
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATION OF RELEASE ENGINEERING TASKS
IN FEDORA LINUX
AUTOMATIZACE ÚKOLŮ PRO VYDÁVÁNÍ OPERAČNÍHO SYSTÉMU FEDORA LINUX

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ANTON MEDVEDEV
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Intelligent Systems (DITS)

Student: Medvedev Anton

Programme: Information Technology

Category: Software Engineering

Academic year: 2023/24

Assignment:

1. Get familiar with Fedora Release Engineering infrastructure and services. Focus on Standard
Operating Procedures, particularly their part related to packaging and composing.

2. Investigate the current state of automation of Standard Operating Procedures.
3. Propose a set of methods to extend the automation of Standard Operating Procedures.
4. Implement the proposed methods as new tools or as a part of the existing tooling.
5. Execute the implemented tools in the production environment. Evaluate the amount of human time

saved on Fedora release operations.
6. Summarize and describe the achieved results and discuss their possible future improvements.

Literature:
• Red Hat, Inc. and others: "Fedora Release Engineering Standard Operating Procedures". Dostupné

online: https://docs.pagure.org/releng/sop.html.
• The Fedora Toddler tool: https://pagure.io/fedora-infra/toddlers/tree/main.
• Fedora Linux Release Life Cycle. Dostupné online: https://docs.fedoraproject.org/en-

US/releases/lifecycle/.

Requirements for the semestral defence:
The first two points of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Lengál Ondřej, Ing., Ph.D.

Consultant: Tomáš Hrčka

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 16.5.2024

Approval date: 6.11.2023

Bachelor's Thesis Assignment
156945

Automation of Release Engineering Tasks in Fedora LinuxTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This paper aims to familiarize the reader with automating the Fedora Release Engineering
team’s task. It includes an introduction to Fedora Infrastructure and the processes involved
in releasing new versions of Fedora Linux. To achieve this goal, I analyzed the possibilities
for automation and chose to automate the Unretirement process by adding new functionality
to the existing Fedpkg and Toddlers tools. The result was the addition of a new command
for Fedpkg that creates a request and a plugin for Toddlers that processes the request. This
result frees up engineers’ resources for more important things.

Abstrakt
Cílem tohoto článku je seznámit čtenáře s automatizací úkolu týmu Fedora Release Engi-
neering. Zahrnuje úvod do infrastruktury Fedora a procesů spojených s vydáváním nových
verzí systému Fedora Linux. Pro dosažení tohoto cíle jsem analyzoval možnosti autom-
atizace a rozhodl jsem se automatizovat proces uvolňování vydání přidáním nové funkce
do stávajících nástrojů Fedpkg a Toddlers. Výsledkem bylo přidání nového příkazu pro
Fedpkg, který vytvoří požadavek, a zásuvného modulu pro Toddlers, který tento poža-
davek zpracuje. Tento výsledek uvolní prostředky inženýrů pro důležitější věci.

Keywords
Operation system Fedora Linux, SOP(Standard Operation Procedures), Toddlers, Package
Unretirement, fedpkg, fedora-scm-requests, AMQP message, RelEng (Release Engineering),
Fedora Infrastructure

Klíčová slova
Operační systém Fedora Linux, SOP(Standardní pracovní postupy), Toddlers, odchod
balíčku z důchodu, fedpkg, fedora-scm-requests, AMQP zprava, RelEng (Release Engi-
neering), Fedora Infrastructure

Reference
MEDVEDEV, Anton. Automation of Release Engineering Tasks in Fedora Linux. Brno,
2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Ondřej Lengál, Ph.D.

Rozšířený abstrakt
Účelem tohoto článku je seznámit čtenáře s automatizací úkolů týmu pro vydávání verzí
systému Fedora. Obsahuje úvod do infrastruktury Fedory a procesů spojených s vydáváním
nových verzí systému Fedora Linux. Vzhledem k tomu, že projekt Fedora je rozsáhlý projekt
s mnoha různými součástmi, které se vzájemně ovlivňují, aby fungoval. Bylo nutné čtenáře
seznámit také s typickým životním cyklem balíčků a podobnými věcmi, aby pochopil in-
frastrukturu Fedory jako ucelený projekt. Vzhledem k omezeným lidským zdrojům se s
růstem projektu zvyšuje počet procesů, které je třeba automatizovat. Najít proces, který
to vyžaduje, a ukázat způsob jeho automatizace, který může motivovat lidi, aby se podíleli
na vývoji open-source distribuce, bylo cílem mé práce.

K dosažení tohoto cíle jsem analyzoval možnosti automatizace. Můj konzultant mi do-
poručil, abych se podíval na procesy popsané v SOP jako na způsob jejich nalezení. Protože
takové procesy jsou popularní mezi každodenní prací inženýrů RelEng. Protože mnoho z
těchto procesů je již automatizováno na dobré úrovni, padl můj zrak na Unretirement SOP.
Tento proces zahrnuje propojení s různými službami infrastruktury Fedora, což zvyšuje
užitečnost popsaných informací pro podobné a další procesy.

Výsledkem analýzy tohoto procesu byl návrh na vytvoření doplňku pro stávající nástroje
a služby. Jednou z nich je Toddlers. Tato služba má architekturu založenou na zásuvných
modulech a lze ji poměrně snadno rozšířit. Funguje na principu, že se jednotlivé zásuvné
moduly přihlašují k odběru konkrétních témat zpráv, v nichž vznikají požadavky, které
by měly být automaticky zpracovány. V mém zásuvném modulu se odehrává hlavní část
zpracování požadavků na odchod do důchodu. Včetně nastavení potřebných modulů a
kontroly správnosti a platnosti dat požadavků.

Tato automatizace vyžadovala vytvoření dobře strukturovaného požadavku, ale lidé to
ne vždy dělají, takže bylo rozhodnuto jim pomoci poskytnutím nástroje, který umožňuje
vytvořit požadavek pomocí jediného příkazu v nástroji fedpkg. Účelem tohoto příkazu je
zkontrolovat údaje o argumentech dodané žadatelem a vytvořit požadavek na základě těchto
údajů.

Důležitým výsledkem této automatizace je také uvolnění lidských zdrojů. Protože tento
proces vyžadoval ruční kontrolu requesteru a ruční zpracování. Nyní mohou inženýři věno-
vat více času zajímavým úkolům, které vyžadují kreativitu, spíše než ručnímu sledování,
což zvyšuje kvalitu projektu Fedora a snižuje pravděpodobnost lidské chyby při podpoře
životního cyklu balíčků.

Automation of Release Engineering Tasks in Fe-
dora Linux

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Ondřej Lengál Ph.D. The supplementary information was
provided by Ing. Tomáš Hrčka my external consultant from Red Hat. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
Anton Medvedev

May 16, 2024

Acknowledgements
I would like to thank Ing. Ondřej Lengál, Ph.D., for his assistance. I would also like to
thank Ing. Tomáš Hrčka, who provided me with meaningful advice and encouragement to
complete the project. Last but not least I would like to express my gratitude to my mother,
Ing. Marina Medvedeva, for her support during my whole life.

Contents

1 Introduction 4

2 Fedora Release Engineering package related SOP’s 6
2.1 Community Platform Engineering team responsibilities 6
2.2 Fedora Release Engineering activities . 7
2.3 Fedora Package Lifecycle . 8
2.4 Package-related SOPs . 9

3 Current state of package unretirement process 11
3.1 Ticket Creation for unretirement process . 11
3.2 Validation Package is ready for Unretirement 13
3.3 Reverting the Retirement Commit . 15
3.4 Unblocking the Package on Koji . 16
3.5 Verifying that package is not Orphaned . 17
3.6 Update Product Definition Center (PDC) 18

4 Plan of Unretirement Process Automation 21
4.1 Fedora messaging . 21
4.2 Datagrepper . 23
4.3 Toddlers . 24
4.4 Fedpkg . 24
4.5 Proposed solution . 25

5 Implementation 30
5.1 Enviroment used for development . 30
5.2 Fedpkg command implementation . 30
5.3 Toddler plugin implementation . 34
5.4 Deployment . 38
5.5 Tests . 39

6 Testing 40
6.1 Running the tests . 40
6.2 Fedpkg testing . 41
6.3 Toddlers Testing . 41
6.4 Monitoring . 42
6.5 Saved Time . 42

7 Conclusion 44

1

Bibliography 45

A Fedpkg command Diagram 48

B Toddlers plugin diagram 49

C Toddlers Base class 50

D Tox configuration for Toddlers 51

2

List of Figures

2.1 Three axes of CPE mission[18] . 6
2.2 Creation new stable release of Fedora Linux[35] 8

3.1 Selecting a suitable template. 11
3.2 Unretirement template. 12
3.3 Example of well-structured unretire ticket. 13
3.4 Example of commit history of retired package. 14
3.5 Example of successful package review on Red Hat Bugzilla (fedora-

review flag has ”+“status). 15
3.6 Example of commit structure with reverted retire commit. 16
3.7 PDC overview[16] . 18

4.1 Colaboration of differents tools trough Fedora Messaging[23] . . . 22
4.2 AMQP example routing[32] . 23
4.3 Fedpkg commands for Packaging process[33] 25
4.4 Different versions of people created tickets. 26
4.5 Fedpkg use case . 29
4.6 Toddlers processing . 29

5.1 Ticket created by fedpkg command. 34
5.2 Messages history . 34

6.1 Package doesn’t have an “rpms” namespace. 41
6.2 Bugzilla URL is missing, error handling. 41
6.3 Bugzilla URL is missing, error handling. 42
6.4 Example of Toddlers log. 42

A.1 Fedpkg command processing diagram . 48

B.1 Toddler plugging processing diagram. 49

3

Chapter 1

Introduction

Fedora Linux is a popular open-source Linux distribution. In fact, even the distribution of
choice by Linus Torvalds (2020)[34]. People who work for this distribution are called the
Fedora community. They include maintainers, packagers, stakeholders, as well as developers
and DevOps (development and operations) engineers. The CPE[18] (community platform
engineering) team is also a part of the community structured into a team that is helping
Fedora Linux to maintain quality, security, robustness, and reliability. One of the sub-teams
of CPE is RelEng[9] (Release Enineering) team. It is responsible for providing smooth
Fedora release development on different stages and containing regulation of packages life
cycle[7], which are part of the Fedora Active Packages repository. This team is processing
different tasks. Most popular of them, the team writes down in the form of SOP (Standard
Operation Procedures) to share knowledge between team members and the community on
how to accomplish individual actions in the form of step-by-step instruction guidelines.
Most of these SOPs still require manual processing, which can become a problem.

Unfortunately, CPE and releng don’t have an unlimited budget and unlimited people
resources, so it is necessary to keep on increasing responsibilities by automating as many
SOPs as possible. In this thesis, I explained and described the process of automation works
based on the automation of the Unretirement SOP. Trying to motivate community members
or people who are interested in Fedora to help their favorite distribution grow and become
better by participating in development.

There is a huge amount of SOPs that cover release engineering processes, but this
thesis will concentrate on package-related ones. Mainly on the Unretirement SOP because
it contains steps that are related to Fedora infrastructure and tools that are common within
it so new people can better understand the overall picture. The People (mostly maintainers)
who would like to unretire a branch (usually ”rawhide“ as the latest branch) now should
leave a request in one of the issue topics, and on a daily basis, Fedora Release engineering
goes through open tickets and process such requests manually.

