
MASTER THESIS

Two-Way Finite Automata

2023 Bc. Kristína Poláková
Supervisor:
doc. RNDr. Tomáš Masopust,
Ph.D., DSc.

Study program: Computer Science,
Specialization: Artificial Intelligence

Bibliografické údaje

Autor: Bc. Kristína Poláková

Název práce: Dvoucestné konečné automaty

Typ práce: diplomová práce

Pracoviště: Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

Rok obhajoby: 2023

Studijní program: Informatika, Specializace: Umělá inteligence

Vedoucí práce: doc. RNDr. Tomáš Masopust, Ph.D., DSc.

Počet stran: 69

Přílohy: elektronická data v úložišti katedry informatiky

Jazyk práce: anglický

Bibliographic info

Author: Bc. Kristína Poláková

Title: Two-Way Finite Automata

Thesis type: master thesis

Department: Department of Computer Science, Faculty of Science,
Palacký University Olomouc

Year of defense: 2023

Study program: Computer Science, Specialization: Artificial Intelligence

Supervisor: doc. RNDr. Tomáš Masopust, Ph.D., DSc.

Page count: 69

Supplements: electronic data in the storage of department of computer
science

Thesis language: English

Anotace

Hlavním cílem práce je prostudovat dvoucestné konečné automaty, jejich základní
vlastnosti a operace, jako například sjednocení, průnik a další. V praktické části
je vytvořena knihovna pro práci s těmito automaty, která je pak využita v ukázkové
aplikaci vytvořené pro potřeby této práce.

Synopsis

The main goal of the thesis is to study two-way finite automata, their properties
and operations, such as union, intersection, etc. The practical part consists of a
library to work with such automata and of a sample application created for the
purpose of this work.

Klíčová slova: dvoucestné konečné automaty; konečné automaty; regulární
jazyk; operace

Keywords: two-way finite automata; finite automata; regular languages; oper-
ations

I would like to express my thanks to doc. RNDr. Tomáš Masopust, Ph.D., DSc.
for supervision and feedback on this work.

By submitting this text its author declares that he/she has completed this thesis
including its appendices on his/her own and used solely the sources cited in the
text and included in the bibliography list.

Contents
1 Introduction 1

2 Finite Automata 2
2.1 Regular Languages . 2
2.2 Basics of Finite Automata . 4
2.3 One-Way Finite Automata . 5

2.3.1 Deterministic One-Way Finite Automata 5
2.3.2 Nondeterministic One-Way Finite Automata 7

2.4 Two-Way Finite Automata . 8
2.4.1 Deterministic Two-Way Finite Automata 9

2.4.1.1 Kozen’s 2DFA 9
2.4.1.2 Shepherdson’s 2DFA 11

2.4.2 Nondeterministic Two-Way Finite Automata 13
2.4.2.1 Kozen’s 2NFA . 13
2.4.2.2 Shepherdson’s 2NFA 15

3 Equivalence of One-Way and Two-Way Finite Automata 17
3.1 1DFA to 2DFA . 17
3.2 2DFA to 1DFA . 17
3.3 2NFA to 1DFA . 20

4 Operations 22
4.1 Union . 22

4.1.1 Union of 2DFAs . 22
4.1.2 Union of 2NFAs . 26

4.2 Intersection . 26
4.2.1 Intersection of 2DFAs . 26
4.2.2 Intersection of 2NFAs . 27

4.3 Concatenation . 28
4.3.1 Concatenation of 2DFAs 28
4.3.2 Concatenation of 2NFAs 29

4.4 Square . 29
4.4.1 Sqaure of 2DFA . 30
4.4.2 Square of 2NFA . 30

4.5 Complement . 31
4.5.1 Complement of 2DFA . 31
4.5.2 Complement of 2NFAs . 32

4.6 Kleene Star . 33
4.6.1 Kleene Star of 2DFA . 33
4.6.2 Kleene Star of 2NFA . 34

iv

5 Open problems of 2FA 35
5.1 Size Complexity . 35
5.2 Open Problem of Operations of 2FA 36

6 Library 37
6.1 Classes . 37
6.2 Enums . 40
6.3 Automata in XML File . 41
6.4 Automata Creation . 43
6.5 Computation . 44
6.6 Operations . 45

7 Sample application 46
7.1 Walkthrough . 47

Conclusions 65

Závěr 66

A Contents of Electronic Data 67

Bibliography 68

v

List of Figures
1 Chomsky Hierarchy [10] . 2
2 1DFA recognizing the language 01∗ 6
3 1NFA recognizing language 01∗ 8
4 Kozen’s two-way finite automaton accepting language 01∗ 11
5 Shepherdson’s two-way finite automaton accepting language 01∗ . 13
6 Loading automata from XML file 47
7 Main Menu . 48
8 Reload automata from XML file 49
9 Reloaded automata from XML file 49
10 Save automata to an XML file . 50
11 Saved automata to an XML file 51
12 List all automata . 51
13 Detail of an automaton . 52
14 List all automata to delete from 52
15 Automaton deleted . 53
16 List of automata to compute on 53
17 Computation on a Word . 54
18 List of automata to compute on 55
19 Configuration printing turned off 55
20 List of automata to union . 56
21 Automata united . 56
22 List of automata to interesect . 57
23 Intersected automata . 57
24 List of automata to concatenate 58
25 Concatenated automata . 58
26 List of automata to star . 59
27 Concatenated automata . 60
28 List of automata to complement 60
29 Complemented automaton . 61
30 List of automata to square . 61
31 Squared automaton . 62
32 List of 2DFAs to convert to 1DFA 62
33 Converted automata . 63
34 List of 2NFAs to convert to 1DFA 63
35 Converted automata . 64

vi

1 Introduction
Finite automata (FA) is a well-known and commonly used term in computer
science. A finite automaton is a computational model providing a simple and
effective way to recognize whether a word belongs to a specific language or not.

Usually, when the term automata is mentioned it refers to a one-way finite
automata (1FA), more precisely to a deterministic one-way finite automaton
(1DFA), or a non-deterministic one-way finite automaton (1NFA). Both of these
automata types can decide if some given word belongs to a regular language, and
therefore we say that they recognize regular languages. As they both accept the
same type of languages, it is clear that they are equivalent to each other, which
can be proven by converting 1NFA to 1DFA and 1DFA to 1NFA. An exponential-
time algorithm is known for converting 1NFA to 1DFA. No algorithm is needed
to convert 1DFA to 1NFA as 1DFA is just a special case of 1NFA.

Nevertheless, another type of automata that accept regular languages is two-
way finite automata (2FA), whose concept is not that widespread in computer
science. They can also be deterministic (2DFA) or non-deterministic (2NFA).
The difference is that 2FA can read a word in both directions while 1FA can only
read a word from left to right.

All of the four types mentioned above are equivalent, interchangeable, and
have the same computational power. One type can be converted to any of the
other types, although no polynomial-time algorithm exists for the conversion of
2NFA to 2DFA and 1NFA to 2DFA.

This thesis deals with the concept of 2FA. The differences between 1FA and
2FA are shown and a proof of their equivalence is provided.

The main part of the thesis covers basic operations on 2FAs - union, inter-
section, concatenation, square, complementation, Kleene star - which are then
implemented in a library using C# and the .NET platform.

Last, but not least, to demonstrate the computational process of 2FA and
the usage of the library, a sample application is created.

A reader is required to have some knowledge about 1FA, though some pieces
of information about them are provided.

1

2 Finite Automata
This section covers the finite automata theory concerning regular languages,
regular grammars, and automata themselves. To be able to compare 2FA and
1FA, some knowledge about them is a necessity. The theory of regular languages,
regular grammars, and 1FA is briefer than that of 2FA, as we assume that the
reader already has some basic knowledge of them.

The similarities and differences between those types are discussed and the
equivalence of them is shown by providing an algorithm for conversion. For each
type, an example automaton is attached for better understanding. The example
automata are visualized by oriented graphs as we suppose the reader is familiar
with this construction.

2.1 Regular Languages
All types of automata discussed in this thesis, FA and 2FA, accept only regu-
lar languages. This section explains the basics of regular languages and their
grammars.

Any regular language is generated by some grammar of type 3 (also called
regular or linear) when referred to Chomsky’s Hierarchy of Languages [10]. As
we can see in Figure 1, type 3 languages are the most restricted ones. In the
terminology of grammars, it means that the production rules are very strict.

Figure 1: Chomsky Hierarchy [10]

To remind the reader what a grammar is in the concept of formal languages
the formal definition follows [12].

Definition 1
A grammar is a structure G = (Σ, N, S, P), where

• Σ is a set of terminal symbols, Σ ∩ N = ∅ (also called alphabet)

• N is a set of non-terminal symbols (also called non-terminals or variables)

2

• S is an initial non-terminal, S ∈ N ,

• P is a set of production rules in any of the following forms

1. A → xB, where A, B ∈ N and x ∈ Σ∗

2. A → x, where A ∈ N and x ∈ Σ∗

3. A → ϵ, where A ∈ N and ϵ represents nothing (the empty word of
length 0)

The restriction of the rules lies in the fact that at each step exactly one
non-terminal symbol is changed and at most one non-terminal symbol can be
produced. In other types of grammars, it is possible to manipulate more than
one non-terminal at one step.

We can differ between two types of type-3 grammars based on the direction
of the production

• Right Linear Grammars - uses rules only of the forms

1. A → xB, where A, B ∈ N and x ∈ Σ∗

2. A → x, where A ∈ N and x ∈ Σ∗

• Left Linear Grammars - uses rulers only of the forms

1. A → Bx, where A, B ∈ N and x ∈ Σ∗

2. A → x, where A ∈ N and x ∈ Σ∗

The production process of some regular language L (as of Right Linear Gram-
mar) starts with the initial non-terminal S.

One step of the production: αA ⊣ αyB, where A, B ∈ N and α, y ∈ Σ∗ and
⊣ tells us that there exists a production rule A → yB.

The language that is produced by the grammar consists of all words w that
can be reached by the production process from the initial non-terminal: S ⊣∗ w,
where S ∈ N (the initial non-terminal), w ∈ Σ∗ and ⊣∗ is a reflexive and transi-
tive closure of ⊣ meaning there is a sequence of the production rules by which
we can achieve w in a finite number of steps.

Therefore L(G) = {w ∈ Σ∗ | S ⊣∗ w}.

From the process of production described above we can easily imagine the
production process of the Left Linear Grammars. As we will not work with this
type of grammars and this section should be only a brief summary of regular
languages, we will not cover this topic. The topic that is also not covered in this
thesis is regular expressions which also represent regular languages.

3

Example 2
Let G = (N, Σ, P, S) be the grammar of the type 3 where

• Σ = {0, 1}

• N = {S, A}

• S ∈ N ,

• P is a set of production rules

1. S → 0A

2. A → 1A | ϵ

The language of the grammar: L(G) = {0, 01, 011, 0111, 01111, ...} or 01∗

written as a regular expression.

2.2 Basics of Finite Automata
All types of FA have the same purpose which is to determine whether some given
word belongs to a certain regular language. Therefore, a finite automaton can be
defined as a computational model or mechanism that takes a word as an input
and outputs true (accepts the word) or false (rejects the word) based on whether
it belongs to the language that is recognized by the automaton.

Each automaton has an alphabet Σ, a set of states Q, a starting state q0, and
a transition function δ.

An automaton performs its task by moving through its states according to
its transition function and accepts if it reads the whole word and reaches some
accepting state. The input word is written to an automaton’s memory, the so-
called tape. The tape is read-only after the input is written to it, and we cannot
reach outside of the memory where the word is written (bounded memory).

To define a language of an automaton or its computational process we have
to define a term configuration.

