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Abstract: The thesis addresses the identity disclosure privacy problem in pub
lishing social network datasets. It introduces the topic of anonymization, focusing 
on its application on social network datasets. The author reviews the state-of-the-
art anonymization and deanonymization methods and detects three open prob
lems in this field. This thesis aims to solve the detected problems and answer 
the formulated research questions by proposing new procedures and algorithms, 
their implementation i n the M A T L A B programming platform and testing them 
on sets of synthetic and real-world social network datasets. The author presents 
the composition attack as a novel threat to social network datasets. Moreover, the 
well-known /c-degree anonymization algorithm is improved wi th the novel heuris
tic high-degree noise addition procedure. Finally, the author employs the genetic 
algorithm principles in the /c-automorphism anonymization approach to develop 
a hybrid algorithm for fc-automorphism anonymization. A significant aspect of 
the evaluation process is to verify the results on relevant data and to provide 
outputs that are easily comparable with other researchers. For this reason, the 
evaluation tool SecGraph is used to measure data ut i l i ty and the vulnerability of 
anonymization methods to deanonymization attacks. 

Keywords: privacy, anonymization, social networks, genetic algorithm, graph 
theory 

Abstrakt: Disertační práce se zabývá problémem reidentifikace uživatelů při 
zveřejňování databází sociálních sítí. Představuje anonymizaci a její aplikaci na 
databáze sociálních sítí. Autorka prezentuje dosud publikované anonymizační a 
deanonymizační metody a stanovuje tři otevřené problémy v této oblasti. Cílem 
práce je vyřešit dané problémy a odpovědět na formulované výzkumné otázky 
navržením nových metod a algoritmů, jejich implementací v programovací plat
formě M A T L A B a jejich testováním na syntetických a reálných datech. Autorka 
ukazuje, že kompoziční útok, který byl dříve představen jako informační hrozba 
pro relační databáze, může být aplikován i na databáze sociálních sítí. Dále 
autorka navrhuje novou heuristickou metodu přidávání šumu do dobře známého 
fc-stupňového anonymizačního algoritmu. Nakonec prezentuje využití principů 
genetických algoritmů v /c-automorfní anonymizační metodě a navrhuje hybridní 
fc-automorfní anonymizační algoritmus. Důraz je kladen na testování algoritmů 
na relevantních datech a produkci výstupů, které jsou snadno porovnatelné s 
výsledky jiných výzkumů. Z tohoto důvodu je použit ohodnocovací nástroj 
SecGraph k měření užitečnosti dat či zranitelnosti anonymizačních metod vůči 
deanonymizačním útokům. 

Klíčová slova: informační bezpečnost, anonymizace, sociální sítě, genetický 
algoritmus, teorie grafů 
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List of notation 

GA social network graph wi th users' attributes 
G social network graph without users' attributes 
G* anonymized social network graph 
G a released social network graph 
Q a structural query 
E(G) the edge set of G 
V(G) the vertex set of G 
U{GA) the set of attributes of GA 
v G V(G) a node of G 
I an user, an individual , an individual in genetic algorithm 
v(I) G V(G) the node representing I in G 
(vi,Vj) G E(G) the edge between nodes Vi and Vj in G 
Ui, uVi r-tuple of attributes associated wi th the user 
Att(GA) the list of attributes associated wi th GA 
~ d the equivalence on V(G): v ~d w deg{v) = deg{w) 
Q(G), Q(G, V) an ^-equivalence class of G 
Qa{G*) an attribute equivalence class of G* 
u(Qa(G*)) the attributes of Qa(G*) 
degciv) degree of the node v in G 
do degree sequence of G 
5Q S degree sequence of G anonymized wi th heu-/cDA using s 
NQ{V) neighborhood of v in G 
NQ(V) ^-neighborhood of v in G 
AVD{G) average vertex degree in G 
APL(G) average shortest path length in G 
LCC(v,G) local clustering coefficient of v in G 
ACCiG) average clustering coefficient of G 
T{G) transit ivity of G 
A d j ( G ) the adjacency matrix of G 
\{G) the largest eigenvalue of G 
k anonymization parameter 
s the modification parameter of heu-/cDA 
rs residue 
fa anonymization function 
L the list of indices 
Fj an automorphisms on G* 
gf(s) a frequent subgraph wi th the minimal support s 
H, Pij subgraphs of G 
P[j supergraphs of 
Qn subgraphs of E{Qij) = E{P£ \ E(PtJ) 
M a matrix 
ri(M) the z-th row of M 
r c ( M ) the number of rows of M 
A d j j the adjacency matrix of P^,..., P'ik 



CH 
varCH 
Cost(G,G*) 
VCost(G, G*) 
ExCost(G,G*) 
ExCosU(H) 
CECost(G,G*) 
FF(I) 

the bit part of the chromosome 
the part of the chromosome representing the list of vertices 
the total anonymization cost 
the anonymization cost caused by vertex edits 
the extension cost 
the extension cost caused in the z-th round of H A k A u 
the crossing edges cost 
the fitness function on the individual / 
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List of abbreviations 

AS Authorities Score 
BC Betweenness Centrality 
c c Closeness Centrality 
CD Community Detection 
Deg. Degree Distr ibution 
ED Effective Diameter 
EV Eigenvector 
HS Hubs Score 
Infe. Infectiousness 
JD Joint Degree Distr ibution 
NC Network Constraint 
PR Page Rank 
RX Role Extract ion 
G A genetic algorithm 
S N social network 
S N A P Stanford Network Analysis Project 
A;-DA ^-degree anonymization algorithm [S3j 
heu-fcDA fc-DA wi th the heuristic high-degree noise addition method 
F/cDA fast fc-degree anonymization algorithm jSEf 
tMean t-Means Clustering p U J 
Union Union-split Clustering [1141] 
H A k A u hybrid algorithm for automorphism anonymization 
K M the K M algorithm fTTvfl] 
SecGraph the SecGraph evaluation tool |EDj 
D U E F - G A the D U E F - G A evaluation tool f E | 
NS Narayanan-Shmatikov's attack |I1 ()4lj 
Per. Yartseva-Grossglauser's attack |154] 
Rec. Korula-Lattanzzi 's attack [EBJ 
G r a M i the graph mining algorithm [EH] 
S i G r a M the single graph miner algorithm fZ2l 
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1. Introduction 
A social network describes relationships between individuals or organizations. 
The social world can be viewed as an intertwined net of connections through 
which individuals are bound together [12$]. The social network metaphor serves 
social scientists to make the complex and unfamiliar patterns of the social world 
comprehensible by relating them to well-understood concepts. Currently, social 
relationships are also shared online by online social network services. Benefiting 
from social network services is paid with handing over sensitive personal informa
tion to service providers. The growing popularity of online social network services 
has triggered the collection of large amounts of data. The gathered datasets are 
full of valuable information for researchers in different fields, such as product mar
keting, social psychology, information security, and healthcare. Thus, the service 
providers share their collected datasets with third parties. Whi le publishing so
cial network data brings significant advantages, it also causes privacy-preserving 
problems since it contains sensitive and private information. 

Privacy is a complex concept of protecting sensitive data and information 
from unauthorized access. Because of the rapid expansion of computing and 
worldwide Internet usage, privacy-preserving techniques have become a frequently 
examined issue. Sharing and publishing users' data indeed threaten the privacy 
of individuals consuming online social network services. 

Anonymizat ion enables providers to publish their data while preserving in
dividuals ' privacy. Providers apply an anonymization technique to their dataset 
to protect the personal information of individuals and publish the anonymized 
version of the dataset. The aim of anonymization techniques is to prevent an 
adversary from distinguishing an individual from a group of others or revealing 
any sensitive information linked directly to them. 

Preserving privacy in a dataset is managed by modifying the original dataset 
wi th a selected anonymization method to provide the required level of anonymity. 
Different anonymization methods and different input settings ensure different 
levels of privacy protection. However, the aim of anonymization is always to keep 
as much data ut i l i ty as possible in the anonymized dataset such that the dataset is 
stil l valuable for data analysts. Providing a high level of privacy protection usually 
implies more dataset modifications or l imits access to the released dataset. In 
other words, providing a high level of privacy causes more extensive information 
loss. Thus, the crucial issue in anonymization is finding the trade-off between 
privacy and data utility. 

I decided to do my P h D research in the field of anonymization because my 
scientific interests are in information security, and I find anonymization to be 
a perfect field of study in which I can employ my knowledge of mathematical 
methods achieved in my Master's studies as well as my working experience in 
the cybersecurity software company. Since the anonymization of social network 
datasets offers many challenging issues and the opportunity for researchers to 
identify open problems, my research has been focused on this area. 

This thesis focuses on anonymization and deanonymization approaches that 
address the privacy-preserving issue of identity disclosure in anonymized social 
network datasets. Anonymizat ion approaches aim to protect the users of social 
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networks from being linked wi th the node representing them in the anonymized 
graph of the social network. O n the other hand, studies in the deanonymization 
point out privacy threats and weak spots of anonymization methods to encourage 
researchers to improve the methods and develop new anonymization approaches. 

In the early stage of my research, when I was preparing a comprehensive lit
erature review, I identified three open problems. To solve the issues indicated, I 
propose three novel methods. A l l proposed methods are implemented in M A T -
L A B , and their efficiency is evaluated by running experiments on synthetic or 
real social network datasets. 

A s the first contribution, I present the composition attack on social network 
datasets, a novel deanonymization approach based on the composition attacks 
applied to relational datasets. I propose the concept of the composition at
tack, implement it and test it on the set of synthetic networks. Furthermore, 
I introduce a heuristic noise addition procedure improving the state-of-the-art 
fc-degree anonymization k-DA algorithm. The procedure is implemented in the 
greedy version of the k-DA algorithm. The resultant /c-degree anonymization al
gorithm, named heu-/cDA, is experimentally proved to preserve data ut i l i ty better 
than the original algorithm. Finally, I focus on enhancing the /c-automorphism 
anonymization method to keep data ut i l i ty better. A s a result, I revise the de
sign of the original /c-automorphism anonymization approach and propose the 
novel hybrid /c-automorphism anonymization algorithm called H A k A u . In the 
design of H A k A u , I use a genetic algorithm to solve the N P - h a r d subtask of the 
fc-automorphism anonymization problem. B o t h proposed anonymization meth
ods, namely heu-/cDA and H A k A u , are implemented and tested on real-world 
social network datasets. Moreover, the experimental results are evaluated with 
the SecGraph evaluation tool to make them easily comparable with any future 
research. Except for the mentioned methods, I present some minor findings that 
I also find beneficial for this field of study. 

The rest of the thesis is organized into seven chapters. The comprehensive 
literature review of the state-of-the-art deanonymization and anonymization ap
proaches is given in Chapter In Chapter [3| the found open problems are 
described in detail, research questions are formally defined, and the goals of 
the thesis are stated. The necessary backgrounds in graph theory, equivalence 
classes, receiver operating characteristic analysis and genetic algorithms are given 
in Chapter 0. The proposed composition attack and the corresponding results 
are shown in Chapter [5[ The heuristic noise addition method and results of 
the data ut i l i ty analysis of heu-/cDA are presented in Chapter 0. Finally, the 
fc-automorphism anonymization algorithm H A k A u and the corresponding exper
imental results are described in Chapter 0- The thesis is concluded in Chapter 
a 
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2. The state of the art 
In this chapter, the topic of anonymization is introduced. The emphasis is given 
to the anonymization of social network datasets. Furthermore, the system is for
malized, the basic terms are defined, and the state-of-the-art anonymization and 
deanonymization methods and approaches are presented. Except for the studies 
and research focusing on anonymization and deanonymization methods, surveys 
and tools evaluating anonymized datasets, the literature review also contains 
studies focusing on genetic algorithms and their application in social network 
analysis and anonymization. 

2.1 Social networks 
The term social network has become a powerful image of social reality used by 
sociologists analyzing social structures since the 1930s [i"128||. Individuals are tied 
to each other by invisible bounds produced by human interactions and their 
unintended consequences. A l l springs between individuals can be joined into a 
vast network of connections describing human society [128]. 

After the rapid growth of computational technologies, the social interactions 
between individuals have been partially shifted into a vir tual environment. The 
first online social networks Classmates and SixDegrees were launched in 1997. 
They set up the cornerstone for the mult imil l ion business affecting the human 
population worldwide. The number of participants in online social networks (SNs) 
steadily grows and is expected to reach 4 bi l l ion in 2023 |134]. Since providers 
collect various kinds of data about each user, the amount of information in S N 
datasets is enormous. S N datasets have become a precious source of information 
about human behaviour, establishing relationships, shopping habits and mobility 
patterns for academic J9I|, medical pBl, 11 ()3||, and marketing |H| research all over 
the world. 

2.1.1 H i s t o r y of online social networks 

The first online social network SixDegrees, launched in 1997, was unable to create 
a profitable business model due to the poorly developed web technologies and 
the fact that the marketing industry was not yet prepared for the expansion to 
the online world JS2|. In the following years, several more SNs with different 
functionalities arose like AsianAvenue, Black-Planet or Live-Journal. Creating 
profiles and making lists of friends or guestbooks became part of the offered 
service. Whi le the early networks focused mainly on private networking, the first 
business networks were founded in 2001. The first business network was Ryze, 
which served as the role model for the successive business networks, including 
Linkedln, which was founded in 2003 |S2|. The first dating networks like Match 
and Friendster were launched too. In Friendster, people could make ties wi th 
friends of their friends. The network was based on the assumption that friends-
of-friends are more likely to bui ld romantic relationships. Its provider restricted 
access to other users in Friendster. Users were possible to make links wi th users 
within a four-degree distance. U n t i l 2004, Friendster had been the largest S N 
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|E2|. However, the popularity of Friendster caused technical problems since the 
providers were unprepared for the rapid growth of users and data. 

The well-known MySpace network was established in 2003 as a reaction to 
users leaving Friendster. Its primary goal was to catch the users leaving from 
Friendster. Since the first participants in MySpace were musicians, the connec
tions between music bands and their fans helped MySpace to bui ld up a large user 
community involving young people p2f. In the next few years, many SNs were 
founded, aiming for a narrower audience and targeting groups of people wi th the 
same particular interest or l iving in a common demographic region. 

A new era of SNs started with establishing Facebook in 2004. A t first, Facebook 
was launched as the S N for Harvard students. A year later, the provider opened it 
for students from other universities and a broad audience followed shortly after. 
W i t h the growing popularity of Facebook, SNs generated increasing economic 
interest among investors |52f. In 2010, Facebook was the most popular online 
SNs, wi th more than 800 mil l ion users used worldwide, providing communica
t ion platforms i n 70 languages. A s the response to privacy concerns connected 
wi th Facebook, Unthink and Folksdirect launched wi th the promise of offering a 
privacy-focused environment with easier control of privacy. One of the biggest 
attacks on Facebook's hegemony was establishing Google+ in 2011. However, its 
user engagement was lower than its competitor, and its benefit was mainly i n 
connecting various Google services. 

In 2022, Facebook was sti l l the most popular online S N with nearly 3 bi l l ion 
monthly active users [ll 35]. Closely behind there were Youtube wi th 2.5 bil l ion and 
Whatsapp wi th two bil l ion users while Instagram, WeChat and TikTok reached 
over one bil l ion users [135IJ. 

2 .1 .2 Social network dataset w i t h users' at tr ibutes 

In online social networks, users make social ties wi th other users. Hence, the 
online social network can be represented as a graph, where nodes represent users 
and edges represent the connections between users. Moreover, users can share 
personal and non-personal information wi th their associates or all social network 
users. Personal information related to the user can be represented as the node 
labels in the graph. 

Semantic anonymization methods, like the class-based anonymization algo
r i thm p3|, consider both the graph structure and the user information in their 
processes. The social network is represented as an undirected graph wi th node 
labels in this scenario. 

Definition 1 (Social network with users' attributes [I'l3M]). The social network 
datasets wi th users' attributes is represented by an undirected graph 
GA = (V(GA), E(GA),U{GA)), where V{GA) = {v\,... ,vn} is a set of vertices 
representing a set of individuals connected within the social network, E{GA) is a 
set of edges representing the relationships between the individuals and U(GA) = 
{ui,... ,un} is a set of r-tuples representing the values of attributes characterizing 
the individuals. The i-th element Ui = {un,... ,uir) is associated with the i-th 
vertex vi} % e { 1 , . . . , n}. 

The terms "vertex" and "node" are used interchangeably i n the remainder 
of the thesis. For simplicity, the graph GA representing a social network is also 

4 



called "a social network G A " or " S N dataset GA"- Without loss of generality, it 
is assumed that every individual participating in a social network has only one 
account in that social network. Therefore, for every individual I participating in 
the social network G A , exactly one node v(I) G V(GA) represents the individual 
/. Therefore, the expression " individual v" is also used in this thesis. A s usual, 
the edge connecting vertices Vi,v2 G V(GA) is denoted by (vi,v2) G E{GA)- T o 

simplify the notation, the r-tuple of values of attributes describing the individual 
v is denoted by uv. 

Let Att{GA) be a list of attributes associated wi th a graph G A - Attr ibutes i n 
AU(GA) represent various user characteristics. Typica l attributes are age, gen
der, postcode, birthday, home town, location or polit ical affiliation. A special 
attribute, the identifying attribute, appears in every social network and identifies 
its users completely (i.e., username, login, first name and surname). Identify
ing attributes are always removed during the anonymization process before data 
publication. However, removing the identifying attributes is not a satisfactory 
anonymization method, as presented in jSj. A combination of non-identifying 
attributes or a linkage of some non-identifying attributes wi th available external 
data may also cause identity disclosure. The "potentially dangerous" attributes 
form quasi-identifiers, as introduced in J35J. 

Definition 2 (Quasi-identifier j3Sf). A quasi-identifier is a set of non-identifying 
attributes such that at least one individual of the original social network can be 
uniquely identified by linking these attributes with an external data item. 

Quasi-identifiers constitute attributes that are not generally private; how
ever, releasing them together in a non-anonymized form could cause information 
leakage, leading to a connection between the anonymized data record and a par
ticular individual . The attributes belonging to the quasi-identifier are called 
quasi-identifying attributes. For instance, the combination of age, gender and 
postcode can reveal the individual 's identity if the combination is unique in the 
dataset. 

2.1.3 Social network dataset wi thout users' at tr ibutes 

So far, we have discussed the problem of re-identification of users i n S N having 
users' attributes. A s stated before, even if the identifiers like names or nicknames 
are removed from the data, the target user can be re-identified using the combina
tion of quasi-identifying attributes and information collected from external data 
sources. The external information that the attacker has collected before the ac
tual attack is called his or her background knowledge. The background knowledge 
can be extracted from the target S N itself or a source unrelated to the targeted 
S N . 

However, even if the identifiers and quasi-identifiers are completely removed 
from the S N dataset, the privacy issue of users' re-identification persists. The 
graph structure itself can be considered a quasi-identifier. A s shown in p j , the 
attacker can gather information about the graph structure around the target 
users. For instance, he or she can find the number of users linked to the target 
users, disclose their neighbourhoods or collect even more structural information. 
Hence, the graph structure can reveal the users identity. Thus, the graph struc
ture can be considered a quasi-identifier and has to be modified before publishing 
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the S N dataset. The situation is illustrated in Figure pO[ There is the example 
of the original network GA wi th all attributes, GA without identifiers and wi th 
anonymized quasi-identifiers and GA without any attributes. Note that if the at
tacker knows that his or her target user {Adam) is linked with three other users, 
he or she can easily identify Adam in all three versions of G since there is only 
one vertex wi th degree equalling to three. 

[Joe.65,M,50300] [57-65,*,50***] 

c) GA without attributes 
a) original network GA b) GA with anonymized attributes 

Figure 2.1: Social network with attributes. (Source: author's work JS3J.) 

The deanonymization attacks exploiting only the knowledge about the graph 
structure are called structural attacks. Therefore, anonymization methods focused 
on preventing structural attacks consider only the graph's structure (nodes and 
edges). The user information represented wi th node labels is omitted. In this 
scenario, the social network dataset is assumed to be unlabelled and contains no 
identifying information about users. In other words, the assumption is that al l 
user information has been removed before applying the anonymization method, 
and the anonymization method modifies only the graph structure. The social 
network without users' attributes can be depicted as an undirected unlabelled 
graph. Clearly, when the set of attributes is omitted, the labelled graph GA 
turns into an unlabelled graph G. 

Definition 3 (Social network without users' attributes JH1J). The social net
work dataset without users' attributes is represented by an undirected graph 
G = (V(G),E(G)), where V(G) = {vi,...,vn} is the set of nodes represent
ing the participating users and E(G) is the set of edges representing the social 
relationships between users. The edge between nodes Vi and Vj is denoted by 
(Vi,Vj). 

In this thesis, the research focuses on S N datasets that can be represented 
well wi th undirected graphs. It means that the relationships between users are 
assumed to be bilateral. The user u is linked wi th the user v if and only if the user 
v is connected with the user u. Note that some SNs are better represented wi th 
directed graphs. For instance, in Twitter, the user u can follow the user v, but it 
is possible that the user v does not follow the user u. Hence, it is more suitable 
to represent the Twitter dataset wi th a directed graph. A similar situation is 
in citation networks where nodes represent scientific papers. The edge between 
nodes u and v is directed from the paper u toward the paper v in case v is cited 
in u 

It remains to mention that some social networks can also be described by 
edge-labelled graphs. The edge-labelled graphs represent the SNs having addi
tional information about user interactions. For instance, Bitcoin trust weighted 
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signed network datasets JZO, H j can be represented wi th the directed edge-labelled 
graphs. The datasets contain information about who trusts whom among those 
who trade using Bi tcoin on particular platforms. Since Bi tcoin users are anony
mous, there is a need for measuring the reputation of users to prevent transac
tions with fraudulent and risky users |Z3|. Users of the given Bi tcoin platform 
rate other users of the platform on a scale of —10 to 10 in steps of 1. Hence, the 
directed edges of the corresponding graph are weighted wi th values in (—10; 10) 
that represent the source user's rating for the target user. However, this model 
of S N is omitted since the thesis focus on anonymization problems i n unlabelled 
or node-labelled SNs. 

2.1.4 R e a l - w o r l d social network datasets 
Real-world social networks are scale-free networks with power-law degree distri
bution, as presented in [99]. Especially in large SNs, the degrees of vertices follow 
the power law distribution. It means there are a few nodes wi th high degrees, 
and most of them have very low degrees. For example, there is shown the degree 
distribution of the S N Email Enron [67] wi th 36,692 nodes in Figure 2.i. For 
clarity of the illustration, nodes wi th the highest and lowest degrees were omit
ted in Figure \2.2\ More precisely, five nodes with a higher degree than 100 are 
omitted, and 11,211 nodes wi th a degree equalling 1, 3,800 nodes wi th a degree 
equalling 2 and 5,167 nodes wi th a degree value of 3. Nodes wi th a higher degree 
than 100 correspond to 2% of all nodes, while nodes with a lower degree than 4 
correspond to 55% of all nodes. 

Consequently, many graphs describing SNs are sparse [i'106lj. Thus, they have 
much fewer links than the possible maximum number of links within that network. 
Moreover, the real-world SNs demonstrate the "small-world phenomenon" [147]. 
It means that i n each S N , any two individuals are likely to be connected through 
a short sequence of links. Therefore, the average shortest path between vertices 
is often surprisingly small in large SNs. The small-world phenomenon has been 
a subject of many sociologist studies [SSj-

The samples of real S N datasets are available online for academic and re
search purposes. The largest repository of graph data is the Stanford Large 
Network Dataset Collection [Z3|, which is part of the Stanford Network Analysis 
Project ( S N A P ) . The S N A P dataset collection consists of more than 50 large 
network datasets from tens of thousands of nodes and edges to tens of millions 
of nodes and edges. It includes social networks, web graphs, road networks, in
ternet networks, citation networks, collaboration networks, and communication 
networks. Except for the dataset collection, S N A P provides a general-purpose 
network analysis and graph mining library which efficiently manipulates large 
graphs, calculates structural properties, generates regular and random graphs, 
and supports attributes of nodes and edges fZ5J]. 

Another sizeable comprehensive collection of network data is gathered in Net
work Repository [i'122lj. The network collection includes relational, attributed, 
heterogeneous, streaming, spatial, time series network data, and non-relational 
machine learning data. The repository was established to improve and facilitate 
the scientific study of networks by making it easier for researchers to interactively 
visualize, analyze, and ultimately download an extensive collection of networks. 
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Figure 2.2: Degree distribution of E m a i l Enron network. (Source: author's work. 

Except for S N A P and Network Repository, plenty of other sources provide smaller 
data collections like Pajek depository [7] or various G i t H u b projects. 

In producing experimental results, I used 14 real S N datasets differing i n 
size and network metrics available in the mentioned repositories. More precisely, 
from the S N A P library, I employed General Relat ivity and Quantum Cosmol
ogy collaboration network (GrQc)|ZB|, Gnutel la peer-to-peer network [ZBI, [HSf, 
W i k i p e d i a vote network jEDf, Caida A S Relationships Datasets [ZSJ, High-energy 
physics theory citation network (HepTh) [151, E7J], Stanford web graph [ZSf, E n 
ron email network [ZD], EZj, A m a z o n product co-purchasing network [ZZj, Epinions 
social network p. 18] and the networks describing the social ties of geosocial net
works Gowalla [27] and Brightkite [2Z|. Furthermore, I ran experiments also on 
three smaller networks: Polbooks [ESJ, and Polblogs [2] stored in the Network 
Data Repository fĽSf , and Prefuse network[5l| stored in the G i t H u b repository 
of the Prefuse project (Java-based toolkit for building interactive information v i 
sualization application) jSIJ. The summary of sizes of the mentioned networks 
together wi th their average clustering coefficient (ACC) and diameter is given 
in Table J?.4H Except for the values of ACC and diameter of PolBooks, Prefuse 
and Polblogs, all values in Table \2.1\ are taken from the website of repositories 
[5T1II22L E3j. The remaining values were computed. 

2.2 Anonymization 
A s mentioned in the previous section, S N datasets are of great use in academic and 
business research. However, sharing and publishing datasets are l imited since the 
privacy of each individual has to be protected. Anonymizat ion allows providers to 
share or publish their datasets while preserving users' privacy. The basic principle 
of anonymization is to modify the original dataset to satisfy the required level of 

l rThe definitions of ACC and diameter can be found in Chapter^ 
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S N dataset # nodes hedges AC C Diameter 

Polbooks 
Prefuse 
Polblogs 
G r Q c 

121 169 0.488 
1,224 16,715 0.313 
5,242 14,496 0.53 
6,301 20,777 0.011 
7,115 103,689 0.141 

19,659 950,327 0.237 
26,475 106,762 0.208 
27,770 352,807 0.312 
28,190 2,312,497 0.598 
36,692 183,831 0.497 
58,228 214,078 0.172 
75,879 508,837 0.138 

403,394 3,387,388 0.418 

105 441 0.488 7 
4 
8 
17 
9 
7 
14 
17 
13 

674 
11 
16 
14 
21 

Gnutella 
Wiki -Vote 
Gowalla 
Caida 
H e p T h 
Stanford-web 
Emai l -Enron 
Brightkite 
Epinions 
Amazon 

Table 2.1: List of real S N datasets. (Source: author's work) 

security and keep as much data ut i l i ty as possible at the same time. The aim 
of anonymization techniques is to prevent an adversary from distinguishing an 
individual from a group of others. Formally, the anonymization procedure can be 
expressed as a function from the input graph to the anonymized one. 

Definition 4 (Anonymization |l'138lj). Anonymization of social network data is a 
function fa : GA —> G*A, where GA is a graph describing the original social network 
data and G*A is a graph describing the anonymized social network data. The 
function is denoted by fa = U a J a J a ) such that fa : V(GA) -+ V(G*A), / f : 
E(GA) —> E(GA), fa '• U{GA) —> U{G*A). The anonymization of unlabelled graph 
G is the function fa = ( / ^ / f ) such that fa : V{G) -+ V(G*), / f : E(G) -> 

The anonymization function fa should have the following properties. 

1. G* does not contain any direct sensitive information of G 

2. G* protects the privacy of individuals involved in the social network against 
different kinds of attacks 

3. The loss of data ut i l i ty in G* is the smallest possible under fulfilling the 
previous premises. 

Adhere to the first property of fa, identifying attributes, such as username, 
login, first name and surname, are always removed in each anonymization method. 
Nonetheless, the crucial property is the minimization of information loss caused 
by anonymization. F inding the most fitting anonymized graph G* to the original 
one G is the optimization problem where the output solution G* has to satisfy 
predefined anonymity property, and the data ut i l i ty loss is minimal . 

E{G*). 
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2.2.1 T h e complex i ty of anonymizat ion 
The anonymization problem can be viewed as the optimization problem of mini
mizing information loss where the constraint is the required level of privacy. The 
required level of privacy affects the complexity of the problem. The complexity 
of the optimization problem that arises from trying to find G* that satisfies the 
/c-anonymity property is proven to be NP-hard)^] in [35], EE3, EH, HSI, [HI, Ef. The 
fc-anonymity property and S N anonymization methods based on /c-anonymity are 
correctly defined in Section \2.3. ffi 

Hartung et al . proved in [46] that finding /c-degree anonymized graph was 
an N P - h a r d problem in case edge addition operations were applied on the in
put graph. In |8|, Bazgan et al. focused on deletion operations. They showed 
that the /c-anonymity problem is N P - h a r d when allowing edge or vertex deletion. 
Furthermore, they later proved in pj that the problem was also N P - h a r d when 
edge rotation operations (edge switch operations) were applied. Bredereck et al . 
showed in pSJ that the problem is N P - h a r d when considering vertex addition 
operations. The complexity of anonymization methods other than /c-anonymity 
is not widely studied. 

2.3 Anonymization methods 
Generally, the anonymization methods can be categorized as semantic or struc
tural . The semantic anonymization methods address the problem of anonymiz-
ing S N with attributes GA- O n the other hand, the structural anonymization 
methods focus on modifying the graph structure of G. Addit ionally, GA can 
be anonymized by combining the structural S N anonymization method and the 
anonymization method for relational datasets |I161L In that case, the set 
of vertices V(GA) and the set of edges E(GA) are anonymized using structural 
anonymization methods to hide the original graph structure. Then, the attribute 
set U(GA) is anonymized wi th the procedure for relational data anonymization 
to fulfil the required level of privacy. 

2.3.1 M e t h o d s of re lat ional data anonymizat ion 

In this section, the fundamental methods of relational data anonymization are 
presented. The methods are /c-anonymity fESf , /-diversity [89], i-closeness [H2f 
and differential privacy j2Df. M a n y extensions of those methods have been later 
published to improve those methods in terms of data ut i l i ty p i j . However, the 
basic principles are sti l l exploited in the state-of-the-art methods of anonymizing 
relational and S N datasets. This section uses the terms "table" and "relational 
dataset" interchangeably. 

Definition 5 (fc-anonymity [125]). Let R be a relational dataset. Then R is said 
to be k-anonymous if R contains no identifying attributes, and for each record 
in R, there exist at least k — 1 other records that have the same quasi-identifying 
attributes. 

2 T h e definitions of the N P class and the NP-hard problem can be found in ChapterUi 
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The probability that an attacker identifies his or her target individual in the 
/c-anonymized dataset equals |. The procedures used to achieve /c-anonymity 
in the relational datasets are generalization and suppression. The principle of 
generalization is to substitute the concrete values (ex. married, divorced, widow) 
with the more general term (ex. once-married). The specific values of attributes 
described wi th numbers (ex. age: 28, 41, 35) can be replaced with intervals (ex. 
age: 25-45). Each quasi-identifying attribute in the dataset has several domains of 
generalized values that satisfy the domain generalization hierarchy [1125]. During 
the anonymization, one domain for each quasi-identifying attribute is selected 
such that the table is /c-anonymized. Since the goal of the anonymization is to 
preserve as much data ut i l i ty as possible, the anonymized table should satisfy the 
minimal generalization property. Simplifying the minimal generalization property 
means that other /c-anonymized versions of the input table contain more general 
values. 

The complementary method to achieve /c-anonymization is the suppression. 
Suppressing means removing data from the relational dataset such that they 
are not released at all . If the table contains n quasi-identifying attributes that 
are represented wi th n-tuples of values in the table, some elements of each n-
tuples are omitted during suppression. The output of the suppression is the 
table wi th m columns, m < n, and satisfies the fc-anonymity property. The best 
results are achieved wi th anonymization methods combining both approaches, 
generalization and suppression. Some attributes of R can be generalized, and 
others are suppressed. 

A n example of a relational dataset and its 3-anonymized version, obtained by 
generalization and suppression, is given in Figure \2.!% The datasets gather infor
mation about the spoken language in a social group. The identifying attribute 
is obviously removed when the dataset is anonymized. The attribute Language 
is the sensitive attribute in the dataset in Figure \2.3fb. The sensitive attribute 
is the crucial information in the relational dataset and the focus of further data 
analysis. O n the other hand, the identifiers and quasi-identifiers describe the in
dividuals whose records are in the table. The sensitive attribute is not modified 
during the /c-anonymization process. Usually, there is only one sensitive attribute 
in the dataset. The same attribute {Language) can play a different role in dif
ferent datasets. In one dataset, it could be labelled as the sensitive attribute; in 
the other, it could be found to be a quasi-identifying attribute. Thus, Language 
is not anonymized, unlike the quasi-identifier {Age, Gender, CCode, Marital) i n 
Figure \2.S\b. The final table is 3-anonymized; hence for every record, there are 
two other records wi th the same quasi-identifiers. 

The /-diversity, introduced in [89], focuses on protecting sensitive attributes. 
The /-diversity approach assumes that the relational dataset already satisfies the 
fc-anonymity. Thus, there are groups of at least k records having the same values 
of quasi-identifiers. The aim of /-diversity is to provide sufficient diversity in the 
values of sensitive attributes in the group of k records wi th the same values of 
quasi-identifiers. The approach ensures for each group that the / most frequent 
values of the sensitive attributes have roughly the same frequencies pnj . 

The further extension of the /-diversity approach is t-closeness introduced 
in [S2J. The t-closeness provides better privacy protection at the cost of more 
significant information loss. Given the threshold t, the t-closeness privacy model 
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d Age Gender CCode Marital Language H Age Gender CCode Marital Language 
3arbara 37 F 804 Single Spanish 28-37 F * Single Spanish 
Daniel 63 M 616 Widowed Portugese 54-63 M » Once_married Portugese 
David 63 M 112 Divorced Spanish 54-63 M • Once_married Spanish 
Elizabeth 37 F 348 Single German 28-37 F * Single German 
Charles 37 M 756 Widowed Italy 37-56 M * Once_married Italy 
Christopher 56 M 276 Widowed German 37-56 M * Oncc_marricd German 
Jennifer 47 F 643 Divorced English 41-63 F * Once_married English 
Jessica 49 F 756 Widowed Spanish 41-63 F * Once_married Spanish 
John 43 M 642 Married English 37-56 M Once_married English 
Joseph 63 M 203 Married Russian 54-63 M * Once_married Russian 
Linda 63 F 616 Married English 41-63 F Once_married English 
Mary 41 F 703 Divorced Italy 41-63 F * Once_married Italy 
Vlichael 29 M 642 Married Spanish 28-31 M * Once_married Spanish 
Patricia 28 F 756 Single German 28-37 F J ;  Single German 

Richard 54 M 438 Single German 37-56 M * Single German 

Robert 31 M 804 Divorced German 28-31 M 

^  

Once_married German 

Sarah 28 M 528 Divorced Russian 28-31 M JU  Once_married Russian 

Susan 32 F 498 Single French 28-37 F * Single French 

Thomas 43 M 643 Single Russian 37-56 M * Single Russian 

William 45 M 203 Single Russian 37-56 M * Single Russian 

a) relational dataset b) 3-anonymized relational dataset 

Figure 2.3: Relational dataset and its 3-anonymized version. The identifying 
attribute Id is removed in anonymization. The quasi-identifiers Age and Marital 
are generalized, and the quasi-identifier CCode is suppressed. The quasi-identifier 
Gender and the sensitive attribute Language are untouched. (Source: author's 
work.) 

ensures that the distribution of the values of sensitive attributes in any group 
of k records wi th the same values of quasi-identifiers differs from the overall 
distribution in the table by at most t. In other words, the distance between these 
two distributions should be smaller than or equal to t. 

