
T
BRNO UNIVERSITY OF TECHNOLOGY
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě

FACULTY OF INFORMATION TECHNOLOGY
F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF INTELLIGENT SYSTEMS
Ú S T A V I N T E L I G E N T N Í C H S Y S T É M Ů

AUTOMATION OF RELEASE ENGINEERING TASKS
IN FEDORA LINUX
A U T O M A T I Z A C E Ú K O L Ů PRO V Y D Á V Á N Í O P E R A Č N Í H O SYSTÉMU FEDORA L I N U X

BACHELOR'S THESIS
B A K A L Á Ř S K Á PRÁCE

AUTHOR ANTON MEDVEDEV
A U T O R PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
V E D O U C Í PRÁCE

B R N O 2 0 2 3

T
BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment III II llll II II II 111
Institut: Depar tment of Intel l igent Sys tems (DITS) 156945

Student : M e d v e d e v A n t o n

Programme: Informat ion Techno logy

Tit le: A u t o m a t i o n o f Re lease E n g i n e e r i n g T a s k s in F e d o r a L i n u x

Category: Sof tware Engineer ing

Academic year: 2023/24

Ass ignment :

1. Get fami l iar w i th Fedora Re lease Engineer ing infrastructure and serv ices. Focus on Standard
Operat ing Procedures , part icular ly their part related to packaging and compos ing .

2. Invest igate the current state of au tomat ion of S tandard Operat ing Procedures .
3. Propose a set of methods to ex tend the au tomat ion of S tandard Operat ing Procedures .
4 . Imp lement the proposed methods as new tools or as a part of the exist ing tool ing.

5. Execute the imp lemented tools in the product ion env i ronment . Evaluate the amoun t of h u m a n t ime
saved on Fedora re lease operat ions.

6. Summar i ze and descr ibe the ach ieved results and d iscuss their possible future improvements .

Li terature:

• Red Hat, Inc. and others: "Fedora Re lease Engineer ing Standard Operat ing Procedures" . Dostupne
onl ine: https : / /docs. pag ure.org/ re leng/sop. htm I.

• The Fedora Todd ler tool : ht tps: / /pagure. io/ fedora- inf ra/ toddlers/ t ree/main.

• Fedora L inux Re lease Life Cyc le. Dos tupne onl ine: ht tps: / /docs. fedorapro ject .org/en-
US/re leases/ l i fecycle/ .

Requ i rements for the semest ra l de fence :
The first two points of the ass ignment .

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor :

Consul tant :

Head of Depar tment :

Beginning of work :

Submiss ion deadl ine:

Approva l date:

L e n g á l O n d ř e j , Ing . , Ph .D .

T o m á š Hrčka

Hanáček Petr, doc. Dr. Ing.

1.11.2023

16.5.2024

6.11.2023

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Bože těchova 1/2 / 612 66 / Brno

http://ure.org/releng/sop
https://pagure.io/fedora-infra/toddlers/tree/main
https://docs.fedoraproject.org/en-
https://www.fit.vut.cz/study/theses/

Abstract
This paper aims to familiarize the reader w i t h automating the Fedora Release Engineering
team's task. It includes an introduct ion to Fedora Infrastructure and the processes involved
in releasing new versions of Fedora L i n u x . To achieve this goal, I analyzed the possibilities
for automation and chose to automate the Unretirement process by adding new functionality
to the existing Fedpkg and Toddlers tools. The result was the addi t ion of a new command
for Fedpkg that creates a request and a plugin for Toddlers that processes the request. This
result frees up engineers' resources for more important things.

Abstrakt
Cílem tohoto č l ánku je s e z n á m i t č t e n á ř e s a u t o m a t i z a c í úkolu t ý m u Fedora Release Eng i
neering. Zahrnuje ú v o d do infrastruktury Fedora a p rocesů spo jených s v y d á v á n í m nových
verzí s y s t é m u Fedora L i n u x . P ro dosažen í tohoto cíle jsem analyzoval m o ž n o s t i autom
atizace a rozhodl jsem se automatizovat proces uvolňování v y d á n í p ř i d á n í m nové funkce
do s távaj íc ích n á s t r o j ů Fedpkg a Toddlers. Výs ledkem bylo p ř i d á n í nového p ř íkazu pro
Fedpkg, k t e r ý vy tvo ř í požadavek , a z á s u v n é h o modulu pro Toddlers, k t e r ý tento poža
davek zpracuje. Tento výs ledek uvoln í p r o s t ř e d k y inženýrů pro důleži tě jš í věci.

Keywords
Operat ion system Fedora L inux , SOP(S tanda rd Operat ion Procedures), Toddlers, Package
Unretirement, fedpkg, fedora-scm-requests, A M Q P message, R e l E n g (Release Engineering),
Fedora Infrastructure

Klíčová slova
O p e r a č n í s y s t é m Fedora L i n u x , S O P (S t a n d a r d n í p r aco v n í postupy), Toddlers, odchod
bal íčku z d ů c h o d u , fedpkg, fedora-scm-requests, A M Q P zprava, R e l E n g (Release Eng i
neering), Fedora Infrastructure

Reference
M E D V E D E V , A n t o n . Automation of Release Engineering Tasks in Fedora Linux. Brno ,
2023. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor Ing. Ondfej Lengä l , P h . D .

Rozšířený abstrakt
Účelem tohoto č l ánku je s e z n á m i t č t e n á ř e s a u t o m a t i z a c í úkolů t ý m u pro v y d á v á n í verzí
s y s t é m u Fedora. Obsahuje ú v o d do infrastruktury Fedory a p rocesů spo jených s v y d á v á n í m
nových verzí s y s t é m u Fedora L i n u x . Vzhledem k tomu, že projekt Fedora je rozsáh lý projekt
s mnoha r ů z n ý m i součás tmi , k t e r é se v z á j e m n ě ovlivňují , aby fungoval. B y l o n u t n é č t e n á ř e
s eznámi t t a k é s t y p i c k ý m ž ivo tn ím cyklem ba l íčků a p o d o b n ý m i věcmi, aby pochopi l in
frastrukturu Fedory jako ucelený projekt. Vzhledem k o m e z e n ý m l idským z d r o j ů m se s
r ů s t e m projektu zvyšuje p o č e t p rocesů , k t e r é je t ř e b a automatizovat. Naj í t proces, k t e r ý
to vyžaduje , a u k á z a t z p ů s o b jeho automatizace, k t e r ý m ů ž e motivovat l i d i , aby se podí le l i
na vývoj i open-source distribuce, bylo c í lem m é p ráce .

K dosažen í tohoto cíle jsem analyzoval možnos t i automatizace. Můj konzultant m i do
poruči l , abych se pod íva l na procesy p o p s a n é v S O P jako na z p ů s o b jejich na lezení . P r o t o ž e
t akové procesy jsou p o p u l á r n í mezi k a ž d o d e n n í p rac í i nženýrů R e l E n g . P r o t o ž e mnoho z
t ě c h t o p rocesů je j iž a u t o m a t i z o v á n o na d o b r é ú rovni , padl můj zrak na Unretirement S O P .
Tento proces zahrnuje p r o p o j e n í s r ů z n ý m i s l u žb ami infrastruktury Fedora, což zvyšuje
už i t ečnos t p o p s a n ý c h informací pro p o d o b n é a dalš í procesy.

Výs ledkem a n a l ý z y tohoto procesu b y l n á v r h na vy tvo řen í d o p l ň k u pro stávaj ící ná s t ro j e
a služby. Jednou z nich je Toddlers. Tato s lužba m á architekturu za loženou na zá suvných
modulech a lze j i p o m ě r n ě snadno rozšíř i t . Funguje na pr incipu, že se j edno t l ivé zá suvné
moduly př ih lašuj í k o d b ě r u konk ré tn í ch t é m a t zp ráv , v nichž vznika j í požadavky , k t e ré
by měly bý t automaticky zpracovány. V m é m z á s u v n é m modulu se o d e h r á v á h l avn í čás t
zp racován í p o ž a d a v k ů na odchod do d ů c h o d u . V č e t n ě n a s t a v e n í p o t ř e b n ý c h m o d u l ů a
kontroly sp r ávnos t i a platnosti dat p o ž a d a v k ů .

Tato automatizace vyžadova la vy tvo řen í d o b ř e s t r u k t u r o v a n é h o p o ž a d a v k u , ale lidé to
ne v ž d y dělají , t a k ž e bylo rozhodnuto j i m pomoci p o s k y t n u t í m nás t ro j e , k t e r ý umožňu je
vy tvo ř i t p o ž a d a v e k p o m o c í j e d i n é h o p ř íkazu v nás t ro j i fedpkg. Úče lem tohoto p ř í k a z u je
zkontrolovat úda j e o argumentech d o d a n é ž a d a t e l e m a vy tvo ř i t p o ž a d a v e k na zák ladě t ě c h t o
úda jů .

D ů l e ž i t ý m výs l edkem t é t o automatizace je t a k é uvo lněn í l idských zdro jů . P r o t o ž e tento
proces vyžadova l r u č n í kontrolu requesteru a r u č n í zpracování . N y n í mohou inženýř i věno
vat více času z a j í m a v ý m úko lům, k t e r é vyžadu j í kreat ivi tu , spíše než r u č n í m u s ledování ,
což zvyšuje kva l i tu projektu Fedora a snižuje p r a v d ě p o d o b n o s t l idské chyby p ř i p o d p o ř e
ž ivo tn ího cyk lu bal íčků.

Automat ion of Release Engineering Tasks in Fe
dora L inux

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Ondfej Lengal P h . D . The supplementary information was
provided by Ing. Tomas H r c k a my external consultant from R e d Hat . I have listed a l l the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

A n t o n Medvedev
M a y 16, 2024

Acknowledgements
I would like to thank Ing. O n d ř e j Lengál , P h . D . , for his assistance. I would also like to
thank Ing. T o m á š Hrčka , who provided me wi th meaningful advice and encouragement to
complete the project. Last but not least I would like to express my gratitude to my mother,
Ing. M a r i n a Medvedeva, for her support dur ing my whole life.

Contents

1 Introduction 4

2 Fedora Release Engineering package related S O P ' s 6
2.1 Communi ty P la t fo rm Engineering team responsibilities 6
2.2 Fedora Release Engineering activities 7
2.3 Fedora Package Lifecycle 8
2.4 Package-related S O P s 9

3 Current state of package unretirement process 11
3.1 Ticket Creat ion for unretirement process 11
3.2 Val ida t ion Package is ready for Unretirement 13
3.3 Revert ing the Retirement C o m m i t 15
3.4 Unblocking the Package on K o j i 16
3.5 Verifying that package is not Orphaned 17
3.6 Update Produc t Defini t ion Center (P D C) 18

4 P l a n of Unretirement Process Automat ion 21
4.1 Fedora messaging 21
4.2 Datagrepper 23
4.3 Toddlers 24
4.4 Fedpkg 24
4.5 Proposed solution 25

5 Implementation 30
5.1 Enviroment used for development 30
5.2 Fedpkg command implementat ion 30
5.3 Toddler plugin implementation 34
5.4 Deployment 38
5.5 Tests 39

6 Testing 40
6.1 Running the tests 40
6.2 Fedpkg testing 41
6.3 Toddlers Testing 41
6.4 Moni to r ing 42
6.5 Saved T i m e 42

7 Conclusion 44

1

Bibl iography

A Fedpkg command Diagram

B Toddlers plugin diagram

C Toddlers Base class

D Tox configuration for Toddlers

List of Figures

2.1 Three axes of C P E mission[18] 6
2.2 Creat ion new stable release of Fedora Linux[35] 8

3.1 Selecting a suitable template 11
3.2 Unretirement template 12
3.3 Example of well-structured unretire ticket 13
3.4 Example of commit history of retired package 14
3.5 Example of successful package review on R e d Hat Bugzi l la (fedora-

review flag has „ + " status) 15
3.6 Example of commit structure with reverted retire commit 16
3.7 P D C overview[16] 18

4.1 Colaborat ion of differents tools trough Fedora Messaging[23] . . . 22
4.2 A M Q P example routing[32] 23
4.3 Fedpkg commands for Packaging process[33] 25
4.4 Different versions of people created tickets 26
4.5 Fedpkg use case 29
4.6 Toddlers processing 29

5.1 Ticket created by fedpkg command 34
5.2 Messages history 34

6.1 Package doesn't have an "rpms" namespace 41
6.2 Bugz i l l a U R L is missing, error handling 41
6.3 Bugz i l l a U R L is missing, error handling 42
6.4 Example of Toddlers log 42

A . l Fedpkg command processing diagram 48

B . l Toddler plugging processing diagram 49

3

Chapter 1

Introduction

Fedora L i n u x is a popular open-source L i n u x dis t r ibut ion. In fact, even the dis t r ibut ion of
choice by Linus Torvalds (2020) [34]. People who work for this d is t r ibut ion are called the
Fedora community. They include maintainers, packagers, stakeholders, as well as developers
and DevOps (development and operations) engineers. The CPE[18] (community platform
engineering) team is also a part of the community structured into a team that is helping
Fedora L i n u x to mainta in quality, security, robustness, and reliabili ty. One of the sub-teams
of C P E is RelEng[9] (Release Enineering) team. It is responsible for providing smooth
Fedora release development on different stages and containing regulation of packages life
cycle [7], which are part of the Fedora Act ive Packages repository. This team is processing
different tasks. Most popular of them, the team writes down i n the form of SOP (Standard
Operation Procedures) to share knowledge between team members and the community on
how to accomplish ind iv idua l actions i n the form of step-by-step instruction guidelines.
Most of these S O P s s t i l l require manual processing, which can become a problem.