The goal is to create or extend existing tools and provide an easy structure for the com-
munity to unretire branches of the package they need by automating the ticket processing
and actions required to unretire individual branches of the package and reintroduce them
to the Fedora Active Packages.

This thesis is organized as follows. Chapter 2 presents basic information about the releng
team and the package-related SOP we are using. Chapter 3 is dedicated to describing the
current state of the unretirement process in detail. Chapter 4 is devoted to explaining my
idea on the automation of this process. Chapter 5 describes the implementation, including
testing the environment and deploying it into production using Openshift and Ansible. In

4

Chapter 6, I sum up the results that I got, with estimations of time saved by people and
reviews from the community.

5

Chapter 2

Fedora Release Engineering
package related SOP’s

In this chapter I will define the necessary terminology that will be encountered throughout
the rest of this thesis. Next, I will describe the structure of the CPE team[18] and its
sub-team RelEng[9], which works on release engineering practices, to better understand the
context and the problem I am trying to solve in this thesis. Lastly, we will take a look at a
few SOPs related to the package and describe the overall picture of the package lifecycle[7].
We will continue by choosing the suitable SOP for automation and further consideration.

2.1 Community Platform Engineering team responsibilities
The Community Platform Engineering is a part of Fedora and Centos communities. This
team is contributing to the infrastructure and release engineering. It defines the mission
statement 2.1, on which the team should balance.

Figure 2.1: Three axes of CPE mission[18]

The CPE is responsible for infrastructure and services, including:

6

• Hosting, automating, monitoring, and maintaining infrastructure components: CPE
manages and monitors networks, storage, and other infrastructure to support the
Fedora and Centos projects.

• Service monitoring and lifecycle management of services hosted within our infrastruc-
ture: CPE monitors performance and any kind of issues to provide reliable access to
the services within Fedora and Censos. The team also manages a lifecycle of services.

• Feature development for infrastructure-related initiatives: CPE actively develops
tools and expands existing ones to process community initiatives. It includes au-
tomation of tasks.

• Tooling to enable all of the above: CPE dedicates resources to developing new tools
and integrating them with infrastructure to cover the mission.

Those components are essential to the success of Fedora and Centos[18]. It’s always han-
dled through the ticket creation process because it is necessary to have logged every change
to share it within the team and track the progress on individual tasks and initiatives[21].

2.2 Fedora Release Engineering activities
One of the crucial parts of CPE is the Release Engineering team. This team is ensuring
timely and successful release of Fedora Linux versions. This team works on different tasks
throughout the release cycle, from planning the new release and managing the building
system to pushing updating packages to a production server. Here is the list of essential
jobs to maintain Fedora as a cutting-edge and reliable Linux[9]:

• Release planning and preparation: In collaboration with Fedora Project Steering
Committee (FESCo) is developing release plans, setting timelines, and preparing build
infrastructure to ensure it is ready to handle the number of packages involved in
Fedora build[7].

• Freeze management: Releng enforces freeze periods during the release cycle to ensure
that the final version will have stability. It is the time that need to handle any
issue.[15]

• Build System Administration: Releng monitors the system performance, troubleshoots
build failures, and makes adjustments to ensure efficient builds.

• Package Updates and Pushes: Releng is responsible for the pushing latest updates of
packages into production to ensure users have access to the latest software versions.
The team manages any package conflicts and monitors the deployment process.

• Write and maintain tools to compose and push Fedora: Releng composes the final
version of Fedora, combining packages and configurations into an operation system
image.

• Documentation and Communication: Maintaining comprehensive documentation for
the processes and tools. Also, the releng team communicates with the community
using different channels, including mailing lists and IRC channels.

7

The following image 2.2 helps better understand the life cycle of Fedora releases:

Figure 2.2: Creation new stable release of Fedora Linux[35]

The activities of Fedora Release Engineering are really important for maintaining Fe-
dora’s position as a leading Linux distribution. I want to dedicate this thesis to solving a
problem with the automation of package-related activities. So, it is necessary to understand
a standard Package lifecycle.

2.3 Fedora Package Lifecycle
The casual package lifecycle in Fedora has several stages. Here is an overview of the most
important ones.

• Development and Review: The lifecycle starts with developing and reviewing the
package by Fedora’s community and maintainers. This step ensures that packages
are following Fedora Packaging guidelines[25]. Maintainers will be responsible for the
package updates and following maintenance[7].

• Branching and Freezing: The main branch of development is called Rawhide. Releases
are Branched from Rawhide before they are sent out as a stable release.[10] Fedora
maintains a stable branch for every release, including creating a freeze for every
milestone (Alpha, Beta, Final)[10] during this period, the build won’t be marked as
stable and pushed from “updates-testing” status[30].

8

• Composing Releases: Packages are then composed into the Fedora release. Using tools
like Pungi and Livecd-creator. This stage ensures the appearance latest versions of
packages in the new Fedora distribution[10].

• Testing and Validation: Before being released, a package goes through tests and
validation. It involves the QA team that maintains the process and setting up test
events[19]. The goal is to ensure that the release candidate composition meets Fedora
Release Criteria[14].

• Release and Update: After the release, the package can get updates and bug fixes.
This process is handled through the tool Bodhi, which oversees updates and ensures
they are aligned with Fedora policy[31].

• End of Life (EOL): Each Fedora release and its packages have defined a schedule of
End of Life when it no longer receives updates and support. Maintainers should be
aware of it to move the package to the newer versions[22].

• Retiring Package: When a package reaches the end of its useful life or being replaced
or the maintainer no longer supports it (orphaned package) the package should be
retired. It involves removing packages from the Fedora repositories. This process
exists to ensure that Fedora distribution remains current and maintainable[28].

Those stages of a package’s life are crucial to supporting a healthy lifestyle for Fedora
Linux. This is why CPE involves SOPs. They describe strict guidelines on how to process
individual steps to succeed in one action. In this thesis, I would like to focus on automating
the SOP process to make the life of Fedora Release engineers easier. I would like to focus
on a few interesting package-related SOPs. They will be described in the next section.

2.4 Package-related SOPs
Fedora Release Engineering (releng) employs various Service Operations Procedures to cover
a list of tasks that are common. It is open because we want the community to engage with
it and make new SOP documentation. This way helps share knowledge between team
members and the community and ensures that not just individuals know how to fix a
problem. Basically, SOP is a set of steps required to accomplish a particular task. These
SOPs cover many aspects of package management, including the creation and branching
of new packages, managing updates, and blocking and unblocking packages. For instance,
the Branching SOP describes the way how to make git and pkgdb branches for the package
either for new packages that passed review or for existing ones[8]. Releng created a script
to automate it. Those procedures are crucial for maintaining the quality and integrity
of Fedora Linux, ensuring all the packages are up-to-date and compatible with the entire
system. SOP is a clear guideline for maintainers and contributors to follow to keep an
efficient workflow within Fedora Project[11]. There are a few SOPs related to EOL (End
Of Life), and I would like to focus on them.

Retire SOP

Retirement is a really important process that ensures that the package will be removed if it
is no longer needed or lost its maintainer. This procedure usually involves a maintainer who
will decide to retire a package for various reasons such as obsolescence, lack of upstream, or

9

personal disability to maintain it. In case the package is still useful for Fedora, it’s getting
orphaned status. Then other maintainers or contributors who are interested in maintaining
can get ownership of this package. Orphan package still remains in stable versions but
will become the responsibility of the community. If the package remains orphaned in the
rawhide branch longer than 6 weeks or if it is no longer needed, then the package will be
retired[20]. The maintainer should open a ticket to create a request. After that, Releng can
retire an orphan package using a script that creates and verifies successful retirement[12].

Unretire SOP

Service Operations Procedure for package branch unretirement was designed to enable re-
turn packages back to life. It usually happens with the rawhide branch, as the latest one,
but it can be applicable to other branches as well. This process was typically initiated when
the package that was previously retired was needed again or when the maintainer took over
the responsibility for looking after the package that was orphan. The unretirement process
begins with a request from the packager[13]. This request should be filled in a specific ticket
tracker1. After that, a member of the Release engineering team will ensure that the package
complies with Fedora packaging guidelines and policies[20]. Upon approval, the package
branch will be recreated, and the package will be returned to the Package Database. This
SOP is important for the flexibility and responsiveness of the Fedora ecosystem.

In conclusion, standard operations Procedures play a significant role in the work of
the Release Engineering team and community. These SOPs cover everything from the cre-
ation, updating, and retirement to the unretirement of packages to ensure a well-structured
approach to package management. The problem is that a lot of SOPs still require man-
ual execution, and this makes the life of the team much harder, given the ever-increasing
number of packages. Notably, the unretirement process still stands on a manual nature,
it’s not automated like the retirement process or some of the other SOPs. This makes it
an interesting topic for further investigation in this thesis. Focusing on the unretirement
process provides the opportunities to investigate nuances of package management in open-
source projects and help the community and the releng team, in particular, to automate an
important part of the work routine.

1https://pagure.io/releng/issues

10

https://pagure.io/releng/issues

Chapter 3

Current state of package
unretirement process

Chapter 3 of this thesis describes the current state of the package unretirement process
in the Fedora Project. This process is crucial in Fedora package lifecycle management. It
allows the reintegrating of packages that were previously retired, ensuring the distribution
can adapt to the changes. The chapter will explore the steps that are required to process
this task. Started with the creation of a ticket in a specific ticket tracker to show a desire to
unretire a package. Then, process the Validation and Verification of the package to ensure
it is ready and appropriate for unretirement. After that, there are technical steps, such
as reverting the retirement commit and unblocking the package on Koji (Fedora’s building
server). The process also includes verifying the package is not orphaned and updated
Product Definition Center (PDC). Each of these steps is important to ensure the smooth
reintegration of packages into the Fedora active packages repository[13].

3.1 Ticket Creation for unretirement process
The ticket creation process is a formalized step to initiate an unretirement process. The
maintainer, a packager, or a community member who would like to reintroduce the pack-
age in the Fedora Active Packages should fill a ticket in a specific releng1 ticket tracker
on pagure[5]. Releng prepared a few ticket templates, including a package unretirement
template 3.1, to make ticket creation easier.

Figure 3.1: Selecting a suitable template.
1https://pagure.io/releng/issues

11

https://pagure.io/releng/issues

After choosing the right template, the requester should provide comprehensive informa-
tion that is needed to continue reviewing the request. By answering particular questions in
a template. An example of a template is in the figure 3.2 below:

Figure 3.2: Unretirement template.

Here’s an explanation of the fields that are requested to fill:

• Issue Title: This field usually looks like ”Unretire“ + the name of the package. It is
necessary to have a more robust structure of tickets in the ticket tracker.

• Name of the Package: The name of the package itself. It should be the name of the
package that the package would like to unretire.

• FAS username of the new maintainer: This field should contain the Fedora Account
System (FAS) username of the user who will be the maintainer of the unretired
package. If this field is empty, then the requester himself will be a new maintainer of
the package.