Definition 3
A configuration c is a sequence c = w1qw2, where w1, w2 ∈ Σ∗ are words,

w = w1w2 is an input word and q ∈ Q is some state, then the position of q
defines what part of the word was already read (w1) and what part is to be read
(w2). At each step of the computational process, the configuration provides the
overall state of the automaton.

The position of q defines that the next character that will be read is the first
character of w2 as we read at most one character at each step. We can also say
that the reading head or simply the head points to the character to be read.

For example, if an automaton A is in a configuration 0001q20111 for the input
alphabet Σ = {0, 1} then the automaton is in a state q2 considering it belongs

4

to a set of its possible states Q; the tape contains characters 00010111; the head
points to the place on a tape where the 0 after q2 is present (00010111).

Configurations are used to trace steps that an automaton makes by perform-
ing transitions defined by δ.

Let us have two configurations c1 and c2, then one step (one transition is
performed) from configuration c1 to c2 is denoted as c1 ⊢ c2. If we can get from
c1 to c2 in more than one step (performing more transitions), it is denoted as
c1 ⊢∗ c2.

Finally, we can define the language of an automaton: L(A) = {wΣ∗ | q0w ⊢∗

wqf where qf is a final (accepting) state }.

The main difference between 1FA and 2FA lies in the transition function,
which is a reason why it is not defined in detail here but separately for each
type.

The multi-direction transitions allow for 2FA to have fewer states than 1FA
as you can see from the examples in the next sections.

2.3 One-Way Finite Automata
In this section, we will look at the basics of one-way finite automata which can be
also referred to as just finite automata in comparison to two-way finite automata.

One-way finite automata (1FA) is a computational model that decides whether
a given input word belongs to a certain language. As already mentioned, the lan-
guage accepted by the automaton is a regular language covered in Section 2.1.
One-way finite automata can be divided into deterministic (1DFA) and non-
deterministic (1NFA). Both of those types have the same computational power.
Although 1NFA can be constructed with much less space, 1DFA is much easier
to work with.

2.3.1 Deterministic One-Way Finite Automata

Determinism in automata theory means that for every input word of a 1DFA A,
the automaton outputs the same value. As for the transition function, only one
transition at a time is allowed for every alphabet symbol and state.

Definition 4
Let A be a 1DFA such that A = (Σ, Q, q0, F, δ) where

• Σ is an input alphabet, a set of symbols of which the input words can
consist of

• Q is a set of states

5

• q0 ∈ Q is an initial state

• F ⊂ Q is a set of final states

• δ : Q × Σ → Q is a transition function

Input word w ∈ Σ∗ is a word given to the automaton to determine whether
it belongs to the language L(A). It is written to the automaton memory.

The accepting computation of 1DFA denoted by configurations is q0w ⊢∗ w1qfw2
where q0 is the initial state and qf ∈ F is a final state of the automaton. To learn
more about configurations see Section 2.2.

Therefore, the definition of the language of A is
L(A) = {w ∈ Σ∗ | q0w ⊢∗ wqf , qf ∈ F}.

In Figure 2 we can see an example of a 1DFA recognizing the language L =
{0, 01, 011, 0111, 01111, ...} or 01∗ written as a regular expression.

Figure 2: 1DFA recognizing the language 01∗

6

2.3.2 Nondeterministic One-Way Finite Automata

Nondeterminism in automata theory means that for every input word of some
1NFA A, the automaton might not output the same value. As for the transition
function, more than one transition at a time is allowed for every symbol and
state.

Definition 5
Let A be a 1NFA such that A = (Σ, Q, q0, F, δ) where

• Σ is an input alphabet

• Q is a set of states

• q0 ∈ Q, is an initial state

• F ⊂ Q is a set of final states

• δ : Q × Γ → 2Q is a transition function, where 2Q denotes the power set of
Q

From the definition above we can see that the only change to 1DFA is in the
transition function. We can perform multiple transitions under any symbol and
any state.

According to the change in δ the other change has to be in the acceptance
condition. At every step of a computation, the automaton has to choose a tran-
sition to use. In theory, we suspect that it always chooses correctly but in the
real implementation it is not possible to simply give a computer the command
"choose the correct transition". The automaton has to test all possible transi-
tions. Therefore, we can say that the computational process creates a new branch
of computation for each possible transition.

The computational process 1NFA can be perceived as a tree with nodes that
represent the configurations of the computation on some input word w:

• q0w is the root of the tree

• each leaf node is either

– wqf , where qf ∈ F - accepting configuration
– wq, where q /∈ F - non-accepting configuration

• each non-leaf node is the configuration (w1qw2) where q ∈ Q and w1w2 = w

The edges of the computational tree are only one-way, and therefore each
node has only one in-going edge but can have multiple out-going edges.

7

If, for some input word w ∈ Σ∗, the current node of computation is w1qcw2,
where q ∈ Q, c ∈ Σ and w1cw2 = w, then for each transition there exists an edge
to a corresponding configuration.

The automaton accepts if there is a path to at least one leaf node with an
accepting configuration from the root. Denoted by configurations: q0w ⊣∗ wqf

where qf ∈ F .
The automaton rejects if all reachable leaf nodes contain rejecting configura-

tions. Denoted by configurations: q0w ⊢∗ wq where q /∈ F .

The language of A L(A) = {w ∈ Σ∗ | q0w ⊣∗ wqf}, is defined the same way
as for 1DFA.

It can be easily seen that 1DFA is just a special case of 1NFA where the
computational tree is linear.

In Figure 3 we can see an example of 1NFA recognizing the language L defined
by a regular expression (0|1)∗01∗.

Figure 3: 1NFA recognizing language 01∗

2.4 Two-Way Finite Automata
A two-way finite automaton (2FA) is a computational model that decides whether
a given input word belongs to a certain language. As we already mentioned, the
type of languages accepted by these automata are regular languages (more in
Section 2.1) just like that accepted by 1FA.

2FA can be viewed as a special type of 1FA where the tape head can move
in both directions and can therefore read the characters of an input word more

8

times. Similarly, 2FA can be defined as a Turing Machine that has restricted
memory (referred to as the tape) from both sides.

In both cases, the tape is read-only and only an input word can be written
on the tape. Afterwards its length or content does not change and only the part
of the tape where the word is present can be reached. To define the start and
the end of the accessible tape, the symbols called left and right endmarkers are
used.

We can also say that the reverse is true: 1FA is a special type of 2FA where
the input word is read in only the right direction (no left transitions or stationary
can be performed).

There are two possible formal definitions of 2FA:

1. Kozen’s [5] [6] - uses left and right tape endmarkers and allows the tape
head to move left or right, no stationary transitions are allowed

2. Shepherdson’s [5] - more similar to FA definition, no tape endmarkers are
used, and stationary transitions are allowed

2FAs can also be deterministic (2DFA) or nondeterministic (2NFA) while
each of the definitions above can be used for both types.

2.4.1 Deterministic Two-Way Finite Automata

Determinism for two-way deterministic finite automata (2DFA) has the same
meaning as for 1DFA. Only one transition per symbol is possible in each state
therefore we get the same output for every input. For 2DFA this also means that
the head moves only in one direction at a time.

2.4.1.1 Kozen’s 2DFA

Kozen’s definition of 2DFA [5] [6] uses the left and right endmarkers in transitions
which might provide the reader with a good inside into how the automaton works
and how its head moves. This definition differs from that of the 1FA as it has a
special accepting and rejecting state, and the initial state cannot be final.

Definition 6
Let A = (Σ, Q, ▷, ◁, q0, qa, qr, δ) be a deterministic two-way finite automaton

where

• Σ is an input alphabet

• ▷ is the symbol marking the beginning of the accessible tape, also called
left endmarker

9

• ◁, the symbol marking the end of the accessible tape, also called right
endmarker

• Q is a set of states

• q0 ∈ Q is an initial state

• qa ∈ Q is an accepting state

• qr ∈ Q is a rejecting state

• δ : Q × Σ ∪ {▷, ◁} → Q × {L, R} is a transition function where {L, R} is a
set of directions for the head movement (L for left, R for right), therefore,
the head moves one character to the left or one character to the right after
each transition

For each state q ∈ Q there should exist transitions

• δ(q, ▷) = (p, R) where p ∈ Q - ensures that the head does not reach outside
of the accessible tape on the left

• δ(q, ◁) = (p, L) where p ∈ Q - ensures that the head does not reach outside
of the accessible tape on the right

For each symbol c ∈ Σ there should exist transitions

• δ(qr, c) = (qr, R) - ensures that we stay in the rejecting state qr

• δ(qa, c) = (qa, R) - ensures that we stay in the accepting state qa

Input word w ∈ Σ∗ is given to the automaton to determine whether it belongs
to the language L(A).

Let c be a configuration such that c = ▷w1qw2◁ where w1, w2 ∈ Σ∗ and q ∈ Q.
To learn more about configuration see Section 2.2 as the configuration theory is
the same for all types of automata.

A step from one configuration to the next configuration if a right transition
is applied: ▷w1xqyw2◁ ⊢ ▷w1xypw2◁ where q, p ∈ Q, w = w1xyw2, w1, w2 ∈ Σ∗

and x, y ∈ Σ. The transition: δ(q, y) = (p, R).

A step from one configuration to the next configuration if a left transition is
applied: ▷w1xqyw2◁ ⊢ ▷w1pxyw2◁ where q, p ∈ Q, w = w1xyw2, w1, w2 ∈ Σ∗ and
x, y ∈ Σ. The transition: δ(q, y) = (p, L).

The complete accepting computation of the automaton denoted by configu-
rations: ▷q0w◁ ⊢∗ ▷w1qaw2◁, where q0 is the initial state and qa is the accepting

10

state of the automaton.

The complete rejecting computation of the automaton in the configuration:
▷q0w◁ ⊢∗ ▷w1qrw2◁. The automaton also rejects if it enters an infinite loop which
is possible as it can move in both directions.

Therefore, the definition of the automaton language: L(A) = {w ∈ Σ∗ |
▷q0w◁ ⊢∗ ▷w1qaw2◁}.

It is clear from the accepting configuration w1qaw2 that there is no need to
read the word to the end. The reason is that the accepting state cannot be left
after a transition brings us to it. The same goes for the rejecting state. In the
formal definition, we added the transitions to read the word to the end in the
accepting and rejecting state to keep consistency with 1FA.

In Figure 4 we can see an example of 2DFA recognizing the language L =
{0, 01, 011, 0111, 01111, ...} or 01∗ written as a regular expression. Please note
that the right endmarker is denoted as <.

Figure 4: Kozen’s two-way finite automaton accepting language 01∗

2.4.1.2 Shepherdson’s 2DFA

Shepherdson’s definition of 2FA [5] is more similar to that of 1FA as it does not
use endmarkers or any special rejecting and accepting states.

Definition 7
Let A = (Σ, Q, q0, F, δ) be a deterministic two-way finite automaton (2DFA)

where

• Σ is an input alphabet

• Q is a set of states

• q0 ∈ Q is an initial state

11

• F ⊂ Q is a set of final states

• δ : Q × Σ → Q × {L, S, R} is a transition function where {L, S, R} is
a set of directions for the head movement (L for left, S for stay, R for
right) therefore, the head moves one character to the left, stay at the same
position, or moves one character to the right after each transition

Input word w ∈ Σ∗ is given to the automaton to determine whether it belongs
to the language L(A).

Configuration c = w1qw2 where w1, w2 ∈ Σ∗ and q ∈ Q. To learn more about
configuration see Section 2.2 as the configuration is the same for all types of
automata.

A step from one configuration to the next configuration if a right transition
is applied: w1xqyw2 ⊢ w1xypw2 where q, p ∈ Q, w = w1xyw2, w1, w2 ∈ Σ∗ and
x, y ∈ Σ. The transition: δ(q, y) = (p, R).