Unfortunately, C P E and releng don't have an unl imi ted budget and unl imi ted people
resources, so it is necessary to keep on increasing responsibilities by automating as many
S O P s as possible. In this thesis, I explained and described the process of automation works
based on the automation of the Unretirement S O P . Try ing to motivate community members
or people who are interested i n Fedora to help their favorite dis t r ibut ion grow and become
better by par t ic ipat ing in development.

There is a huge amount of S O P s that cover release engineering processes, but this
thesis w i l l concentrate on package-related ones. M a i n l y on the Unretirement S O P because
it contains steps that are related to Fedora infrastructure and tools that are common wi th in
it so new people can better understand the overall picture. The People (mostly maintainers)
who would like to unretire a branch (usually „ rawhide" as the latest branch) now should
leave a request i n one of the issue topics, and on a dai ly basis, Fedora Release engineering
goes through open tickets and process such requests manually.

The goal is to create or extend existing tools and provide an easy structure for the com
munity to unretire branches of the package they need by automating the ticket processing
and actions required to unretire ind iv idua l branches of the package and reintroduce them
to the Fedora Act ive Packages.

This thesis is organized as follows. Chapter 2 presents basic information about the releng
team and the package-related S O P we are using. Chapter 3 is dedicated to describing the
current state of the unretirement process i n detail . Chapter 4 is devoted to explaining my
idea on the automation of this process. Chapter 5 describes the implementation, including
testing the environment and deploying it into product ion using Openshift and Ansib le . In

4

Chapter 6, I sum up the results that I got, w i th estimations of t ime saved by people and
reviews from the community.

5

Chapter 2

Fedora Release Engineering
package related SOP's

In this chapter I w i l l define the necessary terminology that w i l l be encountered throughout
the rest of this thesis. Next , I w i l l describe the structure of the C P E team[18] and its
sub-team RelEng[9], which works on release engineering practices, to better understand the
context and the problem I a m t ry ing to solve i n this thesis. Lastly, we w i l l take a look at a
few S O P s related to the package and describe the overall picture of the package lifecycle[7].
We w i l l continue by choosing the suitable S O P for automation and further consideration.

2.1 Community Platform Engineering team responsibilities
The Communi ty P la t form Engineering is a part of Fedora and Centos communities. Th is
team is contr ibut ing to the infrastructure and release engineering. It defines the mission
statement 2.1, on which the team should balance.

System administration
Infrastructure

Release-engineering

Figure 2.1: Three axes of C P E mission[18]

The C P E is responsible for infrastructure and services, including:

(i

• Host ing, automating, monitoring, and maintaining infrastructure components: C P E
manages and monitors networks, storage, and other infrastructure to support the
Fedora and Centos projects.

• Service monitor ing and lifecycle management of services hosted wi th in our infrastruc
ture: C P E monitors performance and any k ind of issues to provide reliable access to
the services w i th in Fedora and Censos. The team also manages a lifecycle of services.

• Feature development for infrastructure-related initiatives: C P E actively develops
tools and expands existing ones to process community init iatives. It includes au
tomation of tasks.

• Tool ing to enable a l l of the above: C P E dedicates resources to developing new tools
and integrating them wi th infrastructure to cover the mission.

Those components are essential to the success of Fedora and Centos[18]. It's always han
dled through the ticket creation process because it is necessary to have logged every change
to share it w i th in the team and track the progress on ind iv idua l tasks and initiatives[21].

2.2 Fedora Release Engineering activities

One of the crucial parts of C P E is the Release Engineering team. This team is ensuring
t imely and successful release of Fedora L i n u x versions. Th is team works on different tasks
throughout the release cycle, from planning the new release and managing the bui lding
system to pushing updat ing packages to a product ion server. Here is the list of essential
jobs to mainta in Fedora as a cutting-edge and reliable Linux[9]:

• Release planning and preparation: In collaboration wi th Fedora Project Steering
Commit tee (F E S C o) is developing release plans, setting timelines, and preparing bui ld
infrastructure to ensure it is ready to handle the number of packages involved in
Fedora bu i ld [7].

• Freeze management: Releng enforces freeze periods during the release cycle to ensure
that the final version w i l l have stability. It is the t ime that need to handle any
issue. [15]

• B u i l d System Adminis t ra t ion : Releng monitors the system performance, troubleshoots
bui ld failures, and makes adjustments to ensure efficient builds.

• Package Updates and Pushes: Releng is responsible for the pushing latest updates of
packages into product ion to ensure users have access to the latest software versions.
The team manages any package conflicts and monitors the deployment process.

• Wri te and mainta in tools to compose and push Fedora: Releng composes the final
version of Fedora, combining packages and configurations into an operation system
image.

• Documentat ion and Communica t ion: Main ta in ing comprehensive documentation for
the processes and tools. Also , the releng team communicates w i th the community
using different channels, including mai l ing lists and I R C channels.

7

The following image 2.2 helps better understand the life cycle of Fedora releases:

U p d a t e s - t e s t i n g
A t t i v a t i o r

Post-
branch •

Autorna tic
u p d a t e s

A u t o m a t i c
j p d a t e s

M a n u a
j p d a t e s

Ma nua l
u p d a t e s

U p d a t e s s t o p p e d in t es t i ng
Only Release e n g i n e e r i n g t an manua l l y

push some u p d a t e s t o s tab le

B e f o r e u p d a t e s - t e s t i n g
a c t i v a t i o n

U p d a t e s s t o p p e d in u p d a t e s - t e s t i n g
Only u p d a t e s a p p r o v e d by blocker b u g s or

f reeze excep t i ons p ro cesses a re m o v e d t o s tab le

A f t e r u p d a t e s - t e s t h g
a c t i v a t i o n

3.i d

"Stab te repository"

lase compose { " fXX"]

Ma nua l
u p d a t e s

Up d a t e s l ow ing as "zero d a y u p d a t e s "
3nly u p d a t e s a p p r o w e d by blocker b u g s o r
f reeze excep t i ons p rocessesa re p u s h e d

to base compose

A f t e r Go!

3.1 <\

"Stab le repository"

u pd ates repository("fXX-upd ate;

ecompose! f X X + 1)

Figure 2.2: Creat ion new stable release of Fedora L i n u x [35]

The activities of Fedora Release Engineering are really important for maintaining Fe
dora's posit ion as a leading L i n u x dis t r ibut ion. I want to dedicate this thesis to solving a
problem w i t h the automation of package-related activities. So, it is necessary to understand
a standard Package lifecycle.

2.3 Fedora Package Lifecycle

The casual package lifecycle i n Fedora has several stages. Here is an overview of the most
important ones.

• Development and Review: The lifecycle starts w i th developing and reviewing the
package by Fedora's community and maintainers. Th is step ensures that packages
are following Fedora Packaging guidelines[25]. Maintainers w i l l be responsible for the
package updates and following maintenance [7].

• Branching and Freezing: The main branch of development is called Rawhide. Releases
are Branched from Rawhide before they are sent out as a stable release. [10] Fedora
maintains a stable branch for every release, including creating a freeze for every
milestone (Alpha , Beta , F ina l) [10] during this period, the bu i ld won't be marked as
stable and pushed from "updates-testing" status[30].

8

• Composing Releases: Packages are then composed into the Fedora release. Us ing tools
like P u n g i and Livecd-creator. Th is stage ensures the appearance latest versions of
packages i n the new Fedora distribution[10].

• Testing and Val ida t ion : Before being released, a package goes through tests and
validation. It involves the Q A team that maintains the process and setting up test
events[19]. The goal is to ensure that the release candidate composit ion meets Fedora
Release Criteria[14].

• Release and Update: After the release, the package can get updates and bug fixes.
Th is process is handled through the tool Bodhi, which oversees updates and ensures
they are aligned wi th Fedora policy[31].

• E n d of Life (E O L) : Each Fedora release and its packages have defined a schedule of
E n d of Life when it no longer receives updates and support. Maintainers should be
aware of it to move the package to the newer versions[22].

• Re t i r ing Package: W h e n a package reaches the end of its useful life or being replaced
or the maintainer no longer supports it (orphaned package) the package should be
retired. It involves removing packages from the Fedora repositories. This process
exists to ensure that Fedora dis t r ibut ion remains current and maintainable [28].

Those stages of a package's life are crucial to support ing a healthy lifestyle for Fedora
L inux . Th is is why C P E involves S O P s . They describe strict guidelines on how to process
ind iv idua l steps to succeed i n one action. In this thesis, I would like to focus on automating
the S O P process to make the life of Fedora Release engineers easier. I would like to focus
on a few interesting package-related S O P s . They w i l l be described i n the next section.

2.4 Package-related SOPs

Fedora Release Engineering (releng) employs various Service Operations Procedures to cover
a list of tasks that are common. It is open because we want the community to engage wi th
it and make new S O P documentation. This way helps share knowledge between team
members and the community and ensures that not just individuals know how to fix a
problem. Basically, S O P is a set of steps required to accomplish a part icular task. These
S O P s cover many aspects of package management, including the creation and branching
of new packages, managing updates, and blocking and unblocking packages. For instance,
the Branching SOP describes the way how to make git and pkgdb branches for the package
either for new packages that passed review or for existing ones [8]. Releng created a script
to automate i t . Those procedures are crucial for maintaining the quali ty and integrity
of Fedora L i n u x , ensuring a l l the packages are up-to-date and compatible w i t h the entire
system. S O P is a clear guideline for maintainers and contributors to follow to keep an
efficient workflow wi th in Fedora Project [11]. There are a few S O P s related to EOL (End
Of Life), and I would like to focus on them.

Retire SOP

Retirement is a really important process that ensures that the package w i l l be removed i f it
is no longer needed or lost its maintainer. Th is procedure usually involves a maintainer who
w i l l decide to retire a package for various reasons such as obsolescence, lack of upstream, or

9

personal disabil i ty to mainta in i t . In case the package is s t i l l useful for Fedora, it 's getting
orphaned status. Then other maintainers or contributors who are interested in maintaining
can get ownership of this package. Orphan package s t i l l remains i n stable versions but
w i l l become the responsibili ty of the community. If the package remains orphaned i n the
rawhide branch longer than 6 weeks or i f it is no longer needed, then the package w i l l be
retired[20]. The maintainer should open a ticket to create a request. After that, Releng can
retire an orphan package using a script that creates and verifies successful retirement[12].

Unretire SOP

Service Operations Procedure for package branch unretirement was designed to enable re
tu rn packages back to life. It usually happens w i t h the rawhide branch, as the latest one,
but it can be applicable to other branches as well . Th is process was typical ly ini t ia ted when
the package that was previously retired was needed again or when the maintainer took over
the responsibility for looking after the package that was orphan. The unretirement process
begins wi th a request from the packager[13]. This request should be filled i n a specific ticket
t racker 1 . After that, a member of the Release engineering team w i l l ensure that the package
complies w i th Fedora packaging guidelines and policies [20]. U p o n approval, the package
branch w i l l be recreated, and the package w i l l be returned to the Package Database. This
S O P is important for the flexibili ty and responsiveness of the Fedora ecosystem.

In conclusion, standard operations Procedures play a significant role i n the work of
the Release Engineering team and community. These S O P s cover everything from the cre
ation, updating, and retirement to the unretirement of packages to ensure a well-structured
approach to package management. The problem is that a lot of S O P s s t i l l require man
ual execution, and this makes the life of the team much harder, given the ever-increasing
number of packages. Notably, the unretirement process s t i l l stands on a manual nature,
it 's not automated like the retirement process or some of the other S O P s . Th is makes it
an interesting topic for further investigation i n this thesis. Focusing on the unretirement
process provides the opportunities to investigate nuances of package management i n open-
source projects and help the community and the releng team, in particular, to automate an
important part of the work routine.

x h t t p s : //pagure.io/releng/issues

10

Chapter 3

Current state of package
unretirement process

Chapter 3 of this thesis describes the current state of the package unretirement process
in the Fedora Project . This process is crucial i n Fedora package lifecycle management. It
allows the reintegrating of packages that were previously retired, ensuring the dis t r ibut ion
can adapt to the changes. The chapter w i l l explore the steps that are required to process
this task. Started wi th the creation of a ticket i n a specific ticket tracker to show a desire to
unretire a package. Then, process the Val ida t ion and Verification of the package to ensure
it is ready and appropriate for unretirement. After that, there are technical steps, such
as reverting the retirement commit and unblocking the package on Koji (Fedora's building
server). The process also includes verifying the package is not orphaned and updated
Product Defini t ion Center (P D C) . E a c h of these steps is important to ensure the smooth
reintegration of packages into the Fedora active packages repository [13].

