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ABSTRACT

Drug discovery is a field of contemporary science, which has encompassed the use of
various computational methods. Wet lab approaches are costly and time-consuming and
hence, in silico methods play an important role. Notwithstanding the progress of compu-
tational techniques applied in drug discovery in the last few decades, the great majority
of the investigational compounds still do not succeed in reaching the final approval
stage. Not only for this reason state-of-the-art drug design strategies focus on rein-
vestigating already approved drugs and drug similarity analyzes are crucial to consider.
This work presents the development and application of a set of workflows created within
the KNIME Analytics Platform which implements an approach using machine-learning
methods for drug side effect prediction. The presented set of workflows deals with data
retrieval, pre-processing, similarity metrics computation and data exploratory analysis.
Consequently, classification models are applied to predict specific side effects of drugs.
The prediction is based on similarity-based techniques. Structural and other similarities
of approved drug molecules were used to train the decision tree models for the pre-
diction of potential drug-side effect associations. The main advantage of the work is
the re-usability of the applied techniques. Our set of workflows provides an environment
allowing for new research questions in terms of drug similarity to be addressed. More-
over, as the workflows created within KNIME Analytics Platform provide a user-friendly
graphical interface, users do not require any advanced experience in machine learning or
programming to perform their studies using the designed workflows.

KEYWORDS
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drug discovery; drug design; drug interactions; chemoinformatics; in silico prediction;
KNIME; machine learning; similarity; side effects; workflow



ABSTRAKT

Vyvoj a vyzkum |éCiv je oblasti soucasné védy, jejiz nedilnou soucasti je i vyuziti vypocet-
nich metod. Z divodu néakladnosti a Casové naroc¢nosti laboratornich pristupl, metody
in silico sehravaji svou vyznamnou roli. | pres rychly vyvoj vypocetnich technik vyuzi-
vanych pri vyvoji lékl, vSak nenfi drtiva vétSina zkoumanych molekul v procesu vyvoje
Gspésna a do schvalovaci faze nepostoupi. Nejen proto se nejmodernéjsi strategie na-
vrhu potencidlnich novych |éCiv zaméfuji na opétovné zkoumani jiz schvalenych 1ék{
a berou do Gvahy i analyzu podobnosti. Tato prace popisuje vyvoj a aplikaci souboru
nékolika workflow, jez byl vytvoren v ramci analytické platformy KNIME a jez imple-
mentuje metody strojového uceni za i¢elem predikce nezadoucich G¢inki IéCiv. Soulasti
prezentovanych workflow je ziskani dat, jejich predzpracovani, vypocet metrik podobnosti
a provedeni exploracni analyzy. Nasledné je vyuzito klasifikacnich modeli k predikci spe-
cifickych nezadoucich Gcinkd [éCiv. Tato predikce vychazi z principl technik zalozenych
na podobnosti. K natrénovani modelli rozhodovacich stromii pro predikci potencialni aso-
ciace nezadoucich Gcinkd s 1éCivy byly vyuzity strukturni a jiné podobnosti schvalenych
molekul [éCiv. Hlavni pfinos prace spociva predevsim v prenositelnosti pouzitych metod.
Soubor workflow je uréen k vyuziti jako vhodny nastroj k feseni vyzkumnych otazek
ohledné podobnosti IéCiv a jelikoz analyticka platforma KNIME poskytuje uzivatelsky
privétivé grafické rozhrani, neni nutné, aby méli uzivatelé pokrocilé zkusenosti v oblasti
strojového uceni nebo programovani, aby mohli soubor navrzenych workflow v ramci této
platformy pro své analyzy vyuzit.

KLICOVA SLOVA

bioinformatika; big data; integrace dat; dolovani v datech; zpracovani dat; datova véda;
objev IéCiv; navrh |éCiv; |ékové interakce; chemoinformatika; predikce in silico;, KNIME;
strojové uceni; podobnost; neZzadouci ucinky; workflow



ROZSIRENY ABSTRAKT

Tato prace se zabyva vyvojem nastroje pro predikci nezadoucich ucinkt léciv.
Cilem této prace bylo vytvorit nastroj vyuzivajici strojové uceni a zamérit se na
vyuziti metod zalozenych na podobnosti molekul 1é¢iv. Na zakladé ziskanych znalosti
byla zkouméana vhodnost vyuziti nékterych metrik podobnosti k predikci nezadoucich
ucinku.

Prace je ¢lenéna do péti kapitol. V prvni kapitole je uvedeno téma a motivace
prace, jsou formulovany cile a rovnéz je strucné popsano clenéni celého textu.

V druhé kapitole jsou predstaveny teoretické poznatky, které se k tématu prace
vztahuji. Kapitola nejprve ctendre seznamuje s problematikou moderniho vyvoje
1é¢iv a kratce se vénuje charakteristice jeho jednotlivych fazi. Nasledné jsou popsany
zdroje dat, které jsou pri vyvoji lé¢iv vyuzivany, predevsim je vSak text kapitoly
zameéren na konkrétni databaze, z nichz byla ziskana data pro tuto praci. Nedilnou
soucasti kapitoly je rovnéz objasnéni konceptu mozného vypocétu podobnosti, vyuziti
technik strojového uceni pii vyvoji 1é¢iv a také jsou zminény studie, které s tématem
prace souvisi. V neposledni fadé se kapitola vénuje predstaveni a vyuziti softwaru
LKNIME Analytics Platform®, ve kterém byl nastroj vytvoren.

Treti kapitola popisuje metody pouzité v praci. Jsou zde formulovany konkrétni
kroky, jak byla ziskana a zpracovana data, jak byla stanovena podobnost mezi
molekulami 1é¢iv a jak byly sestaveny datasety vyuzité v analyzach. Také je zde pop-
sano, které nezadouci ucinky byly zkoumany, a jak probihala explorac¢ni analyza dat.
Poté jsou zminény podrobnosti sestavenych modelt rozhodovacich stromu a rovnéz
jsou popsany metriky vyhodnoceni presnosti predikci.

Ve ¢tvrté kapitole jsou predstavena konkrétni navrzena workflow. Tato Cast prace
rovnéz diskutuje vysledky analyzy rtznych datovych souborii. Dosazené vysledky
jsou vyhodnoceny a vizualizovany pomoci ptislusnych grafi.

V paté zavérecné kapitole je zhodnoceno dosazeni stanovenych cilli, jsou zde
shrnuty navrhy na dal$i mozna rozsiteni navrzenych workflow a také jsou uvedeny
limitace nastroje.

Nasleduje seznam pouzité literatury, seznam zkratek a seznam priloh. Do ptiloh
je zahrnut souhrn pouzitych skriptti, dataset a soubortu workflow, a vysledky kore-
la¢ni analyzy. Na konci prace se nachazi zivotopis autorky vcéetné seznamu publikaci,
k jejichz vzniku se béhem svého doktorského studia pricinila.

Vystupem této prace je komplexni soubor workflow pro dolovani v datech 1éc¢iv
a vizualizaci ziskanych vysledkti. K vyvoji nastroje bylo vyuzito prostredi globédlni
open-source platformy ,KNIME Analytics Platform“. Ta je urcena pro rtznorodé
ulohy v oblasti automatického zpracovani rozsahlych dat. Nastroj je velmi efektivni

a je hojné vyuzivan pro organizaci a analyzu dat, strojové uceni ¢i datovou védu.



Velkou vyhodou této platformy je predevsim jeji privétivé uzivatelské rozhrani a ak-
tivni vyvojarska komunita.

Pro tucely této prace bylo vytvoreno nékolik workflow, kterd na sebe navazuji a
tvori findlni soubor ‘DISSERTATION PROJECT knar’ Lze je vyuzit jako jeden
celek ¢i jako samostatna workflow pro vyteseni konkrétni tlohy prislusného kroku
datové analyzy. Do workflow jsou implementovany vlastni skripty naprogramované
v jazyku R.

Soucasti prezentovanych workflow je ziskani a predzpracovani dat z volné pris-
tupnych databazi DrugBank a SIDER. K vypocétu metrik podobnosti mezi 1é¢ivy
byl vyuzit Tanimoto/Jaccard koeficient. Pro tcely analyzy bylo sestaveno néko-
lik riznych datovych soubortt pomoci navrzené filtrovaci funkce. Nedilnou soucasti
je pak explorac¢ni analyza zkoumanych dat. K predikci specifickych nezadoucich
ucinka léciv je vyuzito klasifikacnich modeld. K sestaveni téchto modelii byla
zvolena metoda rozhodovacich stromti. K odhadu presnosti modelt bylo vyuzito
10nasobné krizové validace. Vysledky presnosti predikce modeli jsou porovnany
a vizualizovany pomoci krabicovych diagrami.

Dle vysledkt byly stanoveny parametry vhodné k predikci nezadoucich tcinkt
na zakladé podobnosti 1é¢iv. Z vysledkt vyplyva, ze nejvétsi prinos ze studovanych
metrik mé pro predikci nezddoucich c¢inkt strukturni podobnost molekul. Zvysené
presnosti modelt bylo dosazeno diky implementaci navrzené filtrovaci funkce.

Hlavni ptinos prace spoc¢iva v prenositelnosti pouzitych metod. Diky privétivému
uzivatelskému rozhrani analytické platformy KNIME a intuitivnimu nastaveni jed-
notlivych uzl nemusi mit uzivatelé pokrocilé zkusenosti v oblasti strojového uceni
nebo programovani, aby mohli soubor navrzenych workflow pro své analyzy vyuzit.
Néstroj je urcen pro analyzy pri vyvoji molekul potencialnich 1é¢iv a jeho zameérem je
umoznit uzivatelim dolovanim v datech ziskat potencialni nové znalosti o 1éc¢ivech.

V kombinaci s jinymi pristupy tak nastroj muze prispét k zefektivnéni vyvoje 1éciv.
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1 Introduction

The following chapter presents the main topic of the thesis. The first subchapter
focuses on the topic introduction, the second one explains the motivation and the
third one presents aims and objectives of the thesis. The last subchapter provides a

guide to the chapters of the thesis.

1.1 Topic introduction

Developing efficient medicinal drugs is an enormously expensive and time-consuming
process. Nowadays, total costs of a bringing a new drug to market attacks $1-3 bil-
lion depending on a therapeutic area (Wouters et al., 2020) and the development
takes approximately 10-15 years (Matthews et al., 2016)). Moreover, a lot of effort
to create novel therapies dies in development. The great majority of the investi-
gational compounds entering clinical trials do not work as expected and hence do
not succeed in reaching the final approval stages (C. H. Wong et al., 2019; Dowden
et al., 2019). For various reasons, many suggested molecules fail in the later phases
of drug discovery after being considered successful in animal tests. The reasons for
these failures involve toxicity, undesirable (and unexpected) side effects, a lack of
efficacy or a failure to demonstrate value compared to an existing therapy. A reason
to fail is a lack of knowledge which can be predicted about the compounds before
testing.

In order to increase the success rates of drug development efforts, it is of im-
portance to predict the drug side effects beforehand. Failures in phases II and III
of clinical trials are extremely costly (Plenge, 2016|) and therefore there are many
attempts at trying to decrease the high probability of failure. The issue regarding
identifying potential side effects in the early stages and better selecting of candidate
molecules for further analysis can be overcome by the novel concepts.

A plethora of computational methods have been developed so far for the purposes
of drug discovery. The main reason why computational technologies play such a
crucial role in drug development, is their ability to solve the critical problem of
which molecule will most likely succeed, and which will most likely fail before they
are sent to costly wet-lab testing. Hence, they make the discovery process more time
and cost-effective.

Without doubt ‘Big Data era’ has impacted pharmaceutical drug discovery and
development and nowadays, interdisciplinary cooperation is essential. As informat-
ics education is not integrated into many chemistry curricula, workflow based ap-
proaches are developed in order to help medical chemists process large amounts of
data.

15



1.2 Motivation and hypothesis

The main goal of this thesis is to develop a simple research tool which can be
used in computational drug design attempts for predicting side effects, because
improved in silico predictions allow for eliminating a number of in vivo and in vitro
experiments. As we hope that exploring the universe of drug similarities can provide
valuable information, the purpose of the designed tool would be to predict drug side
effects based on drug similarities and specify those drugs which are worthy of further
study in terms of their association to specified side effects. Our hypothesis states
that drug molecules that share more similarities will demonstrate higher number of
shared side effects compared to those drug molecules with fewer similarities between
each other.

This work seeks to design a reliable, comprehensive, easy-to-understand, and
easy-to-use framework for predicting side effects. The purpose of such framework
is to use a novel combination of available data and provide a novel solution to be
used in the drug discovery process. The created pipeline would combine data re-
trieval and processing, exploration, analysis, visualization, and reporting the results.
The framework will be able to process up-to-date information from freely available
web services. The proposed customizable workflow could be further used in compu-
tational drug-development attempts by bioinformatics researchers and it would be
available for modifications. Advantages of such a framework include saving time,

standardization, and research reproducibility.

1.3 Aims and objectives
The main aims and objectives of this thesis cover the following:
1. To develop a pipeline for semi-automatic side effect predictions.

e A customizable in silico drug discovery pipeline with the potential for
accelerating preclinical stages will be developed. The set of workflows
will be created in free data management software.

o Data deployment, processing and exploration steps will be included, as
well as inspecting the data by a similarity-based approach. A machine
learning algorithm and statistical methods will be implemented in order
to guide predicting drug side effects attempts.

o The developed tool will be simple to use for non-experts. It will assist
them in analyzing of the large amounts of data and determining drug side

effects.
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2. To apply the developed set of workflows to real data.

o The set of designed workflows will be applied for predicting side effect
using integrated data from open-source databases.

o Various drug data information will be collected, filtered, and explored,
and consequently used for drug similarity metrics calculation.

o Calculated metrics will be used as features to train machine learning
models. The performance of the models will be scored and the features
will be observed in terms of enhancing the performance of the models for
predicting side effects.

o Predicting side effects via machine learning models will be classified using

different evaluation metrics.

1.4 Guide to the chapters

The intent of this subchapter is to briefly describe the thesis structure. This thesis
is structured in the following order:

The first chapter includes a brief introduction to the topic of the thesis, its
motivation and proposed hypothesis. The aims and objectives are discussed in this
chapter as well.

It is the purpose of the second chapter to provide an introduction to the theo-
retical background. In this section, we explain the basic terminologies used in this
work. Moreover, we mention the types of used databases as well as the techniques
applied in the work.

Third chapter covers the research methodologies applied in this dissertation. It
is focused on explaining of dataset construction, data preparation, and model devel-
opment. Furthermore, this chapter explains the applied algorithms and evaluation
metrics.

The fourth chapter gives an overview of the results and their discussion. Here, we
present the designed workflows in detail and demonstrate the experimental results
which validate the effectiveness of our approach.

In the fifth chapter of the thesis, we draw conclusions and provide ideas for
future research attempts. The limitations for consideration and possible further
improvements are put together here as well.

At the end of the thesis, the reader can find a biography, symbols and abbrevi-
ations, and a list of appendices which provides details on additional files including

author’s vita and a list of publications.

17



2 Theoretical background

The drug development process has changed dramatically over the past century.
The following chapter briefly introduces the context of modern drug development.
Next, selected drug databases are presented. This is followed by an introduction
to similarity-based and machine-learning approaches in drug discovery and related
research reviews. In particular, some computational approaches which have been
applied for identifying drug side effects are mentioned. Finally, the workflow man-

agement software applied in our work is presented.

2.1 Drug discovery and development in the era of Big
Data

In the past, drug discovery was based on isolating molecules from natural sources or
synthesizing new substances and testing them for treatment. To date drug discovery
has changed in the face of rapid advances in technology, as well as new approaches de-
veloped by scientists. It has significantly improved with the knowledge that diseases
are controlled at the molecular and physiological level, by understanding the shape of
molecules at the atomic level, or with information about the human genome (Chast,
2008). The size of chemical space of drug-like compounds has been estimated as
1033 (Polishchuk et al., [2013)), therefore, as one can imagine, the process of drug
discovery is much like looking for a needle in a haystack.

The developent of a medicinal agent is a lengthy inter-disciplinary process which
combines aspects of bioinformatics, chemoinformatics, structural biology, or
structure-based drug design. Each of these aspects plays a key role in various stages.
The steps involved in the traditional drug discovery and development process are
summarized in the picture below (Fig. [2.1).

