(G∗
1) and U(G∗

2).
The number and character of attributes vary from network to network. To execute
the composition attack, it is necessary to select a common subset from the set
of attributes of both target networks. The common subset of attributes contains
all the same attributes in both target networks. For example, if Att(G∗

1) =
{Birthday, Age, Gender, Hometown, Languages, Work} and Att(G∗

2) = {gender,
age, spoken languages, education, marital status}, then the appropriate subset
of attributes that could be used for the composition attack is Att(G∗

1, G∗
2) =

{Age, Gender, Languages}. In the case that for two social networks G∗
1, G∗

2
Att(G∗

1) ∩ Att(G∗
2) = ∅, then the composition attack can not be executed on G1

and G2. Furthermore, Att(G1, G2) can be viewed as the ordered list of the names
of attributes. Let r be the number of names in the list; it means r = |Att(G1, G2)|.
Then the attributes of U(G∗

1) and U(G∗
2) have to be ordered such that their

first r elements correspond to the ordered list Att(G1, G2) (see line 4). The
output of the preprocessing stage is the set of the attribute equivalence classes
Qa

1(G∗
i ), . . . , Qa

mi
(G∗

i ), i ∈ {1, 2} (see line 9).
In the composition stage, the attribute classes of G∗

1 and G∗
2 are paired such

that the values of their attributes have nonempty intersections (see line 12).
Every Qa(G∗

i ) can be described with its attributes u(Qa(G∗
i )). For instance,

assume Att(G∗
1, G∗

2) = {Age, Gender, Languages}, u(Qa
j (G∗

1)) = {⟨20; 30⟩, F,
{English, German}} and u(Qa

l (G∗
2)) = {⟨25; 35⟩, F, {English, French}}. Then

u1(Qa
j (G∗

1)) ∩ u1(Qa
l (G∗

2)) = ⟨25; 30⟩
u2(Qa

j (G∗
1)) ∩ u2(Qa

l (G∗
2)) = F

u3(Qa
j (G∗

1)) ∩ u3(Qa
l (G∗

2)) = {English}

Hence, all values of attributes have the nonempty intersection and Qa
j (G∗

1)
and Qa

l (G∗
2) can be further processed together. For every v ∈ Qa

j (G∗
1) and for

every w ∈ Qa
l (G∗

2), the closeness of the sensitive values S(v) and S(w) is tested.
The test is based on Assumption 1 (see line 14). In the case of the successful
check, the pair [v, w] is added into R (see line 15).

In the postprocessing stage, the cardinality of R is reduced. The graph struc-
ture is considered, and the neighbourhoods of particular vertices belonging to R
are examined. Then, some false positive pairs of vertices are deleted, and the
cardinality of R is decreased. Based on Assumption 2, the focus is on the edges
of E(G∗

1), E(G∗
2) such that

∃[v1, w1], [v2, w2] ∈ R : (v1, v2) ∈ E(G∗
1) ∧ (w1, w2) ∈ E(G∗

2).

All pairs of vertices [v1, w1] not fulfilling the previous relationship with any other
pair [v2, w2] ∈ R are removed from R (see line 22 and 23). Then, the result is the
final set R of pairs of corresponding vertices, one vertex from G∗

1 and the second
one from G∗

2.
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5.4.1 Complexity
The most time-consuming part of Algorithm 4 is reducing the cardinality of the set
R. The time complexity of the reducing stage is O(|R|2). The remaining stages
are asymptotically less difficult. Therefore, the time complexity of the entire
algorithm equals O(|R|2). The cardinality of R depends not only on the graph
size but also on the anonymity level k, the graph structure and the variability of
the attributes describing particular vertices. The anonymity level k, the graph
structure and the table of attributes together determine the total number of
attribute equivalence classes. In cases with only a few attribute equivalence
classes, they are large, and many pairs of vertices are added to the set R. As
the high value of k implies a small number of attribute equivalence classes, the
cardinality of R increases with an increasing value of k while the graph size
remains constant. Similarly, when the level of anonymization is constant, the
cardinality of R increases with an increase in the graph size.

5.5 Experimental results
In this section, the implementation of the algorithm and the results of the ex-
periments conducted on synthetic networks are presented. All experiments were
performed on a laptop computer running Microsoft Windows 7 operating system
with 8 GB RAM and a 2.60 GHz processor. The programs were written in MAT-
LAB 9.2.0.538062 (R2017a). The implementation is included in the attached CD,
and the overview of corresponding MATLAB files is given in Attachment B.

5.5.1 Generation of synthetic scale-free networks
Real social networks are scale-free networks with power-law degree distribution,
as presented in [99]. Therefore, the synthetic networks used for experiments must
also fulfil the scale-free property. The Barabasi–Albert model described in Section
4.1 was used to generate synthetic networks with the scale-free property. The
existing implementation of the model, SFNG.m MATLAB function from the B-A
Scale-Free Network Generation and Visualization MATLAB toolbox introduced
in [38], was used. The input parameters of SFNG(n, m, seedM) function are
the number of nodes of the output graph n, the number of links added at every
step m and the seed matrix seedM . The seed matrix is an adjacency matrix of a
small initial graph to which the B-A algorithm links additional nodes. Each node
of the initial graph must have at least one link. The initial graph, represented
by the seed matrix, is called a seed subgraph. The number of links m affects the
graph’s density: the more links added in each step, the denser the output graph.

As the algorithm is applicable to two social networks, two scale-free graphs
G1 and G2, representing two synthetic social networks, were generated before
every run of the algorithm. To fulfil the required Assumptions 1,2 described in
Section 5.3, the same seed matrix was used for creating both graphs. The same
seed guaranteed both networks would have an overlapping user community with
the assumed properties. Unless stated otherwise, the size of the seed matrix was
approximately 10% of the size of the smaller input graph.
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For each vertex of each graph, its identifying attribute Id as well as its non-
identifying attributes Age, Gender, Country code, Marital status, Education, Lan-
guage were assigned a random value from their domains. All attributes were
discrete; the size of their domains is included in Table 5.1. All the values of
attributes belonging to the vertices of one graph were stored in a relational table
called an attribute table. During the anonymization process, the identifying at-
tributes were removed from the attribute tables, and non-identifying attributes
were anonymized by applying the greedy data anonymization method for rela-
tional datasets called Mondrian, introduced in [73]. Therefore, the anonymized
attribute tables satisfied k-anonymity for a chosen k. The existing implemen-
tation of the Mondrian Multidimensional k-Anonymity method, included in the
UTD anonymization toolbox available in [142], was used in the anonymization
process. Unless stated otherwise, the attribute tables satisfied 2-anonymity.

The graph structure was not anonymized during the experiments, but the
original networks with an unchanged set of vertices and an unchanged set of
edges were used.

Attribute Domain size
Id 264

Age 100
Gender 2
Country code 19
Marital status 4
Education 6
Language 7

Table 5.1: Attribute domain size. (Source: author’s work [93].)

5.5.2 Definition of accuracy
The parts of the graphs being unequal to the seed and the attributes describing
vertices outside the seed subgraph were generated pseudorandomly. Therefore,
it was assumed that no pair of corresponding vertices could be found outside the
seed subgraph. The results evaluation was restricted to only the vertices of the
seed subgraphs. However, for every vertex v of the seed subgraph of G1, there
existed a vertex w of the seed subgraph of G2 such that v and w represented
the same individual. Therefore, every vertex of the seed subgraph of G1 should
be paired with a vertex of the seed subgraph of G2, and vice versa. The seed
subgraph of Gi is denoted by seed(Gi).

After one run of the algorithm, all vertices of seed(G1) and all vertices of
seed(G2) were divided into three sets: truly paired vertices (TPV ), falsely paired
vertices (FPV ) and missed vertices (MV ). The set TPV included all vertices
of both seed subgraphs correctly paired with the corresponding vertex. The set
FPV contained all vertices of both seed subgraphs that were paired with another
vertex, but the paired vertex was not the true corresponding vertex. The set MV
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contained all vertices from both the seed subgraphs for which the algorithm did
not (and should) find a pair.

The classifier could be defined using the results of one run of the algorithm and
Definition 38. For simplicity, the classifier is described in detail with vertices only
from seed(G1). A similar set of instances was defined for vertices of seed(G2),
and they were classified similarly. Instances of two types were defined as follows:

I=a vertex v ∈ seed(G1) is paired with a corresponding vertex w ∈ seed(G2)
Î=a vertex v is paired with any other vertex ŵ ∈ seed(G2) \ {w} that does not

represent the same individual.

Clearly, all instances I had a positive label p, and all instances Î had a negative
label n. If the algorithm paired a vertex v ∈ seed(G1) with the corresponding
vertex w ∈ seed(G2), the classifier marked the instance I as Y and the instance
Î as N . Suppose the algorithm paired the vertex v with any other vertex from
seed(G2) \ {w}, the classifier marked the instance I as N and the instance Î as
Y . If the algorithm did not find any pair for the vertex v, both instances, I and Î
were classified as N because each vertex of both seed subgraphs should be paired.

The rates TPrate and FPrate of the described classifier using the sizes of
sets TPV , FPV and MV are defined as

TPrate = |TPV |
|TPV | + |FPV | + |MV |

FPrate = |FPV |
|TPV | + |FPV | + |MV |

The accuracy of the proposed algorithm is a measure of a potential privacy
risk caused by the execution of the composition attack. The accuracy is defined as
TPrate in the evaluation of the results. It corresponds to the definition of the ac-
curacy of the composition attack on relational datasets presented in [81]. FPrate
represents the error rate of the algorithm because it indicates the expectancy of
false positive errors of the classifier. The success of the algorithm is also measured
by the comparison of TPrate and FPrate. In cases where TPrate > FPrate, the
classifier makes decisions better than a random guessing classifier, as presented
in [32]. Thus, if TPrate > FPrate, the proposed algorithm pairs vertices more
successfully than another classifier based only on random guessing.

5.5.3 Results evaluation
I examined the accuracy of the implemented algorithm for pairs of synthetic scale-
free networks differing in size and density. As every run of the algorithm included
a pseudorandom generation of two scale-free networks, the two networks and their
graphs G1 and G2 were different in every run, even if the input parameters of
the algorithm remained constant. Therefore, the algorithm was run 50 times for
every combination of parameters. The average TPrate and average FPrate of
the 50 runs of the algorithm were computed as the average accuracy and average
error rate. TPrates and FPrates did not vary considerably during the 50 runs
of the algorithm. An example of the variability of TPrate and FPrate is given
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a) T P rate b) F P rate

Figure 5.2: Variability of TPrate and FPrate in 50 runs of the algorithm with
parameters |V (G1)| = 200, |V (G2)| = 250 and m1 = 4, m2 = 4 and k=2. (Source:
author’s work [93].)

in Figure 5.2. In general, the variance of TPrate in the 50 runs was up to 2%,
and the variance of FPrate was up to 1%.

The following parameters of the algorithm were considered: the number of
nodes of G1 |V (G1)|, the number of links m1 added to G1 at every step during
the generating procedure, the number of nodes of G2 |V (G2)|, the number of links
m2 added to G2 at every step during the generating procedure, the number of
nodes of the seed subgraph |V (seed)| and the required level of anonymization k.
The domains of all parameters are summarized in Table 5.2. Some parameters
were fixed to analyze the algorithm’s accuracy, and the rest took values from
their domains.

Parameter Domain
|V (G1)| {100, 150, 200, 300, 400}
m1 {2, 3, 5, 10}
|V (G2)| {150, 200, 250, 350, 450}
m2 {2, 3, 5, 10}
|V (seed)| {10, 15, 20, 25, 30, 35, 40}
k {1, 2, 3, 5}

Table 5.2: Parameter domains. (Source: author’s work [93].)

Dependence of the accuracy on the graph size. Initially, the parameters
m1 = 4, m2 = 4 and k = 2 were fixed, |V (seed)| = |V (G1)| · 0.1 was set and the
values of |V (G1)| and |V (G2)| were changed to determine whether the accuracy
of the algorithm depends on the size of the networks. In Figure 5.3.a, it can be
seen that better results were obtained with larger graphs. For |V (G1)| = 400 and
|V (G2)| = 450, TPrate achieves its maximum value, 33%.
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Dependence of the accuracy on the graph density. Moreover, the graph
sizes |V (G1)| = 150, |V (G2)| = 200 and |V (seed)| = 15 and k = 2 were fixed to
determine whether the accuracy is dependent on the density of the networks. In
Figure 5.3b, it can be observed that TPrate becomes worse with an increase in
the values of m1 and m2 and almost achieves the level of average FPrate with
m1 = m2 = 10 (TPrate = 16%, FPrate = 15%). Adding more links at every
step of the graph generation process causes the seed subgraph to drown in the
rest of the network and makes finding the corresponding vertices more difficult.

Dependence of the accuracy on the level of anonymization. Finally, all
values, except the level of anonymization, were fixed. |V (G1)| = 150, |V (G2)| =
200, |V (seed)| = 15, m1 = 4 and m2 = 4 were set to observe the dependence of the
accuracy on the level of anonymization of the attribute tables. In this case, the de-
creasing trend of the accuracy is the most visible (see Figure 5.3.c). As expected,
the accuracy of the algorithm decreased with a higher level of anonymization.
With no anonymization (k = 1), TPrate was equal to 48, 8%, and with k = 5
TPrate fell to 15%.

a) Dependence of the accuracy on the graph size.

Note: |V (G2)| = |V (G1)| + 50.

b) Dependence of the accuracy on the graph density.

Note: m2 = m1.

c) Dependence of the accuracy on the level of

anonymization.

Figure 5.3: Dependence of the accuracy on parameters. (Source: author’s work
[93].)
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In summary, the accuracy of the algorithm increased with larger input graphs,
whereas it decreased with increasing graph density and anonymization level. How-
ever, the algorithm found pairs of corresponding vertices more successfully than
methods based on random guessing because the average TPrate is always higher
than the average FPrate. A summary of all the achieved average true and false
positive rates is provided in Table 5.3. I consider a correct pairing of 20 − 30%
vertices from all appropriate vertices in synthetic scale-free networks to be a good
starting point for further research on composition attacks against social network
data.

|V (G1)| m1 |V (G2)| m2 k TPrate FPrate

100 4 150 4 2 25% 19%
200 4 250 4 2 30% 20%
300 4 350 4 2 30% 23%
400 4 450 4 2 33% 25%
150 2 200 2 2 33% 24%
150 3 200 3 2 30% 22%
150 5 200 5 2 23% 18%
150 10 200 10 2 16% 15%
150 4 200 4 1 49% 17%
150 4 200 4 2 27% 18%
150 4 200 4 3 22% 15%
150 4 200 4 5 15% 11%

Table 5.3: Average true positive and false positive rates from 50 runs of the
algorithm with given parameters. TPrate and FPrate denote average TPrate
and FPrate respectively. (Source: author’s work [93].)

