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Abstract

Photonic switches represent valuable tools in quantum technologies and
quantum optics in general. In this Thesis, we discuss different platforms for
photonic switching and address a wide scale of applications across all fields
of quantum optics. We implement photonic switching experimentally via a
Mach-Zehnder interferometer with embedded integrated electro-optic phase
modulators. We reach versatile sub-ns low-latency switching with 26 dB ex-
tinction, convenient for a feedforward operation. To provide long-term sta-
bility of the interferometer, we implement active phase locking. The phase
lock exploits external reference light operating on a different wavelength than
the quantum signal. This solution enables stability of 0.05 degrees maintai-
ned over 15 hours. Further, we propose and demonstrate applications of the
photonic switch. Firstly, we perform active time multiplexing via a loop con-
figuration of the photonic switch. We achieve complete control over 4 time
bins, allowing for qudit preparation or photon-number-resolving detection.
Secondly, we theoretically investigate Fock state conversion with linear optics.
The proposed protocol probabilistically converts m-photon state to n-photon
state by subtracting m − n photons at a sequence of feedforward-controlled
beam splitters. We verify the feasibility of the protocol by experimental |2⟩
to |1⟩ conversion using an extended version of the photonic switch.

Keywords

Photonic switching, Mach-Zehnder interferometer, interference, phase
modulation, active phase locking, Fock state conversion, photon subtraction,
feedforward, linear optics
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Chapter 1

Introduction

A century has passed since the fundamental principles of quantum theory
were formulated. Quantum physics exhibits many counterintuitive proper-
ties with no equivalent in classical physics such as superposition principle,
quantum interference, and non-locality. Although initially there were limited
possibilities to experimentally verify all of these properties, experiments were
eventually implemented to confirm predictions of quantum theory. Later, ap-
plications utilizing the unique properties of quantum systems were proposed.
Quantum communication can prevent leakage of secret information to an
eavesdropper leading to inherently secure communication. Quantum metro-
logy breaks classical limits for measurement precision enabling gravitional
wave observation with unprecedented sensitivity [4]. Quantum information
protocols outperform classical computers in specific tasks [5]. The holy grail
of quantum information processing, the universal quantum computing, has a
potential application in many fields. Large scale of combinatorics problems
will be solved more efficiently, impacting advanced manufacturing, banking,
and financial sector [6]. Also, quantum simulations for chemical engineering
could be done much efficiently, massively improving the development of new
materials. On the other hand, the advent of efficient quantum computing
would threaten encryption methods used today. To implement quantum ap-
plications, various quantum protocols are investigated on different platforms
such as atoms, ions, superconducting materials, and photons.

The photonic platform is capable of quantum communication, quantum
metrology as well as universal quantum computing. However, there are enor-
mous technological demands for efficient single-photon generation, advanced
quantum state processing, and efficient detection of photons to make the
photonic-based protocols applicable in practice. Advanced quantum state
processing often requires fast switching between two or more modes or their
mixing. In some cases, we need to perform a specific operation depending
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on the result of a measurement. This operation is referred to as feedforward.
Therefore, it is extremely useful to achieve fast photonic routing with low
latency. Photonic switching is used in quantum cryptography [7], photonic
simulations [8], scalable boson sampling [9–11], universal quantum compu-
ting [12, 13], entanglement synthesizing [14], and multi-mode quantum pro-
cessing [15]. Further, fast photonic switching has facilitated a pioneering de-
monstration of postselection-loophole-free violation of Bell’s inequality with
genuine time-bin entanglement [16]. Fast switching also plays an important
role in single-photon generation and photon counting. Specifically, in the last
few years, high-efficiency single-photon generation has been demonstrated
employing active time multiplexing [17–20]. In addition, active time multiple-
xing was used to demonstrate a high-dynamic range photon-number-resolving
detection [21].

A convenient way to achieve fast photonic switching with low latency is to
employ a Mach-Zehnder interferometer with an integrated phase modulator.
In this case, 100 GHz response is feasible [22] and thanks to the low-voltage
control of the modulator, low latency and high repetition rate are provided. A
major drawback lies in the environmentally-induced phase drift in the Mach-
Zehnder interferometer. Although inherently stable configurations exist, they
are not free of issues and do not fit all applications. Therefore, commonly the
long-term stability of the Mach-Zehnder interferometer requires active phase
locking. Active phase locking at a single-photon level is feasible but extremely
challenging due to Poissonian photodetection noise. As a consequence, the
typical precision of single-photon phase locking is a few degrees, and the
response is slower than 0.1 s [23, 24]. An efficient strategy to overcome this
issue is to lock the phase via a bright reference light co-propagating with the
signal photons [2, 25–27].

In this Thesis, we present experimental research in the field of photonic
switching for single-photon applications with an emphasis on quantum infor-
mation processing. We have implemented an ultra-fast photonic switch by
using a Mach-Zehnder interferometer with an embedded integrated electro-
optic modulator. Also, we provided the Mach-Zehnder interferometer with
continuous active phase locking by adding a reference beam to the setup.
We achieved stability of 0.05 degrees for 15 hours which is an unprecedented
result within actively stabilized single-photon interferometers. Further, we
present applications of photonic switching: Firstly, the photonic switch can
perform temporal multiplexing by using a loop configuration. Specifically, we
demonstrate temporal multiplexing for photon-number-resolving detection
and qudit preparation. Secondly, we present a theoretical and experimental
protocol for Fock state conversion with linear optics. The protocol transforms
arbitrary m-photon state to n-photon state by subtracting m − n photons
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at feedforward-controlled photonic switches. Our approach uses within each
subtraction step the results of all previous subtraction steps enabling the con-
version with maximal probability. We use the photonic switch for experimen-
tal proof-of-principle conversion from a two-photon state to a single-photon
state.

This Thesis is structured as follows: In Chapter 2 we discuss the current
state-of-the-art technology of photonic switching and phase-locking of single-
photon interferometers. In Chapter 3 we present important theoretical, ex-
perimental, and technical aspects of our research. Firstly, we introduce a
refined model of a Mach-Zehnder interferometer and the phase estimation
under real conditions. Secondly, we discuss methods of phase control in the
Mach-Zehnder interferometer. Thirdly, we provide concise explanations of
photodetection and data processing in our experiments. Fourthly, relevant
quantum optics theory is summarized. In Chapter 4 we present active stabi-
lization of a Mach-Zehnder interferometer published as work [2]. In Chapter 5
we present the photonic switching via phase modulation of a Mach-Zehnder
interferometer and its applications in temporal multiplexing published as
work [1]. In Chapter 6 we present theoretical and experimental research in
Fock state conversion published as work [3]. In Chapter 7 we summarize the
main results of the Thesis.
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Chapter 2

Contemporary state of research

Linear optics represents a promising platform for the practical implemen-
tation of quantum communication and quantum information processing. Quan-
tum communication with photons is natural since photons can travel over
a long distance without interacting directly with each other. On the other
hand, the absence of direct photon-photon interaction complicates the photo-
nic quantum information processing. To provide interaction between photons,
linear optical elements such as beam splitter are commonly used. Although a
large scale of quantum interactions is possible with linear optics, these inter-
actions are often probabilistic leading to several possible outcomes. Fortuna-
tely, this problem can be mitigated by a feedforward operation [28]. Firstly,
a measurement of a subsystem is performed. Then, depending on the measu-
rement outcome, an appropriate operation is performed on the output state
in order to produce the desired quantum state. The operation is performed
by an active element, commonly being a photonic switch. The switch is an
important part of the feedforward, and moreover, it can perform a wide range
of operations efficiently even while acting deterministically in the protocol.
Especially, the photonic switch becomes very powerful as a part of loop-based
protocols. In this case, the switch is used repeatedly, and complex quantum
operations are feasible via a relatively simple experimental design.

Recently, universal quantum computing in loop-based architecture was
proposed. As shown in Fig. 2.1(a), the core part of the scheme consists of
two nested loops, two on-off photonic switches, and one multi-level switch
enabling multi-mode interference between time-bin encoded input state. The
scheme is resource-efficient since it can hypothetically process an arbitra-
rily long time-bin sequence using a relatively simple design. However, per-
forming universal quantum computing requires additional resources inclu-
ding non-gaussian and squeezed ancilla states. Unfortunately, these states
are loss-sensitive, giving extreme demands on the technical parameters of
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Figure 2.1: Quantum information processing with linear optics exploiting photo-
nic switching. (a) Loop-based universal quantum computing. (b) Boson sampling
in path mode. Panels (a) and (b) are adopted from [13] and [11], respectively.

the setup. For fault-tolerant computing, the squeezing should exceed 20.5 dB
meaning the loop loss cannot exceed 1% even for perfectly squeezed ancillas.
Therefore, except for the high quality of the squeezing, ultra-low-loss com-
ponents including switches are required. On the other hand, the switching
should be fast enough to keep the loops short and therefore increase the
speed and the stability of the system while reducing the loop loss. Although
practical quantum computing via this scheme still represents a technological
challenge, specific blocks of the scheme were implemented with interesting
results. In 2019, the inner loop with 3-level switching was realized. Using
squeezed states and homodyne detection, this configuration allows for entan-
glement synthesizing [14]. In 2022, the outer loop was added to demonstrate
arbitrary multi-mode unitary operation via this configuration [15]. Due to
losses, limited switching levels, and other setup imperfections, these demon-
strations were limited to three modes. Apart from quantum computing, a
similar architecture enables boson sampling. Boson sampling is a generalized
quantum random walk that scales exponentially for classical computers. The
boson sampling employing photonic switching was demonstrated with time
bins [10] and a spatial mode [11] [see Fig. 2.1(b)].