The process begins with target identification and validation. In general, a med-
ical drug is regarded as a small organic compound which interacts with its target
(DNA, proteins, enzymes, or pathways) in the human body and boosts or inhibits
its function which is important for the disease progression. Therefore, the initial
fundamental step in the drug development process is to identify the biological ori-
gin of a disease and define and validate the right drug target or a combination of
targets. There are many different approaches for hunting targets in drug discov-
ery. These can include phenotypic screening, imaging, biomarkers, gene association
studies, chemo proteomics, experiments on transgenetic organisms, and many other
methods (Schenone et al., [2013; George et al., 2017).

Once the target is proposed and validated, it is followed by hits identification.
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Fig. 2.1: The steps and the success rate of traditional drug development. Early drug
discovery includes target identification, target validation, hit discovery, lead identifi-
cation and lead optimization. This is followed by preclinical and clinical studies and
the last step before releasing drug in the market is its approval. The whole process
takes approximately 10-15 years and it is estimated that only 1 tested compound
out of 10,000 makes it to the market. Adapted from Hughes et al., 2011} Matthews

et al., Gao et al.,

The step aims to screen of small organic molecules libraries to identify so-called
‘hits’—potential molecules which would selectively interact with the target and stim-
ulate the desired effect. This step can be concluded with several in vivo approaches
as high-throughput screening, fragments screening, or physiological screening (Ke-
serl et al., . However, it can also be conducted computationally via a variety
of in silico virtual screening methods. These computer simulations provide a deeper
insight into the complex functioning (Goodnow, 2006]).

The lead identification and optimization step is represented by screening small
molecules which aims to determine candidates satisfying specific drug properties
(M. Wong et al., [2017). The step includes predicting the potential side effects of
the drugs or their metabolites. Valuable data are obtained during safety pharma-
cology, genetic toxicology, chronic toxicology, ADME/PK (absorption, distribution,
metabolism, excretion, and pharmacokinetics), and further studies which are applied

to investigating the potential undesirable effects of the tested molecules.
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Next, drug candidate molecules need to be tested in expensive preclinical and
clinical trials to be evaluated as safe and effective before their approval (Umscheid et
al., 2011). Preclinical pharmacology studies are undertaken in vitro (e.g., cell) and
in vivo (in suitable animal models). In addition, studies are performed in silico (via
computer models). Then follow human clinical trials which consist of three main
phases. The first ‘in-human’ testing is carried out during phase I, when studies are
conducted with a small number of healthy human volunteers (up to a few dozen
tested subjects). Phase II consists of testing larger numbers of patients (up to a few
hundred tested subjects). Finally, phase III covers comparative trials during which
a large number of patients (up to a few thousand tested subjects), multiple countries
(populations), and comparisons with current treatment are included. The phases of
clinical studies are summarized in a table below (Tab. [2.1)). After passing the studies
successfully, the drug can be approved by authorities and launched in the market.

The drug approval process is different for each country. In the United States,
the largest market globally for pharmaceutical sales, it is the Food and Drug Admin-
istration (FDA) agency which approves drugs (https://www.fda.gov). In the Eu-
ropean Union, European Medicines Agency (EMA) is in charge of this responsibil-
ity (https://www.ema.europa.eu). The launch of the drug is followed by post-
marketing surveillance or post-authorization safety studies (safety monitoring), also
called phase IV clinical trials, during which the adverse effects observed on the pre-
scribed population are recorded (Berlin et al., 2008; Tubach et al., 2011). The safety
of an approved drug is monitored and reported as long as it is on the market and
drugs can be withdrawn for safety reasons whenever.

As mentioned above, computational (in silico) techniques have become an in-
tegral part of modern drug discovery and to date there are many various compu-
tational approaches applied during the process (Katsila et al., [2016; Begam et al.,
2012). The applied methods range from ligand-based or receptor-based methods,
to gene ontology and literature mining. The use of the techniques is undisputable.
They are present in all stages of drug development from the preclinical discovery
stage to the late stage of clinical development. Computational methods have great
importance, as they can speed up the whole drug development process and decrease
the financial requirements in contrast to experimental testing. Reducing (or even
replacing) animal testing is one of their most crucial benefits (Knowles et al., 2003)).
Impact of Big Data in drug discovery attempts has been discussed in a recent pub-
lication (Bajorath et al., [2016), in which the scientists point out various challenges
need to be overcome.

Although computational drug discovery has a long history (Drews, 2000), many
methods have been developed in recent years. They are used to perform similarity

search, machine learning, or statistical approaches. With machine learning and
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Tab. 2.1: Clinical studies summary. The side effects identification is covered in
stages of preclinical and clinical trials, and it continues during post-approval moni-
toring (Umscheid et al., [2011]).

Timing Trial Usual number of Studied data
phase tested subjects

Before I 20-100 healthy human Safety in humans, maximum tolerated dose,
approval subjects pharmacokinetics, pharmacodynamics,

drug-drug interactions

Before II 100-300 patients with Efficacy at treating diseases, more information
approval the disease, condition on safety, different dosing, control arm,

comparing to a standard therapy

Before 11 300-3,000 patients Larger scale studies, diverse population, more

approval information on the efficacy and safety,
comparing to a standard therapy or a placebo,
randomization, blinding strategies

After v Large numbers, diverse Long term safety, less common adverse

approval populations of patients reactions

data mining approaches, we can investigate what makes a compound a good target
or a good drug. In other words, the artificial intelligence algorithms can find an
important application in drug development — they can help select drug candidates
more reliably.

The technology and tools are continually evolving and there is a wide range of
software and a plethora of drug-related data available which is used for in silico drug
design today. A comprehensive list of open-source molecular modeling tools can be

found on the following link: https://opensourcemolecularmodeling.github.io

2.2 Drug and side effect databases

There are a plethora of freely accessible databases that provide useful information
on drug/target compounds. In the table below, you will find a list of selected
databases with a short description of provided data (Tab. . In this work we use
data available from DrugBank (Wishart, 2006) and SIDER databases (Kuhn et al.,
2016)). These databases have been selected as comprehensive data sources commonly
used for scientific research purposes.

The DrugBank database (available at https://go.drugbank.com) is a valuable
and well-established, freely available resource which contains heterogeneous data

on drugs, including known molecular targets, activity in humans, drug targets se-
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Tab. 2.2: Selected databases used in drug discovery

Database name

Data description

Website

BindingDB
(Xi Chen et al., 2001,
Liu et al., 2007)

measured binding affinities

Dictionary of Natural
Products

natural products

DrugBank
(Wishart, |2006])

drug related data

ClinicalTrials

clinical studies

https://www.bindingdb.org

https://dnp.chemnetbase.com

https://go.drugbank. com

https://www.clinicaltrials.gov

ChemSpider
(ChemSpider, [n.d.])

chemical structures

http://wuw.chemspider.com

ChEMBL
(Gaulton et al., [2012)

chemical structures and

bioactivities

Crystallography Open
Database

crystal structures of organic,
inorganic, metal-organics

compounds and minerals

MATADOR
(Manually Annotated
Target and Drug
Online Resource)
(Gunther et al., [2007)

drug-target interactions

MarinLit

marine natural products

PDB
(Protein Data Bank)
(Bernstein et al., [1977)

3D structures of biomolecules

SIDER (Side Effect
Resource)
(Kuhn et al., [2016)

drugs side effects

SureChemBL
(Papadatos et al.,
2016)

chemical data extracted from

the patent literature

Therapeutic Target
Database
(Y. H. Li et al., [2018)

therapeutic protein and nucleic
acid targets, the targeted
disease, pathway information

and the corresponding drugs

Traditional Chinese

Medicine

small molecules based on

traditional Chinese medicine

Zinc
(Trwin et al., 2005)

commercially available

compounds for virtual screening

https://www.ebi.ac.uk/chembl/

https://www.crystallography.net

http://matador.embl.de

https://marinlit.rsc.org

https://www.rcsb.org

http://sideeffects.embl.de

https://www.surechembl.org

http://db.idrblab.net/ttd/

http://tcm.cmu.edu.tw

https://zinc.docking.org
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quence, structure, or pathway information. It is updated daily, and its downloads
are released quarterly. A total number of 14,460 drugs are in the latest DrugBank
release (version 5.1.7, released on July 2, 2020) (https://go.drugbank.com/stats)
and they are organized into the following categories: approved (drugs approved in
North America, Europe and Asia), experimental, biotech (drugs with a biological
origin—therapeutic proteins, peptides, vaccines, allergenics, blood components, gene
therapies etc.), nutraceutical (nutritional supplements), withdrawn (drugs with-
drawn due to safety and toxicity issues), illicit (banned drugs). The number of
drugs in each of these categories is shown below (Fig. .

According to the information at the DrugBank website, the approved drugs in
the database represent drugs which have passed the approval process anywhere, at
least once at some point in time. The list of approved drugs includes also already
withdrawn drugs, even when a drug had to be discontinued since receiving this
status. The total number of drugs represents a sum of small molecule drugs and

biotech drugs.

Drug data statistics in DrugBank

Total number of drugs | | 14,460
Withdrawn drugs I:I 265
licit drugs ~ [| 205
Experimental drugs | | 5.643
Mutraceutical drugs I] 13
Approved small molecule drugs I:I 2683
Approved drugs I:l 4118
Biotech drugs || 2,585
Small molecule drugs | 11,875
| | | |
] 5,000 10,000 15,000
Mumber

Fig. 2.2: DrugBank statistics (version 5.1.7, released on July 2, 2020)

Yet, drugs in DrugBank database can also be categorized in another way —
as small molecule drugs and biotech drugs. Small molecule drugs are molecules
with well-defined and a relatively simple structure which are produced by chemical
synthesis and have low molecular weight (below 900 daltons). However, within
the DrugBank database, even some larger molecules are regarded as small molecule
drugs. Biologics are large molecule drugs which have a much more complex structure

than small molecule drugs. Biologics are produced by living cells or organisms.
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In total there are 11,875 small molecule drugs available in the DrugBank database
currently, of which 2,683 of them are approved (Fig. 2.3). The main reason why

approved drugs are withdrawn from the market are side effects.

Drug data statistics in DrugBank

Total number of drugs 14 460
Approved small molecule drugs 2683
Biotech drugs 2,585
Small molecule drugs 11,875
T T T 1
0 5,000 10,000 15,000
Mumber

Fig. 2.3: Drug types in DrugBank (version 5.1.7, released on July 2, 2020)

Drug adverse reactions (also called adverse drug events or side effects) is defined
as an unexpected, unintended, harmful reaction from a medicine which can endanger
patients. It can result in treatment discontinuation, hospitalization, permanent
harm, disability, or death.

There are various reasons why adverse drug reactions occur. Many of them are
caused by drug-drug interactions as the possibility of adverse reactions increases if
multiple drugs are co-administrated inappropriately (Benton et al., [2011)). This is
mostly the case of patients with complex diseases or several medical conditions who
receive multiple therapeutics at the same time. The action of one drug can alter
the pharmacological effect of another one. The most frequently co-administered
drugs include medications used to treat high blood pressure, heart, psychotropic
drugs, or antibiotics. Moreover, adverse drug reactions can also result from different
off-target drug reactions when the drug is not aimed at the main target.

As previously-mentioned in section regarding the drug discovery and devel-
opment process, side effect data are not only collected during preclinical and clinical
trials, they are also monitored within post marketing surveillance after the drug is
approved and released on the market. The Side Effect Resource (SIDER) (available
at http://sideeffects.embl.de) is a well-known public database which aggre-
gates information on the side effects of marketed drugs (Kuhn et al., |2016]). It
provides data on adverse reactions which are obtained from public documents and
package inserts. The information covers side effect frequency, drug and side effect
classifications, or links to further information. In total, the latest release of SIDER
database (version 4.1, released on October 21, 2015) contains 139,756 drug—side ef-
fect associations corresponding to 5,868 side effects of 1,430 drugs (Fig. 2.4). All
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of these drugs are FDA-approved. The database uses internationally established
Medical Dictionary for Regulatory Activities (MedDRA) terminology (Brown et al.,
1999) to label drugs.

Drug side effects data statistics in SIDER
Drugs ] 1,430

Side effects :| 5,868

Drug - side effects associations 139,756

| T T 1
0 50,000 100,000 150,000

MNumber

Fig. 2.4: SIDER 4.1 statistics (version 4.1, released on October 21, 2015)

Side effects can be categorized according to Council for International Organiza-
tion of Medical Sciences (CIOMS) standard recommendations (CIOMS, 1995) avail-
able at https://basicmedicalkey.com/cioms that suggest side effect frequency
classification as given in table below (Tab. [2.3).

Tab. 2.3: CIOMS side effect frequency convention

Side effect classification Frequency of patients with the side effect
Very common >1/10 (>10%)

Common (frequent) >1/100 and < 1/10 (> 1% and <10 %)
Uncommon (infrequent) >1/1000 and <1/100 (>0.1% and <1 %)
Rare >1/10000 and < 1/1000 (>0.01 and < 0.1 %)
Very rare <1/10000 (< 0.01 %)

2.3 Drug similarity data processing

Similarity-based approaches are widely used in many research areas and they have
been embedded as a key concept in drug discovery research for a long time (Ben-
der et al., 2004). Molecular similarity can be defined as a ‘measure of the degree
of overlap between a pair of molecules in some property space’ (Allen et al., 2001}
Good et al., [2002) and it can be perceived in many different ways, e.g. chemical

similarity, molecular similarity, or similarity in biological activity (Maggiora et al.,
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2014)). The basic assumption is that similar compounds should have similar proper-
ties (A.H.-L. et al., 1992).

The concept of molecular similarity has been widely used especially in the early
stages of the drug discovery process. It has been suggested that drug molecules
with similar chemical structures tend to have similar biological effects (Martin et
al., 2002). A number of studies have found that a chemical similarity between two
compounds indicates that they could share a target. It has been shown that drug
molecules with more common target proteins have a higher degree of similarity
(Xing Chen et al., [2016). A study of the interactome network suggested predicting
drug-target interactions based on the interactions of the majority of the network
neighbors (Z.-C. Li et al., [2016)).

The term ‘molecular fingerprint’ refers to a simplified molecule representation.
It is a fixed-length vector comprising of binary digits which correspond to a specific
property of the molecule. In the case of structural fingerprints, the properties refer
to structural properties of the molecule, such as functional groups, C-chains, ring
structures, or the number of bonds and atoms. Each bit in the vector indicates
the presence or absence of a specific molecular feature (Fig. [2.5]).

Since there is no universal definition of ‘molecular similarity’, there are a plethora
of different fingerprints which can represent relevant structural features in various
ways (Morgan fingerprint, Atom-Pair fingerprint, Topological-Torsion fingerprint,
etc.) Some perform better than others when ranking structures by their similarity
(O’Boyle et al., [2016)).

Fig. 2.5: An example of a hypothetical 10-bit molecule fingerprint. Each bit repre-

sents presence or absence of a particular structural feature of the molecule.

Subsequently, the similarity of molecules can be determined by their fingerprints
comparison. The process of comparing molecular fingerprints is known as similarity

search (fingerprint-based virtual screening) and has been used as an established
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effective approach in drug discovery and development research (Cereto-Massagué
et al., 2015).

There are multiple methods used to calculate the distance or similarity, such
as Euclidean distance, Manhattan distance, distance vector, Tanimoto similarity,
Cosine similarity, Dice’s coefficient, or Levenshtein distance measure. Although
there is a variety of similarity metrics, in a recent review Tanimoto index, Dice
index, Cosine coefficient, and Soergel distance were concluded as the best options
for quantifying the similarity of molecules (Bajusz et al., [2015)). In this study we
use the Tanimoto coefficient, as it represents one of the most widely used metrics
for fingerprint comparisons.