• Branches that you need to be unretired: The Unretirement SOP requires branches
to process. It’s necessary to provide a list of branches that you need to unretire a
package on. Those branches usually contain the rawhide branch as the latest one and
might have few of the stables branches. If this field is empty, then the package will
be unretired just on the rawhide branch.

• Package re-review BZ URL: This field should contain a Red Hat Bugzilla URL with
a package review. Red Hat Bugzilla is a Red Hat bug-tracking system that supports
submitting and reviewing packages and bugs that are found in Red Hat distribution[4].
Before opening the ticket with an unretirement request, the requester should submit

12

a review request on the package in RedHat Bugzilla and get a fedora-review+ flag.
BZ URL is not necessary if the package was retired less than 8 weeks ago[28].

• Any extra information: In this field, the requester can provide any additional infor-
mation that might be important or helpful or keep this field empty.

After the requester sends a ticket, one of the members of the releng team will look into
it. If everything is clear, then the releng engineer will process an SOP. Otherwise, if some
important part is missing, the engineer will notify the requester in the comments section
under the ticket to correct missing or wrong parts and reopen the ticket. Here is an example
of a well-structured Unretirement ticket:

Figure 3.3: Example of well-structured unretire ticket.

The ticket creation procedure is crucial for maintaining transparency and collabora-
tion within Fedora, ensuring high-quality package management standards. It reflects the
community-driven approach.

3.2 Validation Package is ready for Unretirement
Validating a package for unretirement is an important step to ensure that the package is
safe. It needs to be done to keep Fedora Linux warranted and feasible. The validation
process includes the following steps[13]:

Legal and Licence Verification

It should be confirmed that the package wasn’t retired because of legal or license issues
that would prevent it from being reinstated. This involves checking retired packages in

13

the packages repository. The retired package will have only a specific file on the branch,
which indicates its status: dead.package. This file is used to indicate that the branch is
obsolete and no longer in use. To ensure that there were not any Legal or Licence issues
behind retirement, releng, members should look at the last commit message (the commit
that removed all files and left dead.package file there). If this message has a clear reason,
such as “no longer need” 3.4, it’s okay to unretire the package. The last commit should
always be a retirement commit when the requester asks for unretirement.

Figure 3.4: Example of commit history of retired package.

Bugzilla review

As mentioned before, the Bugzilla review URL should be provided just in case the package
was retired more than 8 weeks ago and requires re-reviewing on Bugzilla2. Review process
using fedora-review flag on Bugzilla. This flag can have the following statuses[29]:

• fedora-review “(BLANK)”: Package needs review.

• fedora-review “?”: The package is under review.

• fedora-review “-”: The package failed review, dropped for legal or other issues.

• fedora-review “+”: The package approved

Releng engineer must ensure that a package passes review on Bugzilla to continue the
unretirement process. The flag is shown after all data about review in the Flags section
3.5.

2https://bugzilla.redhat.com/

14

https://bugzilla.redhat.com/

Figure 3.5: Example of successful package review on Red Hat Bugzilla (fedora-
review flag has ”+“ status).

This review process allows the community or stakeholders to comment on potential
issues or provide additional insights that may affect unretirement decisions.

Verification tags, that required to be unretired

The requester should specify which tags (branches) should be unblocked. Tags are helping
to manage different versions of Fedora releases, so accuracy in this aspect ensures that the
package will be unblocked on the right versions. It’s important to keep in mind that tags
should be the tags of current or pending releases. An example of tags is shown in this figure
3.3.

The Validation process is developed to maintain the integrity of the Fedora distribution.
If these steps are carefully followed, Fedora can continue to provide robust, secure, and legal
packages to the end users.

3.3 Reverting the Retirement Commit
Reverting a retirement commit is a necessary step for the unretirement process. This action
undoes the changes that were made to mark a package as retired. Here is how usually this
process unfolds[13]:

1. Accessing compose system: The Fedora Release engineer will start by connecting one
of the compose matching though ssh. This provides the necessary infrastructure to
perform package management tasks[26].

ssh compose-x86-02.phx2.fedoraproject.org

2. Clonning the Package Repository: This step involves cloning a package’s git repository
using releng credentials. This is done through the CLI (command line interface), that
fedora infrastructure provides, such as relengpush or fedpkg. Fedpkg is more popular
so further investigation will consider it as a main option.

15

GIT_SSH=/usr/local/bin/relengpush fedpkg --user \
releng clone PACKAGENAME

3. Setting Git Configuration: After cloning the package repository, the RelEng engineer
needs to enter the directory and configure git user information to ensure that the
action taken will be properly attributed.

cd PACKAGENAME
git config --local user.name "Fedora Release Engineering"
git config --local user.email "releng@fedoraproject.org"

4. Reverting the retire commit: The core step is to revert a commit that contains
dead.package file on the particular branch using its commit hash_id. Ensure the
commit message contains a URL to the request in pagure[13].

git revert -s COMMIT_HASH_ID
GIT_SSH=/usr/loca/bin/relengpush fedpkg --user releng push

An example of commit structure with revert commit is shown in the following figure
3.6:

Figure 3.6: Example of commit structure with reverted retire commit.

Completing these steps makes the package active in the Fedora repository, and it is
ready to proceed with the rest of the unretirement actions.

3.4 Unblocking the Package on Koji
For unretirement, unblocking the package on Koji 3 is an important step. Koji is Fe-
dora’s packages building system, where packages are built before they can be part of the
distribution[37]. So when the package is retired, it’s also blocked on Koji to prevent it from
being built or updated. To restore a package, the following steps are taken[13].

3https://koji.fedoraproject.org/koji/

16

https://koji.fedoraproject.org/koji/

1. Check current state: The first step is to ensure that the package is actually blocked
on Koji. This is done by running the following command.

koji list-pkgs --show-blocked --package=PACKAGENAME

2. Unblock requested tags on Koji: Once confirmed that the package is blocked, it’s
time to unblock every tag that the requester specified. Every tag is responsible for
the build of the package on different Fedora releases or release candidates. This is
done by running the following command.

koji unblock-pkg TAGNAME PACKAGENAME

This process reenables the package to be built and updated through the Koji system,
reversing its retirement status and reinstating it in the Fedora build process. Unblocking
on Koji is a crucial part of processing that allows a package to move through the build
pipeline.

3.5 Verifying that package is not Orphaned
Verifying the package is not Orphaned is a step to ensure that Fedora keeps a healthy
ecosystem. If the package is orphaned (that means that the package doesn’t have an active
maintainer and owner), it can’t get updates and security patches. Here is how verification
typically works[13]:

1. Check package ownership: The first step is to find out the maintainer of this package.
This involves navigating to the package sources webpage 4. And checking details to
see if the package has maintainers. If there are some Fedora Accounts usernames,
then the package is not orphaned.

2. Transfer the responsibility over the package to the requester: If a package is orphaned,
that means it doesn’t have a current maintainer. In this case, to prevent removing the
package from distribution, a requester will become a new maintainer for this package.
The Release Engineering team has a script that allows them to assign a package to the
new maintainers. To achieve this the engineer needs to run the following command:

./scripts/distgit/give-package --package=PACKAGENAME \
--custodian=REQUESTOR

For running this script, the engineer who is processing unretirement requests must be
part of cvsadmin group. Groups like this are the main way how we add and restrict
rights for individual persons within Fedora Infrastructure. So, if the person is not a
part of this group, then this person should create a ticket and ask to be added to this
group.

The verification and reassignment process is vital to ensuring that all packages in the
Fedora distribution have maintainers who can provide updates and security patches, which
is crucial for Fedora’s stability and reliability.

4https://src.fedoraproject.org/

17

https://src.fedoraproject.org/

3.6 Update Product Definition Center (PDC)
The PCD (Product Definition Center) is a repository and sets of APIs to collect and store
metadata related to the packages, releases, and artifacts that are required to support Release
Engineering workflow[3]. Fedora’s implementations of PDC allow Fedora to maintain a
database of composes and their components, which helps with automation and making
decisions. The following figure shows the layout of PDC3.7 and the information it stores

Figure 3.7: PDC overview[16]

The PDC update is a process that requires several steps. Here is how the PDC updates
information for the Unretirement process[13] and what should be done to get rights for it:

1. Log into PDC: The first step is to log into PDC using your FAS (Fedora Account
System) account. This account is used to authenticate maintainers and contributors
and provides necessary permission to make changes in PDC.

2. Check PDC entry: After login, you need to check every branch that was unblocked in
previous steps on a package by querying PDC’s REST API. The example of the link is:
https://pdc.fedoraproject.org/rest_api/v1/component-branch-slas/?branch=
TAG&global_component=PACKAGENAME If no information is returned, the package or
its branch is probably missing in PDC, so the person who is processing SOP should
additionally create a request for a new branch using fedpkg request-branch com-
mand.

3. Obtain a Token: If a package and its branches exist within PDC, the RelEng engineer
must obtain a token from the PDC site. It often involves navigation to the
https://pdc.fedoraproject.org/rest_api/v1/auth/token/obtain/ section with
Firefox web browser. Then F12 should be pressed and selected a tab labeled Net-
work. After refreshing a page, the engineer should find a line whose string matches
with /rest_api/v1/auth/token/obtain/ column.

18

https://pdc.fedoraproject.org/rest_api/v1/component-branch-slas/?branch=TAG&global_component=PACKAGENAME
https://pdc.fedoraproject.org/rest_api/v1/component-branch-slas/?branch=TAG&global_component=PACKAGENAME
https://pdc.fedoraproject.org/rest_api/v1/auth/token/obtain/

4. Extract a token as cURL: After the previous step, right-click and select:
Copy>Copy as cURL. Now the engineer should add this cURL into a terminal and add
-H “Accept: application/json” it should look like similar to command below:

curl ’https://pdc.fedoraproject.org/rest_api/v1/auth/token \
/obtain/’ \
-H ’Host: pdc.fedoraproject.org’ \
-H .0) Gecko/20100101 Firefox/57.0’ \
-H ’Accept: text/html,application/xhtml+xml, \
application/xml;q=0.9,*/*;q=0.8’ \
-H ’Accept-Language: en-US,en;q=0.5’ \
--compressed \
-H ’Cookie: csrftoken=CSRF_TOKEN_HASH; SERVERID=pdc-web01; \
mellon-saml-sesion-cookie=SAML_SESSION_HASH; \
sessionid=SESSION_ID_HASH’ \
-H ’Connection: keep-alive’ \
-H ’Upgrade-Insecure-Requests: 1’ \
-H ’Cache-Control: max-age=0’ \
-H "Accept: application/json"

By running this command, the engineer will obtain a token needed for further pro-
cessing.

5. Use a token to run PDC update script: Finally when the token is obtained, the releng
engineer can run a script from the Release Engineering Repository 5. This script
will update PDC entries with new information related to the unretirement requests.
Script will require TOKEN, PACKAGE_NAME and TAG. A person who is running this script
can also add additional flags to perform the update correctly. The command looks
like the following:

PYTHONPATH=scripts/pdc/ scripts/pdc/adjust-eol.py fedora \
MYTOKEN PACKAGENAME rpm TAG default -y

This process ensures that PDC is reflected in the current state of a package in Fedora,
and any tools that use PDC will get up-to-date and correct information about a package.
It is crucial to maintain the integrity of Fedora’s packages data and metadata throughout
Fedora infrastructure.