3.1 Ticket Creation for unretirement process

The ticket creation process is a formalized step to init iate an unretirement process. The
maintainer, a packager, or a community member who would like to reintroduce the pack
age in the Fedora Act ive Packages should fill a ticket i n a specific releng 1 ticket tracker
on pagure[5]. Releng prepared a few ticket templates, including a package unretirement
template 3.1, to make ticket creation easier.

c
ssue Templates

default

iiodule_eol

paekage_unorphan

package_unretirement

side_tag

Figure 3.1: Selecting a suitable template.

x h t t p s : //pagure.io/releng/issues

11

After choosing the right template, the requester should provide comprehensive informa
t ion that is needed to continue reviewing the request. B y answering part icular questions in
a template. A n example of a template is i n the figure 3.2 below:

New Issue

Issue Title

Name of the package?

FAS username of the new maintainer?

Branches that you need it to be unretired for?

Package re-review BZ URL?

Browse to attach images or drag them into the comment field

Comments use Markdown Syntax

:= Types " Preview Edit

Browse

• Private Create Issue

Figure 3.2: Unretirement template.

Here's an explanation of the fields that are requested to f i l l :

• Issue Ti t l e : This field usually looks like „Unre t i r e" + the name of the package. It is
necessary to have a more robust structure of tickets i n the ticket tracker.

• Name of the Package: The name of the package itself. It should be the name of the
package that the package would like to unretire.

• F A S username of the new maintainer: Th is field should contain the Fedora Account
System (FAS) username of the user who w i l l be the maintainer of the unretired
package. If this field is empty, then the requester himself w i l l be a new maintainer of
the package.

• Branches that you need to be unretired: The Unretirement S O P requires branches
to process. It's necessary to provide a list of branches that you need to unretire a
package on. Those branches usually contain the rawhide branch as the latest one and
might have few of the stables branches. If this field is empty, then the package w i l l
be unretired just on the rawhide branch.

• Package re-review B Z U R L : This field should contain a Red Hat Bugzilla U R L w i t h
a package review. R e d Hat Bugz i l l a is a R e d Hat bug-tracking system that supports
submit t ing and reviewing packages and bugs that are found in R e d Hat d i s t r ibu t ion^] .
Before opening the ticket w i th an unretirement request, the requester should submit

12

a review request on the package i n RedHat Bugz i l l a and get a fedora-review+ flag.
B Z U R L is not necessary if the package was retired less than 8 weeks ago[28].

• A n y extra information: In this field, the requester can provide any addi t ional infor
mation that might be important or helpful or keep this field empty.

After the requester sends a ticket, one of the members of the releng team w i l l look into
it. If everything is clear, then the releng engineer w i l l process an S O P . Otherwise, i f some
important part is missing, the engineer w i l l notify the requester i n the comments section
under the ticket to correct missing or wrong parts and reopen the ticket. Here is an example
of a well-structured Unretirement ticket:

O #11899 Unret i re rus t -bu f -min
Closed: Fixed 7 days ago by humaton. Opened 7 days ago by salimma.

Name of the package?
rust-buf-min

FAS username of the new maintainer?
salimma

Branches that you need it to be unretired for?
rawhide, f39, f38

Package re-review BZ URL?
https://bugzilla.redhat.com/show_bug.cgi?id=2259044

Any extra information?
Needed for mst-v_htmlescape which will enable additional functionalities for some of our packaged crates
like rust-minijinja, and will be required by some nushell crates.

B Reply

Figure 3.3: Example of well-structured unretire ticket.

The ticket creation procedure is crucial for maintaining transparency and collabora
t ion wi th in Fedora, ensuring high-quality package management standards. It reflects the
community-driven approach.

3.2 Validation Package is ready for Unretirement

Val ida t ing a package for unretirement is an important step to ensure that the package is
safe. It needs to be done to keep Fedora L i n u x warranted and feasible. The validat ion
process includes the following steps [13]:

Legal and Licence Verification

It should be confirmed that the package wasn't retired because of legal or license issues
that would prevent it from being reinstated. Th is involves checking retired packages in

13

https://bugzilla.redhat.com/show_bug.cgi?id=2259044

the packages repository. The retired package w i l l have only a specific file on the branch,
which indicates its status: dead.package. Th is file is used to indicate that the branch is
obsolete and no longer in use. To ensure that there were not any Legal or Licence issues
behind retirement, releng, members should look at the last commit message (the commit
that removed a l l files and left dead.package file there). If this message has a clear reason,
such as "no longer need" 3.4, it 's okay to unretire the package. The last commit should
always be a retirement commit when the requester asks for unretirement.

Commi ts 3C Branch: r a w h i d e "

no longer used
£ Fabio Valentini • 2 years ago i.-fJ-ffl!W^*.-lffl.M>

- Rebuilt for https://fedoraproject.org/wiki/Fedora_35_Mass_Rebuild
S_ Fedora Release Engineering • 2 years ago C B S

- Rebuilt for https://fedoraproject.org/wikl/Fedora_34_Mass_Rebuild
9 Fedora Release Engineering • 2 years ago J-'Arli

1 d34adab

2 2 818a2d5 __

Update to 0.12.0
Igor Raits • 3 years ago

1 4 a c e a 8 1

Figure 3.4: Example of commit history of retired package.

Bugzilla review

A s mentioned before, the Bugz i l l a review U R L should be provided just i n case the package
was retired more than 8 weeks ago and requires re-reviewing on B u g z i l l a 2 . Review process
using fedora-review flag on Bugz i l l a . Th is flag can have the following statuses[29]:

• fedora-review " (B L A N K) " : Package needs review.

• fedora-review "?": The package is under review.

• fedora-review "-": The package failed review, dropped for legal or other issues.

• fedora-review "+": The package approved

Releng engineer must ensure that a package passes review on Bugz i l l a to continue the
unretirement process. The flag is shown after a l l data about review i n the Flags section
3.5.

2 h t t p s : //bugzilla.redhat.com/

14

https://fedoraproject.org/wiki/Fedora_35_Mass_Rebuild
https://fedoraproject.org/wikl/Fedora_34_Mass_Rebuild

Bug 2257307 - Review Request: rust-cedar wood - Efficiently-updatable double-array trie in Rust (ported) from cedar)

Keywords:

Status:

Alias:

Product:

Component:

Version:

Hardware:

OS:

Priority:

Severity:

Target Milestone:

Assignee:

QA Contact:

Docs Contact:

URL:

Whiteboard:

Depends On:

TreeView*

CLOSED ERRATA

hetl tile:

Package Review B O

rawhide

Unspecified

Unspecified

unspecified

unspecified

Michel Lind

Fedora Extras Quality Assurance

https://crates.io/crates/cedarwood

2254775

depends on / blocked

Reported: 2024-01-08 18:10 UTC by Albert Larsan

Modified: 2024-01-22 20:12 UTC (History)

CC List: 2 users (show)

Fisted In Version:

Doc Type: 0 If docs needed, set a value

Doc Text: 0

Clone Of:

Last Closed: 2024-01 -22 20:12:15 UTC

Type: -
Embargoed:
Dependent

Products:

Flags: michel: fedora-

Figure 3.5: Example of successful package review on R e d Hat Bugzi l la (fedora-
review flag has „ + " status).

This review process allows the community or stakeholders to comment on potential
issues or provide addi t ional insights that may affect unretirement decisions.

Verification tags, that required to be unretired

The requester should specify which tags (branches) should be unblocked. Tags are helping
to manage different versions of Fedora releases, so accuracy i n this aspect ensures that the
package w i l l be unblocked on the right versions. It's important to keep in mind that tags
should be the tags of current or pending releases. A n example of tags is shown i n this figure
3.3.

The Val ida t ion process is developed to mainta in the integrity of the Fedora dis tr ibut ion.
If these steps are carefully followed, Fedora can continue to provide robust, secure, and legal
packages to the end users.

3.3 Reverting the Retirement Commit

Revert ing a retirement commit is a necessary step for the unretirement process. This action
undoes the changes that were made to mark a package as retired. Here is how usually this
process unfolds[13]:

1. Accessing compose system: The Fedora Release engineer w i l l start by connecting one
of the compose matching though ssh. Th is provides the necessary infrastructure to
perform package management tasks[26].

ssh compose-x86-02.phx2.fedoraproject.org

2. C lonn ing the Package Repository: This step involves cloning a package's git repository
using releng credentials. This is done through the CLI (command line interface), that
fedora infrastructure provides, such as relengpush or f edpkg. Fedpkg is more popular
so further investigation w i l l consider it as a main option.

15

https://crates.io/crates/cedarwood

GIT_SSH=/usr/local/bin/relengpush fedpkg — u s e r \
releng clone PACKAGENAME

3. Setting G i t Configuration: After cloning the package repository, the R e l E n g engineer
needs to enter the directory and configure git user information to ensure that the
action taken w i l l be properly at tr ibuted.

cd PACKAGENAME
git config — l o c a l user.name "Fedora Release Engineering"
gi t config — l o c a l user.email "releng@fedoraproject.org"

4. Revert ing the retire commit: The core step is to revert a commit that contains
dead.package file on the part icular branch using its commit hash i d . Ensure the
commit message contains a U R L to the request i n pagure[13].

g i t revert -s COMMIT_HASH_ID
GIT_SSH=/usr/loca/bin/relengpush fedpkg — u s e r releng push

A n example of commit structure wi th revert commit is shown i n the following figure
3.6:

Commi ts X! Branch; r a w h i d e -

Rebuilt for https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild
SE Fedora Release Engineering • a minute ago <-.-IJ.l'JJ.II.IA {

Unretire (fedora#2257307)
Albert Larsan • 3 days ago

Unretirement request: https://pagure.io/releng/issue/11896
£ Tomas Hrcka • 7 days ago

no longer needed
£ Fabio Valentin • a year ago

59914f0

24c8fd3

1

Figure 3.6: Example of commit structure with reverted retire commit.

Comple t ing these steps makes the package active i n the Fedora repository, and it is
ready to proceed wi th the rest of the unretirement actions.

3.4 Unblocking the Package on K o j i

For unretirement, unblocking the package on Koji 3 is an important step. K o j i is Fe
dora's packages bui ld ing system, where packages are buil t before they can be part of the
distribution[37]. So when the package is retired, it 's also blocked on K o j i to prevent it from
being buil t or updated. To restore a package, the following steps are taken[13].

3 h t t p s : //koj i.fedoraproject.org/koj i /

16

mailto:releng@fedoraproject.org
https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild
https://pagure.io/releng/issue/11896
http://fedoraproject.org/koj

1. Check current state: The first step is to ensure that the package is actually blocked
on K o j i . Th is is done by running the following command.

k o j i list-pkgs —show-blocked —package=PACKAGENAME

2. Unblock requested tags on K o j i : Once confirmed that the package is blocked, it 's
t ime to unblock every tag that the requester specified. Every tag is responsible for
the bu i ld of the package on different Fedora releases or release candidates. Th is is
done by running the following command.

k o j i unblock-pkg TAGNAME PACKAGENAME

This process reenables the package to be buil t and updated through the K o j i system,
reversing its retirement status and reinstating it i n the Fedora bu i ld process. Unblocking
on K o j i is a crucial part of processing that allows a package to move through the bu i ld
pipeline.

3.5 Verifying that package is not Orphaned

Verifying the package is not Orphaned is a step to ensure that Fedora keeps a healthy
ecosystem. If the package is orphaned (that means that the package doesn't have an active
maintainer and owner), it can't get updates and security patches. Here is how verification
typical ly works [13]:

1. Check package ownership: The first step is to find out the maintainer of this package.
This involves navigating to the package sources webpage . A n d checking details to
see if the package has maintainers. If there are some Fedora Accounts usernames,
then the package is not orphaned.

2. Transfer the responsibility over the package to the requester: If a package is orphaned,
that means it doesn't have a current maintainer. In this case, to prevent removing the
package from distr ibut ion, a requester w i l l become a new maintainer for this package.
The Release Engineering team has a script that allows them to assign a package to the
new maintainers. To achieve this the engineer needs to run the following command:

./scripts/distgit/give-package —package=PACKAGENAME \
—custodian=REQUESTOR

For running this script, the engineer who is processing unretirement requests must be
part of cvsadmin group. Groups like this are the main way how we add and restrict
rights for ind iv idua l persons wi th in Fedora Infrastructure. So, if the person is not a
part of this group, then this person should create a ticket and ask to be added to this
group.

The verification and reassignment process is v i t a l to ensuring that a l l packages in the
Fedora dis t r ibut ion have maintainers who can provide updates and security patches, which
is crucial for Fedora's s tabil i ty and reliability.

4 h t t p s : //src.fedoraproject.org/

17

http://fedoraproject.org/

3.6 Update Product Definition Center (P D C)

The PCD (Product Definition Center) is a repository and sets of A P I s to collect and store
metadata related to the packages, releases, and artifacts that are required to support Release
Engineering workflow[3]. Fedora's implementations of P D C allow Fedora to mainta in a
database of composes and their components, which helps w i t h automation and making
decisions. The following figure shows the layout of P D C 3 . 7 and the information it stores

Figure 3.7: P D C overview[16]

The P D C update is a process that requires several steps. Here is how the P D C updates
information for the Unretirement process[13] and what should be done to get rights for it:

1. L o g into P D C : The first step is to log into P D C using your FAS (Fedora Account
System) account. Th is account is used to authenticate maintainers and contributors
and provides necessary permission to make changes in P D C .