A step from one configuration to the next configuration if a stationary tran-
sition is applied: w1xqyw2 ⊢ w1xpyw2 where q, p ∈ Q, w = w1xyw2, w1, w2 ∈ Σ∗

and x, y ∈ Σ. The transition: δ(q, y) = (p, S). If q = p this transition results in
a loop therefore, the automaton rejects the word.

A step from one configuration to the next configuration if a left transition
is applied: w1xqyw2 ⊢ w1pxyw2 where q, p ∈ Q, w = w1xyw2, w1, w2 ∈ Σ∗ and
x, y ∈ Σ. The transition: δ(q, y) = (p, L).

The complete accepting computation of the automaton denoted by configu-
rations: q0w ⊢∗ wqf , where q0 is the initial state and qf ∈ F .

The complete rejecting computation of the automaton in the configuration:
q0w ⊣∗ wqr where q0 is the initial state and qr /∈ F . The automaton is also reject-
ing if it enters an infinite loop which is possible as it can move in both directions
or perform stationary transitions. It also rejects if it reaches outside of the tape
as we do not have the endmarkers in transitions to avoid such behavior.

Therefore, the definition of the automaton language: L(A) = {w ∈ Σ∗ |
q0w ⊣∗ wqf}.

In Figure 5 we can see the example of 2DFA recognizing the language L =
{0, 01, 011, 0111, 01111, ...} or 01∗ written as a regular expression.

12

Figure 5: Shepherdson’s two-way finite automaton accepting language 01∗

2.4.2 Nondeterministic Two-Way Finite Automata

Non-determinism for two-way finite automata (2NFA) has the same meaning as
for 1NFA. For any state and any symbol, there can be more transitions in any
direction.

2.4.2.1 Kozen’s 2NFA

Kozen’s definition of 2NFA [5] [6] also uses the left and right endmarkers in
transitions like its 2DFA version.

Definition 8
Let A = (Σ, Q, ▷, ◁, q0, qa, qr, δ) be a 2NFA where

• Σ is an input alphabet

• ▷ is the left endmarker

• ◁ is the right endmarker

• Q is a set of states

• q0 ∈ Q is an initial state

• qa ∈ Q is an accepting state

• qr ∈ Q is a rejecting state

• δ : Q×Σ∪{▷, ◁} → 2Q×{L,R} is a transition function, where {L, R} is a set
of directions for the head movement (L for left, R for right) and 2Q×{L,R}

is the power set of all possible states and directions, therefore, the head
can move in multiple directions and to multiple states in any state under
any symbol

The following transitions are the same as for 2DFA.

For each state q ∈ Q there should exist transitions

13

• δ(q, ▷) = (p, R) where p ∈ Q - ensures that the head does not reach outside
of the accessible tape on the left

• δ(q, ◁) = (p, L) where p ∈ Q - ensures that the head does not reach outside
of the accessible tape on the right

For each symbol c ∈ Σ there should exist transitions

• δ(qr, c) = (qr, R) - ensures that we stay in the rejecting state qr

• δ(qa, c) = (qa, R) - ensures that we stay in the accepting state qa

From the definition above we can see that the only change to 2DFA is in the
transition function δ. We can reach multiple configurations under any symbol
and any state.

According to the change in δ there also has to be a change in the acceptance
criterion.

The computational process of 2NFA can be perceived as a graph with nodes
that are represented as configurations and the edges represent transitions to all
other possible configurations. The difference between 1NFA and 2NFA is that
there can be a loop in the computational graph caused by the two-way movement
of the head. Alternatively, there can be a computational branch that never halts.

The computational graph for 2NFA:

• ▷q0w◁ is the root

• each leaf node is either

– ▷w1qaw2◁ where qa is the accepting state and w1w2 = w

– ▷w1qrw2◁ where qr is the rejecting state and w1w2 = w

• each non-leaf node is a configuration ▷w1qw2◁ where q ∈ Q − {q0, qa, qr}
and w1w2 = w

Each node can have multiple in-going and out-going edges. If it was a 2DFA,
the computational tree would have nodes that can have multiple in-going edges
but only one out-going edge.

If for some input word w, the current node of the computation is ▷w1qcw2◁
where q ∈ Q − {q0, qa, qr} and w1cw2 = w, then for each transition in any direc-
tion there exists an edge to the corresponding configuration.

Nodes according to the type of transitions are

• right transition δ(q, c) = (p, R) there is an edge to the configuration w1cpw2

• zero transition - δ(q, c) = (p, S) there is an edge to the configuration w1pcw2

14

• left transition - δ(q, c) = (p, L) there is an edge to the configuration w1pcw2

The automaton accepts if there is at least one leaf node with an accepting
configuration.

The automaton rejects if all branches contain either a leaf node with rejecting
configurations or a loop.

Therefore, the definition of the automaton language: L(A) = {w ∈ Σ∗ |
▷q0w◁ ⊣∗ ▷w1qaw2◁}.

2.4.2.2 Shepherdson’s 2NFA

Shepherdson’s definition of 2NFA [5] is similar to Kozen’s 2NFA in terms of
non-determinism but it still does not use endmarkers or any special rejecting or
accepting states.

Definition 9
Let A = (Σ, Q, q0, F, δ) be a 2NFA where

• Σ is an input alphabet

• Q is a set of states

• q0 ∈ Q is an initial state

• F ⊂ Q is a set of final states

• δ : Q × Σ → 2Q×{L,S,R} is a transition function where {L, R} is a set of
directions for the head movement (L for left, S for stay, R for right), there-
fore the head moves one character to the left, stays at the same position,
or moves one character to the right after each transition, and 2Q×{L,S,R} is
the power set of all states and directions

From the definition above we can see that again the only change to 2DFA
is in the transition function δ. We can reach multiple configurations under any
symbol and any state.

The computational process of 2NFA can be perceived as a graph with nodes
that are represented as configurations and the edges represent transitions to all
other possible configurations. The difference from Kozen’s 2NFA is that apart
of the loop there can also be a step outside of the tape.

For the purpose of the graph, let’s consider the configuration with endmark-
ers. This does not change anything we have already learned about this version
of 2DFA as the tape is still bounded.

The computational tree for 2NFA:

15

• ▷q0w◁ is the root

• each leaf node is either

– ▷wqf◁ where qf ∈ F and w1w2 = w - the accepting configuration
– ▷wq◁ where q /∈ F and w1w2 = w - the rejecting configuration
– q ▷ w◁ where q /∈ F , w1w2 = w - the rejecting configuration where the

head stepped outside the tape on the left side
– ▷w ◁ q where q /∈ F , w1w2 = w - the rejecting configuration where the

head stepped outside the tape on the left side

• each non-leaf node = ▷w1qw2◁ where q ∈ Q and w1w2 = w

The edges of the computational can also form a loop. The rest of the tree
construction is the same as for Kozen’s in Definition 8.

The automaton accepts if there is at least one leaf node with an accepting
configuration.

The automaton rejects if all branches contain either a leaf node with rejecting
configurations or a loop.

Therefore, the definition of the automaton language: L(A) = {w ∈ Σ∗ |
q0w ⊣∗ wqf}.

16

3 Equivalence of One-Way and Two-Way Finite
Automata

As already mentioned, 2FA and 1FA both accept regular languages, therefore,
they are equivalent. The equivalence can be shown by converting 1FA to 2FA
and 2FA to 1FA such that they still accept the same language.

3.1 1DFA to 2DFA
The conversion of 1DFA to 2DFA is quite simple. 1DFA has only transitions
that move the head to the right and therefore can be considered 2DFA that
never moves to the left.

Theorem 10
Let A = (Σ, Q, q0, F, δ) be a 1DFA. There is a 2DFA A′ = (Σ, Q, q0, F, δ′)

that accepts the same language (L(A′) = L(A)).

Proof
δ′ is a transition function created from the transition function δ such that

if there is a transition δ(q, c) = p then the equivalent transition in δ′ would be
δ′(q, c) = (p, R).

This conversion is trivial. As 1DFA can only move its head to the right,
it is enough to take all possible transitions of 1DFA and make them the right
transitions of 2DFA.

When we look at the complexity of this operation, we can see that 1DFA
with n-states can be converted to 2DFA with n-states, therefore it takes n steps
to compute the 2DFA automaton.

3.2 2DFA to 1DFA
Although converting 1DFA to 2DFA is easy, the conversion of 2DFA to 1DFA is
not that simple because we have to deal with the left and stationary transitions
that are not in 1DFA.

The idea of the conversion is finding a finite set of states and the right tran-
sitions between them that are enough to represent the 2DFA. This is done by
finding classes of equivalent words [4].

First, let us look at the Myhill-Nerode equivalence relation =L [4] which is
defined as follows:

17

Definition 11
Myhyll-Nerode equivalence relation is denoted =L, where L is some language.

We take some x, y ∈ L, the following stands

• x =L y

• xz ∈ L ⇐⇒ yz where z ∈ Σ∗

• (xz ∈ L ⇐⇒ yz) =⇒ (yz ∈ L ⇐⇒ xz) where z ∈ Σ∗

• (xz ∈ L ⇐⇒ yz) ∧ (yz ∈ L ⇐⇒ xz) =⇒ xz ∈ L ⇐⇒ yz ∈ L where
z ∈ Σ∗

Theorem 12
(Myhill-Nerode) A language L over an alphabet Σ can be accepted by a 1DFA,

therefore is regular, if and only if =L has finitely many equivalence classes.

The idea of the proof is to show that L is a regular language. We do so by
defining a 1DFA M such that L(M) = L.

Let M = (Σ, Q, q0, F, δ) be a 1DFA where

• Σ is the input alphabet, the same as the alphabet of L

• Q = {[w]=L
| w ∈ Σ∗} where [w]=L

is an equivalence class

• q0 = [ϵ]=L
where [ϵ]=L

the equivalence class of the empty word

• F = {[w]=L
| w ∈ L}, where [w]=L

is an equivalence class of w ∈ L

• δ is a transition function defined by δ([w]=L
, x) = [wx]=L

where w ∈ Σ∗, x ∈
Σ

The proof that the automaton is indeed a valid 1DFA can be found in [4] in
section 4. For our purpose, the definition of the automaton is enough. Now we
need to show a mechanism to construct such an automaton from 2DFA.

Definition 13
We define a function Tw

• Tw : Q ∪ {•} → Q ∪ {⊥}, where the symbols • and ⊥ are new and their
meaning will be shown in a moment.

Let w = xy be such that w ∈ Σ∗, x ∈ Σ∗, y ∈ Σ, then

18

Txy(q ∈ Q) =
p if xqy ⊢∗ xyp

⊥ otherwise

Txy(•) =
p if q0xy ⊢∗ xyp

⊥ otherwise

From the definition above we can see that function Tw for the word w = xy
and some state q ∈ Q outputs state p if there exist such transitions that the
automaton reads the character y that follows x on the tape and moves to the
right and therefore, gets from the configuration xqy to xyp (xqy ⊢∗ xyp). If no
such sequence exists, the function outputs the new symbol ⊥.

When we pass • to Txy, the output tells us if we ever read the whole word to
the right starting in the initial configuration. If there exists such a sequence of
configurations from q0xy to xyp (q0xy ⊢∗ xyp) it outputs the state p. If we do
not ever fully read the word it outputs the symbol ⊥.

What we achieve here is getting rid of the left and zero transitions. Even if
there occurs any of such transitions in the sequence, we ignore them and only
care about whether the word is ever read fully to the right. Now we will use this
function to determine the new states of the 1DFA from 2DFA.

As applying this function to every word in the automaton language would be
impossible because the language might be infinite, we stop after we cannot find
any more equivalence classes (Tw).