The information, whether records of an individual are or are not included in 
a relational dataset, can also be viewed as sensitive information. This privacy-
preserving issue is addressed by the differential privacy approach [29]. Differential 
privacy differs from previous methods by focusing on how the database behaves 
wi th and without an individual 's data instead of comparing what can be learned 
about an individual wi th and without the database. The differential privacy 
approach makes no assumptions about the adversary's background knowledge. 
It means that the computational power of the attacker could be unlimited, and 
the attacker could have any external information or any structural knowledge 
about the original graph, and yet the database satisfying differential privacy is 
protected against his or her attack. In other words, the concept of differential 
privacy is independent of the attacker's auxiliary information and computational 
power and protects against any k ind of attacks [6]. Differential privacy is a 
perturbation method. The anonymity property is achieved by adding noise such 
that the original data values are replaced with synthetically generated values. 
Furthermore, the synthetic values are generated so that statistical information 
does not differ much in both datasets fSTJ]. Hence, it provides a solid privacy 
guarantee since it is a statistical property. Addit ionally, the number of queries 
on the data stored in the dataset satisfying differential privacy is l imited |2Sf. 

Definition 6 (e-differential privacy f2TJ|). A randomized function f ensures e-
differential privacy if for all relational datasets R\ and R<i that differs on at most 
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one row holds that 

VS C H(f) : Pr[/(i2x) £ S] < e e • Pr [/( i ? 2 ) e 5], 

where 'H(f) is the range of f 

The parameter e determines the degree of privacy. To achieve a high level 
of protection, e should be relatively low. However, the low value of e directly 
limits the number of queries that can be made on the stored data. The dataset 
wi th e < 1 can only be queried a few times. After that, access to the data is no 
longer permitted as privacy cannot be guaranteed |12filJ. If the data usability is 
preferred, e is set to be higher, and the data protection is reduced. 

2.3.2 Semantic anonymizat ion methods 
Semantic methods of S N anonymization focus on the issue of identity disclo
sure in S N with attributes. They exploit the principles of anonymization ap
proaches for relational datasets described in the previous section. Zhou and Pei 
focused on anonymizing S N wi th attributes in |llŕi1inŕi2|. In [llrill]. they introduced 
the /c-neighbourhood method for anonymization of the graph structure and used 
generalization for anonymizing the attributes. The structural /c-neighbourhood 
anonymity method is described in detail in Section \2.3.fy 

Furthermore, they extended their approach wi th the principles of /-diversity 
in [1 . A t first, the graph structure is modified to satisfy the /c-neighbourhood 
anonymity. Let the groups of vertices having isomorphic neighbourhood form 
the equivalence class. Then, to protect the privacy of the individuals in the 
equivalence class, the distribution of the sensitive values in each equivalence class 
should be sufficiently diverse in the sense of /-diversity. Hence, an adversary wi th 
the background knowledge of the neighbourhood structure and no additional 
knowledge about the vertex labels only can infer the sensitive label for his or her 
target individual wi th the probability not greater than |. 

The clustering approaches modifying S N wi th attributes were proposed in pZ3, 
I14ULIT2]. The aim of clustering methods is to aggregate nodes into clusters. Let 
C = {vi,..., vn} be a cluster aggregating nodes vi,..., vn. Assume that there are 
m different quasi-identifiers in the network. Then the quasi-identifying attributes 
ui,..., un describing nodes v\,..., vn are anonymized wi th generalization, such 
that for each j = 1 , . . . , m, the values uim,..., unm of the same quasi-identifier 
are replaced with more generalized value. Similarly, all attributes in all clusters 
are processed. A s a result, each cluster is described wi th m-tuple of generalized 
values. 

A completely opposite approach was introduced in [i"138l]. Sun et al . intro
duced the splitt ing anonymization method, where the attributes were anonymized 
at first, and the graph structure was anonymized afterwards. In the splitting 
method, the attributes are generalized and split into groups. Each vertex is 
linked to one attribute group. Then each vertex v is divided into several vertices 
according to its degree. More precisely, deg{v) — 1 artificial vertices are added into 
the graph structure, and the edges connecting the original vertex v to its neigh
bours are divided between the newly created nodes. It means that deg{v) = 1, 
and the degree of each copy of v equals one too. Each newly created vertex is 
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linked wi th the same attribute group as the vertex v. Finally, some edge editing 
operations are applied to obtain the final G*A. 

The /c-degree-/-diversity anonymity model protecting the structural informa
tion and sensitive labels of individuals was proposed by Y u a n et al . in ||1f>7||. 
They introduced the methodology based on adding noise nodes. The method 
was extended in [23], where the noise node addition method is combined wi th the 
eigenvector centrality concept to preserve the social importance of real nodes. 

2.3.3 Dif ferent ia l pr ivacy 

The differential privacy technique was also extended to the S N data in [48f • In S N 
data publishing and sharing, the aim of the differential privacy is to guarantee that 
an adversary having the published result w i l l not be able to determine whether an 
individual participated in the network G or whether there exists the edge (u, v) 
in G for u,v G V{G) p . The differential privacy provides high-level security 
anonymization by adding noise to the query results and restricting the structure of 
queries on the output dataset. Unlike other anonymization techniques, differential 
privacy allows only constrained analysis of the S N datasets, and this approach can 
limit the successive data mining of the dataset. The differential privacy methods 
compute either node-related or edge-related statistics from G. Therefore, they 
are categorized into node-level and edge-level differential privacy methods. The 
main goal of the proposed methods is to reduce the amount of noise which has 
to be added to meet the requirements of differential privacy. 

Sala et al. presented the node level differential privacy method called Pyg
malion in [T23J. Their main idea was to extract the graph structure into degree 
correlation statistics and introduce noise in the resulting dataset to produce the 
anonymized graph. They focused on reducing the noise necessary to add into G. 
Other node-level differential privacy methods were presented in [HI, 1114L E3J. 

The relaxed version of differential privacy is proposed in [117lJ. Rastogi et al . 
proposed the edge-level method that enabled sending more expressive queries to 
the anonymized dataset, which improved the data utility. X iao et al. proposed a 
Hierarchical Random Graph model to satisfy the requirements of the edge level 
differential privacy in [151]. Instead of considering edges, they estimated the link 
probabilities among users. 

2.3.4 S t r u c t u r a l anonymizat ion methods 

The structural anonymization methods are categorized according to how it mod
ifies the original graph structure. Clustering methods transform subgraphs into 
super-nodes and replace the original links between users wi th super-links con
necting the super-nodes. Noise addition methods are based on adding artificial 
nodes into the input graph. Edge editing methods are based on adding, delet
ing or switching edges. The rest of this section establishes a brief description 
of all mentioned anonymization approaches and a review of the state-of-the-art 
methods. 
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2.3.5 C l u s t e r i n g methods 
Clustering methods belong to the class of generalization methods. In the cluster
ing algorithms, the input S N dataset is partitioned into different clusters, which 
are generalized into super-nodes [140]. Given the input graph G , the clustering 
algorithms solve the problem of finding the optimal parti t ion of sets V(G) and 
E(G) into the minimal number of clusters in which any two vertices are indistin
guishable from each other j l j . Clearly, the goal is to preserve as much structural 
information as possible from G in the clustered network G*. More precisely, 
given the input graph G, the aim is to find the set of clusters C = { C i , . . . , Cn}, 
Ci QV{G), such that 

1. Vv e V(G) 3ie{l...,n}-. v e Q 

2. C = {Jt=1Cl = V(G) 

3. V i , j = 1 . . . , n, i ^ j : d H Cj = 0 

If the anonymized dataset should meet the requirement of /c-anonymity, it 
means that each vertex should be indistinguishable in the group of k vertices, 
then |Cj| > k, Vz = 1 , . . . , n. Hence, the vertices are divided into clusters such 
that each cluster contains a subset of at least k vertices having similar structural 
features such as a degree or isomorphic neighbourhood. Moreover, the cluster also 
contains the edges between those vertices. Those edges are called the inner edges 
of the cluster. Let IE{Ci) be the set of inner edges of C j . The edges connected 
vertices from different clusters are external edges. After the vertex partitioning, 
the clusters are generalized into super-nodes, and all external edges connecting Cj 
and Cj, Vi,j = l . . . , n i ^ j , are generalized into a single super-edge. Each super-
node C j is described by the tuple (|V(Cj)|, \IE\) p j . The resulting anonymized 
graph G * consists of the super-edges ( C j , C , ) , the super-nodes Cj and the tuples 
(\V(Ct)\,\IE\). 

Clustering methods were proposed in [I140L14911141L \T7\. The greedy algorithm 
SaNGreeA proposed in [EZJ built the clustering greedily, one cluster at a time. It 
selects the cluster, then it selects a node and adds the node to the cluster. The 
node is selected such that the node addition causes a minimal increment of the 
anonymization cost. The process continues unt i l the cluster has the size of k. 

The sequential clustering algorithm was proposed in [EHO]. The algorithm 
begins with partit ioning vertices from G at random unti l there are • k 
vertices in each cluster, where a is the clustering parameter. Afterwards, the 
algorithm repeatedly examines all vertices and moves them between clusters to 
minimize the total anonymization cost. 

In [Il41lj. Thompson and Yao introduced two clustering algorithms, tMeans and 
union-split, to classify nodes into clusters based on similar structural features or 
similar social roles wi th in S N . Moreover, they proposed an anonymization scheme 
for graph data in which edges were added and removed according to nodes' inter-
cluster connectivity. The scheme was combined wi th the proposed clustering 
algorithms to obtain the anonymized network. 

The proposed clustering methods protect against degree-based attacks. The 
attacker is considered to have background knowledge of the degrees of nodes 
within the given radius of the target node. To achieve the required level of k-
degree anonymity, the graph G is divided into clusters having the size of at least 
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k vertices. The two algorithms differ in the way how the graph is divided into 
clusters. 

Their first solution is built on the conventional t-means algorithm that has 
no minimum-size constraint |I11()IJ. The tMean algorithm first selects randomly t 
vertices to be the cluster centres. Each vertex v G V{G) is added to one of the 
clusters. The proper cluster is selected according to a chosen distance metric. If 
the selected cluster has k + 1 members after the addition, then a vertex with the 
lowest marginal cost is bumped to its surrogate cluster. 

The shortage i n the design of tMeans is the random selection of the cluster 
centres in the first step. The union-split was designed to avoid this issue. In the 
first step, each vertex is set to be in its own cluster. Then, it computed all pair-
wise distances between cluster centres and fixed the next nearest cluster for each 
cluster. Whi le the size of any cluster is lower than k, it chooses the cluster wi th 
the shortest distance to any other cluster and unions it wi th its nearest cluster. 
Whi le the cluster size after the union is greater than 2k, then the cluster is split 
into two. 

Once the vertices of the whole graph are clustered, it remains to anonymize 
vertices within each cluster. The anonymization approach on the clustered graph, 
introduced in [141], was called inter-cluster matching. It takes a clustered graph, 
computes the average degree of nodes within each cluster and determines for 
each node how many edges it is sufficient to add or remove in order to match the 
average degree of its cluster. 

Both algorithms, tMeans and union-split are implemented in the SecGraph 
evaluation tool [60] as one of the state-of-the-art anonymization methods. I use 
both algorithms and the k-DA algorithm to compare their behaviour with the 
behaviour of the anonymization method proposed i n this thesis. 

2.3.6 Noise node a d d i t i o n 
A s mentioned in Section \2.3.2\ noise addition methods adding artificial noise 
nodes into the S N dataset wi th attributes were introduced in [11571 I2"H|. The 
structural noise node addition method modifying the original social network to 
the /c-anonymous one was proposed in [2Ej by Chester et al . . Their algorithm 
aimed to add artificial vertices and link them to the existing vertices. Unlike edge 
editing methods, the anonymization cost of noise node addition was computed as 
the number of added vertices since anonymity is achieved wi th vertex addition. 

2.3.7 Edge edi t ing methods 
Edge editing methods are based on modifying the edge set of the original graph 
E(G) to E(G*) wi th the sequence of edge editing operations. Modi fy ing the ver
tex set V(G) is not the prime intention of those methods. However, the desired 
anonymity property that should be held in G* may also require minor modifi
cations of the vertex set. Nevertheless, the number of vertex modifications is 
negligible to the number of edge set modifications. 

Depending on the anonymization approach, E(G) C E (G*) or not. If the 
anonymization method applies only edge addition operation, then it holds that 
E(G) C E (G*) since it is not manipulated wi th any edge from the original graph. 
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d) Edge rotation (edge switch). e) Edge switch. 

Figure 2.4: Edge editing operations. The red (bold) edges are added wi th the op
erations, and the green (dashed) edges are removed wi th the operations. (Source: 
author's work.) 

In case that edge deletion or edge switches are allowed, then E{G) \ E(G*) ^ 0 
or E{G*) \ E{G) ^ 0. However, the aim of most edge editing methods is to 
maximize \E(G) f l E(G*)\ and keep as many edges from the original graph as 
possible. Since the edge represents the link between users, which is the crucial 
information stored in S N , keeping as many edges as possible implies keeping as 
much data ut i l i ty as possible in G*. 

The edge editing operations are illustrated in Figure \2.4i Assume that we 
modify the input graph G wi th a single edge edition operation to obtain the 
output graph G*. Naturally, edge addition means adding a new edge to the 
graph structure. More precisely, (u,v) ^ E{G) A (u,v) G E{G*) (see Figure 
2.4a)- Therefore, the degree of both nodes u,v increases by one and \E(G*)\ = 
\E(G)\ + 1. The edge deletion corresponds to removing an existing edge from 
the graph structure. Thus, (u, v) G E(G) A (u, v) E(G*) (see Figure \2~$). 
Afterwards, deg{u) and deg{v) decrease by one and \E(G*)\ = \E(G) \ — 1. 

More structured edition operations can be denned by combining edge addition 
and deletion. In [201, an edge removal operation consists of two edge deletions 
and one edge addition between four vertices. Assume (u,v), (w,z) G E{G) such 
that (u,w) ^ E{G) (see Figure |^|c). Then edge removal causes that (u,v) and 
(w, z) are deleted and (u,w) is added. Hence, deg{u) and deg{w) do not change, 
deg{v) and deg(z) decrease by 1 and \E(G*)\ = \E(G) \ — 1. 

The definition of edge switch operation varies in the literature. However, the 
aim of each edge switch operation is to keep the total number of edges, which 
means that |-E(G)| = \E(G*)\ after the edge switch operation. In pDf, the edge 
switch is defined on three vertices. Assume (u,v) G E{G) and (u, w) ^ E (see 
Figure 2Jj_d). After the edge switch (u, v) ^ E(G*) and (u, w) G E. Hence, deg{u) 
does not change, deg(v) decreases and deg{w) increases. The same operation is 
called edge rotation in P j . 
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O n the other hand, the edge switch is defined on four vertices in p j . The 
advantage of the second definition is that the degree of all involved vertices is 
preserved. Assume (u,v),(w,z) G E(G) such that (u,w),(v, z) ^ E{G) (see 
Figure |iL^|e). After the edge switch, (u,v) and (w,z) are deleted and (u,w) and 
(v,z) are added, thus (u,v),(w,z) ^ E(G*) and (u,w),(v,z) G E(G*). 

The special edge editing method is the anonymization method established 
on the random walk proposed in [ 1 1 b y M i t t a l et al . . They introduced the 
algorithm where every edge (u,v) G E{G) was deleted and replaced with two 
edges (u,z),(v,z) G E{G*) where z was found using the random walk in G. 
A random walk from u to v in G is a sequence of steps from u to its random 
neighbour u\, then to the random neighbour of u\ and so forth. More precisely, the 
random walk is a Markov chain with the transition probability depending on the 
node's degree. The probability that the chain continues from the vertex u to the 
vertex u\ equals Pu,Ul = deg(u) ^ U l * s ^ n e neighbour of u and Pu,Ul = 0 otherwise 
|LT3f. The length of the random walk used in the anonymization procedure is 
given by the input parameter t. The larger t corresponds to adding more noise 
to G*. To minimize the effect on the degree distribution, the later edge (v,z) is 
added into G* wi th a probability smaller than 1. 

2.3.8 M e t h o d s based on fc-anonymity 

Most of the edge editing methods are based on the concept of /c-anonymity. The 
fc-anonymity method was init ial ly designed for relational datasets in [125lj. The 
aim of the /c-anonymity is to modify the original dataset such that for every 
record, there are at least k — 1 other records in the anonymized dataset that have 
the same quasi-identifiers, as mentioned in Section \2.3.1\ Hence, the probability 
that the individual is identified in the anonymized dataset is | since the user is 
unrecognizable in the group of k users having the same quasi-identifiers. The 
value of the anonymization parameter k is usually chosen by the dataset provider 
depending on the dataset's size and the requirements of further analysis. To show 
the similarity between /c-anonymity and the definitions of S N fc-anonymization 
methods, Definition [| of /c-anonymity introduced in Section \2.3.1\ is repeated. 

Definition [Š] (/c-anonymity [125]). Let R be a relational dataset. Then R is said 
to be k-anonymous if R contains no identifying attributes, and for each record, 
at least k — 1 other records have the same quasi-identifying attributes. 

The graph structure can be viewed as a quasi-identifier as revealed in Section 
2.1.% This concept led to the extension of the /c-anonymity approach from the 
relational dataset to social network datasets [S3, 

Hay et al . proposed in [48] the anonymity model in which the S N graphs 
satisfied the /c-candidate anonymity if, for every structure query over the graph, 
there existed at least k nodes that match the query. The structure queries checked 
the existence of neighbours of the node or the structure of the subgraph linked 
to the node. However, they did not develop methods to find /c-candidate graphs. 

L i u and Terzi introduced in [83] the /c-degree anonymity where for each node 
in G, there should be at least k — 1 other nodes with the same degree value. The 
proper definition of /c-degree anonymity requires introducing the /c-anonymous 
vector. Note that do denotes the degree sequence of the graph G, where the 
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degree sequence is the list of deg(v), Vi> G V(G*) 

dG = (deg(vi), deg(v2),deg(vn). 

D e f i n i t i o n 7 (k-anonymous vector [83])- A vector of integers r = {r\,... ,rn) 
is /c-anonymous, if every distinct value Vi, % = 1 , . . . ,n, appears in r at least k 
times. 

D e f i n i t i o n 8 (/c-degree anonymous graph jS3|). A graph G* is /c-degree anony
mous if the degree sequence dG* is k-anonymous. It means, that for every vertex 
v G V{G*), there exist at least k — 1 other vertices v\,.. .Vk-i G V(G*) with the 
same degree, deg{v) = deg{v\) = • • • = deg{vk-i). 

A n example of the 2-degree anonymous graph with its degree sequence is given 
in Figure \2~h\ There is a graph G and its 2-degree anonymized version G*. Two 
edges are removed, and one edge is added to make G* 2-degree anonymous. The 
degree sequences of both graphs are 

dG = (14 ,14 ,8 ,7 ,6 ,5 ,4 ,4 ,3 ,3 ,3 ,3 ,3 ,2 ,2 ,2 ,2 ,2 ,1 ,1 ) 

dG* = (14 ,14 ,7 ,7 ,5 ,5 ,4 ,4 ,3 ,3 ,3 ,3 ,3 ,2 ,2 ,2 ,2 ,2 ,1 ,1 ) 

a) Original graph G. b) 2-degree anonymous G*. 

Figure 2.5: Graph G and its 2-degree anonymized graph G*. The red (dashed) 
edges (4,13) and (8,16) were removed, the green (bold) edge (13,16) was added 
to make G* 2-degree anonymous. (Source: author's work.) 

Moreover, a systematic framework for graph anonymization is proposed in [83]. 
L i u and Terzi decomposed the problem of finding /c-degree anonymous graph into 
two parts: degree anonymization and graph construction. 

In the degree anonymization procedure, the degree sequence of G, denoted 
by do, is changed to obtain /c-anonymous degree sequence d*G. In the graph 
construction procedure, the original graph G is modified with the sequence of 
edge editing operations to find the /c-degree anonymized graph G* corresponding 
to the found k-anonymous degree sequence d*G, do* = d*G. They also proposed 
the /c-DA algorithm solving both degree anonymization and graph construction 
tasks. 

The original /c-DA algorithm applied only the edge addition operations. How
ever, the idea of using simultaneous edge additions and deletions was also outlined 
in [83J. Moreover, they proposed two procedures for the degree anonymization: 
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Dynamic programming algorithm and Greedy algorithm. The dynamic program
ming algorithm is deterministic and finds the optimal solution in 0(n2), where 
|V(G)| = n. The greedy algorithm is a linear-time alternative wi th the complex
ity in O(kn). Even though the greedy algorithm does not guarantee finding the 
optimal solution, experiments on real networks proved that the anonymization 
cost of the found solution was very close to the optimal one. Hence, the greedy 
algorithm was shown to be faster and more efficient for larger networks. 

Lie and Terzi provided several variants of the graph construction problem in 
[H3J • The ConstructGraph algorithm requires the anonymized degree sequence d*G 

and ensures G* wi th exactly this degree sequence if such a graph exists. Other
wise, it outputs "No" if such a graph does not exist. Hence, it decides whether 
the given da* is realizable. However, the ConstructGraph algorithm does not 
guarantee that E(G) C E (G*) or at least that \E(G) \ E(G*)\ is negligible. To 
solve this issue, the ConstructGraph was extended to Supergraph algorithm in 
JS3J. The Supergraph searches for the set of edges E, that should be added into 
G, thus E(G*) = E(G) U E. Nevertheless, it is not an oracle like the original 
construction algorithm. If Supergraph does not find proper G*, it does not mean 
that the graph does not exist. 

Finally, the SimultenousSwap algorithm was proposed that solved the relaxed 
version of the /c-degree anonymity problem such that E(G) f l E(G*) ~ E(G) 
instead of E{G) C E {G*). Hence, it enabled to use also the edge switch operation 
in all procedures. Experimental results showed that the power-law distribution 
of G* found by Simultaneous Swap was much closer to that from G than the one 
obtained by algorithms applying only edge additions. 

The degree anonymization and graph construction procedures are connected 
to the probing scheme, as proposed in |H3|. The simple outline of the probing 
scheme using the Supergraph construction algorithm is given in Figure \2.b\ 

G,dG 
Greedy 

D P 
G, d Q 

Noise 
addition 

d :— n o i s e ( d * ) 
N O . d% 

Supergraph 
G * : d„, _ d* 

Y E S 
-+ G* 

Figure 2.6: Scheme of k-DA algorithm. (Source: author's work. 

Using the probing scheme, the k-DA algorithm performs on G in two steps. A t 
first, Greedy or Dynamic programming algorithm takes as the input the degree 
sequence dG and the anonymization parameter k and finds the /c-anonymous 
degree sequence d*G. Then Supergraph algorithm tries to modify G to construct 
G* such that do* — dG. In case that the Supergraph algorithm fails, d*G is slightly 
modified by adding noise and Supergraph runs repeatedly unti l G* is found such 
that do* = d*G. Since the design of the Greedy procedure is essential for describing 
the improvement of the k-DA algorithm proposed in this thesis, the procedure is 
outlined in Algorithm^ Note that dG[i] stands for the i-element of dG. 

Later published studies preserved the approach of anonymizing the degree 
sequence to obtain d*G and then modified to graph structure to fit d*G J351, EO, 120, 
ESI, II 4filj. Al though the k-DA algorithm was improved in terms of speed p51 E5f 
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Algori thm 1 Greedy procedure in k-DA jH3j 

Require: anonymization parameter k, the degree sequence cZG 

Ensure: the /c-anonymized degree sequence d*G 

1: Sort do in the descending order. 
2: Let n be the length of dG. 
3: Set d*G to be an empty vector of the length of n. 
4: Set % :— 1 and / := k. 
5: while I < n do 
6: m :— median(cZ G [z] , . . . , dG[Z]) 
7: Set d*G[i] := m , dG[z + 1] '•= m, • • •, d*G[l] := m . 
8: repeat 
9: Compute C m e r s e := d G [i] - dG[Z + 1] + Ej± j+2(d G [Z + 2] - d G [?']). 

10: Compute Cnew : = E j±*+i (do[Z + 1] - dG [j]). 
11: Set d*G[l] := m and Z := Z + 1. 
12: until Cmerge ^> Cnew 

13: Set z := / and Z := z + k — 1. 
14: end while 
15: Set d*G[i] := m, d*G[i + 1] := m , . . . , d G[n] := m. 
16: Return d^. 

or its usability in larger networks [20] by applying different kinds of heuristics, 
it is sti l l considered to be the basis of the /c-degree anonymization. It is one of 
the state-of-the-art anonymization methods implemented in the evaluation tools 
SecGraph JH|, and ShareSafe [US]. Casas-Roma et al . compared their U M G A 
algorithm wi th k-DA in [20]. Zhang et al. referred to k-DA while mentioning the 
fc-degree algorithm in the comparison of several S N anonymization techniques in 
[158]. A l a v i et al . compared their genetic G A G A graph anonymizer wi th k-DA 
and other well-known anonymization approaches in [3]. Finally, k-DA was one 
of the examined anonymization algorithms in [321, where the clique-destroying 
problem in the network was addressed. Hence, k-DA is sti l l a contemporary 
algorithm. 

The /c-degree anonymization method and k-DA algorithm were the subjects 
of theoretical studies investigating its complexity [351, HO]. Moreover, it was pre
sented in [30] that high-degree nodes increased the anonymization cost signifi
cantly. The idea was expressed that the high-degree nodes could be potentially 
removed from the anonymization process. A s far as I know, this idea was not 
further investigated. 

L u et al . introduced in [SO] Fast k-degree anonymization algorithm (FfcDA), 
which clustered and anonymized the vertices of V(G) into several anonymization 
groups with at least k members. The original graph was modified, so vertices 
in each group have the same degree. To reduce the anonymization cost, the 
vertices in each group should have similar degrees in the original graph. For this 
reason, F/cDA clustered vertices in descending order according to their degree i n 
the original graph, which also corresponded wi th the scale-free property of real 
SNs. 

In the degree anonymization procedure, the edges were added simultaneously 
to all vertices. Inside one group, F/cDA linked vertices wi th insufficient degrees 
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with each other. However, the new degree value should stil l be lower than the 
highest degree in the group. After the edge addition, vertices in the group were 
reordered according to the new degrees, and other vertices outside the group 
could be added to it as well. The design of the procedure is greedy, and its 
implementation has been made to minimize the need for reordering the groups. 
Furthermore, there is a relaxed edge addition procedure that was launched where 
the deterministic procedure failed to find enough vertices for adding more edges, 
and the output graph is stil l not /c-degree anonymous. In summary, the advantage 
of F/cDA over the original k-DA was that testing the realizability of the degree 
sequence and repeating runs of graph construction procedure, which were time-
consuming operations, were avoided; hence F/cDA was faster on larger datasets. 

Casas-Roma et al . introduced the /c-degree anonymization algorithm based 
on univariate micro-aggregation to anonymize large S N datasets in pOJ. They 
preserved the two-step approach and split the task into the problem of de
gree sequence anonymization and graph modification. The aim of their degree 
anonymization method was to modify the values of do to create sets of k or 
more elements. The method used the optimal univariate micro-aggregation |H3j 
to achieve the optimal set distribution. Then, it computes the values for each 
set that minimizes the distance of d*G from do- The greedy approach was also 
introduced to reduce the search complexity. In the graph modification algorithm, 
the neighbourhood centrality measure was used to quantify the edge relevance 
in the network and select auxiliary edges in the edge editing operations (addi
tion, removal and switch). I used the modified version of their U M G A algorithm 
for anonymizing social ties in the geosocial networks in [94]. Instead of using 
neighbourhood centrality in the graph modification procedure, I exploited the lo
cation information stored in the geosocial network and quantified the importance 
of edges with the location entropy metric. 

The /c-degree anonymity is the method with the l imited model of the attacker. 
The /c-degree anonymized dataset preserves privacy against the attacker, knowing 
the degree of their target node. If the attacker has larger background knowledge 
about the graph structure of the original network, then the individual 's privacy 
is not ensured. To address this issue, other methods based on /c-anonymity were 
proposed to provide more privacy protection after anonymization. 

To protect the anonymized network against the attacker who knows the tar
get's neighbourhood in the original networks, the /c-neighbourhood anonymity 
method was introduced in [ilrill 11 ŕi2lj. The proposed approach was extended to 
/c(<i)-neighbourhood anonymity in [3, 101] . The /c(<i)-neighbourhood anonymity 
protects against the attacker wi th the structural background knowledge about 
nodes i n the distances up to d from the target node. Before giving the proper 
definition of /c-neighbourhood and /c((^-neighbourhood anonymity, the terms of 
the neighbourhood of the vertex and ^-neighbourhood of the vertex are formally 
defined. 

Definition 9 (Neighbourhood). The neighbourhood of the vertex u G V (G) in 
G, denoted by NG(U), is a subgraph of G such that 

. V(NG(u)) = {ve V(G) • (u, v) G E(G)} 

. E(NG(u)) C E (G) such that V ( u , u ) G E(NG(u)) : u, v G V(NG(u)) 
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Definition 10 (d-neighbourhood). The ^-neighbourhood of the vertex u G V(G) 
in G, denoted by NG(u), is a subgraph of G such that 

• V(NQ(U)) = {V E V(G); there is a path of the lenght d from u to v in G} 

. E(NG(u)) C E[G) such that V(u,v) G E(NG(u)) : u,v G V(NG(u)) 

Definition 11 (k-neighbour hood anonymous graph [llti'll]). A vertex u G V(G*) 
is /c-neighbourhood anonymous in G* if there are at least k — 1 other vertices 
vi,... ,Vk-i G V(G*) such that NG(U), NG(VI), . . . , NG(vk-i) are isomorphic to 
each other. The graph G* is k-neighbourhood anonymous if V u G V{G*), u is 
k-neighbourhood anonymous. 

Definition 12 (/c(d)-neighbourhood anonymous graph A vertex u G V(G*) 
is /c(d)-neighbourhood anonymous in G* if there are at least k — 1 other vertices 
Vi,... ,Vk-i G V(G*) such that NG(u), NG(vi),..., NG(vk-i) are isomorphic to 
each other. The graph G* is k(d)-neighbourhood anonymous ifiu G V{G*), u is 
k(d)-neighbourhood anonymous. 

Clearly, the values of both parameters k, d are set before anonymization and 
can not be changed afterwards. The value of k indicates the probability that 
an individual can be re-identified in G*, the value of d corresponds to the size 
of the attacker's knowledge that is not sufficient for the re-identification attack. 
However, the size of the background knowledge can change over time. If the 
attacker obtains the structure of G including NG

+1(v), G* becomes vulnerable 
against his or her structural attack. 

To address this privacy-preserving issue, there were published anonymization 
methods that protected against any structural attack: /c-isomorphism p5J, k-
symmetry |I15( )IJ and /c-automorphism [163]. The protection against any structure 
attack in terms of those methods means that for any subgraph of G*, at least 
other k — 1 disjoint subgraphs are isomorphic to it. In other words, even if the 
attacker knows the structure of an arbitrarily large subgraph of G or the structure 
of several subgraphs of G, then he or she is not able to recognize his or her target 
user in the anonymized data G*. Of course, suppose the attacker gains sufficiently 
extensive knowledge about its target from the structure of the original graph G. 
In that case, he or she does not need to gain more information about the target 
user from the anonymized G*. However, the leakage of non-anonymized data is 
not the subject of this thesis. 

The fc-isomorphism, /c-symmetry and /c-automorphism are very similar ap
proaches. Cheng et al . proved in J25J that /c-isomorphic graph is /c-automorphic 
as well. The hypothesis that /c-automorphic graph is /c-isomorphic and that both 
approaches are equivalent to /c-symmetry has not been rigorously proved. 

In |25f Cheng et al . addressed not only the problem of identity disclosure but 
also the privacy issue of link disclosure which was addressed neither in [ll (i3|| nor 
[150]. They introduced the /c-isomorphism anonymization method and proved its 
persistence against identity and link disclosure privacy issues. Furthermore, they 
proposed a dynamic release mechanism that addresses the privacy-preserving is
sue caused by repeated releases of the same database over time. The /c-isomorphic 
graph is defined after the formal definition of graph isomorphism. 
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Definition 13 (Isomorphic graphs [163]) . Given two graphs Pi and P2, Pi is 
isomorphic to P2 (denoted by Pi ^ P2), if and only if there exists at least one 
bijective function F : V(P\) —> V(P2) such that for any edge (u,v) G E(Pi), 
there is an edge (F(u), F(v)) G E(P2). The function F is called the isomorphism 
of Pi and P2. 

Definition 14 (/c-isomorphic graph [25]). A graph G* is k-isomorphic, if G* 
consists of k disjoint subgraphs Pi,... ,Pk, where Pi and Pj are isomorphic, % ^ j, 
V i , j = l,...,k. 

The /c-isomorphism algorithm proposed in |25f by Cheng et al . partitions 
the input graph into k disjoint subgraphs and makes them isomorphic to each 
other wi th edge additions and deletions. The crucial part is to identify those 
k subgraphs. They proposed a heuristic procedure where subgraphs P j , such 
that \E(Pi)\ < m, were selected as potential anonymization subgraphs. The 
threshold m was experimentally set as the average degree in G. Afterwards, at 
least k disjoint matches of the selected Pj's are found in G. Those matches are 
removed from G, added into G*, and the procedure is repeated. If there are not 
enough matches of the particular embedding, G is modified wi th edge additions 
and deletions. After the whole G is processed, the disjoint components of G* are 
linked together such that the final G* is /c-isomorphic. 

The /c-isomorphism approach was improved with the method better preserv
ing communities in the graph in [ll 2()lj. Rong et al . proposed the /c +-isomorphism 
method detected communities at first, then partitioned them into n similar sub
graph clusters. Afterwards, in each cluster, the subgraphs were modified so that 
at least k communities are isomorphic to each other. They applied both edge ad
dition and deletion operations as well as vertex addition and deletion operations. 

W u et al . proposed the /c-symmetry method in [15()|| where the vertices' prop
erty "being automorphic" is viewed as the equivalence relation, called automor
phism equivalence, on the vertex set V{G). The vertex set V{G) is split into 
vertex partitions induced by the automorphism equivalence. The graph G* is 
said to be /c-symmetric if every vertex parti t ion contains at least k vertices. The 
basic idea of the /c-symmetry anonymization algorithm is repeating the procedure 
of making duplicate copies of the vertex partitions unt i l the size of each vertex 
partit ion combined wi th its copies is equal to or larger than k. In [150], W u et 
al. also presented the extension of the algorithm that improved the algorithm 
in terms of preserving data utility. Since the formal definition of /c-symmetry 
requires formally defining several other terms not used in the rest of the thesis, 
the definition is omitted wi th reference to [115( )IJ. 

The /c-automorphism approach introduced in |I1631] is defined wi th the auto
morphisms on V(G*). 

Definition 15 (Graph automorphism). Let G be a graph, and the bijective func
tion F : V{G) —> V{G) be the isomorphism. Then F is the automorphism on 
G. 

Definition 16 {k-automorphic graph [ll 6 3 ] ) . Let G* be a graph. If there exist at 
least k — 1 automorphisms Fj, j = 1 , . . . , k — 1 in G*, and 

\fv G V(G*) : Fn(v) + Fj2(v) Vjuj2 G Af : 1 < ji < j2 < k - 1, 

then G* is called a /c-automorphic graph. 
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A s mentioned before, each /c-isomorphic graph is /c-automorphic as well. The 
fc-automorphism K M anonymization algorithm, proposed by Zou et al . in [163], 
is constructed on similar principles as the /c-isomorphism algorithm introduced in 
p5L Furthermore, it is also proven to guarantee privacy under dynamic releases. 
The problem of finding the /c-automorphism graph is divided into two subtasks: 
finding the optimal graph partit ioning and finding the optimal block alignment. 
Both subtasks are proved to be N P - h a r d in [l"163l] and are solved by heuristic 
procedures. 