2. Check P D C entry: After login, you need to check every branch that was unblocked in
previous steps on a package by querying P D C ' s R E S T A P I . The example of the l ink is:
https: / /pdc.fedoraproject.org/rest_api/vl/component-branch- slas/?branch=
TAG&global_component=PACKAGENAME If no information is returned, the package or
its branch is probably missing in P D C , so the person who is processing S O P should
addit ional ly create a request for a new branch using fedpkg request-branch com
mand.

3. Ob ta in a Token: If a package and its branches exist w i th in P D C , the R e l E n g engineer
must obtain a token from the P D C site. It often involves navigation to the
https: //pdc.fedoraproject.org/rest_api/vl/auth/token/obtain/ section wi th
Firefox web browser. Then F12 should be pressed and selected a tab labeled Net
work. After refreshing a page, the engineer should find a line whose string matches
wi th /rest_api/vl/auth/token/obtain/ column.

18

http://fedoraproject.org/rest_api/vl/
http://fedoraproject.org/rest_api/vl/auth/token/obtain/

4. Ex t rac t a token as c U R L : After the previous step, right-click and select:
Copy>Copy as cURL. N o w the engineer should add this cURL into a terminal and add
-H "Accept: application/json" it should look like similar to command below:

curl 'https://pdc.fedoraproject.org/rest_api/vl/auth/token \
/obtain/' \
-H 'Host: pdc.fedoraproject.org' \
-H .0) Gecko/20100101 Firefox/57.0' \
-H 'Accept: text/html,application/xhtml+xml, \
application/xml;q=0 .9 ,*/*;q=0.8' \
-H 'Accept-Language: en-US,en;q=0.5' \
—compressed \
-H 'Cookie: csrftoken=CSRF_TOKEN_HASH; SERVERID=pdc-web01; \
mellon-saml-sesion-cookie=SAML_SESSION_HASH; \
sessionid=SESSION_ID_HASH' \
-H 'Connection: keep-alive' \
-H 'Upgrade-Insecure-Requests: 1' \
-H 'Cache-Control: max-age=0' \
-H "Accept: application/json"

B y running this command, the engineer w i l l obtain a token needed for further pro
cessing.

5. Use a token to run P D C update script: F i n a l l y when the token is obtained, the releng
engineer can run a script from the Release Engineering Reposi tory . Th is script
w i l l update P D C entries w i th new information related to the unretirement requests.
Script w i l l require TOKEN, PACKAGE_NAME and TAG. A person who is running this script
can also add addi t ional flags to perform the update correctly. The command looks
like the following:

PYTHONPATH=scripts/pdc/ scripts/pdc/adjust-eol.py fedora \
MYTOKEN PACKAGENAME rpm TAG default -y

This process ensures that P D C is reflected i n the current state of a package i n Fedora,
and any tools that use P D C w i l l get up-to-date and correct information about a package.
It is crucial to mainta in the integrity of Fedora's packages data and metadata throughout
Fedora infrastructure.

The Unretirement Package Branch S O P i n Fedora is a multi-step procedure that evalu
ates that package is carefully reviewed and reintegrated into the Fedora Packages ecosystem.
This involves a set of steps from the ticket in i t ia t ion process to the updat ing of metadata
in the Product Defini t ion Center. E a c h step is designed to mainta in the security, integrity,
and quali ty of Fedora L i n u x . After this whole process, the in i t i a l ticket can be closed,
and the releng member who was responsible for it can move to the next work unit . This
S O P highlights Fedora's commitment to a robust, reliable, and transparent package man
agement system. It required careful coordination between team members, maintainers,

5 h t t p s : //pagure.io/releng

19

https://pdc.fedoraproject.org/rest_api/vl/auth/token
http://pdc.fedoraproject.org'

and stakeholders, which emphasizes open-source principles on which Fedora is staying. B y
enabling unretirement, Fedora allows the continuous evolution of its repository, adapting
to the changing needs of its user base and embracing the dynamic nature of open-source
software development. This and the complexity of this process make me want to help the
open-source community and automate this S O P .

20

Chapter 4

Plan of Unretirement Process
Automation

This chapter covers the plan of automation. The first idea was that it could be achieved by
wr i t ing a P y t h o n script that would automatical ly process a l l checks that the unretirement
process required, followed by actions that return the package to the list of Ac t ive Fedora
Packages. B u t this solution won't be ideal. It w i l l s t i l l require members of the R e l E n g
team to define specific requests from the issue topic and get a l l the authentications needed
to run the script, followed by running the script w i th specific parameters where errors can
occur. The next idea is to make this process fully automated. To solve this problem, a few
tools and services need to work together. Au tomat ion w i l l require:

• Fedora Messaging - Th is package provides tools and A P I s to make using Fedora's
messaging infrastructure easier[17].

• Toddlers - Toddlers is a simple appl icat ion to run tasks upon fedora-messaging
notifications [6].

• Fedpkg - Tool ing for working w i t h Fedora's dist-git and artifact bui ld , including
R P M s , containers, and modules[2].

This chapter w i l l explain how each tool works, followed by a proposal of extensions for
those tools. In conclusion, I w i l l show the final scheme of tool collaboration.

4.1 Fedora messaging

The best place to start is by explaining the concept of Fedora Messaging. Fedora Messaging
plays a key role i n the Fedora Project 's infrastructure. It is designed as a way for communi
cation between different components wi th in the ecosystem. Since Fedora was continuously
growing i n complexity and scale, Fedora Infra required a solution that would allow com
municat ion between different services. Th is problem was addressed wi th a message bus
architecture [23]. Fedora Messaging is buil t to handle asynchronous message sending, which
enables different services to interact and exchange information effectively.

Fedora Messaging provides a secure, scalable, and reliable messaging framework 1 . It
serves for efficient message passing, automating workflows, dis t r ibut ing information, and

x h t t p s : / / github.com/fedora- infra/fedora-messaging

21

http://github.com/fedora-

managing event-driven actions. The valuable factor is that it works wi th different tools
such as K o j i , B o d h i , F A S , and more. So, for Fedora Infrastructure, it 's something similar
to arteries for humans. Here is a scheme of collaboration through Fedora Messaging:

F A S Bodhi Koji PkgDB

i i i i
Fedora I n f ras t ruc tu re
AMQP Broker (qpid) J

i
Fedora
Community
AMQP Broker
(qpid)

FAS User
AMQP Broker
(qpid)

Web Fi on tend gnom-e shell

Figure 4.1: Colaborat ion of differents tools trough Fedora Messaging[23]

Fedora Messaging is buil t on top of the Advanced Message Queuing Pro toco l (A M Q P) [24].
Th is choice ensures, important for Fedora Ecosystem, qualities such as:

• Scalabil i ty: Capabi l i ty to handle thousands of messages, making it perfect for Fedora's
high-volume infrastructure

• Rel iabi l i ty : B u i l d - i n mechanisms that ensure message delivery

• F lex ib i l i ty : The publish/subscribe model allows the different tools to subscribe to
specific topics required for their operations and not to be overwhelmed by other
information.

A M Q P
A M Q P 0-9-1 (Advanced Message Queuing Protocol) is a messaging protocol that enables
conforming client applications to communicate w i th conforming messaging middleware
brokers. [32]. The basic model of this protocol includes the following steps:

1. Messages are published to exchanges, which are something like mailboxes.

22

2. Exchanges distribute copies of messages to Queues using rules called bindings.

3. The broker delivers a message to the consumer that subscribes to a queue or demand
from the consumer (fetch/pull).

"Hello, world" example routing

Ui
Figure 4.2: A M Q P example routing[32]

Fedora messaging is deeply integrated into Fedora Infrastructure. It can send notifica
tions from bui ld ing tasks, automated testing alerts, and more. However, the functionality
extends beyond notifications. Tha t enables integration across different platforms such as
Koj i (bu i ld ing system) and Bodhi(updates system). For example, when a package bu i ld is
completed on K o j i , Fedora Messaging ensures that B o d h i w i l l be notified to begin following
the steps of the process.

To summarize, it plays an essential role i n maintaining the efficiency of the integration
of the Fedora Project 's infrastructure. Its scalable and robust architecture easily adapts
to the needs of Fedora. A s Fedora continues to grow, Fedora Messaging w i l l remain a key
element that enables smooth collaboration between many project components.

4.2 Datagrepper

Fedora Datagrepper is a web-based tool essential for querying and analyzing vast amounts
of data that are transferred by Fedora's messaging system. A s part of Fedora infrastructure,
Datagrepper interacts w i th Fedora Messaging, which carries event-driven data a l l across the
ecosystem. It is very useful for users or processes that need to retrieve historical message
da ta 2 . Tha t makes it important for developers, administrators, and maintainers who are
interested in system events and reactions to it [1].

Datagrepper provides users the abi l i ty to perform a detailed search on message histories
wi th filters such as date ranges, topics, categories, packages, and more. This functionality is
essential for tasks such as following progress, troubleshooting issues, and performing audits
for Fedora Infrastructure activities. It is achieved by providing two modes of interaction:
web interface and J S O N A P I , which is used i n a wide range of tools wi th in Fedora Infras
tructure. The A P I allows the creation of event-driven scripts based on message history.

2 h t t p s : //apps.f edoraproject.org/datagrepper/v2/search?

23

http://edoraproject.org/datagrepper/v2/

4.3 Toddlers

Fedora Toddlers is an essential tool due to the increasing complexity of Fedora's Infrastruc
ture. It allows developers to automate everyday tasks and improve system efficiency A s the
Fedora Project grows i n scale, such a tool as Toddlers is becoming increasingly important to
maintain the stabil i ty of Infrastructure. Au tomat ing repetitive tasks and providing specific
insights into possible system issues allows Fedora contributors to significantly smooth their
workflow and spend more t ime on complex tasks that require human interaction, such as
developing new features, instead of spending on repetitive jobs that machines can achieve
wi th better efficiency.

Fedora Toddles is a plugin-based sys tem 3 . Contr ibutors can customize its functionality
and add new plugins to cover new repetitive tasks. It allows interaction wi th different
Fedora Services, such as K o j i , Pagure, and B o d h i , to automate activities like removing re
t ired branches, creating new package repositories, providing different checks, and reporting
anomalies. Toddlers are a bunch of smal l programs that keep running around. It is aimed
at running tasks upon fedora-messaging notifications [6]. The modular i ty allows users to
modify the functionality of specific scripts easily, and its extensibili ty makes it a reliable
tool for the long term because it is l ikely to adapt to new challenges that may arise.

The tool represents a step forward i n automating system tasks inside the Fedora Project.
It reduces the manual effort required to do the work of C P E engineers and the number of
errors that can occur when tasks are processed manually. A n important aspect is that
Toddlers is adaptive to the scaling of the Fedora Project, making it an effective long-term
tool .

4.4 Fedpkg

Fedpkg is one of the most essential command-line tools on the Fedora Project. It makes
it easier to perform package management and maintenance tasks by running commands.
It provides CLI (command-line interface)1, al lowing users to bu i ld , create, and mainta in
packages. Fedpkg is "Front-end to the Fedora Infrastructure for package maintainers"[36].
Since the number of packages and contributors is constantly increasing, it is crucial to have
such a tool that can work wi th the vast majority of repositories through a single interface.

Fedpkg is designed to make a workflow for Fedora package maintainers easier because
it automates and simplifies a lot of tasks for package lifecycle management. The most
important features include:

• New package creation: It makes it easy to create a package wi th in Fedora Infrastruc
ture, as it has automatic scripts that perform repetitive tasks.

• Bu i ld ing and testing: Fedpkg is integrated wi th K o j i , which allows to bu i ld and test
packages either local ly or remotely.

• Reposi tory management: It has a l l popular git commands such as clone, push, pu l l ,
etc. So, the engineer can handle different actions wi th the git repository through an
interface.

3 h t t p s : //pagure.io/fedora-infra/toddlers
4 h t t p s : //pagure. i o / f edpkg

24

• Release management: Fedpkg is also integrated wi th metadata tools, which can be
useful when the maintainer needs to tag packages for a part icular release, upload
updated packages to B o d h i , and so on.

The most popular Fedpkg commands are shown i n the following image:

C o m m o n f e d p k g c o m m a n d s
$ fedpkg c l o n e -B paekagw • c l o n e and checkout a

package and i t s branches
S fedpkg b u i l d • requests b u i l d of the package
$ fedpkg compile • compiles package l o c a l l y
$ fedpkg commit "nnmif.H changes
$ fedpkg d i f f • shows chanqes between commits
$ fedpkg import [SRPM] Updates e x i s t i n g package

with the SRPM
$ fedpkg new-sources • uploads new source f i l e
$ fedpkg p a t c h • c r e a t e s and adda a g e n d i f f f i l e
$ fedpkg p u l l • updates f i l e s from r e p o s i t o r y
5 fedpkg push • sends changes {commits} to

r e p o s i t o r y
$ fedpkg s c r a t c h - b u i l d *• r e q u e s t s s c r a t c h b u i l d
$ fedpkg sources * downloads source f i l e s
$ fedpkg srpm c r e a t e s an arprtt
$ fedpkg t a g • manages g i t tagH

f e d p k g

Figure 4.3: Fedpkg commands for Packaging process [33]

Fedpkg is closely integrated wi th Fedora Infrastructure[2]. It uses K o j i , Pagure, B o d h i .
It offers an easy way for the bui ld ing process, al lowing maintainers to launch builds from
the terminal and upload results to the relevant services. It lowers the barrier to entry for
new contributors, as it simplifies package maintenance. It helps ensure important qualities
such as security by reducing human factors and saves a huge amount of maintainers' t ime,
allowing them not to spend time on repetitive tasks.