Description of the process of finding the states of 1DFA from 2DFA:

1. initial word w = ϵ, the empty word

2. we create a new starting state Tϵ, which will be the starting state of the
1DFA

3. for every symbol c ∈ Σ we add it to the current w such that w = wc

4. for every q ∈ Q ∪ {•} the Twc(q) is computed and state Twc is created

• if there already exists state Tx such that for each q ∈ Q∪{•}, Tx(q) =
Twc(q), we denote them as equivalent (this information will be needed
when finding transitions), keep only one of the states and terminate
the computation on this branch

• if there is no equivalent Tx, then the state is marked as final state, if
Twc(•) = qf , qf ∈ F , then we add the state Twc to the list of states
and continue with step 3

19

5. when all branches of computation were terminated we have the list of states
of the 1DFA (classes of equivalence)

Definition 14
Let A = (Σ, Q, q0, F, δ) be a deterministic two-way finite automaton. We

construct a deterministic one-way finite automaton A′ = (Σ, Q′, Tϵ, F ′, δ′) that
accepts the same language (L(A) = L(A′)) where

• Σ is an input alphabet

• Q′ is a set of states, Q′ = {Tw | w ∈ Σ∗}, the states we found in the
algorithm described above

• q0 ∈ Q, q0 = Tϵ is an initial state

• F ′ ⊂ Q is a set of final states such that F ′ = {Tw | q0w ⊣∗ wqa}

• δ′ is a transition function where any transition is δ(Tw, c) = Twc

When defining transitions δ′(Tw, c) = Twc beware that there might be some
equivalent states that we found in the process described above (applying function
Tw).

The algorithm has a downside - it can end up creating a 1DFA with an
exponential increase in the number of states.

3.3 2NFA to 1DFA
Conversion of 2NFA to 2DFA is an open problem of the automata theory men-
tioned also in Section 5. To show the equivalence of 1DFA and 2DFA, the
conversion of 2NFA to 1DFA is enough.

The process of conversion is very similar to that in 3.2 when converting 2DFA
to 1DFA. We will find classes of equivalennt words like in the Section 3.2.

First, the reader should be familiar with the term configuration. It is ex-
plained in Section 2.2.

Definition 15
We define a function Tw where w ∈ Σ∗ that is adjusted to 2NFA

• Tw : Q ∪ {•} → 2Q∪{⊥} where the symbols • and ⊥ are the same new
symbols as for the 2DFA to 1DFA conversion.

Let w = xy, such that w ∈ Σ∗, x ∈ Σ∗, y ∈ Σ.

20

Txy(q ∈ Q) =
 {p ∈ Q | xqy ⊢∗ xyp} for all p ∈ Q : xqy ⊢∗ xyp

⊥ if ∄ p ∈ Q : xqy ⊣∗ xyp

Txy(•) =
{p ∈ Q | q0xy ⊢∗ xyp} for all p ∈ Q : q0xy ⊢∗ xyp

⊥ if ∄ p ∈ Q : q0xy ⊣∗ xyp

We can see that function Tw for the word w = xy and some state q ∈ Q
outputs a set of states to which we can get by performing some sequence of tran-
sitions. If no such sequence exists, the function outputs the new symbol ⊥.

When we pass • to Txy the output tells us if we ever read the whole word to
the right while starting in the initial configuration. If there exists such a sequence
of configurations, it outputs a set of states to which we can get by performing
transitions starting in the initial configuration q0w. If we do not ever read the
word fully, it outputs the symbol ⊥.

What we achieve here is getting rid of the left and stationary transitions just
like in the conversion of 2DFA to 1DFA. The function Tw will be used to find
states of 2NFA from 1DFA. The process is similar except that we will find all
possible states we can get to instead of just one.

Definition 16
Let A = (Σ, Q, q0, F, δ) be a 2NFA. We construct a 1DFA A′ = (Σ, Q′, Tϵ, F ′, δ′)

that accepts the same language (L(A) = L(A′)) where

• Σ is an input alphabet

• Q′ is a set of states, Q′ = {Tw | w ∈ Σ} that are the states we found by
the algorithm described above

• q0 ∈ Q, q0 = Tϵ is an initial state

• F ′ ⊂ Q is a set of final states such that F ′ = {Tw | ∃q ∈ F : q ∈ Tw(•)}

• δ′ is a transition function where any transition is δ′(Tw, c) = Twc

When defining transitions δ′(Tw, c) = Twc beware that there might be some
equivalent states.

21

4 Operations
As on 1FA we can perform multiple operations on 2FA. Below are described steps
to follow to perform some basic operations [7].

Shepherdson’s definition of 2FA is used throughout this and all the later
sections meaning the endmarkers cannot be used in the transitions of the user-
defined automata.

Although the endmarkers cannot be used to create the user-defined automa-
ton, they are used in the transitions of automata that are created by performing
some operations. Those endmarkers do not cause problems with performing
other operations on them, though.

4.1 Union
Union is a binary operation creating one 2FA from two 2FAs. The final automa-
ton would accept words that belong to the language of either automaton while
we consider that both automata share the same alphabet Σ.

4.1.1 Union of 2DFAs

Consider two 2DFAs A1 and A2:

• A1 = (Σ, Q1, q0,1, F1, δ1)

• A2 = (Σ, Q2, q0,2, F2, δ2)

We want to perform union [7] [8] on these automata: Union(A1, A2) = A
where A is an automaton such that A = (Σ, Q, q0,1, F, δ) and L(A) = L(A1) ∪
L(A2). This automaton will be 2NFA.

To perform the union we need to create a new starting state. The starting
state will be accepting if either of the final starting states q0,1 or q0,2 is accepting
to keep the acceptance of the empty word.

Then we need to add a stationary transition from the new starting state to
each of the starting states which makes the automaton 2NFA.

Now we can define the union of two 2DFAs.

Definition 17
Let A1 = (Σ, Q1, q0,1, F1, δ1) and A1 = (Σ, Q2, q0,2, F2, δ2) be a 2DFAs. Now

let A = (Σ, Q, quninonStart, F, δ) be a 2NFA created as a union of these automata
where

• Σ is an input alphabet, the same for both given automata

• Q is a set of states created by uniting Q1 and Q2 (the states with the same
name need to be renamed) and adding the new state:

22

– quninonStart is the new starting state

• quninonStart is a starting state, the one added to Q above

• F ⊂ Q is a set of final states such that F = F1 ∪ F2

• δ is a transition function that contains all the transitions defined by δ1 and
δ2 along with the new transitions

– δ(quninonStart, c) = (q0,1, S) for all c ∈ Σ
– δ(quninonStart, c) = (q0,2, S) for all c ∈ Σ

If n1 is a number of states of automaton A1 (n1 = |Q1|) and n2 is a number
of states of automaton A2 (n2 = |Q2|), then the automaton A has n1 + n2 + 1
states, where the extra state is the new starting state.

To summarize the computational process of the automaton A, created by the
union, on input word w:

1. We start in the initial configuration quninonStartw

2. Here, the process branches by performing the stationary transition to q0,1
and q0,2

3. The first branch after the transition δ(quninonStart, c) = (q0,1, S) where c ∈ Σ

• If some accepting configuration of the first automaton A1 is reached
wq1 where q1 ∈ F , the automaton A also accepts

4. The second branch after the transition δ(quninonStart, c) = (q0,2, S) where
c ∈ Σ

• If some accepting configuration of the first automaton A2 is reached
wq2 where q2 ∈ F , the automaton A also accepts

5. If any rejecting configuration is reached in both branches, the automaton
A also rejects the word

Alternative algorithm

There exists an alternative way to perform the union of 2DFAs that outputs the
2DFA [7]. It uses the conversion of one of the original 2DFAs to a halting 2DFA
that has no zero transitions, has only one accepting state, and halts on every
input. The conversion of some automaton with n states results in the automaton
with 4n + 3 states. When the operation of a union is performed on them the
resulting automaton would have a lot of states and would be quite complex and
hard to understand so this algorithm was not used for the purpose of this thesis

23

[9].

Even though it was not used in the operation of the union, the part of the al-
gorithm, specifically the conversion of 2DFA to a 2DFA with no zero transitions
and only one accepting state defined in Definition 18, was used in the operation
of complementation.

The algorithm may not be used but the idea of how it works is provided here.

To perform union we first need to convert 2DFA to 2DFA which has no
stationary transitions, and only one accepting state [9].

Definition 18
Let A = (Σ, Q, q0, F, δ) be a 2DFA with n states. We construct A′ =

(Σ, Q′, q0, F ′, δ′) that has no stationary transitions and has only one final state
(|F | = 1). Such an automaton will have n + 1 states. The one extra state is the
new final state.

If you look at source [9] you will find that they create such automata with the
same number of states using one of the original states as the one finite state. In
our case, this is not possible as our automaton does not stay in the finite states
(there can be a transition to the non-final state).

First, we create a new state qf such that qf /∈ Q will be the special accepting
state where the automaton always ends when accepting. For every q ∈ F the
transition δ(q, ◁) = (qf , L) is added where ◁ is the right endmarker.

To read the word all the way to the right in the accepting state, for each
c ∈ Σ ∪ {▷} where ▷ is the left endmarker the transition δ(qf , c) = (qf , R) is
added.

Second, the stationary transitions are removed. A stationary transition δ(q, c) =
(q′, S) where q, q′ ∈ Q and c ∈ Σ two possible outcomes are possible:

1. There is a sequence of stationary transitions after which the head moves
to the left or to the right, therefore, there is a transition δ(p, c) = (p′, L) or
δ(p, c) = (p′, R) where p, p′ ∈ Q that is eventually performed. To remove
the sequence of stationary transitions we define δ(q, c) = (p′, L) or δ(q, c) =
(p′, R) according to the last stationary transition in the sequence.

2. There is no sequence of transitions after which the head moves anywhere
which means the loop is entered. In this case, we simply remove the tran-
sition so the automaton would have no transition to make and will reject
the word.

As Shepherdson’s definition is used we do not need to worry about left or
right endmarkers in stationary transitions in user-defined automata which would
have caused a problem because if the transition would be δ(q, ▷) = (q, S) it could
be accepting even if there would be no sequence of transitions after which the
head moves to the left or to the right.

24

Now we can define the union of two 2DFAs.

Definition 19
Let A′

1 = (Σ, Q1, q0,1, F1, δ1) be a 2DFA created as described in Definition
18 and A2 = (Σ, Q2, q0,2, F2, δ2) be a 2DFA. The A′

1 has to be converted to
automaton A′′

1 that halts on every inputs as described here [9].
Now let A = (Σ, Q, q0, F, δ) be a union of these automata where

• Σ is an input alphabet, the same for both given automata

• Q is a set of states created by uniting Q′′
1 and Q2 (the states with the same

name need to be renamed and adding the new state)

– qreturn state used to return to the start of the tape

• q0 ∈ Q, q0 = q′′
0,1 is an initial state which was also the initial state of A′′

1

• F ⊂ Q is a set of final states such that F = F ′′
1 ∪ F2

• δ is a transition function that contains all the transitions defined by δ′′
1

and δ2 along with the new transitions which have to ensure that when the
first automaton A′′

1 rejects, the head returns to the beginning of the tape
using the transitions with the new state qreturn and then computing on the
second automaton A2

If 4n + 3 is a number of states of automaton A′′
1 and n2 is a number of states

of automaton A2, then the automaton A has 4n + n2 + 4 states.

To summarize the computational process of the automaton A on an input
word w:

1. The initial configuration q0,1w

2. If an accepting configuration of the first automaton A1 is reached wqf1
where q1 ∈ F , the automaton A also accepts

3. If a rejecting configuration of the first automaton A1 is reached wq1 where
q /∈ F , we move the head to the start of the tape using transitions with state
qreturn and then move to the starting state q0,2 of the second automaton A2

4. If an accepting configuration of the second automaton A2 is reached wqf2
where q2 ∈ F , the automaton A also accepts

5. If a rejecting configuration of the second automaton A2 is reached wq2
where q2 /∈ F , the automaton A also rejects

25

4.1.2 Union of 2NFAs

Consider two 2NFAs A1 and A2:

• A1 = (Σ, Q1, q0,1, F1, δ1)

• A2 = (Σ, Q2, q0,2, F2, δ2)

We want to perform union [7] [8] on these automata: Union(A1, A2) = A,
where A is the final automaton created by the union, such that A = (Σ, Q, q0,1, F, δ)
and L(A) = L(A1) ∪ L(A2). This automaton will be a 2NFA.