Since one algorithm proposed in this thesis is based on the K M algorithm, its 
brief description is given in Algorithm^ I refer to [ll 63l] for its detailed description. 
The K M algorithm transforms the input graph G to the /c-automorphism graph 
G*. It solves the task as two separate N P - h a r d problems: finding the optimal 
graph partit ioning (lines|2[J6]in Algorithm^, finding the optimal graph alignment 
(lines(7[|9j). B o t h problems are correctly defined in Chapter^ 

Algori thm 2 K M algorithm [163 

Require: anonymization parameter k, input network G 
Ensure: /c-automorphism network G* 

1: Set % = 1 and C to be an empty set. 
2: F i n d the frequent subgraph gf(k) in G wi th the minimal support equals to 

k. Denote each match of the frequent subgraph gf{k) in G as P^, j = 1 . . . k. 
Let Ui be the set of all subgraphs P^. 

3: Expand subgraphs P^ wi th some other vertices and edges from G such that 
the anonymization cost of the whole block Ui is minimal . 

4: Remove all subgraphs P^ in Ui from G: G = G \U. 
5: Store all crossing edges into the set C. Crossing edges are edges (v, w) from 

G such that v G Pij and w ^ P^ (for some j). 
6: Set % = % + 1. 
7: Repeat steps 2-7 unti l there is no edge in G. After that there are m blocks 

Ui,... Um such that for each i — 1... ,m the block Ui contains k subgraphs 
Pil i • • • i Pik-

8: For each set Uf perform graph alignment procedure on all graphs P^ to 
obtain k isomorphic graphs P[y Denote Fa to be the isomorphism between 
pi,a a n d i ^ a + 1 , a= l , . . . , f c - l . 

9: Replace each block P^ by its alignment block P(j to obtain the anonymized 
network G*. Remove all crossing edges from G*. 

10: For each crossing edge (v, w) from the set C: add (v, w) and k — 1 other edges 
( F ^ ) , F > ) ) i n t o G * . 

11: Return G*. 

A t first, the algorithm starts with finding the frequent subgraph with the given 
minimal support by running the grow-and-store S i G r a M algorithm JZ2J. Then, for 
fixed i, the K M algorithm first finds k matches of the frequent subgraph gf(k) and 
denotes them P^ (line|2[). The subgraphs P^ are isomorphic to each other. After 
that, the subgraphs P^ are expanded, which means that some neighbourhood 
vertices and edges are added to each P^ (line |3|). The expansion is necessary 
for decreasing the total anonymization cost. The expanded blocks P^ have fewer 
crossing edges than the original frequent subgraphs; hence the anonymization 
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cost caused by the crossing procedure is smaller. Thus, the subgraphs Py are 
larger but are not isomorphic to each other anymore. However, since the aim 
of the algorithm is to obtain /c-automorphic graph G*, its subgraphs have to be 
isomorphic. Thus, dummy edges are added to make the expanded subgraphs Pij 
isomorphic to each other again (line |8[). Subgraphs P^ are removed from G, i 
is increased, new frequent subgraphs in G are found and the whole process is 
repeated unti l G is the empty graph. Finally, all disjoint expanded isomorphic 
subgraphs P^, are isomorphically reconnected with the crossing edges and 
their copies (line 10). 

Neither Cheng et al . nor W u et al . did not compare their experimental 
results wi th the results of other known /c-anonymity algorithms as Zou et al . 
did . Zou et al . compared their results wi th the results of k-DA algorithm [84], 
/c-candidate anonymity approach flEf and k-neighbourhood method [I6l|]. Since 
the K M algorithm provides higher privacy protection than other algorithms, the 
/c-neighbourhood approach and k-DA were shown to preserve the data uti l i ty 
better than K M in pTTTl 

2.3.9 Surveys 
A summary of the surveys focusing on the S N anonymization approaches is pro
vided to complete the literature review of S N anonymization methods. The 
state-of-the-art anonymization techniques and approaches were summarized in 
comprehensive surveys [33, CD, ED, EH, ED]. 

In |33], Fung et al . evaluated various approaches to privacy-preserving data 
publishing and studied the challenges in practical data releasing. They clarified 
the characteristics and requirements that distinguished those privacy-preserving 
issues in data publishing from other related problems. 

Recent social network data publishing developments were reviewed in f l j . 
Abawajy et al. presented state-of-the-art privacy-preserving approaches for pub
lishing social network data and summarised privacy attacks on anonymized social 
network datasets. The survey presented by Casas-Roma et al . in jZIf is focused 
only on graph modification methods altering the graph structure of the input 
network. 

Both anonymization and deanonymization techniques were classified in jHTj. 
Exist ing anonymization methods were classified into six categories wi th respect 
to graph and application uti l i ty metrics. J i et al. examined the performance 
of known deanonymization attacks wi th respect to scalability, practicability and 
robustness. Moreover, they also analyzed the resistance of the anonymization 
methods against the attacks. 

Recently, Majeed and Lee presented in |H] the comprehensive survey of all 
known anonymization techniques for privacy-preserving data publishing includ
ing methods for anonymization relational datasets, S N anonymization methods, 
anonymization approach used for application-oriented scenarios as well as the re
view of evaluation metrics for anonymization algorithms. They also pointed out 
the challenges for future research in both fields of anonymization. 
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2.4 Deanonymization attacks 
Deanonymization attacks are attacks against published anonymized datasets. 
This thesis focuses on attacks and deanonymization approaches aiming to re-
identify users in the anonymized data. It means that the aim of the adversary 
is to l ink the target individual I wi th the node v(I) G V(G*) that represents 
the individual i n the anonymized network G*. This privacy-preserving issue is 
called the identity disclosure problem. There are also techniques causing other 
kinds of privacy leakage, for example leaking the link privacy; however, there are 
not involved in the review since the focus of the thesis is the identity disclosure 
problem. 

The deanonymization attack can be active, passive, or a combination of both 
types. The assumption for active attacks is that the attacker can modify the 
target S N before the provider publishes it . For instance, the attacker can create 
many fake accounts (Sybil accounts) and link them wi th each other and with 
the target user. W h e n the S N is published, he or she attempts to recognize 
the embedded part of the S N , and the recognition simplifies the re-identification 
of the target users. However, providers nowadays possess various Sybil defence 
techniques and tools for detecting Sybil accounts that can recognize and delete 
fake accounts, making this type of attack difficult [HP]. 

O n the other hand, passive attacks do not require access to the network before 
publishing. Furthermore, they can aim at a large part of S N , and the same 
procedure can be repeated, seeking different S N datasets. Before the actual attack 
on the target S N dataset, the attacker is assumed to gain some information that 
enables h i m or her to perform the attack. Such information is called the attacker's 
background knowledge. The format of the background knowledge depends on the 
kind of attack. In structural attacks, the background knowledge is usually a 
graph, for example, the subgraph of G. In this case, the background knowledge 
is traditionally called an auxiliary graph. 

Assume the provider possesses the graph G representing the S N network. The 
provider desires to share or publish the data. The version of G shared or published 
is called the released graph G. The released graph G equals G or any anonymized 
version of G depending on the privacy level guaranteed by the provider. The 
identity disclosure occurs if an attacker can identify the target individual in the 
released dataset G. In other words, the identity is disclosed if the attacker can 
link v G V(G) wi th the particular individual represented with v. 

Definition 17 (Query [lltiril]). Given a social network G, a query Q represents 
any information the attacker can exploit to extract private information from G. 
The result of Q is a set of vertices V C V[G). Each v G V is called a match 
vertex. 

Definition 18 (Structural attack [llti.'ij]). Given a released network G, if a query 
Q over G launched by an attacker has a limited number of match vertices in G, 
then target individual t might be uniquely identified. The attack is called structural 
if Q is based on the structural information about t in G. 

Structural attacks include degree attacks, subgraph attacks, neighbour-graph 
attacks and hub fingerprint attacks [iltiril]. M a n y sophisticated structural attacks 
on S N datasets have been published. In p|, Backstrom et al . introduced the 
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model of adversary that could deduce the users' identity by solving a set of re
stricted graph isomorphism tasks. Thus, it was proved that the naive anonymiza-
tion of only removing identifiers and attributes set U(G) was insufficient for pre
serving users' privacy in the S N dataset. Their work was extended in |0J, where 
the family of attacks on a single anonymized dataset was presented. It involved 
both passive and active attacks, in which the adversary could find whether edges 
existed between pairs of targeted nodes. 

Narayanan and Shmatikov presented a structural seed-based deanonymization 
scheme [104], where the attacker exploited the knowledge of a small part of the 
original network called seed and background knowledge about the anonymized 
dataset. They also showed how the adversary could gain such a structural back
ground knowledge which was represented as the auxiliary graph. The simplified 
version of their attack was presented in [ l05l j . 

The divide-and-conquer algorithm based on attacking the network at first 
on a community level is introduced in |l107lj. Nil izadeh et al. performed that 
the community-based approach improved the seed-based deanonymization tech
niques. Peng et al . presented the seed-growing algorithm in [ll111]. The identified 
seed subgraph grew larger based on the attacker's background knowledge. Simi
lar attacks were proposed in pBI, 11541], where the seed subgraph grew iteratively, 
mapping a pair of nodes according to the number of their neighbour nodes. 

The seed-free deanonymization attack was introduced in [11 (M\. Based on 
Bayesian probability, the seed-free attack matched two nodes, one from the at
tacked network and the other from the auxiliary graph. Instead of exploiting the 
side information like the seed, node features such as degree and distances were 
used as nodes' fingerprints. The algorithm ran in rounds where the most likely 
pairs were mapped first. Afterwards, these paired nodes subsequently generated 
additional features in the fingerprints of other nodes. 

Semantic-based deanonymization attacks are proposed in [ll 49L 1115lj. Won-
dracek et al . exploited the group member information stored in social networks 
in ["14D|]. They performed that group memberships could significantly increase the 
probability of the correct re-identification of the target user. The web browser 
history stealing attacks were used to determine the group membership. Q u i n et 
al. set up knowledge graphs to increase identity disclosure risk in anonymized 
networks in [115]. 

Recently, M a et al . introduced the random forest classifier in [87] that used the 
spectral parti t ion method to parti t ion large graphs into several small subgraphs. 
Its output matched candidate nodes from the anonymized network wi th the ones 
from the auxiliary network. A framework examining the interplay between graph 
properties and the vulnerability to deanonymization attacks is proposed in p3|. 
In [23], Chen et al . proposed three heuristic attack strategies: the community 
detection attack, the degree-based attack and the modularity Q-Attack based on 
a genetic algorithm. They showed that Q-Attack achieved better results than the 
other two strategies in reducing normalized mutual information. 

The deanonymization approaches mentioned above focused on issues con
nected to sharing or publishing data from a single social network. They examined 
a single anonymized dataset and took advantage of some background knowledge 
about the single anonymized dataset. The background knowledge of the attacker 
in the form of an auxiliary graph can be a subgraph of the attacked graph or any 
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external information gained by the attacker to perform the attack. The exter
nal information could be any data, including the graph of another anonymized 
dataset [1041]. However, as far as I know, no research has been yet focused on the 
particular situation where the background knowledge is only another anonymized 
dataset with the overlapping user community. In this scenario, both anonymized 
datasets are threatened since the first can be the auxiliary graph for the latter 
and vice versa. 

O n the other hand, there were published studies that address the problem 
of privacy leakage involved in publishing two or more relational datasets wi th 
overlapping records |35J, EH, 1127]. This attack combing the knowledge of two 
anonymized datasets is called the composition attack. 

In pSj, Ganta et al . investigated an intersection attack, a version of the 
composition attack, and experimentally demonstrated the attack's severity for 
many previously proposed anonymization techniques. Their study proved that 
several partition-based anonymization schemes, including the /c-anonymity and 
its variants, are vulnerable to composition attacks. 

Sattar et al . proposed a probabilistic (d, a) - l inkabi l i ty method, an efficient ex
tension of /c-anonymization, in [i'l 27]. They presented the theoretical background 
for reducing the risk of a composition attack on relational datasets. They experi
mentally proved that the methods based on /c-anonymization protect data privacy 
adequately and can preserve more ut i l i ty than alternative privacy models. 

Moreover, L i et al . introduced a hybrid algorithm to protect the privacy 
of relational datasets against composition attacks in JH3J]. They proposed an 
anonymization algorithm that reduced the risk of composition attacks. They 
considered an adversary who knew some personal information about the vict im, 
while the victim's records are included in two anonymized datasets independently 
published. The attacker exploits the occurrence of the plain value of a sensitive 
attribute in anonymized relational datasets. The considered datasets had the 
particular property that the value of the sensitive attribute was constant for each 
individual over all the anonymized datasets. 

2.5 Evaluation tools 
Different anonymization approaches provide different levels of security. A high 
level of security protects against the attacker wi th more extensive background 
knowledge. However, a higher level of anonymization usually requires more mod
ifications in the input dataset, causing larger information loss in anonymized 
data. Maintaining a balance between privacy and uti l i ty loss was addressed in 

Evaluating anonymization methods is a challenging issue as well. Anonymiza
tion algorithms are usually implemented and tested on synthetic or real-world 
datasets. Then, the selected network metrics are measured in the anonymized 
datasets. Experimental results published in different research papers are usu
ally not comparable. The problem of missing methodology for evaluating other 
anonymization methods is addressed in pO, EESJ. 

J i et al . proposed an evaluation tool called SecGraph in [60]. It can be used 
by different researchers to analyze the performance of their anonymization al
gorithms, evaluate anonymized data concerning ut i l i ty and application metrics, 

29 



anonymize social network datasets or examine the vulnerability of anonymized 
data to state-of-the-art deanonymization attacks. Three modules are imple
mented in SecGraph: anonymization, utility, and deanonymization. 

In the anonymization module, graph data anonymization schemes are imple
mented. The module can be used to anonymize raw graph data. The uti l i ty 
module can evaluate anonymized data ut i l i ty concerning uti l i ty and application 
metrics. Therefore, it can determine how an anonymization algorithm preserves 
data utility. In the deanonymization module, data security can be evaluated 
wi th real-world deanonymization algorithms before publishing or sharing. The 
effectiveness of an anonymization algorithm can also be examined in this module. 
Researchers can test whether the anonymized data of an anonymization algorithm 
is resistant to attacks. SecGraph has been recently improved by adding two other 
modules, recommendation and security quantification. The second version of the 
tool is called ShareSafe [l"139lj. B o t h tools are available online J5SJ. 

A different privacy evaluation framework for graph anonymization is proposed 
in pHf. The D U E F - G A framework includes generic and task-specific information 
loss measures as well as metrics for the examination of re-identification and risk 
assessment. It was designed to help researchers and experts to select the best 
parametrization or algorithm to reduce information loss and maximize data ut i l 
ity. The tool is available online [IBf. D U E F - G A was published after the publica
t ion of SecGraph; however, the existence of the SecGraph tool was not mentioned 
in p2j . 

SecGraph and D U E F - G A tools commonly focus on evaluating and measur
ing data ut i l i ty in anonymized S N datasets. However, their approach differs in 
many aspects. D U E F - G A is focused mainly on data ut i l i ty and information loss 
measurement. To evaluate the vulnerability against deanonymization attacks, it 
computes only the candidate sets for each vertex to measure the feasibility of 
degree-based attacks and computes proportions of vertices that change their set 
of neighbours at a distance one to measure the feasibility of 1-neighbourhood-
based attacks. D U E F - G A implementation contains no anonymization algorithm 
that can do the actual anonymization of the S N dataset. To produce anonymized 
data for testing in [19], Casas-Roma employed the U M G A anonymization algo
r i thm J2DJ. O n the other hand, as mentioned above, SecGraph is focused equally 
on evaluating preserving data ut i l i ty and vulnerability against state-of-the-art 
deanonymization techniques. 

Focusing on the data ut i l i ty measurement, both tools provided the measure
ment of some structural metrics and some application metrics. Furthermore, both 
tools require the same input: the original graph G and its anonymized version 
G*, where V(G) = V(G*). Even though some metrics are measured wi th both 
tools, the methodology is entirely different. For instance, both tools deal wi th 
the shortest path and the clustering coefficient^. D U E F - G A compute the average 
shortest path and global clustering coefficient for whole graphs G, G* and then 
outputs the difference of the measured values. SecGraph calculates the global 
clustering coefficient for complete graphs G, G* and outputs the ratio of the mea
sured values. Addit ionally, it computes the distribution of the shortest path and 
local clustering coefficient in G, G* and outputs its cosine similarity. 

3 Metrics mentioned in this section as well as cosine and Jaccard similarities are properly 
defined in Chapter^ 
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Focusing on vertex-level structural metrics, both tools compute betweenness 
and closeness centrality for each vertex. SecGraph again computes the output 
value with the cosine similarity of vectors of vertex values, D U E F - G A combines 
the values wi th root mean square^. Eigenvalues of the adjacency matrices of 
graphs are also handled in both tools. SecGraph computes the eigenvalue vectors, 
while D U E F - G A measures the largest eigenvalues. 

The approaches differ a lot in the measurement of the application metrics. 
Page rank is the only application metric computed in both tools, except that 
both aim to detect communities and compute the information flow. The author 
of D U E F - G A defined the precision index metrics and combined them with four 
clustering algorithms to detect communities. He introduced his own metric for 
measuring the information flow. O n the other hand, SecGraph computes the 
authorities and hubs scores and uses the method published in [l'152lj to detect 
communities. The information flow is given by infectiousness, influence maxi
mization, secure routing and the computation of the minimum-sized influential 
node set |EQ|. 

Except for the mentioned, in SecGraph there are additionally implemented 
four other structural metrics (effective diameter, network constraint, degree and 
joint degree distribution) and three additional application metrics (role extrac
tion, reliable email detection and Sybil account detection) [60]. O n the other 
hand, structural metrics that are implemented only in D U E F - G A are transitiv
ity, and edge intersection flHJ. 

Both tools were tested on real-world S N datasets; however, the datasets used 
for evaluating differ in size. Authors of SecGraph tested the tool on large S N 
datasets up to 0.8 mil l ion users, while D U E F - G A was tested on smaller graphs 
up to 2000 users. In this thesis, the SecGraph tool is used for evaluating the effi
ciency of the proposed anonymization method since it also focuses on evaluating 
the vulnerability to attacks and includes the implementation of state-of-the-art 
deanonymization algorithms. 

2.6 Genetic algorithms in social network analy
sis 

Genetic algorithms based on mimicking the processes of natural evolution are 
powerful tools while addressing N P - h a r d problems. They were developed by 
Holland in [53]. They have been successfully applied to various issues belonging 
to the N P class like the travelling salesman problem [41, 56], scheduling problems 
[281], o r b in packing problem [136]. M a n y studies describe the application of 
genetic algorithms on a wide range of N P - h a r d problems. However, since the 
thesis is focused on social network anonymization, the review contains only studies 
dealing wi th the application of genetic algorithms in social network analysis. 

Genetic algorithms have been recently exploited in the S N analysis for commu
nity detection in large networks [5J, 11121], graph clustering pTTL UE| and predicting 
the dynamics of S N j22j. Since the problem of modifying the S N graph wi th the 
minimal amount of edge editing operations to become /c-anonymous is N P - h a r d 

4 For the definition of root mean square see P2[. 
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|H5]. several S N anonymization methods based on genetic algorithms have been 
recently presented too. 

Sihag proposed the genetic algorithm anonymizing S N by clustering nodes 
into super-nodes in [l13()l]. However, the algorithm was tested only on small SNs 
(up to 6 7 nodes) and caused more significant information loss than the previously 
published deterministic clustering algorithm Sangreea pZZ|. 

Another genetic clustering algorithm was proposed by Yazdanjue et al . in 
|I1 ňňlj. They optimized the clustering procedure in the /c-anonymity method em
ploying particle swarm optimization. They presented a hybrid solution that com
bined particle swarm optimization with genetic algorithms. Their solutions were 
represented wi th binary matrices describing which node belonged to which super-
node. Each chromosome contained all nodes and all super-nodes of the whole 
graph. Hence, while anonymizing large networks, it can be used only large val
ues of the anonymizing parameter k since larger k means fewer super-nodes and 
smaller chromosomes. 

The genetic fc-degree edge modification was introduced by Rajabzadeh et al . 
in |116||. A t first, the algorithm detected communities in the S N graph and 
then modified each community's edge set wi th the genetic algorithm. Hence, 
the S N graph was anonymized by adding edges between vertices inside detected 
communities. The algorithm was tested on real datasets up to 2 3 , 1 3 3 nodes. 
However, the anonymized S N satisfied only /c-degree anonymity. 

A l a v i et al . introduced the /c(^-neighbourhood anonymity approach and pre
sented G A for graph anonymization called G A G A . The G A G A was the edge 
editing algorithm that prioritized edge switching over edge adding or removing. 
They showed that the genetic algorithm was an efficient tool for anonymizing 
large SNs. Using the SecGraph framework pn| G A G A algorithm proved resis
tant against five deanonymization attacks. Moreover, the SecGraph was used to 
measure information loss after anonymization and compare G A G A wi th existing 
approaches. I agree that evaluating anonymization algorithms wi th an indepen
dent tool like SecGraph can lead to a better comparison of proposed algorithms. 
However, G A G A is tested only on the subgraph of the D B L P co-authorship net
work [ilň3|], not on the whole D B L P dataset. Since other researchers can not 
find which subgraph they used, they can not compare their results wi th those 
published in |3J. 
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3. Research questions and 
objectives 
M y research in S N anonymization was motivated by the growing need for pri 
vacy protection of personal information in published data from social networks. 
Anonymizat ion of social networks is stil l a promising field of study and gives 
researchers the opportunity to find open problems. The most important open 
problem is indeed finding a robust S N anonymization method that preserves pri 
vacy such that the anonymized dataset is not vulnerable against the state-of-art 
deanonymization attacks and keeps enough data ut i l i ty such that the anonymized 
dataset is stil l useful for data analysts [61]. 

F inding the universal anonymization method for S N datasets would be a too 
ambitious goal for this thesis. I started my research by studying the state-of-the-
art techniques of S N anonymization and developing the comprehensive literature 
review given in Chapter \^ In this early phase of my research, I identified three 
nontrivial open problems, the solutions of which are achievable in P h D research 
and contribute to the progress in S N anonymization. 

In this section, I present the identified problems, formulate the research ques
tions and formally define the objectives of this thesis. Furthermore, I outline the 
proposed solution for each stated problem. The complete solutions are described 
in detail in the rest of the thesis. 

3.1 Study and research questions 
M y P h D research mainly focuses on anonymization methods and approaches to 
modifying social network datasets. However, since anonymization was initial ly 
developed as the solution to privacy-preserving issues in relational datasets, my 
research in anonymization techniques started by studying anonymization and 
deanonymization approaches in tabular data. A s stated in Section \2.4i several 
versions of composition attacks on relational datasets were published. The com
position attack benefits from combining records from two anonymized datasets 
that are published independently of each other. The scenario is as follows. 

Let -Ri , i?2 be two relational datasets. Each dataset contains information 
about a group of individuals. Let I(Ri) and /(-R2) be the set of individuals 
whose data are included in R\ and R2, respectively. Let R{ and R% be the 
anonymized versions of R\ and R2, respectively. Assume that R\ and i?2 were 
released by different providers. The data provider publishing R\ does not have 
the knowledge about releasing R% such that I{R\) H /(-R2) 7̂  0- Since generaliza
tion, suppression, or perturbation do not change the number of rows in datasets, 
it holds that I(R*) = I(Ri), i = 1,2. Hence, there may exist two published 
anonymized datasets R\ and R^ and the non-empty set of individuals /(-R^i?^) 
such that I(Rl, R%) = I(Rl) DI(R%)• In other words, there exist some individuals 
whose records are included in the two anonymized databases. This situation sig
nificantly decreases the level of security provided by the applied anonymization 
methods. Even if R\ and R2 were anonymized well and R\ and i?2 provide high 
privacy protection, combining anonymized records from R\ and i?2 can lead to 
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re-identification of users in I(R\,R*2) pT|. 
This problem has not been widely studied in social network datasets. Assume 

social network datasets GA,I,GA,2 such that V(GA,I) H V(GA,2) 7̂  0 and their 
anonymized versions G*A1,G*A2. A s there are several social networks and more 
than half of Internet users participate i n more than one social network [ll 44L 148] . 
an individual is likely to appear in more than one anonymized social network 
dataset. Thus, two anonymized social network datasets published independently 
of each other w i l l likely have overlapping user communities. 

Assume an attacker that wants to re-identify the user v(I) G V(GA,I) in 
the released G*A1. The background knowledge of the attacker in the form of an 
auxiliary graph Aux(G*A x) can be a subgraph of GA,I or any external information 
gained by the attacker which includes G*A 2 or its subgraphs ['11)4]. 

However, as far as I know, no research has been yet focused on the particular 
situation where Aux{G*A X) = G*A 2 . W h e n two anonymized datasets of social net
works having overlapping user communities are published independently of each 
other, similarly to relational datasets, they can be vulnerable to a composition 
attack. Formally, the goal is to answer the following research question: 

Question 1. What modifications should be done to the design of the 
composition attack such that the attack becomes applicable to the 
social network data? 

To solve this issue, I study the published composition attacks on relational 
datasets [E3, EH, 11271]. analyze in detail their approaches and apply them to S N 
datasets. I indicate the privacy risk associated wi th the situation and describe the 
attacker's goals and motivations for realizing the attack. Moreover, I present and 
implement a new composition attack algorithm. The algorithm takes as input 
two graphs representing the anonymized social network data and finds pairs of 
vertices, one from each graph, describing the same individual participating in 
both social networks. Its feasibility is experimentally proved by testing it on 
synthetic scale-free networks generated using the Barabasi-Albert (B-A) model. 
The detailed description of the proposed approach, the composition attack, and 
the experimental results are given in Chapter^ 

While studying S N anonymization methods, it is crucial to know the k-DA 
algorithm proposed in |B3]. The k-DA algorithm is considered to be the basis of 
the /c-degree anonymization. Moreover, it is st i l l a contemporary algorithm, as 
shown in Section \2.3. h\ 

Except for the k-DA algorithm, I have also studied its improved versions 
, EDJ and its complexity 46]. A s mentioned in Section 2.3.8, Härtung et al . 

presented in |HB| that high-degree nodes significantly increased the anonymiza
tion cost of k-DA. Furthermore, they proposed removing the high-degree nodes 
from the anonymization process since they might be well-known anyway. It d id 
not mean the high-degree nodes should be removed from the graph during the 
anonymization procedure. The high-degree nodes would be kept in the graph, 
but they would not be anonymized. In other words, the few high-degree values 
would remain untouched by the anonymization procedure. 

However, the assumption that high-degree nodes represent well-known indi
viduals is too strong in the case that we focus on developing an anonymization 
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method that is independent of the dataset itself. Nevertheless, the idea moti
vated me to study the degree anonymization procedure of the k-DA algorithm 
more closely. 

In the degree anonymization procedure of k-DA, the degree sequence is ordered 
decreasingly, and degree values are split according to merging rules into several 
groups of at least k elements. In each group, all elements are set to have the 
same anonymized value. In the original k-DA algorithm, the anonymized value 
is the median of the k values in the group. However, the median can be distant 
from the highest values in the group. The problem is the most significant in the 
groups where high-degree nodes are put together wi th lower-degree nodes. If the 
median value belongs to a lower-degree node, setting the higher values to the 
median causes a significant decrement in degree. In that case, many nodes linked 
to the high-degree nodes in G cannot be connected to them in G*. Hence, the d*G 

is often unrealizable since there are not enough potential neighbours for all those 
nodes. 

The noise addition strategy significantly impacts the speed and efficiency of 
the whole k-DA algorithm. It corrects d*G so that it becomes realizable and helps 
keep data ut i l i ty in the anonymized graph. I propose the improvement of the 
noise addition procedure such that the anonymized degree value of high-degree 
nodes is kept closer to their original values. The noise addition procedure corrects 
the anonymized value only in those groups of d*G where the difference between the 
highest and the lowest original value is significant. Moreover, the correction is not 
constant for all groups, but it also depends on the values in the group. It could 
decrease the probability that Supergraph fails to find G*. Thus, it could positively 
affect the efficiency of the whole k-DA algorithm. I formulate the hypothesis into 
the following research question: 

Question 2. W h a t effect does the correction of the anonymized values 
in groups of d*G have on the efficiency of the fe-DA algorithm? 

To solve this issue, I propose the heuristic improvement of the noise addition 
procedure of k-DA. The proposed noise addition approach considers the power-
law distribution of real social networks. The proposed procedure is shown to 
better handle the anonymization of high-degree nodes by flexibly correcting the 
anonymized values in their groups. Moreover, I implement the procedure in the 
greedy version of the k-DA algorithm. To show the applicability and efficiency 
of the improved k-DA algorithm, I run experiments on a set of different real-
world social networks. The detailed description of the heuristic high-degree noise 
addition method and its usability, information loss and data ut i l i ty analysis is 
given in Chapter^ 

Since the model of the attacker is l imited i n the /c-degree method and the 
method was proven to be vulnerable against deanonymization attacks JBJjJ, I also 
studied methods providing privacy protection against any structural attack. I 
focused mainly on /c-automorphism since its authors compare their results wi th 
the results of k-DA. 

The /c-automorphism approach was proposed by Zou et al . in |I1631]. where 
the /c-automorphism anonymization algorithm called K M algorithm was also de
signed. Zou et al . proved that the proposed /c-automorphism K M algorithm 
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provides higher privacy protection than the other algorithms. Nevertheless, k-
D A and /c-neighbourhood methods were shown to preserve the data ut i l i ty better. 

The K M algorithm proceeds in the following steps. A t first, K M finds at 
least k isomorphic subgraphs in the given graph. The isomorphic subgraphs are 
isomorphically extended such that the anonymization cost of the final anonymized 
graph is minimized. Then the extended isomorphic subgraphs are removed from 
the input graph, and the process is rerun on the smaller graph. After the whole 
input graph is processed, we get the set of disconnected graphs such that for 
every graph, there are at least k — 1 other graphs that are isomorphic to it. The 
disconnected graphs are linked together in such a way that the final graph is 
/c-automorphic. 

Both subtasks, finding the isomorphic subgraphs and extending them iso
morphically, are proved to be N P - h a r d in [Il63lj. They are solved with heuristic 
approaches i n the K M algorithm. Moreover, the K M algorithm applied only edge 
addition operation to modify the graph structure. Therefore, the anonymization 
significantly affected the degree distribution of the final anonymized network. 
The simultaneous use of edge addition and deletion operations i n anonymization 
methods reduces the number of edges added to the resultant network. Thus, the 
degree distribution of the graph that w i l l be anonymized wi th a /c-automorphism 
method applying both edge edition operations is likely to be closer to the degree 
distribution of the original graph. Other network metrics could be positively af
fected too. Moreover, since no deterministic algorithms exist to solve the N P - h a r d 
subtask in the /c-automorphism method, there is also scope for improving the K M 
algorithm. Overall , the aim of my research in /c-automorphism anonymization is 
to improve the fc-automorphism method to preserve data ut i l i ty better and there
fore raise its usability in real S N datasets, as formulated in the following research 
question: 

Question 3. What modifications improve the /c-automorphism method 
in terms of preserving data utility? 

To address this question, I propose and implement a novel H y b r i d Algor i thm 
for k-Automorphism anonymization ( H A k A u ) . The algorithm uses both edge 
addition and deletion operations and addresses N P - h a r d tasks wi th a genetic 
algorithm. More precisely, the N P - h a r d subtasks of finding isomorphic subgraphs 
and extending them isomorphically are merged into a single N P - h a r d subtask 
which is solved wi th the genetic algorithm. 

The motivation for using the genetic algorithm to solve the N P - h a r d task arises 
from the fact that genetic algorithms are powerful tools while addressing N P -
hard problems, and they have already been successfully applied to improve the 
/c-degree anonymization method [I'l I til]. /c-neighborhood anonymization method [3] 
and a clustering anonymization algorithm [Il55lj. 

The proposed H A k A u algorithm modifies the given social network to obtain 
the /c-automorphism one. The algorithm is based on the structure of the K M 
algorithm. Unlike the K M algorithm, it solves the N P - h a r d subtask of find
ing isomorphic graph extensions with the genetic algorithm, uses edge deletion 
operation and employs the known G r a M i algorithm [31] for finding frequent sub
graphs. The H A k A u algorithm is evaluated by running experiments on real so
cial networks. The data ut i l i ty in the anonymized network is measured with the 
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SecGraph tool jEDf. Moreover, the SecGraph tool is also used to analyze the pro
tection against deanonymization attacks. Using the SecGraph tool and running 
tests on the datasets available online makes the experimental results comparable 
to any future research. The detailed description of the proposed solution and all 
findings and experimental results are given in Chapter^ 

3.2 Objectives of the dissertation thesis 
In my P h D research, I focus on anonymization methods and approaches that 
modify social network datasets to preserve individuals ' privacy in the published 
data. Dur ing my research, I have identified three open privacy-preserving issues 
related to /c-anonymization methods, their ability to preserve data ut i l i ty well 
and their vulnerability to deanonymization attacks. 

The goal of this thesis is to solve the detected problems and answer the for
mulated research questions by the proposal of new procedures and algorithms 
and their implementation in the M A T L A B programming platform. The work in
cluded testing the applicability and efficiency of the proposed algorithms on sets 
of synthetic and real-world social network datasets, measuring the data ut i l i ty in 
the anonymized networks and comparing the experimental results wi th the results 
of the state-of-the-art algorithms. A significant aspect of the evaluation process 
is to verify the results on relevant data and to provide outputs that are easily 
comparable wi th other research. For this reason, great efforts have been made 
to find a proper evaluation method. Therefore, the evaluation tool SecGraph is 
used to measure data ut i l i ty and the vulnerability of anonymization methods to 
deanonymization attacks. 

The main contributions of the thesis are the improvement of two well-known 
anonymization methods and the proposal of the new deanonymization method. 
More precisely, the work introduces the composition attack as a novel type of 
deanonymization attack on social network datasets and improves the k-DA algo
r i thm and the /c-automorphism anonymization method in terms of preserving the 
data utility. 

Furthermore, while designing the H A k A u algorithm, some minor findings were 
made that can be beneficial for this field of study. A novel chromosome represen
tation for /c-anonymization problems solved by genetic algorithms was proposed. 
The chromosome representation preserves the /c-anonymity property of the chro
mosomes by "design"; hence, testing the /c-anonymity property with fitness or 
selection function is unnecessary. Then the novel "divide and conquer" procedure 
for effective selection of vertex-disjoint subgraphs is introduced. Addit ionally, as 
far as I know, this is the first work where the G r a M i algorithm is applied in the 
anonymization method. 

Finally, even if the evaluation of data ut i l i ty measurement and testing the 
resistance against deanonymization attacks wi th the SecGraph tool has been used 
in the usage of an external evaluation tool and the emphasis on making the 
experimental results comparable i n any future research is not very common i n 
published anonymization studies. 
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4. Preliminaries 
In this chapter, there are given definitions of terms that are used in the rest of this 
thesis. It starts with providing terms from graph theory, including the Barabasi-
Albert model, which is used to produce synthetic S N networks in experiments 
in Chapter [| and introducing all network metrics used in evaluating results i n 
Chapters 0, 0- Then, it defines equivalence classes in G A , establishes matrix 
notation and introduces receiver operating characteristic analysis that is used 
for evaluating the efficiency of the proposed composition attack in Chapter [3[ 
Since few N P - h a r d problems are discussed in Chapters 0 and one stated problem 
is proved to be N P - h a r d in the same chapter, this chapter also includes the 
definition of N P - h a r d problems and polynomial reducibility. Finally, in order not 
to burden the basics while defining the special features of the proposed genetic 
algorithm in Chapters 0, this chapter ends with describing the basic principles of 
the genetic algorithm. 