The Unretirement Package Branch SOP in Fedora is a multi-step procedure that evalu-
ates that package is carefully reviewed and reintegrated into the Fedora Packages ecosystem.
This involves a set of steps from the ticket initiation process to the updating of metadata
in the Product Definition Center. Each step is designed to maintain the security, integrity,
and quality of Fedora Linux. After this whole process, the initial ticket can be closed,
and the releng member who was responsible for it can move to the next work unit. This
SOP highlights Fedora’s commitment to a robust, reliable, and transparent package man-
agement system. It required careful coordination between team members, maintainers,

5https://pagure.io/releng

19

https://pagure.io/releng

and stakeholders, which emphasizes open-source principles on which Fedora is staying. By
enabling unretirement, Fedora allows the continuous evolution of its repository, adapting
to the changing needs of its user base and embracing the dynamic nature of open-source
software development. This and the complexity of this process make me want to help the
open-source community and automate this SOP.

20

Chapter 4

Plan of Unretirement Process
Automation

This chapter covers the plan of automation. The first idea was that it could be achieved by
writing a Python script that would automatically process all checks that the unretirement
process required, followed by actions that return the package to the list of Active Fedora
Packages. But this solution won’t be ideal. It will still require members of the RelEng
team to define specific requests from the issue topic and get all the authentications needed
to run the script, followed by running the script with specific parameters where errors can
occur. The next idea is to make this process fully automated. To solve this problem, a few
tools and services need to work together. Automation will require:

• Fedora Messaging - This package provides tools and APIs to make using Fedora’s
messaging infrastructure easier[17].

• Toddlers - Toddlers is a simple application to run tasks upon fedora-messaging
notifications[6].

• Fedpkg - Tooling for working with Fedora’s dist-git and artifact build, including
RPMs, containers, and modules[2].

This chapter will explain how each tool works, followed by a proposal of extensions for
those tools. In conclusion, I will show the final scheme of tool collaboration.

4.1 Fedora messaging
The best place to start is by explaining the concept of Fedora Messaging. Fedora Messaging
plays a key role in the Fedora Project’s infrastructure. It is designed as a way for communi-
cation between different components within the ecosystem. Since Fedora was continuously
growing in complexity and scale, Fedora Infra required a solution that would allow com-
munication between different services. This problem was addressed with a message bus
architecture[23]. Fedora Messaging is built to handle asynchronous message sending, which
enables different services to interact and exchange information effectively.

Fedora Messaging provides a secure, scalable, and reliable messaging framework1. It
serves for efficient message passing, automating workflows, distributing information, and

1https://github.com/fedora-infra/fedora-messaging

21

https://github.com/fedora-infra/fedora-messaging

managing event-driven actions. The valuable factor is that it works with different tools
such as Koji, Bodhi, FAS, and more. So, for Fedora Infrastructure, it’s something similar
to arteries for humans. Here is a scheme of collaboration through Fedora Messaging:

Figure 4.1: Colaboration of differents tools trough Fedora Messaging[23]

Fedora Messaging is built on top of the Advanced Message Queuing Protocol (AMQP)[24].
This choice ensures, important for Fedora Ecosystem, qualities such as:

• Scalability: Capability to handle thousands of messages, making it perfect for Fedora’s
high-volume infrastructure

• Reliability: Build-in mechanisms that ensure message delivery

• Flexibility: The publish/subscribe model allows the different tools to subscribe to
specific topics required for their operations and not to be overwhelmed by other
information.

AMQP

AMQP 0-9-1 (Advanced Message Queuing Protocol) is a messaging protocol that enables
conforming client applications to communicate with conforming messaging middleware
brokers.[32]. The basic model of this protocol includes the following steps:

1. Messages are published to exchanges, which are something like mailboxes.

22

2. Exchanges distribute copies of messages to Queues using rules called bindings.

3. The broker delivers a message to the consumer that subscribes to a queue or demand
from the consumer (fetch/pull).

Figure 4.2: AMQP example routing[32]

Fedora messaging is deeply integrated into Fedora Infrastructure. It can send notifica-
tions from building tasks, automated testing alerts, and more. However, the functionality
extends beyond notifications. That enables integration across different platforms such as
Koji(building system) and Bodhi(updates system). For example, when a package build is
completed on Koji, Fedora Messaging ensures that Bodhi will be notified to begin following
the steps of the process.

To summarize, it plays an essential role in maintaining the efficiency of the integration
of the Fedora Project’s infrastructure. Its scalable and robust architecture easily adapts
to the needs of Fedora. As Fedora continues to grow, Fedora Messaging will remain a key
element that enables smooth collaboration between many project components.

4.2 Datagrepper
Fedora Datagrepper is a web-based tool essential for querying and analyzing vast amounts
of data that are transferred by Fedora’s messaging system. As part of Fedora infrastructure,
Datagrepper interacts with Fedora Messaging, which carries event-driven data all across the
ecosystem. It is very useful for users or processes that need to retrieve historical message
data2. That makes it important for developers, administrators, and maintainers who are
interested in system events and reactions to it[1].

Datagrepper provides users the ability to perform a detailed search on message histories
with filters such as date ranges, topics, categories, packages, and more. This functionality is
essential for tasks such as following progress, troubleshooting issues, and performing audits
for Fedora Infrastructure activities. It is achieved by providing two modes of interaction:
web interface and JSON API, which is used in a wide range of tools within Fedora Infras-
tructure. The API allows the creation of event-driven scripts based on message history.

2https://apps.fedoraproject.org/datagrepper/v2/search?

23

https://apps.fedoraproject.org/datagrepper/v2/search?

4.3 Toddlers
Fedora Toddlers is an essential tool due to the increasing complexity of Fedora’s Infrastruc-
ture. It allows developers to automate everyday tasks and improve system efficiency. As the
Fedora Project grows in scale, such a tool as Toddlers is becoming increasingly important to
maintain the stability of Infrastructure. Automating repetitive tasks and providing specific
insights into possible system issues allows Fedora contributors to significantly smooth their
workflow and spend more time on complex tasks that require human interaction, such as
developing new features, instead of spending on repetitive jobs that machines can achieve
with better efficiency.

Fedora Toddles is a plugin-based system3. Contributors can customize its functionality
and add new plugins to cover new repetitive tasks. It allows interaction with different
Fedora Services, such as Koji, Pagure, and Bodhi, to automate activities like removing re-
tired branches, creating new package repositories, providing different checks, and reporting
anomalies. Toddlers are a bunch of small programs that keep running around. It is aimed
at running tasks upon fedora-messaging notifications[6]. The modularity allows users to
modify the functionality of specific scripts easily, and its extensibility makes it a reliable
tool for the long term because it is likely to adapt to new challenges that may arise.

The tool represents a step forward in automating system tasks inside the Fedora Project.
It reduces the manual effort required to do the work of CPE engineers and the number of
errors that can occur when tasks are processed manually. An important aspect is that
Toddlers is adaptive to the scaling of the Fedora Project, making it an effective long-term
tool.

4.4 Fedpkg
Fedpkg is one of the most essential command-line tools on the Fedora Project. It makes
it easier to perform package management and maintenance tasks by running commands.
It provides CLI (command-line interface)4, allowing users to build, create, and maintain
packages. Fedpkg is “Front-end to the Fedora Infrastructure for package maintainers”[36].
Since the number of packages and contributors is constantly increasing, it is crucial to have
such a tool that can work with the vast majority of repositories through a single interface.

Fedpkg is designed to make a workflow for Fedora package maintainers easier because
it automates and simplifies a lot of tasks for package lifecycle management. The most
important features include:

• New package creation: It makes it easy to create a package within Fedora Infrastruc-
ture, as it has automatic scripts that perform repetitive tasks.

• Building and testing: Fedpkg is integrated with Koji, which allows to build and test
packages either locally or remotely.

• Repository management: It has all popular git commands such as clone, push, pull,
etc. So, the engineer can handle different actions with the git repository through an
interface.

3https://pagure.io/fedora-infra/toddlers
4https://pagure.io/fedpkg

24

https://pagure.io/fedora-infra/toddlers
https://pagure.io/fedpkg

• Release management: Fedpkg is also integrated with metadata tools, which can be
useful when the maintainer needs to tag packages for a particular release, upload
updated packages to Bodhi, and so on.

The most popular Fedpkg commands are shown in the following image:

Figure 4.3: Fedpkg commands for Packaging process[33]

Fedpkg is closely integrated with Fedora Infrastructure[2]. It uses Koji, Pagure, Bodhi.
It offers an easy way for the building process, allowing maintainers to launch builds from
the terminal and upload results to the relevant services. It lowers the barrier to entry for
new contributors, as it simplifies package maintenance. It helps ensure important qualities
such as security by reducing human factors and saves a huge amount of maintainers’ time,
allowing them not to spend time on repetitive tasks.

In conclusion, this tool became indispensable for the Fedora Project ecosystem, as it
enables maintainers to be more effective and efficient in everyday work. With the integration
into Fedora’s infrastructure and automation of repetitive tasks, it became an important part
of Fedora’s development workflow. As Fedora evolves, such tools are becoming more crucial
for maintaining the scalability of the Fedora ecosystem.

4.5 Proposed solution
This is the most important part of this chapter. Here, previous knowledge is grouped into a
proposal. This section will explain how the idea changed from the beginning. It is necessary
for understanding the next chapter and why those tools collaborate in this way.

The best way to start is to consider whether actions really need to be taken or if
RelEng should keep it as it is now. As mentioned earlier, in an ever-growing project,
process automation becomes not just optional but mandatory 2.4. I have identified a few

25

key reasons and benefits that the RelEng team will get from having the Unretirement
process automated.

• Consistency and Accuracy: It will reduce the possibility of human-made mistakes.

• Faster Response Time: The requester doesn’t need to wait for the RelEng engineer to
review his ticket and process it. The same works the opposite; the engineer doesn’t
need to wait for the requester’s reaction to mistakes or errors.

• Cost savings: Releng engineers will have more time to dedicate to initiatives and more
important tasks that require human effort.

Ticket creation and problems associated with it

After understanding the reasons behind automation, it is important to start with the request
itself because the way a person makes the request will impact the robustness of automation
and the time it takes to process the request.

Every request is created in the form of a ticket. The appearance of a new ticket in
a system will automatically send a Fedora Message with a specific topic. This topic, in
most cases, is a place where the ticket was created. The first idea for automation was
to implement a plugin for Toddlers 4.3 that would subscribe to a specific topic and fol-
low messages from it. After receiving a message with the Unretirement request, it would
consider doing all needed checks and controls followed by processing it. This solution can
work, but it won’t be ideal. The problem is that Fedora Contributors who are interested in
such requests are different humans, and they are always happy to show their personalities.
The following figure shows two similar requests for Unretirement, but they were filled by
different persons and in different ways :

(a) Ticket for unretirement without using
template

(b) Ticket for unretirement with using tem-
plate

Figure 4.4: Different versions of people created tickets.

It can be difficult to automatically process requests, as people use various templates and
write information in different ways. This means that a lot of code is needed to cover all the
different possibilities, and even then, new types of requests may require further adaptation.
While this solution can handle many requests, the release engineering team is looking for
an ultimate solution that will remain effective for years to come.