Further, the photonic switching in loop architecture is used to enhance
single-photon generation. The most common single-photon sources are based
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on the spontaneous-parametric-down conversion. However, this process is
probabilistic and to avoid multi-photon contribution, the single-photon rate
is limited. An efficient strategy how to increase the rate while avoiding multi-
photon contributions is active time and spatial multiplexing of single-photon
sources depicted in Fig. 2.2(a). Using photonic switching and optical delay li-
nes, the success rate of photon generation in a given time window is increased.
Kaneda et al. combined spatial and time multiplexing to reach 10× enhan-
cement of single-photon generation [19] resulting in 67% efficiency. Also, the
detection of photostatistics can be efficiently implemented by active time
multiplexing [21]. Tideau et al. implemented a high-dynamic range detector
enabling evaluation of photostatistics containing 10−7 up to 3 × 105 photons.
As shown in Fig. 2.2(b), their scheme uses one single-photon detector, a pho-
tonic switch, and a delay line. In their approach, they split the incident pulse
into a train of pulses with an exponential decay and observe the saturation
effect of the single-photon detector. For a specific time bin, the saturation
disappear, depending on the photon number and the photostatistics. There-
fore, it is possible to reconstruct the photostatistics from the shape of the
saturation pattern. Further, our research team recently demonstrated balan-
ced photon-number-resolving detection via active time multiplexing [1]. For
more information see Chapter 5.

Photonic switching is also used to probe fundamental laws of quantum
physics. One of the recent fundamental tests is directly applicable in quan-
tum communications based on energy-time entanglement. This way of com-
munication is extremely secure since the secret key is produced during the
detection. However, despite this, there are still loopholes enabling to break
the security in principle. Recently, a post-selection loophole was closed ele-
gantly by exploiting photonic switching. Typically, time bins used for the
communication are prepared and overlapped via unbalanced Mach-Zehnder
interferometers. However, this passive scheme results in the typical three-
peak pattern, where the time bins are overlapped within the middle peak
only. As a result, the interference occurs in 50% of cases and the remaining
events are discarded, enabling a potential attack. Vedovato et al. closed this
loophole by deterministic switching of the short bin to the longer arm and
the long bin to the shorter arm as shown in Fig. 2.2(c). Consequently, a
perfect overlap of the time bins is provided enabling improved security and
also more effective communication since all events contribute to the secret
key. Other examples of fundamental tests based on photonic switching are
entanglement swapping [29] and two-dimensional quantum random walk [8].
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Figure 2.2: Other quantum applications of photonic switching. (a) Active mul-
tiplexing of single photon sources. Single photon sources with low efficiency are
multiplexed in time and space via photonic switches and loops to approximate
an on-demand single-photon source (adopted from [18, 19]). (b) Photon counting
using active time multiplexing (adopted from [21]). (c) Postselection-loophole-free
Bell test using genuine time-bin entanglement (adopted from [16]).

2.1 Approaches to the photonic switching

There are several techniques of photonic switching used in quantum optics.
The most common switching methods are based on phase modulation in a
Mach-Zehnder interferometer and polarization modulation using a Pockels
cell. Alternatively, commercial latching switches or acousto-optic modulators
are utilized. Each of these options has several advantages and disadvantages
and each of them is suitable for a different application. Choosing the most
appropriate switching method is usually a trade-off between speed, loss, and
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the complexity of the switching solution. In this section, we will describe the
most common methods of photonic switching and we will discuss their pros
and cons.

2.1.1 Phase modulation
A common approach to photonic switching lies in exploiting phase mo-
dulation in a Mach-Zehnder interferometer. This solution enables to en-
code the quantum state into polarization degree of freedom, in contrast to
polarization-based switching. There are several implementations of phase mo-
dulation, summarized in Table 2.1.

Firstly, an electro-optic modulator embedded in a fiber Mach-Zehnder in-
terferometer is used [1,16,30]. The main advantage of this solution is the fast
response of tens of GHz. Also, integrated electro-optic modulators operate
with low voltage, therefore, the repetition rate can be arbitrarily high and
low-latency operation is provided. Furthermore, high extinction is feasible,
depending on visibility optimization. The main disadvantage of this solution
is the higher loss caused mainly by inefficient in-out chip coupling. Also, fiber
optics has in general higher loss than the free-space optical elements. This
solution can be also fully integrated on a chip (known as the Mach-Zehnder
modulator). The extinction is limited and strongly wavelength-dependent due
to manufacturing imperfections causing non-balanced splitting ratios of the
Mach-Zehnder interferometer beam splitters. This effect can be diminished
by cascading more Mach-Zehnder interferometers [31–34] at the expense of
higher loss.

If losses are more critical and the polarization mode is used to carry the
quantum state, a free-space Mach-Zehnder interferometer with bulk electro-
optic modulators can be used [35]. This approach cannot provide such a fast
response and the repetition rate is limited, though. This fact is caused by
a high voltage required to drive the bulk electro-optic modulator, analogi-
cally to polarization switching discussed further. Extinction is typically lower
compared to fiber setups since it is harder to overlap precisely the interfering
light beams.

Another implementation of phase modulation is the thermal tuning com-
monly used for on-chip optical circuits. One of the advantages is that it is
possible to implement in this way complex interferometric networks perfor-
ming multi-mode unitary operations [36]. Although the thermal tuning is
quite simple to implement, it is slow (kHz). Electro-optic modulation can-
not be used while we aim to keep the interferometric network small and
thus stable, since electro-optic needs a longer interaction length (a few cm).
On-chip implementations also suffer from higher loss caused mainly by inef-
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PHASE MODULATION
modulation ELECTRO-OPTICAL THERMAL OPTICAL
implementation FIBER BULK ON-CHIP FIBER
work [1] [30] [35] [36] [39]
bandwidth 10 GHz 10 GHz 63 MHz ∼kHz 1-5 GHz
extinction 26 dB 19 dB 16 dB NA 16-21 dB
loss 7 dB 5 dB 5 dB NA 1.3-2.1 dB
tunability full full 2 levels full full
repetition rate arb. arb. 2.5 MHz arb. 50 MHz
long-term stab. yes no yes yes NA

Table 2.1: Single-photon photonic switching based on phase modulation. Electro-
optical, thermal, and optical methods are used, either in free space, in fibers, or on-
chip. In work [39], they present more regimes of the switch. The first provides faster
operation at the expense of higher loss and lower extinction. The second regime
enables for lower loss and higher extinction at the expense of slower response.
Abbreviations: arb. = arbitrary, stab. = stability, NA = not available.

ficient in/out coupling although moderate coupling losses have been demon-
strated [37,38].

Finally, the phase can be modulated by an external optical pulse via
Kerr non-linearity in a fiber. This solution provides a fast response while ke-
eping loss moderate, offering an interesting alternative to phase modulation
via integrated electro-optic modulators. The main disadvantage of this solu-
tion is the high delay (500-2500 ns) of the optical signal due to weak inter-
action between the driving and signal pulses. Although for many applications
the delay does not cause any issue, in others, such as temporal multiple-
xing/demultiplexing, the delay represents the minimal distance between the
time bins making this switch impractical for these applications. Also, we are
not aware of any practical use of this switching method implying potential
presence of additional issues not addressed by Hall et al.

Now let us discuss another typical issue of the phase-modulation-based
switches, which is the phase stability. We will further address this topic in
more detail in Section 2.3. There are three classes of Mach-Zehnder interfero-
meter-based switches in terms of stability. The first is the classical geometry
of a Mach-Zehnder interferometer containing two separate arms implemen-
ted in fiber or free space. These devices can offer the highest visibility (ex-
tinction) in general since both arms are accessible individually [1, 16]. As
a consequence, it is also easy to reconfigure the setups. On the other hand,
they suffer from phase instabilities requiring active phase locking to maintain
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their long-term performance [1,16,35]. As shown in Chapter 4, ultra-precise
phase locking is possible even for single-photon Mach-Zehnder interferome-
ters. However, the price to pay is the increased complexity of the setup [2,26].

The second class is the Sagnac geometry of the Mach-Zehnder interfe-
rometer, which is considered inherently stable since the interferometer arms
are implemented as clockwise and counter-clockwise propagation through the
same (or similar) path [30,39]. The disadvantage of the Sagnac interferome-
ter lies in the difficult addressing of individual arms. To use the Sagnac as
a photonic switch, the electro-optic modulator has to be placed asymmetri-
cally inside the Sagnac. Then, it is possible to modulate the clockwise signal
while keeping the contra-clockwise signal unmodulated (or vice versa). Since
the integrated electro-optic modulator is typically 5 cm long, it reduces the
effective repetition rate of the setup to a few GHz [40]. Also, let us notice
that even the Sagnac configuration can suffer from phase instabilities to some
extent. In free-space interferometers, a small path displacement between the
arms helps to address the clockwise and contra-clockwise signals, bringing a
long-term thermal phase drift to the setup [41]. The same issue is present in
a fiber Sagnac with polarization-independent architecture [30].

Thirdly, let us comment on the phase stability of integrated Mach-Zehnder
interferometers. Although these devices are considered inherently stable as
well, in practice, they may suffer from long-term phase drift, depending on
the Mach-Zehnder interferometer length. While thermally tuned devices can
be very short and thus inherently stable, electro-optic modulation-based in-
terferometers are several cm long since the electro-optic interaction is weaker.
Then, a slow phase drift is present, however [40].

2.1.2 Polarization modulation
If the speed and repetition rate are not crucial but the loss is critical,
polarization-based switching in free space is the best choice. In this case,
indeed, the polarization mode cannot be a carrier of the quantum state. A
typical application in the context of quantum optics is the active time mul-
tiplexing of single-photon sources, single-photon counting, boson sampling,
entanglement synthesizing, or implementation of multi-mode quantum ope-
rations in the time domain [10, 14, 15, 19, 21]. These approaches and their
parameters are summarized in Table 2.2.

Polarization-based switching is performed by using a Pockels cell and two
polarizing beam splitters. Pockels cell acts as a waveplate with a voltage-
controlled retardance. Without a voltage applied, the Pockels cell keeps the
original polarization. By applying half-wave voltage, the polarization is swit-
ched to orthogonal thus the signal is switched to the second output port of
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POLARIZATION MODULATION
modulation ELECTRO-OPTICAL
implementation BULK (Pockels cell)
work our new [14] [10] [21]
bandwidth ∼39 MHz ∼35 MHz 30 MHz 150 kHz
min. sw. time 60 ns 66 ns 130 ns 2400 ns
extinction ≥23 dB NA 10 dB est. NA
loss 0.1 dB 0.1 dB 0.2 dB 0.1-0.2 dB est.
tunability 25 levels∗ 3 levels ≥ 8 levels 2 levels
repetition rate ≤100 kHz ∼ MHz est. NA NA

Table 2.2: Single-photon photonic switching based on the polarization modu-
lation. Pockels cells using electro-optical effect are used. Abbreviations: est. =
estimated, NA = not available, min. sw. time = minimal switching time. This
parameter reflects the fact that the real operation of the Pockels cells is slower
than the corresponding bandwidth. The main reason is that a Pockels cell driver
typically needs a minimal recovery time to reach genuine multi-level operation. ∗
9 arbitrary tunable levels, 25 partially dependent levels

the polarizing beam splitter. Polarization-based switching is much simpler to
implement compared to phase modulation in free-space Mach-Zehnder inter-
ferometer and, additionally, active phase locking is not needed. Polarization-
based switching is usually used as a part of time-multiplexing schemes due
to these features and ultra-low loss operation.