Experimental results indicated that the weak points of the proposed algorithm
are the rules determining whether the pair of vertices is false positive or true pos-
itive. During several algorithm runs, the true pair of corresponding vertices was
found; however, it was incorrectly removed in the composition stage. The true
pair of corresponding vertices was often nearly accepted as a true positive but
ultimately dismissed. Therefore, improving the rules would render the algorithm
more efficient when it takes real social networks as input. The possibility of
improving the rules based on the graph structure or specific features of the par-
ticular input networks will be studied in future research. However, in this case, it
must be assumed that the attacker has background knowledge about the graph
structure.

5.6 Discussion
In this section, it was innovatively presented that social network datasets could be
attacked by the composition attack, just like relational datasets. Furthermore, a
new sensitive value in a social network graph that enables the attacker to perform
the attack was introduced, and a new composition attack algorithm against two
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social network datasets was proposed. Its feasibility was experimentally proved
by running the algorithm on a set of synthetic scale-free networks. Its ability to
find 20 − 30% of corresponding vertices in synthetic scale-free networks confirms
that the algorithm can be suggested for testing as a privacy threat on real social
network datasets.

Now let me address the problem stated in Question 1 and summarize the
modifications that must be done to apply the composition attack to SN datasets.
The proposed composition attack aims at two datasets with overlapping users
community, similar to the composition attack against relational data introduced
in [81]. Moreover, the attribute equivalence classes are exploited in the same way
as the equivalence classes in [81], and the same knowledge of the adversary is
considered.

Unlike the relational datasets, all attributes of U(G∗
A) are usually found to

be quasi-identifiers and do not contain any sensitive attribute. The sensitive
attribute is important in composition attacks on relational datasets [81]. Hence,
the artificial sensitive value must be defined before applying the composition
attack to the SN data. The sensitive value of the individual in SN data has to
be determined so that it is nearly constant over all SN datasets in which the
individual participates. It is essential for performing the composition attack on
the SN dataset. In the proposed attack, the sensitive value is based on the graph
structure of SN datasets. The proposed sensitive value is assumed to be nearly
constant in SNs making two assumptions about users’ behaviour in SNs. The
assumptions are based on published findings about SN users, and their online
behaviour [121, 4, 102]. Hence, the sensitive value of all vertices of both attacked
datasets has to be computed in the preprocessing stage of the attack, which is
not required when attacking relational datasets.

Furthermore, reducing the cardinality of R based on the graph structure can
not be naturally applied in relational datasets. This step is added to the algorithm
to balance the inaccuracy caused by using the artificial sensitive value instead of
the real one. The artificial sensitive attribute is less reliable than the real one
in relational datasets. Using the artificial sensitive attribute in the composition
stage of the attack produces more false positives that have to be removed after
the composition stage.

To summarize the answer to Question 1, the composition attack was proved to
be applicable to social network data. The crucial modifications required to apply
the attack to SN data are computing the sensitive value based on the graph
structure and removing the false positives from the set of found corresponding
vertices.
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6. Heuristic noise addition
method
This chapter addresses Question 2 and presents a novel approach for noise ad-
dition operation in the k-degree anonymization algorithm k-DA. The proposed
high-degree noise addition method modifies the degree sequence anonymized by
the degree anonymization procedure of k-DA before it is processed by the graph
construction procedure of k-DA. The method is implemented in the greedy ver-
sion of the k-DA algorithm. The whole algorithm based on k-DA with the novel
noise addition method is denoted by heu-kDA. The usability of the heu-kDA is
demonstrated by running experiments on the set of different real-world social
network datasets. This chapter is based on [95].

6.1 Motivation
The k-DA algorithm, introduced in [84] and described in Section 2.3.8, is con-
sidered to be the basis of the k-degree anonymization. Its goal is to modify the
original SN graph G to the k-degree anonymous graph G∗ with edge editing op-
erations. The fewer changes made in the graph, the less information loss caused
by the anonymization.

The k-DA algorithm performs on G in two steps. At first, Greedy or Dy-
namic programming algorithm takes as the input the degree sequence dG and the
anonymization parameter k and finds the k-anonymous degree sequence d∗

G. Then
Supergraph algorithm tries to modify G to construct G∗ such that dG∗ = d∗

G. If
the Supergraph algorithm fails, d∗

G is unrealizable and has to be slightly modified
by adding noise. Then, Supergraph runs repeatedly until G∗ is found such that
dG∗ = d∗

G. To recall the design of the whole k-DA algorithm, I repeat Figure
2.6 from Chapter 2. Since a similar scheme is made for the novel heu-kDA algo-
rithm later in this chapter, repeating the figure also emphasizes the differences
and similarities between both algorithms.

Figure 2.6: Scheme of k-DA algorithm. (Source: author’s work.)

The noise addition strategy significantly affects both the speed and efficiency
of the whole k-DA algorithm. Actually, there was no noise addition procedure
in the original k-DA algorithm. In case d∗

G was unrealizable, k-DA added a
random noise into d∗

G. The noise addition approach proposed in this thesis is
based on the power-law distribution of real SNs. It modifies the degree of high-
degree nodes since high-degree nodes are proven to significantly increase the total
anonymization cost of k-DA [46].
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6.2 Greedy version of the k-DA algorithm
In this thesis, I work with the k-DA algorithm using Greedy algorithm and the
simultaneous edge addition and deletion in Supergraph. The detailed description
of Greedy including the definition of Cmerge and Cnew is given in Algorithm 1 in
Section 2.3.8. The main idea of the Greedy degree anonymization algorithm is
summarized here since it is crucial for explaining the proposed noise addition
method.

The degree sequence dG, sorted in descending order, is required as the input to
Greedy. The Greedy algorithm first forms a group consisting of the first k vertices
with the highest degrees. Then it computes the median value of their degrees
and changes the degree of the first k vertices to the median value. After that,
it evaluates whether it is better to join the (k + 1)-th vertex into the previously
formed group or start a new group at position (k + 1). The decision is based
on the computation and the comparison of two costs: the cost of merging the
(k + 1)-th node to the first group Cmerge and the cost of creating a new group
starting with the (k + 1)-th node Cnew.

After proceeding recursively with all elements of dG, all vertices are divided
into groups about at least k elements. All vertices in one group have the same
degree. Hence, the k-anonymized degree sequence d∗

G is created. The groups of
vertices having the same degree correspond to the ∼d-equivalence classes.

Let us look at the sequences dG, d∗
G as the sequences of values rather than the

sequence of vertex degrees. Then, d∗
G can be divided into =-equivalence classes

Q(N, a, =) = {a ∈ N; a = b} where deg(Q(N, a, =)) = a.

Then, the degree sequence d∗
G equals to the ordered list of =-equivalence classes

Q1, Q2, . . . , Qm where deg(Qi) ≥ deg(Qj) for each 1 ≤ i < j ≤ m and |Qi| ≥ k.
Since ∼d-equivalence classes are not used in the rest of this chapter, =-equivalence
classes are simply called equivalence classes in the rest of this chapter.

For example, let me show how the Greedy algorithm proceeds on k = 2 and
dG = (6, 4, 4, 2, 2, 1, 1, 1). The median value of the first k = 2 elements of dG

equals 5. Hence, d∗
G is set to (5, 5, 4, 2, 2, 1, 1, 1). The third element equals 4. The

algorithm has to decide whether it is better to add the element to the first equiva-
lence class Q1 and increase its value to 5 or to start Q2 starting with the third ele-
ment. Since the merging cost Cmerge = 2 and the cost of starting new equivalence
class Cnew = 2, the third element is added to Q1 and d∗

G = (5, 5, 5, 2, 2, 1, 1, 1).
Then the fourth element equalling 2, is evaluated. Since Cmerge = 5 and Cnew = 0,
the fourth element is not merged to the Q1 and the Greedy algorithm is recursively
run on the subsequence (2, 2, 1, 1, 1). The final 2-anonymized degree sequence is
d∗

G = (5, 5, 5, 2, 2, 1, 1, 1) where Q1 = {5, 5, 5}, Q2 = {2, 2} and Q3 = {1, 1, 1}.
The list L of indices of elements starting the equivalence classes can be easily

derived from the degree sequence d∗
G. Since the first element of dG always starts

Q1, L = (1) at the beginning. If the (k + 1)-th element is not merged to Q1,
L = (1, k + 1) and then the algorithm runs recursively on the subsequence of dG.
In other words, L = (1, |Q1| + 1, |Q2| + 1, . . . , |Qm| + 1). In the above example,
L = (1, 4, 6).
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6.3 High-degree noise addition heuristic
This section contains the description of the high-degree noise addition heuristic,
which is applied on d∗

G after the Greedy algorithm, in case d∗
G is unrealizable.

The degree distribution in real SNs is the power-law distribution, as presented
in [99]. Thus, there are a few nodes with a very high degree and many with a
very low degree. If the high-degree nodes are merged into one equivalence class
with lower-degree ones, the highest degrees are very distant from the median of
the class. Therefore, the values of the few high-degree nodes decrease greatly by
the Greedy algorithm. It implies removing a large number of edges from G in
the graph construction algorithm, which processes d∗

G after the Greedy algorithm.
This reduction is impossible if the total number of required degree reductions in
the rest of d∗

G is lower. Thus, the d∗
G becomes unrealisable.

Depending on the size and the structure of the network as well as the value
of k, the high-degree nodes can meet the lower-degree nodes in some of the first
few equivalence classes. Considering the power-law distribution, the problem can
not arise in the middle or end of d∗

G where the degree values are closer to each
other. Thus, the noise addition method can deal only with several first classes at
the beginning of d∗

G.
The problem arises in classes with a mixture of high- and lower-degree nodes.

More precisely, there is a significant difference between the maximum values in
the class and the median value in the class. The proposed method is not based
on the exact identification of the problematic classes and the exact correction
computation for every problematic class, which would be too difficult and time-
consuming. It is based on the simple heuristic that meets the core of the problem
well and is efficient for computation demonstrated with the experimental results.
In summary, the proposed heuristic increases the anonymized value in the first few
equivalence classes of d∗

G, which reduces the number of required edge deletions.
Thus, it increases the probability that modified d∗

G is realizable. The procedure
for correcting medians is detailed in Algorithm 5. Note that dG[i], δ∗

G,s[i] and L[i]
are the i-th elements of dG, δ∗

G,s and L respectively.
The crucial idea behind the whole high-degree noise addition method is to

decrease the difference between the maximum values and the median values in
Q1, . . . , Qmax for some max < m where m is the total number of equivalence
classes in d∗

G. Moreover, since the unrealizability of d∗
G is often caused by the

lack of existing edges for edge removal, the median should be moved closer to the
high-degree values and not vice versa. Thus, the median of Qi is increased for
each 1 ≤ i ≤ max by multiplying it with the parameter x that is greater than one
(see line 10 in Algorithm 5). The formulas for calculating x and max were found
experimentally. The parameter x is computed separately for each Q1, . . . , Qmax,
but the median correction is done only if x > 1 for Qi.

The values of x for Q1, . . . , Qmax depend on the modification parameter s (see
line 7). The parameter s is usually a small real number, and the method of how
to find the most suitable s for a given dataset and a given k is presented in the
next section. The parameter s is constant for one run of Algorithm 5. Hence, in
the single run of the algorithm, the same s is used in the computation of x for all
classes Q1, . . . , Qmax.
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Algorithm 5 The correction of the median
Require: the modification parameter s, the degree sequence dG, the degree se-

quence returned from Greedy d∗
G, the anonymization parameter k

Ensure: the degree sequence δ∗
G,s

1: Find the list of indices L from d∗
G.

2: Set n = |dG|
3: Set δ∗

G,s = d∗
G

4: Set max = ⌊ln(n
k
)⌋

5: for i := 1, . . . , max do
6: Set j1 = L[i] and j2 = L[i + 1] − 1
7: Compute x =

(︂
dG[j1]
dG[j2]

)︂ 1
2s

8: if x > 1 then
9: for l := j1, . . . , j2 do

10: Set δ∗
G,s[l] := ⌊δ∗

G,s[l] · x⌋
11: end for
12: end if
13: end for
14: Return δ∗

G,s.

6.4 The modification parameter setting
The scheme of the whole heu-kDA algorithm is illustrated in Figure 6.1. As
mentioned above, the Greedy algorithm first runs on G and dG to produce d∗

G.
Afterwards, Supergraph is applied on d∗

G. In case d∗
G is unrealizable, then d∗

G

enters the first run of the High-degree noise addition procedure. In its first run, the
modification parameter s is set to one. Then, the Algorithm 5 runs with s = 1 and
modifies the given d∗

G to δ∗
G,1. Hence, the anonymized degree sequence is changed,

d∗
G := δ∗

G,1 and Supergraph runs again and tries to find G∗ with dG∗ = d∗
G. If the

new d∗
G is still unrealizable, High-degree noise addition algorithm runs again. The

value of the modification parameter is changed, and the correction algorithm runs
with the new value of s. The cycle continues until d∗

G is found realizable and G∗

is produced by Supergraph. In all accomplished experiments with different real
SNs, the suitable s was always found, and it took at most seven repetitions of
Supergraph and High-degree noise addition.

Figure 6.1: Scheme of heu-kDA algorithm. (Source: author’s work.)

It remains to describe how to set the values of s in the different runs of High-
degree noise addition method. The High-degree noise addition method with the
method of finding the most suitable modification parameter is described in detail
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in Algorithm 6. As mentioned above, it is crucial to find the most suitable s for
a given G and a given k.

Algorithm 6 High-degree noise addition
Require: the degree sequence dG, the degree sequence returned from Greedy d∗

G,
the anonymization parameter k

Ensure: the k-degree anonymized G∗

1: Run S(d∗
G) ensuring G∗ and dG∗ .

2: Set r0 = ∑︁n
i=1 dG∗ [i] − ∑︁n

i=1 d∗
G[i].

3: if |r0| ≤ 1 then
4: Quit successfully and return G∗.
5: else
6: Set s = 1.
7: Set rs = C(1, dG, d∗

G, k) + S(d∗
G) and previous r = rs.

8: if sgn(r0) ̸= sgn(rs) then
9: Set dec = 1, cont = 1.

10: while cont < 10 do
11: if |rs| ≤ 1 then
12: Quit successfully and return G∗.
13: else
14: Modify s = s ± dec.
15: Set rs = C(s, dG, d∗

G, k) + S(d∗
G).

16: if sgn(rs) ̸= sgn(previous r) then
17: Modify dec = dec · 0.1 and set cont = 0
18: else
19: Set previous r = rs.
20: end if
21: end if
22: Set cont = cont + 1.
23: end while
24: Quit unsuccessfully.
25: else
26: Quit unsuccessfully.
27: end if
28: end if

The Supergraph method implemented in heu-kDA is improved. Unlike the
original Supergraph that outputs either the proper k-degree anonymized G∗ or
Unknown [84], its version implemented in heu-kDA always returns a graph G∗. In
case that d∗

G is realisable, than G∗ is k-degree anonymous graph and dG∗ = d∗
G.

In case d∗
G is unrealizable, then the outputted G∗ is some supergraph of G but

not k-degree anonymous. Certainly, dG∗ ̸= d∗
G.