4.1 Graph theory 
The definitions of well-known terms like graph, degree of the vertex, degree dis
tr ibution, and adjacency matr ix of the graph are omitted with reference to |T3l|. 
This section begins wi th the definitions of the subgraph, supergraph and frequent 
subgraph wi th minimal support. 

Definition 19 (Subgraph [13]). Let G = (V(G),E(G)) be a graph. Then H = 
(V(H), E{H)) is said to be a subgraph of G ifV(H) C V(G) and E{H) C E(G). 
The property of "being a subgraph" is denoted by H C G. 

Definition 20 (Supergraph p3|). If H is a subgraph of G, then G is said to be 
a supergraph of H. 

The terms isomorphism and automorphism are frequently used in Chapter 
[?[ The same function Fj is marked as isomorphism in one paragraph and auto
morphism in another. To explain the double marking, Lemma [7] is formulated 
below. Due to the lemma and its proof, graph automorphism and isomorphism 
definitions from Section \2.3.£\ are recapitulated. 

Definition 13 (Isomorphic graphs [163]). Given two graphs Pi and P2, Pi is 
isomorphic to P2 (denoted by P\ ±2 P2), if and only if there exists at least one 
bijective function F : V(P\) —> V(P2) such that for any edge (u,v) G E(Pi), 
there is an edge (F(u), F(v)) G E(P2). The function F is called the isomorphism 
of Pi and P2 • 

Definition [15] (Graph automorphism). Let G be a graph, and the bijective func
tion F : V(G) —> V(G) be the isomorphism. Then F is the automorphism on 
G. 

Lemma 1. Let Pi,P2 C G be disjoint subgraphs of G and let F : G —> G be an 
automorphism on G such that F(Pi) = P2. Then the restriction F\p1 of F on P\ 
F\p1 : Pi —y P2 is the isomorphism from P\ to P2. 
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Proof. If P is the automorphism of G and P\ is the subgraph of G, then for 
all edges (u,v) G P ( P i ) holds that (F(u), F(v)) G E(P2). The same condi
t ion holds under the restriction of F: for all edges (u,v) G P ( P i ) holds that 
(F| P l (w) ,F| P l (w)) G P ( P 2 ) . Moreover, since P ( P X ) = P 2 , then for all u G 1/(Pi) 
its image F{u) G ^ ( P j ) and for all v G ^ ( ^ 2 ) its preimage P - 1 G V ( P i ) . Hence, 
the restriction F\p1 maps P i to P 2 , and it is a bijection, since P is a bijection. 
Thus, F\p1 is the isomorphism from Pi to P2 . • 

Thus, if P is the automorphism of G, then its restriction on a particular 
subgraph Pi is the isomorphism of P i and P2 . To simplify the notation in Chap
ter^ the notation for the restriction is omitted, and the same functions Fj are 
characterized both as automorphisms and isomorphisms. Note that Fj are auto
morphisms on G*, but when we focus on subgraphs displayed wi th Fj, then Fj 
are isomorphisms of these subgraphs. 

Definition 21 (Frequent subgraph wi th minimal support |Z2!). Given a graph G 
and the minimum support s, a graph gf(s) is called a frequent subgraph of G if 
and only if there exist s subgraphs of G, Pi,..., Ps, that are isomorphic to gf(s) 
and 

E(Pi) H E(Pj) = 0 i ^ j V i , j G M : 1 < i < j < s. 

The graphs P\,... ,PS are called the matches of gf(s) in G. 

In large graphs, there can be several frequent subgraphs wi th given support 
s. In that case, the /c-automorphism algorithms take the frequent subgraph wi th 
the largest number of edges. Note that matches of the frequent subgraphs are 
isomorphic to each other since there are instances of the graph gf(s). 

Definition 22 (Crossing edge). Let G be a graph and P the subgraph of G. Each 
edge (u,v) G E{G) such that u G V(P) and v G V(G) \ V(P) is called a crossing 
edge between P and G. 

The crossing edges are essential when subgraph P is separated from G. The 
situation is illustrated in Figure \4-lj Assume that a l l edges and all vertices 
depicted in Figure \4-l\ belong to the graph G. W h e n its subgraph P depicted 
wi th red (bold) lines is separated from G, the crossing edges have to be removed 
from G since one of their ending vertices belongs to P and is removed. The 
crossing edges are depicted wi th dashed lines in Figure \4-lj 

In case two graphs P i , P2 are separated from G, then the set of crossing edges 
can be defined as {(u,v) G E(G); 3j G {1,2} : u G V(Pj) Av £ V(Pj)}. A 
similar situation happens when more than two graphs are separated from G. 

Finally, I briefly describe the Barabasi-Albert model for generating random 
scale-free networks using a preferential attachment mechanism. Social networks 
are proven to belong to the class of scale-free networks having power-law degree 
distribution pHf. The Barabasi-Albert model is one of several proposed models 
that generate synthetic scale-free networks. Hence, this model is used to generate 
synthetic testing datasets in this thesis. 

According to the model, the graph generation process sequentially adds ver
tices. The model includes two important concepts, growth and preferential at
tachment, differentiating the real networks from the purely random ones. Growth 
is represented by adding a new vertex at each step. The new vertex is linked to 
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Figure 4.1: Separation of the subgraph P from G. (Source: author's work.) 

the network with m new edges connecting it to m vertices already present in 
the network. Preferential attachment is a probabilistic rule determining that the 
new vertex connects to an existing vertex v wi th a probability proportional to 
its degree. More precisely, the probability that a new vertex is connected to the 
node Vi is given by the following formula 

Hence, the vertices wi th higher degrees are likely to quickly accumulate even 
more new links, while nodes wi th a lower degree are unlikely to receive new 
neighbours. 

4.2 Ut i l i ty metrics 
This section contains the definitions of structural and application ut i l i ty met
rics used to evaluate experimental results. In all following definitions G = 
(V(G),E(G)) is a graph wi th the vertex set V(G) = {vi,... ,vn} and the edge 
set E(G). 

Definition 23 (Average vertex degree J2DJ). The average vertex degree in G is 
defined as 

The average vertex degree is necessary for computing the sensitive value in 
graphs representing social networks wi th vertex labels in Chapter^ In the rest of 
the thesis, the average vertex degree is computed using the number of its vertices 

deg(vi) 
Pi = 

E " = i deg{vj) 

n 

Lemma 2 (Handshaking lemma [10]). 

n 
YJdeg(vj) = 2\E(G)\ 
3=1 
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Proof. Since each edge connects two vertices, it increases the degree of two 
vertices by 1. Thus, each edge increases the sum of all degrees by two and 
E]=1deg(vJ) = 2\E(G)\. D 

Lemma 3. Let G be a graph with the vertex set V{G), and the edge set E{G). 
Then 

£5| and Lemma ^ we get AVD = ^J-^eg{vj) Proof. Combining the Definition 
2|£(G)| _ 2|g(G)| r , 

n ~ \V(G)\ U 

Definition 24 (Average shortest path length pDf). The average shortest path 
length APL{G) of the graph G is defined as 

T,jd=i dist(vi,Vj] 
APL(G) 

where dist(vi,Vj) is the length of the shortest path from Vi to Vj, meaning the 
number of edges along the path from to Vj. 

Definition 25 (Clustering coefficient [65]). The local clustering coefficient of the 
vertex v denoted LCC(v) is defined as follows 

r ^ v ^ v / the number of triangles connected to v in G 
LCC(v,G) = — —'— B- — 

the number of triplets centred on v in G 

The average clustering coefficient ACC{G) of the graph G is defined as the aver
age of local clustering coefficients of all vertices v G V{G): 

A C C ( G ) = ZULCC^G) 

n 

Note the difference between a triangle connected to v and a triplet centred 
on it . A triangle connected to v is the subgraph of G consisting of three vertices 
v,u,w G V(G) such that (u,v),(v,w),(u,w) G E{G) (see Figure \£J$p). O n the 
other hand, a triplet centred on v is the subgraph of G consisting of three vertices 
v,u,w G V(G) such that (u,v), (v,w) G E{G) (see Figure \4J$)• i n other words, 
a triplet includes v and its two neighbour vertices u, w wi th the edges (u, v), (v, w) 
l inking u and w to v. Hence, LCC(v) measures the neighbourhood density of v. 
The parameter LCC(v) is higher in the case that for many pairs of v's neighbours 
u, w, there exists the edge (u,w) G E{G) too. Thus, LCC(v) is higher if many 
triplets centred on v are also triangles. 

Definition 26 (Transitivity (20|). The transitivity T(G) of the graph G is defined 
as 

3 * (number of triangles on G) T{G) 
(number of connected triples of vertices in G) 

The transitivity is the probability of revealing the existence of tightly con
nected communities in the network. It measures the presence of local loops near 
the vertex PSJ and describes the graph interconnectedness jS2j. 
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u ^ - • u 
a) a triangle connected t o n b) a triplet centered on v 

Figure 4.2: Example of a triangle and a triplet. (Source: author's work.) 

Definition 27 (Largest eigenvalue [ED]). Let G be a graph and Adj (G) be its 
adjacency matrix. The non-zero vector b is called eigenvector if 

A d j ( G ) - 6 = A - 6 

where A is a scalar multiplier. The scalar A is an eigenvalue o / A d j ( G ) . Then the 
largest eigenvalue of G, denoted by \{G), is such an eigenvalue that \{G) > \ for 
all eigenvalues of A d j ( G ) . The corresponding eigenvector is denoted with EV. 

The largest eigenvalue \(G) of the adjacency matrix of G is a spectral measure 
which encodes the information about the cycles of the networks and their diameter 
j2Df • Now, there are definitions of network metrics implemented in the SecGraph 
evaluation tool [60]. 

Definition 28 (Betweenness centrality PS|). Betweenness centrality of the vertex 
Vi in the graph G is given by 

BC(vi,G) = ^—z , j,l = l,...,n 

where dji is the number of shortest paths linking vertices Vj and vi and djiivi) is 
the number of the shortest paths containing the vertex 

Definition 29 (Closeness centrality [33]). Closeness centrality of the vertex Vi 
in the graph G is given by 

where dist(vi,Vj) is the distance of Vi from all other vertices in the graph. 

The betweenness centrality is higher when the vertex is more frequently in-
between the shortest paths that connect every other couple of vertices P3J. The 
closeness centrality expresses the inverse of the distance of a vertex from all the 
others in the network, considering the shortest paths that connect each couple of 
vertices [331. 

Definition 30 (Effective diameter [52]). Diameter is the length of the maximum 
shortest path between any pair of connected vertices. Effective diameter ED is 
the length of the path separating a given percentage of connected vertex pairs 
(commonly 90%). 
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The effective diameter is more robust than the diameter, and both metrics 
express the graph width. Moreover, visualizing the relationship between the 
chosen threshold and the effective diameter may provide additional insight into 
the patterns of graph connectivity [62]. 

Definition 31 (Joint degree distribution p33f). Degree distribution (Deg.) is 
the probability that the vertex degree equals 1,1 — 1,..., maxvev(G)(deg(v)). Joint 
degree distribution (JD) is the probability that a randomly selected edge will be 
between vertices of degree j and I, j, I — 1,..., maxv&v(G)(deg(v)). 

The joint degree distribution uniquely defines the degree distribution of the 
graph up to isolated vertices j'l 33|]. However, graphs wi th the same degree distri
bution may have very different joint degree distributions [ l33l j . 

Definition 32 (Network constraint coefficient [1145L 11591]). The network con
straint coefficient for the vertex Vi is defined as 

where Pij is the strength of the tie between vertex Vi and its neighbour Vj. In the 
case of unweighed graphs, p^ = 1 for all ties. The network constraint coefficient 
for the whole graph is defined as 

Higher values of NC(vi,G) indicate that Vi acts as less of a structural hole 
[145]. Moreover, NC(vi,G) represents the information and control advantages 
of the vertex Vi in the network structure |"l 5D|]. The lower the total NC(G), the 
more structural holes are occupied by vertices [ l59l j . 

In the experimental results in Chapter^, a few application metrics are mea
sured with SecGraph. Since their formal definition would require defining terms 
not further discussed in the thesis, I describe them briefly, emphasizing their 
significance for network analysis. 

Infectiousness (Infe.) measures the number of users infected by the disease 
in an infectious disease spreading model where each user transmits the disease to 
its neighbours wi th some infection rate J3[. Hence, it characterizes the communi
cation channels in the network. Page rank {PR) measures the importance of each 
vertex wi th in the graph based on the number of links and the importance of the 
linked vertices. A high PR value means the vertex is connected to many other 
vertices wi th high PR. The page rank metric is another measure of centrality for 
the vertices of the graph pDf. Role extraction (RX) approach summarized the 
behavior of vertices in large graphs J53J. Wi thout any background knowledge, 
it determines the underlying roles in the network and assigns the mixed mem
bership of these roles to each vertex in the graph [531. ^ benefits applications 
like network transfer learning, measuring structural similarity, understanding the 
underlying behaviour in a network or network visualization [53]. 

Hubs score (HS) and Authorities score (AS) are defined together in a recursive 
way. The vertex is assigned a hub score equalling the sum of authorities scores of 
all neighbour vertices [137||. O n the other hand, a vertex is assigned an authority 

n 
NC(G) = J2NC(V1,G) 

i=l 
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score equalling the sum of hubs scores of all neighbour vertices [11371]. A vertex 
is given the authority score based on the number of hub vertices connected to it 
(and vice versa). For instance, assume that G is the graph of webpages and their 
links {u G V{G) is a webpage, (u,v) G E(G) if there is a link leading to v on u). 
Then HS{u, G) is the number of links to other webpages that occurs on u and 
AS{u, G) is the number of webpages wi th the link leading to u. 

Furthermore, SecGraph detects and compares communities in the given pair of 
graphs. The comparison is summarized in the community detection metric (CD). 
A community is a group of vertices wi th more connections amongst its members 
than between its members, and the remainder of the graph [ll f>2lj. Communities 
in a single graph overlap since vertices usually belong to more than one group at 
once [i'l5'2lj. The detection of communities enables the comprehensive analysis of 
a network structure and supports applications line classification or information 
propagation in the network [EDf. 

The SecGraph measures the difference in preserving a particular metric m in 
the original graph G and the anonymized graph G*. It measures the values of 
m i n both G and G*. The result of the measurement is the distribution of the 
metric between all vertices (or all pairs of vertices) in the graph. Hence, it is the 
vector of values. Let denote the distribution of the metric m in the graph G as 
m[G). Then, for most metrics, SecGraph measures the cosine similarity between 
m[G) and m(G*) to evaluate the similarity in preserving m in both graphs. Only 
for CD, it measures the Jaccard similarily between m[G) and m{G*). Exceptions 
from this practice are ED and EV metrics, which are measured for the whole 
graph. SecGraph computes the ratio of m{G) and m{G*) for those metrics. For 
completeness, there are the definitions of cosine and Jaccard similarities. 

D e f i n i t i o n 33 (Cosine similarity |124lJ). Let a = ( a i , . . . , an) and b = {b\,..., bn) 
be two non-zero vectors. Then the cosine similarity is defined as 

S c (a, b) 
a o b YH=I ai • bi 

E"=i a i ' v E j l i b 

D e f i n i t i o n 34 (Jaccard similarity f E E f ) . For any two finite sets A and B, Jac
card index is defined as the ratio of the size of the intersection over union: 

J(A,B) 
\Ar\B\ \AnB | 
\AUB\ \A\ + 1 B\ AnB\ 

For both similarities, their values lie between 0 and 1, 0 < ^ ( a , b) < 1 and 
0 < J (A, B) < 1. The higher value displays more similarities between vectors 
(sets), and the value 1 indicates that both vectors (sets) are equal [ll43]. 

4.3 Equivalence classes in Ga 
This section begins with defining the equivalent class from the set theory. 

D e f i n i t i o n 35 (Equivalence class [98]). Let S be a set, and ~ be an equivalence 
relation on S. Then the ^-equivalence class of the element a G S is the set 

Q(S, a, ~) = {b G S; a ~ b} 

4 4 
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The equivalence ~ splits the elements of S into several ^-equivalence classes. 
W h e n necessary, they are distinguished by indexing: Qi(S, ~ ) , i e N . 

Assume a vector z = (z\,..., zm) of integer values that are ordered decreas-
ingly, Zi > Zj for each 1 < % < j < m. Then the vector can be viewed as the 
ordered list of —equivalence classes where each equivalence class contains the 
elements of z having the same value, Qi(z, =), (52(2, =),•••, Qi(z, =) for some 
I < m. For example, let z = (5, 5 ,4 ,3 , 3 ,1 ,1 ,1) , then Qi(z, =) = {5, 5}, Q2^z, = 

) = {4},Qs(S, =) = {3,3} and Qi(z,=) = {1,1,1}. These equivalence classes 
are used in the description of the algorithm proposed in Chapter® 

Assume a graph G and the relation ~ d on V(G) "having the same degree". 
More precisely, for two vertices v,w G V{G) ~D is defined on V{G) such that 
v ~d w iff deg{v) = deg{w). Clearly, ~ d i s transitive, symmetric and reflexive; 
thus, it is the equivalence on V{G). We can consider the ^-equivalence classes 

Q{V{G),v, ~d) = {w G V(G); v~dw} = {we V(G); deg(w) = deg(v)} 

Given that usually not al l vertices have the same degree, there are several 
equivalence classes in the graph. The degree of vertices in Q(V(G), is denoted 
by deg(Q(V(G),~d)), a n d therefore, deg(Q(V(G),v,~d)) — deg{v). 

Equivalence classes Q(V(G),v,~d) c a n be considered i n labelled and unla
b e l e d S N graphs as well as in original and anonymized S N graphs. They are 
significant for demonstrating /c-anonymity in SNs in Chapter® 

Unlike ^-equivalence classes, which are worth defining for each graph struc
ture, the term attribute equivalence class is worth defining only in anonymized 
graphs wi th attributes G*A. It is based on the definition of an equivalence class 
over an anonymized relational dataset introduced in [HIJ. 

Definition 36 (Attribute equivalence class [8If). Let G*A be an anonymized graph 
with attributes. An attribute equivalence class QA{G*A) is a set of vertices having 
the same anonymized r-tuple u G U{G*A). Let Vi G V{G*A), then the attribute 
equivalence class containing the r-tuple uVi is denoted by QA(G*A,Vi); more pre
cisely, 

QA{G*A,VI) = {VJ G V(G*A); uVi = uVj}. 

The same tuple of values of attributes describes all vertices belonging to the 
same attribute equivalence class. Therefore, the value of the tuple of attributes 
of vertices in QA(G*A) is denoted by u{QA(G*A)). Thus, for a fixed v G V(G*A) it 
holds that u(QA(G*A, v)) = uv, uv G U(G*A). For simplicity, u(QA(G*A)) is called 
the attributes of QA(G*A). 

The equivalence classes are based on the graph structure, whereas attribute 
equivalence classes are associated wi th the attribute table U(G*A). There is no 
relationship between the number of ^-equivalence and attribute equivalence 
classes. For example, the anonymized graph G*A in Figure has four equiv
alence classes Qi(G*A) = {6}, Q2(G*A) = {3,4,5}, Q3(G*A) = {1} and QA(G*A) = 

{2}, and three attribute equivalence classes Qi(G*A) = {1,4}, Q f ( G ^ ) = {2,6} 
and Q%{GA) = {3,5}. Their attributes are u{Q\{GA)) = (57 - 65 ,* , 50 * * * ) , 
u{Q^{G*A)) = (25 - 31 , * , 50 * **) and u(Q%(G*A)) = (57 - 65, * , 120 * *) re
spectively. A close relationship exists between the size of the smallest attribute 
equivalence class and /c-anonymity. 
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[57-65,*,50***] 4 

a) G*A with attributes b) G*A without attributes 

Figure 4.3: Social network G*A. (Source: author's work fSSJ.) 

Proposition 1. Let G*A be an anonymized graph. Then, an anonymized set 
U(G*A) satisfies the k-anonymity iff the size of the smallest attribute equivalence 
class is at least k. 

Proof. The attribute set U{G*A) satisfies the /c-anonymity for every ui G 
U(G*A): \{Uj G U{G*A); m = Uj}\ > k & \{Vj G V(G*A); m = Uj}\ > k 
\Q?(GA,v)\>k,Vie{l,...,n}. • 

4.4 M a t r i x notation 
Since the description of the algorithm proposed in Chapter 0 uses matrices and 
manipulates wi th their rows, the following definition introduces the necessary 
notation. 

Definition 37 (Matr ix notation). Let M ( m , n ) be a matrix with m rows and n 
columns. Then r c ( M ) denotes the number of rows ofM. and r j ( M ) denotes the 
i-th row o / M . The fact that the element e is contained in the i-th row ofM. is 
denoted by e G r j ( M ) . Adding the vector r as the last row if M is denoted by 
M U r . Removing the row r from M is denoted by M \ r . 

4.5 Receiver operating characteristic analysis 
The receiver operating characteristic (ROC) analysis introduced in [321 ^s u s e d to 
evaluate the accuracy of the deanonymization algorithm in Chapter \57h\ Thus, a 
classifier and true and false positive rates are defined in this section. 

Definition 38 (True/False Positive/Negative [321). Consider a classification 
problem using two predicted classes {Y, N} (Y equals positive and N negative). 
Let {J; I instance] be a set of instances. Some instances are 'true', and oth
ers are 'false'. Formally, each instance I is mapped to one element of the set of 
positive and negative class labels {p, n}. A classifier provides a mapping from a 
set of instances to predicted classes [Y, N}. Given an instance I, the classifier 
has four possible outcomes. If I has positive label p and is classified as Y, it is 
counted as true positive (TP). If I has positive label p and is classified as N, it 

46 



is counted as false negative (FN). If I has negative label n and is classified as 
Y, it is counted as false positive (FP). If I has negative label n and is classified 
as N, it is counted as true negative (TN). 

Given a classifier and the set of instances, a confusion matrix can be composed 
(see Figure 4-4)- It represents the distribution of the set of instances and forms the 
basis for many metrics of the classifier, including the true and false positive rates. 
The true positive rate is estimated as the ratio of positive instances correctly 
classified and the total positive instances. O n the other hand, the false positive 
rate is given by the ratio of negative instances correctly classified to all negative 
instances. 

True classes 

P n 

Predicted Y T P F P 
classes 

N F N T N 

Figure 4.4: Confusion matrix of a classifier. (Source: author's work. ' 

Definition 39 (True/False positive rate [32]). A true positive rate of a classifier 
is estimated as 

TPrate = —— —— . 
TP + FN 

A false positive rate of a classifier is estimated as 

FP 
FPrate 

FP + TN 

4.6 N P - h a r d problems 
In this section, I define the N P - h a r d and NP-complete problems, the N P class 
and polynomial reducibility. The definition of the Turing machine is omitted with 
reference to [i'13llj. 

Definition 40 ( N P class [I3l|]). N P is the class of decision problems that can be 
decided by the nondeterministic Turing machine in polynomial time. 

A decision problem is a question whose answer is "yes" or "no" [13]. A solution 
to the problem i n N P is impossible to find in polynomial time. However, if for any 
instance of the problem whose answer is "yes", there is a certificate validating the 
fact, it is possible to verify the answer in the polynomial time JEIf. For instance, 
deciding whether two graphs are isomorphic is a well-known N P problem p3J|. It 
is impossible to decide in polynomial time whether two graphs are isomorphic. 
However, if someone gives us the isomorphism, we can verify in polynomial time 
whether it really maps the given graphs on each other or not. 
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Definition 41 (Polynomial reduction JI3J). A polynomial reduction of a Problem 
P to a Problem Q is a pair of polynomial-time algorithms, one of which transforms 
each instance of Problem P to an instance of Problem Q. The other one transforms 
a solution for the instance of Problem Q to a solution of the instance of Problem 
P. 

Definition 42 (NP-hard problem [i'l 3"l]). Problem is N P - h a r d if all problems in 
NP class are polynomial time reducible to the Problem, even though Problem may 
not be in NP itself. 

The N P - h a r d term is used for measuring the complexity of the optimization 
problems in which the optimal solution to the given problems is searched. For 
instance, optimization N P - h a r d problems connected with the graph theory are 
travel salesman problem, finding the maximum clique or the maximum stable set 
in the given graph p3J. 

Lemma 4. For showing that Problem P is NP-hard, it is enough to reduce a 
known NP-hard problem to the Problem P in the polynomial time. 

Proof. Assume that Problem Q is a known N P - h a r d problem. According to the 
Definition all problems in the N P class are polynomial reducible to Problem 
Q. Hence, for each N P problem, there exists an algorithm working in polynomial 
time that transforms its instances to instances of Problem Q. 

Pick an arbitrary NP problem and polynomial reduction Alg^p that trans
forms instances of NP problem to the instances of Problem Q. We can show that 
Problem Q is polynomially reducible to Problem P. Therefore, there exists the al
gorithm Algi working in polynomial time that transforms instances of Problem Q 
to instances of Problem P. Now, define algorithm Alg2 such that on each instance 
of the NP problem it works as Alg^p and on the found instances of Problem Q, it 
works as Alg\ outputting instances of Problem P. Hence, Alg2 can transform all 
instances of NP problem to instances of Problem P. The same reasoning can be 
given for the polynomial reduction of results. Hence, all problems in the N P class 
are polynomial time reducible to Problem P; thus, Problem P is N P - h a r d . • 

Definition 43 (NP-complete problem). A problem is NP-complete if it is NP-
hard and belongs to NP. 

4.7 Genetic algorithm 
Genetic algorithms are a heuristic approach based on evolutionary principles: 
stronger individuals are more likely to participate in creating a new generation of 
individuals, and each generation is better than the previous one. The search for 
a suitable solution to a given problem is viewed as the competition amongst the 
whole population of individuals representing potential solutions to the problem. 
These individuals are encoded as chromosomes of fixed length. 

F inding the optimal solution to the given problem wi th the genetic algorithm 
begins with creating initial population of individuals. The init ial population can 
be generated randomly or according to fixed rules. A l l individuals in the ini t ia l 
population are evaluated wi th the fitness function. The evaluation of individuals 
forms the basis of their chance to be selected for survival and reproduction. The 
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selection function is employed to emulate the processes of natural selection where 
the fitter individuals are given a higher chance to be selected. Individuals wi th a 
higher fitness function value are more likely to be selected; however, "worse" indi
viduals also have a nonzero chance to participate in reproduction. Consequently, 
the selected individuals go through the process of reproduction. 

The reproduction operators used in this thesis are crossover and mutation. 
Crossover is two-parent operation. It combines two parent individuals into a sin
gle child individual . W h e n the individual in the new generation is the offspring of 
two parent individuals, it naturally inherits its features from its parents. Mutation 
is an asexual recombination operator maintaining genetic diversity between gen
erations. If the individual was created wi th a single-parent individual mutation, 
its features were affected by the random process of mutating. 

After a new population is created, the process is repeated. A l l individuals 
are evaluated, a subset is selected to participate in reproduction, and the next 
generation of individuals is produced. W h e n the evolutionary process is repeated 
many times, the current generation contains individuals wi th high fitness function 
values. Such individuals represent the acceptable or even optimal solution to the 
given problem. The number of repetitions of the evolutionary process depends 
on the given problem and the computational and time capacities. The process 
can be repeated at least ten times, usually a hundred or a thousand times J57]. 

Randomness is contained in the reproduction process and the selection pro
cedure or the creation of the init ial population. It plays an essential role in the 
design of genetic algorithms. It helps keep the diversity in the population and 
prevents from converting to the local optimal solution of the given problem in
stead of the global optimal one. The randomness naturally causes each run of the 
genetic algorithm offers a unique solution, even if it is run several times on the 
same input. Hence, the behaviour of the genetic algorithm on the given problem 
is evaluated with the statistics summarizing its best, worst and average values of 
the monitored parameters [58]. The principles of genetic algorithms taken from 
[EBf are formally described in Algorithm [3[ 

Algori thm 3 Basic scheme of a genetic algorithm. 

Require: optimalization problem V, a set of termination criteria TC 
Ensure: the acceptable solution of V 

1: Set t = 0. 
2: Generate (randomly) the init ial population P(0) . 
3: Compute the evaluation of each individual in P(0) wi th the fitness function. 
4: while any element i n TC is true do 
5: Select pairs of individuals from P(t) and create their offsprings. Let P'(t) 

be the set of offspring. 
6: Evaluate each individual in P'(t). 
7: Create the new population P(t + 1) from P(t) and P'(t). 
8: t = t + 1 
9: Evaluate each individual in P(t). 

10: end while 
11: Return P(t). 

The termination criteria stopping the evaluation process can be various. The 
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most common criterium is setting the maximal number of generations JSBJ. More 
precisely, it is defined tuAx G N and the genetic algorithm stopps if t = tuAx-
The insufficient diversity in P(t) is the other termination criteria J5EJ. It depends 
on the representation of the problem and the individuals and how the diversity is 
measured. However, when the diversity in P(t) is low, the individuals in P(t + 1) 
are too similar to the individuals in P(t). In other words, there is no significant 
evolution in the process and no need to keep it on. The genetic algorithm is 
also stopped if it has already found the acceptable solution in P(t). The suitable 
termination criteria are based on the feature of the problem and the required 
quality of the wanted solution. Various termination criteria have been widely 
studied in E5J. 

The complexity of the genetic algorithm is determined by the complexity of its 
fitness function, selection function and reproduction operators. Let g denote the 
number of generations the genetic algorithm runs and n the number of chromo
somes in a generation. Let FF represent the complexity of the fitness function, 
SF the complexity of selecting one individual wi th the selection function and RO 
the complexity of reproduction operators. Since the fitness function is applied on 
each chromosome in each generation, the evaluation takes 0(g • n • FF) in total. 
The reproduction operators are also applied in each generation. The number of 
reproduction operations in one generation depends on the methodology of select
ing and pairing parents. However, the set of parents usually equals to c - n , c G M; 
thus, the complexity of reproduction operations is in 0(g • n • RO). Similarly, the 
selection procedure is applied for selecting parents in each generation; hence its 
total complexity is O(g-n-SF). Finally, it is necessary to consider the complexity 
of creating the init ial population. W h e n the population is created randomly, its 
complexity is in 0{n • ICH) where IQH is the length of a chromosome. Total , the 
complexity of the whole genetic algorithm is in 0(n-lcn + g-n-(SF + FF + ROj). 
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5. Composition attack 
In this chapter, a potential threat for anonymized social network datasets called 
a composition attack is presented and described in detail. The proposed compo
sition attack is designed as a potential threat to SNs with attributes. Therefore, 
the two attacked SNs with attributes should be denoted by GA,I and GA,2- How
ever, such a notation would make the formulas in this chapter too complicated 
to read. Thus, to simplify the notation in this chapter, instead of GA,I and GU,2, 
the attacked pair of SNs wi th attributes are denoted by G\ and G 2 . A t first, 
the motivation for considering such a threat and its effects on the privacy of SNs 
are described. Before giving a detailed description of the proposed attack, there 
are presented assumptions about S N datasets and the behaviour of their users 
under which the proposed composition attack works. The attack is implemented 
in M A T L A B and tested on synthetic datasets to test its success rate. Finally, the 
design of the proposed composition attack against the S N dataset is compared 
wi th the design of the composition attack against the relational dataset presented 
in (Elf, and Question [l] is answered. This chapter is based on f2|. 

5.1 Motivation 
Recently presented deanonymization methods were focused on issues connected to 
sharing or publishing data from a single social network. A s there are several social 
networks and more than half of Internet users participate in more than one social 
network |144L 114<Sl], an individual is likely to appear in more than one anonymized 
social network dataset. Thus, two anonymized social network datasets published 
independently of each other likely have overlapping user communities. 

In general, a data publisher providing a collection of anonymized data of indi
viduals is primari ly unaware of a second anonymized dataset containing records 
of the same individuals. Even if the anonymized dataset preserves privacy well, 
there is no guarantee combining its records wi th records of a second anonymized 
dataset satisfies the same level of anonymity, as considered in [ED]. A n adversary 
who knows that two published anonymized datasets contain the records of the 
same individual and has access to each of them can conduct a composition attack. 

The composition attack was presented as the privacy threat for relational 
datasets wi th overlapping records |B5J, ED, 1127j|. In this chapter, I show that this 
kind of attack is also applicable to SNs wi th attributes having overlapping user 
communities. 

5.2 Effects of the attack on preserving privacy 
The composition attack can be applied to a pair of SNs with overlapping user 
communities. It is possible that the user communities of three or more social 
networks also overlap, although the attack could always be applied to a pair of 
them. The presented composition attack does not completely deanonymize the 
networks. St i l l , it recognizes a subset of users participating in both anonymized 
networks and obtains pairs of vertices, one from each network, representing the 
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same individual . Thus, the two vertices, one from each network, representing the 
same individual , are called the corresponding vertices. 

Each social network gathers users' data on its own and obtains data of different 
types from its users. W h e n the adversary connects the records of an individual 
from two separate sources, it clearly gains more information about the individual . 
Al though the obtained data are stil l anonymized, the combination of records 
from two different anonymized sources does not always satisfy the same level 
of anonymity as when the records are tested separately. Thus, the composition 
attack could simplify a further reidentification attack. 

Additionally, when one of the considered SNs is compromised by another 
deanonymization method, the second social network could also be compromised. 
The situation is illustrated on Figure \5.1\ Assume that the attacker aims to 
deanonymize the social network G 2 , although the attacker cannot access any 
auxiliary information connected to this network. However, the attacker can link 
a subset of nodes wi th identifying information in a second anonymized social 
network G\ (see Figure [57i|a). In other words, the attacker possesses an auxiliary 
subgraph Aux to deanonymize G\. Then, the attacker applies the composition 
attack on G\ and G 2 (see Figure \5l$). If the attacker finds the corresponding 
vertices in G 2 for nodes in Aux, he or she can gain the auxiliary subgraph of G 2 

to deanonymize G 2 (see Figure 5.1c). 
The magnitude of the attack is based on the fact that the attacker does not 

have to possess any special background knowledge to realize the composition at
tack. The attacker knows only that two anonymized social networks wi th overlap
ping user communities are anonymized wi th the same anonymization technique. 
The attacker has no access to any non-anonymized information. Moreover, the 
attacker has no knowledge about any user or the graph structure of the attacked 
networks. 

5.3 Assumptions about the social behaviour of 
social network users 

More than half of Internet users participate in more than one S N , as noted in 
[I144L 11481]. Therefore, two independent SNs are likely to have overlapping user 
communities. Users' online behaviour on social network sites varies among user 
communities. Some users are more active than others, visit ing their profiles daily 
and spending considerable time communicating with other users, and frequently 
sharing personal information. M a n y factors influence the usage of SNs. How
ever, a user's personality and gender are highly related to social network use, as 
demonstrated in pU, 1102]. This thesis considers that a user's characteristics, such 
as personality or gender, influence the user's behaviour in the same manner on all 
SNs in which the user participates. For example, extroverts tend to be members 
of more groups on Facebook, as presented in [l'12llj. Thus, extroverts are assumed 
to behave similarly to other SNs. It is assumed that if an individual tends to 
make an above-average number of relationships on a particular S N , he or she wi l l 
act similarly on other SNs. Addit ionally, the number of individuals who can be 
reached through the S N depends on the size of the social network, as mentioned 
in pUDJ. Thus, the probability of finding users wi th similar interests is higher in 
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I VIII 

a) Two anonymized social network graphs with overlapping user communities. The attacker owns auxiliary 

information (the subgraph Aux with red dashed edges), which could be used to deanonymize G 2 . 

b) Attacker finds pairs of corresponding vertices by the composition attack. 

c) Attacker gains auxiliary information for deanonymization of Gi. 