The main disadvantage is the high driving voltage requirement leading to
limited speed and repetition rate. Also, the multi-level switching operation is
hard to achieve. Commercial drivers typically offer 2-level (on-off) operation
and very rarely 3-level operation. The number of switching levels determines
the complexity of the time-bin processing. There is the aim to increase the
number of switching levels. One way is to use low-voltage Pockels cells with a
half-wave voltage of around 150 V. Then linear amplifiers can be used and the
multilevel operation is enabled. However, these devices have slightly higher
losses than classical Pockels cells. An alternative solution is to cascade Pockels
cells at the expense of higher losses and increased complexity. Our research
team has recently achieved 25-level switching using a single Pockels cell. We
have developed in-house 5-level drivers providing arbitrary tunable voltages
up to 500 V. Also, we acquired custom-made Pockels cells with individual
control of each of the two non-linear crystals. Therefore, while combining
two 5-level drivers we reach 9 arbitrarily adjustable switching levels. It corre-
sponds to 25 partially dependent levels since the effective modulation is equal
to a mean voltage applied to the individual crystals. This represents a sig-
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OTHERS
modulation LATCHING SWITCHES AOM
implementation FIBER BULK
work [18] [42] [10]
bandwidth 3 MHz 6 MHz ≥3 MHz est.
extinction 20 dB est. 20 dB ≥10 dB
loss 3.3 dB <0.4 dB 0.8 dB
tunability 4 levels 2 levels 2 levels
repetition rate 500 kHz 1 MHz NA

Table 2.3: Other methods of single-photon photonic switching. Firstly, commer-
cial latching switches are used and, secondly, acousto-optic modulation is exploited.
Abbreviations: est. = estimated, NA = not available, AOM = acousto-optic mo-
dulation. This parameter reflects the fact that the real operation of the Pockels
cells is slower than the corresponding bandwidth.

nificant improvement in the low-loss photonic switching. These results were
achieved very recently and the work is still in progress, not being published
yet.

2.1.3 Other methods of photonic switching

Instead of phase modulation and polarization modulation, commercial lat-
ching switches or acousto-optic modulators summarized in Table 2.3 can be
exploited. Their advantage lies in relatively easy implementation into the ex-
perimental setup, though the parameters cannot reach the phase-modulation
methods nor the polarization-modulation implementations. The response is
comparable to or slower than Pockels cells while having moderate losses.
Also, these switches work in on-off regime solely thus more advanced modu-
lation is not feasible. In terms of acousto-optic modulators, the frequency of
the optical signal is shifted by the frequency of the acoustic wave. In most
cases, it does not represent an issue or sometimes the frequency shift is even
desired. However, this effect is undesired if the switched narrowband optical
signal has to further interfere with the non-shifted signal.

Alternative methods of photonic switching using light-matter interactions
have been investigated. Proof-of-principle photonic switching using Rydberg
blockade [43], quantum-dot-cavity systems [44] or single-molecule vacuum
Rabi splitting [45] was demonstrated, the extinction ratio is extremely low,
though.

13



2.2 Parameters of the photonic switching
As discussed in the previous section, a perfect photonic switch has not been
invented yet. Therefore, choosing a photonic switch for a specific appli-
cation requires consideration of various parameters such as speed, latency,
extinction, and losses. In this section, we briefly discuss these parameters in
the context of quantum optics.

Speed and latency
Speed or response is determined by the bandwidth or, equivalently, by the
rise/fall time of the switch. The switching speed determines the possible
rate of the protocol if other restrictions such as limited switching repetition
rate do not apply. Fast switching capability is very important in loop-based
time multiplexing since its speed determines the length of an optical de-
lay line [1, 10, 14]. Also, fast switching plays an important role in quantum
communication, especially when time bins are actively transferred to path
mode [16].

Another parameter, strongly connected to the speed, is latency. It deter-
mines the delay between an external triggering and the switching operation.
It is important in the context of feedforward control since the higher the la-
tency, the longer the optical delay line is required. Generally, both the speed
and latency are dependent on the driving voltage of the switching (the dri-
ving electronics is as important here as the switch itself). In general, switches
controlled by low voltage are much faster and also have lower latency.

Repetition rate
For some types of switches (those based on bulk electro-optic modulators,
acousto-optic modulators, or latched switches), there is a limit on the repe-
tition rate for the switching operation. Although the repetition rate can be
restricted by the switch itself, more commonly it is given by the capabilities
of driving electronics. This is valid, for example,for bulk electro-optic mo-
dulators driven by hundreds of volts or kilovolts. In the context of quantum
optics, the repetition rate represents a limiting factor for the speed of the
protocol.

Loss is an important parameter in the context of quantum optics since a
quantum state cannot be cloned [46] or deterministically amplified without
noise. For discrete variable protocols, losses decrease the success probability
of the protocol but do not deteriorate the quantum state itself while using a
coincidence-basis measurement. Loop-based time-multiplexing protocols are
more loss-sensitive since the signal passes the photonic switch repeatedly
[10, 13–15]. On the other hand, in continuous-variable protocols the loss is
more critical since it deteriorates the purity of the quantum state (eg. the
amount of squeezing) [47–49].
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Extinction is the crosstalk ratio between the on and off states of the
switch. In quantum protocols, it determines the error caused by the switching
operation when a 100:0 regime of the switch is required. Extinction in general
does not represent an issue in quantum protocols, however, it limits some
alternative approaches to be applicable in practice [43–45]. Although not
commonly needed, ultra-high extinction exceeding 60 dB can be achieved by
cascading more Mach-Zehnder interferometers at the expense of higher loss
and increased complexity [31–34].

Multi-level operation
In a classical sense, by a switch, a two-level (on-off) device is meant. Here,
for simplicity, as a photonic switch, we call all devices that can be rapidly
reconfigured and have two or more switching levels. Alternatively, the multi-
level photonic switch is referred to as a switch, switchable tunable photonic
coupler, switchable beam splitter, or high-speed tunable beam splitter. In
quantum technology, the multi-level switching feature is crucial, although
for some applications two-level switching is sufficient [16–19]. For example,
universal quantum computing in the time domain requires a photonic switch
with multi-level operation [13]. The number of levels then restricts the di-
mensionality of the protocol.

Configuration means the number of input and output ports. Common
configurations are 1×1, 1×2, 2×1, and 2×2. These configurations can operate
at high speed in contrast to M×N switches which exist but their speed is ty-
pically low. On-off M×N switching can be performed by commercial latching
switches or multi-level M×N switch can be produced as an integrated optical
device. The speed is, however, restricted to kHz range due to thermal tuning.
Generally, fast multi-level 2×2 switches are crucial devices in the context of
quantum optics since they act as real-time tunable beam splitters.

2.3 Active phase locking
As already mentioned, photonic switches based on phase modulation in a
Mach-Zehnder interferometer suffer from environmentally-induced phase drift.
While short-term phase fluctuations can be reduced by a passive protection
of the interferometer, long-term stability requires active phase locking. Inter-
ferometers locked to a specific phase are widely used in many fields of photo-
nics research and technology, such as quantum information processing [28,35],
quantum metrology [4, 50, 51], quantum communication [25–27, 52, 53], and
tests of fundamental physics [3,16,29,54]. In this section, we will discuss the
pros and cons of different approaches to single-photon interferometer stabili-
zation. Further, we will discuss important parameters of phase locking, their
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importance in the context of quantum technology, and various approaches to
optimize them.

2.3.1 Approaches to the active phase locking
Single-photon stabilization methods can be divided into two groups – sequen-
tial methods and continuous methods. Sequential methods switch periodi-
cally between the phase locking and the quantum processing [28,55–58]. The
advantage of the approach is the simplicity since no auxiliary light is needed.
On the other hand, the quantum processing is prolonged due to the phase
locking, and, more importantly, sequential stabilization cannot achieve such
precision as continuous phase locking. Firstly, sequential methods are slower
since the phase is not controlled all the time. Secondly, the phase estimation
using a faint single-photon signal is less precise due to limited photon statis-
tics.

Continuous methods are the opposite – more complex and more precise.
To provide a continuous phase lock, an auxiliary light acting as a phase refe-
rence is injected into the interferometer. The reference can be a strong light,
increasing the signal-to-noise ratio and the potential speed of the stabili-
zation. A spatial or spectral mode is typically used to differentiate the signal
and the reference. A small path displacement can be used for free-space
setups with the main advantage of zero crosstalk between the signal and the
reference [29, 35]. The disadvantage is that a long-term phase drift between
the signal and the reference may be present since the index of refraction
changes locally in time [41]. The wavelength discrimination, suitable for free-
space and fiber setups, is more complex since a wavelength (de)multiplexing
stage has to be added. On the other hand, this approach is more robust since
the signal and the reference propagate the same path [2, 25–27]. To enhance
the phase tunability between the signal and the reference, it is possible to
multiplex the reference into two modes, such as two orthogonal polarizati-
ons [59, 60]. Full tunability was also demonstrated recently by using two
frequency-shifted reference beams and heterodyne detection [61].