The Tanimoto coefficient computes the degree of the similarity between two
structures as the ratio of the common bits in bit vector fingerprints and is calculated

as follows:

C

_— 2.1
a+b—c (2.1)

Tanimotoa,p) =
in which a is the number of ‘1’ bits in molecule A; b is the number of ‘1’ bits in
molecule B; and c¢ is the number of ‘1’ bits common in both molecules A and B
(intersection). Number ‘1’ indicates the presence of a specific structural feature for
a given molecule. The range of Tanimoto values is 0-1 from the least to the most
similar/identical. The figure below represents how molecules can be compared by
a fingerprint similarity calculation (Fig. [2.6). The drug molecules in the figure are
represented as fingerprints. Consequently, a query molecule similarity to other drug
molecules in a database is calculated using Tanimoto similarity coefficient. Those
molecules with a Tanimoto coefficient above a set threshold value of 0.7 are then

labeled as similar to a query molecule.

Fingerprint Similarity

Studied molecule  |@®) 10001000011 |1.0|

\\ Fingerprints
Drug molecules @ 10001010011 |0.9| o/
database @) 00111000110 0.7| X
@ 10100010001 |0.4| X

Tanimoto
coefficient

Fig. 2.6: An example of fingerprint similarity usage. The drug molecules are repre-
sented as fingerprints. Consequently, fingerprints are compared in terms of similarity
using Tanimoto similarity coefficient. Those molecules with a Tanimoto coefficient

above a set threshold value of 0.7 are then labeled as similar to a query molecule.
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Besides 2D structural fingerprints, there are also pharmacophores representing
3D fingerprints. According to the IUPAC (International Union of Pure and Applied
Chemistry) definition, a pharmacophore is an ensemble of steric and electronic fea-
tures which is necessary to ensure the optimal supramolecular interaction with a
specific biological target structure and to trigger (or block) its biological response
(Wermuth et al., [1998) (Fig. [2.7). Pharmacophore modeling has been applied as
an important tool in various approaches of computational drug discovery lately
(Koscova et al., 2016). However, it has been shown that 3D shape-based approaches
do not always give better results than simpler and faster similarity search approaches
(Venkatraman et al., 2010). Moreover, structural information of targets is not al-

ways available.

Fig. 2.7: A pharmacophore model visualization. Pharmacophore represents an en-
semble of steric and electronic features that is necessary to ensure the optimal

supramolecular interaction of molecule with a specific biological target structure.
Adapted from Sakkiah et al., 2012,

A morphine rule is a good example explaining the concept of molecular similarity.
The rule states that the role of the shape of the morphine molecule referring to
similarities of opioid structures is crucial in fitting exactly to the receptor active
site (Myers, [2007)). Molecules fulfilling the morphine rule share a set of structural
features that are responsible for the same bioactivity of the molecules - mimicking
the action of endorphins and relieving pain. The features include tertiary amine,
quaternary carbon, a phenyl ring connected to a quaternary carbon, a two-carbon
chain between a tertiary amine and a quaternary carbon (Fig. [2.8)).

In the same manner, we can use similarity-based methods to calculate a measure
of the degree of the overlap between a pair of molecules in other property spaces,
such as the space of the side effects, indications, targets or interacting drugs. It
is established from a variety of studies in which drugs with common drug targets

and similar therapeutic effects are involved in similar signaling cascades and tend

28



(1) benzene ring (3) two carbon linker
=

- /
2

/

’
depiction of the 4 N . .
mgrphune rule ! N — (4) tertiary amine

(2) quaternary carbon

OH CH,3 HyC,
HiC_ N
o “CHy
o HyC H ﬁ>
~N — OH O i \f \ /
H H = CH, HO
morphine methadone meperidine loverphanol

Fig. 2.8: The morphine rule. Molecules fulfilling the rule share a set of structural
features that are responsible for the same bioactivity of the molecules - mimicking

the action of endorphins and relieving pain. Adapted from Stevens, 2016|

to have similar side effects. Motivated by this assumption, we focus on the problem
of predicting side effect prediction using similarity-based approach in our work.

Many drugs can present multi-target activity and interact with more than one
therapeutic target in the human body. This drug feature is called polypharmacology.
It has been shown that the most important reason why the drugs are promiscuous
is the binding site similarity of their (different) targets (Haupt et al., 2013).

There are many patients who receive treatments with multiple medications.
Potential drug-drug interactions can increase the risk of adverse drug reactions.
The interactions of co-administered drugs can be caused by many factors affect-
ing the ADME processes. The outcome of such interactions can result in reduced
efficacy of the medication or exploited adverse reactions.

The Jaccard similarity index is one of the way that can be used for two-sets
comparison. It is defined as the size of the sets intersection divided by the size of

the sets union and is given as:

Xny| IX NY|
XUY|  [X|+]Y]-|XNY]
in which Jx y is the Jaccard similarity index for sets X and Y; X is set 1; and Y is
set 2. If both X and Y are empty, we define Jxy = 1, and:

Jixy) = (2.2)

0<Jxy <1 (2.3)

The Jaccard index values range from 0 to 1 corresponding to 0 to 100 % similarity.
In fact, Tanimoto coefficient is a generalization of the Jaccard similarity index which

is incorrectly regarded as the same sometimes.
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2.4 Machine learning in drug discovery

Data mining represents a process of discovering new knowledge from large amounts
of data. Machine learning methods are chosen as a common approach in the field of
data mining as they are used to build models which help to discover hidden useful
patterns and trends and provide valuable insights into the data. They have been
successfully applied in many scientific areas and different fields of daily use such as
data security, financial trading, marketing, language processing, smart car industry,
or healthcare. It has been proven that such approaches have significant potential
to accelerate also drug discovery attempts. For example, the techniques are helpful
and widely used for drug-target interaction prediction approaches (Bagherian et
al., [2020)), structure-based binding affinity prediction (Ain et al., 2015) or molecular
docking (Khamis et al., |2015). More applications have been reviewed elsewhere
(Gertrudes et al., |2012; Lavecchia, 2015; Yang et al., 2019; Vamathevan et al.,
2019).

In machine learning process, data are translated into features which are used
to train a predictive model. The process consist of several fundamental steps —
data collection, data training and testing in machine learning algorithm, and model

(the output of machine learning algorithm) evaluation (Fig. [2.9).

Training data

[ |
L 2

Train machine
learning algorithm

|
4

Input data mm) Prediction model =) Prediction

Fig. 2.9: A simplified machine learning sequence. Data preparation step includes
data acquirement, data filtering and data exploratory analysis. Model performance

evaluation is also a necessary part of the sequence.

We can divide machine learning techniques into two main categories — supervised
and unsupervised approaches. For the supervised methods there are known outputs
(targets) for input data available and the program needs learn on some example
data — these data are labeled. On the other hand, for unsupervised methods there
are no known or available outputs provided for input data — the data is unlabeled.
Furthermore, there are semi-supervised machine learning methods which are com-
bination of supervised and unsupervised methods — part of the inputs has known

outputs and part does not (expectation-maximization algorithm).
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In our work, we try to predict side effects based on known outputs, thus we
apply a supervised machine learning approach. In general, the supervised tasks can
be divided to classification or regression tasks. The first one predicts a category,
the second one predicts a numeric value.

The goal of the classification algorithms is to classify test data (predict their
category) using a model trained on collection of attributes of train data. If there
are only two categories, the classification is referred to as binary classification. If
there are more than two categories, it is multi-class classification. There are many
different algorithms which can be used for classification tasks including decision tree,
random forest, K nearest neighbors, or gradient boosted trees. Each algorithm has
its own pros and cons.

The aim of our work is to predict side effect associations using a model trained on
collection of data with two attribute categories, thus we apply a binary classification.
Easy-to-understand and quick-to-implement algorithm called decision tree has been
selected. Decision tree is a traditional supervised machine learning method, which
has been commonly used in drug discovery (Blower et al., [2006; Costa et al., 2010}
Bresso et al., 2013). The algorithm can be represented as a tree drawn upside down
with its root at the top (Fig. [2.10). Each branch value corresponds to a possible
value of an attribute defined in a decision node (Mitchell, [1997). There are several
benefits of decision trees including their relatively fast construction in comparison to
other methods. Moreover, they are easy to understand and nonlinear relationships

between parameters do not affect the model performance.

ROOT NODE
Decision node
Branch I
Decision Decision
node node
Decision Leaf Leaf Decision
node node node node
Leaf Leaf Leaf Leaf
node node node node

Fig. 2.10: A schematic illustration of decision tree algorithm. The tree consists of
branches (observations of item), decision nodes (decisions how to split the dataset
into subsets) and leave nodes (target values). The root node represents entire dataset

being analyzed.
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2.5 Research studies related to computational side

effect prediction

In recent years various computational approaches have been proposed to predict
drug side effects (Sachdev et al., 2020). In particular, there has been a growing
interest in applying machine learning techniques in this field. However, despite
many successful analyzes, there is currently no widely accepted standard protocol
for drug side effect data curation.

The concept of drug similarities has already proven to be helpful in side effect
research. Many studies have been published on utilizing chemical structures or
protein targets for predicting side effects (e.g. Xie et al., 2009; Scheiber et al., [2009;
Pauwels et al., 2011). In addition to them, indication-side effect relationships have
been analyzed in association analysis (Zhang et al., 2013). In the study, indication
predictions using side-effects information and side effect predictions using indication
were compared to predictions using only chemical structures and protein targets.
As a result, it was shown that there is a significant correlation between side effects
and indications and the studied features have predictive power. The research was
expanded and a visualization tool was developed for interactive exploration in a
further study (Wang et al., 2014)).

Other promising results yielded by a study which applied a combination of corre-
lation based analysis with network-based diffusion (Atias et al., 2011)). It was shown
that this strategy achieves high accuracy and that a combination of different data,
such as chemical structure and cell line response, can improve prediction models
performance.

Another study aimed at side effect identification by applying relational machine-
learning methods (Bresso et al., 2013). The study proposed an approach integrating
semantic similarity measures for predicting side effect profiles using inductive learn-
ing programming which resulted in models with a higher sensitivity than decision
tree models.

A robust method was proposed to predict the adverse degree of drugs using quan-
titative prediction models (Niu et al., 2017). In the study, drug side effect profiles
were transformed to quantitative scores by summing up side effects with weights
representing their importance. Consequently, the usefulness of various drug features
has been evaluated in feature-based prediction models. Promising performance re-
sults were achieved by combination of three drug-related features, namely chemical
substructures, targets, and treatment indications. The robustness of the method
has been tested by simulation experiments on side effects with randomly assigned
empirical weights.

Data on side effect association to drugs have also been applied to drug reposition-
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ing studies which aim to discover new purposes for already approved and profiled
drugs rather than to discover a completely new drug de novo. A network-based anal-
ysis was proposed as one of suitable approaches for drug repositioning (Mohd Ali
et al., 2017)). In the study, the drug-side effect and drug-indication networks were
constructed based on drug similarities and analyzed in terms of centrality measures.
The results from the work indicated that such an approach is promising for drug
repositioning attempts.

To address the problem of identifying critical features for drug-side effect as-
sociation prediction, predictor using multiple information integration with centered
kernel alignment has been proposed (Ding et al., 2019). In the study, multiple kernels
describing the information of drugs and side effect terms were analyzed. The results
show that a fusion of feature spaces and a combination of different kernels by linear
weighting can improve prediction performance.

There is vast number of in silico tools, libraries and extensions developed for
specific tasks in drug discovery and development attempts. For instance, for a
side effects similarity analysis, one can use DrugClust R package (Dimitri et al.,
2017). The package has been developed to calculate probability scores of side effects
according to the similarity of drug chemical and biological features

Machine learning prediction of new drug side effects using disease indications and
structural features was studied (Khan, 2017)). One of the key findings of the study
suggest that integrating indications and structural features improved the side effect
predictions.

It has been demonstrated that predicting side effects via machine-learning can
be optimized using the right set of drug features (Seo et al., |2020). Combining
various information resources such as drug-drug interactions, single nucleotide poly-
morphisms, chemical structures, indications, targets, and side effect anatomical hi-
erarchy has proven to enhance side effect prediction capability in comparison to
methods dependent only on chemical, indication and target features analysis.

In another recent study, it has been claimed that models based on negative
sample selection strategies produce a higher performance than those without such a
strategy (Liang et al., 2020)). The study explored the efficiency of the strategy based
on selecting negative samples in chemical-chemical interaction networks by applying
random walk with a restart algorithm and concluded that negative samples are useful

considerations for the side effect prediction strategies.
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2.6 Integration of workflows in drug discovery

A workflow can be defined as an organized sequence of algorithms, steps or actions
taken to accomplish a particular task. Among others, the key benefits of work-
flow usage in research include automation, easy collaboration, process control and
reproducibility.

Software systems which are used to complete workflow tasks are called work-
flow management systems. There is a variety of tools and software available for
drug discovery workflow construction (Tiwari et al., 2007). To provide a few ex-
amples, the used workflow systems include for example Chemistry Development
Kit (CDK) (Steinbeck et al., |2006), Pipeline Pilot (BIOVIA, [n.d.[), ORANGE
(Demsar et al., 2013)), Scaffold Hunter (Schéafer et al., 2017), or KNIME Analytics
Platform (Berthold et al., 2007). KNIME (Konstanz Information Miner) is an es-
tablished open-source tool for interactive data exploration which integrates various
components for data extraction, data processing, data mining, or interactive visual

analyzes.

2.6.1 KNIME Analytics Platform

KNIME Analytics Platform (Berthold et al., [2007) is a free workflow based data
mining tool originally developed by the Michael Berthold team at the University
of Konstanz. This pipelining desktop client has a user-friendly, drag and drop in-
terface for data manipulation and connecting different tools and it provides pow-
erful features for creating various analytics workflows. Data are analyzed within
KNIME workflows using pre-programmed components (basic programming units)
called nodes (Fig. that enable the user without deeper programming abil-
ities to perform complex data analyzes. KNIME allows users to combine more
than a thousand nodes in order to create new workflows graphically. The software
is accessed via KNIME web portal (https://www.knime.com) and licensed under
the GNU General Public License. The KNIME documentation can be accessed via
https://docs.knime. com.

KNIME software is platform-independent and provides the same results on dif-
ferent operating systems. It is written in Java but the scripts written in the most
important scripting languages (R and Python) can also be applied using the KN-
IME scripting integration which allows hundreds of powerful libraries to be accessed.
Other strengths of KNIME Analytics Platform lie in its extensive repository of
tools and external packages and compatibility with different software (Weka, Keras,
Scikit-learn, etc.)

However, the key advantage of KNIME is its integration with the life science
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and chemistry plugins which other similar tools lack. There is a vast collection of
special bioinformatics and chemoinformatics nodes and extensions including RDKit
(RDKit: Open-source cheminformaticsl |n.d.])), Vernalis (Roughley, 2020), KNIME-
CDK (Beisken et al., 2013), Enalos+ (Varsou et al., 2018), or 3d-e-chem (McGuire
et al., [2017) community extensions. Furthermore, there are some commercial exten-
sions such as extensions to CCG MOE (Molecular Operating Environment (MOE),
2015.08,2017), ChemAxon (ChemAzon, |n.d.]), Schrodinger (Schrodinger KNIME
FExtensions, 2021) software. There is also NodePit search engine providing an ex-
ploration of KNIME node usages (available at https://nodepit.com).

KNIME has been used in variety of drug discovery research. For example a
KNIME workflow was developed to filter target structures matching PAINS (pan-
assay interference structures) (Saubern et al., 2011)), there is a visualization tool
called HITSEE (High-Throughput Screening Exploration Environment) integrated
to KNIME and used for analysis of large high-throughput screening data (Strobelt
et al., 2012), or CheS-Mapper KNIME extension used for visual validation of QSAR
(quantitative structure-activity relationship) models (Giitlein et al., |2014). There
are KNIME workflows developed for investigating data from BindingDB database
(Nicola et al., 2015)), for predicting chemical properties with quantitative regres-
sion models (Yin et al., |2015)), or for a creation of quantitative structure-property
relationship models using the command line program chemalot (Lee et al., 2017)).
KNIME workflows were also applied for development of VSPrep tool intended for
preparation of molecules for virtual screening (Gally et al., 2017)), or for data mining
research in medical chemistry (DiTommaso, 2017). Also, they were used to perform
data curation in a research of multi-target directed ligands against Alzheimer’s dis-
ease (Ambure et al., 2019), for in silico prediction of human oral bioavailability
(Falcén-Cano et al., 2020)), or for performing ligand-based in silico drug repurpos-
ing (Tuerkova et al., [2020). Some other life science research projects that have

integrated KNIME are presented in a recent review (Fillbrunn et al., |[2017).
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3 Methods

In this part of the thesis, we present the methodology applied in our work.