In order to solve the problem, it is necessary to educate people on how to fill the ticket
correctly. It will not be the perfect solution. So after the investigation, RelEng decided to

26

use Fedora Infrastructure tools like Fedpkg to create the Unretirement tickets and motivate
people to use this tool instead of creating a ticket by hand. The Fedpkg tool has a built-in
feature that can be useful for creating tickets, for example, in commands such as fedpkg
request-branch and fedpkg request-repo, that also create a ticket with different types
of requests. These commands create a ticket requesting a new repository or branch in
the existing repository. The ticket is created in a specific tracker called releng/fedora-scm-
requests5, designed to receive all tickets for further automatic processing. Although this
solution can work, it should be subject to restrictions and conditions. The following section
proposes a new fedpkg request-unretirement command.

Proposal fedpkg command

In this thesis, fedpkg will be utilized as a part of the automation process. Fedpkg was se-
lected because it has similar functionality that aligns with the automation requirements. For
instance, the fedpkg request-branch command can create a ticket in the releng/fedora-
scm-requests issue tracker. This feature is precisely what is needed, but there is a difference
between requesting a branch and requesting an Unretirement. Fortunately, as fedpkg is
a command-line interface, it is relatively easy to extend its functionality to meet specific
requirements. For creating a ticket, a new fedpkg request-unretirement command must
work with the information provided by the requester. This information can be provided in
the form of arguments, so the command is designed to handle the following arguments:

• repo: The name of the package that the requestor would like to unretire.

• namespace: The namespace of the repository to define a package.

• bz_url: A link to Bugzilla with a review request on the package; it is required in
some cases.

• branches: A list of package branches that are requested to be unretired.

In the appendix A, a diagram of fedpkg processing is presented. Initially, fedpkg requests
arguments, but none of these arguments are mandatory by default. Fedpkg is an intelligent
tool that can obtain information on its own. For instance, if the user is in a repository
on a particular branch and doesn’t provide any arguments, the script will assume that the
user wants to unretire the branch he is currently in. Additionally, it recognizes the user’s
Fedora Account for authentication purposes. If incorrect arguments are provided, an error
will be raised. The requester should be cautious with the commands they are running. The
request won’t be processed if any of the data is incorrect or corrupted.

The requester must be aware of the checks that the command conducts for successful
execution. These can be phrased as questions:

• If the branch was retired for longer than eight weeks, a Bugzilla URL argument should
be provided. Is the Bugzilla URL provided?

• Is the user in the packager group?

• If BZurls is provided, does it have a fedora_review+ flag?
5https://pagure.io/releng/fedora-scm-requests

27

https://pagure.io/releng/fedora-scm-requests

If the user’s answer to any of the previous questions is negative, he should be informed
of the changes he is required to make.

After a successful request, a ticket will be created. The current plain text format of
the ticket is functional, but it would be beneficial to utilize a different format. JSON was
chosen for its ability to handle the necessary fields in the ticket and its ease of management
in subsequent processing scripts. The JSON ticket should include several fields:

• name: name of the package

• type: package namespace

• branches: list of branches that are needed to be unretired

• review_bugzilla: Bugzilla URL with a review on package or none

With this ticket created, the proposal part of automation on the fedpkg side is finished.
When the ticket occurs in the system, it will send a Fedora Message, which will trigger
processing on the Toddlers side.

Proposal of toddlers plugin

The task of a toddler (an individual plugin for toddlers with a unique responsibility) is to
automatically process the ticket. This automation covers all the steps mentioned in the
chapter about the current state of the package unretirement process (Chapter 3). The
Toddlers tool was chosen because its main responsibility is to subscribe to the message
topic and implement event-driven processes as a reaction to new messages appearing in the
system. It is a plugin-based system, which makes the process of extension relatively easy.

The idea is to create a new plugin pdc_unretire_packages. This plugin, as an input,
will get a message, which is represented as a JSON file. JSON schema of this file contains
a few fields that are important for the automation process:

• issue title: Title of the ticket that was created. Typically, it is represented as an
“Unretire” keyword + name of the package

• issue content: It is just a body of the ticket that contains all the fields mentioned in
proposal fedpkg command section

• issue full URL: An Issue URL, which is used for commit message for the new commit.
It serves as a reference to the provided processing.

• issue id: An ID of issue that were created, it is used to close issue if some errors will
appear during processing.

It’s important to note that Fedpkg and Toddlers are distinct tools. Although both are
part of a single automation, some tests and checks will be duplicated in both. This modular
approach allows releng to use either of these tools as a standalone component of Fedora
Infrastructure. Additionally, it provides the flexibility to expand this functionality to meet
new requirements in the future.

Appendix B displays a diagram of Toddler’s processing. Upon receiving a message,
Toddler will set up all necessary objects from Fedora tools for automation. This is primarily
based on configuration values such as API keys, which are secured from the user.

28

The next step involves processing the issue. The toddler will process the message issue
title to verify that the package actually exists. If not, it will make a comment and close
the ticket. If provided data is corrupted, sending a comment and closing a ticket is the
standard workflow.

After confirming the validity of the ticket, Toddler begins processing by cloning the
package’s git repository into a temporary directory. This step is necessary because Toddler
runs inside a container, and attempting to clone the repository to a folder inside will result
in an error. Subsequently, it will proceed with the action described in the previous chapter
3, handling errors appropriately and completing the task if everything progresses smoothly.

Complete picture of tools collaboration

In this section of the chapter, I will summarize the information, explain the use cases, and
explain how the tools interact with each other. The requester sent a request for unretirement
by running the Fedpkg command. The request is processed by creating a ticket in a specific
ticket tracker. The use case diagram illustrates the process from the RelEng perspective.

Figure 4.5: Fedpkg use case

Once this ticket appears in the system, it immediately sends a Fedora Message with
JSON containing all information about the ticket and the data it carries. Toddlers follow
every message. It asks its plugins if they are interested in such a ticket. If the answer
is positive, the plugin receives the whole message and starts to process it. The following
figure shows the RelEng perspective on this process.

Figure 4.6: Toddlers processing

In this way, these tools interact with each other for a common purpose. This interaction
does not happen directly but through Fedora Message, which links the system events into
a coherent chain of actions.

29

Chapter 5

Implementation

This chapter examines the details of implementation. It does not describe every line of
code but rather reviews interesting points necessary for understanding it. Initially, we
will consider the environment and services used during development. A significant part is
devoted to developing the tools involved in automation. Finally, the deployment process
and the method of testing the code will be considered.

5.1 Enviroment used for development
It was clear that choosing Fedora Linux as the operating system for development was the
right decision. The tools that will be utilized are part of Fedora Infrastructure and are
designed to work specifically on Fedora Distribution.

For the automation, I have chosen Python as the programming language. Since the
tools are already written in Python, the choice was not about the language but about the
version. As we will see, further tests will be run on different versions of Python. At the
time of writing, the default option was Python 3.10, but the code needs to be compatible
with older versions. For this reason, some parts of the code are written using older syntax.
Additionally, Python was a natural choice because Fedora Infrastructure has a Python
module for almost every service and tool, making it easy to integrate different modules.

Red Hat is the primary sponsor of Fedora Linux. It’s important to note that Fedora
Infrastructure utilizes Red Hat’s software instead of other alternatives. The automation
tools are cloud applications, and they use configurations stored in the Ansible repository
1. This paper does not focus on Ansible, so it won’t provide a detailed explanation of the
software. In general, Ansible stores roles, which are essentially a list of people authorized to
run a specific playbook, and playbooks are collections of actions to be executed on systems.

The OpenShift platform was selected for deployment because it is well-optimized for
use in Fedora Infrastructure. This thesis will not delve into an in-depth analysis of this
platform but rather utilize it as a valuable tool for monitoring and tracking processing logs.

5.2 Fedpkg command implementation
To implement the automation, a new command needs to be created inside the cli.py file.
The Fedpkg command implementation is divided into 3 parts: declaration of the command,

1https://pagure.io/fedora-infra/ansible

30

https://pagure.io/fedora-infra/ansible

correction of arguments for processing, and processing the command. Here is a description
of each of them.

Declaration of command

The first part of the command declaration involves creating a parser for a subcommand
after fedpkg itself. It also includes adding a description for the command and a help page
to assist users in deciding which arguments to provide. This is accomplished by using the
self.subparsers.add_parser() method, which creates a subparser. Additionally, this
section involves parsing arguments to process this command. Here is a detailed description
of each argument:

• –repo: A string of package name. It is called repo because the package name is also
a repository name of this package. This argument can be None.

• –namespace: A string of package namespace. It is used for assembling the package
URL in the future. This argument can be None, as a default value it sets to “rpms”.
The requestor can choose a namespace just from the list of district namespaces. This
list is received by using self.get_distgit_namespaces() help method.

• –bz_url: A string of URL on Bugzilla. This URL should contain a link to existing
and opened Bugzilla review requests on the package. It can be None, as a default
value is used None.

• -b, –branches: A list of branches that the requester would like to Unretire a package
on. Each branch inside the list should be separated by a comma. This argument can
be None, as a default value it’s setting [”rawhide“]. Rawhide is the last branch in a
package; it is used as a development branch, so most requests would like to Unretire
it.

Once all the necessary arguments are provided, it’s a time to execute a command.
Running this command triggers the self.request_unretirement method, which contains
the logic of the command. The details of this logic will be outlined in the following sections.
Here’s an example of a command that the requester will use:

fedpkg request-unretirement --repo test_repo --namespace tests -b rawhide, f40, f39

Correction of arguments for processing command

The following section primarily focuses on checking for an adequate number of arguments
without verifying their accuracy. As discussed in the previous chapter (see 4.5), Fedpkg
is a clever tool that can potentially execute a command even without any arguments.
For instance, if the user fails to specify a repository name or namespace, Fedpkg will
default to the current repository and assume that the user intends to unretire the specific
package in that repository. The text introduces the first error, rpkgError, which will be
utilized throughout the command logic. It is named as such because Fedpkg extends the
functionality of the rpkg tool. This error will be triggered whenever an issue arises. In the
case where the user is not in the repository and fails to provide arguments, this error will be
thrown with instructions on what changes are required to execute the command. Following
this initial check, a hidden method self._request_unretirement() will be invoked to

31

handle the main logic of the command. This hidden method is called with an expanded list
of arguments from within Fedpkg. These arguments include:

• logger: A logger object.

• repo_name: The string of the repo name.

• ns: The string of pacakge namespace.

• branches: The list of branches that need to be unretired.

• bugzilla_url: The URL of the bugzilla review.
Typically, the value of self.args.bz_url, None if not needed.

• fas_name: The string of fas name of the user. Typically, the value is self.cmd.user.

• name: A string representing which section of the config should be used. Typically, the
value of self.name.

• config: A dict containing the configuration, loaded from file. Typically, the value of
self.config.

Processing the command

This part of Fedpkg command is the most important one. It is logically divided into two
tasks.