Hence, let G∗ be a graph found by Supergraph on the input G. Let δ∗
G,s be

the degree sequence returned by Algorithm 5 and dG∗ be the degree sequences of
G∗. I define

rs =
n∑︂

i=1
dG∗ [i] −

n∑︂
i=1

δ∗
G,s[i]

to be the residue after the run of High-degree noise addition with s and Super-
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graph. If rs = 0, then δ∗
G,s is realisable and δ∗

G,s = dG∗ . Furthermore, set

r0 =
n∑︂

i=1
dG∗ [i] −

n∑︂
i=1

d∗
G[i]

to be the residue after the first run of Supergraph that is not preceded by the run
of the noise addition method.

Thus, the most suitable modification parameter is such a value of s on which
the Algorithm 5 outputs δ∗

G,s with rs = 0. Since we deal with real networks with
thousands of nodes, this condition is relaxed. The value of s is also considered
suitable if rs = ±1. It means that the degree of a single node is left greater or
smaller by one than it should be according to δ∗

G,s.
Note that sgn denotes the signum function in Algorithm 6. Moreover, the

notation C(s, dG, d∗
G, k) stands for the run of Algorithm 5 on the input s, dG, d∗

G, k
and S(d∗

G) stands for the run of Supergraph. Surely, Algorithm 5 ensures δ∗
G,s while

Supergraph ensures G∗ and dG∗ . The degree sequences δ∗
G,s, dG∗ can be used for

the computation of rs, hence the expression rs = C(s, dG, d∗
G, k) + S(d∗

G) means
running both algorithm sequentially producing their outputs and computing rs

afterwards.
The case that s = 1 corresponds to the most significant modification possi-

ble by High-degree noise addition. If s > 1, then the change is smaller. The
modification parameter setting procedure is inspired by the root-finding with the
bisection method. There exists a direct or indirect dependency between s and rs.
Depending on G and k, rs grows or falls linearly with the growing s. Thus if rs

and previous r have different signs, then rs′ = 0 lies in the interval between rs

and previous r and the required s′ lie between the value of s and the previous
value of s.

Hence, the algorithm recurs and tries to find the s between the real numbers
with one decimal digit between s and the previous s. It is possible to recur
deeper into decimal numbers; hence the algorithm can additionally require setting
the maximal possible depth of the recursion as the input parameter. The most
suitable s was always found in real numbers with no or just one decimal digit in
all performed experiments. The procedure always quit successfully for all tested
datasets and all tested k values.

6.4.1 Complexity
The time complexity of Algorithm 6 is determined by the complexity of Algorithm
5 and Supergraph and the number of attempts needed for finding the proper s.
Let the number of attempts needed to find the proper s be denoted by p. The
complexity of Algorithm 5 is in O(n), where n = |dG| = |d∗

G| = |V (G)|, since
each value of d∗

G is modified at most once. As presented in [84], the complexity
of Supergraph is in O(a · n), where a = maxi=1,...,n|d∗

G[i] − dG[i]|. Thus, the whole
complexity of Algorithm 6 is in O(p · a · n).

6.5 Experimental results
In the experiments, the presented heu-kDA algorithm was examined. All experi-
ments were performed on a Windows 10 operating system PC with 16 GB RAM
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and a 3,2 GHz processor. The programs were written in MATLAB 9.6.0.1072779
(R2019a). The implementation is included in the attached CD, and the overview
of corresponding MATLAB files is given in Attachment B. Data utility was mea-
sured using the SecGraph evaluation tool available at [59].

6.5.1 Tested datasets
The proposed algorithm was tested on the following real-world network datasets
stored in SNAP library [74]: General Relativity and Quantum Cosmology collab-
oration network (GrQc)[78], Gnutella peer-to-peer network [78, 119], Wikipedia
vote network [80], Caida AS Relationships Datasets [76], High-energy physics
theory citation network (HepTh) [76, 37], Stanford web graph [79], Enron email
network [79, 67], Amazon product co-purchasing network [77], Epinions social
network [118] and the networks describing the social ties of geosocial networks
Gowalla [27] and Brightkite [27]. Furthermore, experiments were also run on two
smaller networks, Polbooks [69] and Polblogs [2], stored in the Network Data
Repository [122]. The experiments were run on the network samples contain-
ing between 103 and 105 nodes. From the datasets containing more than 105

nodes (Stanford-web, Amazon, Gowalla), the subnetwork consisting of 10% of
their nodes was tested.

6.5.2 Usability analysis
At first, the usability of the algorithm was demonstrated by running experiments
on 12 real SN datasets differing in size (see Table 6.1). The algorithm was tested
for values of the anonymization parameter k = {10, 20, 50, 100} for each dataset.
The algorithm found the most suitable s value for all datasets and all k values.
For instance, the particular s values, total runtime, rs values and the number of
runs of the Supergraph algorithm for k = 50 are summarized in Table 6.1.

Dataset G |V (G)| #runs s rs runtime
Polblogs 1,224 3 2 1 12s
GrQc 5,242 2 1 0 4s
Gnutella 6,301 2 1 0 5s
Wiki-Vote 7,115 3 2 1 7min 41s
Gowalla 19,659 5 2.9 0 46min 29s
Caida 26,475 6 2.2 0 4min 25s
HepTh 27,770 3 2 1 22min 52s
Stanford-web 28,190 5 2.1 0 1min 4s
Email-Enron 36,692 3 2 0 10min 20s
Amazon 40,340 3 2 1 1min 53s
Brightkite 58,228 3 2 1 14min 35s
Epinions 75,879 4 3 0 1h 41min 49s

Table 6.1: Usability analysis of heu-kDA for k = 50. (Source: author’s work
[95].)
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Since the anonymized degree sequence differs for various k in the same dataset,
the suitable s differs for various k. Hence, it is not possible to set the same s for
all runs of k-DA on the same dataset. The distribution of the s value over all
datasets and all k values are shown in Figure 6.2. The most common value of s
equalled 2. In 20% of computations, d∗

G needs no modification, and the resultant
s is set to 0. However, k ≤ 20 in all those cases. The d∗

G modification was always
required for k > 20. In 17% of computations, the most suitable s was a decimal
number, and the algorithm had to recur once. Although s equalled or grew with
the growing k for 58% datasets, no dependency was found between parameters s
and k, which would hold for all datasets.

Figure 6.2: The distribution of the s values for all k and all datasets. (Source:
author’s work [95].)

The runtime of one algorithm run increased expectantly with the growing k
and the growing number of nodes. In the worst case, the total computation took
8.17 hours (for Epinions and k = 100). The total runtime also depended on the
number of necessary repetitions of the graph construction algorithm for different
s. However, the graph construction algorithm has to be repeated only seven times
in the worst case (for Gowalla and k = 20), and the average number of repetitions
equalled 3.08. Hence, it shows the efficiency of the heuristic in the anonymized
degree sequence anonymization for different datasets.

6.5.3 Information loss analysis
In this section, the results of anonymizing various networks with the proposed
heu-kDA algorithm are compared with the results of three other algorithms:
original Liu and Terzi k-degree anonymization algorithm (k-DA) [84], univari-
ate micro-aggregation anonymization algorithm with neighbourhood centrality
edge selection (NC)[20] and Fast k-degree anonymization algorithm (FkDA) [86].

Wiki-Vote and Email-Enron network. The data utility improvement is
demonstrated on the results of experiments with Wiki-Vote and Email-Enron
networks shown in Table 6.2 where heu-kDA is compared with k-DA and FkDA.
Unlike heu-kDA, both FkDA and k-DA consider only the edge addition operation
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Wiki-Vote

nED k = 1 10 20 50 100
heu-kDA 0% 2% 9% 4% 15%
FkDA 4% 12% 40% 80%
k-DA 8% 20% 64% 136%
ACC(G) k = 1 10 20 50 100
heu-kDA 0.141 0.140 0.144 0.148 0.153
FkDA 0.167 0.183 0.2 0.183
k-DA 0.367 0.467 0.559 0.651
APL(G) k = 1 10 20 50 100
heu-kDA 3.203 3.202 3.192 3.173 3.173
FkDA 3.24 3.2 3.12 3.04
k-DA 2.68 2.52 2.24 2.08

Email-Enron

nED k = 1 10 20 50 100
heu-kDA 0% 2% 3% 13% 8%
FkDA 2% 4% 13% 27%
k-DA 2.5% 6% 20% 47%
ACC(G) k = 1 10 20 50 100
heu-kDA 0.497 0.486 0.485 0.470 0.465
FkDA 0.5 0.5 0.506 0.5
k-DA 0.513 0.613 0.625 0.625

Table 6.2: Wiki-Vote and Enron-Email network analysis. (Source: author’s work
[95].)

in Supergraph. The values of both algorithms are taken from [86]. The exam-
ined metrics were average distance APL(G), the average clustering coefficient
ACC(G) and the normalized edit distance nED = |E∪E∗|−|E∩E∗|

|E| . The metric
values for k = 1 correspond to the metric values of the original datasets.

Both metric values of heu-kDA were closer to the original values than FkDA
and k-DA in Wiki-Vote dataset. Moreover, heu-kDA kept the normalized edit
distance significantly lower than both other algorithms in both datasets. It is
caused by the application of simultaneous edge addition and deletion in heu-
kDA.

Polbooks, Polblogs, GrQc network. The structural metric values in Pol-
books, Polblogs, and GrQc networks are compared as shown in Table 6.3. The
values of k-DA are taken from [156] while the values of NC are taken from [20].
The examined structural metrics are the average distance APL(G), transitivity
T (G) and the largest eigenvalue of the adjacency matrix λ. The metric values for
k = 1 correspond to the metric values of the original datasets.
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Polbooks

λ k = 1 2 3 4 5 6 7 8 9 10

heu-kDA 11.93 11.98 12.03 12.01 12.70 11.75 11.94 12.21 11.84 14.20
NC 12.09 11.97 11.85 11.85 11.95 12.09 12.08 12.08 11.86
k-DA 12.00 12.05 12.11 12.22 12.30 12.31 12.64 12.72 12.85

APL(G) k = 1 2 3 4 5 6 7 8 9 10

heu-kDA 3.079 2.938 2.786 2.894 2.652 2.749 2.735 2.661 2.627 2.530
NC 2.987 2.883 2.896 2.896 2.988 2.765 2.856 2.856 2.762

T (G) k = 1 2 3 4 5 6 7 8 9 10

heu-kDA 0.348 0.345 0.332 0.337 0.332 0.314 0.318 0.299 0.294 0.322
NC 0.350 0.342 0.339 0.339 0.347 0.326 0.322 0.322 0.324
k-DA 0.330 0.330 0.320 0.330 0.300 0.310 0.320 0.290 0.300

Polblogs

λ k = 1 2 3 4 5 6 7 8 9 10

heu-kDA 74.08 74.32 73.77 74.54 74.18 74.13 76.67 74.10 74.33 74.22
NC 73.93 73.81 73.92 73.95 73.74 73.80 73.75 73.63 73.61
k-DA 74.89 74.50 75.16 75.10 76.32 75.82 76.67 77.42 78.42

APL(G) k = 1 2 3 4 5 6 7 8 9 10

heu-kDA 2.729 2.706 2.713 2.719 2.727 2.716 2.671 2.718 2.715 2.713
NC 2.733 2.729 2.725 2.724 2.724 2.732 2.726 2.731 2.727

T (G) k = 1 2 3 4 5 6 7 8 9 10

heu-kDA 0.226 0.225 0.224 0.227 0.226 0.225 0.224 0.224 0.224 0.224
NC 0.224 0.224 0.224 0.224 0.223 0.225 0.224 0.223 0.224
k-DA 0.225 0.223 0.224 0.221 0.222 0.220 0.219 0.221 0.221

GrQc

λ k = 1 5 10 15 20 25 30 35 40 50

heu-kDA 45.62 45.26 44.18 43.43 43.39 47.45 44.88 45.13 44.24 48.21
NC 45.37 45.28 44.78 44.14 44.49 43.02 43.72 43.55 43.05

T (G) k = 1 5 10 15 20 25 30 35 40 50

heu-kDA 0.630 0.621 0.612 0.598 0.594 0.554 0.567 0.576 0.562 0.515
NC 0.625 0.617 0.611 0.588 0.595 0.589 0.589 0.578 0.584

Table 6.3: Polbooks, Polblogs and GrQc network analysis. (Source: author’s
work [95].)

In 86% computations, heu-kDA kept the values of λ and T (G) closer to the
values of the original networks than k-DA. The values of heu-kDA were even
closer to the original ones than the NC values in a few cases, although the NC
was proved to reduce the information loss much better than k-DA in [20]. Hence,
the proposed heuristic improves k-DA in terms of data utility.
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Caida

|E| − |E∗| k = 10 20 50 100
heu-kDA -116 -661 -1919 -3223
NC 0 0 -9 -9
%mod k = 10 20 50 100
heu-kDA 11.14% 20.34% 30.48% 39.48%
NC 6.06% 11.65% 18.43% 25.81%
time k = 10 20 50 100
heu-kDA 25s 1min 13s 4min 25s 5min 27s
NC 36s 1min 5s 1min 45s 1min 48s

Table 6.4: Caida network analysis. (Source: author’s work [95].)

Caida network. Finally, the performance of heu-kDA is compared with the
performance of NC on the larger network Caida with 26, 475 nodes. The values
of NC are taken from [20]. For each algorithm, the total runtime was measured,
as well as the difference between the original and anonymized edge set |E| − |E∗|
and the percentage of modified edges %mod = 1 − |E∩E∗|

|E∪E∗| . As shown in Table 6.4,
NC is faster and modifies the network better than heu-kDA. Thus, although the
proposed heuristic was shown to improve the k-DA significantly, heu-kDA would
not achieve as good results as the recently proposed NC algorithm aiming at the
anonymization of large networks.

6.5.4 Data utility measurement
Finally, the proposed heu-kDA is compared with the k-DA implemented in the
SecGraph evaluation tool [60, 59] in preserving data utility metrics. As men-
tioned in previous chapters, SecGraph includes the implementation of several
anonymization methods, and the k-degree algorithm proposed by Liu and Terzi
is one of them. Furthermore, SecGraph was also used for the measurement as the
external independent tool.

The methodology of this measurement is as follows. Three datasets differ-
ing in size (Polblogs, Wiki-Vote and Caida) were inputs to heu-kDA and k-DA
together with the value of the anonymization parameter k ∈ {5, 10, 15, 20, 50}.
For each algorithm and each parameter setting, SecGraph measures the utility
metrics in the outputted anonymized graph and the original graph and returns
the comparison of the metric values. How metrics are compared with SecGraph
is explained in detail in Section 4.2. When SecGraph returns 1, it means that the
value of the particular metric is the same in both the anonymized and original
graph. The more similar the metrics in the anonymized and original graph, the
better the data utility preservation. Hence, values close to 1 are preferable.

Results with k = 15 are given in Table 6.5. Due to the space limits, the
complete results are contained in Attachment A. The proposed heu-kDA preserved
most of the metrics better than k-DA. This outcome corresponds with the results
presented in previous paragraphs and proves that heu-kDA preserves data utility
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better than the original k-DA. Moreover, AS, HS and PR were preserved better
with heu-kDA for all parameter settings. The heuristic noise addition procedure
heavily affects only the RX metric since SecGraph returned zero each time the
metric was computed. The reason why this particular metric is so modified will
be studied in future research since it requires a deep understanding of the metric
and its implementation in the SecGraph tool.