3.1 Workflow schematic representation

In our work we implemented computational techniques which integrate various drug
data and result in a comprehensive set of workflows for analyzing drug—side effect
associations. All datasets were preprocessed and further analyzed via a sequence
of specific KNIME nodes including integrated R scripts. The nodes were involved
in applying selected analysis techniques. The methodology steps of our work are
illustrated below (Fig. 3.1)).

Data retrieval Data preprocessing Machine learning Results
and filtering mnd and exploration - prediction investigation

Data cleaning and filtering Calculation of feature values: Side effect prediction Results evaluation and
Similarity coefficients visualisation

Datasets: (indexes) Train the model on the training

Drug structures set, apply it on the test set, Visual investigation

Drug-target associations Data analysis evaluate preformance

Drug-side effect associations

e - Prediction algorithm:
Drug-indication associations Decision tree

Drug-drug interactions

Fig. 3.1: A visual description of the methodology steps. The set of the workflows
starts with data deployment and preprocessing. This is followed by a workflow
intended for data exploration and visualization. The next workflows deal with
machine-learning model construction and predicting side effects. In the final part,

the results of the predictions are evaluated and visually investigated.

The set of the workflows is available as a part of the additional files. It can
be used as a single pipeline, or as multiple stand-alone workflows to gather and
prepare data, to calculate similarities, to run classification models, to inspect model
performances and to evaluate predictions, respectively.

Each of the following subchapters focuses on a different aspect of the methods
used, however, the basic idea of our work is as follows: combined similarity character-
istics of the drugs are used as features for predicting potential side effects. The goal
of the set of the workflows is to investigate if a specific drug molecule would have a
specific side effect according to a prediction based on multiple similarity metrics to
other drug molecules and their association with a given side effect. We calculated

the similarity between drugs based on their chemical structure and association with
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specific side effects, targets, indications, and interacting drugs. The assumption is
that two drug molecules with similar structure, side effects, target proteins, indi-
cations and interacting drugs will also be more similar in terms of association to a
query side effect.

We constructed the workflows with KNIME software (version 3.5.2., released on
April 18, 2019) that is available at https:/www.knime.com. The applied nodes and
their function in the workflow are briefly described below. In addition, several own
scripts written in R language were integrated into the workflows. R is a programming
language and free software environment used mainly for statistical computing and
graphics (Team, [2008). All the analysis was performed on a stationary computer
with Intel(R) Core(TM) i5 CPU and 16.0 GB memory.

3.2 Data retrieval and filtering

The amount and quality of data are important factors for machine learning models
to learn the tasks. Here we describe the data used in this work and the filters applied

on them before the performed analysis.

3.2.1 The data sources

Our data was acquired and imported to KNIME software from the openly available
sources listed in the following table (Tab. [3.1). The datasets consist mainly of
information about drugs, side effects, targets, indications, and interacting drugs.
All the files are available in the attachments or via referred websites. The scripts
used for data collection is available in the attachment as well. Datasets statistics
are summarized in the Results and discussion section (Chapter [4]).

Information about drugs, targets and interacting drugs were collected from Drug-
Bank database (version 5.1.7, released on July 2, 2020) which is freely accessible
in .xml format at https://go.drugbank.com/releases/latest. In order to be
able to process data from DrugBank xml file also in KNIME, we used Mohammed-
FCIS/dbdataset data package to retrieve the data as data frames parsed by db-
parser R package (version 1.2.0, released on August 8, 2020) (M. et al., 2020)).
The parsed DrugBank dataset is available after download from https://github.
com/interstellar-Consultation-Services/dbdataset, installing the package by
devtools::install_github(‘MohammedFCIS/dbdataset’) command and loading
it by library(dbdataset) command in R environment. The SIDER database
(version 4.1, released on October 21, 2015) was used as a source for related in-

formation on drug side effects and indications. This version uses side effect names
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from MedDRA dictionary. The files are available at http://sideeffects.embl.
de/download.

Tab. 3.1: The data sources. Various data was acquired from DrugBank and SIDER

databases.

Database  Source file Data type

DrugBank  DrugBank_ structure_ links.csv drug structures
R library ‘MohammedFCIS/dbdataset’:  drug targets
data(Targets_ Drug)
R library ‘MohammedFCIS/dbdataset’:  interacting drugs
data(Interactions_ Drug)

SIDER meddra_ freq.tsv drug side effects and their frequencies
meddra_all indications.tsv drug indications
drugs_ atc.tsv drug ATCs

After retrieval, some of the data needed to be filtered out to meet the necessary
requirements for further analysis. The reader can review data overall filtering process
in the flowcharts below. The workflow nodes access the DrugBank database to get
information about structures, targets, indications, and interaction drugs of desired
drug molecules, and SIDER database to get information about side effect frequencies
and indications (Fig. . The filtering process is further described in the following
subchapters. The intersection drug set represents the set of all drug IDs which are
members of all of the filtered datasets (Fig. |3.2). Those drugs are referred to as

examined drugs in the following text.

DRUG TARGETS
DATASET
DRUG STRUCTURES INTERACTING DRUGS
DATASET N DATASET
INTERSECTION
DRUG SET
DRUG SIDE EFFECTS DRUG INDICATIONS
DATASET DATASET

Fig. 3.2: The dataset filtering flowchart. The intersection drug set corresponds to

set of examined drugs.
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3.2.2 Drug molecule chemical structures

There are several widely used chemical file formats of drug compounds. In order to
deal with molecules in this study, we worked with a 2D string representation called
simplified molecular input line entry system (SMILES). SMILES is a line notation
which follows a few syntax rules to encode molecular structures as a linear ASCII
string, see the example below (Fig. . The main benefit of the SMILES format

is that it has low storage requirements, making it ideal for storing large molecule

N CHs
Y ——  CC(=0)NC1=CC=C(C=C1)0
(@]
HO

Fig. 3.3: An example drug molecular representation in SMILES format - a line

datasets.

notation that follows few syntax rules to encode molecular structures as a linear
ASCII string.

Drug structure data of drugs were downloaded as DrugBank__structure__links.csv
file available at https://go.drugbank.com/releases/latest#structures. The file
includes structure information in InChl, InChl Key, and SMILES format and iden-
tifiers for other drug-structure resources. Drug SMILES representations were used
to generate fingerprints in a later step. For our analysis we only used drugs which
were labeled as approved small molecules and had SMILES data available (Fig. .

3.2.3 Drug side effects

The SIDER database was used as a source for drug side effects (version 4.1, released
on October 21, 2015). We obtained side effects including frequency data from med-
dra__freq.tsv file and the dataset processing filter was applied in the following way
(Fig. [3.4).

At first, we only considered drugs which had not been used as placebos in safety
studies. Secondly, we categorized the side effects according to CIOMS standard rec-
ommendations (CIOMS, |1995) on side effect frequency classification as very com-
mon, common, uncommon, rare or very rare (Tab. according to the following
rules: (1) an upper bound on the frequency value was applied for side effect fre-
quency classification, (2) if there were more than one frequency value, a minimum
value was applied for side effect frequency classification.

Next, we excluded all lowest level term side effects according to the MedDRA

concept type. Only preferred terms of side effects remained.
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Furthermore, only side effects with frequency data available were considered for
our study. We filtered out only those side effects, which were categorized as ‘very
common’ (frequency of > 10%) and ‘common’ (frequency of > 1% and <10%) ac-
cording to the CIOMS classification (Tab. . The side effects in other categories
(very rare, rare, uncommon, common) were not considered in our analysis. Conse-
quently, drugs with no ‘very common’ side effects were excluded from the analysis.

Entries without necessary side effect information available were avoided and cases
in which side effects were found with both positive and negative association, we kept
the positive one.

Consequently, we mapped drug identifiers from DrugBank (DrugBank ID) to
SIDER (STITCH ID flat) via the common ATC codes (Anatomical Therapeutic
Chemical) available from drugs atc.tsv file. The drugs with ATCs (STITCH ID
flat) mapped to more than one DrugBank IDs were excluded from the analysis.
Only those side effects which are associated to approved small molecules drugs and
have SMILES data available were included while drugs with no known side effect

association information were not.

3.2.4 Drug indications

Drug indication represents drug association to a disease or condition. The meddra__ -
all_indications.tsv file (obtained from SIDER database) was used as a source for
drug indication dataset (Fig. . We obtained a set of indications associated to
drugs filtered in a previous step. A further dataset filter was applied in the follow-
ing way. At first, we excluded rows with missing UMLS id MedDRA_indication
information. Indication IDs obtained from label (UMLS _id_label indication) were
not considered. Next, we excluded all lowest level term indications according to
the MedDRA concept type. Only preferred terms of indications remained. Finally,
we included only indications associated to the examined drugs filtered as described

in previous sections in the dataset.

3.2.5 Drug targets

DrugBank R library MohammedFCIS/dbdataset was used as a source for drug tar-
gets dataset. The dataset can be obtained after loading the library and running
the following command data(Targets_Drug) (Fig.[3.4). We filtered all targets as-

sociated to the examined drugs filtered as described in previous sections.
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3.2.6 Interacting drugs

DrugBank R library MohammedFCIS/dbdataset was used as a source for interacting
drugs dataset. The dataset can be obtained after loading the library and running
the following command data(Interactions Drug) (Fig. . We filtered all in-
teracting drugs associated to the examined drugs filtered as described in previous

sections.

3.3 The similarity metrics calculation

This chapter describes the calculating of similarity metrics used in this work. Addi-
tionally, we explain the data exploration process which was performed before feeding

the similarity data into machine learning models.

3.3.1 The structure fingerprint similarity computation

At first, 2D fingerprint similarity was employed for structure similarity description as
follows. Multiple fingerprints were generated for all examined drugs. In total, eight
different most common fingerprints were used for the similarity calculation between
the query drug and the remaining dataset drugs based on the chemical structure,
namely: Morgan fingerprint, FeatMorgan fingerprint, AtomPair fingerprint, Torsion
fingerprint, RDKit fingerprint, Avalon fingerprint, Layered fingerprint, and MACCS
fingerprint as described in the table below (Tab. .

Tab. 3.2: Calculated drug molecule structural fingerprints description (adapted from
RDKit documentation (Landrum, [n.d.})).

Fingerprint Description

name

RDKit A daylight-like topological fingerprint based on hashing molecular subgraphs
FeatMorgan A FCFP-like (Functional Class Fingerprint) circular fingerprint based on

the Morgan algorithm and feature invariants

AtomPair An atom-pair fingerprint (Carhart et al., |1985)

Torsion A topological-torsion fingerprint (Nilakantan et al., |[1987)

Avalon Avalon toolkit fingerprint (https://sourceforge.net/p/avalontoolkit)
Layered An experimental substructure-matching fingerprint

MACCS A SMARTS-based (SMiles ARbitrary Target Specification) implementation of

the 166 public MACCS keys (Molecular ACCess System) (Durant et al., [2002))

Pattern A topological fingerprint optimized for substructure screening
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Consequently, the drug similarity was computed. The aim of similarity calcu-
lation was to compare the similarity of a query (reference) molecule fingerprint to
the database molecule fingerprints. The similarity of molecules was computed by
calculating the maximum Tanimoto similarity coefficient based on the CDK toolkit
(Beisken et al., 2013) for all structures in provided datasets. The Tanimoto calcu-
lation was performed based on the aggregation method.

The Tanimoto similarity coefficient of drug molecule structures is given by:

C

_— Nl
a+b—c (3-1)

Tanimotoa,py =
in which a is the number of ‘1’ bits in molecule A; b is the number of ‘1’ bits
in molecule B; and ¢ is the number of ‘1’ bits common in both molecules A and
B. Number ‘1’ indicates the presence of a structural feature for a given molecule.
In total there were 8 different Tanimoto coefficients calculated (for each type of

generated structural fingerprints).

3.3.2 The Jaccard similarity index calculation for the shared side

effects, indications, targets, and interacting drugs

The figure below depicts the process of the similarity calculation (Fig. . The sets
of side effects, indications, targets, and interacting drugs of each examined drug
in the datasets were converted to bit-vector fingerprints. Following this, the Jac-
card similarity index was used as a method to calculate similarity for the query
drug molecule in terms of shared side effects, indications, targets, and interacting
drugs association. All types of the indexes were calculated for each drug—drug pair.
The drug—drug pairs rows with 0 similarity were excluded from the dataset, as well
as duplicated drug—drug pair combinations. The Jaccard similarity index for shared

features is given by:

7 _|AnB| |AN B|
4B T 1A0B| A+ B —|ANB|

(3.2)

in which J is the Jaccard similarity index for a specified feature; A is drug 1 set of
features; and B is drug 2 set of features. As all the drugs in the dataset had at least

1 feature, none of the sets was empty.
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Fig. 3.5: The featured fingerprints and the Jaccard similarity index calculation (J).
Presence of specific features are compared between two drugs. In this example, side

effects associations (SE) are compared.

3.4 The datasets for the analysis construction and

exploration

The Tanimoto structural fingerprint similarity coefficients, the Jaccard feature sim-
ilarity indexes and the side effect association were merged together to compile
datasets for analysis. Each of the resulting tables with the similarity measures
serves as a required input data of attribute matrix describing the examined drugs.
As all fingerprint similarities were numerical values in range of [0, 1], there was no
need to implement a normalization step on the data. Several erroneous molecules
were excluded. In most cases the cause of errors was an inability to generate a
SMILES structure.

As a result of the similarity calculation step, each examined drug in each fi-
nal dataset was represented by a 12-dimensional profile whose elements encode
for the structure fingerprint similarity coefficient or the Jaccard similarity index
for side effects, indications, targets, and interacting drug similarities to a query
drug molecule. The studied side effect association was added in the last column as
a target attribute. It was a nominal value corresponding to a positive or a nega-
tive association to a given side effect. The models were constructed for predicting
the top 10 most prevalent side effects in the filtered dataset. They are listed in a
table below (Tab. [3.3)).
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Tab. 3.3: The studied side effect predictions

UMLS ID MedDRA info 3

C0000737 Abdominal pain / Gastrointestinal pain
C0004604 Back pain

C0009806 Constipation

C0011991 Diarrhoea

C0012833 Dizziness

C0013395 Dyspepsia

C0015672 Fatigue / Asthenia

C0018681 Headache

C0027497 Nausea

C0042963 Vomiting

3.4.1 Features distribution

In order to analyze feature distribution, we divided the prepared dataset into two
parts, with and without a given side effect association respectively. The data distri-
butions of all features were studied using a comparison of box-and-whisker plots lead-
ing to a conclusion if there tends to be a difference between both groups (the group
of examined drugs with positive vs. the group of examined drugs with negative side
effect associations).

The box-and-whisker plot is a diagram used to summarize a set of numerical data
by visualizing it through their quartiles and displaying the shape of the distribution
(possible skewness), central value, and variability (spread) (Tukey, [1977)). Nowa-
days, box-and-whisker plots are one of the most frequently used statistical graphic.
They are particularly useful for distributions comparisons between datasets. The dis-
tance between medians as a percentage difference of the overall visible spread was

calculated as follows:

_ DBM
- 0VS

x 100 (3.3)

in which P is the percentage difference, DBM is the difference between medians cor-
responding to the difference between medians of the both groups, OVS is the overal
visible spread corresponding to the difference between the higher upper quartile and
the lower lower quartile. For more details refer to the figure below (Fig. .

After obtaining the results of the feature distribution analysis, additional filter-

ing was applied to get features with a greater value difference between the groups.
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Highest value
(Max)

Upper quartile
(Q3) A

median

(Q2)
Difference Overall visible
between spread
medians (OVS)
(DBM)

Lower quartile
Q1)

Lowest value —l
(Min) .

1

Group 1 Group 2

Fig. 3.6: The robust statistical parameters displayed by the box-and-whisker plots.
Difference between medians is the difference between medians of the both groups,
overall visible spread represents the difference between the higher upper quartile

and the lower lower quartile of the bothe groups.