The first part of this method is to carry out the necessary checks and controls. There are
a few important questions that need to be checked. Those were mentioned in the chapter
with the proposal of a solution (see 4.5). It is better to start with checks for the last
commit date on every branch that is required to be Unretired. It is done for a few reasons.
If the package was retired more than eight weeks ago, it needs to be re-reviewed by Fedora
policies[20]. It is done by opening a ticket in Bugzilla. This is why we are asking the user
to provide a Bugzilla URL as one of the arguments. So, if the branch was actually retired
more than 8 weeks ago and the user didn’t provide Bugzilla URL, the processing will be
automatically canceled, and the requester will be asked to provide it. In order to find out
the last commit date, I wrote a helper function.

def get_last_commit_date(base_url, namespace, repo_name, branch):
url = "{0}/{1}/{2}.git".format(base_url, namespace, repo_name)
with tempfile.TemporaryDirectory() as temp_dir:

try:
repo = git.Repo.init(temp_dir, bare=True)
repo.git.execute([’git’, ’remote’, ’add’, ’origin’, url])
repo.git.execute([’git’, ’fetch’, ’origin’, branch, ’--depth=1’])
commit_hash = repo.git.rev_parse(’FETCH_HEAD’)
commit_date = repo.git.show(’-s’, ’--format=%ct’, commit_hash)
return commit_date

except git.exc.GitCommandError:
raise rpkgError("Unable to get last commit date."

"Try to check repo name and namespace "
"if it exists.")

This function will create a temporary directory and fetch all necessary data. As a result
it will return a last commit date in a proper format. Based on the difference between today’s
date and the commit date, it will decide whether Bugzilla URL should be provided.

32

The next check that should be implemented is a check of the requester’s rights. In
Fedora Infrastructure, we define rights through groups. The user can check his/her/their
groups in the Fedora Account system2 when he/she/they log in to the FAS account. For
this purpose, I wrote a helper function:
def get_user_groups(username):

c = fasjson_client.Client("https://fasjson.fedoraproject.org/")
try:

user_groups = c.list_user_groups(username=username).result
except Exception as e:

return []
return user_groups

This function will create a fasjsom_client object. To use this functionality, the user
should receive Kerberos authentication. The user must have a Fedora Account to be
authenticated. Detailed information on how to receive it, the user can be found on this
Fedora Wiki page[27]. But in most cases, the unretirement process requests a user familiar
with Fedora Kerberos authentication. So, for them, it will be enough to run the following
command:
fkinit -u USERNAME

There is just one more check after this. If Bugzilla URL was provided and there is a
need to check it, the command will use the build-in method that will get the bug (this is
the name for Bugzilla tickets, such as review requests and others). This is achieved through
the creation of Bugzilla client using Fedpkg utility for working with Bugzilla by this line
bz_client = BugzillaClient(bz_url).

The second part of processing the command involves opening a ticket, which is the easy
part because it uses the same helper function as different Fedpkg commands that work
with tickets, such as fedpkg request-branch. In this part of the script, the script simply
retrieves fields from the config to define the location where the ticket will be opened and
to obtain the correct token. After that, it will form the ticket body and title and create a
ticket using this function:
new_pagure_issue(

logger=logger,
url=pagure_url,
token=pagure_token,
title=ticket_title,
body=ticket_body,
cli_name=name,

)

The result of this script will be an opened ticket in a specific ticket tracker that will
look like this 5.1:

2https://accounts.fedoraproject.org/

33

https://accounts.fedoraproject.org/

Figure 5.1: Ticket created by fedpkg command.

The creation of this ticket will automatically send a message. Users can view the
messages using a tool called Datagrepper. The app’s feed follows the message history
and also provides an API where users can request a history of messages with specific
topics. For example, all issues created on Pagure will send a message with the topic
io.pagure.prod.pagure.issue.new. Here is an example of what the message history
looks like:

Figure 5.2: Messages history

The creation of a ticket is the logical end of fedpkg command processing. A further
section will cover the implementation of the Toddlers plugin, which starts with a ticket.

5.3 Toddler plugin implementation
The Toddlers plugin starts to process the tickets as soon as a message occurs.

34

Structure of Toddlers

The Toddlers tool consists of three main files and a list of plugins. The base class that defines
the required methods and attributes of every plugin is written in a file called base.py. The
base class for every toddler plugin is called ToddlerBase. It defines two properties for
the plugin and two abstract methods that should be implemented. Appendix C shows the
structure of the base class, including the following methods:

• name: This property will be redefined as a plugin name.

• amqp_topics: This property will define a list of message topics that the plugin will
follow.

• accepts_topic: This abstract method should be implemented in every plugin to
return a boolean value whether this toddler is interested in messages from a specific
topic.

• process: This abstract method will receive a message and config. It is the method
where the processing of the ticket will start in every plugin.

To gain a deeper understanding, it’s important to refer to the second key file that out-
lines the functionalities of toddlers. This file is named runner.py and consists of approxi-
mately 100 lines of code. Below, I will describe its main functionality without including any
code snippets. When the consumer receives a message, it will iterate through each toddler
and invoke the accepts_topic() method to identify toddlers interested in messages with
that particular topic. Subsequently, it will trigger the process() function of the selected
toddler with the necessary message and configuration for processing.

Start of toddler processing

From this point, my toddlers’ plugin starts its functionality. After redefining base class
properties, the first part is to ensure that the message with a topic that fits the plugin is
actually a message that the plugin is interested in. Unretirement request ticket must have
an “Unretire” keyword in a title, so this plugin firstly will ensure it. If the message passes
this check, the script will set up a logger object. It is used all over the code to log every
activity that is happening. Using a _log object is necessary to help RelEng engineers to
debug if something goes wrong.
_log = logging.getLogger(__name__)

The second important step is to set up all necessary objects that will be used during
processing based on variables obtained from the config. This includes creating a Pagure
object to work with Pagure (This service can be seen as Fedora’s Github).
self.pagure_io = pagure.set_pagure(config)

35

This object is utilized extensively throughout the code as it provides functionality for
working with tickets. Therefore, every error handling process includes closing a Pagure
ticket with a request for unretirement along with a proper comment. An example of a
typical response to an error could be the following lines of code:
_log.info(msg)
self.pagure_io.close_issue(

issue_id,
namespace=PROJECT_NAMESPACE,
message=msg,
reason="Invalid",

)
return

Every error is followed by a specific message, which is logged, and the ticket is closed
with the same message. This ensures that the requester will always know the reason why
his request has faced a problem and will be able to correct it and reopen a ticket.

After setting up needed objects, the toddler will go to the main part of processing in
the process_ticket() method.

Ticket processing

The beginning of the process_ticket() method involves recognizing the issue title and
ensuring that a package with that name exists within the Fedora Active Packages. This is
crucial for minimizing errors during processing. It’s important to note that the Toddlers
plugin was developed independently of the fedpkg command. This plugin allows for ex-
tending its functionality or adding new types of tickets that it can process. Because of this,
some of the checks and tests performed on the fedpkg side will also be repeated on the
Toddlers side.

The main part started with cloning the git repository into the temporary directory to
work with it. This git repository of the package is placed on a service that is called Pagure
dist-git. It is something like the storage of spec files for the upstream packages.

After cloning the repository, the script will get a list of branches from the message. The
retired branch is marked by the fact that it does not store any file other than dead.package.
So before making any changes, the script will ensure that every branch is really having
dead.package file. This avoids the possibility that an attacker will use this functionality
to try to get rid of the last commit.

The following method will re-evaluate the checks performed on the Fedpkg side and
conduct additional tests.
if not self._is_package_ready_for_unretirement(

issue_id=issue_id, issue_body=issue_body
):

return

Is the package ready for unretirement? It sounds quite obvious; the reason for that is
that this method actually contains three more checks. Some of them will repeat the checks
that were made on the fedpkg side. Those checks are:

• Verify that the package wasn’t retired for a reason: It is very important to keep the
package retired if it has major reasons for it, such as license issues. This test will
get the last commit message. If this message contains any forbidden words such as

36

”legal“ or ”license,“ it will stop the Unretirement process until future investigation if
this process can be done for this package.

• Verify if Bugzilla needs to be checked: This test will mostly repeat the test that was
processed on the fedpkg side; it will also get information about the last commit date
and, by comparing it with today’s date, will decide if Bugzilla request needs to be
checked.

• Verify bugzilla ticket: This test will ensure that if providing Bugzilla is required, then
the Bugzilla ticket should have a fedora_review+ flag.

After processing all tests, the script will start the process of unretirement described in
chapter 3. It starts by reverting the last commit. This part will revert the last commit
and create a new one. The new commit message will contain the link to the issue that was
opened so that people who look at the history of commits will understand why this was
done (see 3.6).

The next part involves unblocking tags (this is how we refer to branches on Koji) on
Koji.
_log.info("Unblocking tags on Koji.")
if self._is_need_to_unblock_tags_on_koji(tags_to_unblock, package_name):

self._unblock_tags_on_koji(issue_id, tags_to_unblock, package_name)

In the first line, it will check if the task needs to be done, as tags may already be
unblocked on Koji in some cases. This is done using a specific object for working with Koji,
self.koji_session. This object provides methods for retrieving data from Koji. In this
case, I’m using package_tags = self.koji_session.listTags(package=repo) to get a
list of tags associated with the package. If the package doesn’t exist on Koji or if it doesn’t
have certain tags, the script will raise an error with the appropriate message.

The second line is actually about unblocking tags on Koji, and it also uses functionality
provided by self.koji_session. In this case, the script will iterate through each tag and
call the following method:
self.koji_session.packageListUnblock(taginfo=tag, pkginfo=repo)

After unblocking tags on Koji, the next step is to ensure that unretired packages won’t
become orphaned. An orphaned package is one that doesn’t have a maintainer. It’s com-
mon for a package to become retired after losing its maintainer. If the package becomes
orphaned, the requester’s FAS will be used as the maintainer for the package. The following
lines outline the process.
if self.pagure_io.is_project_orphaned(

namespace=namespace, repo=package_name
):

self.pagure_io.assign_maintainer_to_project(
namespace=namespace, repo=package_name, maintainer_fas=issue_opener

)

Finally, the logical finish of processing is adjusting the End Of Life (EOL) on the Product
Definition Center (PDC). PDC is a center that contains metadata about packages. This
tool will be discussed in the last chapter about future steps7. I wrote a utility that helps to
adjust EOL on PDC. The syntax is quite strange, which is due to PDC being an outdated
tool that has lost its maintainer. The code is as follows:

37

def adjust_eol(global_component, component_type, branch, eol):
"""
Adjusting eol of branch.

Params:
global_component: A sting name of the global component
component_type: A string Type of component.
branch: A string name of branch.
eol: A string with date.

"""
existing_branch_slas = get_branch_slas(global_component, component_type, branch)

if existing_branch_slas is None:
return

pdc = get_pdc()

payload = {"eol": eol, "branch_active": True}

for branch_sla in existing_branch_slas:
pdc["component-branch-slas"][branch_sla["id"]]._(payload)

The function is designed to request branch SLAs (Service Level Agreements) and update
the SLA for every active branch based on Bodhi end-of-life dates for each release. This is
the final step in the automation process; the package is now fully returned to the Fedora
Active Packages list. However, the question remains: how will people use this? Deployment
of these tools to the server is required for this purpose, and the next section will address
this process.