In special cases, it is possible to achieve continuous phase locking without
the need for an external reference [16]. Vedovato et al. employed fast swit-
ching in a balanced Mach-Zehnder interferometer to provide a perfect overlap
between time bins in their experimental demonstration of a post-selection
loophole-free Bell test. Their stabilization method lies in suppressing lateral
peaks in a typical time-bin interference pattern (see Fig. 2.2). If the lateral
peaks vanish, perfect interference is attained between the short and long time
bins, which implies correct phase setting in the Mach-Zehnder interferometer
switch.
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2.3.2 Important parameters of the active phase locking
Optimal phase locking should exhibit excellent phase stability, long-term
performance, continuous operation, and minimal crosstalk between the signal
and the reference. Since the last two parameters were already addressed in
the previous section, here we will focus on the precision of the phase lock
and the long-term operation solely.

Precision

Precision is an essential parameter of the phase lock. Depending on the appli-
cation, a different precision is required. Time-bin quantum communication is
the least demanding application in terms of phase precision since it operates
with zero or π phase shifts which are insensitive to the phase error. A few-
degree stability is thus satisfying [23]. Photonic switching or interferometric
networks using a feedforward require typically improved phase precision since
the phase can be switched to arbitrary values [3,28]. Generally speaking, the
phase stability within the range of 0.1-1 degrees is considered as excellent in
this context. Such precision leads to 0.09%-0.9% error in the most sensitive
point of π

2 . Similar phase stability should be achieved in protocols invol-
ving homodyne detection. Homodyne detection is an interferometric measu-
rement method enabling to reconstruct a quantum state in a phase space.
Since homodyne detection exploits strong local oscillator and continuous de-
tection, the phase can be locked continuously even without an external refe-
rence. Despite of this, homodyne detection with sub-degree phase precision is
rare [47–49]. The utmost phase precision is required for loop-based protocols
where the error cumulates with each roundtrip. We further investigate the
performance of loop-based time multiplexing in Section 5. Our analysis reve-
als that even a slight relative error of 0.1 degrees can non-negligibly impact
the time multiplexing pattern (depending on other parameters). 1-degree
error causes significant modulation of the pattern, therefore in general the
phase precision should be kept below 0.1 degrees. The phase precision beco-
mes very critical for higher dimensions of the time-bin multiplexing (tens of
bins). For example, aiming for 20 balanced time bins, a minimal step of the
switched phase is 0.1 degrees for specific parameters (details in Table 5.1).
Consequently, the phase error in such cases should be substantially smaller
than the minimal step.

Long-term operation

Practical operation of an interferometer requires its long-term stability. Al-
though in proof-of-principle tests or fundamental demonstrations this requi-
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rement is not necessary, it is helpful to operate a photonic switch or an
interferometric network without the necessity of frequent reconfiguration.

In terms of single-photon devices, the long-term stability is achieved only
in four works [2,23,41,62], whereas five works demonstrated short-term stabi-
lity solely [24,25,47,48,63]. Long-term operation requires except of sufficient
dynamic range of a phase modulator also a stable phase between the signal
and the reference. In terms of spatial displacement between the signal and
the reference, the refractive index has to be locally stable which is not usu-
ally possible. In dual-wavelength configurations, it is necessary to maintain
the spectral stability of the signal and the reference. Further, the phase lock
has to be independent of the total intensity of the reference or superior in-
tensity stability has to be provided. If these requirements are not satisfied,
the long-term stability is not achieved. One way how to achieve the intensity-
independent operation is to monitor the total intensity of the reference and
adaptively adjust the setpoint of the phase lock [2]. Secondly, a low-amplitude
phase modulation can be applied to the reference. The intensity fluctuations
then modify the amplitude of the modulation pattern, therefore the phase
lock can be corrected for the intensity fluctuations [26]. Note however that
this approach is suitable only for unbalanced Mach-Zehnder interferometers
in time-bin quantum communication since the quantum signal is insensitive
to the global phase. Specifically, the fourth-order interference, depending
only on the phase difference between Alice and Bob, takes part here. Thir-
dly, heterodyne-detection-based phase lock is also intensity independent since
the phase is evaluated from a beat pattern, not the intensity directly [61].
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Chapter 3

Methods and tools

In this chapter, we describe theoretical concepts, experimental techniques, de-
vices, and measurement techniques crucial for the research presented in this
Thesis. These descriptions do not aim to be exhaustive. The theory presented
here represents a concise reminder of well-known concepts or specific details
not covered in textbooks. In terms of techniques, we aim to give more detai-
led descriptions than provided in articles. For example, we include practical
instructions on how to operate the phase locking using our equipment. This
chapter is divided into four sections. Firstly, we introduce a refined model
of a Mach-Zehnder interferometer. Secondly, we describe phase locking and
phase modulation methods. Thirdly, we briefly address photodetection and
signal processing. Finally, we include selected concepts of quantum optics.

3.1 Mach-Zehnder interferometer
A Mach-Zehnder interferometer (MZI) is a commonly used interferometric
configuration since both interferometer arms are easily accessible. In this
section, we delve into detailed analysis of the MZI. Firstly, we summarize the
fundamental concepts of coherence theory. After that, we introduce a general
model of the MZI, taking into account splitting ratios of beam splitters. Then,
we discuss an MZI with two wavelengths. Finally, we provide a specialized
analysis of real-world imperfections (referred to as local setup detuning).

3.1.1 Interference
An optical signal is an electromagnetic wave described by time-dependent
complex amplitude u(t). Optical amplitude is not directly accessible by me-
asurement, but we can measure intensity I(t)
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I(t) = |u(t)|2. (3.1)

Let us assume two copies of the optical signal relatively delayed by a time τ .
When perfectly overlapped, the resulting complex amplitude reads

uOUT = K1u (t+ τ) +K2u (t) , (3.2)

where the coefficients K1,2 denote complex amplitude transmittances. A de-
tector measures a mean value of the intensity

⟨IOUT⟩ =
〈
|K1u (t+ τ) +K2u (t) |2

〉
, (3.3)

which can be rewritten as

⟨IOUT⟩ = |K1|2
〈
|K1u (t+ τ) |2

〉
+|K2|2

〈
|K1u (t) |2

〉
+2Re [K1K

∗
2 ⟨u (t+ τ)u∗ (t)⟩] .

(3.4)

Let us define a temporal coherence function Γ (τ) as

Γ (τ) = ⟨u (t+ τ)u∗ (t)⟩ . (3.5)

The temporal coherence function with zero delay is equal to the input in-
tensity

Γ (0) =
〈
|u (t) |2

〉
=
〈
|u (t+ τ) |2

〉
= ⟨IIN⟩ . (3.6)

assuming stationary processes. It is convenient to normalize the temporal
coherence function as follows

γ (τ) = Γ (τ)
Γ (0) = Γ (τ)

⟨IIN⟩
. (3.7)

The parameter γ (τ) is called complex degree of temporal coherence and its
absolute value is in the range of 0 to 1. If we rephrase Eq. (3.4) using Eq. (3.7),
we get

⟨IOUT⟩ = ⟨IIN⟩
(
|K1|2 + |K2|2 + 2Re [K1K

∗
2γ (τ)]

)
. (3.8)
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Now let us assume the optical signal in a form of

u(t) = A(t) e−iω0t, (3.9)

where ω0 is central angular frequency of the optical signal. Then the mean
output intensity reads

⟨IOUT⟩ = ⟨IIN⟩
[
K2

1 +K2
2 + 2K1K2|γ (τ) | cos (ω0τ)

]
, (3.10)

where we assume K1,2 are real. Alternatively, if we omit mean values and
rephrase ⟨IIN⟩K2

1,2 = I1,2, we get the well-known interference law

IOUT = I1 + I2 + 2
√
I1I2|γ(t)| cosφ, (3.11)

where we use phase φ defined as φ = ω0τ . The first two terms correspond
to intensity offset and the third term corresponds to correlation between the
original and the delayed optical signal. If we modulate phase, we get cosine
modulation of the intensity. We can measure a contrast of the interference
pattern, also called visibility. Visibility is defined as

V = IMAX − IMIN

IMAX + IMIN
, (3.12)

where IMAX and IMIN correspond to interference maximum (cosφ = 1) and
interference minimum (cosφ = −1), respectively. It is easy to prove that for
balanced interference I1 = I2 the visibility is equal to the absolute value of
the complex degree of temporal coherence |γ(τ)|.

For τ = 0 and balanced interference one would expect to always reach
maximal visibility (V = 1). In practice, this is not true. The optical signal has
to perfectly overlap in all possible modes, such as polarization mode, spatial
mode, and spectral mode. Reaching perfect visibility under real conditions
represents an experimental challenge.

3.1.2 General model of an MZI
A general model of an MZI is shown in Fig. 3.1. Incident light with intensity
IIN is split on a beam splitter into two separate paths and overlapped on the
second beam splitter. Using Eq. (3.11) together with beam splitter transmit-
tances T1,2 and reflectances R1,2, the output intensities IOUT1,2 are
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Figure 3.1: A generic model of an MZI. Incident light with intensity IIN is split
into two separate paths and overlapped on the second beam splitter. Output in-
tensities IOUT1,2 depend on the phase in the MZI.

IOUT1 =
(
R2T1 + T2R1 + 2

√
T1T2R1R2|γ(τ)| cosφ

)
IIN, (3.13)

IOUT2 =
(
R1R2 + T1T2 − 2

√
T1T2R1R2|γ(τ)| cosφ

)
IIN. (3.14)

The minus sign in Eq. 3.14 is caused by π phase drift by the reflection at
the second beam splitter. Using Eqs. (3.12), (3.13), and (3.14), visibilities for
output ports are

V1 = 2
√
T1T2R1R2|γ(τ)|
T1T2 +R1R2

, (3.15)

V2 = 2
√
T1T2R1R2|γ(τ)|
R1T2 + T1R2

. (3.16)

From Eqs. 3.15 and 3.16 we can see that the visibility is dependent on the
splitting ratios of the beam splitters. The dependence between T1, T2, and
corresponding visibilites are plotted in Fig. 3.2. Here we assume |γ(τ)| = 1.
Note that maximum visibility for one output port is achieved when T1 +
T2 = 1. Perfect visibilities for both output ports require balanced beam
splitters T1,2 = 0.5. Note that this discussion can be extended to different
interferometric geometries such as Michelson or Sagnac by choosing T1 = T2
and R1 = R2.