The algorithm for the union of 2NFAs is the same as for the union of 2DFAs
described in Section 4.1.1. The alternative way of union also described in that
section is not possible for 2NFA as no polynomial-time conversion of 2NFA to
2DFA is possible.

4.2 Intersection
Intersection is a binary operation creating one 2FA from two 2FAs. The final
automaton would accept words that belong to the language of both automata
while we consider that both automata share the same alphabet Σ.

4.2.1 Intersection of 2DFAs

Consider two 2DFAs A1 and A2:

• A1 = (Σ, Q1, q0,1, F1, δ1)

• A2 = (Σ, Q2, q0,2, F2, δ2)

We want to perform intersection [7] [8] on these automata: Intersect(A1, A2) =
A, where A = (Σ, Q, q0,1, F, δ) is 2DFA created by the intersection that accepts
the language L(A) = L(A1) ∩ L(A2).

Definition 20
Let A1 = (Σ, Q1, q0,1, F1, δ1) and A1 = (Σ, Q2, q0,2, F2, δ2) be a 2DFAs. Now

let A = (Σ, Q, q0, F, δ) be a 2DFA created by performing an intersection on these
automata where

• Σ is an input alphabet, the same for both given automata

• Q is a set of states created by uniting Q1 and Q2 (the states with the same
name need to be renamed) and adding the new state

– qreturn state used to return to the start of the tape

• q0 ∈ Q, q0 = q0,1 is a starting state which was also the starting state of A1

26

• F ⊂ Q is a set of final states such that F = F1 ∪ F2

• δ is a transition function that contains all the transitions defined by δ1 and
δ2 along with the new transitions

– δ(qf , ◁) = (qreturn, L) for all qf ∈ F while ◁ is the right endmarker
– δ(qreturn, c) = (qreturn, L) for all c ∈ Σ
– δ(qreturn, ▷) = (q0,2, R) where q ∈ Q and ▷ is the left endmarker

To summarize the computational process of the automaton A created by the
union on input word w:

1. The initial configuration q0,1w

2. If a rejecting configuration of the first automaton A1 is reached wq1 where
q1 /∈ F , the automaton A also rejects

3. If an accepting configuration of the first automaton A1 is reached wqf1
where qf1 ∈ F the head is moved to the start of the tape using transitions
with state qreturn and then moved to the starting state q0,2 of the second
automaton A2

4. If an accepting configuration of the second automaton A2 is reached wqf2
where qf2 ∈ F , the automaton A also accepts

5. If a rejecting configuration of the second automaton A2 is reached wq2
where q2 /∈ F , the automaton A also rejects

4.2.2 Intersection of 2NFAs

Consider two 2NFAs A1 and A2:

• A1 = (Σ, Q1, q0,1, F1, δ1)

• A2 = (Σ, Q2, q0,2, F2, δ2)

We want to perform intersection [7] [8] on these automata: Intersect(A1, A2)
= A, where A = (Σ, Q, q0, F, δ) is 2NFA created by the intersection that accepts
the language L(A) = L(A1) ∩ L(A2).

The algorithm for the intersection of 2NFAs is the same as for the union of
2DFAs described in Section 4.2.1.

27

4.3 Concatenation
Concatenation is a binary operation creating one 1DFA from two 2FAs. The
final automaton accepts the concatenation of their languages, while we consider
that both automata share the same alphabet Σ.

The final automaton is not 2FA but 1FA because there is no known algorithm
to perform such an operation on 2FAs. The problem with this algorithm are the
multi-directional transitions of 2FAs. 2FAs first need to be converted to 1DFAs
and then the concatenation is performed just like on the classic 1DFAs.

4.3.1 Concatenation of 2DFAs

Consider two 2DFAs A1 and A2:

• A1 = (Σ, Q1, q0,1, F1, δ1)

• A2 = (Σ, Q2, q0,2, F2, δ2)

We want to perform concatenation [7] on these automata: Concatenate(A1,
A2) = A where A = (Σ, Q, q0, F, δ) is 1DFA created by the concatenation that
accepts the language L(A) = L(A1)L(A2).

The steps to achieve concatenation of two 2DFAs:

1. Perform the conversion to 1DFA for both automata by using the algorithm
described in 3.2. We get 1DFA Adfa1 from A1 and 1DFA Adfa2 from A2.

2. Create an ϵ-1NFA by adding the transition under the empty word ϵ from
the states in Fdfa1 to the starting state of the second automaton q0,dfa2

3. Convert 1NFA to 1DFA

The process of conversion from 1NFA to 1DFA is omitted in this work but
details can be found here [11].

Definition 21
Let A1 = (Σ, Q1, q0,1, F1, δ1) and A1 = (Σ, Q2, q0,2, F2, δ2) be 2DFAs, then

they are converted to 1DFAs Adfa1 and Adfa2, and then we create an ϵ-1NFA as
mentioned in the process above. Now let A = (Σ, Q, q0,1, F, δ) be a concatenation
of these automata created from the ϵ-1NFA where

• Σ is an input alphabet, the same for both given automata

• Q is a set of states created by converting ϵ-1NFA to 1DFA (epsilon closures)

• q0 ∈ Q is the state representing the epsilon closure of q0,1

• F ⊂ Q is a set of finite states created in conversion from 1NFA to 1DFA
by finding closures that contains the finite states

28

• δ is a transition function

The process of computation of the concatenated automata A on an input
word w is the same as for a classic 1DFA.

4.3.2 Concatenation of 2NFAs

Consider two 2NFAs A1 and A2:
• A1 = (Σ, Q1, q0,1, F1, δ1)

• A2 = (Σ, Q2, q0,2, F2, δ2)
We want to perform concatenation [7] on these automata: Concatenate(A1,

A2) = A, where A = (Σ, Q, q0, F, δ) is a 1DFA created by the intersection that
accepts the language L(A) = L(A1)L(A2).

The steps to achieve concatenation of two 2NFAs:
1. Perform the conversion to 1DFA for both automata by using the algorithm

described in Section 3.3. We get a 1DFA Adfa1 from A1 and a 1DFA Adfa2
from A2.

2. Create an ϵ-1NFA by adding the transition under the empty word ϵ from
the states in Fdfa1 to the starting state of the second automaton q0,dfa2

3. Convert 1NFA to 1DFA
The rest of the algorithm is the same as for 2DFAs described in the section

above.

4.4 Square
Square is a unary operation creating one 1DFA from two 2FAs. For this oper-
ation, the number of squares n has to be specified. This operation creates an
automaton that accepts the concatenation of n words that belong to the original
language.

The final automaton is not 2FA but 1FA because there is no known algorithm
for performing such an operation on 2FA. 2FA first needs to be converted to 1DFA
and then the square operation is performed just like on a classic 1DFA.

The definition of n-square
• if n = 0 then 0-square of a language L is a language accepting only the

empty word ϵ

• if n > 0 then n-square of a language L is the language Ln = {w1.....wn|i ∈
{1, 2, ..., n}, wi ∈ Li}

As we can see from the definition above, the n-square of a language can be
easily done using concatenation.

29

4.4.1 Sqaure of 2DFA

Consider a 2DFA A:

• A = (Σ, Q, q0, F, δ)

We want to perform square [7] of n where n ≥ 0 on the automaton: Square(A, n) =
A′, where A′ = (Σ, Q′, q0′, F ′, δ′) is a 1DFA created by the square that accepts
the language L(A′) = L(A)n.

The steps to achieve the n-square of the 2DFA:

1. If n = 0, then create an automaton accepting only the empty word

2. If n > 0, then perform concatenation in a cycle n − 1 times; the language
L(A′) = L(A)n will be created inductively such that L(A)1 = L(A), and
for some m > 1, m ≤ n then L(A)m = L(A)L(A)m−1

Definition 22
Let A = (Σ, Q, q0, F, δ) be a 2DFA and n ≥ 0 then use concatenation in

a cycle to create the automaton of n-square. Let A = (Σ, Q′, q′
0, F ′, δ′) be the

n-square of the automaton created where

• Σ is an input alphabet

• Q′ is a set of states created by concatenation

• q′
0 ∈ Q′ is an initial state created by concatenation

• F ′ ⊂ Q′ is a set of final states

• δ′ is a transition function (the description is not mentioned as it should be
clear from the process of concatenation)

The process of computation of the n-square is the same as for concatenation.

4.4.2 Square of 2NFA

Consider a 2NFA A:

• A = (Σ, Q, q0, F, δ)

We want to perform square [7] of n where n ≥ 0 on the automaton: Square(A, n) =
A′, where A′ = (Σ, Q′, q′

0, F ′, δ′) is a 1DFA created by the square that accepts
the language L(A′) = L(A)n.

The rest of the algorithm is the same as for 2DFA.

30

4.5 Complement
Complement is a unary operation creating a complementary 2FA. The final au-
tomaton accepts all words except the words that belong to the language of the
original automaton.

The operation of complement is simple when performed on a 1FA as the head
can move only in one direction, just changing the accepting type to non-accepting
and vice versa is enough.

When it comes to 2FA, the head can move in both directions or perform
stationary transitions, therefore, there is a possibility of a loop. The complement
of a 2FA should accept any word that loops on the original 2FA. The problem
is that the loops stay in 2FA even if we interchange the accepting states with
non-accepting so some loop detection has to be done.

4.5.1 Complement of 2DFA

Consider a 2DFA

• A = (Σ, Q, F, δ)

We want to create a complement [7] of this automaton: Complement(A) = A′

where A′ = (Σ, Q′, q0, F ′, δ′) created by complementing the original automaton
that accepts the language L(A′) = L(A).

To perform the complementation the automaton should be converted to a
2DFA that halts on every input as mentioned in Section 4.1.1. When we get
an automaton that halts on every input, it is then easy to determine whether
the automaton halted in an accepting or a rejecting state. In this case, the
modification of transitions is quite simple to create the complement of a 2DFA.

Although, as already mentioned in Section 4.1.1, the conversion to a halting
automaton outputs an automaton that has four times the number of states of
the original 2FA, and is quite hard to comprehend. That is the reason why this
conversion is not used.

The other reason for not using the conversion is because the library described
in Section 6 that is implemented in this work provides a way to detect loops in
the computation of 2FA. If the automaton reaches a configuration that it has
already been to, it entered a loop. Therefore, we only use this part of the original
algorithm from Definition 18 that converts a 2DFA to a 2DFA that has no zero
transitions and only one accepting state, and the transitions are modified such
that every transition that ends in the accepting state is removed and for every
missing transition the new one is added to the accepting state. The rest of the
algorithm complementing is done by the loop detection.

Now we can define the complement of the 2DFA:

Definition 23
Let A = (Σ, Q, q0, F, δ) be a 2DFA that has no stationary transitions and

31

only one accepting state created using Definition 18. Now let A′ = (Σ, Q, q0,1, F, δ′)
be a 2DFA created by complementing this automaton where

• Σ is an input alphabet

• Q is a set of states

• q0 ∈ Q is the initial state

• F ⊂ Q is a set containing one final state

• δ′ is a transition function with modified transitions of A

– for each c ∈ Σ ∪ {◁, ▷} and for each q ∈ Q − F

1. if there is a transition δ′(q, c) = (qf , direction) where qf ∈ F the
transition is removed

2. if there is no transition such that (q, c) =⊥ a new transition
δ′(q, c) = (qf , direction) is added, and direction = R if c = ▷
else it is L

To summarize the process of computation of the complement automaton A
on an input word w:

1. The initial configuration q0w

2. If the configuration wqf is reached where qf ∈ F or the automaton loops,
the word is accepted as it would be rejected by A

3. If the configuration wq is reached where q /∈ F or no transition exists, the
word is rejected as it would be accepted by A

4.5.2 Complement of 2NFAs

Consider a 2NFA A = (Σ, Q, F, δ).
We want to create a complement [7] of this automaton: Complement(A) = Ā

where Ā = (Σ, Q′, q0, F ′, δ′) is a 1DFA created by converting 2NFA to 1DFA
and the complementing it and it accepts a complement of the original language
L(Ā) = L(A).