In conclusion, this too l became indispensable for the Fedora Project ecosystem, as it
enables maintainers to be more effective and efficient in everyday work. W i t h the integration
into Fedora's infrastructure and automation of repetitive tasks, it became an important part
of Fedora's development workflow. A s Fedora evolves, such tools are becoming more crucial
for maintaining the scalabili ty of the Fedora ecosystem.

4.5 Proposed solution

This is the most important part of this chapter. Here, previous knowledge is grouped into a
proposal. Th is section w i l l explain how the idea changed from the beginning. It is necessary
for understanding the next chapter and why those tools collaborate i n this way.

The best way to start is to consider whether actions really need to be taken or i f
R e l E n g should keep it as it is now. A s mentioned earlier, i n an ever-growing project,
process automation becomes not just opt ional but mandatory 2.4. I have identified a few

25

key reasons and benefits that the R e l E n g team w i l l get from having the Unretirement
process automated.

• Consistency and Accuracy: It w i l l reduce the possibil i ty of human-made mistakes.

• Faster Response Time: The requester doesn't need to wait for the R e l E n g engineer to
review his ticket and process i t . The same works the opposite; the engineer doesn't
need to wait for the requester's reaction to mistakes or errors.

• Cost savings: Releng engineers w i l l have more t ime to dedicate to initiatives and more
important tasks that require human effort.

Ticket creation and problems associated with it

After understanding the reasons behind automation, it is important to start w i th the request
itself because the way a person makes the request w i l l impact the robustness of automation
and the t ime it takes to process the request.

Every request is created i n the form of a ticket. The appearance of a new ticket in
a system w i l l automatical ly send a Fedora Message wi th a specific topic. This topic, in
most Cases, IS cl place where the ticket was created. The first idea for automation was
to implement a plugin for Toddlers 4.3 that would subscribe to a specific topic and fol
low messages from i t . After receiving a message wi th the Unretirement request, it would
consider doing a l l needed checks and controls followed by processing i t . This solution can
work, but it won't be ideal. The problem is that Fedora Contributors who are interested in
such requests are different humans, and they are always happy to show their personalities.
The following figure shows two similar requests for Unretirement, but they were filled by
different persons and i n different ways :

O #12083 U n r e t i r e r p m s / p h p - p s r - h t t p - c l i c n t
Opened 2 days ago by wombelix. Modified a day ago

O #12066 U n r e t i r e py thon -pyngus
Closed: Fixed 15 days ago byjnsamyak. Opened 17 days ago by hiwkby.

• Describe the ssue

lie pjc;ii<;e is a dependency of my work to update php gLzzlch-ttp GUZZIC to v;
keep php-aws-sdk3 alive and up-to-date.

I opened a review recuest because t's retired tor more than 8 weeks:
Ir.tps //bu_zi ki.-cdhj'..com:'bui;;i la'show.b ug.cgi?id=2277764

• When do you need this? [YYYY/MM/DD;

• When is this no longer needed or useful? (YYW/MM/DD)

• If we cannot complete your request, what is the mpact?

R o:ks i;)(vi:in_ a id

Name of the package?
python-pyngus

FAS username of the new main ta ined
|- '..vkliv

Branches that you need it to be unret i red for?

Package re-review BZ URL?
https://bugzi lla. redhat.com/show_bug. :gi? d=2270021
Any extra information?
Hello, I submit t ie issue for the second t me.:]
https://pagiirp.io'releng/i^iie.'11862

(a) Ticket for unretirement without using
template

(b) Ticket for unretirement with using tem
plate

Figure 4.4: Different versions of people created tickets.

It can be difficult to automatical ly process requests, as people use various templates and
write information i n different ways. Th is means that a lot of code is needed to cover a l l the
different possibilities, and even then, new types of requests may require further adaptation.
W h i l e this solution can handle many requests, the release engineering team is looking for
an ul t imate solution that w i l l remain effective for years to come.

In order to solve the problem, it is necessary to educate people on how to fi l l the ticket
correctly. It w i l l not be the perfect solution. So after the investigation, R e l E n g decided to

26

https://bugzi
http://redhat.com/show_bug
https://pagiirp.io'releng/i%5eiie.'11862

use Fedora Infrastructure tools like Fedpkg to create the Unretirement tickets and motivate
people to use this tool instead of creating a ticket by hand. The Fedpkg tool has a bui l t - in
feature that can be useful for creating tickets, for example, i n commands such as fedpkg
request-branch and fedpkg request-repo, that also create a ticket w i th different types
of requests. These commands create a ticket requesting a new repository or branch in
the existing repository. The ticket is created i n a specific tracker called releng/fedora-scm-
requests5, designed to receive a l l tickets for further automatic processing. A l though this
solution can work, it should be subject to restrictions and conditions. The following section
proposes a new fedpkg request-unretirement command.

Proposal fedpkg command

In this thesis, fedpkg w i l l be ut i l ized as a part of the automation process. Fedpkg was se
lected because it has s imilar functionality that aligns wi th the automation requirements. For
instance, the fedpkg request-branch command can create a ticket in the releng/fedora-
scm-requests issue tracker. This feature is precisely what is needed, but there is a difference
between requesting a branch and requesting an Unretirement. Fortunately, as fedpkg is
a command-line interface, it is relatively easy to extend its functionality to meet specific
requirements. For creating a ticket, a new fedpkg request-unretirement command must
work wi th the information provided by the requester. Th is information can be provided in
the form of arguments, so the command is designed to handle the following arguments:

• repo: The name of the package that the requestor would like to unretire.

• namespace: The namespace of the repository to define a package.

• b z _ u r l : A l ink to Bugz i l l a w i th a review request on the package; it is required in
some cases.

• branches: A list of package branches that are requested to be unretired.

In the appendix A , a diagram of fedpkg processing is presented. Initially, fedpkg requests
arguments, but none of these arguments are mandatory by default. Fedpkg is an intelligent
tool that can obtain information on its own. For instance, if the user is i n a repository
on a part icular branch and doesn't provide any arguments, the script w i l l assume that the
user wants to unretire the branch he is currently in . Addi t ional ly , it recognizes the user's
Fedora Account for authentication purposes. If incorrect arguments are provided, an error
w i l l be raised. The requester should be cautious wi th the commands they are running. The
request won't be processed if any of the data is incorrect or corrupted.

The requester must be aware of the checks that the command conducts for successful
execution. These can be phrased as questions:

• If the branch was retired for longer than eight weeks, a Bugz i l l a U R L argument should
be provided. Is the Bugz i l l a U R L provided?

• Is the user i n the packager group?

• If B Z u r l s is provided, does it have a fedora_review+ flag?

5 h t t p s : //pagure.io/releng/f edora-scm-requests

27

If the user's answer to any of the previous questions is negative, he should be informed
of the changes he is required to make.

After a successful request, a ticket w i l l be created. The current p la in text format of
the ticket is functional, but it would be beneficial to uti l ize a different format. J S O N was
chosen for its abi l i ty to handle the necessary fields in the ticket and its ease of management
in subsequent processing scripts. The J S O N ticket should include several fields:

• name: name of the package

• type: package namespace

• branches: list of branches that are needed to be unretired

• review bugzilla: Bugz i l l a U R L wi th a review on package or none

W i t h this ticket created, the proposal part of automation on the fedpkg side is finished.
W h e n the ticket occurs i n the system, it w i l l send a Fedora Message, which w i l l trigger
processing on the Toddlers side.

Proposal of toddlers plugin

The task of a toddler (an ind iv idua l plugin for toddlers w i th a unique responsibility) is to
automatical ly process the ticket. Th is automation covers a l l the steps mentioned i n the
chapter about the current state of the package unretirement process (Chapter 3). The
Toddlers tool was chosen because its main responsibility is to subscribe to the message
topic and implement event-driven processes as a reaction to new messages appearing i n the
system. It is a plugin-based system, which makes the process of extension relatively easy.

The idea is to create a new plugin pdc_unretire_packages. Th is plugin, as an input,
w i l l get a message, which is represented as a J S O N file. J S O N schema of this file contains
a few fields that are important for the automation process:

• issue ti t le: T i t l e of the ticket that was created. Typical ly , it is represented as an
"Unret i re" keyword + name of the package

• issue content: It is just a body of the ticket that contains a l l the fields mentioned in
proposal fedpkg command section

• issue full U R L : A n Issue U R L , which is used for commit message for the new commit .
It serves as a reference to the provided processing.

• issue id : A n ID of issue that were created, it is used to close issue if some errors w i l l
appear during processing.

It's important to note that Fedpkg and Toddlers are distinct tools. A l t h o u g h both are
part of a single automation, some tests and checks w i l l be duplicated i n both. This modular
approach allows releng to use either of these tools as a standalone component of Fedora
Infrastructure. Addi t ional ly , it provides the flexibility to expand this functionality to meet
new requirements i n the future.

Append ix B displays a diagram of Toddler 's processing. U p o n receiving a message,
Toddler w i l l set up a l l necessary objects from Fedora tools for automation. This is pr imar i ly
based on configuration values such as A P I keys, which are secured from the user.

28

The next step involves processing the issue. The toddler w i l l process the message issue
t i t le to verify that the package actually exists. If not, it w i l l make a comment and close
the ticket. If provided data is corrupted, sending a comment and closing a ticket is the
standard workflow.

After confirming the val idi ty of the ticket, Toddler begins processing by cloning the
package's git repository into a temporary directory. This step is necessary because Toddler
runs inside a container, and at tempting to clone the repository to a folder inside w i l l result
in an error. Subsequently, it w i l l proceed wi th the action described in the previous chapter
3, handl ing errors appropriately and completing the task i f everything progresses smoothly.

Complete picture of tools collaboration

In this section of the chapter, I w i l l summarize the information, explain the use cases, and
explain how the tools interact w i th each other. The requester sent a request for unretirement
by running the Fedpkg command. The request is processed by creating a ticket i n a specific
ticket tracker. The use case diagram illustrates the process from the R e l E n g perspective.

Packager

Figure 4.5: Fedpkg use case

Once this ticket appears i n the system, it immediately sends a Fedora Message w i th
J S O N containing a l l information about the ticket and the data it carries. Toddlers follow
every message. It asks its plugins i f they are interested in such a ticket. If the answer
is positive, the plugin receives the whole message and starts to process i t . The following
figure shows the R e l E n g perspective on this process.

Figure 4.6: Toddlers processing

In this way, these tools interact w i t h each other for a common purpose. This interaction
does not happen directly but through Fedora Message, which links the system events into
a coherent chain of actions.

29

Chapter 5

Implementation

This chapter examines the details of implementation. It does not describe every line of
code but rather reviews interesting points necessary for understanding it . Init ially, we
w i l l consider the environment and services used during development. A significant part is
devoted to developing the tools involved in automation. F ina l ly , the deployment process
and the method of testing the code w i l l be considered.

5.1 Enviroment used for development

It was clear that choosing Fedora L i n u x as the operating system for development was the
right decision. The tools that w i l l be ut i l ized are part of Fedora Infrastructure and are
designed to work specifically on Fedora Dis t r ibut ion .

For the automation, I have chosen P y t h o n as the programming language. Since the
tools are already wri t ten i n Py thon , the choice was not about the language but about the
version. A s we w i l l see, further tests w i l l be run on different versions of P y t h o n . A t the
t ime of wr i t ing , the default opt ion was P y t h o n 3.10, but the code needs to be compatible
wi th older versions. For this reason, some parts of the code are wri t ten using older syntax.
Addi t ional ly , P y t h o n was a natural choice because Fedora Infrastructure has a P y t h o n
module for almost every service and tool , making it easy to integrate different modules.

Red Hat is the pr imary sponsor of Fedora L i n u x . It's important to note that Fedora
Infrastructure utilizes R e d Hat ' s software instead of other alternatives. The automation
tools are cloud applications, and they use configurations stored i n the Ans ib le repository
x . Th is paper does not focus on Ansible , so it won't provide a detailed explanation of the
software. In general, Ans ib le stores roles, which are essentially a list of people authorized to
run a specific playbook, and playbooks are collections of actions to be executed on systems.

The OpenShift platform was selected for deployment because it is well-optimized for
use i n Fedora Infrastructure. This thesis w i l l not delve into an in-depth analysis of this
platform but rather uti l ize it as a valuable tool for moni tor ing and tracking processing logs.

5.2 Fedpkg command implementation

To implement the automation, a new command needs to be created inside the c l i . p y file.
The Fedpkg command implementation is d ivided into 3 parts: declaration of the command,

x h t t p s : //pagure.io/f edora- i n f r a / ansible

30

correction of arguments for processing, and processing the command. Here is a description
of each of them.