Figure 5.1: Gaining auxiliary information on G2 by a composition attack. 
(Source: author's work ISf.) 

larger networks, and an individual is likely to have more relationships in larger 
SNs. 
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Based on the previous considerations, it is assumed that, in proportion to the 
size of the social network, the number of users wi th whom an individual has a 
relationship is nearly constant over all social networks in which the individual 
participates. In other words, for every individual , the ratio of the number of 
relationships to the average number of relationships in the network is constant 
up to small S over all social networks in which the individual participates. For 
example, let G\ be a network wi th |V((Sri)| = 100 and = 500 and G2 

be a network wi th |V(G 2 )| = 50 and |£ ;(G ,2)| = 300. Then, the average degree 
AVD(G1) = 2|gp = 10 and the average degree AVD(G2) = 2g9° = 12. If an 
individual I is connected with 10 other people in G\, then dega^I) = 10. I 
assume that ^^Mk = AVDIGI) >̂ a n < ^ therefore, 

d e 9 G > { I ) = AVD(G2) ' A V D ^ ± 6 = 1 2 ± 6 

and the individual I is likely to have 12 (±<5) connections in G2. 
In addition, I assume that if an individual I has a relationship wi th an indi

vidual J on a social network G\ and both individuals participate in the second 
social network G2, they w i l l have a relationship also in G2. In other words, if there 
exist i>i, i>2 in G\ and Wi, w2 in G2 such that V\ — v(I), v2 — v(J), W\ — w(I) and 
w2 = w(J) and there exists the edge (vi,v2) G E(Gi), then there exists the edge 
(wi,w2) G E{G2). The assumptions about the social behaviour of social network 
users are summarized as follows. 

Assumption 1. For every individual I and every G, the ratio of the number of 
edges (v(I), •) G E{G) to the average number of relationships in G is constant 
(up to small 5) over all social networks G in which I participates. 

Assumption 2. Let J, J be individuals and G\,G2 be SNs. Let 3v\,v2 G V{G\), 
3wi,w2 G V(G2) such that V\ = v(I), v2 = v(J), W\ = w(I), w2 = w(J) and 
(u i ,u 2 ) G £?(Gi) . Then, {wuw2) G E(G2). 

The composition attack on relational datasets exploits the fact that both 
independently published datasets have plain sensitive values in their anonymized 
versions. The sensitive value is assumed to be constant for each individual in both 
anonymized datasets. Moreover, values of sensitive attributes are not modified 
during the anonymization. 

The attribute table U(G\) and U(G2) usually contain information describ
ing the users of SNs. Hence, all their attributes are usually considered quasi-
identifiers and are anonymized during the process. The crucial information in S N 
datasets is the graph structure. Therefore, a new sensitive value based on the 
graph structure is defined to perform a composition attack on S N data. 

Definition 44. Let G*A be an anonymized social network and AVD{G*A) the 
average vertex degree in G*A. Then, for every v G V{G*A) a sensitive value S(v) 
is defined as 

= degjv)  
{ ) AVD[GA)' 

Based on Assumption[7[ the sensitive value S(v(I)) is assumed to be constant 
(up to small 5) overall SNs in which the individual I participates. Al though the 
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sensitive value S(v) is artificially created and represents no real characteristic of 
the individual v, it introduces a new feature of v. Every vertex is now described 
by edges (v, •) connecting the vertex with the rest of the network, its degree 
deg(v), its attributes uv and its sensitive value S(v). 

5.4 The proposed algorithm 
The detailed description of the proposed composition attack algorithm is pre
sented in Algorithm [J. It consists of the preprocessing stage (see lines 1-9 i n 
Algorithm^), the composition stage (see lines 10-20) and the postprocessing stage 
(see lines 21-25). The algorithm requires two anonymized SNs G\ and G2 and the 
parameter S as the input. It returns the set 1Z of pairs of corresponding vertices 
[v, w], v G V(G*), w G V(G2) that are suspected to represent the same individual 
v(I) = w(I). 

Algori thm 4 Composit ion attack 

Require: social networks G\, G2, the parameter S 
Ensure: the set of pairs of matching vertices 7Z 

1: Set 1Z = 0. 
2: F i n d Att(G\, G*2) = Att(G\) n Att(G*2) and set r = \Att(G\, G*2)\. 
3: for each u G U(G*), i G {1,2} do 
4: Order the elements of the r^-tuple u such that its first r elements corre

spond to the ordered list Att{G\, G*2). 
5: end for 
6: for each v G V(G*), i G {1,2} do 
7: Compute S(v). 
8: end for 
9: Divide the elements of V{G*) into particular attribute equivalence classes 

Q ? ( G * ) , . . . , Q ^ ( G * ) , z G { l , 2 } 
10: for j := 1 , . . . , mi do 
11: for I :— 1 , . . . , m2 do 
12: if uz{Qa

3{G\)) n u*(Q?(GS)) ^ 0, G { 1 , . . . , r } then 
13: for each w G Qaj{G\) and each iy G Qf(G2) do 
14: if G - 5; 5(w) + 5] then 
15: the pair of vertices [v,w] is added into 1Z 
16: end if 
17: end for 
18: end if 
19: end for 
20: end for 
21: for each in 1Z do 
22: if $[v2,w2] G ^ : (u i ,u 2 ) G £?(GJ) A ( w i , w 2 ) e ^(GJ) then 
23: remove from 72. 
24: end if 
25: end for 
26: Return 1Z. 

To simplify the notation, Q(G,v) = Q(V(G),v,~d), since ~ d is the only 
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considered equivalence in the chapter. Thus, Q(G,v) is the set of the vertices 
from G having the same degree as the vertex v. For simplicity, ^-equivalence 
classes are called simply equivalence classes. 

The first step in the preprocessing stage is the unification of U(G\) and U(G2). 
The number and character of attributes vary from network to network. To execute 
the composition attack, it is necessary to select a common subset from the set 
of attributes of both target networks. The common subset of attributes contains 
al l the same attributes in both target networks. For example, if Att(G\) = 
{Birthday, Age, Gender, Hometown, Languages, Work} and Att{G2) = {gender, 
age, spoken-languages, education, maritalstatus}, then the appropriate subset 
of attributes that could be used for the composition attack is Att{G\,G2) = 
{Age, Gender, Languages}. In the case that for two social networks G\,G2 

Att(Gl) f l Att(G2) = 0, then the composition attack can not be executed on G\ 
and G2. Furthermore, Att(G\, G2) can be viewed as the ordered list of the names 
of attributes. Let r be the number of names in the list; it means r = \Att(G\, G^)!-
Then the attributes of U{G\) and U{G2) have to be ordered such that their 
first r elements correspond to the ordered list Att{G\,G2) (see line 4). The 
output of the preprocessing stage is the set of the attribute equivalence classes 
Ql{G*),...,Qa

mi{G*),ie{l,2} (see line 9). 
In the composition stage, the attribute classes of G\ and G2 are paired such 

that the values of their attributes have nonempty intersections (see line 12). 
Every Qa(G*) can be described wi th its attributes u{Qa{G*)). For instance, 
assume Att(G\,G*2) = {Age, Gender, Languages}, u(Q°-(GD) = {(20;30),F, 
{English, German}} and u{Q1{G2)) = {(25; 35), F, {English, French}}. Then 

u i ( g ? ( G D ) nUl(Q?(G*2)) = (25; 30) 

u2(Q«(Gt))nu2(Q?(G*)) = F 

u3(Q«(GD) n u3(Q?(G*)) = {English} 

Hence, all values of attributes have the nonempty intersection and Q^[G\) 
and Qf(G2) can be further processed together. For every v G Q^[G\) and for 
every w G Qf(G2), the closeness of the sensitive values S(v) and S(w) is tested. 
The test is based on Assumption [I] (see line 14). In the case of the successful 
check, the pair [v,w] is added into 1Z (see line 15). 

In the postprocessing stage, the cardinality of 1Z is reduced. The graph struc
ture is considered, and the neighbourhoods of particular vertices belonging to 1Z 
are examined. Then, some false positive pairs of vertices are deleted, and the 
cardinality of 1Z is decreased. Based on Assumption [|, the focus is on the edges 
of E(G\), E(G*2) such that 

3 K , W l ] , h , ^ 2 ] eTZ: {vi,v2) G E(G\) A (w\,w2) G E(G*2). 

A l l pairs of vertices [i>i, ii>i] not fulfilling the previous relationship wi th any other 
pair [v2, W2] G 1Z are removed from 1Z (see line 22 and 23). Then, the result is the 
final set 1Z of pairs of corresponding vertices, one vertex from G\ and the second 
one from G2. 
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5.4.1 C o m p l e x i t y 
The most time-consuming part of Algorithm^is reducing the cardinality of the set 
7Z. The time complexity of the reducing stage is (9(|7?.|2). The remaining stages 
are asymptotically less difficult. Therefore, the time complexity of the entire 
algorithm equals (9(|7?.|2). The cardinality of 7Z depends not only on the graph 
size but also on the anonymity level k, the graph structure and the variability of 
the attributes describing particular vertices. The anonymity level k, the graph 
structure and the table of attributes together determine the total number of 
attribute equivalence classes. In cases wi th only a few attribute equivalence 
classes, they are large, and many pairs of vertices are added to the set 1Z. A s 
the high value of k implies a small number of attribute equivalence classes, the 
cardinality of 7Z increases wi th an increasing value of k while the graph size 
remains constant. Similarly, when the level of anonymization is constant, the 
cardinality of 7Z increases wi th an increase i n the graph size. 

5.5 Experimental results 
In this section, the implementation of the algorithm and the results of the ex
periments conducted on synthetic networks are presented. A l l experiments were 
performed on a laptop computer running Microsoft Windows 7 operating system 
wi th 8 G B R A M and a 2.60 G H z processor. The programs were written in M A T -
L A B 9.2.0.538062 (R2017a). The implementation is included in the attached C D , 
and the overview of corresponding M A T L A B files is given in Attachment [5[ 

5.5.1 Genera t ion of synthetic scale-free networks 
Real social networks are scale-free networks with power-law degree distribution, 
as presented in [99]. Therefore, the synthetic networks used for experiments must 
also fulfil the scale-free property. The Barabasi -Albert model described in Section 
4-l\ was used to generate synthetic networks wi th the scale-free property. The 
existing implementation of the model, S F N G . m M A T L A B function from the B - A 
Scale-Free Network Generation and Visual izat ion M A T L A B toolbox introduced 
in |38f, was used. The input parameters of SFNG(n,m, seedM) function are 
the number of nodes of the output graph n, the number of links added at every 
step m and the seed matrix seedM. The seed matrix is an adjacency matrix of a 
small init ial graph to which the B - A algorithm links additional nodes. Each node 
of the init ial graph must have at least one link. The init ial graph, represented 
by the seed matrix, is called a seed subgraph. The number of links m affects the 
graph's density: the more links added in each step, the denser the output graph. 

A s the algorithm is applicable to two social networks, two scale-free graphs 
Gi and G 2 , representing two synthetic social networks, were generated before 
every run of the algorithm. To fulfil the required Assumptions described in 
Section \5.,% the same seed matrix was used for creating both graphs. The same 
seed guaranteed both networks would have an overlapping user community wi th 
the assumed properties. Unless stated otherwise, the size of the seed matrix was 
approximately 10% of the size of the smaller input graph. 
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For each vertex of each graph, its identifying attribute Id as well as its non-
identifying attributes Age, Gender, Country code, Marital status, Education, Lan
guage were assigned a random value from their domains. A l l attributes were 
discrete; the size of their domains is included in Table \5.1{ A l l the values of 
attributes belonging to the vertices of one graph were stored in a relational table 
called an attribute table. Dur ing the anonymization process, the identifying at
tributes were removed from the attribute tables, and non-identifying attributes 
were anonymized by applying the greedy data anonymization method for rela
tional datasets called Mondrian , introduced in JZSJ. Therefore, the anonymized 
attribute tables satisfied /c-anonymity for a chosen k. The existing implemen
tation of the Mondr ian Multidimensional /c-Anonymity method, included in the 
U T D anonymization toolbox available in [1321], was used in the anonymization 
process. Unless stated otherwise, the attribute tables satisfied 2-anonymity. 

The graph structure was not anonymized during the experiments, but the 
original networks wi th an unchanged set of vertices and an unchanged set of 
edges were used. 

Attr ibute Domain size 

Id 26 4 

Age 100 
Gender 2 
Country code 19 
M a r i t a l status 4 
Education 6 
Language 7 

Table 5.1: Attr ibute domain size. (Source: author's work [E3j. 

5.5.2 D e f i n i t i o n of accuracy 
The parts of the graphs being unequal to the seed and the attributes describing 
vertices outside the seed subgraph were generated pseudorandomly. Therefore, 
it was assumed that no pair of corresponding vertices could be found outside the 
seed subgraph. The results evaluation was restricted to only the vertices of the 
seed subgraphs. However, for every vertex v of the seed subgraph of G\, there 
existed a vertex w of the seed subgraph of G 2 such that v and w represented 
the same individual . Therefore, every vertex of the seed subgraph of G\ should 
be paired wi th a vertex of the seed subgraph of G 2 , and vice versa. The seed 
subgraph of Gi is denoted by seed{Gi). 

After one run of the algorithm, all vertices of seed(G\) and all vertices of 
seed{G2) were divided into three sets: truly paired vertices (TPV), falsely paired 
vertices (FPV) and missed vertices (MV). The set TPV included all vertices 
of both seed subgraphs correctly paired with the corresponding vertex. The set 
FPV contained all vertices of both seed subgraphs that were paired wi th another 
vertex, but the paired vertex was not the true corresponding vertex. The set MV 
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contained all vertices from both the seed subgraphs for which the algorithm did 
not (and should) find a pair. 

The classifier could be defined using the results of one run of the algorithm and 
Definitions^ For simplicity, the classifier is described in detail wi th vertices only 
from seed{G\). A similar set of instances was defined for vertices of seed{G<i), 
and they were classified similarly. Instances of two types were defined as follows: 

I=a vertex v G seed{G\) is paired with a corresponding vertex w G seed{G2) 

I=a vertex v is paired with any other vertex w G seed(G2) \ {w} that does not 
represent the same individual. 

Clearly, all instances / had a positive label p, and all instances I had a negative 
label n. If the algorithm paired a vertex v G seed(G\) wi th the corresponding 
vertex w G seed{G2), the classifier marked the instance I as Y and the instance 
/ as N. Suppose the algorithm paired the vertex v wi th any other vertex from 
seed{G2) \ {w}, the classifier marked the instance I as N and the instance I as 
Y. If the algorithm did not find any pair for the vertex v, both instances, I and I 
were classified as TV because each vertex of both seed subgraphs should be paired. 

The rates TPrate and FPrate of the described classifier using the sizes of 
sets TPV, FPV and MV are defined as 

TPrate 

FPrate 

\TPV\ 
\TPV\ + \FPV\ + \MV\ 

\FPV\ 
\TPV\ + \FPV\ + \MV\ 

The accuracy of the proposed algorithm is a measure of a potential privacy 
risk caused by the execution of the composition attack. The accuracy is defined as 
TPrate i n the evaluation of the results. It corresponds to the definition of the ac
curacy of the composition attack on relational datasets presented in |H|. FPrate 
represents the error rate of the algorithm because it indicates the expectancy of 
false positive errors of the classifier. The success of the algorithm is also measured 
by the comparison of TPrate and FPrate. In cases where TPrate > FPrate, the 
classifier makes decisions better than a random guessing classifier, as presented 
in [321]. Thus, if TPrate > FPrate, the proposed algorithm pairs vertices more 
successfully than another classifier based only on random guessing. 

5.5.3 Resul ts evaluation 
I examined the accuracy of the implemented algorithm for pairs of synthetic scale-
free networks differing in size and density. A s every run of the algorithm included 
a pseudorandom generation of two scale-free networks, the two networks and their 
graphs G\ and G<i were different in every run, even if the input parameters of 
the algorithm remained constant. Therefore, the algorithm was run 50 times for 
every combination of parameters. The average TPrate and average FPrate of 
the 50 runs of the algorithm were computed as the average accuracy and average 
error rate. TPrates and FPrates d id not vary considerably during the 50 runs 
of the algorithm. A n example of the variability of TPrate and FPrate is given 
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a) TPrate b) FPrate 

Figure 5.2: Variabi l i ty of TPrate and FPrate in 50 runs of the algorithm wi th 
parameters |V(Gi)| = 200, |y(G 2 )| = 250 and m i = 4, m 2 = 4 and k—2. (Source: 
author's work |S3J.) 

in Figure \5.2\ In general, the variance of TPrate in the 50 runs was up to 2%, 
and the variance of FPrate was up to 1%. 

The following parameters of the algorithm were considered: the number of 
nodes of G\ \V(G\)\, the number of links m i added to G\ at every step during 
the generating procedure, the number of nodes of G2 |^(G 2)|, the number of links 
m 2 added to G2 at every step during the generating procedure, the number of 
nodes of the seed subgraph |V(seed)| and the required level of anonymization k. 
The domains of all parameters are summarized in Table \5.2j Some parameters 
were fixed to analyze the algorithm's accuracy, and the rest took values from 
their domains. 

Parameter Domain 

{100,150,200,300,400} 
m i {2,3,5,10} 
\V(G2)\ {150,200,250,350,450} 
m2 {2,3,5,10} 
\V(seed)\ {10,15,20,25,30,35,40} 
k {1,2,3,5} 

Table 5.2: Parameter domains. (Source: author's work [93].) 

Dependence of the accuracy on the graph size. Initially, the parameters 
m i = 4, m 2 = 4 and k — 2 were fixed, |V(seed)| = |V(Gi)| • 0.1 was set and the 
values of |V(Gi)| and |V(G 2 )| were changed to determine whether the accuracy 
of the algorithm depends on the size of the networks. In Figure |5.3|.a, it can be 
seen that better results were obtained wi th larger graphs. For |V(Gi)| = 400 and 
|^(C 2 )| = 450, TPrate achieves its maximum value, 33%. 
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Dependence of the accuracy on the graph density. Moreover, the graph 
sizes |V(Gi)| = 150 , \V(G2)\ = 2 0 0 and \V(seed)\ = 1 5 and k = 2 were fixed to 
determine whether the accuracy is dependent on the density of the networks. In 
Figure \5. S\b, it can be observed that TPrate becomes worse wi th an increase i n 
the values of m\ and m<i and almost achieves the level of average FPrate wi th 
mi = m 2 = 1 0 (TPrate = 1 6 % , FPrate = 1 5 % ) . A d d i n g more links at every 
step of the graph generation process causes the seed subgraph to drown in the 
rest of the network and makes finding the corresponding vertices more difficult. 

Dependence of the accuracy on the level of anonymization. Finally, all 
values, except the level of anonymization, were fixed. |V(Gi )| = 150 , |V(( j2)| = 
2 0 0 , | V(seed) \ — 1 5 , mi — 4 and m<i = 4 were set to observe the dependence of the 
accuracy on the level of anonymization of the attribute tables. In this case, the de
creasing trend of the accuracy is the most visible (see Figure\57^.c). A s expected, 
the accuracy of the algorithm decreased with a higher level of anonymization. 
W i t h no anonymization (k = 1 ) , TPrate was equal to 48,8%, and wi th k = 5 
TPrate fell to 1 5 % . 

I True positive rate 
Jpalse positive rule 

200 300 
|V(G,)| 

a) Dependence of the accuracy on the graph size. 

Note : \V(G2)\ = |V(Gi)|+50. 

I True positive rate 
UFalse positive ntle 

b) Dependence of the accuracy on the graph density. 

Note : m,2 = m i . 

0.55 

0.3 

: 0.25 

0.2 

0.1.5 

0.1 

0.05 

0 

r 
I True positive rate 
_ I'alse positive rate 

c) Dependence of the accuracy on the level of 

anonymization. 

Figure 5 . 3 : Dependence of the accuracy on parameters. (Source: author's work 
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In summary, the accuracy of the algorithm increased wi th larger input graphs, 
whereas it decreased with increasing graph density and anonymization level. How
ever, the algorithm found pairs of corresponding vertices more successfully than 
methods based on random guessing because the average TPrate is always higher 
than the average FPrate. A summary of all the achieved average true and false 
positive rates is provided in Table \5.$ I consider a correct pairing of 20 — 30% 
vertices from all appropriate vertices in synthetic scale-free networks to be a good 
starting point for further research on composition attacks against social network 
data. 

\V{GX)\ m i \V{G2)\ m2 k TPrate FPrate 

100 4 150 4 2 25% 19% 
200 4 250 4 2 30% 20% 
300 4 350 4 2 30% 23% 
400 4 450 4 2 33% 25% 

150 2 200 2 2 33% 24% 
150 3 200 3 2 30% 22% 
150 5 200 5 2 23% 18% 
150 10 200 10 2 16% 15% 

150 4 200 4 1 49% 17% 
150 4 200 4 2 27% 18% 
150 4 200 4 3 22% 15% 
150 4 200 4 5 15% 11% 

Table 5.3: Average true positive and false positive rates from 50 runs of the 
algorithm with given parameters. TPrate and FPrate denote average TPrate 
and FPrate respectively. (Source: author's work |3|.) 

Experimental results indicated that the weak points of the proposed algorithm 
are the rules determining whether the pair of vertices is false positive or true pos
itive. Dur ing several algorithm runs, the true pair of corresponding vertices was 
found; however, it was incorrectly removed in the composition stage. The true 
pair of corresponding vertices was often nearly accepted as a true positive but 
ultimately dismissed. Therefore, improving the rules would render the algorithm 
more efficient when it takes real social networks as input. The possibility of 
improving the rules based on the graph structure or specific features of the par
ticular input networks w i l l be studied in future research. However, in this case, it 
must be assumed that the attacker has background knowledge about the graph 
structure. 

5.6 Discussion 
In this section, it was innovatively presented that social network datasets could be 
attacked by the composition attack, just like relational datasets. Furthermore, a 
new sensitive value in a social network graph that enables the attacker to perform 
the attack was introduced, and a new composition attack algorithm against two 
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social network datasets was proposed. Its feasibility was experimentally proved 
by running the algorithm on a set of synthetic scale-free networks. Its ability to 
find 20 — 30% of corresponding vertices in synthetic scale-free networks confirms 
that the algorithm can be suggested for testing as a privacy threat on real social 
network datasets. 

Now let me address the problem stated in Question [7] and summarize the 
modifications that must be done to apply the composition attack to S N datasets. 
The proposed composition attack aims at two datasets wi th overlapping users 
community, similar to the composition attack against relational data introduced 
in jHI|. Moreover, the attribute equivalence classes are exploited in the same way 
as the equivalence classes in [ED], and the same knowledge of the adversary is 
considered. 

Unlike the relational datasets, a l l attributes of U(G*A) are usually found to 
be quasi-identifiers and do not contain any sensitive attribute. The sensitive 
attribute is important in composition attacks on relational datasets |HIJ. Hence, 
the artificial sensitive value must be defined before applying the composition 
attack to the S N data. The sensitive value of the individual in S N data has to 
be determined so that it is nearly constant over all S N datasets in which the 
individual participates. It is essential for performing the composition attack on 
the S N dataset. In the proposed attack, the sensitive value is based on the graph 
structure of S N datasets. The proposed sensitive value is assumed to be nearly 
constant in SNs making two assumptions about users' behaviour in SNs. The 
assumptions are based on published findings about S N users, and their online 
behaviour [l'12'IL m, II (YZ\. Hence, the sensitive value of all vertices of both attacked 
datasets has to be computed in the preprocessing stage of the attack, which is 
not required when attacking relational datasets. 

Furthermore, reducing the cardinality of 1Z based on the graph structure can 
not be naturally applied in relational datasets. This step is added to the algorithm 
to balance the inaccuracy caused by using the artificial sensitive value instead of 
the real one. The artificial sensitive attribute is less reliable than the real one 
in relational datasets. Using the artificial sensitive attribute in the composition 
stage of the attack produces more false positives that have to be removed after 
the composition stage. 

To summarize the answer to Question [IJ, the composition attack was proved to 
be applicable to social network data. The crucial modifications required to apply 
the attack to S N data are computing the sensitive value based on the graph 
structure and removing the false positives from the set of found corresponding 
vertices. 
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6. Heuristic noise addition 
method 
This chapter addresses Question [| and presents a novel approach for noise ad
dition operation in the /c-degree anonymization algorithm k-DA. The proposed 
high-degree noise addition method modifies the degree sequence anonymized by 
the degree anonymization procedure of k-DA before it is processed by the graph 
construction procedure of k-DA. The method is implemented in the greedy ver
sion of the k-DA algorithm. The whole algorithm based on k-DA wi th the novel 
noise addition method is denoted by heu-/cDA. The usability of the heu-/cDA is 
demonstrated by running experiments on the set of different real-world social 
network datasets. This chapter is based on j35f. 

6.1 Motivation 
The k-DA algorithm, introduced in jS3| and described in Section 2.3.fy is con
sidered to be the basis of the /c-degree anonymization. Its goal is to modify the 
original S N graph G to the /c-degree anonymous graph G* wi th edge editing op
erations. The fewer changes made in the graph, the less information loss caused 
by the anonymization. 

The k-DA algorithm performs on G in two steps. A t first, Greedy or Dy
namic programming algorithm takes as the input the degree sequence dG and the 
anonymization parameter k and finds the k-anonymous degree sequence d*G. Then 
Supergraph algorithm tries to modify G to construct G* such that dG* = d*G. If 
the Supergraph algorithm fails, d*G is unrealizable and has to be slightly modified 
by adding noise. Then, Supergraph runs repeatedly unt i l G* is found such that 
dG* = d*G. To recall the design of the whole k-DA algorithm, I repeat Figure 
2.b\from Chapter® Since a similar scheme is made for the novel heu-/cDA algo
r i thm later in this chapter, repeating the figure also emphasizes the differences 
and similarities between both algorithms. 

G,dG 

Greedy 
D P 

G,d*G 

Noise 
addition 

d'(} : = , . o i » e ( d J j ) 

Supergraph 
-> G* 

Figure 2.6: Scheme of k-DA algorithm. (Source: author's work.) 

The noise addition strategy significantly affects both the speed and efficiency 
of the whole k-DA algorithm. Actually, there was no noise addition procedure 
in the original k-DA algorithm. In case d*G was unrealizable, k-DA added a 
random noise into d*G. The noise addition approach proposed in this thesis is 
based on the power-law distribution of real SNs. It modifies the degree of high-
degree nodes since high-degree nodes are proven to significantly increase the total 
anonymization cost of k-DA [4"6|. 

64 



6.2 Greedy version of the fc-DA algorithm 
In this thesis, I work wi th the k-DA algorithm using Greedy algorithm and the 
simultaneous edge addition and deletion in Supergraph. The detailed description 
of Greedy including the definition of C m e r g e and Cnew is given in Algorithm [1] in 
Section \2.3.fy The main idea of the Greedy degree anonymization algorithm is 
summarized here since it is crucial for explaining the proposed noise addition 
method. 

The degree sequence da, sorted in descending order, is required as the input to 
Greedy. The Greedy algorithm first forms a group consisting of the first k vertices 
wi th the highest degrees. Then it computes the median value of their degrees 
and changes the degree of the first k vertices to the median value. After that, 
it evaluates whether it is better to join the (k + l ) - t h vertex into the previously 
formed group or start a new group at position (k + 1). The decision is based 
on the computation and the comparison of two costs: the cost of merging the 
(k + l ) - t h node to the first group C m e r g e and the cost of creating a new group 
starting with the (k + l ) - t h node Cnew. 

After proceeding recursively with all elements of da, a l l vertices are divided 
into groups about at least k elements. A l l vertices in one group have the same 
degree. Hence, the /c-anonymized degree sequence d*G is created. The groups of 
vertices having the same degree correspond to the ^-equivalence classes. 

Let us look at the sequences da, d*G as the sequences of values rather than the 
sequence of vertex degrees. Then, d*G can be divided into —equivalence classes 

Q(N, a, =) = {a e N ; a = b} where deg(Q(N, a, =)) = a. 

Then, the degree sequence d*G equals to the ordered list of —equivalence classes 
Qi, Q2, • • •, Qm where deg(Qi) > deg(Qj) for each 1 < % < j < m and \Qi\ > k. 
Since ^-equivalence classes are not used in the rest of this chapter, —equivalence 
classes are simply called equivalence classes in the rest of this chapter. 

For example, let me show how the Greedy algorithm proceeds on k = 2 and 
da = (6 ,4 ,4 ,2 ,2 ,1 ,1 ,1) . The median value of the first k = 2 elements of dG 

equals 5. Hence, d*G is set to (5, 5,4, 2, 2 ,1 ,1 ,1) . The third element equals 4. The 
algorithm has to decide whether it is better to add the element to the first equiva
lence class Qi and increase its value to 5 or to start Q2 starting wi th the third ele
ment. Since the merging cost C m e r g e = 2 and the cost of starting new equivalence 
class Cnew = 2, the th ird element is added to Qi and d*G = (5 ,5 ,5 ,2 ,2 ,1 ,1 ,1) . 
Then the fourth element equalling 2, is evaluated. Since C m e r g e = 5 and Cnew = 0, 
the fourth element is not merged to the Q\ and the Greedy algorithm is recursively 
run on the subsequence (2, 2 ,1 ,1 ,1) . The final 2-anonymized degree sequence is 
d*G = (5, 5, 5, 2, 2,1,1,1) where Q1 = {5, 5, 5}, Q2 = (2, 2} and Q3 = {1,1,1}. 

The list L of indices of elements starting the equivalence classes can be easily 
derived from the degree sequence d*G. Since the first element of dG always starts 
Qi, L = (1) at the beginning. If the (k + l ) - t h element is not merged to Q i , 
L — (l,k + l) and then the algorithm runs recursively on the subsequence of da-
In other words, L = (1, \Qi\ + 1, \Q2\ + 1 , . . . , \Qm\ + 1). In the above example, 
L= (1,4,6). 
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6.3 High-degree noise addition heuristic 
This section contains the description of the high-degree noise addition heuristic, 
which is applied on d*G after the Greedy algorithm, in case d*G is unrealizable. 
The degree distribution in real SNs is the power-law distribution, as presented 
in [93]. Thus, there are a few nodes with a very high degree and many wi th a 
very low degree. If the high-degree nodes are merged into one equivalence class 
wi th lower-degree ones, the highest degrees are very distant from the median of 
the class. Therefore, the values of the few high-degree nodes decrease greatly by 
the Greedy algorithm. It implies removing a large number of edges from G in 
the graph construction algorithm, which processes d*G after the Greedy algorithm. 
This reduction is impossible if the total number of required degree reductions in 
the rest of d*G is lower. Thus, the d*G becomes unrealisable. 

Depending on the size and the structure of the network as well as the value 
of k, the high-degree nodes can meet the lower-degree nodes in some of the first 
few equivalence classes. Considering the power-law distribution, the problem can 
not arise in the middle or end of d*G where the degree values are closer to each 
other. Thus, the noise addition method can deal only wi th several first classes at 
the beginning of d*G. 

The problem arises in classes wi th a mixture of high- and lower-degree nodes. 
More precisely, there is a significant difference between the maximum values in 
the class and the median value in the class. The proposed method is not based 
on the exact identification of the problematic classes and the exact correction 
computation for every problematic class, which would be too difficult and time-
consuming. It is based on the simple heuristic that meets the core of the problem 
well and is efficient for computation demonstrated with the experimental results. 
In summary, the proposed heuristic increases the anonymized value in the first few 
equivalence classes of dG, which reduces the number of required edge deletions. 
Thus, it increases the probability that modified d*G is realizable. The procedure 
for correcting medians is detailed in Algorithm^ Note that da[i], SGs[i] and L[i] 
are the i - t h elements of dG, SG s and L respectively. 

The crucial idea behind the whole high-degree noise addition method is to 
decrease the difference between the maximum values and the median values in 
Qi, • • • ,Qmax for some max < m where m is the total number of equivalence 
classes in d*G. Moreover, since the unrealizability of d*G is often caused by the 
lack of existing edges for edge removal, the median should be moved closer to the 
high-degree values and not vice versa. Thus, the median of Qi is increased for 
each 1 < % < max by mult iplying it wi th the parameter x that is greater than one 
(see line 10 in Algorithm^. The formulas for calculating x and max were found 
experimentally. The parameter x is computed separately for each Q i , . . . , Q m a x , 

but the median correction is done only if x > 1 for Qi. 
The values of X for Q i , . . . , Q m a x depend on the modification parameter s (see 

line The parameter s is usually a small real number, and the method of how 
to find the most suitable s for a given dataset and a given k is presented i n the 
next section. The parameter s is constant for one run of Algorithm [3[ Hence, in 
the single run of the algorithm, the same s is used in the computation of x for all 
classes Ql, • • • , Qmax-
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Algori thm 5 The correction of the median 

Require: the modification parameter s, the degree sequence da, the degree se
quence returned from Greedy dG, the anonymization parameter k 

Ensure: the degree sequence SG S 

1: F i n d the list of indices L from d*G. 
2: Set n = \da\ 
3: Set 5Gs = d*G 

4: Set max = |_ln(f )J 
5: for i :— 1 , . . . , max do 
6: Set ji = L[i] and j2 = L[i + 1] — 1 

7: Compute x = (gg})* 
8: if x > 1 then 
9: for Z := ji,...,j2 do 

10: S e t ^ s [ / ] : = [S*GJ]-x\ 
11: end for 
12: end if 
13: end for 
14: Return <fc „. 

6.4 The modification parameter setting 
The scheme of the whole heu-/cDA algorithm is illustrated in Figure \6.1\ A s 
mentioned above, the Greedy algorithm first runs on G and dG to produce d*G. 
Afterwards, Supergraph is applied on d*G. In case d*G is unrealizable, then dG 

enters the first run of the High-degree noise addition procedure. In its first run, the 
modification parameter s is set to one. Then, the Algorithm^ums wi th s — 1 and 
modifies the given dG to SG 1. Hence, the anonymized degree sequence is changed, 
dG :— SQ1 and Supergraph runs again and tries to find G* wi th do* — dG. If the 
new d*G is stil l unrealizable, High-degree noise addition algorithm runs again. The 
value of the modification parameter is changed, and the correction algorithm runs 
wi th the new value of s. The cycle continues unti l d*G is found realizable and G* 
is produced by Supergraph. In all accomplished experiments wi th different real 
SNs, the suitable s was always found, and it took at most seven repetitions of 
Supergraph and High-degree noise addition. 

H i g h - d e g r e e noise a d d i t i o n 

Correction S Setting 
:= m o d i f y , s) s 

G, do —>T Greedy 

Figure 6.1: Scheme of heu-/cDA algorithm. (Source: author's work.) 

It remains to describe how to set the values of s in the different runs of High-
degree noise addition method. The High-degree noise addition method with the 
method of finding the most suitable modification parameter is described in detail 
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in Algorithm 0. A s mentioned above, it is crucial to find the most suitable s for 
a given G and a given k. 

Algori thm 6 High-degree noise addition 

Require: the degree sequence dG, the degree sequence returned from Greedy d*G. 
the anonymization parameter k 

Ensure: the /c-degree anonymized G* 
1: R u n S(dG) ensuring G* and do*-
2: Set r 0 = E?=i 
3: if |To| < 1 then 
4: Quit successfully and return G*. 
5: else 
6: Set 8 = 1. 
7: Set rs = C(l,dG, dG, k) + S(dG) and previous-r = rs. 
8: if sgn(r 0 ) 7̂  sgn(r s ) then 
9: Set dec = 1, cord = 1. 