Polblogs Wiki-Vote Caida

k=15 k-DA heu-kDA k-DA heu-kDA k-DA heu-kDA

AS 0.849 0.960 0.834 0.987 0.491 0.789
BC 0.904 0.908 0.885 0.910 0.838 0.734
CC 0.999 1.000 0.999 1.000 0.996 0.999
CD 0.857 0.888 0.838 0.868 0.067 0.549
Deg. 0.977 0.990 0.965 0.991 0.847 0.887
ED 0.955 0.956 0.982 1.004 0.817 0.985
EV 0.957 0.984 0.977 0.991 0.807 0.867
HS 0.814 0.984 0.876 0.993 0.470 0.676
Infe. 0.914 0.886 0.848 0.805 0.700 0.719
JD 0.232 0.110 0.318 0.304 0.487 0.141
LCC 0.955 0.984 0.988 0.998 0.887 0.938
NC 0.998 1.000 1.000 1.000 0.999 1.000
PR 0.518 0.996 0.607 0.945 0.309 0.803
RX 0.335 0.000 0.757 0.000 0.245 0.000

Table 6.5: Heu-kDA: utility measurement for k = 15. (Source: author’s work.)

6.6 Discussion
In this chapter, I presented the improvement of the noise addition procedure in
the k-DA algorithm. The noise addition procedure slightly modified the degree
sequence found by the greedy degree anonymization algorithm in case the se-
quence is unrealizable and the graph construction procedure is not able to make
the k-degree anonymization graph. The original noise addition procedure just
added random noise into the sequence and did not consider the features of input
graphs.

The known property of all graphs representing SN datasets is their power-law
degree distribution. The result of the power-law degree distribution is that there
are few nodes with high degrees, and most have very low degrees. Depending on
the value of k and the network structure, there may be fewer than k nodes with
a high degree. In this case, those high values are combined with lower values in
the degree anonymization procedure, and the high-degree values are significantly
decreased. When the values in the Q1 are increased with the proposed heuristic
algorithm, the distance between the original high-degree values in the class and
their values after degree anonymization is smaller, which causes fewer modifica-
tions that have to be done in the graph construction procedure. If the number
of high-degree nodes is greater than k, a similar situation can happen in Q2, Q3
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or the Qi formed by the degree anonymization procedure. The flexible correction
of medians in equivalence classes of d∗

G kept the anonymized values closer to the
original degree of high-degree nodes. Hence, fewer edges have to be removed
during the graph modification procedure, and d∗

G is more likely to be realizable.
More importantly, the procedure is flexible. The modification parameter s

and the parameter of correction x are dependent on both dG and d∗
G. The modi-

fication parameter is computed with respect to the whole degree sequences. All
equivalence classes of d∗

G are modified with the same value of s, but the correction
parameter x differs for each class. The parameter x depends on the class’s highest
and lowest values. Moreover, the correction is applied if the difference between
the highest and lowest value is significant. Otherwise, the anonymized value of
the class is the median.

To finally answer Question 2, let me summarize the effects of implementing
the high-degree noise addition method on the behaviour of the whole k-DA algo-
rithm. As proved by the experimental results presented above, the high-degree
noise addition method and edge deletion operation improve preserving the data
utility in the k-DA algorithm. Moreover, the proposed high-degree noise addition
procedure improves k-DA in terms of speed too, since it makes the computation
of k-DA more efficient and reduces the number of repetitions of the graph modi-
fication algorithm.
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7. Hybrid algorithm for
k-automorphism anonymization
The k-automorphism anonymization approach protects against any structural at-
tack on SN datasets. However, providing a high level of privacy protection entails
extensive modifications in the graph structure during the anonymization proce-
dure. Due to the significant information loss, the k-automorphism methods have
not been widely developed. The recent research in edge editing SN anonymization
methods focused primarily on k-degree and k-neighbourhood methods.

In this chapter, Question 3 is addressed by proposing the Hybrid Algorithm
for k-Authomorphism anonymization (HAkAu). The k-automorphism is demon-
strated as a competitive SN anonymization approach providing a high-security
level. HAkAu is based on the structure of the KM algorithm proposed in [163].
It combines the original approach with the genetic algorithm (GA). This chapter
is based on [97].

7.1 Motivation
The privacy-preserving problem addressed in this chapter is the identity disclosure
problem in SN datasets. I recall the problem stated in Chapter 2. The provider
desires to share or publish the data. Thus, he or she released the graph G̃.
Assume that G̃ is an anonymized version of the input graph G, hence G̃ = G∗.
The identity disclosure occurs if an attacker can identify the target individual in
the released dataset G∗. In other words, the identity is disclosed if the attacker
can link v ∈ V (G∗) with the particular individual represented with v.

The k-automorphism concept defends against all kinds of structural attacks.
For every vertex v ∈ V (G∗), there are at least other k−1 vertices with the same l-
neighbourhood in G∗ for any l ∈ N . Therefore, the result of any structural query
Q on G∗ contains at least k vertices. The attacker possessing any structural
background knowledge can not identify his or her target node with a higher
probability than 1

k
in the k-automorphic graph G∗.

The motivation for applying GA arises from the fact that the k-automorphism
anonymization problem is proven to be NP-hard, and GA is a powerful tool for
solving search-based optimization NP-hard problems. The novel chromosome
presentation proposed in this chapter enables us to solve the problem of finding
the k-automorphism graph as an optimization problem of minimizing information
loss. Moreover, the solution space can be modelled very well, and the particu-
lar solutions are easily comparable with respect to the introduced fitness func-
tion. Thus, GA is a good fit for finding the optimal solution to such a problem.
Moreover, GA has been successfully used to improve the k-degree anonymiza-
tion method [116], k-neighborhood method [3] and clustering k-anonymization
methods [132, 155, 130].
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7.2 Theoretical part
Before the proposed HAkAu is introduced, some theoretical aspects of the pro-
posed solution are presented.

7.2.1 Anonymization cost
The main tools of HAkAu are edge editing operations. The input edge set E(G)
is modified with both edge addition and edge deletion operations; hence the orig-
inal edge set E(G) is not the subset of E(G∗). The information loss caused
by the anonymization is called the anonymization cost. In the edge editing
anonymization methods, the anonymization cost corresponds to the number of
edge edits made during the anonymization process. Since making a graph k-
automorphic also requires node edits in the input graph, the total anonymization
cost of HAkAu equals the sum of edge edits and node edits.

The number of node edits depends on |V (G)|. If G∗ is k-automorphic, then
for each node v, there exist k − 1 nodes that are isomorphic to v. Hence, |V (G∗)|
is divisible by k. If |V (G)| is not divisible by k, adding or removing some vertices
is necessary. Let us denote z := mod(|V (G)|, k). In case z ≤ k

2 , then z vertices
are removed by HAkAu, otherwise, k − z dummy vertices are added. Thus, the
number of node edits, denoted by V Cost(G, G∗), is equal to or less than k

2 .
Edge edits have a more significant impact on the anonymization cost. HAkAu

uses both edge-deleting and edge-adding operations. Edge modifications are ap-
plied in two parts of HAkAu: when chosen subgraphs of G are extended by GA
and in the adding crossing edges procedure. Hence, the total anonymization cost
caused by modifying G to G∗ with HAkAu is

Cost(G, G∗) = V Cost(G, G∗) + ExCost(G, G∗) + CECost(G, G∗)

where CECost(G, G∗) is the number of edge edits made in the adding crossing
edges procedure, and ExCost(G, G∗) is the number of edge edits made by GA.
Both costs, ExCost(G, G∗) and CECost(G, G∗), are computed in Section 7.3,
after HAkAu is explained.

7.2.2 NP-hard problems
The issue addressed in this chapter contains NP-hard problems. At first, I outline
the problem of finding a frequent subgraph with the given minimal support. The
problem is NP-hard since it relies on the NP-hard subgraph isomorphic problem,
as proved in [31]. The problem is addressed in both KM and HAkAu with the
external algorithm. KM employs SiGraM [72] while HAkAu uses a more efficient
GraMi algorithm [31].

Problem 1. Let G be a graph and s ∈ N . Find the frequent subgraph of G with
the minimal support s and its matches in G.

Now, I recapitulate the problems solved with the KM algorithm since they
play a role in further proof.
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Problem 2 (Finding optimal graph partitioning). Let G be a graph. Find the sets
U1, . . . , Um, where Ui = {Pi1, . . . , Pik, Pij ⊆ G, j = 1, . . . , k} for each i = 1, . . . , m
and such that

- G = ⋂︁m
i=1 Ui

- Cost(G, G∗) is minimal, where G∗ is the k-automorphic version of G ob-
tained by KM algorithm

Problem 2 is NP-complete as proved in [163]. Problem 2 is addressed in KM
algorithm as follows. KM algorithm builds the sets Ui sequentially. For each
i, it first finds the frequent subgraph of G with the minimal support k and its
matches in G, denoted by Pi,1, . . . , Pi,k. Hence, Pij’s are isomorphic to each other.
Then graphs Pi,1, . . . , Pi,k are extended to graphs Pi,j, which are subgraphs of G
but are not isomorphic to each other any more. The extension is made so that
Cost(G, G∗) is minimal. Then E(G) := E(G) \ ⋃︁k

j=1 E(Pi,j) and the procedure is
repeated with i := i + 1 until G is completely partitioned into sets Ui.

Then, for each set Ui, some edges are added into Pi,j to create new graphs P ′
ij

that are isomorphic to each other again. The edge addition procedure requires
minimizing Cost(G, G∗). The alignment vertex table defined in [163] described
how vertices are mapped to each other under the isomorphism. The issue of
finding the optimal P ′

i1, . . . , P ′
ik is proven to be NP-hard in [163] and is formalized

in the following problem. The resultant P ′
ij is the basis of the final anonymized

graph G∗.

Problem 3 (Finding optimal graph alignment). For each Ui from Problem 2,
i = 1, . . . , m, find graphs P ′

i1, . . . , P ′
ik such that Pij ⊆ P ′

ij and for each j = 1, . . . , k
and Cost(G, G∗) is minimal.

Now, I state the problems that are addressed by HAkAu and prove their NP-
hardness. Methods for solving them are proposed in the next sections, where
HAkAu is described in detail. The following problem is the core of finding k-
automorphic graph G∗ for the given G. It is the combination of Problem 2,3.
Naturally, G∗ is not known before the anonymization procedure, and the real
goal is to find G∗ such that Cost(G, G∗) is minimal.

Problem 4. Let G be a graph and Pi,1, . . . , Pi,k be subgraphs of G such that Pi,j

is isomorphic to Pi,l, ∀j, l := 1, . . . , k. For Pi,1, . . . , Pi,k find graphs P ′
i,1, . . . , P ′

i,k

and isomorphisms Fi,j such that

- P ′
i,j ⊂ G∗

- P ′
i,j is the supergraph of Pi,j

- Fi,j(P ′
i,j) = P ′

i,j+1, j = 1, . . . , k − 1,

- Fi,k(P ′
i,k) = P ′

i,1

- Cost(G, G∗) is minimal

where G∗ is a k-automorphism graph obtained by HAkAu.
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Problem 4 repeatedly arises in HAkAu, and the index i denotes the number
of its repetitions. The repetitions correspond to finding Ui defined in Problem 2.
Again, the graphs Pi,1, . . . , Pi,k are the matches of the frequent subgraph with the
minimal support k in G. Unlike KM algorithm, HAkAu expands the subgraphs
Pi,1, . . . , Pi,k “isomorphically”. Thus the found graphs P ′

i,j are still isomorphic to
each other, and it is not necessary to make them isomorphic in the next step,
which is the main advantage of this approach.

Theorem 5. Problem 4 is NP-hard.

Proof. According to Lemma 4, to prove the NP-hardness, it is enough to reduce an
NP-hard problem to Problem 4. In this proof, Problem 3 is reduced to Problem 4.
Denote Pi,1, . . . , Pi,k to be the matches of the frequent subgraph with the support
k. Then set Ui := {Pi,j; j := 1, . . . , k} before the extension is applied. After all
P ′

i,j and Fi,j are found for each i, j with HAkAu, then subgraphs P ′
i,j requested

in Problem 3 are P ′
i,j := P ′

i,j. The graphs P ′
i,j are isomorphic. Moreover, the

isomorphisms Fi,j give the alignment vertex table.

At the end of this section, I give the problem addressed in the preprocessing
stage of HAkAu. In the preprocessing stage, the set of vertex-disjoint graphs is
selected from the set of edge-disjoint graphs, and the resultant set becomes the
input to the genetic algorithm.

Problem 5. Let G be a graph and M be a set of subgraphs of G. Select S ⊆ M
such that ∀P1, P2 ∈ S : |V (P1)| ∩ |V (P2)| = ∅.

Theorem 6. Problem 5 is NP-hard.

Proof. Since all subgraphs in M are isomorphic, they have the same number of
vertices. Let the matrix M be defined such that the i-th row of M is the list of
vertices of the i-th subgraph of M . The selection of the subset S corresponds to
the selection of the set of rows in M that do not contain any identical number.
The selected rows represent the isomorphic subgraphs with the mutually vertex-
disjoint set of vertices.

Now let me show that the problem of selecting matrix rows that do not contain
identical numbers equals the maximum independent set problem. This problem
is known to be NP-hard [36]. Let us suppose that the individual rows in M will
be represented by vertices of a completely new graph (without any assumption of
what kind of graph is represented by the specific row). Assume adding edges in
the newly created graph so there will be an edge between two vertices when the
intersection between the respective rows is non-empty. This simple transforma-
tion changed the problem of selecting matrix rows that do not contain identical
numbers into the maximum independent set problem. Hence, the problem is
NP-hard, and Problem 5 is NP-hard, as well.

7.3 HAkAu algorithm
In this section, the novel Hybrid Algorithm for k-Automorphism anonymization is
described in detail. The proposed HAkAu modifies the graph G representing the
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given SN to the anonymized k-automorphism graph G∗. The final G∗ is resistant
to any structural attack.

The crucial idea of the approach is as follows. The k isomorphic subgraphs are
found in G. They are isomorphically extended to minimize Cost(G, G∗). Then
the extended isomorphic subgraphs are removed from the input graph, and the
process is rerun on the smaller graph. After the whole input graph is processed,
we get the set of disconnected graphs such that for every graph, there are at least
k − 1 other graphs that are isomorphic to it. The disconnected graphs are linked
together, making the final graph k-automorphic.