Is there a simpler way to mathematically describe MZI output intensities?
Rephasing splitting ratios in Eqs. (3.13) with visibility in Eq. (3.15) leads to

IOUT1 = V2 (1 + V1 cosφ) IIN, (3.17)
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Figure 3.2: Maximal visibilities in an MZI depending on transmittances T1,2 of
beam splitters.

analogically for the second output port

IOUT2 = V1 (1 + V2 cosφ) IIN. (3.18)

This is a convenient way to describe MZI output intensities. From these
equations, one simply evaluates the MZI phase

φ = arccos


IOUT1

V2
− IOUT2

V1
IOUT1 + IOUT2

 . (3.19)

This equation is beneficial when estimating the phase in an MZI since we have
access only to visibilities and output intensities. Typically, we measure the
visibilites prior to a phase measurement, and we assume they keep constant.
Also, we assume that the measured intensities only depend on the phase in
the interferometer. In Section 3.1.4, we will discuss what happens if these
assumptions are not satisfied. Before that, let us describe an MZI, where two
different wavelengths are propagating.

3.1.3 An MZI with two wavelengths
In some cases it is convenient to inject more than one light beam into an
MZI. Let us consider to have an MZI with two optical signals, one with the
wavelength λs and the other with the wavelength λr. In this case, each optical
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signal interferes with a different phase since

φ = ωτ = 2πΛ
λ
, (3.20)

where Λ is the optical path difference. We can define relative phase between
the two wavelengths as follows

φREL = φs − φr = 2π
(

Λs

λs
− Λr

λr

)
. (3.21)

By considering different Λr and Λs, we account for the fact that in a real
interferometer, a chromatic dispersion is present.

In general, the relative phase φREL is not constant but drifts in time. In-
deed, the relative phase φREL drifts when interferometer arms are not locked,
thus Λs,r are drifting. However, even with precisely locked arms, we can ob-
serve φREL fluctuations since it depends also on the wavelength stability. The
small drift of relative phase ∆φREL can be expressed by applying derivative
to Eq. (3.21) resulting in

∆φREL = 2π
(

Λs

λ2
s
∆λs − Λr

λ2
r
∆λr

)
, (3.22)

where ∆λs,r are small wavelength drifts (λ ≫ ∆λ). One way to eliminate the
relative phase drift caused by wavelength fluctuations is to precisely balance
the interferometer arms. Then chromatic dispersion should be equal in each
arm to achieve Λs = Λr = 0 for both wavelengths. In practice, interferometers
usually have some degree of imbalance, and in some cases, the imbalance is
even required. Then, it is beneficial to lock both wavelengths in order to
avoid the relative phase drift.

3.1.4 Local setup detuning
In Section 3.1.2 we introduced a general model of an MZI. We assumed that
the two beam splitters composing the MZI have splitting ratios constant
over time. Also, we assumed that the phase can be perfectly evaluated by
the knowledge of output intensities and visibilities. Under real conditions,
these assumptions are not satisfied perfectly. Here, we will discuss how the
phase estimation is affected in this case.

Let us introduce time-dependent losses µO and µA in the MZI as illustra-
ted in Fig. 3.3. Parameter µA describes the case when the first splitting ratio
is drifting or the MZI arms are detuning relatively over time. Parameter µO
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describes the case when output ports are detuned relatively or the detection
efficiencies are mutually drifting.

Figure 3.3: A detailed model of an MZI with time-dependent losses µA and µO.
This model simulates a realistic setup suffering from local detuning over time.

Let us first discuss what happens when the parameter µO is present solely.
In this case we estimate the phase φEST as follows

φEST = arccos


I1

V2
− I2

V1
(1 − µO)

I1 + I2 (1 − µO)

 . (3.23)

Note that if µO = 0, then φEST is equivalent to the real phase φ described
by Eq. 3.19. However, if µO ̸= 0, the phase is estimated with an error given as

φERR = φEST − φ. (3.24)

For example, let us assume that µO = 1% is introduced. Then, the incorrect
phase estimation causes a phase error of 0.3 degrees. Here we assume a high-
visibility regime and phase locked close to π

2 . More advanced analysis is plot-
ted in Fig. 3.4. In the high-visibility regime V1,2 = 1, the phase error is
approximately linearly increasing with µO while the slope is decreasing for
higher φ. We get much higher error in the low-visibility regime V1 = 0.3,
V1 = 0.6. Now, the curves are not linear, and their slope grows with φ, op-
positely to the high-visibility regime. For 169 degrees, the curve stops below
2% of loss since the phase estimation is out of range of the arccos function.

Secondly, let us consider only parameter µA is introduced in the MZI
(µO = 0). This case is more tricky because the fluctuations of µA affect ex-
cept for the intensity in the MZI arms also the visibilities. To describe this
effect, it is necessary to express the intensities and visibilities in Eq. 3.19
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Figure 3.4: Impact of µO to the phase estimation. (a) High-visibility regime
(V1,2 = 1). (b) Low-visibility regime (V1 = 0.3, V2 = 0.6).

Figure 3.5: Impact of µA to the phase estimation. (a) Phase is locked to 90
degrees. (b) Phase is locked to 143 degrees.

using Eqs. (3.13), (3.14), (3.15), and (3.16). Also, let us incorporate µA into
the first beam splitter, thus T1 → T1(1−µA). Then, the estimated phase reads

φEST = arccos
 a+ b cosφ

2
√
T1T2(1 − T1)(1 − T2)(1 − T1µA)

 , (3.25)

where

a = T2(1 − T2)(1 − 2T1)µA

b = 2
√
T1T2(1 − T1)(1 − T2)(1 − µA),

assuming |γ(τ)| = 1. In Fig. 3.5 we plot the phase error φERR for two µA
depending on T1, T2. The phase error φERR is negligible if µA is small and the
first beam splitter is balanced perfectly (T1 = 0.5). Unfortunately, this cannot
be always satisfied, especially in dual-wavelength fiber setups, since fiber
couplers show a strong dependence on wavelength. Therefore, the splitting
ratio typically differs from 50:50 at least for one of the wavelengths.
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So far we have not discussed what happens when the second beam splitter
splitting ratio is drifting. In this case, we would get the same result as in the
previous case since the interference law and the visibilities are symmetric in
terms of the first and the second beam splitter.

3.2 Phase control

In the world of quantum dreams,
Where light and matter interweave,
We strive to lock the photon streams,
With precision so supreme.

A single-photon Mach-Zehnder phase,
Challenged by Poissonian noise and haze,
But with dual-wavelengths and reference rays,
Our stability sets a new phase.

Credit: ChatGPT

In this section we will discuss how to actively stabilize a phase in the interfe-
rometer and how to modulate the phase as desired. Firstly, we will describe a
method of an active phase control enabling to continuously stabilize a single-
photon MZI with a high precision. Secondly, we will introduce two methods
of fast phase switching using the electro-optic effect.

3.2.1 Phase stabilization

To stabilize the phase in the MZI, we use an active feedback loop consisting
of ultra-sensitive photodiodes, an analog PID controller, and a fiber stretcher
as shown in Fig. 3.6(a). Voltage equivalents of detected intensities are fed into
the PID controller. The PID controller evaluates the phase error and applies
the corresponding voltage to the fiber stretcher to compensate for the phase
error. Here we aim to describe technical details of the feedback loop which
are not fully covered in the work [2]. Firstly, we describe in more detail the
functionality and the specifications of the PID controller. Also, the tuning
procedure of the PID controller is described. Secondly, we provide technical
details of the fiber stretcher. Finally, we discuss the potential improvement
of the phase lock.
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Figure 3.6: (a) Active feedback loop consisting of ultra-sensitive photodiodes, an
analog PID controller, and a fiber stretcher. (b) Scheme of the PID controller with
an adaptive setpoint.

PID controller

We use an analog PID controller developed as a part of my Bachelor and
Master Theses [64,65]. Further, Michal Dudka assembled two improved ver-
sions of the PID controller depicted in Figs 3.7(a,b). The PID controller has
improved functionality to satisfy the specific demands of phase locking. Most
importantly, it has an adaptive setpoint term enabling the correct operation
of the phase lock even with fluctuating intensity. The PID controller is sche-
matically depicted in Fig. 3.6(b). The adaptive setpoint processes voltage
equivalents of intensities I1, I2, and generates a fraction of their sum corre-
sponding to a specific phase. For example, half of their sum corresponds to
the middle of the interference fringe (π

2 ). Subsequently, the setpoint is sub-
tracted from I1 and the resulting error signal is split among proportional,
integral, and derivative terms. While the proportional term simply amplifies
the error signal, the integral term operates with low frequencies (up to 10 Hz),
and the derivative term responds to high-frequency components of the error
signal (kHz). Proportional, integral, and derivative terms are summed, and
the resulting signal is after amplification applied to the fiber stretcher.

The PID controller provides excellent tunability. Gain of each of P, I,
and D terms and the ending amplifier is fine-tunable by precision 10-turn
potentiometers. The gain ranges typically from 0 to 80 or from 0 to 8. Also,
cut-off frequencies of I and D terms are discretely adjustable by eight-way
switches. The low-pass cut-off frequencies of the I term go from 0.1 Hz up to
230 Hz while the high-pass cut-off frequencies are in the range from 20 Hz
up to 60 kHz. The adaptive setpoint is fine-tunable by a precision 10-turn
potentiometer as well. In practice, the operating point of the interferometer is
tunable with the resolution below 0.01 degrees. Finally, the difference term
and the ending amplifier have also adjustable low-pass filers (knobs LOW
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G and LOW DIFF). However, we omit them since they turned out to be
superfluous.

Let us describe the adaptive setpoint in more detail. To work properly (to
provide genuine intensity-independent operation) it is necessary to calibrate
first. As a first step, we subtract the detection offsets by knobs OFF1,2.
Then we scan interference fringes and observe if the adaptive setpoint is
phase-dependent. If so, we provide the phase independence by knob BAL.
This knob effectively balances voltages from detectors. The voltages are not
typically balanced due to slightly different optical losses in each output.