As we can see the complementing of 2NFA is not possible to perform like on
2DFA as we cannot convert 2NFA to 2DFA that has no stationary transitions and
only one halting state due to non-determinism and branching in computation.

The computation can be done by performing conversion to 1DFA as described
in Section 3.3 and then performing complementation on 1DFA by switching the
accepting and non-accepting states.

Now we can define the complement of 2NFA:

32

Definition 24
Let A = (Σ, Q, q0, F, δ) be a 2NFA we convert it to a 1DFA A′ = (Σ, Q′, q′

0, F ′, δ′)
as described in Section 3.3 and having a full transition table (every state has a
transition defined under any symbol from the alphabet). Now let Ā = (Σ, Q′, q′

0, F̄ ′, δ′)
be a 1DFA created by complementing the automaton A′ where

• Σ is an input alphabet

• Q′ is a set of states

• q′
0 ∈ Q′ is the initial state

• F̄ ′ ⊂ Q′ is a set of final states, F̄ ′ = Q − F ′

• δ′ is a transition function, the same as for the automaton A′

4.6 Kleene Star
Kleene star is a unary operation creating 1FA from 2FA. The final automaton
accepts a language created by a concatenation of the original one where the
concatenation can be performed n times where n ≥ 0 where L(A)0 = {ϵ} and
the rest is done by concatenation with language L.

There is no known algorithm for performing a star on 2FA and creating a 2FA.
Therefore, the 2FA is first converted to a 1DFA and then the star is performed
like on a classic 1DFA.

4.6.1 Kleene Star of 2DFA

Consider a 2DFA

• A = (Σ, Q, q0, F, δ)

We want to perform star [7] on this automaton: Star(A) = A′, where
A′ = (Σ, Q′, q′

0, F, δ′) is the final automaton created by applying the star to
a 1DFA that we create from A as described in Section 3.2. The language of A′ is
L(A′) = L(A)∗, where L(A)∗ = ⋃

n≥0 L(A)n and n is a number of concatenations
performed on L(A) and it starts with L(A)0 = {ϵ} and L(A)n = L(A)n−1, n ≥ 1.
The resulting automaton accepts any number of concatenated words of the lan-
guage of the original automaton.

The star operation on 1DFA requires to convert 1DFA to 1NFA:

1. Let A be a 1DFA such that A = (Σ, Q, q0, F, δ)

2. Create a 1NFA A′ = (Σ, Q′, q′
0, F ′, δ′) such that

• Σ is the alphabet
• Q′ is a set of states containg Q and new states

33

– q′
0, a new starting state

– q′
f , a new accepting state

• q′
0 ∈ Q′ is the initial state

• F ′ ⊂ Q′ is a set of final states, F ′ = F ∪ {qf}
• δ′ is a transition function contain new transitions

– δ′(q′
0, ϵ) = q0, transition under empty word to the original initial

state
– δ′(q, ϵ) = q′

f for each q ∈ F , transitions under empty word to a
final state

– δ′(q, ϵ) = q0 for each q ∈ F , transitions under empty word from
every original finite state to original starting state

– δ′(q′
0, ϵ) = qf a transition under empty word from every the new

starting state to the finite state

As we can see, the final automaton A′ is 1NFA with epsilon transitions.
Epsilon transition (ϵ-transition) is a special transition where the automaton can
move to the next state without reading any symbol from the tape. By converting
the automaton from 1NFA to 1DFA we get the wanted automaton created by
performing the Kleene Star operation [11].

Definition 25
Let A = (Σ, Q, q0, F, δ) and let Adfa be a 1DFA that A was converted to by

Definition 3.2, then we create some ϵ-1NFA as mentioned in the process above.
Now let A′ = (Σ, Q′, q′

0, F ′, δ) be a star of that automaton created from the
epsilon-1NFA where

• Σ is an input alphabet

• Q′ is a set of states created by converting epsilon-1NFA to 1DFA (epsilon
closures)

• q′
0 ∈ Q′ is the state representing the epsilon closure of q0

• F ′ ⊂ Q′ is a set of final states created in conversion from 1NFA to 1DFA
by finding closures that contains the final states

• δ′ is a transition function, it is not described here as it should be clear from
the process of concatenation

4.6.2 Kleene Star of 2NFA

Consider a 2NFA A = (Σ, Q, pq0, F, δ)
We want to perform star [7] on this automaton: Star(A) = A′, where A′ =

(Σ, Q′, q′
0, F, δ′) is the final automaton created by applying the star to a 1DFA

that we create from A as described in Section 3.3.
The rest of the algorithm is the same as for 2DFA.

34

5 Open problems of 2FA
In the theory of two-way final automata lies many problems that have not been
solved yet. In this section, we briefly mention some of them.

The problem with solving the open problems is mainly caused by the head
moving in more directions in 2DFAs. As we have seen in Section 4 many al-
gorithms for operations rely on converting 2DFA to 1DFA as no algorithms for
2FA have been discovered yet.

5.1 Size Complexity
The problem: Can a 2NFA with n states be converted to a 2DFA with at most
p(n) states, where p is a polynomial function?

This is one of the most popular problems that is spread throughout automata
theory. The problem can be defined for all types of automata.

The most general case is NP vs P problem (Turing machines). It is well-
known that this problem has not been solved yet but it is assumed that P is not
equal to NP.

Now let’s look at the problem for 2DFAs. The interpretation of the problem
is whether the conversion of 2NFA to 2DFA is bounded above polynomially.

Sakoda and Sipser came up with a theory that has its origin in the theory of
NP-completeness [3].

This theory starts with defining two classes of regular problems

• 2D - the class of problems for which a 2DFA exists such that it has a
maximum of polynomial number states

• 2N - the class of problems for which a 2NFA exists such that it has a
maximum of polynomial number of states

If we have some L ∈ 2N , the problem asks whether L ∈ 2D. If this would
stand for all problems in 2D, then 2D = 2N .

They also introduced so-called homomorphic reductions between the problem
families. It was proven that 2D is closed under them.

This problem shows the power of non-determinism and if it was proven that
2D = 2N , it would mean that every regular problem might be solved in polyno-
mial time.

There is a next branch to this problem considering a conversion of 1NFA to
2DFA: Can 1FA with n states be converted to 2DFA with at most p(n) states,

35

where p is a polynomial function?

This as well is thought to not be true and was researched along the 2NFA to
2DFA problem above.

5.2 Open Problem of Operations of 2FA
As mentioned in the section about operations (in Section 4) some of them cannot
be done without conversion to 1DFA. The reason is that algorithms considering
2FAs either have large time-complexity or have not yet been discovered.

The main problem of 2DFAs when it comes to operations is the possibility
to perform transitions in more directions. Although, this gives 2DFAs the power
to have fewer states in many cases.

The research on the complexity of operations was done by Jirásková and
Okhotin [7] that were used as the main source for implementing operations in
Section 4. They used the knowledge about operations on 1DFA and compared
them to 2DFA.

It is clear that even the basic operations have a trend of increasing the number
of states in 2DFA. It is not clear if better algorithms can be discovered.

36

6 Library
A library TwoWayFiniteAutomata for 2FA was created as a .NET class library
using the object-oriented programming language C#. It can work with deter-
ministic and also non-deterministic automata.

It allows users to create 2FA with a custom alphabet and transitions, load
2FA from an XML file, save 2FA to an XML file, and perform basic operations
on 2FA.

The most basic operation the library can perform is the computation on
an input word that determines whether the word belongs to the language of
an automaton or not. The process of computation can be stored as a list of
configurations if a user wishes to see how the automaton works.

As 2FA is just an upgraded version of 1FA the library can also work with
1FA. As we will see, this is important as the outputs of some operations on 2FA
are 1FA.

Before we look at some example usages of the library the following sections
give a deeper knowledge of the structure of the library.

6.1 Classes
Automaton

Automaton is the main class of the library representing 2FA. Its fields are:

• Id - an integer representing the identifier of the automaton

• Description - a description of the automaton and its language

• Tape - an array of strings representing the tape of the automaton

• Type - a type of automaton (enum AutomataType - 1DFA, 2DFA, 1NFA,
2NFA)

• Operation - an operation by which the automaton was created, the default
is ORIGINAL (enum OperationType)

• States - a list of states (class State) that the automaton can reach, it is
obtained from the Transitions

• StartState - the starting state, also belongs to the list of States

• WordAlphabet - an input alphabet, a list of strings

• Transitions - a list of transitions that the automaton can make (class
Transition)

37

• ProcessingConfigurations - list of strings, each string represents a con-
figuration and therefore, the list of them represents some computation on
an input word

• NonendingManually - a non-ending state used in operations as a uni-
versal non-ending state

• InitialManually - a starting state used in operations as a universal start-
ing state

• Count - an integer used to produce the Id field, it is used as a static
variable for all instances of the class

The fields described above are used in the following methods:

• (constructor) Automaton - creates an instance of the class and initializes
the fields to default values as it has no arguments, this constructor is needed
for XML loading and saving

• (constructor) Automaton - creates an instance of the class, its arguments
are tape alphabet, transitions, type, and operation, some arguments are
optional and have a default value

• GetStatesFromTransition - the method to get a list of states from the
transitions

• UpdateStates - updates the States field when a transition is added

• AddState - adds a state to the States filed while checking its validity

• AddTransition - adds a transition while checking its validity

• CheckTransitionValidity - checks the validity of a Transition

• AddAlphabet - adds alphabet while checking its validity

• ComputeType - computes type of the automaton (1DFA, 1NFA, 2DFA,
2NFA) based on transitions

• LoadFromXmlFile - loads all automata from an XML file which path is
given as an argument

• SaveToXmlFile - saves the automata to an XML file which is given as
an argument

• Input - gets a word from the method Compute as an argument, saves it
to the Tape, and prepares automaton for computation

38

• Compute - performs a computation with the input word that it gets as
an argument, it determines whether the word belongs to the language of
the automaton, it saves the configurations of the computation

• ComputeInput - helper function called by compute

• Configuration - creates the configuration string based on the head posi-
tion and current state

• Union - performs a union of two automata (the one that the method is
called from and one is given as an input argument), it outputs the new
automaton

• Intersect - performs intersection of two automata (the one that the method
is called from (this) and one is given as an input argument)

• Square - creates square of an automaton based on a given integer param-
eter

• Complement - creates an automaton that accepts the complement of the
language

• Concatenate - concatenate two automata

• Kleene - creates a Kleene Star from an automaton

• T - helper function used by ConvertToDfa

• EpsilonClosure - a helper function that creates an epsilon closure of some
state

• ConvertToNoZeroTransitionsOneFiniteState - converts automaton
to an automaton with no zero transitions and one final state

• ConvertToDfa - converts 2DFA to 1DFA

• ConvertNfaToDfa - converts 2NFA to 2DFA

State

The State class represents a state of an automaton. Its fields are:

• Name - a name of a state

• InitType - a type of a state (enum StateType), can only be STARTING
or NONENDING, determines whether the state is initial or not

• FiniteType - a type of state (enum StateType), can have any value from
the enum, determines whether the state is accepting or not

39

Transition

The Transition class represents a transition of an automaton. Its fields are:

• Start - the starting state of the transition (class State)

• Finish - the finishing state of the automata (class State)

• Character - the transition character (string)

• Direction - the direction in which the head moves over tape after the
transition (enum Direction)

Based on the description above, it should be clear how the transitions work.
When there is a symbol (stored in the Character field) on the tape and we are in
the Start state, then we can perform the transition to the Finish state and move
the head in the given Direction.