The detailed description of HAkAu is given in Algorithm 7. The graph H is
the rest of the input graph after the i-th round of the while cycle (see line 2).
While there are at least k vertices in H, H is partitioned. GraMi algorithm is
run to find the frequent subgraph gf (s) and s matches of gf (s) in H (see line 3).
If GraMi finds more than one frequent subgraph, gf (s) is the largest. The set of
subgraphs matching gf (s) in H is denoted by M . After selecting k vertex-disjoint
subgraphs Pij from M (see line 4), the GA is run to find isomorphic supergraphs
P ′

ij (see line 5). The proposed GA is used to tackle the NP-hard Problem 4.
The graphs P ′

ij are removed from H (see lines 8 and 9) and the crossing edges
between P ′

ij and H are added into the set of crossing edges C (see line 7). When
|V (H)| < k, the edges remaining in H are added into C, and the remaining
vertices become the last found isomorphic subgraphs (see lines 14-20). All found
subgraphs P ′

ij are the core of the anonymized graph G∗. To make G∗ connected,
selected crossing edges and their copies are isomorphically added into G∗ (see line
24). The adding crossing edges procedure is detailed in Section 7.3.2.

Note the following interesting aspects of the algorithm. In the first round of
the while cycle GA finds k isomorphic graphs P ′

11, . . . , P ′
1k. The set of k isomorphic

graphs determines k isomorphisms F11, . . . , F1k as shown in line 5. Since Fj is a
zero homomorphism at the beginning, Fj := F1j after the first round. After the
second round, Fj is the extension of F1j and F2j and it is still the isomorphism,
since V (P ′

1j) ∩ V (P ′
2j) = ∅, ∀j = 1, . . . , k. Similarly, after the i-th round Fj is

extended with Fij (see line 10). After the while cycle ends, there are m · k graphs
P ′

ij, i = 1, . . . , m, j = 1, . . . , k, and k isomorphisms Fj:

- Fj(P ′
i,j) = P ′

i,j+1, i = 1, . . . , m , j = 1, . . . , k − 1,

- Fk(P ′
i,k) = P ′

i,1, i = 1 . . . , m

Secondly, note that Pij are subgraphs of H, but P ′
ij are not subgraphs of H.

Naturally, V (Pij) ⊆ V (P ′
ij) and E(Pij) ⊆ E(P ′

ij), since Pij are supergraphs of
Pij. Moreover, V (P ′

ij) ⊆ V (H), but E(P ′
ij) ̸⊆ E(H).1 Some edges from H are

preserved in P ′
ij, some new edges can be added between nodes of V (P ′

ij) by GA,
some edges that were between some nodes of V (P ′

ij) in H do not exist in P ′
ij.

Thirdly, GA aims to set up graphs P ′
ij so that they are isomorphic to each

other and Cost(G, G∗) is minimal. Putting back a single crossing edge caused
adding other k − 1 edges that are isomorphic to the graph. By finding larger
graphs, P ′

ij and replacing them with smaller Pij, the amount of crossing edges is
reduced; hence CECost(G, G∗) is significantly reduced.

1The statement V (P ′
ij) ⊆ V (H) simplifies slightly the real situation. In some cases, a few

new nodes have to be added, and for some j : V (P ′
ij) ̸⊆ V (H) (see Section 7.4.2)
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Algorithm 7 HAkAu algorithm
Require: anonymization parameter k, input network G, minimal support s
Ensure: k-automorphism network G∗

1: Set i := 1, H := G, C := ∅, M := ∅, S := ∅ and G∗ to be an empty graph.
Set Fj := 0, j := 1, . . . , k.

2: while |V (H)| ≥ k do
3: Run GraMi on (H, s) to find the frequent subgraph gf (s) and the set

M := {I1, . . . , Is; Ij is a match of gf (s) in H, j := 1, . . . , s}.
4: Run Algorithm 8 on (M, s, k) to find the set of k vertex-disjoint matches

S := {Pij ∈ M ; V (Pij) ∩ V (Pil) = ∅, j ̸= l, j, l = 1, . . . , k} (see Section
7.3.1)

5: Run GA on (S, H, k) to find graphs P ′
ij and isomorphism Fij such that

- P ′
ij is the supergraph of Pij

- Fij(P ′
i,j) = P ′

i,j+1, j = 1, . . . , k − 1,

- Fik(P ′
i,k) = P ′

i,1

- Cost(G, G∗) is minimal
(see Sections 7.4)

6: Ci := {(u, v) ∈ H : ∃j ∈ {1, . . . , k} : u ∈ V (P ′
ij) ∧ v /∈ V (P ′

ij)}
7: C := C ∪ Ci

8: V (H) := V (H) \ ⋃︁k
j=1(V (P ′

ij) ∩ V (H))
9: E(H) := E(H) \ (C ∪ ⋃︁k

j=1(E(P ′
ij) ∩ E(H)))

10: Fj := Fj ⊕ Fij j := 1, . . . , k
11: i := i + 1.
12: end while
13: m := i − 1
14: C := C ∪ E(H)
15: if |V (H)| ≥ k

2 then
16: m := m + 1
17: Add k − |V (H)| dummy edges in V (H).
18: for j := 1, . . . , k do
19: Select v ∈ V (H) and set P ′

mj := v
20: V (H) := V (H) \ {v}
21: end for
22: end if
23: G∗ := ⋃︁m

i=1
⋃︁k

j=1 P ′
ij

24: Run Algorithm 9 on (C, G, G∗, k, Fj) to add selected crossing edges and their
isomorphic copies in G∗ (see Section 7.3.2).

25: Return G∗.

Finally, the HAkAu algorithm requires the input dataset and two param-
eters: the anonymization parameter k and the minimal support parameter s.
The anonymization parameter is the independent parameter corresponding to
the required anonymization level, and the minimal support s is the dependent
parameter. It holds that s > k since k vertex-disjoint subgraphs are selected from
the set of s edge-disjoint subgraphs.
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7.3.1 Finding the subset of vertex-disjoint subgraphs
GraMi algorithm has been utilized to find the largest frequent subgraph gf (s)
and its matches in H. Let denote

M := {I1, . . . , Is; Ij is a match of gf (s) in H, j := 1, . . . , s}.

Naturally, there might be partially overlapping subgraphs in M having one or
more common vertices. To proceed further, it is necessary to find k mutually
vertex-disjoint subgraphs in M . The task is formulated in Problem 5 and is
proved to be NP-hard in Theorem 6.

The output of the GraMi algorithm is in tabular form with s rows, where
each row represents one subgraph Ij as the list of its vertices. Since I1, . . . , Is are
isomorphic, |V (I1)| = · · · = |V (Is)|. The set of the rows can be represented by a
matrix M with s rows and |V (I1)| columns.

To illustrate the situation, a simple graph G, the GraMi output on G and
the matrix M compiled from the GraMi output are given in Figure 7.1. On G,
there can be easily identified five four-squared subgraphs I1, I2, I3, I4, I5 that are
the matches of the found frequent graph. It is visible on Figure 7.1 that the
I1, . . . , I5 are edge-disjoint, but not vertex-disjoint. This fact is reflected on the
GraMi output so that the same number (label of the relevant vertex) is included
in two or more rows. For example, vertex 6 can be found on the first and third
rows.

GraMi output:
I1 = (1, 2, 5, 6)
I2 = (3, 4, 7, 8)
I3 = (6, 7, 10, 11)
I4 = (9, 10, 13, 14)
I5 = (11, 12, 15, 16)

M =

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 5 6
3 4 7 8
6 7 10 11
9 10 13 14
11 12 15 16

⎞⎟⎟⎟⎟⎟⎟⎠
Figure 7.1: Simple graph G, the GraMi output on G and the corresponding
matrix M. (Source: author’s work.)

The task to select the largest subset of mutually disjunct subgraphs is equal to
the task of selecting the maximal number of rows of matrix M that do not contain
any identical number, as shown in the proof of Theorem 6. Considering the graph
at Figure 7.1, we can either select the third row (inner four-squared subgraph),
and there is nothing more that could be added there. The second option is to
select four “outside” four-squared subgraphs (rows 1,2,4 and 5 from M), and
this attempt will give us the optimal solution comprising of four vertex-disjoint
subgraphs I1, I2, I4, I5.

This way, the problem of finding the subset of vertex-disjoint graphs was
transformed into the issue of selecting matrix rows that do not contain any iden-
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tical number. As proved in Theorem 6, this problem is NP-hard. Therefore, a
naive approach based on a brute-force algorithm that successively compares each
row with another one is impractical, and a heuristic approach is needed to speed
up the search.

The proposed heuristic algorithm, described in Algorithm 8, is based on the
“divide and conquer” design paradigm where the frequency of the individual
vertices (numbers) in matrix M is utilized to break down the main task into
two subtasks. In the first subtask, the rows of M containing the most frequent
vertices are step by step removed and stored in auxiliary matrix R (see lines 12
and 13 in Algorithm 8). Therefore, the first step of the algorithm is to calculate
the frequency of the numbers included in matrix M (see line 4).

Algorithm 8 Finding the subset of mutually vertex-disjoint subgraphs
Require: the set of s isomorphic subgraphs M = {I1, . . . , Is}, the anonymization

parameter k
Ensure: the set of k vertex-disjoint isomorphic subgraphs S

1: Set {vj
1, . . . , vj

n} := V (Ij) and M := {vj
i }i,j to be a matrix,

i := 1, . . . , |V (I1)| , j := 1, . . . , s.
2: R := ∅, S := ∅, cont := 1.
3: while rc(M) > 1 ∧ cont = 1 do
4: Calculate the frequency of all vertices in M.
5: if the frequency of all vertices equals 1 then
6: S := M
7: cont := 0
8: else
9: Set v to be the vertex with the highest frequency of occurrence in M.

10: for j := 1, . . . , rc(M) do
11: if v ∈ rj(M) then
12: M := M \ rj(M)
13: R := R ∪ rj(M)
14: end if
15: end for
16: if rc(M) = 1 then
17: S := M.
18: end if
19: end if
20: end while
21: repeat
22: Calculate the frequency of vertices contained in S.
23: Find r := r(R) such that ∀v ∈ r(R) frequency of v in S equals 0.
24: R := R \ r
25: S := S ∪ r
26: until r = ∅ or rc(S) = k
27: Return S := {I ∈ M ; ∃i : ri(S) = V (I)}

Let n rows in matrix M and c be the highest frequency found in M. Then
it is evident that the maximal number of mutually disjunct rows will be less or
equal to n − c + 1. In the example shown in Figure 7.1, the maximal number of
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mutually disjunct rows is computed with 6−2+1 = 4. For instance, if the vertex
number 6 has two occurrences and only mutually disjunct rows are required, then
the only option is either the row (1, 2, 5, 6) or the row (6, 7, 10, 11) can be a part
of the solution. Hence, the task can be divided into two subtasks:

1. pick up one row amongst the two we have just identified

2. remove the rows considered in the previous step from M and solve the
remaining task represented by the smaller M (see Figure 7.2))

Select one row from
(1, 2, 5, 6)
(6, 7, 10, 11)

Solve the subtask

M =

⎛⎜⎝ 3 4 7 8
9 10 13 14
11 12 15 16

⎞⎟⎠

Figure 7.2: Dividing the main task into subtasks. (Source: author’s work.)

The same procedure will be applied to the smaller matrix M: calculate the
frequencies, select the vertex with the highest frequency or one of those in the
case of multiple vertices with the same frequency, and divide the table into two.
At each iteration of the algorithm, at least two rows will be removed from the
matrix, and at the end, all the rows in the matrix M will be disjunct. The
remaining rows of M are set to be the cornerstone of output matrix S. There are
three possible options:

1. the final matrix M is empty (no row)

2. the final matrix M contains only one row (see line 16)

3. the frequency of all the vertices involved is equal to 1 (see line 5)

In the first case, S = ∅, and in the second and the third cases, S := M . Our
illustrative example has reached the third option, as all three rows are vertex-
disjoint.

The second phase of the algorithm (beginning at line 21) takes the matrix S
as the basis of the solution, and going backwards, the algorithm tries to add to it
one row from the previously deleted ones that are stored in the auxiliary matrix
R. Clearly, it is possible to add one row maximally; otherwise, the disjunctivity
would be compromised. The task is done relatively efficiently. There is no need
to compare the added row with each one already in the solution matrix S. A
more efficient process is to compute the frequency of vertices contained in S (see
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line 22) and check whether the frequency of all vertices added by the relevant
row is equal to 0 (see line 23). If this condition is met for some row, the row
should be added to the solution matrix (see line 25). Then, the frequency table is
updated (see line 22), and the procedure moves one step backwards. The process
terminates if it can find no such a row in R, or S have k rows (see line 26).

In the illustrative case, adding the second row to the partial solution matrix
is impossible as vertices 7,10, and 11 are already included there. On the contrary,
the first row (1, 2, 5, 6) can be added, as the frequency of all these vertices equals
zero. Hence, there exists the solution consisting of four independent rows in the
matrix representing four subgraphs.

Algorithm 8 solves the problem of finding the subset of vertex-disjoint sub-
graphs directly. Hence, it requires the set of isomorphic subgraphs, which is
transformed to the matrix M (see line 1), and delivers a subset of mutually dis-
junct subgraphs which is built from the final matrix S (see line 27). There is
no guarantee that the optimal solution (the largest subset) has been found, but
the algorithm is fast (O(N3)) and found the acceptable solution in all executed
experiments.

7.3.2 Adding crossing edges
Adding crossing edges procedure, including the computation of CECost(G, G∗),
is described in detail in Algorithm 9.

Algorithm 9 Adding crossing edges
Require: the set of crossing edges C, input network G, anonymized network G∗,

anonymized parameter k, isomorphisms Fj (j := 1, . . . , k)
Ensure: k-automorphism network G∗, CECost(G, G∗)

1: CECost(G, G∗) := 0
2: while C ̸= ∅ do
3: Select (v, w) from C.
4: Set C̃ := {(Fj(v), Fj(w)) ∈ C}.
5: if |C̃| ≥ k

2 − 1 or (degG∗(v) < degG(v) or degG∗(w) < degG(w)) then
6: E(G∗) := E(G∗) ∪ {(Fj(v), Fj(w)), j := 1, . . . , k}
7: C := C \ {C̃ ∪ (v, w)}
8: CECost(G, G∗) := CECost(G, G∗) + k − 1 − |C̃|
9: else

10: C := C \ {(v, w)}
11: CECost(G, G∗) := CECost(G, G∗) + 1
12: end if
13: end while
14: Return G∗, CECost(G, G∗).

The crossing edges are edges stored in the set C. Note that a crossing edge
(v, w) is the edge that connects vertices from different subgraphs, v ∈ V (P ′

ij),
w ∈ V (P ′

ab), where i ̸= a or j ̸= b. If (v, w) is added into G∗, then it is necessary
to add other k − 1 edges (Fj(v), Fj(w)) into G∗, j = 1, . . . , k − 1, to keep G∗

k-automorphic.
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The crossing edge (v, w) is added into G∗ if there are at least k
2 − 1 other

crossing edges in C that are isomorphic to (v, w). Hence, adding (v, w) into G∗

causes fewer edge edits than not adding it. Except that, HAkAu adds crossing
edges that are significant for matching the structure of G∗ to the structure of G.
Since at most k operations are done with each crossing edge, and each crossing
edge is considered once, the complexity of Algorithm 9 is in O(|C| · k).