10: while cont < 10 do 
11: if \rs\ < 1 then 
12: Quit successfully and return G*. 
13: else 
14: Modi fy s = s ± dec. 
15: Set rs = C(s,dG,d*G,k) + S(d*G). 
16: if sgn(r s ) 7̂  sgn(prewioMS_r) then 
17: Modi fy dec = dec • 0.1 and set cont = 0 
18: else 
19: Set previous_r = rs. 
20: end if 
21: end if 
22: Set cont = cont + 1. 
23: end while 
24: Quit unsuccessfully. 
25: else 
26: Quit unsuccessfully. 
27: end if 
28: end if 

The Supergraph method implemented in heu-/cDA is improved. Unlike the 
original Supergraph that outputs either the proper /c-degree anonymized G* or 
Unknown [83], its version implemented in heu-/cDA always returns a graph G*. In 
case that d*G is realisable, than G* is /c-degree anonymous graph and dG* = dG. 
In case d*G is unrealizable, then the outputted G* is some supergraph of G but 
not /c-degree anonymous. Certainly, <iG. ^ d*G. 

Hence, let G* be a graph found by Supergraph on the input G . Let 8G s be 
the degree sequence returned by Algorithm [| and dG* be the degree sequences of 
G*. I define 

n n 
r . = £ < k - [ « ] - £ * o , [ » ] 

i=l i= l 

to be the residue after the run of High-degree noise addition wi th s and Super-
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graph. If rs = 0, then SG s is realisable and 5G s = dG*. Furthermore, set 

n n 

r0 = ^2da*[i]-^2d^[i] 
i=l i=l 

to be the residue after the first run of Supergraph that is not preceded by the run 
of the noise addition method. 

Thus, the most suitable modification parameter is such a value of s on which 
the Algorithm [3| outputs SGs wi th rs = 0. Since we deal wi th real networks wi th 
thousands of nodes, this condition is relaxed. The value of s is also considered 
suitable if rs — ± 1 . It means that the degree of a single node is left greater or 
smaller by one than it should be according to SG s . 

Note that sgn denotes the signum function in Algorithm 0. Moreover, the 
notation C(s, do, dG, k) stands for the run of Algorithmic^ the input s, do, dG, k 
and S(dG) stands for the run of Supergraph. Surely, Algorithm^ensures SGs while 
Supergraph ensures G* and dG*. The degree sequences SGs,dG* can be used for 
the computation of rs, hence the expression rs = C(s, dG, dG, k) + S(dG) means 
running both algorithm sequentially producing their outputs and computing rs 

afterwards. 
The case that s — 1 corresponds to the most significant modification possi

ble by High-degree noise addition. If s > 1, then the change is smaller. The 
modification parameter setting procedure is inspired by the root-finding with the 
bisection method. There exists a direct or indirect dependency between s and rs. 
Depending on G and k, rs grows or falls linearly wi th the growing s. Thus if rs 

and previous-r have different signs, then rsi = 0 lies in the interval between rs 

and previousJT and the required s' lie between the value of s and the previous 
value of s. 

Hence, the algorithm recurs and tries to find the s between the real numbers 
wi th one decimal digit between s and the previous s. It is possible to recur 
deeper into decimal numbers; hence the algorithm can additionally require setting 
the maximal possible depth of the recursion as the input parameter. The most 
suitable s was always found in real numbers wi th no or just one decimal digit in 
all performed experiments. The procedure always quit successfully for all tested 
datasets and al l tested k values. 

6.4.1 C o m p l e x i t y 

The time complexity of Algorithm is determined by the complexity of Algorithm 
[| and Supergraph and the number of attempts needed for finding the proper s. 
Let the number of attempts needed to find the proper s be denoted by p. The 
complexity of Algorithm^ is in 0(n), where n = \dc\ = \d*G\ = \V(G)\, since 
each value of d*G is modified at most once. A s presented in [Elf, the complexity 
of Supergraph is in 0(a • n), where a = maXi=i^,^n\dG[i] — dc[i]\. Thus, the whole 
complexity of Algorithm is i n 0(p • a • n). 

6.5 Experimental results 
In the experiments, the presented heu-/cDA algorithm was examined. A l l experi
ments were performed on a Windows 10 operating system P C wi th 16 G B R A M 
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and a 3,2 G H z processor. The programs were written in M A T L A B 9.6.0.1072779 
(R2019a). The implementation is included in the attached C D , and the overview 
of corresponding M A T L A B files is given in Attachment [5| Data ut i l i ty was mea
sured using the SecGraph evaluation tool available at [22]. 

6.5.1 Tested datasets 

The proposed algorithm was tested on the following real-world network datasets 
stored in S N A P library [74]: General Relat ivity and Quantum Cosmology collab
oration network (GrQc)[78], Gnutella peer-to-peer network fZBI, H19], Wikipedia 
vote network [ED], Ca ida A S Relationships Datasets [EBJ, High-energy physics 
theory citation network (HepTh) [23,13ZZJ, Stanford web graph [ZHf, Enron email 
network [191, EZf, Amazon product co-purchasing network [Z7J], Epinions social 
network |I1181] and the networks describing the social ties of geosocial networks 
Gowalla [27] and Brightkite p2j . Furthermore, experiments were also run on two 
smaller networks, Polbooks |ESf and Polblogs [2], stored in the Network Data 
Repository [122]. The experiments were run on the network samples contain
ing between 10 3 and 10 5 nodes. From the datasets containing more than 10 5 

nodes (Stanford-web, Amazon, Gowalla), the subnetwork consisting of 10% of 
their nodes was tested. 

6.5.2 U s a b i l i t y analysis 
A t first, the usability of the algorithm was demonstrated by running experiments 
on 12 real S N datasets differing in size (see Table\6.l\j. The algorithm was tested 
for values of the anonymization parameter k — {10, 20, 50,100} for each dataset. 
The algorithm found the most suitable s value for all datasets and all k values. 
For instance, the particular s values, total runtime, rs values and the number of 
runs of the Supergraph algorithm for k = 50 are summarized in Table\6J_, 

Dataset G \V(G)\ #runs s rs runtime 

Polblogs 1,224 3 2 1 12s 
G r Q c 5,242 2 1 0 4s 
Gnutella 6,301 2 1 0 5s 
Wiki -Vote 7,115 3 2 1 7min 41s 
Gowalla 19,659 5 2.9 0 46min 29s 
Caida 26,475 6 2.2 0 4min 25s 
H e p T h 27,770 3 2 1 22min 52s 
Stanford-web 28,190 5 2.1 0 l m i n 4s 
Emai l -Enron 36,692 3 2 0 lOmin 20s 
Amazon 40,340 3 2 1 l m i n 53s 
Brightkite 58,228 3 2 1 14min 35s 
Epinions 75,879 4 3 0 l h 41min 49s 

Table 6.1: Usabil i ty analysis of heu-/cDA for k 

m-) 

50. (Source: author's work 
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Since the anonymized degree sequence differs for various k i n the same dataset, 
the suitable s differs for various k. Hence, it is not possible to set the same s for 
all runs of k-DA on the same dataset. The distribution of the s value over al l 
datasets and all k values are shown in Figure \6.2\ The most common value of s 
equalled 2. In 20% of computations, d*G needs no modification, and the resultant 
s is set to 0. However, k < 20 in all those cases. The d*G modification was always 
required for k > 20. In 17% of computations, the most suitable s was a decimal 
number, and the algorithm had to recur once. Al though s equalled or grew wi th 
the growing k for 58% datasets, no dependency was found between parameters s 
and k, which would hold for all datasets. 

4 0 % r 

3 5 % -

3 0 % -

I 2 5 % " 

0 1 2 2.1 2.2 2.3 2.9 3 4 

Modification parameter s 

Figure 6.2: The distribution of the s values for all k and all datasets. (Source: 
author's work JS5J.) 

The runtime of one algorithm run increased expectantly wi th the growing k 
and the growing number of nodes. In the worst case, the total computation took 
8.17 hours (for Epinions and k = 100). The total runtime also depended on the 
number of necessary repetitions of the graph construction algorithm for different 
s. However, the graph construction algorithm has to be repeated only seven times 
in the worst case (for Gowalla and k = 20), and the average number of repetitions 
equalled 3.08. Hence, it shows the efficiency of the heuristic in the anonymized 
degree sequence anonymization for different datasets. 

6.5.3 Informat ion loss analysis 
In this section, the results of anonymizing various networks with the proposed 
heu-/cDA algorithm are compared wi th the results of three other algorithms: 
original L i u and Terzi /c-degree anonymization algorithm (k-DA) [S3j, univari
ate micro-aggregation anonymization algorithm wi th neighbourhood centrality 
edge selection (NC) [20] and Fast /c-degree anonymization algorithm (F/cDA) [86]. 

Wiki-Vote and Email -Enron network. The data ut i l i ty improvement is 
demonstrated on the results of experiments with Wiki -Vote and Emai l -Enron 
networks shown in Table\6.2\ where heu-/cDA is compared wi th k-DA and F/cDA. 
Unlike heu-/cDA, both F/cDA and k-DA consider only the edge addition operation 
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Wiki-Vote 

nED fc = 1 10 20 50 100 

heu-/cDA 0% 2% 9% 4% 15% 
F/cDA 4% 12% 40% 80% 
k-DA 8% 20% 64% 136% 

ACC{G) k = 1 10 20 50 100 

heu-/cDA 0.141 0.140 0.144 0.148 0.153 
FkDA 0.167 0.183 0.2 0.183 
k-DA 0.367 0.467 0.559 0.651 

APL(G) k = 1 10 20 50 100 

heu-/cDA 3.203 3.202 3.192 3.173 3.173 
F/cDA 3.24 3.2 3.12 3.04 
fc-DA 2.68 2.52 2.24 2.08 

Email -Enron 

nED fc = 1 10 20 50 100 

heu-/cDA 0% 2% 3% 13% 8% 
F/cDA 2% 4% 13% 27% 
fc-DA 2.5% 6% 20% 47% 

k = 1 10 20 50 100 

heu-/cDA 0.497 0.486 0.485 0.470 0.465 
F/cDA 0.5 0.5 0.506 0.5 
fc-DA 0.513 0.613 0.625 0.625 

Table 6.2: Wik i -Vote and Enron-Emai l network analysis. (Source: author's work 

in Supergraph. The values of both algorithms are taken from JSSJ. The exam
ined metrics were average distance APL(G), the average clustering coefficient 
ACC{G) and the normalized edit distance nED = ^EuE ^ E n E - • The metric 
values for k — 1 correspond to the metric values of the original datasets. 

Both metric values of heu-/cDA were closer to the original values than F/cDA 
and k-DA in Wiki -Vote dataset. Moreover, heu-/cDA kept the normalized edit 
distance significantly lower than both other algorithms in both datasets. It is 
caused by the application of simultaneous edge addition and deletion in heu-
kDA. 

Polbooks, Polblogs, G r Q c network. The structural metric values in Pol -
books, Polblogs, and G r Q c networks are compared as shown in Table \6.!% The 
values of k-DA are taken from |156] while the values of N C are taken from [20]. 
The examined structural metrics are the average distance APL(G), transitivity 
T(G) and the largest eigenvalue of the adjacency matrix A. The metric values for 
k — 1 correspond to the metric values of the original datasets. 
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Polbooks 

A k = 1 2 3 4 5 6 7 8 9 10 

heu-/cDA 
N C 
k-BA 

11.93 11.98 
12.09 
12.00 

12.03 
11.97 
12.05 

12.01 
11.85 
12.11 

12.70 
11.85 
12.22 

11.75 
11.95 
12.30 

11.94 
12.09 
12.31 

12.21 
12.08 
12.64 

11.84 
12.08 
12.72 

14.20 
11.86 
12.85 

APL(G) k = l 2 3 4 5 6 7 8 9 10 

heu-fcDA 
N C 

3.079 2.938 
2.987 

2.786 
2.883 

2.894 
2.896 

2.652 
2.896 

2.749 
2.988 

2.735 
2.765 

2.661 
2.856 

2.627 
2.856 

2.530 
2.762 

T(G) fc = 1 2 3 4 5 6 7 8 9 10 

heu-fcDA 
N C 
k-BA 

0.348 0.345 
0.350 
0.330 

0.332 
0.342 
0.330 

0.337 
0.339 
0.320 

0.332 
0.339 
0.330 

0.314 
0.347 
0.300 

0.318 
0.326 
0.310 

0.299 
0.322 
0.320 

0.294 
0.322 
0.290 

0.322 
0.324 
0.300 

Polblogs 

A k = l 2 3 4 5 6 7 8 9 10 

heu-fcDA 
N C 
fc-DA 

74.08 74.32 
73.93 
74.89 

73.77 
73.81 
74.50 

74.54 
73.92 
75.16 

74.18 
73.95 
75.10 

74.13 
73.74 
76.32 

76.67 
73.80 
75.82 

74.10 
73.75 
76.67 

74.33 
73.63 
77.42 

74.22 
73.61 
78.42 

A P L ( G ) fc = 1 2 3 4 5 6 7 8 9 10 

heu-fcDA 
N C 

2.729 2.706 
2.733 

2.713 
2.729 

2.719 
2.725 

2.727 
2.724 

2.716 
2.724 

2.671 
2.732 

2.718 
2.726 

2.715 
2.731 

2.713 
2.727 

T(G) fc = 1 2 3 4 5 6 7 8 9 10 

heu-fcDA 
N C 
fc-DA 

0.226 0.225 
0.224 
0.225 

0.224 
0.224 
0.223 

0.227 
0.224 
0.224 

0.226 
0.224 
0.221 

0.225 
0.223 
0.222 

0.224 
0.225 
0.220 

0.224 
0.224 
0.219 

0.224 
0.223 
0.221 

0.224 
0.224 
0.221 

GrQc 

A fc = 1 5 10 15 20 25 30 35 40 50 

heu-fcDA 
N C 

45.62 45.26 
45.37 

44.18 
45.28 

43.43 
44.78 

43.39 
44.14 

47.45 
44.49 

44.88 
43.02 

45.13 
43.72 

44.24 
43.55 

48.21 
43.05 

T(G) fc = 1 5 10 15 20 25 30 35 40 50 

heu-fcDA 
N C 

0.630 0.621 
0.625 

0.612 
0.617 

0.598 
0.611 

0.594 
0.588 

0.554 
0.595 

0.567 
0.589 

0.576 
0.589 

0.562 
0.578 

0.515 
0.584 

Table 6.3: Polbooks, Polblogs and G r Q c network analysis. (Source: author's 
work [95].) 

In 86% computations, heu-/cDA kept the values of A and T(G) closer to the 
values of the original networks than k-DA. The values of heu-/cDA were even 
closer to the original ones than the N C values in a few cases, although the N C 
was proved to reduce the information loss much better than k-DA in |2D|. Hence, 
the proposed heuristic improves k-DA in terms of data utility. 
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Caida 

\E\ - \E*\ k = 10 20 50 100 

heu-/cDA -116 -661 -1919 -3223 
N C 0 0 -9 -9 

%mod k = 10 20 50 100 

heu-/cDA 11.14% 20.34% 30.48% 39.48% 
N C 6.06% 11.65% 18.43% 25.81% 

time k = 10 20 50 100 

heu-/cDA 25s l m i n 13s 4min 25s 5min 27s 
N C 36s l m i n 5s l m i n 45s l m i n 48s 

Table 6.4: Caida network analysis. (Source: author's work p5|.) 

Caida network. Finally, the performance of heu-/cDA is compared with the 
performance of N C on the larger network Caida wi th 26,475 nodes. The values 
of N C are taken from j2Df • For each algorithm, the total runtime was measured, 
as well as the difference between the original and anonymized edge set \E\— E* 
and the percentage of modified edges %mod = 1 — jf^jfjj- A s shown in Table 
N C is faster and modifies the network better than heu-£;DA. Thus, although 
proposed heuristic was shown to improve the k-DA significantly, heu-/cDA would 
not achieve as good results as the recently proposed N C algorithm aiming at the 
anonymization of large networks. 

6.4 

the 

6.5.4 D a t a u t i l i t y measurement 
Finally, the proposed heu-/cDA is compared wi th the k-DA implemented in the 
SecGraph evaluation tool [60, 59] in preserving data ut i l i ty metrics. A s men
tioned in previous chapters, SecGraph includes the implementation of several 
anonymization methods, and the /c-degree algorithm proposed by L i u and Terzi 
is one of them. Furthermore, SecGraph was also used for the measurement as the 
external independent tool. 

The methodology of this measurement is as follows. Three datasets differ
ing in size (Polblogs, Wik i -Vote and Caida) were inputs to heu-/cDA and k-DA 
together with the value of the anonymization parameter k G {5,10,15,20,50}. 
For each algorithm and each parameter setting, SecGraph measures the uti l i ty 
metrics in the outputted anonymized graph and the original graph and returns 
the comparison of the metric values. How metrics are compared wi th SecGraph 
is explained in detail i n Section |̂ Jg[ W h e n SecGraph returns 1, it means that the 
value of the particular metric is the same in both the anonymized and original 
graph. The more similar the metrics in the anonymized and original graph, the 
better the data ut i l i ty preservation. Hence, values close to 1 are preferable. 

Results wi th k — 15 are given in Table \6.5[ Due to the space limits, the 
complete results are contained in Attachment^ The proposed heu-/cDA preserved 
most of the metrics better than k-DA. This outcome corresponds wi th the results 
presented in previous paragraphs and proves that heu-/cDA preserves data uti l i ty 
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better than the original k-DA. Moreover, AS, HS and PR were preserved better 
wi th heu-/cDA for all parameter settings. The heuristic noise addition procedure 
heavily affects only the RX metric since SecGraph returned zero each time the 
metric was computed. The reason why this particular metric is so modified wi l l 
be studied in future research since it requires a deep understanding of the metric 
and its implementation in the SecGraph tool. 

k=15 

Polblogs Wiki-Vote Caida 

k=15 A;-DA heu-fcDA k-DA heu-fcDA k-DA heu-fcDA 

AS 0.849 0.960 0.834 0.987 0.491 0.789 
B C 0.904 0.908 0.885 0.910 0.838 0.734 
C C 0.999 1.000 0.999 1.000 0.996 0.999 
C D 0.857 0.888 0.838 0.868 0.067 0.549 
Deg. 0.977 0.990 0.965 0.991 0.847 0.887 
E D 0.955 0.956 0.982 1.004 0.817 0.985 
E V 0.957 0.984 0.977 0.991 0.807 0.867 
HS 0.814 0.984 0.876 0.993 0.470 0.676 
Infe. 0.914 0.886 0.848 0.805 0.700 0.719 
JD 0.232 0.110 0.318 0.304 0.487 0.141 
L C C 0.955 0.984 0.988 0.998 0.887 0.938 
N C 0.998 1.000 1.000 1.000 0.999 1.000 
PR 0.518 0.996 0.607 0.945 0.309 0.803 
R X 0.335 0.000 0.757 0.000 0.245 0.000 

Table 6.5: Heu-/cDA: ut i l i ty measurement for k = 15. (Source: author's work.) 

6.6 Discussion 
In this chapter, I presented the improvement of the noise addition procedure in 
the k-DA algorithm. The noise addition procedure slightly modified the degree 
sequence found by the greedy degree anonymization algorithm in case the se
quence is unrealizable and the graph construction procedure is not able to make 
the k-degree anonymization graph. The original noise addition procedure just 
added random noise into the sequence and d id not consider the features of input 
graphs. 

The known property of all graphs representing S N datasets is their power-law 
degree distribution. The result of the power-law degree distribution is that there 
are few nodes wi th high degrees, and most have very low degrees. Depending on 
the value of k and the network structure, there may be fewer than k nodes wi th 
a high degree. In this case, those high values are combined with lower values in 
the degree anonymization procedure, and the high-degree values are significantly 
decreased. W h e n the values in the Qi are increased wi th the proposed heuristic 
algorithm, the distance between the original high-degree values in the class and 
their values after degree anonymization is smaller, which causes fewer modifica
tions that have to be done in the graph construction procedure. If the number 
of high-degree nodes is greater than k, a similar situation can happen in Q2, Q3 
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or the Qi formed by the degree anonymization procedure. The flexible correction 
of medians in equivalence classes of d*G kept the anonymized values closer to the 
original degree of high-degree nodes. Hence, fewer edges have to be removed 
during the graph modification procedure, and d*G is more likely to be realizable. 

More importantly, the procedure is flexible. The modification parameter s 
and the parameter of correction x are dependent on both dG and d*G. The modi
fication parameter is computed wi th respect to the whole degree sequences. A l l 
equivalence classes of d*G are modified wi th the same value of s, but the correction 
parameter x differs for each class. The parameter x depends on the class's highest 
and lowest values. Moreover, the correction is applied if the difference between 
the highest and lowest value is significant. Otherwise, the anonymized value of 
the class is the median. 

To finally answer Question ® let me summarize the effects of implementing 
the high-degree noise addition method on the behaviour of the whole k-DA algo
r i thm. A s proved by the experimental results presented above, the high-degree 
noise addition method and edge deletion operation improve preserving the data 
uti l i ty in the k-DA algorithm. Moreover, the proposed high-degree noise addition 
procedure improves k-DA in terms of speed too, since it makes the computation 
of k-DA more efficient and reduces the number of repetitions of the graph modi
fication algorithm. 
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7. H y b r i d algorithm for 
/c-automorphism anonymization 
The /c-automorphism anonymization approach protects against any structural at
tack on S N datasets. However, providing a high level of privacy protection entails 
extensive modifications in the graph structure during the anonymization proce
dure. Due to the significant information loss, the /c-automorphism methods have 
not been widely developed. The recent research in edge editing S N anonymization 
methods focused primari ly on /c-degree and fc-neighbourhood methods. 

In this chapter, Question [3] is addressed by proposing the H y b r i d Algor i thm 
for fc-Authomorphism anonymization ( H A k A u ) . The /c-automorphism is demon
strated as a competitive S N anonymization approach providing a high-security 
level. H A k A u is based on the structure of the K M algorithm proposed in [163]. 
It combines the original approach with the genetic algorithm ( G A ) . This chapter 
is based on [97]. 

7.1 Motivation 
The privacy-preserving problem addressed in this chapter is the identity disclosure 
problem in S N datasets. I recall the problem stated in Chapter^ The provider 
desires to share or publish the data. Thus, he or she released the graph G. 
Assume that G is an anonymized version of the input graph G, hence G = G*. 
The identity disclosure occurs if an attacker can identify the target individual in 
the released dataset G*. In other words, the identity is disclosed if the attacker 
can link v G V(G*) wi th the particular individual represented wi th v. 

The /c-automorphism concept defends against all kinds of structural attacks. 
For every vertex v G V(G*), there are at least other k — 1 vertices wi th the same l-
neighbourhood in G* for any / G M. Therefore, the result of any structural query 
Q on G* contains at least k vertices. The attacker possessing any structural 
background knowledge can not identify his or her target node wi th a higher 
probability than | in the /c-automorphic graph G*. 

The motivation for applying G A arises from the fact that the /c-automorphism 
anonymization problem is proven to be N P - h a r d , and G A is a powerful tool for 
solving search-based optimization N P - h a r d problems. The novel chromosome 
presentation proposed in this chapter enables us to solve the problem of finding 
the /c-automorphism graph as an optimization problem of minimizing information 
loss. Moreover, the solution space can be modelled very well, and the particu
lar solutions are easily comparable wi th respect to the introduced fitness func
tion. Thus, G A is a good fit for finding the optimal solution to such a problem. 
Moreover, G A has been successfully used to improve the /c-degree anonymiza
tion method fHEf, k-neighborhood method [3J and clustering /c-anonymization 
methods p32, HS5J, rT3TTj. 
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7.2 Theoretical part 
Before the proposed H A k A u is introduced, some theoretical aspects of the pro
posed solution are presented. 

7.2.1 A n o n y m i z a t i o n cost 

The main tools of H A k A u are edge editing operations. The input edge set E(G) 
is modified wi th both edge addition and edge deletion operations; hence the orig
inal edge set E(G) is not the subset of E{G*). The information loss caused 
by the anonymization is called the anonymization cost. In the edge editing 
anonymization methods, the anonymization cost corresponds to the number of 
edge edits made during the anonymization process. Since making a graph k-
automorphic also requires node edits in the input graph, the total anonymization 
cost of H A k A u equals the sum of edge edits and node edits. 

The number of node edits depends on |V(G)|. If G* is /c-automorphic, then 
for each node v, there exist k — 1 nodes that are isomorphic to v. Hence, |V(G*)| 
is divisible by k. If |V(G)| is not divisible by k, adding or removing some vertices 
is necessary. Let us denote z := mod(\V(G)\,k). In case z < |, then z vertices 
are removed by H A k A u , otherwise, k — z dummy vertices are added. Thus, the 
number of node edits, denoted by VCost(G, G*), is equal to or less than |. 

Edge edits have a more significant impact on the anonymization cost. H A k A u 
uses both edge-deleting and edge-adding operations. Edge modifications are ap
plied in two parts of H A k A u : when chosen subgraphs of G are extended by G A 
and in the adding crossing edges procedure. Hence, the total anonymization cost 
caused by modifying G to G* wi th H A k A u is 

Cost{G, G*) = VCost{G, G*) + ExCost{G, G*) + CECost{G, G*) 

where CECost(G, G*) is the number of edge edits made in the adding crossing 
edges procedure, and ExCost(G,G*) is the number of edge edits made by G A . 
Both costs, ExCost(G,G*) and CECost(G,G*), are computed in Section Yu\ 
after H A k A u is explained. 

7.2.2 N P - h a r d problems 

The issue addressed in this chapter contains N P - h a r d problems. A t first, I outline 
the problem of finding a frequent subgraph wi th the given minimal support. The 
problem is N P - h a r d since it relies on the N P - h a r d subgraph isomorphic problem, 
as proved in [EIJ. The problem is addressed in both K M and H A k A u wi th the 
external algorithm. K M employs S i G r a M |Z2f while H A k A u uses a more efficient 
G r a M i algorithm pT|. 

Problem 1. Let G be a graph and s G N'. Find the frequent subgraph of G with 
the minimal support s and its matches in G. 

Now, I recapitulate the problems solved wi th the K M algorithm since they 
play a role in further proof. 
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Problem 2 (Finding optimal graph partitioning). Let G be a graph. Find the sets 
Ui,..., Um, where Ui = {Pa,..., Pik, P{j C G, j = 1 , . . . , k} for each i = 1 , . . . , m 
and such that 

- G = PI™ i ^ 

- Cost(G,G*) is minimal, where G* is the k-automorphic version of G ob
tained by KM algorithm 

Problem^ is NP-complete as proved in |1 (ir>||. Problem^ is addressed in K M 
algorithm as follows. K M algorithm builds the sets Ui sequentially. For each 
i, it first finds the frequent subgraph of G wi th the minimal support k and its 
matches in G, denoted by P ^ i , . . . , P j^ . Hence, P y ' s are isomorphic to each other. 
Then graphs Piti,..., Pitk are extended to graphs P j j , which are subgraphs of G 
but are not isomorphic to each other any more. The extension is made so that 
Cost(G, G*) is minimal . Then E(G) := E(G) \\fj=1 E(P~) and the procedure is 
repeated wi th % := % + 1 unti l G is completely partitioned into sets Ui. 

Then, for each set Ui, some edges are added into P j j to create new graphs P^ 
that are isomorphic to each other again. The edge addition procedure requires 
minimizing Cost(G, G*). The alignment vertex table defined in [litiril] described 
how vertices are mapped to each other under the isomorphism. The issue of 
finding the optimal P'iX,..., P'ik is proven to be N P - h a r d in [ll(i.'-ilj and is formalized 
in the following problem. The resultant P(j is the basis of the final anonymized 
graph G*. 

Problem 3 (Finding optimal graph alignment). For each Ui from Problem 121 
i — 1 , . . . , m, find graphs P'a,..., P(k such that Pij C P[- and for each j = 1 , . . . , k 
and Cost{G, G*) is minimal. 

Now, I state the problems that are addressed by H A k A u and prove their N P -
hardness. Methods for solving them are proposed in the next sections, where 
H A k A u is described i n detail. The following problem is the core of finding k-
automorphic graph G* for the given G. It is the combination of Problem 
Naturally, G* is not known before the anonymization procedure, and the real 
goal is to find G* such that Cost(G, G*) is minimal . 

Problem 4. Let G be a graph and Piti,..., be subgraphs of G such that 
is isomorphic to P^, V j , / := 1,... ,k. For P ^ i , . . . , P^ find graphs P[x,..., P'ik 

and isomorphisms F^j such that 

- Pfd c G* 

- P/ • is the supergraph of P j j 

- Eij(Pi:j) = Pij+1, j — 1 , . . . , k — 1, 

- Fi,k{Pl,k) = P{,\ 

- Cost{G,G*) is minimal 

where G* is a k-automorphism graph obtained by HAkAu. 
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Problem 0 repeatedly arises in H A k A u , and the index % denotes the number 
of its repetitions. The repetitions correspond to finding Ui defined in Problem [|. 
Again , the graphs P^i,..., P^ are the matches of the frequent subgraph with the 
minimal support k in G. Unlike K M algorithm, H A k A u expands the subgraphs 
P j 5 i , . . . , Pitk "isomorphically". Thus the found graphs P/ • are sti l l isomorphic to 
each other, and it is not necessary to make them isomorphic in the next step, 
which is the main advantage of this approach. 

Theorem 5. Problem El is NP-hard. 

Proof. According to Lemma 0, to prove the NP-hardness, it is enough to reduce an 
N P - h a r d problem to Problem|4[ In this proof, Problem^is reduced to Problem^ 
Denote P ^ i , . . . , p ^ to be the matches of the frequent subgraph wi th the support 
k. Then set [7$ := {P j j ; j '•= 1,... ,k} before the extension is applied. After al l 
P/ • and Fitj are found for each i,j wi th H A k A u , then subgraphs P/j requested 
in Problem [i] are P/j := P/j. The graphs P/j are isomorphic. Moreover, the 
isomorphisms Fitj give the alignment vertex table. • 

A t the end of this section, I give the problem addressed in the preprocessing 
stage of H A k A u . In the preprocessing stage, the set of vertex-disjoint graphs is 
selected from the set of edge-disjoint graphs, and the resultant set becomes the 
input to the genetic algorithm. 

Problem 5. Let G be a graph and M be a set of subgraphs of G. Select S C M 
such that V P i , P 2 e S : |^(Pi)| n \V(P2) \ = 0. 

Theorem 6. Problem 0 is NP-hard. 

Proof. Since all subgraphs in M are isomorphic, they have the same number of 
vertices. Let the matrix M be defined such that the i - t h row of M is the list of 
vertices of the i - th subgraph of M. The selection of the subset S corresponds to 
the selection of the set of rows in M that do not contain any identical number. 
The selected rows represent the isomorphic subgraphs wi th the mutually vertex-
disjoint set of vertices. 

Now let me show that the problem of selecting matrix rows that do not contain 
identical numbers equals the maximum independent set problem. This problem 
is known to be N P - h a r d [36]. Let us suppose that the individual rows in M wi l l 
be represented by vertices of a completely new graph (without any assumption of 
what k ind of graph is represented by the specific row). Assume adding edges i n 
the newly created graph so there w i l l be an edge between two vertices when the 
intersection between the respective rows is non-empty. This simple transforma
tion changed the problem of selecting matrix rows that do not contain identical 
numbers into the maximum independent set problem. Hence, the problem is 
N P - h a r d , and Problem [5| is N P - h a r d , as well. • 

7.3 H A k A u algorithm 
In this section, the novel H y b r i d Algor i thm for k-Automorphism anonymization is 
described in detail. The proposed H A k A u modifies the graph G representing the 

80 



given S N to the anonymized k-automorphism graph G*. The final G* is resistant 
to any structural attack. 

The crucial idea of the approach is as follows. The k isomorphic subgraphs are 
found in G. They are isomorphically extended to minimize Cost(G,G*). Then 
the extended isomorphic subgraphs are removed from the input graph, and the 
process is rerun on the smaller graph. After the whole input graph is processed, 
we get the set of disconnected graphs such that for every graph, there are at least 
k — 1 other graphs that are isomorphic to it. The disconnected graphs are linked 
together, making the final graph /c-automorphic. 

The detailed description of H A k A u is given in Algorithm [?[ The graph H is 
the rest of the input graph after the z-th round of the while cycle (see line |2[). 
Whi le there are at least k vertices in H, H is partitioned. G r a M i algorithm is 
run to find the frequent subgraph <7/(s) and s matches of <7/(s) in H (see line |3j). 
If G r a M i finds more than one frequent subgraph, gf(s) is the largest. The set of 
subgraphs matching <7/(s) in H is denoted by M. After selecting k vertex-disjoint 
subgraphs P^ from M (see line |4j), the G A is run to find isomorphic supergraphs 
P[j (see line |5J). The proposed G A is used to tackle the N P - h a r d Problem ^ 
The graphs P?- are removed from H (see lines |SJ and |9|) and the crossing edges 
between P^ and H are added into the set of crossing edges C (see line |7|). W h e n 

< k, the edges remaining in H are added into C, and the remaining 
vertices become the last found isomorphic subgraphs (see lines 14-2(1. A l l found 
subgraphs P[j are the core of the anonymized graph G*. To make G* connected, 
selected crossing edges and their copies are isomorphically added into G* (see line 
24). The adding crossing edges procedure is detailed in Section 7.3.2. 

Note the following interesting aspects of the algorithm. In the first round of 
the while cycle G A finds k isomorphic graphs P[X)..., P[k. The set of k isomorphic 
graphs determines k isomorphisms Fu,..., F\k as shown in line |5[ Since Fj is a 
zero homomorphism at the beginning, Fj := F\j after the first round. After the 
second round, Fj is the extension of F\j and F2j and it is stil l the isomorphism, 
since V(P[j) f l Vi^P^j) = 0, V j = l,...,k. Similarly, after the i - t h round Fj is 
extended with F^ (see line 10). After the while cycle ends, there are m • k graphs 
P!j, % — 1 , . . . , m, j — 1 , . . . , k, and k isomorphisms Fj\ 

- F^Ptj) = PtJ+1, i = 1 , . . . ,m,j = 1 , . . . ,k - 1, 

- Fk(P!tk) = P(tl, i = l...,m 

Secondly, note that P^ are subgraphs of H, but P^ are not subgraphs of H. 
Naturally, V(Pij) C V(P^-) and P ( P j ) C P ( P ^ ) , since P^ are supergraphs of 
Pij. Moreover, 1/(P^) C V(H), but E(P'ij) % E(H)Q Some edges from H are 
preserved in P^, some new edges can be added between nodes of V(P^-) by G A , 
some edges that were between some nodes of V ( P ^ ) in H do not exist in P^. 

Thirdly, G A aims to set up graphs P ^ so that they are isomorphic to each 
other and Cost(G,G*) is minimal . P u t t i n g back a single crossing edge caused 
adding other k — 1 edges that are isomorphic to the graph. B y finding larger 
graphs, P[j and replacing them with smaller P^, the amount of crossing edges is 
reduced; hence CECost(G,G*) is significantly reduced. 

1The statement V(P^) C V(H) simplifies slightly the real situation. In some cases, a few 
new nodes have to be added, and for some j : V(P/-) % V(H) (see Section 7.4-2) 
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Algori thm 7 H A k A u algorithm 

Require: anonymization parameter k, input network G, minimal support s 
Ensure: /c-automorphism network G* 

1: Set % := 1, H := G, C := 0, A f := 0, S := 0 and G * to be an empty graph. 
Set Fj := 0, j :=l,...,k. 

2: while \V(H)\ >kdo 
3: R u n G r a M i on (H,s) to find the frequent subgraph gf(s) and the set 

M : = {Ji,..., Is; Ij is a match of gf(s) in i f , j := 1 , . . . , s}. 
4: R u n Algorithm [6| on ( M , s, fc) to find the set of k vertex-disjoint matches 

S := {Pij G M ; ^ ( P y ) n 1/(Pz) = 0, j ^ I, j, I = 1 , . . . , k} (see Section 

6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

5: R u n G A on (S, H, k) to find graphs P[j and isomorphism F^ such that 

- P-j is the supergraph of P^ 

- Pjj(P/,j) — + J' = 1) • • • J ̂  _ 1) 

- Fik{P'i,k) = P{,i 
- Cost(G,G*) is minimal 

(see Sections 7Jj) 
Ct:={(u,v)£H: 3j G { 1 , . . . , /c} : u e V ( ^ ) A ^ V ^ ) } 
C := C U C i 

:= \ U}=i(V(i%-) n ^(#)) 
== ) \ ( C u U, f c

= 1(P(P4) n P ( P ) ) ) 
F j := F3®Fi3j :=l,...,k 
i:=i + l. 

end while 
m := i — 1 
C : = C U F ( P ) 
if \V(H)\ > | then 

m := m + 1 
A d d fc — |V(if)| dummy edges in V(H). 
for j ; : = 1 , . . . , k do 

Select v G V(H) and set P'j := v 
V(H) := V(H) \ {v} 

end for 
end if 

G* := 11™! U}=i i % 
R u n Algorithmic^ (C, G, G*, k, Fj) to add selected crossing edges and their 
isomorphic copies in G* (see Section 7.3.2). 