The filtering step was performed based on the feature robust statistical parame-
ters (median, lower quartile, upper quartile) of both groups. In order to make
the percentage difference larger and get datasets with more predictive power, we
only considered drugs according to the following filtering function (Fig. [3.7) result-
ing in ‘selection datasets’ In total 5 selection datasets have been prepared this way.

The prepared datasets for analysis were fed in models in the following steps.

3.4.2 Feature selection (dimensionality reduction)

Before proceeding with further data analysis, we implemented a dimensionality re-
duction technique (the number of input features reduction) in order to get alternative
datasets and affect the workflow speed. The benefits of the feature selection step
include overfitting (model fitting to noise in training data) reduction, performance
improvement and training time reduction. There are a variety of tools which can be
employed to aid feature selection. The selected statistical measures calculated for
this task included variance, standard deviation, coefficient of variation and correla-
tion in our work.

The variance is a measure of how far each value in the dataset is from the mean.
Hence, low variance indicates that data points are generally similar and do not vary
widely from the mean. Data columns with low variance (almost constant value)

could be considered for removal based on the assumption that low variance features
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FILTERING FUNCTION

Original dataset

1

Group of positive and
group of negative subsets

|

Robust statistical
parameters for specific
features calculation

l Selection 1:
Filtering process RDKit and Feat Morgan Tanimoto

Selection 2:
E RDK:it Tanimoto

Considered features:

- Selection 3:

Layered Tanimoto

l Excluded features:
Selection 4:
Feature Avalon and Layered Tanimoto
selection
Selection 5:
Avalon, Layered, and Pattern Tanimoto

SELECTION 1-5
DATASETS

Fig. 3.7: The applied filtering function diagram. A dataset was split into a group of
drugs with positive association (positives) and a group of drugs without association
to a specific side effect (negatives). Median, lower quartile, upper quartile were
calculated for specific feature values of both groups. If median of the group of
positives was lower than median of the group of negatives, the group of positives
was subset to rows with values less than upper quartile of the group and the group
of negatives was subset to rows with values greater than group lower quartile of
the group. Otherwise the groups were split in an opposite way. In addition, two
more selection datasets have been prepared by excluding some of the features with

high correlation to other features.
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hold no predictive power and do not meaningfully contribute to the model’s predic-
tive capability. The sample variance was calculated for all features in the datasets

as follows:

1
N-—-1¢

7

Sample variance = 3 (z; — 1) (3.4)
=1
in which z is the value; x is the sample mean; N is the sample size.

Another consideration to discard a feature is based on the standard deviation
calculation and the assumption that features with a standard deviation equal to
zero do not vary and would have no effect on the model performance. The sample
standard deviation was calculated for all features in the datasets as a square root of

the sample variance as follows:

1 & 2
- (x; — ) (3.5)

=1

Sample standard deviation = J N

in which z is the value; = is the sample mean; N is the sample size.

The coefficient of variation (also called the relative standard deviation) is a stan-
dardized measure of the dispersion of a probability distribution or a frequency
distribution. The sample coefficient of variation was calculated for all features in
the datasets as follows:

(3.6)

Sample coefficient of variation =

ISINRYS

in which s is the sample standard deviation; and z is the sample mean. The range
of the coefficient of variation is between 0 and 1. Optionally it can be expressed as
a percentage when multiplied by 100.

To explore feature correlation, we calculated the Pearson product-moment cor-
relation coefficient, which is a typical approach for measuring the significance of
the association between two normally distributed variables. The sample Pearson

correlation coefficient was calculated according to the following formula:

SN (@ — @)y — ¥)
VEN (2 — 222N (v — §)?

(3.7)

Pearson correlation coefficient =

in which z; and y;, are the individual sample values indexed with ¢; * and y are
the sample means; N is the sample size. The range of the correlation coefficient is
between —1 and 1. If the coefficient is equal to 0, there is no correlation between
the two variables. The closer to —1 or 1 the value is, the stronger the correlation

between the two variables indicates either negative or positive.
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3.5 The applied machine-learning algorithm and

the evaluation metrics

In this subchapter more details on the applied machine-learning techniques and

the evaluation metrics are described.

3.5.1 The decision tree

A decision tree was used as a machine-learning classification algorithm. Our task is a
binary classification problem in which each examined drug molecule in the datasets
is considered to either be associated with a specific side effect (labelled positive) or
not (labelled negative). The workflow provides an individual classifier for each side
effect prediction.

The Gini index was selected as quality measure according to which the split point
in the decision tree was calculated. It represents a measure of the dataset impurity
which can be defined as a probability of an attribute value to be misclassified.
The Gini index is given as follows:

n

Gini indez=1—) (P)? (3.8)

=1

in which P, is the relative frequency of class 7. The range of the Gini index is between
0 and 1. The value of 0 indicates the purity of the classification. The main advantage
of the index is its simple calculation requiring only the distribution (Shafer et al.,
1996)).

In machine-learning modeling it is necessary to have a dataset partitioned into
a training set and a test set. The data of a training set are used to train the model,
while test set data are required to evaluate model performance. We applied a relative
split of 80% for the train part, the remainig 20% serves for model testing. A random
seed 123456789 was used in random sampling to partition data (Fig. .

3.5.2 K-fold cross validation

The K-fold cross validation approach was implemented for a better model evaluation.
In the first step of the cross validation process, the dataset is split into &k parts (folds).
Those parts are analyzed in each iteration as depicted in the figure below (Fig. .
Each fold is used once for testing, remaining (k— 1) folds are used for training which

means there is a partial overlap in each iteration.
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Original dataset

Training Test Performance
set set metric

-

Fig. 3.8: A schematic illustration of the dataset partitioning. 80% of the dataset is

intended for model training, the remainig 20% serves for model testing.

This process results in & number of models and the final cross validation perfor-
mance represents an arithmetic mean of the performance of all these models. It is

calculated as follows:
1
P=2> P (3.9)

=1

in which P is the cross validation performance; and P; is the iteration ¢ model

performance.

Original dataset

Test Training Performance Cross validation
fold folds (k-1) metric performance

m -
[ -
5
1
DRI Y
54
i=1
4- -
5- -

Fig. 3.9: A schematic illustration of 5-fold cross validation process. The cross vali-

k iterations
w

dation performance represents arithmetic mean of performance of all models trained

on different (overlapping) parts of the original dataset within 5 iterations.

The main benefit of a cross validation technique is that it provides more training

data, and the measured estimation of model performance is more accurate. Further-
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more, it is used to prevent overfitting and reduce variability and pessimistic bias. In
machine learning practices, a 10-fold cross validation is very common to train and

test classifiers and it was also employed in our study.

3.5.3 Prediction statistics — the performance measurement

Model evaluation is an indispensable part of machine-learning based predictions,
therefore choosing a proper evaluation metric is crucial. To assess the performance
of the methods applied in our work, at first, the following performance metrics for
each prediction model were defined: true positive (TP), false negative (FN), false
positive (FP) and true negative (TN) values. A true positive (TP) result refers
to a correctly predicted positive outcome (known drug-side effect association), a
true negative (TN) indicates a correctly predicted negative outcome (known lack of
drug—side effect association). A false positive (FP) result refers to an incorrectly
predicted positive outcome (incorrectly predicted drug-side effect association), a
false negative (FN) indicates an incorrectly predicted negative outcome (incorrectly
predicted lack of drug—side effect association). The above mentioned values can
be summed up in a confusion matrix (also called error matrix) (Fig. 3.4). It is a
table commonly used to represent the accuracy of the predictor. True positive, true
negative, false positive and false negative values were used for other performance

metrics calculation as described further.

Tab. 3.4: The confusion matrix for binary classification problems

Observed Observed
positive negative
Predicted Number of true Number of false
positive positives (TP) positives (FP)
Predicted Number of false Number of true
negative negatives (FN) negatives (TN)

Recall (also called sensitivity in binary classification or the true positive rate) is a
proportion of the true positives. In other words, recall indicates how well the model

predicts the true positives category. The recall score is calculated as follows:

TP

TP+ FN (3.10)

Recall (sensitivity, true positive rate) =

in which TP is the number of the true positive outcomes; and F'N is the number of

the false negative outcomes.
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Specificity (also called the true negative rate) indicates how well the model pre-

dicts the true negatives category. The specificity score is calculated as follows:

TN

_— A1
TN+ FP (3.11)

Specificity (true negative rate) =
in which TN is the number of the true negative outcomes; and FP is the number of
the false positive outcomes.

Precision (also called the positive predictive value) measures the number of true
positives divided by the total number of positive outcomes. The precision score is

calculated as follows:

TP

Precision (positive predictive value) = TP+ FP

(3.12)
in which TP is the number of the true positive outcomes; and FP is the number of
the false positive outcomes.

Accuracy is a commonly used metric of binary classifiers which measures number
of correctly classified predictions from all predictions made. The accuracy score is

calculated as follows:

TP+ TN
TP+ TN+ FP+ FN

Accuracy = (3.13)
in which TP is the number of the true positive outcomes; FP is the number of
the false positive outcomes; TN is the number of the true negative outcomes; and
FN is the number of the false negative outcomes.

In addition, the performance of various methods can be evaluated via a receiver
operating characteristic (ROC) curve or rather the area under it. ROC is a graph
in which the true positive rate (TPR) (the number of correctly classified positives
to the total number of positives) is plotted on the y-axis and the false positive

rate (FPR) (the number of incorrectly classified negatives to the total number of
negatives) is plotted on x-axis (Fig. [3.10).

FP
False positive rate = FPL TN (3.14)
The area under the receiver operating characteristic curve (AUC-ROC) has been
widely used in previous studies as a well-established model performance measure.
The AUC-ROC score indicates the performance of the classification model. If
the AUC-ROC is equal to 1, the classifier is perfect as it is able to correctly distin-
guish between the positive and the negative class in 100%. The AUC-ROC score
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near to the 1 indicates an excellent performance of the model. The random classi-
fier has an AUC-ROC score of 0.5 which means such a model fails and has a bad
measure of separability. A model with an AUC score near to the 0 is regarded as
poor. The AUC-ROC of multiple models allows for a quick visual comparison of
their performances. The higher the model ROC curve is, the better the model it
indicates.

Receiver

operating characteristic
(ROC) curve

Area under receiver
operating characteristic
curve (AUC-ROC)

True positive rate
(recall, sensitivity)

False positive rate
(1 - specificity)
Fig. 3.10: Example of a receiver operating characteristic (ROC) curve. ROC curve
plots true positive rate (the number of correctly classified positives to total number
of positives) vs. false positive rate (the number of incorrectly classified negatives
to the total number of negatives), in other words it plots sensitivity (recall) vs.
(1-specificity). An area under ROC curve represents the probability of a correct

prediction.

However, in classification problems with a large imbalanced class distribution,
classification accuracy alone cannot be selected as a trusted measure due to an accu-
racy paradox referring to an issue in which a classifier is biased towards the majority
class. Therefore, additional measures are required to evaluate model performance.
As the class of negative side effect association occurs more often than the class of
positive side effect association in our datasets, the datasets can be regarded as imbal-
anced. In the case of evaluating binary classifiers on an imbalanced data precision-
recall (PR) curve analysis is more informative than an AUC-ROC curve analysis
(Saito et al., [2015)). PR curve is a graph in which precision (the number of true
positives divided by the total number of true positives and false positives) is plotted
on the y-axis and recall (the number of true positives divided by the total number
of true positives and false negatives) is plotted on x-axis (Fig. [3.11). PR curve con-
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nects all precision-recall points of a classifier. The AUC in the precision-recall space
is called an area under the PR curve (AUC-PR).

Precision-recall
(PR) curve

)

=

[

>

()]
52 Area under
‘& % precision-recall curve
g0 (AUC-PR)
— O
0o

=

=

2]

o

K=

True positive rate

(recall, sensitivity)
Fig. 3.11: Example of a precision-recall (PR) curve. PR curve plots the false positive
rate (the number of incorrectly classified negatives to the total number of negatives)
vs. true positive rate (the number of correctly classified positives to the total number

of positives), in other words it plots precision vs. sensitivity (recall).

The AUC can be calculated by several methods. In our analysis, a function pro-
vided in the PRROC R package (Grau et al., [2015) was applied to calculate both
the AUC-ROC and the AUC-PR values. AUC-PR was calculated using the inter-
polation of Davis and Goadrich (Davis et al., 2006).

The changes in all calculated performance metrics were compared for models
fed with different input data. The calculated metrics are displayed using box-and-

whisker plots in the following Results section.
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4 Results and discussion

This chapter is intended to present the results of our work. We describe the set of

developed workflows, their application on real data and the results obtained.

4.1 The details of the designed workflow usage

The final set of designed workflows consists of three main sections (Fig. Fig.
[4.22|and Fig[4.34] Their major purpose is to predict side effects on the basis of drugs
similarity data. The first workflow section is intended for preparing and evaluating
datasets. The prepared data are used in the second section in the machine learning
models. The aim of the third section is to evaluate the results of this prediction.
As a clear and meaningful visualization is a key aspect of data understanding and
analysis, various plots generation is an integral part of the designed workflows.
Each of the sections is described in further detail in the next subchapters. This is
immediately followed by applying the corresponding parts of the workflow set to our
analyzed datasets. All workflow descriptions are accompanied by figures.

The proposed set of workflows was exported to KNIME Archive File named
‘DISSERTATION PROJECT knar’ and is available as an additional file. The pre-
requisites to use it include having the KNIME Analytical Platform installed. The us-
age is platform independent and the workflows run within the KNIME Analytics
Platform (KNIME version 3.7.2 or above). Other requirements include having Java
1.8 or higher installed. The KNIME Extensions mandatory for the workflows usage
are listed in the table below (Tab. [4.1]).

Tab. 4.1: The KNIME Extensions required for the proposed set of workflows usage.
They can be installed from the KNIME Analytics Platform update site.

KNIME extension Info
Erl Wood KNIME Open Source https://www.knime.com/community/erlwood
Cheminformatics

KNIME Base Chemistry Types & Nodes https://hub.knime.com/knime/extensions/org.

knime.features.chem.types/latest

KNIME Interactive R Statistics https://www.knime.com/community/hcs-tools
Integration
KNIME HCS Tools https://hub.knime.com/knime/extensions/org.

knime.features.r/latest

RDKit KNIME Integration https://www.knime.com/rdkit
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There are three states of KNIME nodes: Idle, Configured, Executed. To change
the KNIME node configuration, right-click on the node and select ‘Configure’ op-
tion. To execute the KNIME node, right-click and select ‘Execute’ option. The green
colour indicates that the node has been successfully executed. The entire workflow
can be executed by selecting the ‘Execute All’ button on the top panel. Some of
the workflow nodes have been collapsed into the metanodes containing sub-workflows
to keep the pipeline tidy and easy to understand. Metanodes can be opened by
double clicking in a separate tab or expanded to the original node sequence. Addi-

tionally, there are several annotations created for a better understanding.

4.2 Data retrieval and filtering

The first part of the set of workflows deals with data retrieval and filtering and
the subsequent similarity metrics calculation (Fig. . The necessary datasets can
be retrieved from the ‘MohammedFCIS/dbdataset’ library via integrated R scripts
in appropriate ‘R Source (Table)” KNIME nodes or imported into the corresponding
workflows directly from prepared .csv files via ‘CSV Reader’ KNIME nodes (Fig. ,
and . All files are listed in the appendix and are available and ready to use in
the attachment. After data importing the workflow performs set operations required
for filtering. In addition, the workflows enable the user to perform data exploration
steps to better understand the nature of the analyzed datasets before the analysis
itself. The resulting visualization outcomes include box-and-whisker plots and his-
tograms. In the following subchapters you can see the results of the exploratory

analysis of our datasets.

4.2.1 Drug molecule dataset after filtering

The total number of unique drugs after filtering (small molecules, approved drugs,
SMILES structure available, ATC code available) was 1,898 (Tab. (Fig. [1.2).

Many of them are associated to more than one ATC code.