7.3.3 Computing the extension cost
The extension cost ExCost(G, G∗) is the anonymization cost caused by replacing
Pij with P ′

ij, i := 1, . . . , k, j := 1, . . . , m. Let ExCosti(H) denote the extension
cost caused in the i-th round of while cycle in Algorithm 7 where H is processed.
Then

ExCost(G, G∗) :=
m∑︂

i=1
ExCosti(H)

ExCosti(H) :=
k∑︂

j=1
ExCost(Pij, P ′

ij)

where ExCost(Pij, P ′
ij) is the anonymization cost caused by extending Pij to P ′

ij,
i, j fixed. The cost ExCost(Pij, P ′

ij) equals to the number of edges that exist
in P ′

ij and not exist in G plus the number of edges (u, v) ∈ E(G) such that
u, v ∈ V (P ′

ij) and (u, v) /∈ E(P ′
ij). More precisely,

ExCost(Pij, P ′
ij) := |E(P ′

ij) \ (E(Pij′) ∩ E(G))|
+ |{(u, v) ∈ E(G); u, v ∈ V (P ′

ij) ∧ (u, v) /∈ E(P ′
ij)}|

7.3.4 The comparison with the design of KM algorithm
Before the detailed description of the genetic algorithm, I summarize the differ-
ences between KM and HAkAu and enhance the improvements in HAkAu. As
mentioned in Section 7.2, HAkAu solves the NP-hard problem, combining two
problems addressed in the KM algorithm. As a result, KM finds the extended
graphs that are not isomorphic by solving Problem 2 and make them isomorphic
again by solving Problem 3. Contrarily, HAkAu extended the graphs “isomorphi-
cally” by solving Problem 4.

Furthermore, the KM algorithm uses only edge addition operation. HAkAu
employs edge addition and edge deletion operations, leading to better preservation
of the degree distribution, which is documented with experimental results in
Section 7.5.2. It also leads to the improvement of the procedure of adding crossing
edges. The KM algorithm puts back all crossing edges and all their copies. On
the other hand, HAkAu adds a crossing edge and its copies only when adding
them causes fewer edge edits than not, or the crossing edge was significant in
the structure of G. Thus, HAkAu adds fewer edges in the adding crossing edges
procedure than the KM algorithm.

Both algorithms need to find the frequent subgraph with the given minimal
support several times. The KM algorithm runs the SiGraM algorithm published
[72]. The SiGraM algorithm is based on the grow-and-store method. It stores each
examined subgraph’s appearance, which requires much space and computational
time.
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HAkAu employs a recent GraMi algorithm proposed in [31]. GraMi stores only
the templates of the frequent subgraphs, not the whole subgraphs, and models the
frequency evaluation as the constraint satisfaction problem. The GraMi algorithm
is proven to be faster than the SiGraM algorithm in [31].

7.4 Genetic algorithm
I use the model of the genetic algorithm described in Section 4.7. In this section,
I describe the chromosome representation, fitness and selection function, and how
genetic operators are applied to the used representation.

7.4.1 Chromosome representation
In this section, the novel chromosome representation used in GA is introduced.
The goal of GA is to find k graphs P ′

ij, j := 1, . . . , k, i fixed, that are isomorphic
to each other (line 5 in Algorithm 7). Therefore, in the rest of this section, the
index i is fixed, and indices j, l := 1, . . . , k.

Each individual in GA represents one solution; hence each individual rep-
resents all graphs P ′

ij. For all j, the graph P ′
ij is the supergraph of Pij. I

denote Qij = P ′
ij \ Pij to be the subgraph of P ′

ij with V (Qij) = V (P ′
ij) and

E(Qij) = E(P ′
ij) \ E(Pij) (see Figure 7.3). The graphs Pij are found with Algo-

rithm 8, and they do not change during the run of GA. Thus, GA aims to find
the optimal Qij for each j. Since P ′

ij ⋍ P ′
il and Pij ⋍ Pil, then Qij ⋍ Qil.

Figure 7.3: Subgraphs of P ′
ij. Vertex sets of particular subgraphs

are V (P ′
ij) = {1, 2, 3, 4, 5, 6, 7, 8, 9}, V (Pij) = {1, 2, 3, 4, 6},

V (Qij) = {1, 2, 4, 5, 6, 7, 8, 9}. (Source: co-authored work [97].)

Furthermore, since P ′
ij ⋍ P ′

il, then P ′
i1, . . . , P ′

ik have the same adjacency matrix
(see the example with P ′

i1 and P ′
i2 in Figure 7.4). Let Adji denote the adjacency

matrix of P ′
i1, . . . , P ′

ik. The part of Adji representing edges of Pij is known before
GA is run and corresponds to gf (s) found with GraMi (line 3 in Algorithm 7).
Thus, the part of Adji representing edges of Pij is constant in all possible solutions
of GA and all individuals in all generations. Therefore, to encode the individuals
in chromosomes, it is enough to encode some part of Adji and the ordered lists
of vertices of Qij. Hence, each chromosome consists of two parts

• CH = bits representing elements of Adji
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• varCH = ordered lists of vertices from V (Qi1), . . . , V (Qik)

More precisely, CH represents the elements of Adji corresponding to E(Qij)
and (uij, vij) ∈ E(P ′

ij) : uij ∈ V (Qij) ∧ vij ∈ V (Pij) (see Figure 7.5). The chro-
mosome representation guarantees that each individual corresponds to graphs
P ′

i1, . . . , P ′
ik that are supergraphs of Pi1, . . . , Pik and P ′

ij ⋍ P ′
il. Hence, the repre-

sentation keeps the k-automorphism in the final solution G∗, and it is unnecessary
to check the k-anonymity property during GA processing.

Adjacency matrix of P ′
i1:

1 2 3 4 5 6 7 8 9
1 0 1 1 0 1 0 0 1 0
2 1 0 1 0 0 0 0 1 0
3 1 1 0 1 0 0 0 0 0
4 0 0 1 0 0 1 0 0 0
5 1 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0
8 1 1 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 1 0

Adjacency matrix of P ′
i2:

15 12 17 18 16 14 13 10 11
15 0 1 1 0 1 0 0 1 0
12 1 0 1 0 0 0 0 1 0
17 1 1 0 1 0 0 0 0 0
18 0 0 1 0 0 1 0 0 0
16 1 0 0 0 0 0 1 0 0
14 0 0 0 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0 0
10 1 1 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 1 0

Graph isomorphism F1 : P ′
i1 −→ P ′

i2:
F1(1) = 15 F1(4) = 18 F1(7) = 13
F1(2) = 12 F1(5) = 16 F1(8) = 10
F1(3) = 17 F1(6) = 14 F1(9) = 11

Figure 7.4: Adjacency matrix of isomorphic graphs P ′
i1 and P ′

i2 (k = 2). (Source:
co-authored work [97].)

7.4.2 Fitness function
A fitness function FF (I) evaluates how close the solution represented by the
individual I is to the optimal solution of the problem. The aim of GA in HAkAu
is to find the solution with minimal Cost(G, G∗). GA runs several times in HAkAu
(see line 5 in Algorithm 7). In each run GA finds the optimal graphs P ′

i1, . . . P ′
ik

for fixed i. Thus, minimizing ExCosti(H) in each run of GA is necessary. Except
that, CECost(G, G∗) should be minimized. However, during the particular run
of GA, it is impossible to compute CECost(G, G∗) properly since the decision,
whether to add a crossing edge in G∗ or not, is made after all runs of GA.
CECost(G, G∗) is directly proportional to the number of crossing edges between
V (P ′

ij) and other nodes of H. Hence, the number of crossing edges is minimized
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Adji 1 2 3 4 5 6 7 8 9
1 0 1 1 0 1 0 0 1 0
2 1 0 1 0 0 0 0 1 0
3 1 1 0 1 0 0 0 0 0
4 0 0 1 0 0 1 0 0 0
5 1 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0
8 1 1 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 1 0

Adji 15 12 17 18 16 14 13 10 11
15 0 1 1 0 1 0 0 1 0
12 1 0 1 0 0 0 0 1 0
17 1 1 0 1 0 0 0 0 0
18 0 0 1 0 0 1 0 0 0
16 1 0 0 0 0 0 1 0 0
14 0 0 0 1 0 0 0 0 0
13 0 0 0 0 1 0 0 0 0
10 1 1 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 1 0

CH = 00010 000010 1100000 00000001
varCH = 6 7 8 9 14 13 10 11
Whole chromosome: 00010000010110000000000001 6 7 8 9 14 13 10 11

Figure 7.5: Chromosome representation for k = 2. The part of Adji representing
E(Pij) is highlighted with red (dark) colour, and the part of Adji representing
E(Qij) is highlighted with green (light) colour. The part of Adji in the black
tetragon makes the bit part of the chromosome CH. The bits are taken in
columns. Ordered lists of nodes from V (Qi1) and V (Qi2) makes varCH. (Source:
co-authored work [97].)

instead of minimizing CECost(G, G∗) in GA. Thus, the fitness function of the
individual I is defined as the two-tuple

FF (I) =
[︂
nCE(H, I); ExCost(H, I)

]︂
where ExCost(H, I) means ExCosti(H) and nCE(H, I) means the number

of crossing edges between P ′
ij and H, j := 1, . . . , k, i fixed, where P ′

ij are con-
structed according to the individual I. Referring to the line 6 in Algorithm
7, nCE(H, I) = |Ci|. If two values FF (I1) and FF (I2) are compared in GA,
then

FF (I1) ≤ FF (I2)

if nCE(H, I1) < nCE(H, I2)
or nCE(H, I1) = nCE(H, I2) ∧ ExCost(H, I1) ≤ ExCost(H, I2)

The number of crossing edges has more weight while comparing FF values.
It has three reasons. Firstly, the aim of GA is to search for the expansion of
subgraphs found with GraMi. Why are the subgraphs Pij found with GraMi not
used? By the expansion of Pij, CECost(G, G∗) is reduced significantly. Thus,
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the focus is to minimize CECost(G, G∗) as much as possible during GA runs.
Moreover, it has been experimentally found that ExCost(H, I) is much smaller
than nCE(H, I). Finally, if one crossing edge is added in G∗, other k − 1 copies
must be added in G∗ to keep G∗ k-automorphic. On the other hand, increasing
ExCost(H, I) by one corresponds only to the single change in G∗.

7.4.3 Selection function
The selection function chooses individuals from the current population to cre-
ate the next generation. The two-step selection function is proposed. Let N be
the number of requested parents. In the first step, 2N individuals are selected
from the whole current population using the roulette wheel selection where the
expectations are computed with nCE(H, I). In the second step, N parents are
selected from the 2N chosen individuals using tournament selection where expec-
tations are computed with ExCost(H, I). The definitions of the roulette wheel
and tournament selection functions are omitted with reference to [58].

7.4.4 Genetic operators
The usual genetic operations are used: crossover and mutation. Crossover com-
bines two parent individuals I1 and I2 into a single child individual I1+2. Let
CH1, CH2 and CH1+2 be the bit parts of chromosomes corresponding to I1, I2
and I1+2 respectively and varCH1 , varCH2 and varCH1+2 be the “node” parts
of chromosomes corresponding to I1, I2 and I1+2 respectively. CH’s and varCH’s
are crossed over separately.

The two-point crossover is applied on CH1 and CH2 [58]. CH1 and CH2 have
the same length lCH . Select two random integers a, b ∈ (1; lCH). The bit part of
the child individual CH1+2 gets 1st, . . . , a-th bit from CH1, (a + 1)-th, . . . , b-th
bit from CH2 and (b + 1)-th, . . . , lCH-th bit from CH1 (see Figure 7.6).

0001000|0010110000|000000001

a b

CH1 1101010|0110110001|100101101

a b

CH2

0001000|0110110001|000000001CH1+2

6 | 7 |89 14 | 13 |1011

c d c d

varCH1 10 |18 | 22 1 7 |25 | 15 16

c d c d

varCH2

61889 14251011varCH1+2

Figure 7.6: Crossover operation in GA. (Source: co-authored work [97].)

Before varCH1 and varCH2 are crossed over, varCH1 and varCH2 are cut
into k segments corresponding to Qi1, . . . , Qik. The two-point crossover is applied
to every segment. The i-th segment of varCH1 is crossed with the i-th segment of
varCH2, i = 1, . . . , k. Select two random integers c, d between 1 and the length
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of the segment. Then all segments are crossed at the same points corresponding
to c and d (see Figure 7.6).

The probability that an individual is mutated is given by the mutation rate.
Then it is randomly decided whether CH or varCH is mutated. When CH
is mutated, one random bit is reversed in CH. When varCH is mutated, one
random vertex from varCH is replaced with a new one.

7.4.5 Selecting new vertices proportionally to their degree
If it is necessary to add a new vertex in varCH, then the vertex is selected from
the set of unused vertices V (H) \ V (P ′

ij), i fixed, j = 1, . . . , k. There are three
situations when vertices are added to varCH:

• Creating initial population. The bit parts of chromosomes CH are gen-
erated randomly. The vertices are added one by one to varCH from the
unused vertices.

• When CH1 and CH2 are crossed over, Adji corresponding to CH1+2 can
lead to graphs with more vertices than the parents’ graphs. Hence, adding
new vertices to varCH1+2 is necessary. Similarly, CH after mutation can
lead to a graph with more vertices.

• varCH is mutated.

Selecting new vertices proportionally to their degree reduces nCE(H, I). The
bit string CH is usually spare after several generations of GA. Most vertices in
varCH are connected to Pij with a single edge. Hence, their other edges become
crossing edges. The fewer links the vertices in varCH have, the fewer crossing
edges are produced. Thus, a stochastic selection method where the probability
of selecting the vertex is proportional to its degree is employed. More precisely,
the new vertex to varCH is chosen with roulette selection where expectations
are computed with the metric 1

deg(v) , where deg(v) is the vertex’s degree.

7.4.6 Complexity
As mentioned in Section 4.7, the complexity of GA is determined by the com-
plexity of the fitness function, selection function and reproduction operators. Let
lCH be the length of the chromosome. Since the crossover operation is linear in
lCH , its complexity is in O(lCH). The mutation is in O(1). Let n denote the
number of individuals in one generation. The roulette wheel selection is in O(n)
as mentioned [83]. The tournament selection is also in O(n) as mentioned [129].

The complexity of the fitness function is determined by the complexity of
compiling graphs P ′

ij (j = 1, . . . , k, i fixed) from the chromosome and the com-
putations of ExCost and nCE. Compiling all graphs P ′

ij takes O(k · lCH) times
since j = 1, . . . , k. Computing ExCost for a single P ′

ij requires considering all
its edges and all edges linking its vertices with the rest of the graph. Thus, the
complexity of ExCost is in O(|V (P ′

ij)| · mij), where mj = maxv∈V (P ′
ij) deg(v).

Computing nCE for a single P ′
ij requires also considering all edges linking ver-

tices from V (P ′
ij), thus its complexity is also O(|V (P ′

ij)| · mj). Computing both

92



metrics for all graphs P ′
ij (j = 1, . . . , k, i fixed) takes O(k · |V (P ′

ij)| · M), where
M = maxj=1,...,k mj. Since lCH < 1

2 |V (P ′
ij)|2, then the total complexity of the

proposed fitness function is in

O(k · lCH + k · |V (P ′
ij)| · M) = O(k · |V (P ′

ij)|2 · M).