Now let us describe a tuning procedure of the PID controller. In our
approach, we typically tuned the PID controller heuristically to create an
intuitive view of the stabilization process. After many trials, we developed
an efficient and easy-to-follow procedure:

• set all gains to zero except for global gain

• adjust P, I, D gains following way:

• set P term to 2/3 of the point where the stabilization starts to oscillate

• set I term to lock the phase without an offset

• eventual oscillations compensate via D term

If this procedure is not satisfying, it is possible to play with the capaci-
tances of I and D terms (see SW D and SW I in Fig. 3.7). Currently, we use
cut-off frequencies from 0.1 Hz to 230 Hz with the typical setting of 6 Hz
cut-off frequency. Firstly, we recommend trying every capacitance level of the
I term and choose the one:

1. which is the fastest

2. with minimal tendency to oscillate

Then we recommend trying every D term and choosing the one that gives the
system the highest stability and flexibility. Try to introduce fast mechanical
vibrations by clapping, hitting the optical table, or similar actions in order to
investigate the stability of the system. Perfect stabilization can compensate
for dynamic changes without losing the absolute setpoint (the relative phase
between the signal and the reference should not change). Using an oscil-
loscope, it is convenient to zoom voltages corresponding to the setpoint and
OUT1 to intuitively evaluate and optimize the phase stability. Although it is
possible to use sophisticated methods of PID optimization (measure the sta-
bility, evaluate the stability, change PID parameters, repeat the procedure),
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we do not recommend such a procedure. It is time-consuming and since the
environmental conditions are changing, this procedure often leads to ambi-
guous results.

Figure 3.7: (a,b) In-house developed PID controllers. (c) Photo of the fiber stret-
cher (d) 3D model of the fiber stretcher. Panels (c) and (d) are adopted from [66].

Fiber stretcher

A fiber stretcher is a phase modulator with a high dynamic range and a
negligible loss. These properties determine the fiber stretcher as an optimal
device for long-term phase drift compensation. We use an in-house develo-
ped stretcher developed by Martina Nováková and co-workers. As shown in
Fig. 3.7(c), it consists of a 3-m polarization-maintaining fiber coiled around
two aluminum segments. The phase modulation is provided by applying a
voltage to a piezoelectric crystal placed between the aluminum segments. The
phase modulation is proportional to the voltage applied to the piezo crystal.
The fiber stretcher has 7.2 µF capacitance, 1 kHz bandwidth, 20 kHz reso-
nant frequency, 0.11 V half-wave voltage, and dynamic range of ±275 µm.
Since the extent of the phase drift is much smaller in our case, we use only
±110 µm corresponding to the output voltage range of the PID controller
(±30 V). For further details see work [66], where the fiber stretcher used here
is referred to as FS1.
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Possible improvements of the active feedback loop

Although the current phase locking has superior precision for any practical
application, there are still possibilities for improvements. The bandwidth of
the active feedback loop is currently limited to 1 kHz by the fiber stretcher.
There are two ways to easily increase the bandwidth if needed. Firstly, it is
possible to replace the actual fiber stretcher with a stretcher with a flatter
response. For example, FS3 from [66] has an almost flat response up to 5 kHz,
the dynamic range is smaller by a factor of 2, though. Alternatively, it is
possible to split the output voltage from the PID controller between two
phase modulators. Specifically, low-frequency components could be applied
to the fiber stretcher and the high-frequency components could be sent into
the electro-optic modulator.

After these improvements, the effective bandwidth of the feedback loop
would be restricted by detectors to 2 kHz (more details about the detection
are included in Section 3.3). However, the detectors can be easily replaced
by faster ones provided that a stronger source of the reference will be used.
Currently, we use a fiber-coupled luminescent diode with additional spectral
and polarization filtering. This solution turned out to be very stable in terms
of intensity as well as the wavelength, however, it cannot provide more than
∼ 10 nW at the input. Therefore, the replaced reference source should keep
the spectral and intensity stability benefits as well. In practice, there are a
few reference sources we have not tried. For example, a spectrally-filtered
superlumincent diode could work fine as well.

3.2.2 Fast phase switching
Although the response of the fiber stretcher is sufficient for compensating
for environmental changes, it cannot perform the fast phase switching requi-
red for quantum protocols. Here we will describe an integrated electooptic
modulator and a free-space electrooptic modulator both enabling fast phase
switching. These devices exploit the non-linear electrooptic (Pockels) effect
to modulate the phase. An external electric field applied to crystals that
lack inversion symmetry changes linearly the index of refraction of the ma-
terial. These materials include for example potassium dihydrogen phosphate
(KDP), ammonium dihydrogen phosphate (ADP), lithium niobate (LiNbO3),
and β-barium borate (BBO).

Integrated electro-optic modulators are controlled by a low-voltage field
which enables ultra-fast response (100 GHz bandwidth is possible) and ar-
bitrarily high repetition rate. Another advantage lies in relatively simple im-
plementation into the setup due to the fiber connectivity. On the other hand,
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it suffers from a few dBs of losses, especially due to non-effective coupling
between the fiber and the integrated circuit. In the experiments included in
this Thesis, we use LiNbO3 integrated phase electro-optic modulator from
EOSpace shown in Fig. 3.8 (right). It has a 10 GHz bandwidth, 2.3 dB of
loss, half-wave voltage of 2.4 V, and polarization crosstalk of 19 dB.

Figure 3.8: Photos of electro-optic modulators for fast switching. On the left side,
a free-space phase modulator EM300K-PM-G-AR800 from Leysop is shown. On
the right side, an integrated phase modulator PM-0K5-10-PFU-PFU-810-UL from
EOSpace is depicted.

In contrast, free-space electro-optic modulators provide very low loss
(down to 1%) at the expense of slower response and limited repetition rate.
A free-space electro-optic modulator is typically composed of two crystals
whose index of refraction of the (slow or fast) axis is controlled by hundreds
or thousands of volts. Since the crystals (together with wires and driving
electronics) have non-negligible capacitance, the switching response is typi-
cally limited to tens of nanoseconds. Also, these devices primarily operate in
an on-off regime, although the feasibility of operating them at a few discrete
levels has been demonstrated. As an example of this device, in Fig. 3.8 (left)
we show a low-voltage phase electro-optic modulator from Leysop. Detai-
led specifications and comparison between photonic switching methods are
included in Section 2.1.

3.3 Photodetection and signal processing
In this section, we describe the technical aspects of performed measurements.
As shown in Fig. 3.9, a measurement consists of three steps: Light detection,
data acquisition, and data processing. Our measurements can be divided into
two regimes: a classical regime (a) and a single-photon regime (b). Schema-
tically, they appear similar, but there are major differences in each step.

In the classical regime, the light is detected continuously with photodi-
odes. The produced electronic signals are converted into a stream of bits
by an analog-to-digital converter and processed in a programming language
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Figure 3.9: Building blocks of a measurement in the classical regime (a) the
single-photon regime (b). For data acquisition in the classical regime, an analog-
to-digital converter (ADC) is used, whereas in the single-photon regime, a time-
tagging module (TTM) or a coincidence unit are exploited.

Python. The classical regime was mainly used for phase measurements in
work [2]. In other works, it mainly served for auxiliary measurements for
adjustments. In the single-photon regime, we use single-photon avalanche di-
odes to detect photons. Produced electronic pulses are acquired by a time
tagger or a coincidence unit. For specific measurements, we add an external
trigger to synchronize the detection with the rest of the experiment. The data
are evaluated in Python as click statistics, time histograms, or coincidences.
Also, additional processing is done depending on the measurement purpose.

Now, let us describe the particular measurement parts. Firstly, a brief
description of photodiodes and single-photon avalanche diodes is provided.
Further, the evaluation of phase stability in the classical regime is descri-
bed. Finally, data acquisition and processing in the single-photon regime are
illustrated. Here, we mainly focus on time histograms, although the principle
of a coincidence-basis measurement is briefly discussed as well.

3.3.1 Photodetection
A photodiode is an optical detector based on a PIN structure or a P–N
junction. Its operation relies on the interaction of photons with the diode
material. When a photon with sufficient energy impinges the diode, it initi-
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ates the formation of an electron-hole pair, a phenomenon referred to as the
inner photoelectric effect. If this absorption event occurs within the deple-
tion region of the junction or is within a diffusion length away from it, the
resulting charge carriers are rapidly separated and propelled away from the
junction by the intrinsic electric field of the depletion region. Consequently,
the holes migrate towards the anode while the electrons move towards the
cathode, generating a photocurrent. Photodiodes may use additional electro-
nic circuits (for example, amplifiers) to produce stronger electronic signal.
The parameters of the photodiodes are then dependent on the semiconduc-
tor structure as well as the electronics. Below, we sum up the parameters of
photodiodes important in the context of this Thesis:

Figure 3.10: Examples of responsivity (a) and bandwidth (b) for Thorlabs PDF
10A photodiode. Adopted from manual [67].

• Responsivity gives us an information how many photons are conver-
ted into electrons producing the photocurrent. It is expressed as ampers
of the photocurrent per watt of light (A/W) and it depends on the wa-
velength of the incident light as shown in Fig. 3.10(a). The higher the
responsivity, the more sensitive the photodiode is.

• Saturation power gives us an information about the maximum opti-
cal power that can be detected. After that the photocurrent does not
increase although the optical power is increased.

• Bandwidth determines the response time of the detector. As shown
in Fig. 3.10(b), the response does not drop to zero immediately. There-
fore, we detect even higher frequencies than is the bandwidth but their
amplitude drops. Typically, 3 dB bandwidth is characterized: for the
cutoff frequency, the amplitude of a detected sine-modulated optical
signal drops to half.
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PWPR-2K-SI PDF10A
Responsivity at 810 nm 0.6 A/W 0.5 A/W
Saturation power 16 nW 16 pW
Bandwidth DC – 2 kHz DC – 20 Hz∗

Noise-equivalent power (NEP) 9 fW/
√

Hz 1.4 fW/
√

Hz

Table 3.1: Parameters of sensitive photodiodes PWPR-2K-SI from Femto and
PDF10A from Thorlabs used for phase locking and measurements in the classical
regime.
∗ 20 Hz (specs.) 30 Hz (measured)

• Noise-equivalent power (NEP) gives us an information about a ty-
pical noise for a given frequency window. It is counted as a power per
square root of bandwidth (W/

√
Hz). The noise may vary for specific

frequencies though it typically follows more or less the response curve.
There is often a trade-off between the noise and the response – one way
how to suppress a detection noise is to sacrifice the bandwidth.