Tab. 4.2: The drug dataset information after filtering

Characteristics After filtering
Number of drugs (unique drugbank id terms) 1,898
Number of drugs (unique ATC terms) 1,806
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DATA RETRIEVAL AND FILTERING + SIMILARITY METRICS CALCULATION

DRUG MOLECULES
Reference Row TANIMOTO STRUCTURE
DRUG MOLECULES Splitter Reference SIMILARITY COEFFICIENTS

u I 2 2 Row Filter o
Table Creator /> |~ b > —csvwriter
EF/ =y [ - ,,B output files:
filter / | [ ) fingerprint_similarities

. errors fut [fitered drugs -

errors / | dataset filtered_drugs_dataset.csv
/ |

/ Reference JACCARD INDEX FOR
SIDE EFFECTS Row Filter SHARED SIDE EFFECTS

B N
_ T -
.ET | » s /Ungroup  CSV Writer
-/
| S » i output files:
|| fitered T Jaccard_SE_similarities

|| side effects ° °
|| dataset

filtered_side_effects_dataset.csv

SIDER 4.1

Reference JACCARD INDEX FOR
Row Filter SHARED INDICATIONS

g
T csvwriter 'EI
L4 N >= output files:
filtered Jaccard_indication_similarities
indications °
dataset

filtered_indications_dataset.csv

Reference JACCARD INDEX FOR

@ RUGBANK

TARGETS ||| RowfFilter SHARED TARGETS
“ [ CSV Writer
/ | “ / o N ,B output files:
/ |/ filtered Jaccard_target_similarities
|/ targets o

/ dataset
/ filtered_targets_dataset.csv

INTERACTING DRUGS/

I

GroupBy |
/ —p :_ JACCARD INDEX FOR SHARED
INTERACTING DRUGS INTERACTING DRUGS

J . CSV Writer
final
B

drugbank_id set
output files:

L] Jaccard_drugint_similarities

filtered_interacting_drugs_dataset.csv

Fig. 4.1: Workflow overview - part I: a data retrieval, a data filtering and a similarity

metrics calculation.
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SMILES available
(9.678)

ATC available
Small (3,224) Approved
molecules drugs
(11,834) (4,108)

Fig. 4.2: A Venn diagram of the DrugBank filtering process. In total 1,898 drugs
with unique drugbank id retrieved from DrugBank database were small molecule
approved drugs and had both SMILES structure and ATC code available.
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Fig. 4.8: The data distribution in the filtered side effect dataset

4.2.2 Drug side effects dataset after filtering

The size of the dataset was reduced only to examined drugs with side effects classi-
fied as ‘common’ and ‘very common’ based on the CIOMS classification (Tab. [2.3).
As some DrugBankIDs can be associated with the same STITCH ID, we used Drug-
BankIDs as drug identifiers. Number of 511 drugs (drugbank id terms) with at least
1 side effect remained in the dataset after filtering and 1,164 unique side effects were
associated with those drugs, there were 9,114 drug-side effect associations in total
(Tab. . The distribution of the number of unique side effects per examined drug
and of the number of unique examined drugs with common or very common side ef-
fects are associated with is shown as box-and-whisker-plots (Fig. and histograms
(Fig. and [4.10). The median of side effects per drug was 12 and the median
of drugs each side effect is associated with was 2 (Tab. and [4.6). Decitabine
(DB01262) was labeled as a drug with the highest number of common or very com-
mon side effects among all drugs in the filtered dataset (Tab. . This medication
associated with 125 side effects is indicated for the treatment of myelodysplastic syn-
dromes (https://go.drugbank.com/drugs/DB01262). Headache (C0018681) was
identified as the most prevalent side effect in the dataset (Tab. with total 237
out of 511 drugs with this side effect.

Tab. 4.3: The drug side effect dataset information before and after filtering

Characteristics Before filtering  After filtering
Number of drugs (unique STITCH_ id_ flat terms) 968 498
Number of drugs (unique drugbank id terms) NA 511
Number of side effects (unique UMLS_ id terms) 3,775 1,164
Number of drug-SE associations (unique drug-SE_ pairs) 55,932 9,114
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Fig. 4.9: The distribution of the number of unique side effects observed for each

drug. The distribution is skewed right.

Tab. 4.4: The summary statistics of side effect distribution in the filtered dataset

Value No. of unique common and very common side effects per drug
min 1
max 125
mean 17.84
median 12

Tab. 4.5: The top 10 drugs with the highest number of side effects

DrugBank ID
(drug compound ID)

Drug name

No. of common or very comimorn

side effects

DB01262
DB01242
DB00261
DB00262
DB01224
DB01202
DB00928
DB00982
DB01610
DB01080

Decitabine
Clomipramine
Anagrelide
Carmustine
Quetiapine
Levetiracetam
Azacitidine
Isotretinoin
Valganciclovir

Vigabatrin

125
105
85
81
79
78
75
74
72
71
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Fig. 4.10: The distribution of the number of unique drugs observed for each side
effect. The distribution is skewed right.

Tab. 4.6: The summary statistics of drugs side effects are associated with

Value No. of unique drugs

common and very common side effects are associated with

min 1
max 237
mean 7.83
median 2

Tab. 4.7: The top 10 side effects associated with the highest number of drugs

UMLS MedDRA __info_ 3 No. of drugs with this
(side effect ID) (side effect name(s) side effect
C0018681 Headache 237
C0027497 Nausea 229
C0012833 Dizziness 185
C0011991 Diarrhoea 183
C0042963 Vomiting 167
C0000737 Abdominal / Gastrointestinal pain 145
C0013395 Dyspepsia 135
C0015672 Asthenia, Fatigue 135
C0009806 Constipation 128
C0030193 Pain 110
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Fig. 4.11: The data distribution in the filtered indication dataset

4.2.3 Drug indications dataset after filtering

As indicated in the table below, 504 examined drugs (drugbank id terms) with at
least 1 indication remained in the filtered meddra all indications dataset and 1,618
unique indications were associated with these drugs, there were 6,696 drug-indication
associations in total (Tab.[4.8). The distribution of the number of unique indications
per examined drug and of the number of unique examined drugs indications are asso-
ciated with is shown as box-and-whisker plots (Fig. and histograms (Fig.
and . The median of the numbers of indications of each drug in the dataset was
7.5 and the median of the numbers of drugs each side effect is associated with was
2 (Tab. 4.9 and [1.11)). Bethametasone (DB00443) was labeled as a drug with the
highest number of indications among all drugs in the filtered dataset (Tab. .
This medication is a systemic corticosteroid and is associated with 165 indications
(https://go.drugbank.com/drugs/DB00443). Renal failure (C0035078) was iden-
tified as the most prevalent indication in the dataset (Tab. [£.12). Total number of
drugs with this indication was 72 out of 504.

Tab. 4.8: The drug indications dataset information before and after filtering

Characteristics Before filtering After filtering
Number of drugs (unique STITCH_id_ flat terms) 1,437 491
Number of drugs (unique drugbank id terms) NA 504
Number of indications 3,046 1,618

(unique UMLS_id_ MedDRA_ indication terms)
Number of drug-indication associations 17,879 6,696

(unique drug-indication_ pairs)
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Fig. 4.12: The distribution of the number of unique indications observed for each

drug. The distribution is skewed right.

Tab. 4.9: The summary statistics of indications distribution in the filtered dataset

Value No. of unique indications per drug
min 1
max 165
mean 13.29
median 7.5

Tab. 4.10: The top 10 drugs in the filtered with the highest number of indications

DrugBank ID Drug name No. of indications
(drug compound ID)

DB00443 Betamethasone 165
DB00741 Hydrocortisone 121
DB00254 Doxycycline 82
DB00715 Paroxetine 81
DB00620 Triamcinolone 79
DB01017 Minocycline 74
DB01104 Sertraline 73
DB00404 Alprazolam 67
DB00424 Hyoscyamine 65
DB00572 Atropine 65
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Fig. 4.13: The distribution of the number of unique drugs observed for each indica-
tion. The distribution is skewed right.

Tab. 4.11: The statistics of drugs indications are associated with

Value No. of unique drugs indications are associated with
min 1
max 72
mean 4.14
median 2

Tab. 4.12: Top 10 indications associated to the highest number of drugs

UMLS id MedDRA concept__name__MedDRA No. of drugs with this
indication (indication ID) (indication name) indication
C0035078 Renal failure 72
C0009450 Infection 71
C1565489 Renal impairment 71
C0006826 Neoplasm malignant 64
C0027651 Neoplasm 48
C0023895 Liver disorder 47
C0030193 Pain 47
C0011849 Diabetes mellitus 46
C0020538 Hypertension 46
C0036572 Convulsion 39
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Fig. 4.14: The data distribution in filtered target dataset

4.2.4 Drug targets dataset after filtering

As indicated in the table below, 482 examined drugs (drugbank id terms) with
at least 1 target remained in the filtered target dataset and 646 unique targets
were associated with these drugs, there were 1,867 drug-target associations in total
(Tab.[£.13)). The distribution of the number of unique targets per examined drug and
of the number of unique examined drugs targets are associated with is shown as box-
and-whisker plots and histograms (Fig. and. The median of the numbers of
targets of each drug in the dataset was 2 and the median of the numbers of drugs each
target is associated with was 1 (Tab. and [4.16). Aripiprazole (DB01238) was
labeled as a drug with the highest number of targets among all drugs in the filtered
dataset (Tab. . This medication is an atypical antipsychotic and is associated
with 38 targets (https://go.drugbank.com/drugs/DB01238). DNA (BE0004796)
was identified as the most prevalent target in the dataset (Tab.[4.17). Total number
of drugs with this target was 33 out of 482.

Tab. 4.13: Drug targets dataset information before and after filtering

Characteristics Before filtering After filtering
Number of drugs (unique drugbank id terms) 1,954 482
Number of targets (unique target_id terms) 2,498 646
Number of drug-target associations 8,278 1,867

(unique drug-target_ pairs)
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Fig. 4.15: The distribution of the number of unique targets observed for each drug.
The distribution is skewed right.

Tab. 4.14: The summary statistics of the targets distribution in the filtered dataset

Value No. of unique indications per drug
min 1
max 38
mean 3.87
median 2

Tab. 4.15: The top 10 drugs with the highest number of targets

DrugBank ID Drug name No. of targets
(drug compound ID)

DB01238 Aripiprazole 38
DB00408 Loxapine 33
DB00909 Zonisamide 31
DB00363 Clozapine 27
DB00246 Ziprasidone 26
DB00543 Amoxapine 25
DB00458 Imipramine 24
DB01224 Quetiapine 24
DB01254 Dasatinib 23
DB00248 Cabergoline 21
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Fig. 4.16: The distribution of the number of unique drugs observed for each target.
The distribution is skewed right.

Tab. 4.16: The statistics of drugs targets are associated with

Value No. of unique drugs indications are associated with
min 1
max 33
mean 2.89
median 1

Tab. 4.17: The top 10 targets associated with the highest number of drugs

Target Target name No. of drugs with this
(target ID) target
BE0004796 DNA 33
BE0000442 Histamine H1 receptor 28
BE0000756 Dopamine D2 receptor 28
BE0000291 5-hydroxytryptamine receptor 1A 27
BE0000451 5-hydroxytryptamine receptor 2A 27
BE0000501 Alpha-1A adrenergic receptor 27
BE0000092 Muscarinic acetylcholine receptor M1 24
BE0000560 Muscarinic acetylcholine receptor M2 23
BE0000045 Muscarinic acetylcholine receptor M3 23
BE0000533 5-hydroxytryptamine receptor 2C 23
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Fig. 4.17: The data distribution in the filtered interacting drugs dataset

4.2.5 Interacting drugs dataset after filtering

As indicated in the table below, 469 examined drugs (drugbank id terms) with
at least 1 interacting drug remained in the filtered interacting drugs dataset and
3,548 unique interacting drugs were associated with those drugs, there were 494,185
drug—drug associations in total (Tab. . The distribution of the number of
unique interacting drugs per examined drug and of the number of unique exam-
ined drugs interacting drugs are associated with is shown as box-and-whisker plots
(Fig. and histograms (Fig. [4.18 and [4.19). The median of the numbers of

interacting drugs of each examined drug in the dataset was 1,062 and the median

of the numbers of examined drugs each interacting drug is associated with was 138
(Tab. and [4.21)). Quinidine (DB00908) was labeled as a drug with the highest
number of interacting drugs among all drugs in the filtered dataset (Tab.[£.20]). This
medication is indicated for the treatment of ventricular pre-excitation and cardiac
dysrhythmia (https://go.drugbank.com/drugs/DB00908) and is associated with
2,477 interacting drugs. Quinidine was also identified as the most interacting drug
in the dataset (Tab. . Total number of drugs associated with this interacting
drug was 412 out of 469.

Tab. 4.18: The drug interacting drugs dataset information before and after filtering

Characteristics Before filtering After filtering
Number of drugs (unique drugbank_id terms) 2,090 469
Number of interacting drugs 4,063 3,548

(unique drugbank_id_int terms)

Number of drug-drug associations (unique 1,722,202 494,185
drug-drug_ pairs)
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Fig. 4.18: The distribution of the number of unique interacting drugs observed for

each drug. The distribution is random and has several peaks.

Tab. 4.19: The summary statistics of the interacting drugs distribution

Value No. of unique interacting drugs per drug
min 1
max 2,477
mean 1,053.7
median 1,062

Tab. 4.20: The top 10 drugs with the highest number of interacting drugs

DrugBank ID Drug name No. of interacting
(drug compound ID) drugs
DB00908 Quinidine 2,477
DB00363 Clozapine 2,437
DB01142 Doxepin 2,273
DB00564 Carbamazepine 2,270
DB00458 Imipramine 2,260
DB00476 Duloxetine 2,215
DB00909 Zonisamide 2,210
DB00280 Disopyramide 2,178
DB01224 Quetiapine 2,170
DB00091 Cyclosporine 2,167
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Fig. 4.19: The distribution of the number of unique drugs observed for each inter-

acting drug. The distribution is skewed right.

Tab. 4.21: The statistics of the drugs interacting drugs are associated with

Value No. of unique drugs targets are associated with
min 1
max 412
mean 139.29
median 137

Tab. 4.22: Top 10 interacting drugs associated to the highest number of drugs

Interacting drug Interacting drug name No. of drugs with this
(interacting drug ID) interacting drug
DB00908 Quinidine 412
DB00363 Clozapine 409
DB00091 Cyclosporine 400
DB00477 Chlorpromazine 400
DB00502 Haloperidol 396
DB00398 Sorafenib 392
DB01151 Desipramine 390
DB00321 Amitriptyline 389
DB00564 Carbamazepine 384
DB00333 Methadone 383
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4.3 Similarity metrics calculation

The following workflows demonstrate a similarity metrics calculation between each
drug pair in the filtered datasets. The first workflow is intended for a structure
similarity calculation (Fig. . The workflow begins with a structural drug data
transformation which is performed within the ‘Preprocessing’” metanode on the fil-
tered drug structure database. In the metanode strings representing the examined
drug structures are converted into KNIME SMILES strings via ‘Molecule Type Cast’
KNIME node which casts a string as a chemical type. Then, we converted the struc-
tures into the RDKit internal representation using an ‘RDKit From Molecule” KN-
IME node.

Next, multiple fingerprints were generated for all drugs of loaded dataset within
‘Fingerprints’ metanode in which multiple ‘RDKit fingerprint” KNIME nodes were
used to calculate different types of molecule structure fingerprints. In total, 8 unique
fingerprints were generated for all drug molecules: the Morgan fingerprint, the Feat-
Morgan fingerprint, the AtomPair fingerprint, the Torsion fingerprint, the RD-Kit
fingerprint, the Avalon fingerprint, the Layered fingerprint and the MACCS finger-
print.

The fingerprint generation was followed by a fingerprint similarity calculation
loop. In each iteration, one query drug molecule was compared to remaining molecules
in the dataset. The ‘Fingerprint Similarity’ metanode computes the similarity of
molecules by calculating the Tanimoto similarity coefficient based on the CDK
toolkit for each fingerprint type. The resulting similarity values were exported as
.csv files using ‘CSV writer’ KNIME node.