6.2 Enums
StateType

The enum StateType represents the type of automaton state. Its values are:

• STARTING - the type of the starting state of an automaton (S in the
definition of the automaton)

• NONENDING - the type of a non-ending state of an automaton (the
state that is not of type STARTING or ACCEPTING)

• ACCEPTING - the type of an accepting state of the automaton

AutomatonType

The enum AutomatonType represents the type of automaton based on its tran-
sitions. Its values are:

• DFA2 - deterministic two-way finite automaton

• DFA - deterministic one-way finite automaton

• NFA2 - non-deterministic two-way finite automaton

• NFA - non-deterministic one-way finite automaton

40

OperationType

The enum OperationType represents the operation by which the automaton was
created. Its values are:

• ORIGINAL - the default value

• UNION

• INTERSECTION

• STAR

• COMPLEMENT

• CONCATENATION

• SQUARE

6.3 Automata in XML File
As the creation of the automata is quite a time-consuming operation, the library
provides users with functions to work with automata stored in an XML file. Also,
the automata created by the library can be saved to an XML file.

The automaton represented in XML format must have the following struc-
ture as presented in the source code 1 to be a valid automaton. The source code
presents a file that contains one 2DFA automaton.

The root element of the XML file is ArrayOfAutomaton. It represents a list of
automata, and therefore more than one automaton can be stored in one XML file.

An automaton inside the ArrayOfAutomaton starts and ends with the Au-
tomaton element. It has no attributes.

Inside the Automaton element, the following elements can be used to define
an automaton:

• Description (optional) - the description of the automaton, if not given,
the description of the automaton will be an empty string

• Type (optional) - the type of the automaton, can have values from enum
AutomataType; please note that this field is not necessary while creating
the automaton as the Type will be recomputed once the library loads the
file to not cause any inconsistency, so this field has more usage when saving
the automaton as the user can be sure it is valid

41

• Operation (optional) - the type of operation by which the automaton was
created; when creating the automaton manually, always set it to ORIGI-
NAL or omit it completely, other types of operations from enum Opera-
tionType can be used while saving the automaton; please note that you
should never change the type of operation in the saved file as this may lead
to an unwanted behavior on the next load

• StartState (required) - the initial state of the automaton, it has no body,
but its parameters are

– Name (required) - the name of the state
– InitType (optional) - the inital type of the state, has to be the

STARTING from enum StateType, if not given, this will be set after
loading

– FiniteType (optional) - the finite type of the state, can have any
value from enum StateType except STARTING; if not given, it will
be set to NONENDING after loading

• WordAlphabet (optional) - an element conating elements of strings rep-
resenting the automaton alphabet

• Transitions (required) - the list of Transitions, in the body we use the tag
Transition

– Transition (at least one required) - represents a transition of the
automaton

∗ Start (required) - the start state of the transition, the arguments
are the same as for the StartState

∗ Finish (required) - the finish state of the transition
∗ Character (required) - the symbol from the alphabet under which

the transition should happen; the character cannot be an end-
marker symbol if it is a user defined automaton, the endmarker
symbol can be present only if such a transition is added by an
operation

∗ Direction (required) - the direction in which the head should
move while performing the transition; it can have values from
enum Direction; if not given, its default value will be STAY (sta-
tionary transition)

To make the XML file simple and consistent while loading automata from the
XML file, all other fields of automata are generated from the transitions. Those
are WordAlphabet and States. The id of an automaton is generated after each
load.

The WordAlphabet is not always generated. As you can see the alphabet can
be passed as an element but if you do not specify it, it will be generated from
the transitions.

42

Also, if you specify an alphabet and then use a symbol that is not in it in a
transition it will be added to the alphabet to keep the consistency.

Please note that if you do not use the StartState in any transition, you will get
an error as such an automaton is useless as it can never start the computation.
Also, when you do not use any of the required elements a parse error should be
thrown.

Source code 1: automata.xml
<?xml v e r s i o n=" 1 . 0 " encoding=" utf −8" ?>
<ArrayOfAutomaton>

<Automaton>
<D e s c r i p t i o n>01∗</ D e s c r i p t i o n>
<Type>DFA2</Type>
<Operation>ORIGINAL</ Operation>
<S t a r t S t a t e Name=" q0 " InitType="STARTING" FiniteType="NONENDING" />
<WordAlphabet>

<s t r i n g>0</ s t r i n g>
<s t r i n g>1</ s t r i n g>

</WordAlphabet>
<T r a n s i t i o n s>

<T r a n s i t i o n>
<S t a r t Name=" q0 " InitType="STARTING" FiniteType="NONENDING" />
<F i n i s h Name=" q0 " InitType="STARTING" FiniteType="NONENDING" />
<Character>1</ Character>
<D i r e c t i o n>LEFT</ D i r e c t i o n>

</ T r a n s i t i o n>
<T r a n s i t i o n>

<S t a r t Name=" q0 " InitType="STARTING" FiniteType="NONENDING" />
<F i n i s h Name=" q1 " InitType="NONENDING" FiniteType="ACCEPTING" />
<Character>0</ Character>
<D i r e c t i o n>RIGHT</ D i r e c t i o n>

</ T r a n s i t i o n>
<T r a n s i t i o n>

<S t a r t Name=" q1 " InitType="NONENDING" FiniteType="ACCEPTING" />
<F i n i s h Name=" q1 " InitType="NONENDING" FiniteType="ACCEPTING" />
<Character>1</ Character>
<D i r e c t i o n>RIGHT</ D i r e c t i o n>

</ T r a n s i t i o n>
<T r a n s i t i o n>

<S t a r t Name=" q1 " InitType="NONENDING" FiniteType="ACCEPTING" />
<F i n i s h Name=" q0 " InitType="STARTING" FiniteType="NONENDING" />
<Character>0</ Character>
<D i r e c t i o n>LEFT</ D i r e c t i o n>

</ T r a n s i t i o n>
</ T r a n s i t i o n s>

</Automaton>
</ArrayOfAutomaton>

Restriction on Automata Creation

1. required starting state

2. the starting state has to be used in at least one transition

3. input alphabet cannot contain "<" and ">" as those are used internally as
tape endmarkers

4. at least one transition has to be present

6.4 Automata Creation
The library also allows users to create an automaton in the code.

You can create an empty automaton by calling the empty constructor Au-
tomaton. The fields will be initialized to the default values. This constructor is
mainly used for XML parsing.

43

The automata can be created using the custom fields with the constructor
Automaton whose parameters are:

• alphabetWords - a list of strings representing the input alphabet of the
automaton

• transitions - a list of transitions

• operationType - an operation type of the automaton (enum OperationType),
the default value is ORIGINAL

This constructor is used in the operations of the library.

As already mentioned, the library can work with all types of FA, one-way,
two-way, deterministic, and non-deterministic. The 1FAs are stored as 2FA with
only right transitions.

6.5 Computation
The operation of computation is the most basic one. The method Compute
is called with an input word as a parameter. The input word is validated by
checking if all the symbols of it are in the alphabet. As the alphabet symbols
can have multiple characters, the word is given as a list of strings, not a simple
string.

If the word is validated correctly, it is written to the tape, and then the tran-
sitions are performed.

The computation process saves itself as a list of configurations so the user
can check it. In the case of NFA, it saves all branches of the computation.

If there is such a sequence of transitions that the automaton can read the
word all the way to the right endmarker and no transitions under the right end-
marker are possible (can be present in an automaton created by some operations
like union etc.), it accepts the word by outputting the boolean value true.

If the computation process gets stuck in a loop, no more transitions are pos-
sible, or it falls out of the tape, it rejects the word by outputting the boolean
value false.

The loop detection is done by checking the configurations. If the automaton
gets into a configuration it has already been to, it starts to loop.

The FA computes on a word given as an input by a user and outputs whether
the input word belongs to the language of the automaton or not. The input word
is given as a list of strings as it is possible to have multi-character symbols in

44

the alphabet.

The process of computation works in the following way:

1. If the word is the empty word (ϵ) and the starting state is accepting, the
automaton accepts

2. If the current state is accepting, the head reached the right endmarker, the
automaton accepts

3. If the automaton enters a configuration that it has already been to, it
means it entered a loop and should reject, if the automaton is created by
the operation of complement, then it should accept

4. All possible transitions are obtained from the current state and symbol, if
there are none, the automaton rejects

5. If there are some transitions possible, the computational process will branch
as many times as is the count of the transitions

6. If any of the possible transitions lead to an accepting configuration, the
automaton accepts

7. If no accepting configuration can be reached, it rejects the word

The computational process allows the user to see the process by remembering
all the configurations. If the automaton is non-deterministic it stops the process
when it reaches the first accepting configuration.

6.6 Operations
The operation on automata are implemented based on the algorithms and defi-
nitions in Section 4.

45

7 Sample application
A sample console application was created to test the library. It was written in
C#, using the platform .NET 7.0. The app uses our library described in Section
6 to demonstrate

• loading from an XML file

• saving to an XML file

• computation on a word

• union of automata

• intersection of automata

• concatenation of automata

• square of an automaton

• complement of an automaton

• star of an automaton

• conversion of 2DFA to 1DFA

• conversion of 2NFA to 1DFA

As you can see, the functionality of the sample app is simple and dedicated
to showing all aspects of the library.

46

7.1 Walkthrough
First, prepare an XML file with your automata as shown in Section 6.3. There
are several example files in an automata folder in the src folder of the electronic
data included to this work that you can use.

Loading automata

After starting the console app, a prompt to enter a path to an XML file with
your automata pops on the screen (Figure 6). The path should be a full one, not
a relative one.

For example: C:\Users\user\Desktop\automata.xml

Figure 6: Loading automata from XML file

If the path is not correct, the file does not exist, or it contains an error, the
automata cannot be parsed and an exception will be thrown and you will be
prompted again to enter a path.

Main menu

After entering the correct path the loaded automata are listed along with the
main menu (Figure 7). The menu contains all possible actions by which a user
can interact with the automata that were parsed from the user’s XML file.

47

To choose one of the options, enter the number in the brackets written next
to the option.

To return to the main menu, it is usually enough to enter "n" and press enter.
It is prompted on all the places that it can be used.

Figure 7: Main Menu

Reloading automata

Option number 1 allows you to load automata from a file. The default file is the
file you entered at the start of the application, or you can enter a path to a new
file. If the file does not exist, it will be automatically created. If you decide to
the same file you loaded the automata from, the file will be rewritten.

The app allows you to save automata to only one file.
After entering the option number, you get asked to enter a path to a file,

where you want to save the automaton (Figure 8). If you do not enter anything,
the automata will be saved to the original file.

Now let’s imagine that we write "n" to the prompt, therefore no automata
are saved.

The process proceeds to loading and asking what file you want to load from
(Figure 10). If you just press enter, the automata will be reloaded from the file
you entered at the start of the application.

If you enter a path to a new file, automata will be loaded from there.

48

Figure 8: Reload automata from XML file

Figure 9: Reloaded automata from XML file

Saving automata

Option number 2 allows the user to save the automata to a file. The default file
is the file you entered at the start of the application or you can enter a path to a
new file. If the file does not exist, it will be automatically created. If you decide

49

to save to the same file you loaded the automata from, the file will be rewritten.
The app allows you to save automata to only one file.
After entering the option number, you get asked to enter a path to a file,

where you want to save the automaton (Figure 8). If you do not enter anything,
the automata will be saved to the original file.

Figure 10: Save automata to an XML file

When you enter a valid path, the confirmation of saving will be written on
the screen (Figure 11).