Considering the formula for the complexity of GA in Section 4.7, where g is the
number of generations, the total complexity of the proposed GA is in

O(n · lCH + g · n · (n + k · |V (P ′
ij)|2 · M + lCH)) = O(g · n · (n + k · |V (P ′

ij)|2 · M)).

7.5 Experimental results
This section presents the results of accomplished experiments with real-world
networks. All experiments were performed on a Windows 10 operating system
PC with 8 GB RAM and a 3.2 GHz processor. The programs were written in
Matlab 9.7.0.1261785 (R2019b). The implementation is included in the attached
CD, and the overview of corresponding MATLAB files is given in Attachment
B. The used implementation of the GraMi algorithm is available at [30]. The
evaluation tool SecGraph is available at [59].

7.5.1 Tested datasets and parameter setting
HAkAu was tested on three real-world datasets of different sizes that are free
to use: Prefuse [50], Polblogs [2] and Wiki-Vote [80]. Three kinds of results
are produced. At first, HAkAu is compared with the KM algorithm. I pro-
vide the comparison on the Prefuse dataset since the results of KM on Prefuse
were presented in [163]. Then, data utility measurement is provided on all three
datasets. Finally, I tested the resistance against deanonymization attacks. Since
the Prefuse dataset was too small to accomplish this testing, results are provided
only on Polblogs and Wiki-Vote.

Both tested datasets and the parameter settings were chosen with respect to
the computation capabilities of the single PC and the fact that the computation
had to be repeated at least ten times for each parameter setting since the algo-
rithm is non-deterministic. The largest tested dataset was the Wiki-Vote network
with 7,115 nodes. Depending on the other parameters, a single run of the HAkAu
algorithm on the Wiki-Vote network takes between 4.5 and 9.1 hours. Hence, the
computation takes more than 90 hours in the most demanding case.

The minimal support s = 2k in all experiments. The parameter setting of
GA is based on the computation capabilities of a single PC and the limitations
of MATLAB. The genetic algorithm ran in two phases. At first, it created a
population of 1,000 individuals and ran for 20 generations. Then, it picked the
20 best individuals with respect to the fitness function and ran for 100 generations.
In both phases, the cross-over operation was applied to all individuals, and the
mutation rate equals 2%.

Moreover, each time the mutation should be applied, the algorithm flips the
coin to decide whether to mutate CH or varCH in the chromosome. The best
individual from each generation survived for the next generation. In other words,
the elite count equals 1. The initial population in the first phase of GA was
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generated randomly. However, each time the new vertex should be selected from
the set of unused vertices, it is chosen with the roulette selection proportionally
to its degree.

All chromosomes in all generations had the same length, which depended on
the anonymization parameter k and the number of unused nodes nn = |V (H)| −∑︁

j=1m |V (Pij)|. Hence, varCH equaled to the list of ⌊nn
k

⌋ nodes and CH was the
bit string of the length equalling |varCH|2 + ∑︁|varCH|

i=1 1 (the formula is deduced
from the proposed representation see Figure 7.5).

It was experimentally found that the acceptable solution contains a lot of
zeros, and the number of vertices in the acceptable solution was smaller than
|varCH|. Thus, the starting chromosome length has been reduced to one-third
for the largest Wiki-Vote network. The reduction gave even more importance
to selecting new vertices proportionally to their degree while creating the initial
population.

7.5.2 The comparison of HAkAu and KM algorithm
The performance of the HAkAu algorithm is compared with the performance of
the original k-automorphism algorithm KM algorithm. To compare the produced
results with the ones presented by [163], experiments were run on the Prefuse
dataset with the anonymization parameter k ∈ {5, 10, 15, 20} and the following
network metrics in the anonymized network were computed: average clustering
coefficient ACC(G∗), average shortest path length APL(G∗) and the total degree
difference. The total degree difference equals the sum of the difference between
the node degree in the original graph and its degree in the anonymized one.

Since HAkAu is a non-deterministic algorithm, it was run ten times on each
parameter setting. The experimental results are shown in Figure 7.7. There is
the mean of the ten metric values and the metric value of the best run.

The clustering coefficient describes how well the neighbourhood of a node is
connected. If it is fully connected, the clustering coefficient is 1, whereas a value
close to 0 implies hardly any connection [65]. Hence, when k is larger, more
edges are added by HAkAu, and ACC increases on average. However, in the best
case, the algorithm can compile an anonymized graph with ACC very close to
the original network. Interestingly, the ACC values of KM get lower with larger
k even though KM only adds edges.

While the original graph is modified by adding edges, the distance between
each pair of nodes is reduced (see Figure 7.7b). If k ≥ 15, the GraMi algorithm
finds no frequent subgraph appearing at least 15 times in the original graph of the
Prefuse network since the dataset is small. Hence, the subgraphs P1,1, . . . , P1,15
inputting GA are only isolated vertices selected randomly.

The experiments show that the fitness function could be designed to keep the
APL property better. If APL was the critical property that had not changed
during the anonymization process, then the fitness function would have to be
modified to consider distances between vertices.

The total degree difference is significantly lower while applying HAkAu. Using
edge deletion operation in the procedure of adding crossing edges decreases the
amount of added edges and the final degree of all nodes.
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Figure 7.7: Comparison of HAkAu and KM algorithm while anonymizing Prefuse
network with the anonymization parameter k ∈ {5, 10, 15, 20}. (Source: co-
authored work [97].)

7.5.3 Data utility measurement
The HAkAu algorithm was further evaluated in preserving other network and
application metrics. Three real social networks were anonymized with HAkAu,
and the anonymized networks were evaluated using the SecGraph tool [60, 59].

The following methodology of experiments was used. The dataset and the
anonymization parameter were selected: D ∈ {Prefuse, Polblogs, Wiki-Vote},
k ∈ {5, 10, 15, 20}. HAkAu was run ten times on D with k. Utility metrics were
measured in all ten output graphs by the SecGraph utility module, and the mean
value of each metric is shown in Table 7.1. The dataset D was further anonymized
using three schemes from the SecGraph anonymization module and the heu-kDA
algorithm proposed in the previous chapter. The anonymization methods selected
from the SecGraph tool are k-degree anonymization method k-DA [84] with the
anonymization parameter k and clustering methods tMean and Union [141] with
parameter t = k. Since those algorithms are deterministic, they ran once on each
parameter setting. Utility metrics were measured in the graphs anonymized with
k-DA, heu-kDA, tMean and Union as well (see Table 7.1). The values in the table
describe how each metric is preserved in the anonymized graph compared to the
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original one. The methodology of how SecGraph computes the metrics is given
in Section 4.2. Due to the space limits, Table 7.1 contains only metric values for
k = 15; all results are included in Attachement A.

As we see in the next section, HAkAu offers a much higher level of security
than other algorithms. Since deanonymization attacks exploit structural metrics,
keeping a high level of protection is paid with worse data utility preservation. The
metrics affected the most by HAkAu anonymization are metrics based on the de-
gree of nodes, like degree and joint degree distributions (Deg., JD).Communities
in the graph are also heavily altered with HAkAu, which was proved by the low
values of the community detection metric (CD).

On the other hand, HAkAu is best in preserving infectiousness (Infe.) in 9
parameter settings (Prefuse: k = 10, Polblogs for all k, Wiki-Vote for all k) and
page rank (PR) in 6 parameter settings (Prefuse for all k, Polblogs: k ∈ {5, 15}).
Both metrics are centrality metrics that can identify influential users in the graph.

The PR metric measures the importance of each node within the graph based
on the number of links and the importance of the linked nodes. Thus, the im-
portance of nodes is preserved while HAkAu modifies the edge set. The final
k-isomorphism tend to map important nodes to each other. Preserving infec-
tiousness indicates that the communication channels in the anonymized network
are kept very well even though the graph structure is changed significantly by
HAkAu.

Since HAkAu is non-deterministic, the metric values varied in ten anonymized
networks with the same parameter settings obtained in ten runs. The coefficient
of variation was lower in the metrics values that HAkAu better preserved. Except
for JD and CD metrics, the coefficient of variation was up to 10%. Furthermore,
the coefficient of variation was lower in larger networks.

7.5.4 Resistance to deanonymization attacks
In this section, HAkAu is shown to be resistant to deanonymization techniques,
and the resistance is guaranteed in every algorithm run. The methodology of ex-
periments is similar to the one utilized in the previous measurement. The dataset
and the anonymization parameter were selected: D ∈ {Polblogs, Wiki-Vote},
k ∈ {5, 10, 15, 20}. The HAkAu was run ten times on each parameter setting,
and each output network was attacked with three deanonymization algorithms
implemented in SecGraph: Narayanan-Shmatikov’s attack (NS) [104], Yartseva-
Grossglauser’s attack (Per.) [154] and Korula-Lattanzzi’s attack (Rec.) [68]. The
results are given in Table 7.2.

These seed-based passive attacks employ the structural similarity between
the anonymized and auxiliary graphs to break the anonymity. The input of
their procedures is the anonymized network G∗, auxiliary network Gaux and seed
mapping s. The network Gaux is a fraction of the original network gained by the
attacker before the passive attack. The seed mapping s is the mapping that links
some nodes from Gaux with the ones in G∗. In the experiment, Gaux was sampled
randomly with the probability of 90% from the original network. The seed s was
set as 50 links between randomly selected nodes from Gaux and G∗.

The output of deanonymization procedures in SecGraph is the ratio of suc-
cessfully deanonymized users. The results are given in percentages in Table 7.2.
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The HAkAu values are the average ratios in the ten runs with the same parameter
settings. I also tested the graphs anonymized with k-DA, heu-kDA, tMean and
Union.

All results prove that the security level of the HAkAu algorithm is much higher
than the security level of other tested algorithms. In the Wiki-Vote network, the
percentage of deanonymized users was up to 1% for all k. The resistance level
is the same for all k values in both networks. The k-automorphism approach
achieves better resistance against attacks compared to k-degree and clustering
methods.

Although HAkAu is non-deterministic, the percentage of deanonymized users
did not vary in the ten runs with the same parameter settings. The coefficient
of variation within the ten runs was up to 4% in all cases, except the instance
with D =Wiki-Vote and k = 10, where the coefficient of variation equals 10%.
However, the level of security was the same since the best value equalled 0.85%
and the worst one to 1.09% when D =Wiki-Vote and k = 10.

Let me compare k-DA, and heu-kDA in resistance against deanonymization
attacks since this topic was omitted in Chapter 6. Both algorithms have similar
resistance levels since they are both based on the same anonymization approach
(k-degree anonymity). Both algorithms are very vulnerable against NS and Rec.
attacks. The proposed heu-kDA is a bit more resistant against NS attack while
k-DA is slightly better in resisting against Rec.. Both algorithms are better at
resisting against Per.. It also holds for the tested clustering algorithms. Union
and tMeans achieved a higher level of resistance while facing Per. then NS or
Rec.. On the other hand, HAkAu achieved the same level of resistance to each
tested deanonymization algorithm.

7.6 Discussion
In this chapter, the novel k-automorphism anonymization algorithm HAkAu was
introduced. The HAkAu algorithm improves the previously published KM algo-
rithm by employing the genetic algorithm and edge deletion operation.

The employment of GA in the k-automorphism method enables the reduction
of two NP-hard problems into a single one. In the KM algorithm, the isomorphic
graphs were found, then extended so that the isomorphism was lost, and then
it was necessary to make them isomorphic again. HAkAu makes the process
more efficient by extending the isomorphic subgraphs “isomorphically” with GA.
Hence, the algorithm solves only one NP-hard problem instead of two.

The comparison of KM and HAkAu is limited since only two structural metrics
and the total degree difference are measured in [163]. The total degree difference
is significantly lower while applying HAkAu. Using edge deletion operation in the
procedure of adding crossing edges decreases the amount of added edges and the
final degree of all nodes. The application of edge deletion operation was enabled
by improving the design of the k-automorphism algorithm.

Data utility measurement demonstrated that HAkAu does not exceed in pre-
serving all utility metrics; however, it keeps Page Rank and Infectiousness very
well. Both metrics are centrality metrics that can identify influential users in the
graph. Thus, the importance of nodes is preserved in the network anonymized by
HAkAu. The final k-automorphism maps important nodes to each other. Preserv-
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ing infectiousness indicates that the communication channels in the anonymized
network are kept very well even though the graph structure is changed signifi-
cantly by HAkAu.

The k-automoprhism method was designed to protect against any structural
attack; however, its actual resistance against deanonymization methods has not
yet been proven. The presented experiments demonstrate that HAkAu is resistant
well, unlike other tested algorithms. It proves that the k-automorphism approach
provides a higher level of security than other solutions. Moreover, HAkAu delivers
the same level of resistance for all kinds of tested attacks and all values of the
anonymization parameter.

Summarize the above findings and answer Question 3. Applying GA, em-
ploying edge deletion operation and the novel adding crossing edges operation
improves the k-automorphism approach in data utility preservation. Moreover,
the proposed algorithm was proven to be resistant to deanonymization attacks.
Providing the resistance disables the ability to keep all utility metrics well. How-
ever, the experiments showed that even the algorithm providing a high level of
protection could preserve some metrics better than other solutions. It supports
the idea of implementing a framework for application-oriented anonymization
where the input data are modified with respect to specific metrics chosen by the
data recipient [96].
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8. Conclusion
This thesis focused on the privacy-preserving issue in publishing social network
datasets called the identity disclosure problem. It introduced anonymization
as the practical approach enabling providers to publish their datasets and pre-
serve users’ privacy at the same time. The thesis started with a comprehen-
sive literature review on anonymizing social network datasets, emphasizing k-
anonymization methods based on edge editing. Then, three open problems in
this field were identified, and the objectives of the thesis were introduced.

The first goal was to show that social network datasets could be vulnerable
to composition attacks. So far, the composition attack was presented only as
a privacy threat against relational datasets. The composition attack algorithm
was proposed and tested on a set of synthetic scale-free networks to solve this
issue. Its capability to correctly find 20-30% of corresponding vertices proved
that attacks of this kind could threaten privacy in social network datasets similar
to relational datasets.

The second issue was improving the noise addition method in the well-known
k-degree anonymization algorithm. The novel heuristic approach was based on
the power-law degree distribution of social networks. By running experiments
on the set of real social network datasets, it was proved that the version of
the algorithm employing the proposed procedure was feasible and improved the
algorithm in terms of preserving data utility.

Finally, the thesis focused on the k-automorphism method. Since modify-
ing the original dataset to the k-automorphism one includes addressing NP-hard
subtasks, the proposal of a genetic algorithm was part of the solution. More-
over, except for the main contribution, proposing and implementing the hybrid
k-automorphism anonymization algorithm, the novel chromosome representation
and the procedure for finding the subset of vertex-disjoint graphs were intro-
duced. The hybrid algorithm was experimentally proved to preserve some network
metrics better than the original solution. Compared with other state-of-the-art
anonymization techniques, the algorithm exceeded in resisting deanonymization
attacks.