In the remaining four similarity calculation metanodes, the Jaccard indexes cal-
culation was performed for side effect similarity, targets similarity, indications simi-
larity, and interacting drugs similarity. Figure illustrates an example workflow
which allows the Jaccard similarity calculation for shared targets. At first, sets of
targets were converted into bit vectors fingerprints (target fingerprints). The fin-
gerprint generation was followed by a Jaccard similarity calculation nested loop. In
each iteration, one query drug target fingerprint was compared to the remaining
drug target fingerprints in the dataset and the similarity metrics was calculated by
a set of necessary operations. The other Jaccard similarity indexes were calculated

in a similar way.
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4.4 Datasets for analysis preparation and exploration

The second part of the set of the workflows deals with datasets for analysis prepa-
ration and exploration and a selection datasets creation (Fig. [4.22)).

DATASETS FOR ANALYSIS PREPARATION + EXPLORATORY DATA
ANALYSIS + SELECTION FILTERING

PREPARE DATASETS FOR EXPLORATORY DATA

ANALYSIS ANALYSIS
PREPARE DATASETS

FOR ANALYSIS VARIANCE, STANDARD DEVIATION
D AND COEFFICIENT OF VARIANCE

[]

CORRELATION

SELECTION

DATASETS CREATION DATA DISTRIBUTION

El Bl

output files in folder:
datasets_for_analysis_selection_(1-5)

output files in folder:
datasets_for_analysis

SELECTION DATASETS

Fig. 4.22: The workflow overview - part II: a datasets for analysis preparation, an

exploratory data analysis and a selection datasets creation.

All the similarity metrics prepared in the first part were combined together using
the workflow depicted below (Fig. . The similarity coefficients data were joined
with an association with a given side effect data. The dataframes of the drugs merged
with the similarity coefficients and a labeled association with a given side effect
(positive or negative) result from this workflow and compile datasets for machine-
learning analysis. Besides that, the datatables corresponding to the query drug and
side effect association with tested in a later phase were extracted in each iteration.

Several rows of prepared example dataset for analysis can be found in the table
below (Tab. . The rows of dataset for analysis represent the drug molecules.
The columns represent structure fingerprint similarities and the Jaccard similarity
indexes between molecule in a given row and the query molecule. The last column
represent query side effect association. The values represent similarity of each drug
molecule in the dataset to a query molecule. The columns represent the Tanimoto
structure similarity coefficients for the different fingerprint types (Morgan, Feat-
Morgan, AtomPair, Torsion, RD-Kit, Avalon, Layered, MACCS) and the Jaccard
similarity index for the shared side effects, the shared indications, the shared targets
or the shared drugs. As a consequence, a total number of 4,690 datasets for analysis

were constructed.
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Tab. 4.23: An example of prepared dataset for the analysis (combination for drug
DB00006 and side effect C0000737). Columns represent similarity coefficients for
different fingerprint types.

n

o0

b b b s E

A g s & 37

) 0 )
E s §g fe 2 3 8.8 g fffEE ER 38
o) 5] o A 0 o T o o £ o0 Lol B kel -
2 $: "f ;2 §: 5P PEQE BEOE® Ty oi: oz: %2
5 AT RE SF L£F FE SE <E EE S8 x5 g@ g8 g 2
T QO & ¥ & O « ] c ® g ® « NSE Q; S @ cu"é - W
=) EH RH <H BH <€<H AH 2H AH S5 S5 S8 SE n &
DB00014 0.74 0.32 0.93 0.48 0.45 0.74 0.80 0.81 0.06 0.00 0.00 0.17  negative
DB00080 0.73 0.35 0.97 0.41 0.46 0.70 0.72 0.85 0.00 0.00 0.00 0.21 negative
DB00091 0.64 0.25 0.78 0.28 0.51 0.63 0.64 0.77 0.00 0.00 0.00 0.2 negative

DB00104 0.69 029 076 037 036 066 0.62 0.68 0.00 0.04 0.00 0.13  positive
DB00136 036 0.08 030 0.13 0.17 045 036 046 0.00 0.00 0.00 0.14  negative
DB00175 044 0.19 032 010 0.26 043 0.40 041 0.08 0.11 0.00 0.14  negative

4.4.1 Data exploration

Before proceeding to machine-learning, an exploratory data analysis was performed
as the next step. The data distribution analysis involves a workflow which aims
at features exploration in terms of statistical measures for potential dimensionality
reduction as described in the methods section. The workflow computes the follow-
ing measures which are important for feature characteristics: variance, standard
deviation, coefficient of variation (Fig. 4.24). The resulting values can be visual-
ized as box-and-whisker plots via integrated R scripts in ‘R View (Table)” KNIME
nodes. A feature correlation was calculated and visualized in an additional workflow
(Fig. |4.25)). The results of the exploratory data analysis are described in the follow-
ing figures.

As the box-and-whisker plots below show, our variables are not very good in
terms of variance (Fig. 4.26). The RDKit Tanimoto similarity and the Pattern
Tanimoto similarity represent the best candidate features. From the Jaccard simi-
larities, the interacting drugs Jaccard similarity index feature shows the best results
regarding data variance.

As shown in the figure below (Fig. , again the RDKit Tanimoto similarity
and the Pattern Tanimoto similarity features have a greater median of standard de-
viation than all the other features. Similarly, the median of the standard deviation
of the interacting drugs similarity feature is highest and hence there is the most vari-

ation and this feature is supposed to have the best predictive power. The standard
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deviation in most of the other features is close to 0 which indicates that the data
tend to be close to the mean.

The correlation for a specific dataset can be visualized in a correlogram sep-
arately. The example relationship between the fingerprint similarity variables is
shown in the appendix (Fig. . The figure combining correlogram with the signif-
icance test is intended to investigate dependence between all similarities at the same
time.

However, we focused on the feature correlation distribution visualization within
all datasets. For resulting histograms see the appendix. The correlation coefficients
show that some of the features are more positively correlated than others. The me-
dian values of the correlations range from 0.1 to 0.83. According to a hypothesis, one
of the two very correlated columns can be removed without decreasing the amount
of information for further analysis. Based on the resulting observations user can
decide to avoid specific features if they are supposed not to have much predictive
power. We decided to remove the Avalon and the Layered feature columns as their
median values showed a strong correlation above 0.7 with the highest number of
other features as indicated in the table in the appendix (Tab. .
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4.4.2 Data distribution in groups

The data distribution in both groups (the group of examined positive and the group
of negative association with a given side effect) can be plotted as box-and-whisker
plots including strip charts for each feature via workflow below (Fig. ?7). The re-
sulting box-and-whisker plots of the example dataset visualization suggest increased
differences between both groups in selection datasets (Fig. [4.31]).

Following on, a percentage difference was calculated for each feature in all
datasets and the distribution of the results has been plotted as box-and-whisker
plots, see the example below (Fig. [4.31). The box-and-whisker plots represent
the features DBM/OVS ratios (%). However, as the percentage difference between
both of the groups was not sufficient, additional filtering was applied to obtain

features with a greater value difference (Fig. [4.29)).

SELECTION DATASETS CREATION

output files: (drugbank_id)_similarities_(SE_id)_SE_association.csv

R Snippet CSV Writer
p%i. @

Variables

Table Row To
Variable Loop Start
List Flles CSV Reade output file Row Filter

lﬁ;
L process one file ®
read file ata time: read data add variables
locations location
in specified folder as variable

selection 4 datasets for arfalysis selection 4

Cpolumn Filter V Writer Variable Loop End
R
3

® ® o
selection 5 datasets for analysis selection 5

Fig. 4.29: The workflow for creating the selection datasets. Output data files are

saved in specified locations set in ‘Variables’ metanode.

Although, the size of the datasets decreased the features are expected to have
more predictive power. As the resulting box-and-whisker plots suggest (Fig. [4.32
and , the difference between both of the groups increased for each feature after
this filtering step.
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p— 00
‘Selection

DATA DISTRIBUTION VISUALISATION

CSV Reader R View (Table) Image Port Writer
L J o L
read data selection 1 example_  Image Port Writer
example dataset data_distribution
for analysis u— ﬂ
selection 2 L] Image Port Writer
example_data_
distribution_ T
selection 3 Image Port Writer (88
example_data_
distribution_selection_2
selection 4 L] Image Port Writer
example_data_
istribution_selection_:
selection 5 L] Image Port Writer
example_data_
distribution_selection_4
L

example_data_
distribution_selection_5

PERCENTAGE DIFFERENCES DISTRIBUTION

Table Row To String Manipulation
Table Creator Variable Loop Start (Variable) Variable Loop End

n ;Source (Table) \_sv Wme_r/ @ <4

process one file name end of
folder at the time ° the loop

percentage difference
calculation
Table Row To String Manipulation
Table Creator Variable Loop Start (Variable) Variable Loop En|

F "
g l!\§_urce (Table) o . ° @ <

file at the time the loop

L] R View (Table) ke m e Port Writer [ 7
process one n file name end of

box-and-whisker
plots

Fig. 4.30: The workflows for data distribution visualization per group and percent-
ages differences distribution visualization. The results are visualized as box-and-

whisker plots.

89



Selection 1

No filtering

B positive association
W negative association

a®

1.0 4

0.8
06 —
0.4 —
02
0.0

sanfea

B positive association

B negative association | 5

2@ S0 o o wareajiees
B @ @®SE S ¢ennsilssas
b e @B G+ - - -SedAErElI MY

1.0 4

sanfea

sBrup i |r
sjebuey |
suoneaipul |r
s}oaYs apIs I
‘| uleped

"L SOOVIN

‘| palefe

'L uojeny

'] uolsio]

"L lleqwoy
'] uebiopies4
LIMay

sBrup i e
sjebuey |
suoneaipul |r
s}oaYs apIs I
‘| uleped

"L SOOVIN

‘| palefe

'L uojeny

'] uolsio]

"L lleqwoy
'] uebiopies4
LIMay

Selection 3

Selection 2

LR

B positive association

W negative association }

@ mopor-==] fe==d
e[
W 28 © S GONSERlES
e s e
e )
ak=={ )=
@ S dmeiiijiEsn
pemsmmas T pessscn o ssipe
L T [ o e

3 Lol
b S M@ w-e--

1.0 4

0.0

I I I
] - ™~
o o =]

0.8

sanjea

B positive association

W negative association }

@ amoresss ] e

el
S 2o & & GopERpjE
® L e | Do et
LT T T
o= ==
[EREet: - S
J e S B e I St
®  eeaeiRlEEees

1.0 4

0.0

I I I I
© ] - ™~
=] o o =]

sanjea

sBrup i e
sjebuey |1
suoneaipul |
S}08Y8 3pIs |
‘| ulsyed

"L SOOVIN

‘1 palafe]

'L uojeny

'] uolsio]

"L llequoyy
'] ueBiopes4
“LMay

sBrup i e
sjebuey |1
suoneaipul |
S}08Y8 3pIs |
‘| ulsyed

"L SOOVIN

‘1 palafe]

‘1 uojeny

'] uolsio]

"L llequoly
'] ueBiopes4
“LMay

Selection 5

Selection 4

28 [T P =)
@ sonmiajuRve -+
& o)
* e |
o sumesssiin)
o =
s .
| S— A
556 L e
7 awr=[F=0
85
(5]
59 b=
m @ | coasome  t-evesduuilaaesyy
v g ® = ot anas]
= =4
@ o
o e==h
sl —
BE o e IR,
I I I I I I
o © © < o~ o
~ o o o o o
senjeA
a8 ¢ escfiminass
@ +o=nfialiles -+
"
® oot
a e% |
B ]
o jssfifies
B BB o IS
L . L e T
556 acuivafRinises-+
=8 L s o R S
38 amez[[Fee
@ a e[l
G0 | conenme t-cowcRIERRY
v 2 ® E e I ]
=
.m o =+
82 ==
P
uE o R,
I I I I I I
< «© ] ~ ] <
~ o o o o o
sanjen

sBrup i |
sjofiey |0
suonedipul |
sjoayL pIs I
'L SOOVIN

‘] uolsio]

‘] lequopy
'] ueflojyjeay

‘LInay

sBnip i e
sjebiey |
suonedipul |
sjoays apIs |
‘1 uisyed

'L SOOVIN

‘L uolsio]

‘] lequopy
'| ueBlojyjeay

LIday

Fig. 4.31: The exemplary data distribution per feature by group (dataset for drug

DB01195 and side effect C0013395; T

Tanimoto; JI = Jaccard index)

90



Differences distribution by feature (no filtering)

RDKit Tanimoto — +---[C T F------rmmoev 4
FeatMorgan Tanimoto —-{ +--[_ [ ]----------- - o
AtomPair Tanimoto -{ *+-{ [ J----—--—--—--- mD
Torsion Tanimoto 4 - |  f---------- WEEEEOT O <} o o
Avalon Tanimoto - +-- | |- —TEC O
Layered Tanimoto /| t-{ | |-~ —cTIT
MACCS Tanimoto 4| *+1.1  |---—------ — O
Pattern Tanimoto | +[__[ | wo
Jaccard index shared side effects | <o b I I 1
Jaccard index shared indications —  fmmuo o O 00 R0 O G G <
Jaccard index shared targets — |
Jaccard index shared drugs -{ +-{ [ |- —_D0 OTD O O co o
| | | | | | | \ |
0 10 20 30 40 50 60 70 80

Percentage difference between groups positive/negative

Differences distribution by feature (selection 1)

RDKit Tanimoto —| O CESBEEE oo I I 1o
FeatMorgan Tanimoto — e S W O
AtomPair Tanimoto —|  ----==--==---- I I 1
Torsion Tanimoto bommmmoes 1 I |-mm oo e 1
Avalon Tanimoto bomsmmmmmmnsoono I I 1
Layered Tanimoto —| F---------------—— r 1 '} 1
MACCS Tanimoto pommmomoees \ I f-ommm e 4
Pattern Tanimoto bommmmmmmo N I 1
Jaccard index shared side effects Foomom 1 I poom s
Jaccard index shared indications focamooar 0w CoCOWRGr ¢ CODINME O O O O
Jaccard index shared targets — | o
Jaccard index shareddrugs -{ [ [} AT OB

0 10 20 30 40 50 60 70 80
Percentage difference between groups positive/negative

Differences distribution by feature (selection 2)

RDKit Tanimato | 00 @B -~ - - cCrl———-—-—- 1o
FeatMorgan Tanimoto — +--—--{___ [ J-------m-mommmmmev awam
AtomPair Tanimoto —  b-------------- I [ :
Torsion Tanimoto —|  k-------=--- I I 10
Avalon Tanimoto —| ®------------------o- T 1t 1
Layered Tanimoto — k----------=-------- I B 1
MACCS Tanimoto — —@mh----------------- LT {mo
Pattern Tanimoto —  t--------- I I R 1
Jaccard index shared side effects 4| oo 1 J} 1
Jaccard index shared indications —| |eme @ @OO G GO ®O00END @ o O
Jaccard index shared targets —{ |
Jaccard index shared drugs -{ [ |- e OT) & oo

| | | | \ \ | | |
0 10 20 30 40 50 60 70 80
Percentage difference between groups positive/negative

Fig. 4.32: The percentage differences distribution between the group of positives
and the group of negatives for each feature I. Datasets: no filtering, selection 1,

selection 2.
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Differences distribution by feature (selection 3)
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Fig. 4.33: The percentage differences distribution between the group of positives
and the group of negatives for each feature I. Datasets: selection 3, selection 4,

selection 5.
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4.5 Model creation and evaluation

The third part of the set of the workflows deals with creating the models and eval-
uating their performance and predicting side effects and evaluating the predictions
(Fig. [4.34]).

MODEL CREATION
+ SIDE EFFECT PREDICTION

MODEL CREATION AND ODEL PERFORMANCE
EVALUATION COMPARISON

MODELS CREATION MODELS PERFORMANCE
AND EVALUATION COMPARISON

Bl [ ]

output files: histograms
maodels ( pmml)
models_evaluation (.csv)

SIDE EFFECT PREDICTION AND EVALUATION

SIDE EFFECT EVALUATION OF DRUG
PREDICTION SIDE EFFECT PREDICTION

L] Bl

Fig. 4.34: The workflow overview - part I1I: a models creation, a models performance

evaluation, a side effect prediction and a side effect predictions evaluation

The purpose of the following workflow is to train models in a loop to be later
used for predicting drug side effects and save specific drug data table and model
evaluation metrics (Fig. [4.35)). The collected data are split into a training part
and a 10-fold cross validation is applied using ‘X-Partitioner’ and ‘X-Aggregator’
KNIME nodes. After the data is partitioned, a decision tree model is trained using
the training dataset in ‘Decision Tree Learner’ node and applied via ‘Decision Tree
Predictor’ node on test dataset. In each iteration of the loop, only one drug and
one side effect are analyzed at the same time.