Listing Automata

Option number 3 allows the user to list all the loaded automata and show the
details about them.

After entering the option number, the list of all the automata will appear
including their id and description (Figure 12). If the description is too long, only
some of it will be visible.

If you enter an id of a listed automaton, all the details will be shown (Figure
13).

Deleting Automata

Option number 4 allows the user to delete an automaton from the loaded au-
tomata.

After entering the option number, the list of all the automata will appear
(Figure 14).

50

Figure 11: Saved automata to an XML file

Figure 12: List all automata

If you enter an id of a listed automaton, this automaton will be deleted
(Figure 15).

51

Figure 13: Detail of an automaton

Figure 14: List all automata to delete from

Compute on an Input Word

Option number 5 allows you to enter an input word to an automata and find out
whether it belongs to its language or not.

After entering the option number, the list of all automata will appear (Figure

52

Figure 15: Automaton deleted

16).

Figure 16: List of automata to compute on

If you enter an automaton id and a word, it will output whether it belongs
to the language or not (Figure 17). It might also print a list of configurations

53

of the computation process. You can turn the configuration printing on and off
from the main menu in option number 6. By default, configurations get printed.

Figure 17: Computation on a Word

Manage Configuration

Option number 6 allows you to either turn the configuration printing on or off
as mentioned in Section 7.1. By default, the configuration is on.

After entering the option number, information about configuration settings
is shown on the screen (Figure 18).

If it is turned on, you are asked if you want to turn it off. If it is off, you are
asked if you want to turn it on. In both cases you simply print "y" if you want
to perform the action, if anything else is entered, the settings will stay the same
(Figure 19).

Union

Option number 7 allows you to union two of your automata.
After entering the option number, the list of all automata will appear (Figure

20).
If you enter the ids of two automata from the list, they will be united and

the created automaton will be added to the list and you can interact with it in
other operations too (Figure 21).

54

Figure 18: List of automata to compute on

Figure 19: Configuration printing turned off

Intersection

Option number 8 allows you to perform an intersection of two of your automata.
After entering the option number, the list of all automata will appear (Figure

22).

55

Figure 20: List of automata to union

Figure 21: Automata united

If you enter the ids of two automata from the list, they will be intersected
and the created automaton will be added to the list 23.

56

Figure 22: List of automata to interesect

Figure 23: Intersected automata

Concatenate

Option number 9 allows you to perform the concatenation of two of your au-
tomata.

After entering the option number, the list of all automata will appear (Figure

57

24).

Figure 24: List of automata to concatenate

If you enter the ids of two automata from the list, they will be concatenated
and the created automaton will be added to the list (Figure 25).

Figure 25: Concatenated automata

58

Kleene Star

Option number 10 allows you to perform the star of any of your automata.
After entering the option number, the list of all automata will appear (Figure

26).

Figure 26: List of automata to star

If you enter an id of an automaton from the list, it will be Kleene stared and
the created automaton will be added to the list (Figure 27).

Complement

Option number 11 allows you to create a complement of any of your automata.
After entering the option number, the list of all automata will appear (Figure

28).
If you enter an id of one of your automaton from the list, it will be comple-

mented and the created automaton will be added to the list (Figure 29).

Square

Option number 12 allows you to square any of your automata.
After entering the option number, the list of all automata will appear (Figure

30).
If you enter an id of one of your automaton from the list and a number of

squares to create, it will be squared and the created automaton will be added to
the list (Figure 31).

59

Figure 27: Concatenated automata

Figure 28: List of automata to complement

Convert 2DFA to 1DFA

Option number 13 allows you to perform a conversion of any of your automata
that are 2DFA.

After entering the option number, the list of all 2DFAs will appear (Figure

60

Figure 29: Complemented automaton

Figure 30: List of automata to square

32).
If you enter an id of an automaton from the list, it will be converted to 1DFA.

The created automaton will not be added to the list as the automata listed are
just 2DFAs, but a confirmation message will appear (Figure 33).

61

Figure 31: Squared automaton

Figure 32: List of 2DFAs to convert to 1DFA

Convert 2NFA to 1DFA

Option number 14 allows you to perform a conversion of any of your automata
that are 2NFAs.

After entering the option number, the list of all 2NFAs will appear (Figure

62

Figure 33: Converted automata

34).

Figure 34: List of 2NFAs to convert to 1DFA

If you enter an id of an automaton from the list, it will be converted to 1DFA.
The created automaton will not be added to the list as the automata listed are
just 2NFAs, but a confirmation message will appear (Figure 35).

63

Figure 35: Converted automata

Output

In the folder automata in the src folder of the electronic data attached to this
work, there are example outputs for each operation.

64

Conclusions
This thesis covered the basics of two-way finite automata theory, provided how
basic operations are performed on them, and provided the equivalence of 2FA
and 1FA. In the practical part, the operations were implemented in a library and
used in a sample application.

2FAs have the same computational power as 1FAs but because of the possi-
bility to move the head in both directions, the operations are sometimes hard to
perform and it is a necessity to convert them to 1FA for which the algorithms for
the operations are known. This usually ends up in large automata with many
states.

In conclusion, more research is needed for 2FAs to be comparable to 1FAs
especially if it comes to operations. Therefore, even when they have the same
computational power as 1FAs, their usage is now limited.

65

Závěr
Tato práce pokryla základy teorie obousměrných konečných automatů, uvedla,
jak se na nich provádějí základní operace, a ukázala ekvivalenci 2FA a 1FA.
V praktické části byly operace implementovány v knihovně a použity ve ukázkové
aplikaci.

2FA mají stejný výpočetní výkon jako 1FA, ale kvůli možnosti pohybovat
hlavou ve obou směrech jsou operace někdy obtížně proveditelné a je nutné 2FA
převést na 1FA, pro které jsou algoritmy pro operace známy. Výstupem jsou
obvykle velké automaty s mnoha stavy.

Závěrem lze říci, že je zapotřebí více výzkumu, aby 2FA byly srovnatelné
s 1FA, zejména pokud jde o operace. Proto i když mají stejný výpočetní výkon
jako 1FA, jejich použití je nyní omezené.

66

A Contents of Electronic Data
bin/

The executable program TwoWayAutomataConsole. All third-side
libraries needed to run the program are included.

text/
The thesis created with style for thesis by KI Přf UP in Olomouc, including
all appendices, images, source codes of the text and all other files needed
to generate PDF document (in ZIP archive).
The generated PDF document.

src/
Source codes of the library and the example application, and automata to
use in the application and its output automata.

readme.txt
Instructions and requirements for successful installation and execution of
the program.

67

Bibliography
[1] PIGHIZZINI, Giovanni; KUTRIB, Martin. Recent Trends in Descriptional Com-

plexity of Formal Languages.
Bulletin of EATCS, 2013.

[2] BOWEN HUNT III, Harry. On the Time and Tape Complexity of Languages.
Department of Computer Science, Cornell University, Ithaca, New York 14850,
1973.

[3] SAKODA, William J.; SIPSER, Michael. Nondeterminism and the Size of Two
Way Finite Automata.
Computer Science Division, University of California, Berkeley, California 94720,
1978.

[4] VAN DER HULST, Alex. Exploring the difference between 2DFA and DFA for
G-automata.
Bachelor Thesis, Computer Science, Radboud University, 2022.
Source: Exploring the difference between 2DFA and DFA for G-automata

[5] RIETBERGEN, Serena. 2-Way Finite Automata.
Bachelor Thesis, Radboud University, Nijmegen, 2017-2018.
Source: 2-Way Finite Automata

[6] KOZEN, Dexter C. Automata and Computability.
Department of Computer Science, Cornell University, Ithaca, NY 14853-7501.
Springer, 1997.
ISBN: 0-387394907-0

[7] JIRÁSKOVÁ, Galina; OKHOTIN, Alexander. On the state complexity of
operations on two-way finite automata.
Information and Computation, Volume 253, Part 1, 2017, Pages 36-63, ISSN
0890-5401.
Source: https://www.sciencedirect.com/science/article/pii/S0890540116301316#en0160

[8] KUNC, Michal; OKHOTIN, Alexander. State Complexity of Union and Inter-
section for Two-way Nondeterministic Finite Automata.
Fundamenta Informaticae, Volume 110, 2011.
Source: https://content.iospress.com/articles/fundamenta-informaticae/fi110-1-
4-18

[9] GEFFERT, Viliam; MEREGHETTI, Carlo; PIGHIZZINI, Giovanni. Comple-
menting two-way finite automata.
Information and Computation, Volume 205, 2007.
Source: https://core.ac.uk/download/pdf/82144434.pdf

[10] Chomsky Hierarchy.
Source: https://devopedia.org/chomsky-hierarchy

68

https://www.cs.ru.nl/bachelors-theses/2022/Alex_van_der_Hulst___1041239___Exploring_the_difference_between_2DFA_and_DFA_for_G-automata.pdf
https://www.cs.ru.nl/bachelors-theses/2018/Serena_Rietbergen___4182804___2-Way_Finite_Automata.pdf
https://www.sciencedirect.com/science/article/pii/S0890540116301316#en0160
https://content.iospress.com/articles/fundamenta-informaticae/fi110-1-4-18
https://content.iospress.com/articles/fundamenta-informaticae/fi110-1-4-18
https://core.ac.uk/download/pdf/82144434.pdf
https://devopedia.org/chomsky-hierarchy

[11] Conversion from NFA with ϵ to DFA.
Source: https://www.javatpoint.com/automata-conversion-from-nfa-with-null-
to-dfa

[12] Regular Grammars.
Source: https://www.geeksforgeeks.org/right-and-left-linear-regular-grammars/

69

https://www.javatpoint.com/automata-conversion-from-nfa-with-null-to-dfa
https://www.javatpoint.com/automata-conversion-from-nfa-with-null-to-dfa
https://www.geeksforgeeks.org/right-and-left-linear-regular-grammars/

	Two-Way Finite Automata
	Title page
	Synopsis
	Contents
	1 Introduction
	2 Finite Automata
	2.1 Regular Languages
	2.2 Basics of Finite Automata
	2.3 One-Way Finite Automata
	2.3.1 Deterministic One-Way Finite Automata
	2.3.2 Nondeterministic One-Way Finite Automata

	2.4 Two-Way Finite Automata
	2.4.1 Deterministic Two-Way Finite Automata
	2.4.1.1 Kozen's 2DFA
	2.4.1.2 Shepherdson's 2DFA

	2.4.2 Nondeterministic Two-Way Finite Automata
	2.4.2.1 Kozen's 2NFA
	2.4.2.2 Shepherdson's 2NFA

	3 Equivalence of One-Way and Two-Way Finite Automata
	3.1 1DFA to 2DFA
	3.2 2DFA to 1DFA
	3.3 2NFA to 1DFA

	4 Operations
	4.1 Union
	4.1.1 Union of 2DFAs
	4.1.2 Union of 2NFAs

	4.2 Intersection
	4.2.1 Intersection of 2DFAs
	4.2.2 Intersection of 2NFAs

	4.3 Concatenation
	4.3.1 Concatenation of 2DFAs
	4.3.2 Concatenation of 2NFAs

	4.4 Square
	4.4.1 Sqaure of 2DFA
	4.4.2 Square of 2NFA

	4.5 Complement
	4.5.1 Complement of 2DFA
	4.5.2 Complement of 2NFAs

	4.6 Kleene Star
	4.6.1 Kleene Star of 2DFA
	4.6.2 Kleene Star of 2NFA

	5 Open problems of 2FA
	5.1 Size Complexity
	5.2 Open Problem of Operations of 2FA

	6 Library
	6.1 Classes
	6.2 Enums
	6.3 Automata in XML File
	6.4 Automata Creation
	6.5 Computation
	6.6 Operations

	7 Sample application
	7.1 Walkthrough

	Conclusions
	Závěr
	A Contents of Electronic Data
	Bibliography