25: Return G*. 

Finally, the H A k A u algorithm requires the input dataset and two param
eters: the anonymization parameter k and the minimal support parameter s. 
The anonymization parameter is the independent parameter corresponding to 
the required anonymization level, and the minimal support s is the dependent 
parameter. It holds that s > k since k vertex-disjoint subgraphs are selected from 
the set of s edge-disjoint subgraphs. 
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7.3.1 F i n d i n g the subset of vertex-dis joint subgraphs 
G r a M i algorithm has been util ized to find the largest frequent subgraph gf(s) 
and its matches in H. Let denote 

M 1- Is; Ij is a match of <7/(s) in H,j:—1,..., s}. 

Naturally, there might be partially overlapping subgraphs in M having one or 
more common vertices. To proceed further, it is necessary to find k mutually 
vertex-disjoint subgraphs in M. The task is formulated in Problem [| and is 
proved to be N P - h a r d in Theorem 0. 

The output of the G r a M i algorithm is in tabular form wi th s rows, where 
each row represents one subgraph Ij as the list of its vertices. Since J i , . . . , Is are 
isomorphic, |V(/i)| = • • • = |V(/S)|. The set of the rows can be represented by a 
matrix M wi th s rows and |V(/i)| columns. 

To illustrate the situation, a simple graph G, the G r a M i output on G and 
the matrix M compiled from the G r a M i output are given in Figure \ 7.1\ O n G, 
there can be easily identified five four-squared subgraphs i i , I2, h, h, h that are 
the matches of the found frequent graph. It is visible on Figure \7.1\ that the 
Ii,... ,I5 are edge-disjoint, but not vertex-disjoint. This fact is reflected on the 
G r a M i output so that the same number (label of the relevant vertex) is included 
in two or more rows. For example, vertex 6 can be found on the first and third 
rows. 

G r a M i output: 
h = (1,2,5,6) 
h = (3,4,7,8) 
h = (6, 7,10,11) 
h = (9,10,13,14) 
h = (11,12,15,16) 

M 

(\ 
3 
6 
9 

V 1 1 

2 
4 
7 
10 
12 

5 
7 

10 
13 
15 

6 \ 
8 
11 
14 
16 J 

Figure 7.1: Simple graph G, the G r a M i output on G and the corresponding 
matrix M . (Source: author's work.) 

The task to select the largest subset of mutually disjunct subgraphs is equal to 
the task of selecting the maximal number of rows of matrix M that do not contain 
any identical number, as shown in the proof of Theorem^ Considering the graph 
at Figure 7.1, we can either select the third row (inner four-squared subgraph), 
and there is nothing more that could be added there. The second option is to 
select four "outside" four-squared subgraphs (rows 1,2,4 and 5 from M), and 
this attempt w i l l give us the optimal solution comprising of four vertex-disjoint 
subgraphs h, I2, h, h-

This way, the problem of finding the subset of vertex-disjoint graphs was 
transformed into the issue of selecting matrix rows that do not contain any iden-
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tical number. A s proved in Theorem [6], this problem is N P - h a r d . Therefore, a 
naive approach based on a brute-force algorithm that successively compares each 
row with another one is impractical , and a heuristic approach is needed to speed 
up the search. 

The proposed heuristic algorithm, described in Algorithm 0, is based on the 
"divide and conquer" design paradigm where the frequency of the individual 
vertices (numbers) in matrix M is util ized to break down the main task into 
two subtasks. In the first subtask, the rows of M containing the most frequent 
vertices are step by step removed and stored in auxiliary matrix R (see lines [l2| 
and 13 in Algorithm]®). Therefore, the first step of the algorithm is to calculate 
the frequency of the numbers included in matrix M (see line 

Algori thm 8 F inding the subset of mutually vertex-disjoint subgraphs 

Require: the set of s isomorphic subgraphs M = {Ii,..., Is}, the anonymization 
parameter k 

Ensure: the set of k vertex-disjoint isomorphic subgraphs S 
1: Set {v{,... ,vl} := V(Ij) and M := {vf}i,j to be a matrix, 

i:= 1, \V(h)\ . ./ : 1 s. 
2: R := 0, S := 0, cont : = 1. 
3: while r c ( M ) > 1 A cont = 1 do 
4: Calculate the frequency of all vertices in M . 
5: if the frequency of all vertices equals 1 then 
6: S : = M 
7: cont := 0 
8: else 
9: Set v to be the vertex wi th the highest frequency of occurrence in M . 

10: for j := 1 , . . . , rc(M) do 
11: if v G r-j(M) then 
12: M : = M \ r j ( M ) 
13: R : = R U r 3 ( M ) 
14: end if 
15: end for 
16: if r c ( M ) = 1 then 
17: S : = M . 
18: end if 
19: end if 
20: end while 
21: repeat 
22: Calculate the frequency of vertices contained in S. 
23: F i n d r := r(R) such that Vt> G r(R) frequency of v in S equals 0. 
24: R := R \ r 
25: S := S U r 
26: until r = 0 or rc(S) = k 
27: Return S := {I G M; 3i : n(S) = V(I)} 

Let n rows in matrix M and c be the highest frequency found in M . Then 
it is evident that the maximal number of mutually disjunct rows w i l l be less or 
equal t o n - c + 1 . In the example shown in Figure\7.1[ the maximal number of 
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mutually disjunct rows is computed wi th 6 — 2 + 1 = 4. For instance, if the vertex 
number 6 has two occurrences and only mutually disjunct rows are required, then 
the only option is either the row (1, 2, 5, 6) or the row (6, 7,10,11) can be a part 
of the solution. Hence, the task can be divided into two subtasks: 

1. pick up one row amongst the two we have just identified 

2. remove the rows considered in the previous step from M and solve the 
remaining task represented by the smaller M (see Figure 7.i)) 

Figure 7.2: Div id ing the main task into subtasks. (Source: author's work.) 

The same procedure wi l l be applied to the smaller matrix M : calculate the 
frequencies, select the vertex wi th the highest frequency or one of those in the 
case of multiple vertices wi th the same frequency, and divide the table into two. 
A t each iteration of the algorithm, at least two rows wi l l be removed from the 
matrix, and at the end, all the rows in the matrix M w i l l be disjunct. The 
remaining rows of M are set to be the cornerstone of output matrix S. There are 
three possible options: 

1. the final matrix M is empty (no row) 

2. the final matrix M contains only one row (see line [TBI) 

3. the frequency of a l l the vertices involved is equal to 1 (see line |5[) 

In the first case, S = 0, and in the second and the th i rd cases, S := M. Our 
illustrative example has reached the third option, as all three rows are vertex-
disjoint. 

The second phase of the algorithm (beginning at line 21) takes the matr ix S 
as the basis of the solution, and going backwards, the algorithm tries to add to it 
one row from the previously deleted ones that are stored in the auxiliary matrix 
R . Clearly, it is possible to add one row maximally; otherwise, the disjunctivity 
would be compromised. The task is done relatively efficiently. There is no need 
to compare the added row with each one already in the solution matrix S. A 
more efficient process is to compute the frequency of vertices contained in S (see 
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line |22|) and check whether the frequency of all vertices added by the relevant 
row is equal to 0 (see line |23|). If this condition is met for some row, the row 
should be added to the solution matrix (see line 25). Then, the frequency table is 
updated (see line 22), and the procedure moves one step backwards. The process 
terminates if it can find no such a row in R, or S have k rows (see line 26). 

In the illustrative case, adding the second row to the partial solution matrix 
is impossible as vertices 7,10, and 11 are already included there. O n the contrary, 
the first row (1,2, 5, 6) can be added, as the frequency of all these vertices equals 
zero. Hence, there exists the solution consisting of four independent rows in the 
matrix representing four subgraphs. 

Algorithm [| solves the problem of finding the subset of vertex-disjoint sub
graphs directly. Hence, it requires the set of isomorphic subgraphs, which is 
transformed to the matrix M (see line [j]), and delivers a subset of mutually dis
junct subgraphs which is built from the final matrix S (see line 27). There is 
no guarantee that the optimal solution (the largest subset) has been found, but 
the algorithm is fast (0(N3)) and found the acceptable solution in all executed 
experiments. 

7.3.2 A d d i n g crossing edges 
A d d i n g crossing edges procedure, including the computation of CECost(G,G*), 
is described in detail in Algorithm \Q 

Algori thm 9 A d d i n g crossing edges 

Require: the set of crossing edges C, input network G, anonymized network G*. 
anonymized parameter k, isomorphisms Fj (j := 1 , . . . , k) 

Ensure: /c-automorphism network G*, CECost(G,G*) 
1: CECost(G,G*) : = 0 
2: while C ^ 0 do 
3: Select (v, w) from C. 
4: S e t p : = { ( F ^ ) , F > ) ) e C } . 
5: if \C\ > | — l o r (degG*{v) < degc(v) or degc*(w) < dega{w)) then 
6: E(G*) := E(G*) U {(Fj(v),Fj(w)), j := l,...,k} 
7: C :=C\{Cu(v,w)} 
8: CECost(G, G*) := CECost(G, G*) + k — l — \C\ 
9: else 

10: C :=C\{(v,w)} 
11: CECost(G, G*) := CECost(G, G*) + 1 
12: end if 
13: end while 
14: Return G\ CECost(G,G*). 

The crossing edges are edges stored in the set C. Note that a crossing edge 
(v,w) is the edge that connects vertices from different subgraphs, v G V(i-^-), 
w G V(Pab), where i ^ a or j ^ b. If (v, w) is added into G*, then it is necessary 
to add other k — 1 edges (Fj(v), Fj(w)) into G*, j = 1 , . . . , k — 1, to keep G* 
/c-automorphic. 
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The crossing edge (v,w) is added into G* if there are at least | — 1 other 
crossing edges in C that are isomorphic to (v,w). Hence, adding (v,w) into G* 
causes fewer edge edits than not adding it. Except that, H A k A u adds crossing 
edges that are significant for matching the structure of G* to the structure of G. 
Since at most k operations are done wi th each crossing edge, and each crossing 
edge is considered once, the complexity of Algorithm^ is in C(|C| • k). 

7.3.3 C o m p u t i n g the extension cost 
The extension cost ExCost(G, G*) is the anonymization cost caused by replacing 
Pij wi th P!j, i := 1 , . . . , k, j := 1 , . . . , m. Let ExCosU(H) denote the extension 
cost caused in the i - t h round of while cycle in Algorithm 0 where H is processed. 
Then 

m 
ExCost(G, G*):=J2 ExCost^H) 

i=l 
k 

ExCosti(H) : ^ ^ E x C o s t ( P i ^ P i j ) 
3=1 

where ExCost(Pij, P^) is the anonymization cost caused by extending P^ to P^. 
i,j fixed. The cost ExCost(Pij, P'^) equals to the number of edges that exist 
in P[- and not exist in G plus the number of edges (u,v) G E(G) such that 
u,v G V(P!j) and (u,v) ^ E(P^). More precisely, 

ExCost{Pl3,P[j) := \E{P[3) \ (E(Pij') n E(G))\ 

+ \{(u,v) G E(G); u,v G V{I%) A (u,v) £ E(P>A}\ 

7.3.4 T h e comparison w i t h the design of K M a l g o r i t h m 
Before the detailed description of the genetic algorithm, I summarize the differ
ences between K M and H A k A u and enhance the improvements in H A k A u . A s 
mentioned in Section \7.2j H A k A u solves the N P - h a r d problem, combining two 
problems addressed in the K M algorithm. A s a result, K M finds the extended 
graphs that are not isomorphic by solving Problem\^a,nd make them isomorphic 
again by solving Problem^ Contrarily, H A k A u extended the graphs "isomorphi-
cal ly" by solving Problem 0. 

Furthermore, the K M algorithm uses only edge addition operation. H A k A u 
employs edge addition and edge deletion operations, leading to better preservation 
of the degree distribution, which is documented wi th experimental results in 
Section\f.5.2\ It also leads to the improvement of the procedure of adding crossing 
edges. The K M algorithm puts back all crossing edges and all their copies. O n 
the other hand, H A k A u adds a crossing edge and its copies only when adding 
them causes fewer edge edits than not, or the crossing edge was significant in 
the structure of G. Thus, H A k A u adds fewer edges i n the adding crossing edges 
procedure than the K M algorithm. 

Both algorithms need to find the frequent subgraph with the given minimal 
support several times. The K M algorithm runs the S i G r a M algorithm published 
|Z2|. The S i G r a M algorithm is based on the grow-and-store method. It stores each 
examined subgraph's appearance, which requires much space and computational 
time. 
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H A k A u employs a recent G r a M i algorithm proposed in [31]. G r a M i stores only 
the templates of the frequent subgraphs, not the whole subgraphs, and models the 
frequency evaluation as the constraint satisfaction problem. The G r a M i algorithm 
is proven to be faster than the S i G r a M algorithm in pTL 

7.4 Genetic algorithm 
I use the model of the genetic algorithm described in Section \4-7[ In this section, 
I describe the chromosome representation, fitness and selection function, and how 
genetic operators are applied to the used representation. 

7.4.1 Chromosome representation 

In this section, the novel chromosome representation used in G A is introduced. 
The goal of G A is to find k graphs P[•, j k, i fixed, that are isomorphic 
to each other (line [5] in Algorithm®). Therefore, in the rest of this section, the 
index i is fixed, and indices j,l : = 1 , . . . , k. 

Each individual in G A represents one solution; hence each individual rep
resents all graphs P'iy For all j, the graph P^ is the supergraph of Pij. I 
denote Qij = P[j \ P^ to be the subgraph of P[j wi th V(Qij) = V{P^) and 
E(Qi:j) = E(P'ij) \ E(Pi:j) (see Figure [771). The graphs P{j are found wi th Algo
rithm ® and they do not change during the run of G A . Thus, G A aims to find 
the optimal Qij for each j. Since P[j ±2 P'ü and P^ 2̂ Pa, then 2̂ Qü. 

Figure 7.3: Subgraphs of P'iy Vertex sets of particular subgraphs 
are V{P[3) = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9} , V{P3) = {1,2,3,4,6}, 
V(Qij) = {1 ,2 ,4 ,5 ,6 ,7 ,8 ,9} . (Source: co-authored work fSTJ.) 

Furthermore, since P^ 2̂ P'ih then P / 1 ; . . . , P'ik have the same adjacency matrix 
(see the example wi th P'a and P'i2

 m Figure 7^4). Let A d j j denote the adjacency 
matrix of P^,..., P'ik. The part of A d j j representing edges of P^ is known before 
G A is run and corresponds to g/(s) found wi th G r a M i (line [3] in Algorithm 0) . 
Thus, the part of A d j j representing edges of P^ is constant in all possible solutions 
of G A and all individuals in all generations. Therefore, to encode the individuals 
in chromosomes, it is enough to encode some part of A d j j and the ordered lists 
of vertices of Qij. Hence, each chromosome consists of two parts 

• CH = bits representing elements of A d j j 
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• varCH = ordered lists of vertices from V(Qn),..., V(Qik) 

More precisely, CH represents the elements of A d j j corresponding to E{Qij) 
and (uij,Vij) G E{P^) : uij G V(Qij) A Vij G V(Pij) (see Figure 7.5). The chro
mosome representation guarantees that each individual corresponds to graphs 
P?!,..., P'ik that are supergraphs of Pa,..., Pik and P^ ^ P'a. Hence, the repre
sentation keeps the /c-automorphism in the final solution G*, and it is unnecessary 
to check the /c-anonymity property during G A processing. 

Adjacency matrix of P'ix: 

P' 

13 

16 

11 

Adj 

•14 

acency matrix of P/ 2: 
1 2 3 4 5 6 7 8 9 15 12 17 18 16 14 13 10 11 

1 0 1 1 0 1 0 0 1 0 15 0 1 1 0 1 0 0 1 0 
2 1 0 1 0 0 0 0 1 0 12 1 0 1 0 0 0 0 1 0 
3 1 1 0 1 0 0 0 0 0 17 1 1 0 1 0 0 0 0 0 
4 0 0 1 0 0 1 0 0 0 18 0 0 1 0 0 1 0 0 0 
5 1 0 0 0 0 0 1 0 0 16 1 0 0 0 0 0 1 0 0 
6 0 0 0 1 0 0 0 0 0 14 0 0 0 1 0 0 0 0 0 
7 0 0 0 0 1 0 0 0 0 13 0 0 0 0 1 0 0 0 0 
8 1 1 0 0 0 0 0 0 1 10 1 1 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 1 0 11 0 0 0 0 0 0 0 1 0 

Graph isomorphism F\ : P'ix —y ri2'. 
i^ 1(l) = 15 Fi(4) = 18 Fi(7) = 13 
F!(2) = 12 F!(5) = 16 Fi(8) = 10 
F!(3) = 17 F!(6) = 14 Fi(9) = 11 

Figure 7.4: Adjacency matrix of isomorphic graphs P[x and P'i2 (k — 2). (Source: 
co-authored work fDZZJ.) 

7.4.2 Fitness funct ion 
A fitness function FF(I) evaluates how close the solution represented by the 
individual I is to the optimal solution of the problem. The a im of G A in H A k A u 
is to find the solution wi th minimal Cost(G, G*). G A runs several times in H A k A u 
(see line [5] in Algorithm^). In each run G A finds the optimal graphs P'iX,... P'ik 

for fixed i. Thus, minimizing ExCosti(H) in each run of G A is necessary. Except 
that, CECost(G, G*) should be minimized. However, during the particular run 
of G A , it is impossible to compute CECost(G,G*) properly since the decision, 
whether to add a crossing edge in G* or not, is made after all runs of G A . 
CECost(G, G*) is directly proportional to the number of crossing edges between 
V{P'iA and other nodes of H. Hence, the number of crossing edges is minimized 
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p' 

13 

16 

15 

12 •10 
11 

14 

Adj, 1 2 3 4 5 6 7 8 9 Adj, 15 12 17 18 16 14 13 10 11 
1 1 l 0 1 0 0 1 0 15 p. 1 1 0 1 0 0 1 0 
2 i 0 0 0 0 1 0 12 1 1 0 0 0 0 1 0 
3 1 1 0 0 0 0 0 17 1 1 1 0 0 0 0 0 
4 0 i 0 1 0 0 0 18 0 0 1 0 1 0 0 0 
5 0 0 0 0 1 0 0 16 1 0 0 0 0 1 0 0 
6 0 0 0 1 0 0 0 14 0 0 0 1 0 0 0 
7 0 0 0 0 1 0 0 13 0 0 0 0 1 0 0 
8 1 1 0 0 0 0 0 10 1 1 0 0 0 0 0 y l 
9 o n 0 0 0 0 0 1 11 0 0 0 0 0 0 0 1 

CH = 00010 000010 1100000 00000001 
varCH = 6 7 8 9 14131011 
Whole chromosome: 00010000010110000000000001 6 7 8 9 14 13 10 11 

Figure 7.5: Chromosome representation for k = 2. The part of Adjj representing 
E(Pij) is highlighted with red (dark) colour, and the part of Adjj representing 
E(Qij) is highlighted wi th green (light) colour. The part of Adjj in the black 
tetragon makes the bit part of the chromosome CH. The bits are taken in 
columns. Ordered lists of nodes from V{Qn) and V{Qi2) makes varCH. (Source: 
co-authored work fDZZf.) 

instead of minimizing CECost(G,G*) in G A . Thus, the fitness function of the 
individual I is defined as the two-tuple 

FF(I) = [nCE(H,I); ExCost(HJ) 

where ExCost(H, I) means ExCosti(H) and nCE(H, I) means the number 
of crossing edges between P^ and H, j :— 1 , . . . , k, % fixed, where P[j are con
structed according to the individual J . Referring to the line [6] in Algorithm 
0, nCE(H,T) = \d\. If two values F F ( i i ) and FF(I2) are compared in G A , 
then 

FF{h) < FF(I2) 

if nCE(H, h) < nCE(H, I2) 

or nCE(H, h) = nCE(H, I2) A ExCost(H, h) < ExCost(H, I2) 

The number of crossing edges has more weight while comparing FF values. 
It has three reasons. Firstly, the aim of G A is to search for the expansion of 
subgraphs found wi th G r a M i . W h y are the subgraphs P^ found with G r a M i not 
used? B y the expansion of Pij, CECost(G,G*) is reduced significantly. Thus, 
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the focus is to minimize CECost(G,G*) as much as possible during G A runs. 
Moreover, it has been experimentally found that ExCost(H, I) is much smaller 
than nCE(H, J). Finally, if one crossing edge is added in G*, other k — 1 copies 
must be added in G* to keep G* /c-automorphic. O n the other hand, increasing 
ExCost(H, I) by one corresponds only to the single change in G*. 

7.4.3 Selection funct ion 
The selection function chooses individuals from the current population to cre
ate the next generation. The two-step selection function is proposed. Let N be 
the number of requested parents. In the first step, 27V individuals are selected 
from the whole current population using the roulette wheel selection where the 
expectations are computed wi th nCE(H, I). In the second step, TV parents are 
selected from the 2N chosen individuals using tournament selection where expec
tations are computed wi th ExCost(H, I). The definitions of the roulette wheel 
and tournament selection functions are omitted with reference to j58f. 

7.4.4 Genet ic operators 
The usual genetic operations are used: crossover and mutation. Crossover com
bines two parent individuals I\ and I2 into a single child individual E + 2 . Let 
CHi, CH2 and CHi+2 be the bit parts of chromosomes corresponding to E,I2 

and i i + 2 respectively and varCHi , varCH2 and varCHi+2 be the "node" parts 
of chromosomes corresponding to E, I2 and I\+2 respectively. CWs and varCLEs 
are crossed over separately. 

The two-point crossover is applied on CH1 and CH2 pSBf. CH1 and CH2 have 
the same length ICH- Select two random integers a,b G (1; ICH)- The bit part of 
the child individual CHi+2 gets 1 s t , . . . , a-th bit from CHi, (a + l ) - t h , . . . , 6-th 
bit from CH2 and (b + l ) - t h , . . . , IcH-th bit from CH1 (see Figure WJ 

CHX 0001000 0110110001 100101101 

0001000 0110110001 000000001 

Figure 7.6: Crossover operation i n G A . (Source: co-authored work (SZJ|.) 

Before varCH\ and varCH2 are crossed over, varCHi and varCH2 are cut 
into k segments corresponding to Qn,..., Qik- The two-point crossover is applied 
to every segment. The i - t h segment of varCHi is crossed wi th the i - t h segment of 
varCH2, % = 1 , . . . , k. Select two random integers c, d between 1 and the length 
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of the segment. Then all segments are crossed at the same points corresponding 
to c and d (see Figure 7.6). 

The probability that an individual is mutated is given by the mutation rate. 
Then it is randomly decided whether CH or varCH is mutated. W h e n CH 
is mutated, one random bit is reversed in CH. W h e n varCH is mutated, one 
random vertex from varCH is replaced wi th a new one. 

7.4.5 Selecting new vertices propor t iona l ly to their degree 
If it is necessary to add a new vertex in varCH, then the vertex is selected from 
the set of unused vertices V(H) \ V(P^-), % fixed, j = 1 , . . . , k. There are three 
situations when vertices are added to varCH: 

• Creating init ial population. The bit parts of chromosomes CH are gen
erated randomly. The vertices are added one by one to varCH from the 
unused vertices. 

• W h e n CH1 and CH2 are crossed over, A d j j corresponding to CH1+2 can 
lead to graphs wi th more vertices than the parents' graphs. Hence, adding 
new vertices to varCH\+2 is necessary. Similarly, CH after mutation can 
lead to a graph wi th more vertices. 

• varCH is mutated. 

Selecting new vertices proportionally to their degree reduces nCE(H, T). The 
bit string CH is usually spare after several generations of G A . Most vertices i n 
varCH are connected to P ^ wi th a single edge. Hence, their other edges become 
crossing edges. The fewer links the vertices in varCH have, the fewer crossing 
edges are produced. Thus, a stochastic selection method where the probability 
of selecting the vertex is proportional to its degree is employed. More precisely, 
the new vertex to varCH is chosen wi th roulette selection where expectations 
are computed wi th the metric d e ^ , where deg(v) is the vertex's degree. 

7.4.6 C o m p l e x i t y 
A s mentioned in Section \4-% the complexity of G A is determined by the com
plexity of the fitness function, selection function and reproduction operators. Let 
ICH be the length of the chromosome. Since the crossover operation is linear i n 
ICH, its complexity is in 0(ICH)- The mutation is in 0 (1 ) . Let n denote the 
number of individuals in one generation. The roulette wheel selection is in 0(n) 
as mentioned jH3f. The tournament selection is also in 0(n) as mentioned [129]. 

The complexity of the fitness function is determined by the complexity of 
compiling graphs P ^ (j = 1 , . . . , k, i fixed) from the chromosome and the com
putations of ExCost and nCE. Compil ing all graphs P ^ takes 0{k • I C H ) times 
since j = 1 , . . . , k. Computing ExCost for a single P^ requires considering all 
its edges and all edges l inking its vertices wi th the rest of the graph. Thus, the 
complexity of ExCost is in 0(\V(P^)\ • m^), where rrij = max^vxp/.) deg(v). 
Computing nCE for a single P ^ requires also considering all edges l inking ver
tices from V(Plj), thus its complexity is also Oi\V(P^) \ • nij). Computing both 
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metrics for all graphs (j — 1 , . . . , k, % fixed) takes 0(k • \ V(Plj) \ • M), where 
M = max_?-=iv..)fcrrij. Since ICH < ||^(-P/;')|2' then the total complexity of the 
proposed fitness function is in 

0(k -IcH + k-\V(P>0)\• M) = 0{k • )|2 • M). 

Considering the formula for the complexity of G A in Sectionwhere g is the 
number of generations, the total complexity of the proposed G A is in 

0(n-lCH + g-n-(n + k-\V(P;j)\2-M + lCH)) = 0(g-n-(n + k-\V(PlJ)\2-M)). 

7.5 Experimental results 
This section presents the results of accomplished experiments wi th real-world 
networks. A l l experiments were performed on a Windows 10 operating system 
P C wi th 8 G B R A M and a 3.2 G H z processor. The programs were written i n 
Mat lab 9.7.0.1261785 (R2019b). The implementation is included in the attached 
C D , and the overview of corresponding M A T L A B files is given in Attachment 
[ i| The used implementation of the G r a M i algorithm is available at [321]. The 
evaluation tool SecGraph is available at [53]. 

7.5.1 Tested datasets and parameter sett ing 

H A k A u was tested on three real-world datasets of different sizes that are free 
to use: Prefuse [3|, Polblogs [2] and Wiki -Vote [821]. Three kinds of results 
are produced. A t first, H A k A u is compared with the K M algorithm. I pro
vide the comparison on the Prefuse dataset since the results of K M on Prefuse 
were presented in |"l 03]. Then, data ut i l i ty measurement is provided on all three 
datasets. Finally, I tested the resistance against deanonymization attacks. Since 
the Prefuse dataset was too small to accomplish this testing, results are provided 
only on Polblogs and Wiki -Vote . 

Both tested datasets and the parameter settings were chosen wi th respect to 
the computation capabilities of the single P C and the fact that the computation 
had to be repeated at least ten times for each parameter setting since the algo
r i thm is non-deterministic. The largest tested dataset was the Wiki -Vote network 
wi th 7,115 nodes. Depending on the other parameters, a single run of the H A k A u 
algorithm on the Wiki -Vote network takes between 4.5 and 9.1 hours. Hence, the 
computation takes more than 90 hours in the most demanding case. 

The minimal support s = 2k in all experiments. The parameter setting of 
G A is based on the computation capabilities of a single P C and the limitations 
of M A T L A B . The genetic algorithm ran in two phases. A t first, it created a 
population of 1,000 individuals and ran for 20 generations. Then, it picked the 
20 best individuals wi th respect to the fitness function and ran for 100 generations. 
In both phases, the cross-over operation was applied to all individuals, and the 
mutation rate equals 2%. 

Moreover, each time the mutation should be applied, the algorithm flips the 
coin to decide whether to mutate CH or varCH in the chromosome. The best 
individual from each generation survived for the next generation. In other words, 
the elite count equals 1. The init ial population in the first phase of G A was 
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generated randomly. However, each time the new vertex should be selected from 
the set of unused vertices, it is chosen wi th the roulette selection proportionally 
to its degree. 

A l l chromosomes i n al l generations had the same length, which depended on 
the anonymization parameter k and the number of unused nodes nn = \V(H) \ — 
J2j=i™ \V{Pij)\- Hence, varCH equaled to the list of n ° d e s and CH was the 
bit string of the length equalling \varCH\2 + Y^i=i°H^ 1 (the formula is deduced 
from the proposed representation see Figure 7.5). 

It was experimentally found that the acceptable solution contains a lot of 
zeros, and the number of vertices in the acceptable solution was smaller than 
\varCH|. Thus, the starting chromosome length has been reduced to one-third 
for the largest Wiki -Vote network. The reduction gave even more importance 
to selecting new vertices proportionally to their degree while creating the init ial 
population. 

7.5.2 T h e comparison of H A k A u and K M a l g o r i t h m 
The performance of the H A k A u algorithm is compared wi th the performance of 
the original /c-automorphism algorithm K M algorithm. To compare the produced 
results wi th the ones presented by |H2j, experiments were run on the Prefuse 
dataset wi th the anonymization parameter k G {5,10,15,20} and the following 
network metrics in the anonymized network were computed: average clustering 
coefficient ACC(G*), average shortest path length APL{G*) and the total degree 
difference. The total degree difference equals the sum of the difference between 
the node degree in the original graph and its degree in the anonymized one. 

Since H A k A u is a non-deterministic algorithm, it was run ten times on each 
parameter setting. The experimental results are shown in Figure \7.% There is 
the mean of the ten metric values and the metric value of the best run. 

The clustering coefficient describes how well the neighbourhood of a node is 
connected. If it is fully connected, the clustering coefficient is 1, whereas a value 
close to 0 implies hardly any connection JESj. Hence, when k is larger, more 
edges are added by H A k A u , and A C C increases on average. However, in the best 
case, the algorithm can compile an anonymized graph wi th A C C very close to 
the original network. Interestingly, the A C C values of K M get lower wi th larger 
k even though K M only adds edges. 

Whi le the original graph is modified by adding edges, the distance between 
each pair of nodes is reduced (see Figure \7~7fy). If k > 15, the G r a M i algorithm 
finds no frequent subgraph appearing at least 15 times in the original graph of the 
Prefuse network since the dataset is small. Hence, the subgraphs P ^ i , . . . , P i i 5 

inputting G A are only isolated vertices selected randomly. 
The experiments show that the fitness function could be designed to keep the 

A P L property better. If A P L was the critical property that had not changed 
during the anonymization process, then the fitness function would have to be 
modified to consider distances between vertices. 

The total degree difference is significantly lower while applying H A k A u . Using 
edge deletion operation in the procedure of adding crossing edges decreases the 
amount of added edges and the final degree of all nodes. 
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Figure 7.7: Comparison of H A k A u and K M algorithm while anonymizing Prefuse 
network wi th the anonymization parameter k G {5,10,15,20}. (Source: co-
authored work J9ZZ|.) 

7.5.3 D a t a u t i l i t y measurement 

The H A k A u algorithm was further evaluated in preserving other network and 
application metrics. Three real social networks were anonymized wi th H A k A u , 
and the anonymized networks were evaluated using the SecGraph tool pTJ, I5SJ. 

The following methodology of experiments was used. The dataset and the 
anonymization parameter were selected: D G {Prefuse, Polblogs, Wiki -Vote} , 
k G {5,10,15, 20}. H A k A u was run ten times on D wi th k. U t i l i t y metrics were 
measured in al l ten output graphs by the SecGraph uti l i ty module, and the mean 
value of each metric is shown in Table\771[ The dataset D was further anonymized 
using three schemes from the SecGraph anonymization module and the heu-/cDA 
algorithm proposed in the previous chapter. The anonymization methods selected 
from the SecGraph tool are /c-degree anonymization method k-DA |Hlj wi th the 
anonymization parameter k and clustering methods tMean and Union {"14"I] wi th 
parameter t = k. Since those algorithms are deterministic, they ran once on each 
parameter setting. U t i l i t y metrics were measured in the graphs anonymized with 
k-DA, heu-/cDA, t M e a n and Union as well (see Table 7.1). The values in the table 
describe how each metric is preserved i n the anonymized graph compared to the 
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Prefuse Polblogs Wiki-Vote 

k=15 fc-DA heu-fcDA tMean Union HAkAu fc-DA heu-fcDA tMean Union HAkAu fc-DA heu-fcDA tMean Union HAkAu 

AS 0.157 0.155 0.199 0.383 0.219 0.849 0.960 0.858 0.901 0.608 0.834 0.987 0.886 0.881 0.799 
BC 0.528 0.526 0.834 0.834 0.615 0.904 0.908 0.971 0.994 0.420 0.885 0.910 0.966 0.991 0.477 
CC 0.995 0.961 0.913 0.943 0.995 0.999 1.000 1.000 1.000 0.993 0.999 1.000 1.000 1.000 0.981 
CD 0.214 0.509 0.810 0.715 0.102 0.857 0.888 0.756 1.000 0.061 0.838 0.868 0.755 0.960 0.018 
Deg. 0.795 0.784 0.973 0.983 0.779 0.977 0.990 0.991 0.998 0.826 0.965 0.991 0.992 0.999 0.817 
ED 0.802 1.164 1.374 1.381 0.826 0.955 0.956 1.132 0.987 0.844 0.982 1.004 1.013 0.984 0.911 
EV 0.904 0.718 0.411 0.692 0.905 0.957 0.984 0.966 0.997 0.792 0.977 0.991 0.989 0.998 0.800 
HS 0.276 0.022 0.201 0.381 0.041 0.814 0.984 0.816 0.881 0.806 0.876 0.993 0.846 0.865 0.674 
Infe. 0.694 0.644 0.617 0.602 0.646 0.914 0.886 0.896 0.895 0.928 0.848 0.805 0.835 0.850 0.870 
JD 0.660 0.215 0.029 0.124 0.005 0.232 0.110 0.230 0.224 0.080 0.318 0.304 0.353 0.397 0.087 
LCC 0.972 0.974 0.970 0.996 0.880 0.955 0.984 0.905 0.983 0.827 0.988 0.998 0.988 1.000 0.774 
NC 0.982 0.986 0.982 0.993 0.957 0.998 1.000 0.947 1.000 0.781 1.000 1.000 0.996 1.000 0.712 
PR 0.572 0.976 0.537 0.544 0.949 0.518 0.996 0.498 0.487 0.666 0.607 0.945 0.690 0.678 0.588 
RX 0.460 0.000 0.937 0.933 0.490 0.335 0.000 0.332 0.346 0.398 0.757 0.000 0.889 0.971 0.379 

Table 7.1: H A k A u : ut i l i ty measurement for k = 15. (Source: author's work.) 



original one. The methodology of how SecGraph computes the metrics is given 
in Section \j.2\ Due to the space limits, Table \7.1\ contains only metric values for 
k = 15; all results are included in Attachement 

A s we see in the next section, H A k A u offers a much higher level of security 
than other algorithms. Since deanonymization attacks exploit structural metrics, 
keeping a high level of protection is paid with worse data ut i l i ty preservation. The 
metrics affected the most by H A k A u anonymization are metrics based on the de
gree of nodes, like degree and joint degree distributions (Deg., JD).Communities 
in the graph are also heavily altered with H A k A u , which was proved by the low 
values of the community detection metric {CD). 