5.4 Deployment
The Fedora Infrastructure has two types of servers for its tools and services: the Production
server and the Staging server. The staging server is a copy of the production server and
is used for long-term testing of changes to stabilize them and fix most of the bugs and
errors that occur. To run the deployment process, the engineer should modify the Ansible
configuration and add themselves to the role file to be able to run the playbook. This process
can take some time while the configurations are updated, and after that, the engineer will
be able to connect to the specific server and run the deployment process.

Toddlers is an Openshift app. That means Toddlers is running inside a container in
Openshift. Fedpkg, on the other hand, is not, and deployment of a new Fedpkg version
requires the Fedpkg maintainer to make a new patch. Because we have a lack of maintainers,
at the moment of writing, the last commit for Fedpkg was accepted 3 months ago, and there
is no exact day when the changes will appear in the system.

To deploy Toddlers, a pull request must first be merged into the staging branch, which
exists to test changes that will go to production after some time. When the pull request is
merged, it’s time to connect to the batcave01 server, which is used to run playbooks. To
connect to the server, you need to run the following command:

ssh FAS_NAME@batcave01.iad2.fedoraproject.org

Your FAS_NAME is used to identify yourself. It is not necessary if the name of your
computer is the same as your FAS.

38

Once on the server, it’s time to run a playbook, accomplished by running the following
command on the server. The option -l “staging” defines the type of server that new
changes must be deployed to.

sudo rbac-playbook openshift-apps/toddlers.yml -l "staging"

To get sudo permission, you must provide your FAS password and your FreeOTP token.
This token is used every time you try to log in or make any changes.

When the command finishes processing, the person who ran it will receive an email
notification. After that, the new version of the tool will be deployed on Openshift.

5.5 Tests
The Fedora Project is an open-source distribution that imposes certain obligations regarding
the quality of the code being added. This commitment includes covering new code with
unit tests, an important feature to minimize the chance of bugs during deployment and
ensure the quality of the code. This section is dedicated solely to the implementation of
unit tests. The percentage of code coverage is used to estimate their success. Finally, we
will describe the step-by-step process of running tests to verify code coverage.

Implementation of unit tests

Before diving into the implementation details, it’s important to discuss test automation
using the tools Fedpkg and Toddlers. For testing, we are utilizing a tool called Tox3. This
tool aims to automate and standardize testing in Python and can be run manually or during
the CI pipeline. Its functionality is determined by the config file tox.ini, which defines the
list of environments and specifics for running tests in different environments, such as the
list of Python versions the code should be executable on, typically three different Python
versions for Fedora Infrastructure tools. An example of a configuration file for tests is listed
in appendix D.

In the implementation of tests, I used the popular Python module unittest. For my
Toddlers plugin, I created a file containing tests for the code,
named test_pdc_unretirement_packages.py. For each method and function, I created a
test class that covers it. For example, for the method:

_is_package_ready_for_unretirement()

I created a class called:
class TestIsPackageReadyForUnretirement:

After creating the class, it must have a setup_method() which will mock some objects
that will be used inside the function or method. The typical unit test should cover several
cases. The main one is the successful processing of the function. The test must ensure
that if the function or method receives the proper data, it will process without any errors.
Other tests must cover every exceptional state that can occur inside the function.

3https://tox.wiki/en/4.15.0/

39

https://tox.wiki/en/4.15.0/

Chapter 6

Testing

The whole functionality is divided between two tools, Fedpkg and Toddlers, and even
in those tools, the functions that I wrote are distributed between different files. Some of
the helper functions were placed under the utility module, and some of them were written
under the modules that work with other tools and services of Fedora Infrastructure, so the
whole testing of functionality was problematic.

Another problem I encountered is that different tools require different rights, and I don’t
have some of those rights because of security issues. So, further testing processes will be
divided into two sections dedicated to individual tools.

6.1 Running the tests
Here will be described how to run unit tests. It’s an easy process that will require just a
few steps.

1. Creating Fedora Account: The user must have a Fedora Account. The registration
process is easy and everyone can do it.

2. Adding SSH Key: The user should generate an SSH Key and add this key to the
specific field in his profile.

3. Cloning the repository: Everyone who has a FAS account is able to clone a repository
placed on Pagure1. The user should find a repository of tools that he is interested
in. After that, press the clone button and get the ssh link for the repository. By
using the following command, the user will clone the repository locally: git clone
SSH_URL.

4. Running tests: Move to the root folder of the repository and run tox command; it
will last approximately 10 minutes to test the whole code.

5. Additional steps: User can set up different tox options to generate HTML page that
shows covered methods, for example.

After those steps, the user can see the code’s coverage in a terminal. Running such tests
is the best way to ensure that the code processes as it should during development.

1https://pagure.io/

40

https://pagure.io/

6.2 Fedpkg testing
The best way to test its functionality is to run unit tests. This is the main way how to
ensure that it works. The Fedpkg project lacks maintainers, so many Pull Requests can lay
unreviewed there for a long time; the same happened with my Pull Request. The best way
to test is to wait until a new patch for this tool comes out, which will contain my changes
as well. Just after that, Fedora RelEng engineers will start to motivate packagers to use
this command instead of opening tickets themself. The sign that shows the functionality
of this command is that other commands that create a ticket and use a similar command
for that are working. Also, it has the checks, most of which will repeat on Toddlers side.
This doesn’t ensure that the command is working perfectly, but increasing the probability
of it on a high level.

6.3 Toddlers Testing
The toddler plugin is thoroughly covered by unit tests using the Tox tool. This tool displays
the percentage of coverage for individual files and can also generate HTML with marked
lines that have been tested. To ensure through testing, any changes made on the Toddlers
side are first deployed on a Staging server, which serves as a playground for working with
packages without affecting the production environment. While the staging server is useful,
it’s not perfect. Testing at different stages can help reduce the occurrence of bugs, but it
doesn’t guarantee a bug-free result. Ultimately, only time can provide the perfect result. I
attempted to create tickets for any issues and monitored the bot’s responses to them. Here
are some of the comments that the bot left:

Figure 6.1: Package doesn’t have an “rpms” namespace.

This comment will be left, and the ticket will be closed if the requester tries to Unretire
a package without a namespace or a package with a different namespace than “rpms”.
Because the Unretirement can be processed just on “rpms” packages.

Figure 6.2: Bugzilla URL is missing, error handling.

41

This comment will be printed if the package was previously retired more than eight
weeks ago and the other requester didn’t provide any URLs in the ticket.

Figure 6.3: Bugzilla URL is missing, error handling.

This comment shows that the development of new features is a permanent process;
this happened because I made a mistake in the code. This mistake was that I forgot that
Bugzilla also has a staging version, and my code wasn’t ready for this. Bugzilla’s staging
and production servers require different API keys, so I changed them in the code in updates.

6.4 Monitoring
Fedora Infrastructure allows engineers to monitor events that are happening with Openshift
apps, such as Toddlers. The processing can be inspected through the Openshift web client.
It makes it easy to follow logs and events that are happening inside the tool. The example
of Toddles log is on the following figure6.4.

Figure 6.4: Example of Toddlers log.

6.5 Saved Time
The primary goal of automation is to save human time and free up resources. It is difficult
to determine the exact amount of time saved, as the processing of Unretirement requests

42

involves different engineers and varies in time. Let’s estimate that one request takes an
average of 15 minutes, and there have been 16 requests in the last month. This number
is not precise and is based on the previous month’s data at the time of writing, so it will
be used as an estimate. After calculations, we find that this automation saves 4 hours
monthly for the engineer. While this may not seem like much, this time is still significant.
We encourage you, as a potential contributor, to join the automation process and help save
even more time, as there is nothing more valuable than time.

43

Chapter 7

Conclusion

The main goal of this thesis was to design and implement an extension for the tools that
are used in Fedora Infrastructure. Those extensions cover automation of the Unretirement
SOP. The result was achieved by adding a new Fedpkg command that creates a ticket with
an Unretirement request and by adding a new plugin for Toddlers tool, which follows the
ticket tracker with such requests and processes them.

In the theoretical part, I learned about the Fedora package lifecycle and how the Re-
lEng team controls it. To share knowledge, RelEng invented SOPs, which are guidelines
for processing popular tasks. Some of them were fully automated, that automation was
integrated into the RelEng work pipeline, but some of them were not. After some learning
about them, my interest was tied by an Unriterement SOP. I heard that people in our
team are quite angry that they still need to process it manually. At this point, I made my
choice. By discussing the problem with my peer, he pointed out the tool that potentially
can help in automation. This tool was Toddlers. At the start of writing, my plan was to
write an extension just for it. But the problem was that it wouldn’t be able to cover all of
the requests because requestors were used to the person processing it, so they didn’t think
much about formatting a ticket. The solution was to extend this thesis by adding here
automation of ticket creation on Fedpkg side.

In this work, I learned how different services are connected within the Fedora Infrastruc-
ture. I also learned about the whole Fedora community and understood how open-source
development happens. Different people maintain different services, so updates in some of
them can last a relatively long time.

In the future, some of those tools will be changed. For example, the last part of Toddlers
processing is updating EOL on PDC. But PDC is an outdated tool that we will get rid of
in the future; some of its endpoints will be moved to our different services, and this part of
the code will be implemented. Also, we, as a RelEng team, would like to rewrite toddlers
in the future. The reason for this is that if one of the Toddlers will be cycled, all of the
plugins won’t be able to work, so the idea is to add individual runners for every toddler.
The Fedpkg tool is more stable in comparison with Toddlers, and changes are happening
there really rarely.

44

Bibliography

[1] Datagrepper’s webpage [online]. [cit. 2024-04-23]. Available at:
https://apps.fedoraproject.org/datagrepper/.

[2] Fedpkg repository [online]. [cit. 2024-04-28]. Available at: https://pagure.io/fedpkg.

[3] Product Definition Center [online]. Red Hat, Inc. and others. [cit. 2024-01-16].
Available at: https://pdc.fedoraproject.org/.

[4] Red Hat Bugzilla Website [online]. Red Hat, Inc. and others. [cit. 2024-01-18].
Available at: https://bugzilla.redhat.com/.

[5] Releng repository [online]. Red Hat, Inc. and others. [cit. 2024-01-15]. Available at:
https://pagure.io/releng.

[6] Toddlers repository [online]. [cit. 2024-04-24]. Available at:
https://pagure.io/fedora-infra/toddlers.

[7] Fedora Package Life Cycle notes [online]. Red Hat, Inc. and others., 20. april 2015
[cit. 2024-01-18]. Available at:
https://fedoraproject.org/wiki/Fedora_Package_Lifecycle_notes.

[8] Branching [online]. Red Hat, Inc. and others., 2016 [cit. 2024-01-18]. Available at:
https://docs.pagure.org/releng/sop_branching.html.

[9] Fedora Release Engineering [online]. Red Hat, Inc. and others., 2016 [cit. 2024-01-19].
Available at: https://docs.pagure.org/releng/.

[10] Fedora Release Engineering Overview [online]. Red Hat, Inc. and others., 2016 [cit.
2024-01-20]. Available at: https://docs.pagure.org/releng/overview.html.

[11] Fedora Release Engineering SOPs [online]. Red Hat, Inc. and others., 2016 [cit.
2024-01-20]. Available at: https://docs.pagure.org/releng/sop.html.