Part of the workflow for creating the classification model (Fig. [4.35)) contained
in the ‘Result table’ metanode is intended for calculating model performance met-
rics. We evaluated each model performance using the ‘Scorer’ KNIME node which
calculates several quality measures. It provides a confusion matrix, class predic-
tion statistics and overall accuracy statistics. We studied the metrics of success via
the accuracy statistics. In addition, the AUC-PR and the AUC-ROC values were
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calculated via integrated R script in the ‘R Snippet’” KNIME node. All resulting
values are appended in a final .csv file and visualized as described in the following
subchapter.

To be able to transmit the model between the KNIME workflows or other data
mining software, the model is stored via the ‘PMML Writer’ KNIME node in a
standard XML-based portable PMML (Predictive Model Markup Language) format
(.pmml) in each iteration. The PMML model can be then executed on new data.
In the KNIME workflows the models can be executed via the ‘PMML reader’ and
the ‘PMML Compiling Predictor’ KNIME nodes.

4.5.1 Model performance comparison

In total, 4,690 machine learning models were generated for 10 side effects and 469
examined drugs. Consequently, the model performance and side effect prediction
were evaluated.

At first, box-and-whisker plots were constructed to display the distribution of
the model performance metrics. The data for all the performance measures were
processed and plotted in a loop via the integrated R scripts in the ‘R Source (Table)’
and the ‘R View (Table)” KNIME nodes shown in the corresponding workflow figure
(Fig. [4.36). The resulting plots of measures distributions were discussed further.
We evaluated the performance of our predictors by their accuracy, AUC-ROC and
AUC-PR values.

The accuracy statistics are shown in the figure below (Fig. . We can ob-
serve that the models performed higher overall accuracy when a filtering function
was applied on the dataset. The best model accuracy was yielded by constructing
the models with the ‘Selection 1’ dataset. The median value at which models reach
a classification accuracy is around 84%. The model accuracy improved as it is shown
in the figure.

However, as predicting the ‘false’ category was correct on more occasions, accu-
racy is a misleading metric. Therefore, true positives, false positives are regarded as
key measures. As mentioned above, AUC is useful for comparing the performances
of multiple learning methods. From the histograms of the AUC-PR (Fig. and
the AUC-ROC (Fig. values, we can observe that the model performance im-
proved for the models trained on datasets with a filtering function applied as higher
AUC-PR values correspond to better model performance.

As our datasets are imbalanced and the number of negative outcomes is higher
in all datasets, we selected AUC-PR as a more appropriate metric than AUC-ROC
for the model comparison. AUC-PR is more sensitive to the improvements for
the positive class than AUC-ROC is.
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It is apparent that the range of all performance metrics of the models trained
on datasets with no filtering is larger than of the others. The interquartile range of
‘No filtering’ models is larger in all performance metrics, meaning its performance
metrics are less consistent around the median than those of the other models.

The data of the present study show that, combinations of different similarity
coefficients improve classification results. All performance metrics of ‘Selection 1’
models have a higher maximum and median than others. The plots clearly show
‘Selection 1" models classifiers outperform all other classifiers which is supported by
all performance metrics showing a substantial increase. By observing the ‘Selection
1” models results, we can conclude that additional features positively impact model

performance.

4.5.2 Side effect prediction evaluation

The aim of the subsequent workflow (Fig. is to predict side effects using the pre-
viously learned models. Each model is intended to test only a single given drug—side
effect combination.

The workflow is designed to read multiple files in a given location to be processed
in a loop. It loads a table of desired query drug-side effect combinations, reads
the corresponding model in a specified folder and performs an analysis for each loop
iteration. The ‘PMML Reader’ KNIME node is used to import the previously stored
KNIME model. The workflow loops over, generates a prediction column for each
query drug, and appends the results in a .csv file.

The final workflow represents evaluating the side effect predictions (Fig.[4.39). In
the workflow, the predicted results are compared to real data obtained from SIDER.
The number of false negatives, false positives, true negatives, true positives, as well
as the total number of correctly and incorrectly predicted side effects are computed.
The results are plotted in histograms.

We explored if there tends to be a difference between the prediction accuracy of
different side effects. The results are plotted below in histograms displaying the dis-
tribution of side effect prediction accuracy. It is apparent from the plots that the best
results were yielded by predicting side effects with ID C0917801 corresponding to

insomnia. In total, 74.84% of predictions of this side effect were correct.
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Fig. 4.37: The selected model performance measures. Models of Selection 1 datasets

perform the best.
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5 Conclusion

Our work attempts to create a framework for predicting drug side effects. It was
motivated by a lack of widely accepted standard protocols for drug—side effect data
curation. Our workflow was supposed to incorporate data retrieval and exploration,
machine-learning and an evaluation step for predicting side effects using a similarity-
based learning method. The intention of our work to propose such a workflow
has been completed. The hypothesis stating that drug molecules that share more
similarities will demonstrate higher number of shared side effects compared to those
drug molecules with fewer similarities has been proved to be correct.

The thesis provides in silico pipeline for predicting potential side effects. The pro-
posed set of workflows implemented in open-source KNIME software is an easily
accessible tool which should be relatively easy to understand by medicinal chemists
and biomedical research scientists. The set of designed workflows integrate hetero-
geneous information into a single pipeline and allow for analyzing the integrated
data in one place. Additionally, the workflows are able to provide an easy visual
exploration which can be used in reports.

This work reached its proposed aim and achieved the main research objectives.
The scientific background used in this work was described in theoretical and methods
chapters. The proposed set of workflows was explained in detail in the Results and
discussion chapter. We illustrated using the workflows with our filtered datasets of
examined drugs and discussed the obtained results. Our calculations are based on
FDA approved small molecule drug data — similarities between drug molecules in
terms of structural features, shared side effects, shared targets, shared indications,
and shared interacting drugs. The user can calculate other similarity features as
needed in accordance with the proposed methodology.

That leads us to the major advantage of the designed set of workflows — its
simple manipulation and re-usability. The tool enables customization to best suit
the required specific needs of users without deeper programming abilities. Therefore,
we hope to see applications of our set of workflows in future studies in which it
can be combined with different approaches to build more complex methods. Such
combinations of multiple data analysis could yield more relevant information and
accelerate the drug development process and increase its efficiency.

Nevertheless, it is plausible that a number of limitations might have influenced
the results obtained in our work. To begin with, the presented workflows can be
extended by integrating other data sources. As we limit our analysis only to selected
databases, further data collection from multiple other clinically relevant databases
is required to obtain more reliable results.

Furthermore, our calculations are limited only to predicting a small number of
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side effects as we studied only a set of the top ten most prevalent common and very
common side effects. An extended analysis could focus on others. In our analysis,
the best results have been achieved for predicting insomnia side effects. It has been
demonstrated that prediction accuracy improved in models trained on a dataset in
which a filtering function had been applied.

The limitations of this study also include the execution speed. A speed perfor-
mance improvement can be reached by optimizing the configuration of the workflow
nodes or using alternative nodes. Furthermore, the KNIME workflow may be im-
proved by integrating Java scripts instead of R scripts, so that the data are processed
in a more efficient way. Another way to speed up the execution of the workflows is
running them on a big data cluster through specific KNIME extensions. Moreover,
implementation of a proper error handling is needed.

The applied concept of similarity can be considered as another source of issue.
Even though, similarity relationships can be problematic and the results of similarity
based analyzes can lead to subjective interpretations, such methods are important
complement to others drug development approaches.

Another direction to improve this study includes a better configuration of machine-
learning models. E.g. the AUC-ROC curve was calculated by the trapezoidal rule,
which simplifies calculating the area a lot. In order to get more accurate results,
other calculations such as the Simpson or Romberg method could be integrated. In
addition to the above, the accuracy of predicting the models could be boosted us-
ing ensemble learning methods which aggregate outputs from multiple models. This
approach is used to reduce bias, decrease variance and achieve a better model perfor-
mance. Also, comparisons to other machine learning algorithms would be beneficial.
Advanced machine learning algorithms, including random forest, gradient boosting
decision trees, deep neural networks could be used to enhance the performance of
the prediction models. Also, more sophisticated statistical methods for datasets
preparation and models performance analysis could be implemented in the work-
flow. More detailed analysis would be required to find out which of the applied
similarity coefficients perform the best. It is needless to say that the biggest bot-
tleneck of machine-learning-based approaches is that they cannot provide us with
reliable results if the information about drugs, targets or interactions is missing.

In conclusion, despite all the limitations, we hope that our set of workflows
will provide predictions allowing new research questions to be addressed and that
the presented ideas will contribute to improving the efficiency of computational drug
design. We believe that our developed tool provides a unique opportunity in pre-
dicting drug-side effect associations, and it is complementary to existing methods.
Last but not least, it allows a broader portion of the scientific community to explore

valuable data that is more and more available nowadays.
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A List of additional files

Tab. A.1: Additional files

File name

Description

DISSERTATION_PROJECT knar
filtered_ drugs_ dataset
filtered_ side effects dataset
filtered _indications dataset
filtered_targets dataset
filtered__interacting_drugs_ dataset

10__analyzed_ side_ effects

main workflow file

dataset of drugs filtered from DrugBank

dataset of side effects filtered from SIDER

dataset of indications filtered from SIDER

dataset of targets filtered from DrugBank

dataset of interacting drugs filtered from DrugBank
dataset of 10 analyzed side effects

Tab. A.2: Summary of filtered drug datasets

Dataset

Columns

filtered_ drugs_dataset

filtered_side effects dataset

filtered__indications_dataset

filtered_targets dataset

filtered__interacting drugs_ dataset

drugbank_id, type, name, group, SMILES, atc_ code,
code_4

STITCH_id_ flat, UMLS_id, MedDRA_ info_ 3, ATC,
drugbank_ id, name, SMILES

STITCH_ id_ flat, drugbank_ id, name,
UMLS_ label indication, method_of detection,
concept_ name, concept_ type_ MedDRA,
UMLS_id_MedDRA _ indication,

concept_ name MedDRA __indication

drugbank_id, name, target_ id, target_name

drugbank_ id, name, drugbank id_int, int_ drug name

Tab. A.3: Description of analyzed data

Data type

Description

drugbank_id

STITCH_ id

SMILES

ATC

UMLS_id SE_id

MedDRA _info 3

UMLS id MedDRA _indication

concept_ name_MedDRA _indication

drug molecule ID

drug molecule ID

drug structure format

Anatomical Therapeutic Chemical code of drug
Side effect ID

side effect name

drug indication ID

drug indication name
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B Correlation analysis
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Fig. B.1: The exemplary color coded view of the feature correlation. Positive corre-
lations are displayed in a blue color and negative correlations in a red color. The color
intensity is proportional to the displayed correlation coefficients. Correlations with

a p-value >0.05 are regarded as insignificant and the crosses are added.

Tab. B.1: The median values of the correlation distribution. Features with highest

median correlation values.

Feature Median above 0.67 with following features
RDKit 0.73 Avalon, 0.83 Layered

AtomPair 0.67 Layered, 0.67 Pattern

Avalon 0.76 Layered, 0.73 RDKit, 0.73 MACCS
Layered 0.83 RDKit, 0.76 Avalon, 0.67 AtomPair
MACCS 0.73 Avalon, 0.68 Layered

Pattern 0.67 AtomPair
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AtomPair Tanimoto AtomPair Tanimoto

vs. RDKit Tanimoto vs. FeatMorgan Tanimoto
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Fig. B.2: Correlation distribution of AtomPair Tanimoto similarity coefficient vs.

similarity measures in all datasets
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Avalon Tanimoto Avalon Tanimoto

vs. RDKit Tanimoto vs. FeatMorgan Tanimoto
2 200 —— Mean: 0.67 z 200 —— Mean: 0.5
S 150 — Median: 0.73 S 150 —— Median: 0.52
g 100 Z 100
(3l [l
S Jt—v_i—r = __/_W
L R L e R e e
-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0 -10 -08 -06 -04 -02 00 02 04 06 08 1.0
Correlation coefficient (binsize = 0.1) Correlation coefficient (binsize = 0.1)
Avalon Tanimoto Avalon Tanimoto
vs. AtomPair Tanimoto vs. Torsion Tanimoto
2 200 —— Mean: 0.56 z 200 —— Mean: 0.53
S 150 — Median: 0.57 5 150 —— Median: 0.55 I
& 100 2 100
[l [l
i 50 I 50
e D R B R B B B e e B e e L B S B |
-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0 -1.0 -08 -06 -04 -02 00 02 04 06 08 1.0
Correlation coefficient (binsize = 0.1) Correlation coefficient (binsize = 0.1)
Avalon Tanimoto Avalon Tanimoto
vs. Layered Tanimoto vs. MACCS Tanimoto
I 200 —— Mean: 0.73 H z 200 —— Mean: 0.71
g 150 — Median: 0.76 5 150 — Median: 0.73
3 100 3 100
[ [l
i 50 I 50
STt o R B B B B B B e B S e
-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0 -1.0 -08 -06 -04 -02 00 02 04 06 08 1.0
Correlation coefficient (binsize = 0.1) Correlation coefficient (binsize = 0.1)
Avalon Tanimoto Avalon Tanimoto
vs. Pattern Tanimoto vs. Jaccard index shared side effects
I 200 — Mean: 0.5 Z 200 —— Mean: 0.06
g 150 — Median: 0.53 I 5 150 —— Median: 0.05
3 100 3 100
@ I
& 50 ’._,_'_*—r I 50
0 T T 0 T T T
-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0 -1.0 -08 -06 -04 -02 00 02 04 06 08 1.0
Correlation coefficient (binsize = 0.1) Correlation coefficient (binsize = 0.1)
Avalon Tanimoto Avalon Tanimoto
vs. Jaccard index shared indications vs. Jaccard index shared targets
> 200 — Mean: 0.1 H > 200 — Mean: 0.17
g 150 — Median: 0.08 5 150 — Median: 0.15
z 100 3 100
@ Qo
R e T T S i B B e i B B B e e e B e e B B B |
-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0 -1.0 -08 -06 -04 -02 00 02 04 06 08 1.0
Correlation coefficient (binsize = 0.1) Correlation coefficient (binsize = 0.1)
Avalon Tanimoto
vs. Jaccard index shared drugs
200 — Mean: 0.1
150 —— Median: 0.1 — Mean

—— Median

Frequency
N
o
o

(s
o

o

N O B
-10 -08 06 -04 02 00 02 04 06 08 1.0

Correlation coefficient (binsize = 0.1)

Fig. B.3: Correlation distribution of Avalon Tanimoto similarity coefficient vs. sim-

ilarity measures in all datasets
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FeatMorgan Tanimoto FeatMorgan Tanimoto

vs. RDKit Tanimoto vs. AtomPair Tanimoto
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Fig. B.4: Correlation distribution of FeatMorgan Tanimoto similarity coefficient vs.

similarity measures in all datasets

118



MACCS Tanimoto MACCS Tanimoto

vs. RDKit Tanimoto vs. FeatMorgan Tanimoto
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Fig. B.5: Correlation distribution of MACCS Tanimoto similarity coefficient vs.

similarity measures in all datasets
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Pattern Tanimoto Pattern Tanimoto

vs. RDKit Tanimoto vs. FeatMorgan Tanimoto
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Fig. B.6: Correlation distribution of Pattern Tanimoto similarity coefficient vs. sim-

ilarity measures in all datasets
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RDKit Tanimoto RDKit Tanimoto

vs. FeatMorgan Tanimoto vs. AtomPair Tanimoto
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Fig. B.7: Correlation distribution of RDKit Tanimoto similarity coefficient vs. sim-

ilarity measures in all datasets
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Torsion Tanimoto Torsion Tanimoto

vs. RDKit Tanimoto vs. FeatMorgan Tanimoto
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Fig. B.8: Correlation distribution of Torsion Tanimoto similarity coefficient vs. sim-

ilarity measures in all datasets
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Fig. B.9: Correlation distribution of Jaccard index shared side effects vs. similarity

measures in all datasets
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