In our experiments we use photodiodes for three purposes: Firstly, they
are helpful for setup adjustments since a strong light can be used and the
optical signal is measured instantly (compared to SPADs). Secondly, ultra-
sensitive photodiodes can measure optical signals in order of a few millions
of photons. In some cases, it is beneficial to measure the signal classically
before plugging into SPADs. The advantages are simple processing and im-
mediate signal visibility on oscilloscope. Thirdly, we use sensitive photodiodes
to measure the reference light for active phase locking. Surprisingly, we can
measure weak optical powers (1 nW) with high signal-to-noise ratio while kee-
ping bandwidth moderate. In Table 3.1 we summarize parameters of sensitive
photodiodes we use.

3.3.2 SPAD
Single-photon avalanche diodes (SPADs) are composed of a semiconductor
with a P-N junction. A reverse bias voltage is applied to the P-N junction. If
a photon impinges the diode, an electron is fired from the P-N junction. The
free electron is accelerated by the bias voltage, thus it has enough energy
to release other electrons. As a result, an avalanche of electrons is produced,
making a short electronic pulse. The single-photon avalanche photodiodes are
on-off devices – they cannot distinguish how many photons hit the detector
as the avalanche is identical for one, two, or more incident photons.
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In all experiments, we used single-photon avalanche diodes from Excelitas
with the parameters summed up in Table 3.2. A concise explanation of SPAD
parameters relevant to us follows.

• Detection efficiency determines the probability of a photon detection.
It depends on various factors, including optics and electronics. Analo-
gically to a PIN photodiode, the detection efficiency depends on the
wavelength of the incident light. It is also worth to mention that the
efficiency slightly varies with temperature. This fact is important for
measuring MZI phase stability with a single-photon signal since the
ambient temperature can drift during the measurement for a couple of
Kelvins.

• Dark counts determine the detection noise. They are predominantly
caused by thermal noise in the photodiode.

• Dead time determines the period between avalanche initiation and
quenching. During this period, the detector does not react to the in-
cident photons. Dead time also determines the maximum photon rate
since for a certain rate, there are no more detection slots available. Be-
fore the saturation of the detector, the detection becomes non-linear
with the number of photons due to the dead time.

• Afterpulsing
When the avalanche is quenched, there is some probability that a se-
condary avalanche will be produced. The secondary avalanche is called
an afterpulse. While we are interested in photon rate solely, afterpulses
can be assumed as an additional noise. However, if we evaluate time
histograms, afterpulses can be tricky. For example, we expect single op-
tical pulses, and instead of that, we see two pulses, although the second
one is much smaller. Afterpulses significantly differ for each detector,
varying from 0.1% to a few percent. Also, it differs with the photon
rate. While the detector is saturated or close to the saturation regime,
the probability of afterpulses may increase several times.
Mostly, we were struggling with afterpulses in work [1]. Afterpulses
limited the measured extinction for fast MZI switching. When we reco-
gnized our problem as afterpulsing, we chose detectors with the lowest
afterpulses. Also, we characterized the afterpulses separately and sub-
tracted them from the data to obtain the real shape of the switching.
Secondly, we had to correct for afterpulses in loop-based time mul-
tiplexing since the afterpulsing resulted in four spurious optical pulses
delayed by 40 ns from the original ones.
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typical values
detection efficiency at 810 nm 60 %

dark counts 10-40 per second
afterpulse probability 0.1-1%

jitter 0.3-0.4 ns
dead time 30-40 ns

Table 3.2: Parameters of single-photon avalanche photodiodes from Excellitas.

• Jitter is a common parameter in fast electronics. It corresponds to the
time uncertainty of the avalanche generation. Although it is not the
bandwidth in the classical sense, it determines the time resolution of
the detection.

In the demonstration of sub-ns optical switching [1], detection jitter
together with time-tag resolution, bandwidth of the electro-optic mo-
dulator, and rise time of the driving pulses determined the rise time of
the switching.

3.3.3 Data evaluation - phase analysis
There are several approaches how to evaluate phase fluctuations in the in-
terferometer. The most straightforward is to calculate standard deviation

σ =

√√√√ 1
N − 1

N∑
i

(xi − ⟨xi⟩)2, (3.26)

where xi are points from the dataset and N is the number of samples. The
standard deviation is a perfect uncertainty characteristic if the mean value of
the measured quantity does not change in time. However, the mean value of
phase typically drifts so to fully characterize phase drift we should evaluate
the standard deviation for several acquisition times. Instead of that there are
more sophisticated methods to characterize the phase drift.

Firstly, we can evaluate the spectrum of the phase drift by performing
Fourier transform

ϕ (f) =
∫ ∞

−∞
φ (t) e−2iπftdt. (3.27)

Then we compute the square of the absolute value, so we get the spectral
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power density of the phase drift

G (f) = |ϕ (f) |2. (3.28)

In practice, we have discrete data samples measured for a finite interval T .
This limits the lowest frequency we can evaluate to 1/T . On the other hand,
the data acquisition sampling rate R determines the highest frequency to be
R/2.

Figure 3.11: Data from a measurement accumulated for overall time T are divided
into N subsets with identical duration τ . The mean value of X for each subset is
evaluated and the mean value of the subset n is subtracted from the mean value of
the subset n + 1. These particular results are squared, summed, and normalized.

An alternative approach to the spectral analysis is the Allan deviation.
Basically, it is a root mean square drift depending on the duration of interval
τ . For a specific τ the error is the lowest possible. Therefore, Allan deviation
gives a clue how to minimize the measurement error by setting an optimal
measurement time [68,69]. Allan deviation is defined as

σA (τ) =

√√√√ 1
2N

N−1∑
n=1

(
⟨X⟩n+1 − ⟨X⟩n

)2
, (3.29)

where ⟨X⟩n is the mean value of the n-th subset. A more intuitive explanation
is given in Fig. 3.11.

3.3.4 Data evaluation in the single-photon regime
As already mentioned, we use single-photon avalanche diodes for the de-
tection and a time tagger or a coincidence unit for data acquisition. The
entire process is as follows: when a photon is detected, an electronic pulse is
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produced. In time tagger, arrival time of each detection event is recorded with
162 ps resolution. Sometimes we also use an external trigger which serves as
a time reference. The time tags are converted to a bit string and evaluated
in the programming language Python. There are several ways to process the
data. The most simple is a photon rate evaluation which is used if we are
interested solely in how many photons came within a specific interval. Time
histograms are evaluated when we expect non-uniform photon distribution
in time. For example, we expect a train of optical pulses or a specific pattern
produced by fast phase switching. Also, we may be interested in coinciden-
ces between two or more channels. Although we used mostly data evaluation
of single events, two-fold coincidence measurement was done in work [3]. In
this section, we briefly discuss the evaluation of single events and coincidence
measurements.

The most basic measurement is the acquisition of the photon rate. Here
the important task is to set properly the measurement time window. A lon-
ger time window contains more photons resulting in lower photon number
uncertainty. During measurements, we used an attenuated laser diode as a li-
ght source. Since the attenuated laser diode produces a weak coherent state,
we get Poissonian photostatistics with uncertainty of

√
N where N is the

number of detection events. For example, if we aim for 1% uncertainty, we
need N = 10000, thus

√
N = 100 and

√
N

N
= 0.01. Indeed, there are ad-

ditional sources of error such as dark counts and background light. If we
characterize these effects beforehand we can subtract them as a constant
offset. During most of our measurements, dark counts and background li-
ght were negligible compared to the signal, therefore we typically did not
perform any correction. Specifically, our typical photon rate was 105 or 106

events per second while the dark count rate including the background light
was much below 100 events per second. Afterpulses typically do not repre-
sent an issue in photon rate measurements since they form a fixed fraction
of the signal. However, afterpulse probability increases for high photon rates
(close to the saturation), therefore it is convenient to keep the photon rates
far from the saturation. Another reason why to stay far from the saturation
is the non-linear response of the detection for a high photon flux. A photon
rate measurement can be performed by a time tagger or counting unit. A
counting unit brings the advantage of simplified data processing since it does
not contain detailed timing information of the detection events.

Now let us describe how time histograms are evaluated. Time histograms
are used when we modulate the optical signal thus we expect a specific shape
of the optical signal in time. For this measurement, we need to use an external
trigger that gives us a temporal reference. The external trigger is locked to
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the optical source when optical pulses are used or to the modulation process
(for example phase switching). Time tagger produces a stream of time tags
for each detector and each trigger. During the data processing, we evaluate
the relative delay between each detection event and the nearest preceding
trigger. In other words, we will place each detection event in a specific tem-
poral window depending on the delay relative to a trigger event. Then we
evaluate a histogram of events in each time window. As in the previous case,
we have to accumulate enough data to fit into a given uncertainty (typically
chosen as ≤ 1%). Also, spurious effects such as dark counts, background li-
ght, and afterpulses are present. Compared to the photon rate measurements,
time histograms are vulnerable to afterpulses. Specifically, we struggled with
the afterpulses in demonstrations of the photonic switching and loop-based
temporal multiplexing [1]. Our approach was to identify and subtract the
afterpulses from the datasets. In the photonic switching demonstration, we
used continuous optical signal, thus photons hit the detectors randomly in
time. As a consequence, the afterpulses were overlapping with the optical
signal. To identify them, we prolonged the switching time to hundreds of
ns, so after switching to 100:0 (almost no photons are coming to a single
output), two regions were visible – an afterpulse region and a non-afterpulse
region. By subtracting these two regions, we got an estimation of the de-
tection afterpulses. In the case of loop-based temporal multiplexing, we used
short optical pulses, thus the afterpulses were temporally separated from the
optical signal. As a result, the afterpulses subtraction was straightforward.