Declaration of command

The first part of the command declaration involves creating a parser for a subcommand
after fedpkg itself. It also includes adding a description for the command and a help page
to assist users i n deciding which arguments to provide. Th is is accomplished by using the
self .subparsers.add_parser() method, which creates a subparser. Addi t ional ly , this
section involves parsing arguments to process this command. Here is a detailed description
of each argument:

• -repo: A string of package name. It is called repo because the package name is also
a repository name of this package. Th is argument can be None.

• -namespace: A str ing of package namespace. It is used for assembling the package
U R L in the future. Th is argument can be None, as a default value it sets to "rpms".
The requestor can choose a namespace just from the list of district namespaces. Th is
list is received by using self .get_distgit_namespaces () help method.

• -bz_url: A string of U R L on Bugz i l l a . Th is U R L should contain a l ink to existing
and opened Bugz i l l a review requests on the package. It can be None, as a default
value is used None.

• -b, -branches: A list of branches that the requester would like to Unret ire a package
on. E a c h branch inside the list should be separated by a comma. This argument can
be None, as a default value it 's setting [Mrawhide"] . Rawhide is the last branch in a
package; it is used as a development branch, so most requests would like to Unretire
it.

Once a l l the necessary arguments are provided, it 's a t ime to execute a command.
Running this command triggers the self .request_unretirement method, which contains
the logic of the command. The details of this logic w i l l be outl ined in the following sections.
Here's an example of a command that the requester w i l l use:

fedpkg request-unretirement — r e p o test_repo —namespace t e s t s -b rawhide, f40, f39

Correction of arguments for processing command
The following section pr imar i ly focuses on checking for an adequate number of arguments
without verifying their accuracy. A s discussed i n the previous chapter (see 4.5), Fedpkg
is a clever tool that can potential ly execute a command even without any arguments.
For instance, if the user fails to specify a repository name or namespace, Fedpkg w i l l
default to the current repository and assume that the user intends to unretire the specific
package in that repository. The text introduces the first error, rpkgError, which w i l l be
ut i l ized throughout the command logic. It is named as such because Fedpkg extends the
functionality of the rpkg tool . This error w i l l be triggered whenever an issue arises. In the
case where the user is not in the repository and fails to provide arguments, this error w i l l be
thrown wi th instructions on what changes are required to execute the command. Fol lowing
this in i t i a l check, a hidden method s e l f . _request_unretirement () w i l l be invoked to

31

handle the main logic of the command. This hidden method is called wi th an expanded list
of arguments from wi th in Fedpkg. These arguments include:

• logger: A logger object.

• repo_name: The string of the repo name.

• ns: The string of pacakge namespace.

• branches: The list of branches that need to be unretired.

• bugzilla_url: The U R L of the bugzi l la review.
Typical ly , the value of self .args .bz_url, None i f not needed.

• f as_name: The str ing of fas name of the user. Typical ly , the value is self . cmd.user.

• name: A string representing which section of the config should be used. Typical ly , the
value of self .name.

• config: A diet containing the configuration, loaded from file. Typical ly , the value of
self.config.

Processing the command

This part of Fedpkg command is the most important one. It is logically divided into two
tasks.

The first part of this method is to carry out the necessary checks and controls. There are
a few important questions that need to be checked. Those were mentioned i n the chapter
w i th the proposal of a solution (see 4.5). It is better to start w i th checks for the last
commit date on every branch that is required to be Unret i red. It is done for a few reasons.
If the package was retired more than eight weeks ago, it needs to be re-reviewed by Fedora
policies[20]. It is done by opening a ticket i n Bugz i l l a . Th is is why we are asking the user
to provide a Bugzilla URL as one of the arguments. So, i f the branch was actually retired
more than 8 weeks ago and the user didn ' t provide Bugzilla URL, the processing w i l l be
automatical ly canceled, and the requester w i l l be asked to provide i t . In order to find out
the last commit date, I wrote a helper function.

def get_last_commit_date(base_url, namespace, repo_name, branch):
u r l = "-C03-/-C1}/{2}.git" .format(base_url, namespace, repo_name)
with tempfile.TemporaryDirectoryO as temp_dir:

t r y :
repo = git.Repo.init(temp_dir, bare=True)
repo.git.execute([' g i t ' , 'remote', 'add', ' o r i g i n ' , u r l])
repo.git.execute(['git', 'fetch', ' o r i g i n ' , branch, '—depth=l'])
commit_hash = repo.git.rev_parse('FETCH_HEAD')
commit_date = repo . g i t . show('-s' , ' — f ormat=°/,ct' , commit_hash)
return commit_date

except git.exc.GitCommandError:
r a i s e rpkgError("Unable to get l a s t commit date."

"Try to check repo name and namespace "
" i f i t ex i s t s . ")

This function w i l l create a temporary directory and fetch a l l necessary data. A s a result
it w i l l return a last commit date in a proper format. Based on the difference between today's
date and the commit date, it w i l l decide whether Bugzi l la U R L should be provided.

32

The next check that should be implemented is a check of the requester's rights. In
Fedora Infrastructure, we define rights through groups. The user can check h is /her / the i r
groups in the Fedora Account sys tem 2 when he/she/ they log in to the F A S account. For
this purpose, I wrote a helper function:

def get_user_groups(username):
c = f a s j s o n _ c l i e n t . C l i e n t (" h t t p s : / / i : as json. f edoraproject.org/")
t r y :

user_groups = c.list_user_groups(username=username).result
except Exception as e:

return []
return user_groups

This function w i l l create a f asjsom_client object. To use this functionality, the user
should receive Kerberos authentication. The user must have a Fedora Account to be
authenticated. Detai led information on how to receive i t , the user can be found on this
Fedora W i k i page[27]. B u t in most cases, the unretirement process requests a user familiar
w i th Fedora Kerberos authentication. So, for them, it w i l l be enough to run the following
command:

f k i n i t -u USERNAME

There is just one more check after this. If Bugzilla URL was provided and there is a
need to check it, the command w i l l use the bui ld- in method that w i l l get the bug (this is
the name for Bugz i l l a tickets, such as review requests and others). This is achieved through
the creation of Bugzilla client using Fedpkg u t i l i ty for working wi th Bugzi l la by this line
bz_client = BugzillaClient(bz_url).

The second part of processing the command involves opening a ticket, which is the easy
part because it uses the same helper function as different Fedpkg commands that work
wi th tickets, such as fedpkg request-branch. In this part of the script, the script s imply
retrieves fields from the config to define the location where the ticket w i l l be opened and
to obtain the correct token. After that, it w i l l form the ticket body and t i t le and create a
ticket using this function:

new_pagure_issue(
logger=logger,
url=pagure_url,
token=pagure_token,
t i t l e = t i c k e t _ t i t l e ,
body=ticket_body,
cli_name=name,

The result of this script w i l l be an opened ticket in a specific ticket tracker that w i l l
look like this 5.1:

2 h t t p s : //accounts.f edoraproject.org/

33

http://edoraproject.org/

O #484 Unret i re tests/ test_package f
Opened just now by amedvede. Modified just now

"name": "test_par:kage",
"type": " t e s t s " ,
"branches": [

"rawhide"
),
" re\/iew_bugzilla": None,

B Reply

Figure 5.1: Ticket created by fedpkg command.

The creation of this ticket w i l l automatical ly send a message. Users can view the
messages using a tool called Datagrepper. The app's feed follows the message history
and also provides an A P I where users can request a history of messages w i t h specific
topics. For example, a l l issues created on Pagure w i l l send a message wi th the topic
io .pagure .prod.pagure. issue .new. Here is an example of what the message history
looks like:

•JB DATAGREPPER

Fedora Messag ing messages

The lisr of possible to;
documentation .

on for information on how to construct qui

bp found in Ferlord Messrifuny s

io.pagure.prod.pagure
Ĵ ON

prod, pagure. issue
NCOP/PLETEJSON

i f t J i l«H»iur
JSOK

prod.pagure

prod.pagure

w Brarch 'epel9' for "rpms/xra/me- 23 rr

.newtkopecek created issue koji#-1089: release notes 1.31.1 JSOK

.new releng created i-iue it erig/'diled-Lcnpo'es;7&2'2 -e-)ora-RalAhide-202105G6.n.O

jp e'nik t.reciso ssue ••ele-'-g/Iedo-'ci-scn-requeilSrOZ' 23: New Repo for "rpms/perl-Ddlc-l-c -

iw releng created issue le eng/'ailed-tcripoiesviZ.'l -edoifi-^8-upds:es-testing-2024O5C6.0

Jtes ago - 2024-05-06 12:19:25 UTC

• ago - 2024-05-06 11:39:38 UTC

ago -2024-05-06 09-18:56 UTC

. ago - 2024-05-06 03:50:58 UTC

. ago - 2024-05-00 00:1838 UTC

s ago - 2024-05-OE 01:05:3S UTC
Fl NISH ED_l N CO M PLETE J SON

Figure 5.2: Messages history

The creation of a ticket is the logical end of fedpkg command processing. A further
section w i l l cover the implementat ion of the Toddlers plugin, which starts w i th a ticket.

5.3 Toddler plugin implementation

The Toddlers p lugin starts to process the tickets as soon as a message occurs.

34

Structure of Toddlers

The Toddlers tool consists of three main files and a list of plugins. The base class that defines
the required methods and attributes of every plugin is wri t ten in a file called base .py. The
base class for every toddler plugin is called ToddlerBase. It defines two properties for
the plugin and two abstract methods that should be implemented. Append ix C shows the
structure of the base class, including the following methods:

• name: Th is property w i l l be redefined as a plugin name.

• amqp_topics: Th is property w i l l define a list of message topics that the plugin w i l l
follow.

• accepts_topic: Th is abstract method should be implemented in every p lugin to
return a boolean value whether this toddler is interested i n messages from a specific
topic.

• process: Th is abstract method w i l l receive a message and config. It is the method
where the processing of the ticket w i l l start in every plugin.

To gain a deeper understanding, i t 's important to refer to the second key file that out
lines the functionalities of toddlers. This file is named runner .py and consists of approxi
mately 100 lines of code. Below, I w i l l describe its main functionality without including any
code snippets. W h e n the consumer receives a message, it w i l l iterate through each toddler
and invoke the accepts_topic () method to identify toddlers interested in messages wi th
that part icular topic. Subsequently, it w i l l trigger the process () function of the selected
toddler w i th the necessary message and configuration for processing.

Start of toddler processing

From this point, my toddlers ' p lugin starts its functionality. After redefining base class
properties, the first part is to ensure that the message w i t h a topic that fits the plugin is
actually a message that the plugin is interested in . Unretirement request ticket must have
an "Unret i re" keyword in a ti t le, so this plugin firstly w i l l ensure i t . If the message passes
this check, the script w i l l set up a logger object. It is used a l l over the code to log every
act ivi ty that is happening. Us ing a _log object is necessary to help R e l E n g engineers to
debug if something goes wrong.

_ l o g = logging.getLogger(name)

The second important step is to set up a l l necessary objects that w i l l be used during
processing based on variables obtained from the config. Th is includes creating a Pagure
object to work w i t h Pagure (This service can be seen as Fedora's Gi thub) .

self.pagure_io = pagure.set_pagure(config)

35

This object is ut i l ized extensively throughout the code as it provides functionality for
working wi th tickets. Therefore, every error handling process includes closing a Pagure
ticket w i th a request for unretirement along wi th a proper comment. A n example of a
typica l response to an error could be the following lines of code:

_log.info(msg)
self.pagure_io.close_issue(

i s s u e _ i d ,
name space=PR0JECT_NAMESPACE,
message=msg,
reason="Invalid",

)
return

Every error is followed by a specific message, which is logged, and the ticket is closed
wi th the same message. Th is ensures that the requester w i l l always know the reason why
his request has faced a problem and w i l l be able to correct it and reopen a ticket.

After setting up needed objects, the toddler w i l l go to the main part of processing in
the process_ticket () method.

Ticket processing

The beginning of the process_ticket () method involves recognizing the issue t i t le and
ensuring that a package wi th that name exists wi th in the Fedora Active Packages. Th is is
crucial for min imiz ing errors during processing. It's important to note that the Toddlers
plugin was developed independently of the fedpkg command. This plugin allows for ex
tending its functionality or adding new types of tickets that it can process. Because of this,
some of the checks and tests performed on the fedpkg side w i l l also be repeated on the
Toddlers side.

The main part started w i t h cloning the git repository into the temporary directory to
work wi th i t . Th is git repository of the package is placed on a service that is called Pagure
dist-git. It is something like the storage of spec files for the upstream packages.

After cloning the repository, the script w i l l get a list of branches from the message. The
retired branch is marked by the fact that it does not store any file other than dead.package.
So before making any changes, the script w i l l ensure that every branch is really having
dead.package file. Th is avoids the possibil i ty that an attacker w i l l use this functionality
to t ry to get r i d of the last commit .

The following method w i l l re-evaluate the checks performed on the Fedpkg side and
conduct addi t ional tests.

i f not self._is_package_ready_for_unretirement(
issue_id=issue_id, issue_body=issue_body

) :
return

Is the package ready for unretirement? It sounds quite obvious; the reason for that is
that this method actually contains three more checks. Some of them w i l l repeat the checks
that were made on the fedpkg side. Those checks are:

• Verify that the package wasn't retired for a reason: It is very important to keep the
package retired if it has major reasons for it , such as license issues. This test w i l l
get the last commit message. If this message contains any forbidden words such as

36

„legal" or „license," it w i l l stop the Unretirement process un t i l future investigation i f
this process can be done for this package.