[12] Retire Orphaned Packages [online]. Red Hat, Inc. and others., 2016 [cit. 2024-01-18].
Available at: https://docs.pagure.org/releng/sop_retire_orphaned_packages.html.

[13] Unretiring a package branch [online]. Red Hat, Inc. and others., 2016 [cit. 2024-01-17].
Available at: https://docs.pagure.org/releng/sop_unretire.html.

[14] Fedora Release Criteria [online]. Red Hat, Inc. and others., 12. october 2017 [cit.
2024-01-19]. Available at: https://fedoraproject.org/wiki/Fedora_Release_Criteria.

[15] Milestone freezes [online]. Red Hat, Inc. and others., 12. october 2017 [cit. 2024-01-18].
Available at: https://fedoraproject.org/wiki/Milestone_freezes.

45

https://apps.fedoraproject.org/datagrepper/
https://pagure.io/fedpkg
https://pdc.fedoraproject.org/
https://bugzilla.redhat.com/
https://pagure.io/releng
https://pagure.io/fedora-infra/toddlers
https://fedoraproject.org/wiki/Fedora_Package_Lifecycle_notes
https://docs.pagure.org/releng/sop_branching.html
https://docs.pagure.org/releng/
https://docs.pagure.org/releng/overview.html
https://docs.pagure.org/releng/sop.html
https://docs.pagure.org/releng/sop_retire_orphaned_packages.html
https://docs.pagure.org/releng/sop_unretire.html
https://fedoraproject.org/wiki/Fedora_Release_Criteria
https://fedoraproject.org/wiki/Milestone_freezes

[16] Modelling Dependencies [online]. Red Hat, Inc. and others., 29. april 2017 [cit.
2024-01-18]. Available at: https:
//fedoraproject.org/wiki/Infrastructure/Factory2/Prehistory/ModellingDeps.

[17] Fedora Messaging [online]. Red Hat, Inc. and others., 2018 [cit. 2024-01-19]. Available
at: https://fedora-messaging.readthedocs.io/en/stable/.

[18] The Community Platform Engineering Team [online]. Fedora Project, 11. august
2019 [cit. 2024-01-19]. Available at: https://docs.fedoraproject.org/en-US/cpe/.

[19] Release Validation Test Plan [online]. Red Hat, Inc. and others., 06. august 2020 [cit.
2024-01-21]. Available at:
https://fedoraproject.org/wiki/QA:Release_validation_test_plan.

[20] Policy for Orphan and Retired Packages [online]. Fedora Project, 07. september 2021
[cit. 2024-01-20]. Available at: https:
//docs.fedoraproject.org/en-US/fesco/Policy_for_orphan_and_retired_packages/.

[21] Working with Community platform engineering [online]. Fedora Project, 01. june
2021 [cit. 2024-01-18]. Available at:
https://docs.fedoraproject.org/en-US/cpe/working_with_us/.

[22] End Of Life [online]. Fedora Project, 16. august 2023 [cit. 2024-01-15]. Available at:
https://docs.fedoraproject.org/en-US/infra/release_guide/release_eol/.

[23] Fedora Messaging [online]. Red Hat, Inc. and others., august 2023 [cit. 2024-03-20].
Available at:
https://readthedocs.org/projects/jcline-fedmsg/downloads/pdf/reorg-docs/.

[24] Fedora Messaging [online]. Fedora Project, 2023 [cit. 2024-01-22]. Available at: https:
//docs.fedoraproject.org/en-US/infra/developer_guide/messaging/#_messaging.

[25] Fedora Packaging Guidelines [online]. Fedora Project, 23. november 2023 [cit.
2024-01-17]. Available at:
https://docs.fedoraproject.org/en-US/packaging-guidelines/.

[26] Fedora Release Engineering Troubleshooting Guide [online]. Fedora Project, 04. april
2023 [cit. 2024-01-16]. Available at:
https://docs.fedoraproject.org/en-US/infra/releng_misc_guide/troubleshooting.

[27] Kerberos Wiki [online]. Red Hat, Inc. and others., 11. february 2023 [cit. 2024-04-27].
Available at: https://fedoraproject.org/wiki/Infrastructure/Kerberos.

[28] Package Retirement Process [online]. Fedora Project, 01. june 2023 [cit. 2024-01-19].
Available at: https:
//docs.fedoraproject.org/en-US/package-maintainers/Package_Retirement_Process.

[29] Package Review Process [online]. Fedora Project, 07. september 2023 [cit. 2024-01-19].
Available at: https:
//docs.fedoraproject.org/en-US/package-maintainers/Package_Review_Process/.

[30] Package Update Guide [online]. Fedora Project, 22. november 2023 [cit. 2024-01-16].
Available at: https://docs.fedoraproject.org/en-US/package-maintainers/
Package_Update_Guide/#branched_milestone_freezes.

46

https://fedoraproject.org/wiki/Infrastructure/Factory2/Prehistory/ModellingDeps
https://fedoraproject.org/wiki/Infrastructure/Factory2/Prehistory/ModellingDeps
https://fedora-messaging.readthedocs.io/en/stable/
https://docs.fedoraproject.org/en-US/cpe/
https://fedoraproject.org/wiki/QA:Release_validation_test_plan
https://docs.fedoraproject.org/en-US/fesco/Policy_for_orphan_and_retired_packages/
https://docs.fedoraproject.org/en-US/fesco/Policy_for_orphan_and_retired_packages/
https://docs.fedoraproject.org/en-US/cpe/working_with_us/
https://docs.fedoraproject.org/en-US/infra/release_guide/release_eol/
https://readthedocs.org/projects/jcline-fedmsg/downloads/pdf/reorg-docs/
https://docs.fedoraproject.org/en-US/infra/developer_guide/messaging/#_messaging
https://docs.fedoraproject.org/en-US/infra/developer_guide/messaging/#_messaging
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/infra/releng_misc_guide/troubleshooting
https://fedoraproject.org/wiki/Infrastructure/Kerberos
https://docs.fedoraproject.org/en-US/package-maintainers/Package_Retirement_Process
https://docs.fedoraproject.org/en-US/package-maintainers/Package_Retirement_Process
https://docs.fedoraproject.org/en-US/package-maintainers/Package_Review_Process/
https://docs.fedoraproject.org/en-US/package-maintainers/Package_Review_Process/
https://docs.fedoraproject.org/en-US/package-maintainers/Package_Update_Guide/#branched_milestone_freezes
https://docs.fedoraproject.org/en-US/package-maintainers/Package_Update_Guide/#branched_milestone_freezes

[31] Updates Testing [online]. Red Hat, Inc. and others., 21. november 2023 [cit.
2024-01-14]. Available at: https://fedoraproject.org/wiki/QA:Updates_Testing.

[32] AMQP 0-9-1 Model Explained [online]. Broadcom Inc., 2024 [cit. 2024-04-28].
Available at: https://www.rabbitmq.com/tutorials/amqp-concepts#what-is-amqp.

[33] Cheat Cubes [online]. Fedora Project, 13. may 2024 [cit. 2024-04-25]. Available at:
https://docs.fedoraproject.org/en-US/commops/design-assets/cheat-cubes/.

[34] Fedora Linux [online]. Wikipedia, The Free Encyclopedia., 2024 [cit. 2024-01-20].
Available at:
https://en.wikipedia.org/w/index.php?title=Fedora_Linux&oldid=1193071744.

[35] Fesco Updated Policy [online]. Fedora Project, 22. january 2024 [cit. 2024-01-17].
Available at: https://docs.fedoraproject.org/en-US/fesco/Updates_Policy/.

[36] Klíč, K. Fedpkg presentation [online]. [cit. 2024-04-23]. Available at:
https://fedoraproject.org/w/uploads/1/1c/Fedpkg-presentation.pdf.

[37] Mike McLean, D. G. Koji [online]. Red Hat, Inc. and others., 2017 [cit. 2024-01-20].
Available at: https://docs.pagure.org/koji.

47

https://fedoraproject.org/wiki/QA:Updates_Testing
https://www.rabbitmq.com/tutorials/amqp-concepts#what-is-amqp
https://docs.fedoraproject.org/en-US/commops/design-assets/cheat-cubes/
https://en.wikipedia.org/w/index.php?title=Fedora_Linux&oldid=1193071744
https://docs.fedoraproject.org/en-US/fesco/Updates_Policy/
https://fedoraproject.org/w/uploads/1/1c/Fedpkg-presentation.pdf
https://docs.pagure.org/koji

Appendix A

Fedpkg command Diagram

Figure A.1: Fedpkg command processing diagram

48

Appendix B

Toddlers plugin diagram

Figure B.1: Toddler plugging processing diagram.

49

Appendix C

Toddlers Base class

class ToddlerBase(object):
__metaclass__ = abc.ABCMeta

@property
@abc.abstractmethod
def name(self):

"""Returns name of the plugin."""
return "base"

@property
@abc.abstractmethod
def amqp_topics(self):

"""Returns the list of topics of interest for this toddler in a format
that can be used directly when connecting to amqp.
For example, it supports items like:

‘‘org.fedoraproject.#.buildsys.build.state.change‘‘
which is valid when subscribing to a queue in amqp but will not allow
string based comparison with the topic extracted from the message.

"""
return []

@abc.abstractmethod
def accepts_topic(self, topic):

"""Returns a boolean whether this toddler is interested in messages
from this specific topic.
"""
return

@abc.abstractmethod
def process(self, config, message):

"""Process a given message."""
return

50

Appendix D

Tox configuration for Toddlers

[tox]
envlist = black,mypy,flake8,py3{9,10,11}
If the user is missing an interpreter, don’t fail
skip_missing_interpreters = True
skipsdist = True

[testenv]
deps =

-r requirements.txt
-r test-requirements.txt

sitepackages = True
setenv =

PYTHONPATH={toxinidir}
commands =

pytest {posargs}

[testenv:black]
deps =

black
sitepackages = False
commands =

black --check --diff .

[testenv:mypy]
basepython = python3.11
deps =

{[testenv]deps}
mypy

setenv =
{[testenv]setenv}

commands = mypy --config-file {toxinidir}/mypy.cfg toddlers tests

[testenv:flake8]
deps =

flake8
flake8-import-order

sitepackages = False
commands =

flake8 --ignore=W503 toddlers/ tests/ {posargs}

51

	Introduction
	Fedora Release Engineering package related SOP's
	Community Platform Engineering team responsibilities
	Fedora Release Engineering activities
	Fedora Package Lifecycle
	Package-related SOPs

	Current state of package unretirement process
	Ticket Creation for unretirement process
	Validation Package is ready for Unretirement
	Reverting the Retirement Commit
	Unblocking the Package on Koji
	Verifying that package is not Orphaned
	Update Product Definition Center (PDC)

	Plan of Unretirement Process Automation
	Fedora messaging
	Datagrepper
	Toddlers
	Fedpkg
	Proposed solution

	Implementation
	Enviroment used for development
	Fedpkg command implementation
	Toddler plugin implementation
	Deployment
	Tests

	Testing
	Running the tests
	Fedpkg testing
	Toddlers Testing
	Monitoring
	Saved Time

	Conclusion
	Bibliography
	Fedpkg command Diagram
	Toddlers plugin diagram
	Toddlers Base class
	Tox configuration for Toddlers