O n the other hand, H A k A u is best in preserving infectiousness (Infe.) in 9 
parameter settings (Prefuse: k = 10, Polblogs for all k, Wik i -Vote for all k) and 
page rank (PR) in 6 parameter settings (Prefuse for all k, Polblogs: k G {5,15}). 
Both metrics are centrality metrics that can identify influential users in the graph. 

The PR metric measures the importance of each node within the graph based 
on the number of links and the importance of the linked nodes. Thus, the im
portance of nodes is preserved while H A k A u modifies the edge set. The final 
fc-isomorphism tend to map important nodes to each other. Preserving infec
tiousness indicates that the communication channels i n the anonymized network 
are kept very well even though the graph structure is changed significantly by 
H A k A u . 

Since H A k A u is non-deterministic, the metric values varied in ten anonymized 
networks wi th the same parameter settings obtained in ten runs. The coefficient 
of variation was lower in the metrics values that H A k A u better preserved. Except 
for JD and CD metrics, the coefficient of variation was up to 10%. Furthermore, 
the coefficient of variation was lower in larger networks. 

7.5.4 Resistance to deanonymizat ion attacks 
In this section, H A k A u is shown to be resistant to deanonymization techniques, 
and the resistance is guaranteed in every algorithm run. The methodology of ex
periments is similar to the one util ized in the previous measurement. The dataset 
and the anonymization parameter were selected: D G {Polblogs, Wiki -Vote} , 
k G {5,10,15,20}. The H A k A u was run ten times on each parameter setting, 
and each output network was attacked wi th three deanonymization algorithms 
implemented in SecGraph: Narayanan-Shmatikov's attack (NS) [i'l ()4lJ. Yartseva-
Grossglauser's attack (Per.) [i'l 54lJ and Korula-Lattanzzi 's attack (Rec.) |SBf. The 
results are given in Table\7.2\ 

These seed-based passive attacks employ the structural similarity between 
the anonymized and auxiliary graphs to break the anonymity. The input of 
their procedures is the anonymized network G*, auxiliary network Gaux and seed 
mapping s. The network Gaux is a fraction of the original network gained by the 
attacker before the passive attack. The seed mapping s is the mapping that links 
some nodes from Gaux wi th the ones in G*. In the experiment, Gaux was sampled 
randomly wi th the probability of 90% from the original network. The seed s was 
set as 50 links between randomly selected nodes from Gaux and G*. 

The output of deanonymization procedures in SecGraph is the ratio of suc
cessfully deanonymized users. The results are given i n percentages in Table \7.2\ 
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Polblogs Wiki-Vote 

k=5 k-BA heu-fcDA tMean Union H A k A u k-BA heu-fcDA tMean Union H A k A u 

NS 92.42% 82.84% 90.61% 92.42% 4.64% 72.43% 63.75% 72.61% 72.90% 0.81% 
Per. 48.83%. 56.13%. 11.64%. 60.02%. 4.96% 9.57% 3.88% 14.46% 37.40%. 0.92% 
Ree. 96.00%. 96.73%. 48.94%. 98.94%. 4.74%. 98.30%. 99.58%. 30.02%. 99.55%. 0.79% 

k=10 k-BA heu-fcDA tMean Union H A k A u k-BA heu-fcDA tMean Union H A k A u 

NS 90.88% 82.35% 91.88% 92.33% 4.53% 72.03% 63.74% 72.67% 72.90% 0.80% 
Per. 18.77%. 55.80%. 53.16%. 63.00% 4.65%. 2.18% 10.79%. 7.97% 33.11%. 0.89% 
Ree. 91.99%. 90.36%. 63.48%. 97.14%. 4.28%. 92.92%. 96.96% 43.22%. 98.40%. 0.75% 

k=15 k-BA heu-fcDA tMean Union H A k A u k-BA heu-fcDA tMean Union H A k A u 

NS 91.79% 82.43% 91.25% 92.42% 4.56% 71.45% 63.75% 72.84% 72.90% 0.81% 
Per. 20.76%. 47.22%. 43.23%. 36.73%. 4.65%. 8.32% 22.05%. 4.67% 35.42%. 0.85%. 
Ree. 81.54%. 86.03%. 27.70%. 84.72%. 4.29%. 90.89%. 92.89% 22.98% 97.44%. 0.75% 

k=20 k-BA heu-fcDA tMean Union H A k A u k-BA heu-fcDA tMean Union H A k A u 

NS 90.97% 82.92% 88.09% 92.15% 4.51% 71.31% 63.49% 72.53% 72.90% 0.81% 
Per. 17.51% 32.79%. 61.19%. 56.32%. 4.59%. 2.83% 2.11% 22.28%. 8.47% 0.84% 
Ree. 69.12%. 75.00%. 25.65%. 86.36%. 4.23%. 81.26%. 93.30% 24.53%. 94.35% 0.74%. 

Table 7.2: Resistance against deanonymization attacks. (Source: author's work.) 



The H A k A u values are the average ratios in the ten runs wi th the same parameter 
settings. I also tested the graphs anonymized wi th k-DA, heu-/cDA, tMean and 
Union. 

A l l results prove that the security level of the H A k A u algorithm is much higher 
than the security level of other tested algorithms. In the Wiki -Vote network, the 
percentage of deanonymized users was up to 1% for all k. The resistance level 
is the same for al l k values in both networks. The k-automorphism approach 
achieves better resistance against attacks compared to /c-degree and clustering 
methods. 

Al though H A k A u is non-deterministic, the percentage of deanonymized users 
did not vary in the ten runs with the same parameter settings. The coefficient 
of variation within the ten runs was up to 4% in all cases, except the instance 
wi th D =Wiki -Vote and k = 10, where the coefficient of variation equals 10%. 
However, the level of security was the same since the best value equalled 0.85% 
and the worst one to 1.09% when D =Wiki -Vote and k = 10. 

Let me compare k-DA, and heu-/cDA in resistance against deanonymization 
attacks since this topic was omitted in Chapter^ B o t h algorithms have similar 
resistance levels since they are both based on the same anonymization approach 
(/c-degree anonymity). B o t h algorithms are very vulnerable against N S and Rec. 
attacks. The proposed heu-/cDA is a bit more resistant against NS attack while 
k-DA is slightly better in resisting against Rec. B o t h algorithms are better at 
resisting against Per.. It also holds for the tested clustering algorithms. Union 
and tMeans achieved a higher level of resistance while facing Per. then NS or 
Rec. O n the other hand, H A k A u achieved the same level of resistance to each 
tested deanonymization algorithm. 

7.6 Discussion 
In this chapter, the novel /c-automorphism anonymization algorithm H A k A u was 
introduced. The H A k A u algorithm improves the previously published K M algo
r i thm by employing the genetic algorithm and edge deletion operation. 

The employment of G A in the /c-automorphism method enables the reduction 
of two N P - h a r d problems into a single one. In the K M algorithm, the isomorphic 
graphs were found, then extended so that the isomorphism was lost, and then 
it was necessary to make them isomorphic again. H A k A u makes the process 
more efficient by extending the isomorphic subgraphs "isomorphically" wi th G A . 
Hence, the algorithm solves only one N P - h a r d problem instead of two. 

The comparison of K M and H A k A u is l imited since only two structural metrics 
and the total degree difference are measured in [11031]. The total degree difference 
is significantly lower while applying H A k A u . Using edge deletion operation in the 
procedure of adding crossing edges decreases the amount of added edges and the 
final degree of all nodes. The application of edge deletion operation was enabled 
by improving the design of the /c-automorphism algorithm. 

Data ut i l i ty measurement demonstrated that H A k A u does not exceed in pre
serving all ut i l i ty metrics; however, it keeps Page Rank and Infectiousness very 
well. B o t h metrics are centrality metrics that can identify influential users i n the 
graph. Thus, the importance of nodes is preserved in the network anonymized by 
H A k A u . The final /c-automorphism maps important nodes to each other. Preserv-
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ing infectiousness indicates that the communication channels in the anonymized 
network are kept very well even though the graph structure is changed signifi
cantly by H A k A u . 

The /c-automoprhism method was designed to protect against any structural 
attack; however, its actual resistance against deanonymization methods has not 
yet been proven. The presented experiments demonstrate that H A k A u is resistant 
well, unlike other tested algorithms. It proves that the /c-automorphism approach 
provides a higher level of security than other solutions. Moreover, H A k A u delivers 
the same level of resistance for all kinds of tested attacks and all values of the 
anonymization parameter. 

Summarize the above findings and answer Question [J. A p p l y i n g G A , em
ploying edge deletion operation and the novel adding crossing edges operation 
improves the /c-automorphism approach in data ut i l i ty preservation. Moreover, 
the proposed algorithm was proven to be resistant to deanonymization attacks. 
Providing the resistance disables the ability to keep all ut i l i ty metrics well. How
ever, the experiments showed that even the algorithm providing a high level of 
protection could preserve some metrics better than other solutions. It supports 
the idea of implementing a framework for application-oriented anonymization 
where the input data are modified wi th respect to specific metrics chosen by the 
data recipient [96]. 
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8. Conclusion 
This thesis focused on the privacy-preserving issue in publishing social network 
datasets called the identity disclosure problem. It introduced anonymization 
as the practical approach enabling providers to publish their datasets and pre
serve users' privacy at the same time. The thesis started wi th a comprehen
sive literature review on anonymizing social network datasets, emphasizing k-
anonymization methods based on edge editing. Then, three open problems in 
this field were identified, and the objectives of the thesis were introduced. 

The first goal was to show that social network datasets could be vulnerable 
to composition attacks. So far, the composition attack was presented only as 
a privacy threat against relational datasets. The composition attack algorithm 
was proposed and tested on a set of synthetic scale-free networks to solve this 
issue. Its capability to correctly find 20-30% of corresponding vertices proved 
that attacks of this k ind could threaten privacy in social network datasets similar 
to relational datasets. 

The second issue was improving the noise addition method in the well-known 
fc-degree anonymization algorithm. The novel heuristic approach was based on 
the power-law degree distribution of social networks. B y running experiments 
on the set of real social network datasets, it was proved that the version of 
the algorithm employing the proposed procedure was feasible and improved the 
algorithm in terms of preserving data utility. 

Finally, the thesis focused on the /c-automorphism method. Since modify
ing the original dataset to the /c-automorphism one includes addressing N P - h a r d 
subtasks, the proposal of a genetic algorithm was part of the solution. More
over, except for the main contribution, proposing and implementing the hybrid 
fc-automorphism anonymization algorithm, the novel chromosome representation 
and the procedure for finding the subset of vertex-disjoint graphs were intro
duced. The hybrid algorithm was experimentally proved to preserve some network 
metrics better than the original solution. Compared with other state-of-the-art 
anonymization techniques, the algorithm exceeded in resisting deanonymization 
attacks. 

In producing the experimental results, the focus was made on their compara
bility. The aim was to present results so that any researcher in the future could 
easily compare their results wi th the presented ones. Hence, the external eval
uation tool SecGraph was used for measuring the data ut i l i ty of anonymization 
methods and their resistance against deanonymization attacks. Moreover, while 
employing SecGraph, the input dataset to the anonymization process was always 
the whole dataset available online since if only some subset of an available dataset 
was used, other researchers could not determine which subset it was. 

The findings addressing the third research question highlight several new av
enues that could be explored i n future studies. Implementing the H A k A u al
gorithm can be further improved wi th more sophisticated parameter settings 
in the genetic algorithm. Est imating the optimal running strategy could raise 
the quality of the search process and the found results. The proposed chro
mosome representation can be applied to other genetic algorithms dealing with 
anonymization tasks. The possibility of exploiting the representation in other 
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tasks handling graphs can also be explored. Similarly, the procedure for finding 
the vertex-disjoint subgraphs has the potential for broader application. 

This thesis's findings prove, similarly to some other recent results, that the 
proposal of the robust and universal anonymization method providing a high 
level of security and preserving all data ut i l i ty well is a nearly impossible task. 
W h e n a method is improved in terms of preserving data utility, it is less resistant 
to attacks. O n the other hand, even methods providing high-level security can 
keep some metrics well, like H A k A U , that preserves infectiousness and page rank. 
Thus, I find application-oriented anonymization the promising research direction 
in this field. This approach is based on the idea that the anonymization method 
is not required to preserve all data ut i l i ty but only data ut i l i ty specified by the 
data recipient. Therefore, it enables to apply of techniques that provide high-level 
security but preserve only some metrics. Since evaluation tools play an essential 
role in this approach, comparing the two recently published tools, SecGraph and 
D U E F - G A , is also an interesting research challenge. 
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A . Addit ional experimental 
results 
This attachment contains tables describing the results of data ut i l i ty measurement 
wi th the SecGraph evaluation tool. This measurement was made for heu-/cDA 
and H A k A u algorithms in Chapter and Chapter 0 respectively. Because of 
the extent of the complete results, only the tables describing the results for the 
anonymization parameter k — 15 were included in the text, and the full results 
are presented here. 

A . l Data utility measurement for heu-/cDA 

k=5 

Polblogs Wiki-Vote Caida 

k=5 k-BA heu-fcDA k-BA heu-fcDA k-BA heu-ZcDA 

AS 0.872 0.998 0.847 0.996 0.563 0.913 
B C 0.973 0.972 0.951 0.970 0.944 0.943 
C C 1.000 1.000 1.000 1.000 0.992 1.000 
C D 0.999 0.915 0.917 1.000 0.308 0.676 
Deg. 0.997 0.999 0.993 0.998 0.978 0.981 
E D 0.896 1.042 1.012 1.010 0.873 0.982 
E V 0.982 0.999 0.993 0.998 0.914 0.950 
HS 0.849 1.000 0.891 0.999 0.593 0.899 
Infe. 0.901 0.913 0.827 0.800 0.714 0.774 
JD 0.520 0.538 0.653 0.652 0.628 0.258 
L C C 0.988 0.998 0.998 0.998 0.938 0.955 
N C 1.000 1.000 1.000 1.000 1.000 1.000 
PR 0.481 1.000 0.648 0.995 0.342 0.951 
R X 0.337 0.000 0.867 0.000 0.259 0.000 

Table A . l : Heu-/cDA: ut i l i ty measurement for k = 5. (Source: author's work.) 
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Polblogs Wiki-Vote Caida 

k=10 k-BA heu-fcDA k-BA heu-fcDA fc-DA heu-fcDA 

AS 0.856 0.987 0.839 0.993 0.495 0.869 
B C 0.966 0.934 0.902 0.933 0.883 0.849 
C C 0.999 1.000 0.999 1.000 0.997 0.999 
C D 0.991 0.898 0.915 0.948 0.232 0.583 
Deg. 0.989 0.995 0.983 0.995 0.920 0.936 
E D 0.979 0.976 1.014 1.025 0.872 1.093 
E V 0.965 0.995 0.987 0.995 0.830 0.924 
HS 0.827 0.998 0.888 0.997 0.530 0.816 
Infe. 0.893 0.861 0.768 0.797 0.696 0.575 
JD 0.286 0.273 0.456 0.445 0.514 0.197 
L C C 0.965 0.982 0.993 0.999 0.915 0.964 
N C 1.000 0.998 0.999 1.000 0.999 1.000 
PR 0.487 0.999 0.628 0.990 0.334 0.902 
R X 0.339 0.000 0.883 0.000 0.250 0.000 

Table A . 2 : Heu-/cDA: ut i l i ty measurement for k = 10. (Source: author's work.) 

k=15 

Polblogs Wiki-Vote Caida 

k=15 A:-DA heu-fcDA k-BA heu-fcDA k-BA heu-fcDA 

AS 0.849 0.960 0.834 0.987 0.491 0.789 
B C 0.904 0.908 0.885 0.910 0.838 0.734 
C C 0.999 1.000 0.999 1.000 0.996 0.999 
C D 0.857 0.888 0.838 0.868 0.067 0.549 
Deg. 0.977 0.990 0.965 0.991 0.847 0.887 
E D 0.955 0.956 0.982 1.004 0.817 0.985 
E V 0.957 0.984 0.977 0.991 0.807 0.867 
HS 0.814 0.984 0.876 0.993 0.470 0.676 
Infe. 0.914 0.886 0.848 0.805 0.700 0.719 
JD 0.232 0.110 0.318 0.304 0.487 0.141 
L C C 0.955 0.984 0.988 0.998 0.887 0.938 
N C 0.998 1.000 1.000 1.000 0.999 1.000 
PR 0.518 0.996 0.607 0.945 0.309 0.803 
R X 0.335 0.000 0.757 0.000 0.245 0.000 

Table A . 3 : Heu-/cDA: ut i l i ty measurement for k = 15. (Source: author's work.) 
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Polblogs Wiki-Vote Caida 

k=15 k-BA heu-fcDA k-BA heu-fcDA fe-DA heu-fcDA 

AS 0.843 0.953 0.821 0.983 0.473 0.713 
B C 0.928 0.879 0.855 0.885 0.764 0.733 
C C 0.999 1.000 0.999 1.000 0.995 0.999 
C D 0.848 0.922 0.650 0.878 0.047 0.544 
Deg. 0.969 0.985 0.951 0.989 0.801 0.854 
E D 0.951 1.040 0.970 0.990 0.718 0.963 
E V 0.945 0.977 0.971 0.987 0.789 0.823 
HS 0.796 0.980 0.875 0.988 0.456 0.570 
Infe. 0.893 0.865 0.846 0.795 0.776 0.804 
JD 0.131 0.120 0.228 0.262 0.467 0.147 
L C C 0.958 0.984 0.984 0.998 0.859 0.941 
N C 1.000 1.000 1.000 1.000 0.998 1.000 
PR 0.493 0.997 0.584 0.972 0.351 0.874 
R X 0.341 0.000 0.730 0.000 0.224 0.000 

Table A.4: Heu-/cDA: utility measurement for k = 20. (Source: author's work.) 

Polblogs Wiki-Vote Caida 

k=15 k-BA heu-fcDA k-BA heu-fcDA k-BA heu-fcDA 

AS 0.821 0.916 0.798 0.948 0.442 0.574 
B C 0.854 0.797 0.826 0.824 0.507 0.627 
C C 0.999 0.999 0.998 1.000 0.994 0.998 
C D 0.386 0.753 0.684 0.910 0.054 0.482 
Deg. 0.932 0.966 0.905 0.976 0.575 0.727 
E D 0.887 1.049 0.999 0.990 0.776 0.994 
E V 0.925 0.960 0.942 0.967 0.691 0.746 
HS 0.784 0.972 0.843 0.960 0.356 0.457 
Infe. 0.904 0.909 0.867 0.817 0.743 0.591 
JD 0.071 0.021 0.105 0.105 0.444 0.096 
L C C 0.916 0.939 0.959 0.997 0.824 0.927 
N C 0.994 0.988 1.000 1.000 0.998 1.000 
PR 0.454 0.994 0.528 0.928 0.266 0.809 
R X 0.337 0.000 0.572 0.000 0.209 0.000 

Table A.5 : Heu-/cDA: utility measurement for k = 50. (Source: author's work.) 

A.2 Data utility measurement for H A k A u 



Prefuse Polblogs Wiki-Vote 

k=5 fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u 

A S 0.112 0.199 0.412 0.316 0.284 0.872 0.998 0.900 0.899 0.708 0.847 0.996 0.877 0.875 0.846 
B C 0.956 0.969 0.998 0.998 0.741 0.973 0.972 0.988 0.997 0.430 0.951 0.970 0.997 0.999 0.565 
C C 0.997 0.997 0.999 1.000 0.991 1.000 1.000 1.000 1.000 0.993 1.000 1.000 0.998 1.000 0.981 
C D 0.408 0.688 0.817 1.000 0.127 0.999 0.915 0.888 1.000 0.050 0.917 1.000 0.720 0.980 0.015 
Deg. 0.936 0.930 0.993 0.997 0.840 0.997 0.999 0.998 1.000 0.874 0.993 0.998 0.999 1.000 0.851 
E D 0.918 1.001 0.994 0.997 1.049 0.896 1.042 0.950 0.966 0.891 1.012 1.010 0.995 1.009 0.980 
E V 0.934 0.931 0.953 0.988 0.895 0.982 0.999 0.998 0.999 0.860 0.993 0.998 0.999 1.000 0.851 
HS 0.156 0.046 0.430 0.360 0.186 0.849 1.000 0.877 0.885 0.851 0.891 0.999 0.871 0.875 0.763 
Infe. 0.591 0.637 0.595 0.757 0.676 0.901 0.913 0.880 0.912 0.934 0.827 0.800 0.835 0.797 0.867 
JD 0.763 0.041 0.211 0.835 0.044 0.520 0.538 0.418 0.450 0.139 0.653 0.652 0.602 0.647 0.133 
L C C 0.987 0.992 0.983 0.994 0.775 0.988 0.998 0.956 0.992 0.840 0.998 0.998 0.993 1.000 0.804 
N C 0.998 0.999 0.993 1.000 0.920 1.000 1.000 0.983 1.000 0.813 1.000 1.000 0.998 1.000 0.675 
P R 0.497 0.981 0.534 0.531 0.908 0.481 1.000 0.494 0.485 0.874 0.648 0.995 0.676 0.672 0.626 
R X 0.348 0.000 0.868 0.952 0.412 0.337 0.000 0.355 0.564 0.452 0.867 0.000 0.974 0.976 0.426 

Table A . 6 : H A k A u : ut i l i ty measurement for k = 5. (Source: author's work.) 



Prefuse Polblogs Wiki-Vote 

k=10 fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u 

A S 0.241 0.141 0.630 0.382 0.283 0.856 0.987 0.892 0.902 0.452 0.839 0.993 0.883 0.880 0.806 
B C 0.817 0.541 0.967 0.811 0.440 0.966 0.934 0.977 0.995 0.178 0.902 0.933 0.982 0.993 0.463 
C C 0.994 0.973 0.927 0.943 0.996 0.999 1.000 1.000 1.000 0.987 0.999 1.000 0.998 1.000 0.981 
C D 0.302 0.519 0.632 0.984 0.144 0.991 0.898 0.808 1.000 0.066 0.915 0.948 0.698 0.861 0.015 
Deg. 0.853 0.853 0.973 0.985 0.702 0.989 0.995 0.995 0.999 0.599 0.983 0.995 0.997 0.999 0.831 
E D 0.835 1.041 1.018 1.369 0.966 0.979 0.976 1.189 1.083 0.910 1.014 1.025 1.018 1.006 0.948 
E V 0.881 0.814 0.504 0.621 0.880 0.965 0.995 0.993 0.998 0.652 0.987 0.995 0.996 0.998 0.820 
HS 0.238 0.026 0.620 0.388 0.125 0.827 0.998 0.879 0.879 0.740 0.888 0.997 0.858 0.867 0.722 
Infe. 0.655 0.644 0.488 0.585 0.694 0.893 0.861 0.917 0.887 0.935 0.768 0.797 0.822 0.820 0.870 
JD 0.643 0.216 0.038 0.035 0.150 0.286 0.273 0.362 0.327 0.095 0.456 0.445 0.456 0.505 0.132 
L C C 0.980 0.978 0.982 0.990 0.936 0.965 0.982 0.949 0.982 0.808 0.993 0.999 0.989 0.999 0.805 
N C 0.965 0.992 0.988 0.999 0.970 1.000 0.998 0.990 1.000 0.639 0.999 1.000 0.997 1.000 0.616 
P R 0.523 0.972 0.563 0.548 0.955 0.487 0.999 0.494 0.487 0.269 0.628 0.990 0.683 0.676 0.608 
R X 0.398 0.542 0.450 0.672 0.489 0.339 0.000 0.529 0.340 0.287 0.883 0.000 0.924 0.978 0.342 

Table A . 7 : H A k A u : ut i l i ty measurement for k = 10. (Source: author's work.) 



Prefuse Polblogs Wiki-Vote 

k=15 fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u 

A S 0.157 0.155 0.199 0.383 0.219 0.849 0.960 0.858 0.901 0.608 0.834 0.987 0.886 0.881 0.799 
B C 0.528 0.526 0.834 0.834 0.615 0.904 0.908 0.971 0.994 0.420 0.885 0.910 0.966 0.991 0.477 
C C 0.995 0.961 0.913 0.943 0.995 0.999 1.000 1.000 1.000 0.993 0.999 1.000 1.000 1.000 0.981 
C D 0.214 0.509 0.810 0.715 0.102 0.857 0.888 0.756 1.000 0.061 0.838 0.868 0.755 0.960 0.018 
Deg. 0.795 0.784 0.973 0.983 0.779 0.977 0.990 0.991 0.998 0.826 0.965 0.991 0.992 0.999 0.817 
E D 0.802 1.164 1.374 1.381 0.826 0.955 0.956 1.132 0.987 0.844 0.982 1.004 1.013 0.984 0.911 
E V 0.904 0.718 0.411 0.692 0.905 0.957 0.984 0.966 0.997 0.792 0.977 0.991 0.989 0.998 0.800 
HS 0.276 0.022 0.201 0.381 0.041 0.814 0.984 0.816 0.881 0.806 0.876 0.993 0.846 0.865 0.674 
Infe. 0.694 0.644 0.617 0.602 0.646 0.914 0.886 0.896 0.895 0.928 0.848 0.805 0.835 0.850 0.870 
JD 0.660 0.215 0.029 0.124 0.005 0.232 0.110 0.230 0.224 0.080 0.318 0.304 0.353 0.397 0.087 
L C C 0.972 0.974 0.970 0.996 0.880 0.955 0.984 0.905 0.983 0.827 0.988 0.998 0.988 1.000 0.774 
N C 0.982 0.986 0.982 0.993 0.957 0.998 1.000 0.947 1.000 0.781 1.000 1.000 0.996 1.000 0.712 
P R 0.572 0.976 0.537 0.544 0.949 0.518 0.996 0.498 0.487 0.666 0.607 0.945 0.690 0.678 0.588 
R X 0.460 0.000 0.937 0.933 0.490 0.335 0.000 0.332 0.346 0.398 0.757 0.000 0.889 0.971 0.379 

Table A . 8 : H A k A u : ut i l i ty measurement for k = 15. (Source: author's work.) 



Prefuse Polblogs Wiki-Vote 

k=20 fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u fc-DA heu-fcDA tMean Union H A k A u 

A S 0.381 0.145 0.360 0.290 0.177 0.843 0.953 0.660 0.902 0.371 0.821 0.983 0.888 0.881 0.788 
B C 0.721 0.646 0.720 0.771 0.530 0.928 0.879 0.972 0.987 0.201 0.855 0.885 0.970 0.985 0.485 
C C 0.990 0.957 0.949 0.996 0.993 0.999 1.000 0.999 1.000 0.988 0.999 1.000 0.997 1.000 0.981 
C D 0.033 0.420 0.823 0.771 0.102 0.848 0.922 0.830 1.000 0.057 0.650 0.878 0.860 0.966 0.018 
Deg. 0.672 0.729 0.966 0.984 0.720 0.969 0.985 0.980 0.997 0.558 0.951 0.989 0.994 0.998 0.801 
E D 0.782 1.030 1.201 1.366 0.961 0.951 1.040 1.099 1.034 0.797 0.970 0.990 1.019 0.989 0.841 
E V 0.715 0.697 0.476 0.706 0.860 0.945 0.977 0.768 0.996 0.590 0.971 0.987 0.992 0.997 0.791 
HS 0.156 0.018 0.362 0.300 0.031 0.796 0.980 0.578 0.882 0.697 0.875 0.988 0.849 0.863 0.665 
Infe. 0.753 0.702 0.621 0.545 0.633 0.893 0.865 0.900 0.899 0.933 0.846 0.795 0.813 0.873 0.899 
JD 0.044 0.018 0.016 0.083 0.011 0.131 0.120 0.252 0.171 0.050 0.228 0.262 0.378 0.324 0.066 
L C C 0.873 0.982 0.947 0.986 0.947 0.958 0.984 0.920 0.968 0.801 0.984 0.998 0.969 0.999 0.755 
N C 0.858 0.990 0.983 0.995 0.958 1.000 1.000 0.981 1.000 0.614 1.000 1.000 0.991 1.000 0.779 
P R 0.661 0.966 0.561 0.539 0.954 0.493 0.997 0.496 0.492 0.295 0.584 0.972 0.691 0.680 0.598 
R X 0.355 0.000 0.700 0.914 0.465 0.341 0.000 0.345 0.591 0.290 0.730 0.000 0.913 0.906 0.379 

Table A . 9 : H A k A u : ut i l i ty measurement for k = 20. (Source: author's work.) 



B . Supplementary material 
The disc attached to this work contains the full text of the doctoral thesis and the 
M A T L A B code of the proposed composition attack and anonymization methods 
heu-/cDA and H A k A u . Used external tools and input data for testing are also 
included. The SecGraph evaluation tool is not included wi th reference to |5SJ. 
The content of the disc has the following structure: 

Thesis - includes the pdf file wi th the thesis text. 

SNdatasets - includes three text files wi th S N datasets for testing 

• prefuse-edges.txt - the edge set of the Prefuse dataset [STJ 

• polblogs-edges.txt - the edge set of the Polblogs dataset [2] 

• Wikivote-edges.txt - the edge set of the Wik iVote dataset JSDJ 

CompAttack - includes output files, *.m files wi th the M A T L A B code of the 
composition attack, U T D anonymization toolbox [I'l 42lJ. M A T L A B implementa
t ion of B A model [GEf and auxiliary files 

• input - excel files with attribute tables XJA for input dataset that wi l l be 
generated wi th B A model 

• output - output files wi th results 

• pom - auxiliary files 

• workflow.m - the main file that should be run to perform the attack. A t 
the beginning of this file, the user sets the input parameters. 

• A_graph-gen.m - runs S F N G and anonymization functions from the U T D 
toolbox to generate two graphs representing S N datasets. The attribute 
tables aNTl, aNT2 have to be set in this file. 

• BB'.processing.m - the preprocessing stage 

• C-Composition.m - the composition attack 

• D_reducing, m - reducing the cardinality of the output set 

• E-postreducing.m - the postprocessing stage 

• F.results.m - producing results 

• G-writeresults.m - exporting results 

• H_rocg.m - R O C analysis 

• SFNG.m - the main function from B - A model [BEJ 

• CNet.m - the auxiliary function from B - A model [EBJ 
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• PLplot.m - the auxiliary function from B - A model [GBf 

• anonymization.bat - the executable file starting the anonymization wi th 
U T D toolbox P121 

• *.jar, *.bat, sqlite.dll, config.xml, originaLconfig - U T D toolbox [ll 42lj 

H e u k D A - includes output files, *.m files wi th the M A T L A B code of the heu-
/cDA and auxiliary files. Before the procedures are executed, SNdatasets folder 
has to be added to the path in M A T L A B . 

• output - output files wi th results 

• output_datasets - output files wi th anonymized graphs 

• heu-worklow.m - the main file that should be run to anonymize the input 
dataset with heu-/cDA. A t the beginning of this file, the user sets the input 
parameters. 

• heu-anonym.m - the anonymization procedure 

• heu-edgeedit.m - the edge editing procedure 

• heu-edgeswitch.m - the edge switching procedure 

• heu-getgreedy.m - finding the degree sequence of the input graph 

• heu-greedyedit.m - the high-degree node noise addition procedure 

• heu-GVmeasures.m - data ut i l i ty measurement in both input and output 
graphs 

• heusmallGVmeasures.m - data ut i l i ty measurement only in the output 
graph 

• resultstoexcel.m - exporting results 

• avg-cc.m - the computation of the average clustering coefficient 

• cc.m - the computation of the clustering coefficient 

• distG.m - the computation of the average distance 

• transG.m - the computation of the transitivity 

• uploadGV.m - importing the input dataset 

• GVrandomswitch.m - auxiliary file 

• rungreedy2.m - auxiliary file 

• getoutput.m - auxiliary file 

• setoutput.m - auxiliary file 

• greedy2.txt - auxiliary file 
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H A k A u - includes output files, *.m files wi th the M A T L A B code of the H A k A u , 
the implementation of G r a M i algorithm pDj and auxiliary files. Before the pro
cedures are executed, SNdatasets and H e u k D A folders must be added to the 
path in M A T L A B . The M A T L A B Global Optimizat ion Toolbox p2| is required 
for the computation. 

• input - input to the G r a M i algorithm generated wi th M A T L A B code 

• output - output files wi th results and resulting anonymized datasets 

• temp - temporary files 

• GraMi-master - the implementation of G r a M i algorithm [30] customized 
to the usage in H A k A u 

• test.m - starting the repeated run of H A k A u 

• testing, m - one run of H A k A u including preprocessing and postprocessing 
stages 

• iworkflow-ga.m - the workflow of one run of H A k A u 

• iworkflow-partO.m - setting parameters of H A k A u . A t the beginning of this 
file, the user sets the input parameters. 

• iworkflow-partl.m - setting input parameters of G r a M i and running it 

• iworkflow-part2.m - processing the G r a M i output and setting the input to 
G A 

• iworkflow-partS.m - running G A . A t the beginning of this file, the user sets 
the input parameters of G A . 

• buildgraphs.m - building graphs from chromosomes 

• input2grami.m - preparing the input to G r a M i 

• makeadjacency.m - making the adjacency matrix from G r a M i output 

• remfalse.m - removing incorrect rows 

• finduniquerows2.m - finding the subset of vertex-disjoint graphs 

• doubleselection.m - the selection function in G A 

• nonscaling.m - the scaling function. No scaling. 

• fitscalingrank2.m - the scaling function. Rank scaling. 

• makeTPNodes.m - preparing the list of subgraphs Pn,..., P j m 

• icreate-popCH.m - creating the init ial population 

• varlength.m - computing the length of varCH 
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• varvaluescoulette.m - the roulette selection for selecting new elements of 
varCH 

• mymutation.m - the mutation procedure of G A 

• mutationCH.m - the mutation of CH 

• mutationvarCH.m - the mutation of varCH 

• icrossrandomOX.m - the crossover procedure of G A 

• inside-crossovertwopoint.m - two-point crossover function of CH 

• irandomvvOX.m - two-point crossover function of varCH. The crossover is 
applied on the whole varCH. 

• irandomvvpartOX.m- two-point crossover function of varCH. The crossover 
is applied on the parts of varCH representing particular subgraphs sepa
rately. 

• otocpole.m - the auxiliary function 

• remove-middle.m - the auxiliary function 

• iff.m - the fitness function of G A 

• countcosts-mat.m - computing ExCost(G, G*) and CECost from the chro
mosome 

• changeG.m - postprocessing after G A . The subgraphs P'iX,..., P'im are re
moved from the graph H. 

• prepare2nextGA.m - postprocessing after G A . Crossing edges and subgraphs 
P[x,...,P'im are exported. 

• checkvarCH.m - the auxiliary function 

• makematrix.m - building P / 1 ; . . . , P[m from Pn,..., Pim and the chromosome 

• results2excel.m - exporting results after one run of G A 

• write2file.m - the auxiliary function 

• restnodes2izo.m - modifying V(H) after all runs of H A k A u to isomorphisms 

• crossing.m - adding crossing edges into the resultant graph 

• crossing-degree.m - adding crossing edges into the resultant graph. This 
version is based on the nodes' degree. 

• fullresults2excel.m - exporting results at the end of H A k A u 

• heu-measures.m - computing network metrics of the output graph 

• clusteringcoef.m - the computation of the clustering coefficient 
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• makeauxiliary.m - making the auxiliary graph for testing the resistance 
against deanonymization attacks 

• setGlobalx.m - the auxiliary file 

• getGlobalx.m - the auxiliary file 

• setfreq.pl - setting input parameters to G r a M i according to the input pa
rameters of H A k A u 

• uploadrelax.pl - postprocessing after the run of G r a M i . The user should 
change the paths in this file. 
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