In producing the experimental results, the focus was made on their compara-
bility. The aim was to present results so that any researcher in the future could
easily compare their results with the presented ones. Hence, the external eval-
uation tool SecGraph was used for measuring the data utility of anonymization
methods and their resistance against deanonymization attacks. Moreover, while
employing SecGraph, the input dataset to the anonymization process was always
the whole dataset available online since if only some subset of an available dataset
was used, other researchers could not determine which subset it was.

The findings addressing the third research question highlight several new av-
enues that could be explored in future studies. Implementing the HAkAu al-
gorithm can be further improved with more sophisticated parameter settings
in the genetic algorithm. Estimating the optimal running strategy could raise
the quality of the search process and the found results. The proposed chro-
mosome representation can be applied to other genetic algorithms dealing with
anonymization tasks. The possibility of exploiting the representation in other
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tasks handling graphs can also be explored. Similarly, the procedure for finding
the vertex-disjoint subgraphs has the potential for broader application.

This thesis’s findings prove, similarly to some other recent results, that the
proposal of the robust and universal anonymization method providing a high
level of security and preserving all data utility well is a nearly impossible task.
When a method is improved in terms of preserving data utility, it is less resistant
to attacks. On the other hand, even methods providing high-level security can
keep some metrics well, like HAkAU, that preserves infectiousness and page rank.
Thus, I find application-oriented anonymization the promising research direction
in this field. This approach is based on the idea that the anonymization method
is not required to preserve all data utility but only data utility specified by the
data recipient. Therefore, it enables to apply of techniques that provide high-level
security but preserve only some metrics. Since evaluation tools play an essential
role in this approach, comparing the two recently published tools, SecGraph and
DUEF-GA, is also an interesting research challenge.
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anonymity and edge selection: Improving data utility in large networks. Knowl
Inf Syst, 50(2):447–474, 2017. doi: 10.1007/s10115-016-0947-7.

[21] Jordi Casas-Roma, Jordi Herrera-Joancomart́ı, and Vicenç Torra. A survey of
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[96] Jana Medková and Josef Hynek. Application-oriented framework for social net-
work datasets and IoT environments. In Accepted for the publication in Proceed-
ings of the 15th International Conference, SecITC 2022. Springer.

108

https://www.mathworks.com/products/global-optimization.html
https://www.mathworks.com/products/global-optimization.html
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A. Additional experimental
results
This attachment contains tables describing the results of data utility measurement
with the SecGraph evaluation tool. This measurement was made for heu-kDA
and HAkAu algorithms in Chapter 6 and Chapter 7 respectively. Because of
the extent of the complete results, only the tables describing the results for the
anonymization parameter k = 15 were included in the text, and the full results
are presented here.

A.1 Data utility measurement for heu-kDA

Polblogs Wiki-Vote Caida

k=5 k-DA heu-kDA k-DA heu-kDA k-DA heu-kDA

AS 0.872 0.998 0.847 0.996 0.563 0.913
BC 0.973 0.972 0.951 0.970 0.944 0.943
CC 1.000 1.000 1.000 1.000 0.992 1.000
CD 0.999 0.915 0.917 1.000 0.308 0.676
Deg. 0.997 0.999 0.993 0.998 0.978 0.981
ED 0.896 1.042 1.012 1.010 0.873 0.982
EV 0.982 0.999 0.993 0.998 0.914 0.950
HS 0.849 1.000 0.891 0.999 0.593 0.899
Infe. 0.901 0.913 0.827 0.800 0.714 0.774
JD 0.520 0.538 0.653 0.652 0.628 0.258
LCC 0.988 0.998 0.998 0.998 0.938 0.955
NC 1.000 1.000 1.000 1.000 1.000 1.000
PR 0.481 1.000 0.648 0.995 0.342 0.951
RX 0.337 0.000 0.867 0.000 0.259 0.000

Table A.1: Heu-kDA: utility measurement for k = 5. (Source: author’s work.)
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Polblogs Wiki-Vote Caida

k=10 k-DA heu-kDA k-DA heu-kDA k-DA heu-kDA

AS 0.856 0.987 0.839 0.993 0.495 0.869
BC 0.966 0.934 0.902 0.933 0.883 0.849
CC 0.999 1.000 0.999 1.000 0.997 0.999
CD 0.991 0.898 0.915 0.948 0.232 0.583
Deg. 0.989 0.995 0.983 0.995 0.920 0.936
ED 0.979 0.976 1.014 1.025 0.872 1.093
EV 0.965 0.995 0.987 0.995 0.830 0.924
HS 0.827 0.998 0.888 0.997 0.530 0.816
Infe. 0.893 0.861 0.768 0.797 0.696 0.575
JD 0.286 0.273 0.456 0.445 0.514 0.197
LCC 0.965 0.982 0.993 0.999 0.915 0.964
NC 1.000 0.998 0.999 1.000 0.999 1.000
PR 0.487 0.999 0.628 0.990 0.334 0.902
RX 0.339 0.000 0.883 0.000 0.250 0.000

Table A.2: Heu-kDA: utility measurement for k = 10. (Source: author’s work.)

Polblogs Wiki-Vote Caida

k=15 k-DA heu-kDA k-DA heu-kDA k-DA heu-kDA

AS 0.849 0.960 0.834 0.987 0.491 0.789
BC 0.904 0.908 0.885 0.910 0.838 0.734
CC 0.999 1.000 0.999 1.000 0.996 0.999
CD 0.857 0.888 0.838 0.868 0.067 0.549
Deg. 0.977 0.990 0.965 0.991 0.847 0.887
ED 0.955 0.956 0.982 1.004 0.817 0.985
EV 0.957 0.984 0.977 0.991 0.807 0.867
HS 0.814 0.984 0.876 0.993 0.470 0.676
Infe. 0.914 0.886 0.848 0.805 0.700 0.719
JD 0.232 0.110 0.318 0.304 0.487 0.141
LCC 0.955 0.984 0.988 0.998 0.887 0.938
NC 0.998 1.000 1.000 1.000 0.999 1.000
PR 0.518 0.996 0.607 0.945 0.309 0.803
RX 0.335 0.000 0.757 0.000 0.245 0.000

Table A.3: Heu-kDA: utility measurement for k = 15. (Source: author’s work.)
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Polblogs Wiki-Vote Caida

k=15 k-DA heu-kDA k-DA heu-kDA k-DA heu-kDA

AS 0.843 0.953 0.821 0.983 0.473 0.713
BC 0.928 0.879 0.855 0.885 0.764 0.733
CC 0.999 1.000 0.999 1.000 0.995 0.999
CD 0.848 0.922 0.650 0.878 0.047 0.544
Deg. 0.969 0.985 0.951 0.989 0.801 0.854
ED 0.951 1.040 0.970 0.990 0.718 0.963
EV 0.945 0.977 0.971 0.987 0.789 0.823
HS 0.796 0.980 0.875 0.988 0.456 0.570
Infe. 0.893 0.865 0.846 0.795 0.776 0.804
JD 0.131 0.120 0.228 0.262 0.467 0.147
LCC 0.958 0.984 0.984 0.998 0.859 0.941
NC 1.000 1.000 1.000 1.000 0.998 1.000
PR 0.493 0.997 0.584 0.972 0.351 0.874
RX 0.341 0.000 0.730 0.000 0.224 0.000

Table A.4: Heu-kDA: utility measurement for k = 20. (Source: author’s work.)

Polblogs Wiki-Vote Caida

k=15 k-DA heu-kDA k-DA heu-kDA k-DA heu-kDA

AS 0.821 0.916 0.798 0.948 0.442 0.574
BC 0.854 0.797 0.826 0.824 0.507 0.627
CC 0.999 0.999 0.998 1.000 0.994 0.998
CD 0.386 0.753 0.684 0.910 0.054 0.482
Deg. 0.932 0.966 0.905 0.976 0.575 0.727
ED 0.887 1.049 0.999 0.990 0.776 0.994
EV 0.925 0.960 0.942 0.967 0.691 0.746
HS 0.784 0.972 0.843 0.960 0.356 0.457
Infe. 0.904 0.909 0.867 0.817 0.743 0.591
JD 0.071 0.021 0.105 0.105 0.444 0.096
LCC 0.916 0.939 0.959 0.997 0.824 0.927
NC 0.994 0.988 1.000 1.000 0.998 1.000
PR 0.454 0.994 0.528 0.928 0.266 0.809
RX 0.337 0.000 0.572 0.000 0.209 0.000

Table A.5: Heu-kDA: utility measurement for k = 50. (Source: author’s work.)

A.2 Data utility measurement for HAkAu
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B. Supplementary material
The disc attached to this work contains the full text of the doctoral thesis and the
MATLAB code of the proposed composition attack and anonymization methods
heu-kDA and HAkAu. Used external tools and input data for testing are also
included. The SecGraph evaluation tool is not included with reference to [59].
The content of the disc has the following structure:

Thesis - includes the pdf file with the thesis text.

SNdatasets - includes three text files with SN datasets for testing

• prefuse edges.txt - the edge set of the Prefuse dataset [51]

• polblogs edges.txt - the edge set of the Polblogs dataset [2]

• Wikivote edges.txt - the edge set of the WikiVote dataset [80]

CompAttack - includes output files, *.m files with the MATLAB code of the
composition attack, UTD anonymization toolbox [142], MATLAB implementa-
tion of BA model [38] and auxiliary files

• input - excel files with attribute tables UA for input dataset that will be
generated with BA model

• output - output files with results

• pom - auxiliary files

• workflow.m - the main file that should be run to perform the attack. At
the beginning of this file, the user sets the input parameters.

• A graph gen.m - runs SFNG and anonymization functions from the UTD
toolbox to generate two graphs representing SN datasets. The attribute
tables aNT1, aNT2 have to be set in this file.

• BB processing.m - the preprocessing stage

• C composition.m - the composition attack

• D reducing.m - reducing the cardinality of the output set

• E postreducing.m - the postprocessing stage

• F results.m - producing results

• G writeresults.m - exporting results

• H rocg.m - ROC analysis

• SFNG.m - the main function from B-A model [38]

• CNet.m - the auxiliary function from B-A model [38]
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• PLplot.m - the auxiliary function from B-A model [38]

• anonymization.bat - the executable file starting the anonymization with
UTD toolbox [142]

• *.jar, *.bat, sqlite.dll, config.xml, original config - UTD toolbox [142]

HeukDA - includes output files, *.m files with the MATLAB code of the heu-
kDA and auxiliary files. Before the procedures are executed, SNdatasets folder
has to be added to the path in MATLAB.

• output - output files with results

• output datasets - output files with anonymized graphs

• heu worklow.m - the main file that should be run to anonymize the input
dataset with heu-kDA. At the beginning of this file, the user sets the input
parameters.

• heu anonym.m - the anonymization procedure

• heu edgeedit.m - the edge editing procedure

• heu edgeswitch.m - the edge switching procedure

• heu getgreedy.m - finding the degree sequence of the input graph

• heu greedyedit.m - the high-degree node noise addition procedure

• heu GVmeasures.m - data utility measurement in both input and output
graphs

• heu smallGVmeasures.m - data utility measurement only in the output
graph

• resultstoexcel.m - exporting results

• avg cc.m - the computation of the average clustering coefficient

• cc.m - the computation of the clustering coefficient

• distG.m - the computation of the average distance

• transG.m - the computation of the transitivity

• uploadGV.m - importing the input dataset

• GVrandomswitch.m - auxiliary file

• rungreedy2.m - auxiliary file

• getoutput.m - auxiliary file

• setoutput.m - auxiliary file

• greedy2.txt - auxiliary file
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HAkAu - includes output files, *.m files with the MATLAB code of the HAkAu,
the implementation of GraMi algorithm [30] and auxiliary files. Before the pro-
cedures are executed, SNdatasets and HeukDA folders must be added to the
path in MATLAB. The MATLAB Global Optimization Toolbox [92] is required
for the computation.

• input - input to the GraMi algorithm generated with MATLAB code

• output - output files with results and resulting anonymized datasets

• temp - temporary files

• GraMi-master - the implementation of GraMi algorithm [30] customized
to the usage in HAkAu

• test.m - starting the repeated run of HAkAu

• testing.m - one run of HAkAu including preprocessing and postprocessing
stages

• iworkflow ga.m - the workflow of one run of HAkAu

• iworkflow part0.m - setting parameters of HAkAu. At the beginning of this
file, the user sets the input parameters.

• iworkflow part1.m - setting input parameters of GraMi and running it

• iworkflow part2.m - processing the GraMi output and setting the input to
GA

• iworkflow part3.m - running GA. At the beginning of this file, the user sets
the input parameters of GA.

• buildgraphs.m - building graphs from chromosomes

• input2grami.m - preparing the input to GraMi

• makeadjacency.m - making the adjacency matrix from GraMi output

• remfalse.m - removing incorrect rows

• finduniquerows2.m - finding the subset of vertex-disjoint graphs

• doubleselection.m - the selection function in GA

• nonscaling.m - the scaling function. No scaling.

• fitscalingrank2.m - the scaling function. Rank scaling.

• makeTPNodes.m - preparing the list of subgraphs Pi1, . . . , Pim

• icreate popCH.m - creating the initial population

• varlength.m - computing the length of varCH
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• varvaluescoulette.m - the roulette selection for selecting new elements of
varCH

• mymutation.m - the mutation procedure of GA

• mutationCH.m - the mutation of CH

• mutationvarCH.m - the mutation of varCH

• icrossrandomOX.m - the crossover procedure of GA

• inside crossovertwopoint.m - two-point crossover function of CH

• irandomvvOX.m - two-point crossover function of varCH. The crossover is
applied on the whole varCH.

• irandomvvpartOX.m- two-point crossover function of varCH. The crossover
is applied on the parts of varCH representing particular subgraphs sepa-
rately.

• otocpole.m - the auxiliary function

• removemiddle.m - the auxiliary function

• iff.m - the fitness function of GA

• countcosts mat.m - computing ExCost(G, G∗) and CECost from the chro-
mosome

• changeG.m - postprocessing after GA. The subgraphs P ′
i1, . . . , P ′

im are re-
moved from the graph H.

• prepare2nextGA.m - postprocessing after GA. Crossing edges and subgraphs
P ′

i1, . . . , P ′
im are exported.

• checkvarCH.m - the auxiliary function

• makematrix.m - building P ′
i1, . . . , P ′

im from Pi1, . . . , Pim and the chromosome

• results2excel.m - exporting results after one run of GA

• write2file.m - the auxiliary function

• restnodes2izo.m - modifying V (H) after all runs of HAkAu to isomorphisms

• crossing.m - adding crossing edges into the resultant graph

• crossing degree.m - adding crossing edges into the resultant graph. This
version is based on the nodes’ degree.

• fullresults2excel.m - exporting results at the end of HAkAu

• heu measures.m - computing network metrics of the output graph

• clusteringcoef.m - the computation of the clustering coefficient
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• makeauxiliary.m - making the auxiliary graph for testing the resistance
against deanonymization attacks

• setGlobalx.m - the auxiliary file

• getGlobalx.m - the auxiliary file

• setfreq.pl - setting input parameters to GraMi according to the input pa-
rameters of HAkAu

• uploadrelax.pl - postprocessing after the run of GraMi. The user should
change the paths in this file.
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