• Verify if Bugz i l l a needs to be checked: This test w i l l mostly repeat the test that was
processed on the fedpkg side; it w i l l also get information about the last commit date
and, by comparing it w i th today's date, w i l l decide i f Bugz i l l a request needs to be
checked.

• Verify bugzi l la ticket: This test w i l l ensure that if providing Bugz i l l a is required, then
the Bugz i l l a ticket should have a f edora_review+ flag.

After processing a l l tests, the script w i l l start the process of unretirement described in
chapter 3. It starts by reverting the last commit . This part w i l l revert the last commit
and create a new one. The new commit message w i l l contain the l ink to the issue that was
opened so that people who look at the history of commits w i l l understand why this was
done (see 3.6).

The next part involves unblocking tags (this is how we refer to branches on Koj i) on
K o j i .

_log.info("Unblocking tags on Koji.")
i f self._is_need_to_unblock_tags_on_koji(tags_to_unblock, package_name):

self._unblock_tags_on_koji(issue_id, tags_to_unblock, package_name)

In the first line, it w i l l check i f the task needs to be done, as tags may already be
unblocked on K o j i i n some cases. T h i s is done using a specific object for working wi th K o j i ,
self .koji_session. Th is object provides methods for retrieving data from K o j i . In this
case, I 'm using package_tags = self .koji_session. listTags(package=repo) to get a
list of tags associated wi th the package. If the package doesn't exist on K o j i or if it doesn't
have certain tags, the script w i l l raise an error w i t h the appropriate message.

The second line is actually about unblocking tags on K o j i , and it also uses functionality
provided by self .koji_session. In this case, the script w i l l iterate through each tag and
cal l the following method:

self.koji_session.packageListUnblock(taginfo=tag, pkginfo=repo)

After unblocking tags on K o j i , the next step is to ensure that unretired packages won't
become orphaned. A n orphaned package is one that doesn't have a maintainer. It's com
mon for a package to become retired after losing its maintainer. If the package becomes
orphaned, the requester's F A S w i l l be used as the maintainer for the package. The following
lines outline the process.

i f self.pagure_io.is_project_orphaned(
namespace=namespace, repo=package_name

) :
self.pagure_io.assign_maintainer_to_project(

namespace=namespace, repo=package_name, maintainer_fas=issue_opener
)

Final ly , the logical finish of processing is adjusting the End Of Life (EOL) on the Product
Definition Center (PDC). P D C is a center that contains metadata about packages. Th is
tool w i l l be discussed i n the last chapter about future steps7. I wrote a u t i l i ty that helps to
adjust E O L on P D C . The syntax is quite strange, which is due to P D C being an outdated
tool that has lost its maintainer. The code is as follows:

37

def adjust_eol(global_component, component_type, branch, e o l) :
i i n n

Adjusting e ol of branch.

Params:
global_component: A s t i n g name of the glob a l component
component_type: A s t r i n g Type of component,
branch: A s t r i n g name of branch,
e o l : A s t r i n g with date.

n n n

existing_branch_slas = get_branch_slas(global_component, component_type, branch)

i f existing_branch_slas i s None:
return

pdc = get_pdc()

payload = {"eol": e o l , "branch_active": True}

f o r branch_sla i n existing_branch_slas:
pdc ["component-branch-slas"][branch_sla["id"]]._(payload)

The function is designed to request branch S L A s (Service Level Agreements) and update
the S L A for every active branch based on B o d h i end-of-life dates for each release. Th is is
the final step i n the automation process; the package is now fully returned to the Fedora
Active Packages l ist . However, the question remains: how w i l l people use this? Deployment
of these tools to the server is required for this purpose, and the next section w i l l address
this process.

5.4 Deployment

The Fedora Infrastructure has two types of servers for its tools and services: the Produc t ion
server and the Staging server. The staging server is a copy of the product ion server and
is used for long-term testing of changes to stabilize them and fix most of the bugs and
errors that occur. To run the deployment process, the engineer should modify the Ansible
configuration and add themselves to the role file to be able to run the playbook. This process
can take some t ime while the configurations are updated, and after that, the engineer w i l l
be able to connect to the specific server and run the deployment process.

Toddlers is an Openshift app. Tha t means Toddlers is running inside a container in
Openshift. Fedpkg, on the other hand, is not, and deployment of a new Fedpkg version
requires the Fedpkg maintainer to make a new patch. Because we have a lack of maintainers,
at the moment of wri t ing , the last commit for Fedpkg was accepted 3 months ago, and there
is no exact day when the changes w i l l appear in the system.

To deploy Toddlers, a p u l l request must first be merged into the staging branch, which
exists to test changes that w i l l go to product ion after some t ime. W h e n the pu l l request is
merged, i t 's t ime to connect to the batcaveOl server, which is used to run playbooks. To
connect to the server, you need to run the following command:

ssh FAS_NAME@batcave01.iad2.fedoraproject.org

Your FAS_NAME is used to identify yourself. It is not necessary i f the name of your
computer is the same as your F A S .

38

mailto:FAS_NAME@batcave01.iad2.fedoraproject.org

Once on the server, it 's t ime to run a playbook, accomplished by running the following
command on the server. The option -1 "staging" defines the type of server that new
changes must be deployed to.

sudo rbac-playbook openshift-apps/toddlers.yml -1 "staging"

To get sudo permission, you must provide your F A S password and your FreeOTP token.
This token is used every t ime you t ry to log i n or make any changes.

W h e n the command finishes processing, the person who ran it w i l l receive an email
notification. After that, the new version of the tool w i l l be deployed on Openshift.

5.5 Tests

The Fedora Project is an open-source dis t r ibut ion that imposes certain obligations regarding
the quali ty of the code being added. This commitment includes covering new code wi th
unit tests, an important feature to minimize the chance of bugs dur ing deployment and
ensure the quali ty of the code. Th is section is dedicated solely to the implementat ion of
unit tests. The percentage of code coverage is used to estimate their success. F ina l ly , we
w i l l describe the step-by-step process of running tests to verify code coverage.

Implementation of unit tests

Before d iv ing into the implementat ion details, it 's important to discuss test automation
using the tools Fedpkg and Toddlers. For testing, we are u t i l iz ing a tool called ToxA. Th is
tool aims to automate and standardize testing i n P y t h o n and can be run manual ly or during
the C I pipeline. Its functionality is determined by the config file tox. i n i , which defines the
list of environments and specifics for running tests i n different environments, such as the
list of P y t h o n versions the code should be executable on, typical ly three different P y t h o n
versions for Fedora Infrastructure tools. A n example of a configuration file for tests is listed
in appendix D .

In the implementat ion of tests, I used the popular P y t h o n module unittest. For my
Toddlers plugin, I created a file containing tests for the code,
named test_pdc_unretirement_packages .py. For each method and function, I created a
test class that covers i t . For example, for the method:

_ i s_package_ready_f or_unret irement()

I created a class called:

class TestlsPackageReadyForUnretirement:

After creating the class, it must have a setup_method() which w i l l mock some objects
that w i l l be used inside the function or method. The typica l unit test should cover several
cases. The main one is the successful processing of the function. The test must ensure
that i f the function or method receives the proper data, it w i l l process without any errors.
Other tests must cover every exceptional state that can occur inside the function.

3 h t t p s : //tox.wiki/en/4.15.0/

39

Chapter 6

Testing

The whole functionality is d ivided between two tools, Fedpkg and Toddlers, and even
i n those tools, the functions that I wrote are dis tr ibuted between different files. Some of
the helper functions were placed under the u t i l i ty module, and some of them were wri t ten
under the modules that work wi th other tools and services of Fedora Infrastructure, so the
whole testing of functionality was problematic.

Another problem I encountered is that different tools require different rights, and I don't
have some of those rights because of security issues. So, further testing processes w i l l be
divided into two sections dedicated to ind iv idua l tools.

6.1 Running the tests

Here w i l l be described how to run unit tests. It's an easy process that w i l l require just a
few steps.

1. Creat ing Fedora Account: The user must have a Fedora Account . The registration
process is easy and everyone can do it .

2. A d d i n g S S H K e y : The user should generate an S S H K e y and add this key to the
specific field i n his profile.

3. C lon ing the repository: Everyone who has a F A S account is able to clone a repository
placed on Pagure1. The user should find a repository of tools that he is interested
in . After that, press the clone but ton and get the ssh l ink for the repository. B y
using the following command, the user w i l l clone the repository locally: g i t clone
SSH_URL.

4. Runn ing tests: Move to the root folder of the repository and run tox command; it
w i l l last approximately 10 minutes to test the whole code.

5. A d d i t i o n a l steps: User can set up different tox options to generate HTML page that
shows covered methods, for example.

After those steps, the user can see the code's coverage in a terminal . Runn ing such tests
is the best way to ensure that the code processes as it should during development.

xhttps://pagure. 10/

40

https://pagure

6.2 Fedpkg testing

The best way to test its functionality is to run unit tests. This is the main way how to
ensure that it works. The Fedpkg project lacks maintainers, so many P u l l Requests can lay
unreviewed there for a long time; the same happened wi th my P u l l Request. The best way
to test is to wait un t i l a new patch for this tool comes out, which w i l l contain my changes
as well . Just after that, Fedora R e l E n g engineers w i l l start to motivate packagers to use
this command instead of opening tickets themself. The sign that shows the functionality
of this command is that other commands that create a ticket and use a similar command
for that are working. Also , it has the checks, most of which w i l l repeat on Toddlers side.
This doesn't ensure that the command is working perfectly, but increasing the probabil i ty
of it on a high level.

6.3 Toddlers Testing

The toddler plugin is thoroughly covered by unit tests using the Tox tool . Th is tool displays
the percentage of coverage for ind iv idua l files and can also generate H T M L wi th marked
lines that have been tested. To ensure through testing, any changes made on the Toddlers
side are first deployed on a Staging server, which serves as a playground for working wi th
packages without affecting the product ion environment. W h i l e the staging server is useful,
it 's not perfect. Testing at different stages can help reduce the occurrence of bugs, but it
doesn't guarantee a bug-free result. Ul t imately , only t ime can provide the perfect result. I
attempted to create tickets for any issues and monitored the bot's responses to them. Here
are some of the comments that the bot left:

^ releng-bot commented a day ago V £t

Unretire can only apply to rpm packages, please add rpms/ prefix before the package name

Figure 6.1: Package doesn't have an "rpms" namespace.

This comment w i l l be left, and the ticket w i l l be closed if the requester tries to Unretire
a package without a namespace or a package wi th a different namespace than "rpms".
Because the Unretirement can be processed just on "rpms" packages.

ft, r e l e n g - b o t c o m m e n t e d 3 m o n t h s ago V

Bugzilla url is missing, please add it and recreate the t icket.

Metadata Update f r o m @releng-bot:
A " Issue dose_status updated to: Invalid 3 m o n t h s ago

- Issue status updated to: Closed (was: Open)

Figure 6.2: Bugz i l l a U R L is missing, error handling.

41

This comment w i l l be printed i f the package was previously retired more than eight
weeks ago and the other requester didn ' t provide any U R L s i n the ticket.

^ releng-bot commented 3 months ago V &

The Bugzilla bug could not be verified. The following error was encountered: <Fault 32000: The API
key you specified has been banned by an admin.'>

Metadata Update f rom @releng-bot:
^ - Issue close_statLJS updated to: Invalid 3 months ago

- Issue status updated to: Closed (was: Open)

Figure 6.3: Bugz i l l a U R L is missing, error handling.

This comment shows that the development of new features is a permanent process:
this happened because I made a mistake in the code. This mistake was that I forgot that
Bugzilla also has a staging version, and my code wasn't ready for this. Bugzi l la ' s staging
and product ion servers require different A P I keys, so I changed them i n the code in updates.

6.4 Monitoring

Fedora Infrastructure allows engineers to monitor events that are happening wi th Openshift
apps, such as Toddlers. The processing can be inspected through the Openshift web client.
It makes it easy to follow logs and events that are happening inside the tool . The example
of Toddles log is on the following figure6.4.

Figure 6.4: Example of Toddlers log.

6.5 Saved Time

The pr imary goal of automation is to save human time and free up resources. It is difficult
to determine the exact amount of t ime saved, as the processing of Unretirement requests

42

involves different engineers and varies i n t ime. Let ' s estimate that one request takes an
average of 15 minutes, and there have been 16 requests i n the last month. This number
is not precise and is based on the previous month's data at the t ime of wri t ing , so it w i l l
be used as an estimate. After calculations, we find that this automation saves 4 hours
monthly for the engineer. W h i l e this may not seem like much, this t ime is s t i l l significant.
We encourage you, as a potential contributor, to jo in the automation process and help save
even more t ime, as there is nothing more valuable than time.

43

Chapter 7

Conclusion

The main goal of this thesis was to design and implement an extension for the tools that
are used i n Fedora Infrastructure. Those extensions cover automation of the Unretirement
SOP. The result was achieved by adding a new Fedpkg command that creates a ticket w i th
an Unretirement request and by adding a new plugin for Toddlers tool , which follows the
ticket tracker w i th such requests and processes them.

In the theoretical part, I learned about the Fedora package lifecycle and how the Re-
l E n g team controls i t . To share knowledge, R e l E n g invented S O P s , which are guidelines
for processing popular tasks. Some of them were fully automated, that automation was
integrated into the R e l E n g work pipeline, but some of them were not. After some learning
about them, my interest was t ied by an Unriterement SOP. I heard that people in our
team are quite angry that they s t i l l need to process it manually. A t this point, I made my
choice. B y discussing the problem wi th my peer, he pointed out the tool that potential ly
can help i n automation. This too l was Toddlers. A t the start of wr i t ing , my plan was to
write an extension just for i t . B u t the problem was that it wouldn' t be able to cover a l l of
the requests because requestors were used to the person processing i t , so they didn ' t think
much about formatting a ticket. The solution was to extend this thesis by adding here
automation of ticket creation on Fedpkg side.

In this work, I learned how different services are connected wi th in the Fedora Infrastruc
ture. I also learned about the whole Fedora community and understood how open-source
development happens. Different people mainta in different services, so updates i n some of
them can last a relatively long time.

In the future, some of those tools w i l l be changed. For example, the last part of Toddlers
processing is updat ing E O L on P D C . B u t P D C is an outdated tool that we w i l l get r id of
in the future; some of its endpoints w i l l be moved to our different services, and this part of
the code w i l l be implemented. A l so , we, as a RelEng team, would like to rewrite toddlers
in the future. The reason for this is that if one of the Toddlers w i l l be cycled, a l l of the
plugins won't be able to work, so the idea is to add ind iv idua l runners for every toddler.
The Fedpkg tool is more stable i n comparison wi th Toddlers, and changes are happening
there really rarely.

44

Bibliography

[1] Datagrepper's webpage [online], [cit. 2024-04-23]. Available at:
h t tp s : / / apps.f edorapro j ect .org/datagrepper/ .

[2] Fedpkg repository [online], [cit. 2024-04-28]. Available at: h t tps : / /pagure . io / fedpkg .

[3] Product Definition Center [online]. R e d Hat , Inc. and others, [cit. 2024-01-16].
Available at: h t tps : / /pdc . fedorapro jec t .o rg / .

[4] Red Hat Bugzilla Website [online]. R e d Hat , Inc. and others, [cit. 2024-01-18].
Available at: h t t p s : / / bugz i l l a . r edha t . com/ .

[5] Releng repository [online]. R e d Hat , Inc. and others, [cit. 2024-01-15]. Available at:
h t tp s : / /pagure . io / r e l eng .

[6] Toddlers repository [online], [cit. 2024-04-24]. Available at:
h t tp s : / / p a g u r e . i o / f edora - in f r a / t o d d l e r s .

[7] Fedora Package Life Cycle notes [online]. R e d Hat , Inc. and others., 20. apr i l 2015
[cit. 2024-01-18]. Available at:
h t tp s : / / f edorapro jec t .org /wiki /Fedora_Package_Lifecycle_notes .

[8] Branching [online]. R e d Hat , Inc. and others., 2016 [cit. 2024-01-18]. Available at:
h t tp s : / /docs.pagure.org/releng/sop_branching.html.

[9] Fedora Release Engineering [online]. R e d Hat , Inc. and others., 2016 [cit. 2024-01-19].
Available at: h t tps : / /docs .pagure .org / re leng/ .

[10] Fedora Release Engineering Overview [online]. R e d Hat , Inc. and others., 2016 [cit.
2024-01-20]. Available at: h t tps : / /docs .pagure .org/ re leng/overview.html .

[11] Fedora Release Engineering SOPs [online]. R e d Hat , Inc. and others., 2016 [cit.
2024-01-20]. Available at: h t tps : / /docs .pagure .org/re leng/sop.html .

[12] Retire Orphaned Packages [online]. R e d Hat , Inc. and others., 2016 [cit. 2024-01-18].
Available at: ht tps: / /docs.pagure.org/releng/sop_retire_orphaned_packages.html.

[13] Unretiring a package branch [online]. R e d Hat , Inc. and others., 2016 [cit. 2024-01-17].
Available at: h t tps : / /docs .pagure .org/ re leng/sop_unre t i re .h tml .

[14] Fedora Release Criteria [online]. R e d Hat , Inc. and others., 12. October 2017 [cit.
2024-01-19]. Available at: h t t p s : / / f edo rap ro j ec t . o rg /w ik i /Fedo ra_Re lea se_Cr i t e r i a .

[15] Milestone freezes [online]. R e d Hat , Inc. and others., 12. October 2017 [cit. 2024-01-18].
Available at: h t t p s : / / f edo rap ro j ec t . o rg /w ik i /Mi l e s tone_ f r eezes .

45

http://ect.org/
https://pagure.io/fedpkg
https://pdc.fedoraproject.org/
https://bugzilla.redhat.com/
http://ject.org/wiki/Fedora_Package_Lifecycle_notes
https://docs.pagure.org/releng/
https://docs.pagure.org/releng/overview.html
https://docs.pagure.org/releng/sop.html
https://docs.pagure.org/releng/sop_retire_orphaned_packages.html
https://docs.pagure.org/releng/sop_unretire.html
https://fedoraproject.org/wiki/Fedora_Release_Criteria
https://fedoraproject.org/wiki/Milestone_freezes

[16] Modelling Dependencies [online]. R e d Hat , Inc. and others., 29. april 2017 [cit.
2024-01-18]. Available at: https:
/ / f edoraproject.org/wiki/Inf rastructure/Factory2/Prehistory/ModellingDeps.

[17] Fedora Messaging [online]. R e d Hat , Inc. and others., 2018 [cit. 2024-01-19]. Available
at: https : //fedora-messaging.readthedocs.io/en/stable/.

[18] The Community Platform Engineering Team [online]. Fedora Project, 11. august
2019 [cit. 2024-01-19]. Available at: https://docs.fedoraproject.org/en-US/cpe/.

[19] Release Validation Test Plan [online]. R e d Hat , Inc. and others., 06. august 2020 [cit.
2024-01-21]. Available at:
https: / / f edorapro j ect.org/wiki/QA: Release_validation_test_plan.

[20] Policy for Orphan and Retired Packages [online]. Fedora Project, 07. September 2021
[cit. 2024-01-20]. Available at: https:
//docs.fedoraproject.org/en-US/fesco/Policy_for_orphan_and_retired_packages/.

[21] Working with Community platform engineering [online]. Fedora Project, 01. June
2021 [cit. 2024-01-18]. Available at:
https: / / docs.f edorapro j ect.org/ en-US/cpe/working_with_us/.

[22] End Of Life [online]. Fedora Project, 16. august 2023 [cit. 2024-01-15]. Available at:
https: //docs.f edoraproject.org/en-US/inf ra/release_guide/release_eol/.

[23] Fedora Messaging [online]. R e d Hat , Inc. and others., august 2023 [cit. 2024-03-20].
Available at:
https: //readthedocs.org/projects/j c l i n e - f edmsg/downloads/pdf/reorg-docs/.

[24] Fedora Messaging [online]. Fedora Project, 2023 [cit. 2024-01-22]. Available at: https:
//docs.f edoraproject.org/en-US/inf ra/developer_guide/messaging/#_messaging.

[25] Fedora Packaging Guidelines [online]. Fedora Project, 23. november 2023 [cit.
2024-01-17]. Available at:
https: //docs.f edoraproject.org/en-US/packaging-guidelines/.

[26] Fedora Release Engineering Troubleshooting Guide [online]. Fedora Project, 04. apr i l
2023 [cit. 2024-01-16]. Available at:
https: //docs.f edoraproject.org/en-US/inf ra/releng_misc_guide/troubleshooting.

[27] Kerberos Wiki [online]. R e d Hat , Inc. and others., 11. february 2023 [cit. 2024-04-27].
Available at: https: / / f edoraproject.org/wiki/Infrastructure/Kerberos.

[28] Package Retirement Process [online]. Fedora Project, 01. June 2023 [cit. 2024-01-19].
Available at: https:
//docs.f edoraproject.org/en-US/package-maintainers/Package_Retirement_Process.

[29] Package Review Process [online]. Fedora Project, 07. September 2023 [cit. 2024-01-19].
Available at: https:
//docs.f edoraproject.org/en-US/package-maintainers/Package_Review_Process/.

[30] Package Update Guide [online]. Fedora Project, 22. november 2023 [cit. 2024-01-16].
Available at: https: //docs.f edoraproject.org/en-US/package-maintainers/
Package_Update_Guide/#branched_milestone_freezes.

46

http://edoraproject.org/wiki/Inf
https://docs.fedoraproject.org/en-US/cpe/
http://ect.org/
http://fedoraproject.org/en-US/fesco/Policy_for_orphan_and_retired_packages/
http://ect.org/
http://edoraproject.org/en-US/
http://edoraproject.org/en-US/inf
http://edoraproject.org/en-US/packaging-guidelines/
http://edoraproject.org/en-US/
http://ject.org/wiki/Infrastructure/Kerberos
http://edoraproject.org/en-US/package-maintainers/Package_Retirement_Process
http://edoraproject.org/en-US/package-maintainers/Package_Review_Process/
http://edoraproject.org/en-US/package-maintainers/

[31] Updates Testing [online]. R e d Hat , Inc. and others., 2 1 . november 2 0 2 3 [cit.

2024-01-14] . Available at: https://fedoraproject .Org/wiki/QA:Updates_Testing.

[32] AMQP 0-9-1 Model Explained [online]. Broadcom Inc., 2 0 2 4 [cit. 2024-04-28] .

Available at: https: //www.rabbitmq.com/tutorials/amqp-concepts#what-is-amqp.

[33] Cheat Cubes [online]. Fedora Project, 1 3 . may 2 0 2 4 [cit. 2024-04-25] . Available at:

https: //docs.f edoraproject.org/en-US/commops/design-assets/cheat-cubes/.

[34] Fedora Linux [online]. Wik iped i a , The Free Encyclopedia . , 2 0 2 4 [cit. 2024-01-20] .

Available at:

https: //en.wikipedia.org/w/ index.php?title=Fedora_Linux&oldid=l193071744.

[35] Fesco Updated Policy [online]. Fedora Project, 2 2 . January 2 0 2 4 [cit. 2024-01-17] .

Available at: https: //docs.fedoraproject.org/en-US/fesco/Updates_Policy/.

[36] K l í č , K . Fedpkg presentation [online], [cit. 2024-04-23] . Available at:

https: / / f edoraproject.org/w/uploads/l/lc/Fedpkg-presentation.pdf.

[37] M i k e M c L e a n , D . G . Koji [online]. R e d Hat , Inc. and others., 2 0 1 7 [cit. 2024-01-20] .

Available at: https://docs.pagure.org/koji.

4 7

https://fedoraproject.Org/wiki/QA:Updates_Testing
http://www.rabbitmq.com/tutorials/amqp-concepts%23what-is-amqp
http://edoraproject.org/en-US/
http://fedoraproject.org/en-US/fesco/Updates_Policy/
https://docs.pagure.org/koji

Appendix A

Fedpkg command Diagram

Appendix B

Toddlers plugin diagram

Figure B . l : Toddler plugging processing diagram.

49

Appendix C

Toddlers Base class

class ToddlerBase(object):
metaclass = abc.ABCMeta

©property
@abc.abstractmethod
def name(self):

"""Returns name of the plu g i n . " " "
return "base"

©property
@abc.abstractmethod
def amqp_topics(self):

"""Returns the l i s t of topic s of i n t e r e s t f o r t h i s toddler i n a format
that can be used d i r e c t l y when connecting to amqp.
For example, i t supports items l i k e :

''org.fedoraproject.#.buildsys.build.state.change''
which i s v a l i d when subscribing to a queue i n amqp but w i l l not allow
s t r i n g based comparison with the t o p i c extracted from the message.

i i n n

return []

@abc.abstractmethod
def a c c e p t s _ t o p i c (s e l f , t o p i c) :

"""Returns a boolean whether t h i s toddler i s int e r e s t e d i n messages
from t h i s s p e c i f i c t o p i c ,
n n n

return

@abc.abstractmethod
def p r o c e s s (s e l f , config, message):

"""Process a given message."""
return

50

Appendix D

Tox configuration for Toddlers

[tox]
e n v l i s t = black,mypy,flake8,py3{9,10,11}
If the user i s missing an i n t e r p r e t e r , don't f a i l
skip_missing_interpreters = True
s k i p s d i s t = True

[testenv]
deps =

- r requirements.txt
- r test-requirements.txt

sitepackages = True
setenv =

PYTHONPATH={toxinidir}
commands =

pytest {posargs}

[testenv:black]
deps =

black
sitepackages = False
commands =

black — c h e c k — d i f f .

[testenv:mypy]
basepython = python3.11
deps =

{[testenv]deps}
mypy

setenv =
-[[testenv] setenv}

commands = mypy — c o n f i g - f i l e {toxinidir}/mypy.cfg toddlers t e s t s

[testenv: f lake8]
deps =

flake8
flake8-import-order

sitepackages = False
commands =

flake8 —ignore=W503 tod d l e r s / t e s t s / -[posargs}

51