Now let us briefly introduce a coincidence measurement. A coincidence
occurs if a specific number of photons is detected within a selected time win-
dow. A coincidence basis is a convenient tool in quantum optics since it can
postselect events only when a protocol succeeds [70]. For example, if we use
a two-fold coincidence basis and send a two-photon state through the setup,
we ignore all the events when a photon is lost. Therefore, in this case, the
two-fold coincidence basis emulates a loss-free setup, although the loss decre-
ases the overall success rate of the protocol. Another benefit of a coincidence
measurement is the suppression of detection noise. If the signal is proces-
sed only when both detectors click at the same time then random events
such as dark counts contribute to the signal only with probability p2

DARK
instead of pDARK. The same happens with other effects such as afterpulses.
A coincidence measurement is technically similar to single event measure-
ment but requires a different data processing. Time tag measurement gives
us full information about the click statistics but it produces large datasets
(giga-terabytes). However, often we do not need to know when a particular
coincidence event happened. Then we can simplify data processing by using
a coincidence unit. The coincidence unit gives us complete information about
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single events and coincidence events within a specific acquisition time, say
one second. The coincidence unit can produce small, easy-to-process datasets
by sacrificing the precise timing information of particular events.

3.4 Selected concepts of quantum optics
In this section, we will introduce the quantum formalism used in this Thesis.
Specifically, we will introduce the Fock state basis, a quantum operation
performed by a beam splitter, a coherent state, and an analysis of an ap-
proximate emulation of a Fock state by a weak coherent state. We expect
that the reader has a basic knowledge of a quantum theory, thus the theory
presented here is concise. For more detailed and rigorous explanations, we
refer the reader to textbooks such as [71].

3.4.1 Fock state basis
Fock state basis is a common representation of a photonic quantum state.
The Fock state describes how many photons are in a given mode. A quantum
state can be described by superposition of Fock states

|ψ⟩ =
∞∑

n=0
bn |n⟩ , (3.30)

having one-mode state, or for two-mode state

|ψ⟩AB =
∞∑

n=0

∞∑
m=0

bn,m |n,m⟩AB . (3.31)

Generalization to multi-mode state is straightforward. Fock states correspond
to eigenstates of a quantum harmonic oscillator. Conversion between Fock
states is provided with annihilation operator â and creation operator â†

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , (3.32)

â |n⟩ =
√
n |n− 1⟩ . (3.33)

Application of the annihilation operator corresponds to photon subtraction,
whereas the creation operator performs a photon addition. These operators
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are valuable tools for quantum computations since every Fock state can be
expressed as a product of creation operators applied to a vacuum state

|n⟩ = â† n

√
n!

|0⟩ . (3.34)

Then, the propagation through a linear optical network is equivalent to a
unitary operation applied to the creation operators. This fact can be mathe-
matically expressed as

Ûf
(
â†
)

|0⟩ = Ûf
(
â†
)
Û †Û |0⟩ = f

(
Û â†Û †

)
|0⟩ , (3.35)

where Û stands for a unitary operator. Here, we used Û |0⟩ = |0⟩, which is
valid for linear optics. However, it cannot be generalized to all optical sys-
tems. For example, quadrature squeezing of a vacuum state does not satisfy
this equality.

3.4.2 Beam splitter
A beam splitter is a crucial component in quantum optics since it enables
coupling between two modes. Further, it is a key component for implementing
an approximate photon subtraction, equivalent to applying the annihilation
operator. Also, a lossy channel or non-efficient detection can be simulated
by a beam splitter. A creation operator is transformed by a beam splitter as
follows

â†
A

BS→ tâ†
C + râ†

D, (3.36)

â†
B

BS→ −râ†
C + tâ†

D, (3.37)

where t and r (r2 + t2 = 1) are amplitude transmittance and amplitude re-
flectance, respectively. Using Eqs. (3.34), (3.36), and (3.37), one-photon state
is split on a beam splitter as follows

|1, 0⟩AB = â†
A |0, 0⟩AB

BS→ t |1, 0⟩CD + r |0, 1⟩CD , (3.38)

|0, 1⟩AB = â†
B |0, 0⟩AB

BS→ −r |1, 0⟩CD + t |0, 1⟩CD . (3.39)

Analogically, for a Fock state injected in a single port of the beam splitter,
the output state reads

|n, 0⟩ BS→
n∑

k=0

√√√√(n
k

)
tn−k rk |n− k, k⟩ . (3.40)
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3.4.3 Coherent state

A coherent state is a quantum representation of light with a Poissonian pho-
ton number statistics

|α⟩ = exp
(

−|α|2

2

) ∞∑
n=0

αn

√
n!

|n⟩ . (3.41)

An approximate coherent state can be generated with an attenuated laser. A
coherent state is an eigenstate of annihilation operator â |α⟩ = α |α⟩. Thus, a
coherent state propagating a lossy channel is transformed to a coherent state
with a smaller mean photon number. It is very practical in experiments since
losses can be simply compensated by increasing the laser power. Indeed, the
coherent state cannot be used for every quantum protocol since it does not
exhibit all aspects of non-classical behaviour.

Genuine non-classical behavior requires non-classical sources such as Fock
state |n⟩. However, the preparation of a Fock state is demanding, even in the
case of a single-photon state. Although promising sources such as quantum
dots exist, the quality of produced states is rather limited [72, 73]. A con-
ventional single-photon preparation exploits non-linear effects, specifically
spontaneous parametric down-conversion (SPDC). A pump photon is con-
verted into a photon pair with some probability. Detection of one photon
from the pair heralds the presence of the second photon [17–20]. The main
disadvantages of this approach lie in the experimental complexity (although
on-chip devices exist) and the low probability of photon pair generation. In
the case of multi-photon preparation, the situation is even more complicated.
Additionally, due to losses and limited detection efficiency, we get a mixture
of Fock states instead of the pure state.

Luckily, we can overcome the loss and detection efficiency issues by using
a coincidence basis. Thus, we only postselect the cases where the multi-
photon state was detected. In this case, it is possible to emulate a genuine
multi-photon state by a weak coherent state (but not for every protocol).
Indeed, we need to perfectly resolve a photon number since the coherent state
contains all n-photon states. Practically, a genuine photon number resolving
detection does not exist, thus a strongly attenuated coherent state has to be
used. Specifically, undesired multi-photon contributions have to rapidly drop
to zero.
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3.4.4 Post-selected Fock state from a weak coherent
state

In the experiment [3], we used this approach to emulate a two-photon state.
Let us describe how to optimally set parameters to balance the generation
rate and the error caused by undesired multi-photon contributions. We used
a setup where the optical signal is split between two single-photon detectors.
For simplicity, let us assume that the detection efficiency is the same for both
detectors, and it is incorporated in the overall transmittance of the setup.

Now, we are interested when we correctly assign a two-fold coincidence to
a two-photon state and when the coincidence is confused with a three-photon
state. For simplicity, let us ignore higher photon numbers. A two-photon state
is split into two single-photon states, causing a two-fold coincidence in 50%
cases. A three-photon state has more possibilities how to split

|3, 0⟩ →
√

1
8 |3, 0⟩ +

√
3
8 |2, 1⟩ +

√
3
8 |1, 2⟩ +

√
1
8 |0, 3⟩ . (3.42)

In 75% of cases, a two-photon state impinges one detector, and a one-
photon state hits the other detector, causing a spurious two-fold coinci-
dence. Now, we should also consider that there is a finite detection efficiency.
The coincidence arising from two-photon state is detected with probability
p2D = µ2 while the coincidence caused by three-photon state is detected with
p3D = µ

[
1 − (1 − µ)2

]
probability.

Now, we would like to characterize a relative error caused by spurious
coincidences arising from the three-photon state.

perror = 75%
50%

p3D

p2D

p3

p2
(3.43)

where pi is the probability of n-photon state. From this equation, it is easy
to compute the ratio between three-photon and two-photon states for a given
error. For example, in work [3], we use SPADs at 810 nm with µ ≈ 0.6. If
we aim for the relative error of 1% or lower, then p3

p2
≤ 0.5%. From this

condition, we can compute the appropriate coherent state. However, in the
experiment, we do not have direct access to the full photostatistics, therefore
we cannot completely reconstruct the coherent state. So, what is the simplest
approach to set an appropriate power for the laser?

Firstly, it is possible to do a similar analysis for a one-photon state since
in a two-fold coincidence measurement, we have also access to single-photon
events. Alternatively, if having a more complex detection system, it is possible
to evaluate three-fold coincidences and estimate p3 from this knowledge. We
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chose this approach in work [3]. So far, we neglected four-photon and higher-
photon states. It is possible only when the coherent state is weak enough.

If we use the parameters from the example above, thus p3
p2

= 0.5%, then
the corresponding coherent state has the photostatistics of p1 = 1.5 × 10−2,
p2 = 1.1 × 10−4, p3 = 5.5 × 10−7, and p4 = 2.1 × 10−9. We can see that most
of the time, there is no photon produced. Sometimes, a photon is produced
but does not contribute to the two-fold coincidence signal. Only in 1 of 10000
cases we detect the desired two-photon state. Thus, even if we use a pulsed
source with a 10 MHz repetition rate, the bi-photon is produced only with a
kHz rate. Also, notice that the four-photon state occurs with the probability
of only 10−9, thus it can be neglected in this analysis.
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Chapter 4

Active phase locking

In this chapter, we present experimental research in active phase stabilization
of single-photon interferometers published as work [2]. Although the active
phase locking is briefly mentioned also in works [1, 3], this article presents
the most advanced version of the active stabilization. We aimed to achieve
the best possible stability with an emphasis on long-term operation. The
significant improvement of the stability compared to the previous works lies
in recognizing and reducing effects that had not been described yet, to the
best of our knowledge. These are specifically phase estimation errors caused
by local setup detuning. Also, stable total intensity and spectral stability of
sources were crucial to reach long-term precision. The article contains a com-
plete description of all techniques, theory, results, and comparisons with other
approaches. We further extend the theory in Section 3.1. For a more detailed
description of the active feedback loop, specifically the PID controller, see
Section 3.2.1. A resume of the article follows, the full article is enclosed below.

Single-photon interferometers locked to a specific phase are widely used in
many fields of photonics research and technology, such as quantum infor-
mation processing [28, 35], quantum metrology [4, 50, 51], quantum commu-
nication [25–27, 52, 53], and tests of fundamental physics [3, 16, 29]. Phase
locking at a single-photon level is demanding, though, and the speed and
precision are limited due to the shot noise of the detected photons. These
limitations can be overcome by employing an auxiliary light acting as a phase
reference. This approach enables continuous stabilization with high precision,
operating independently of the quantum signal. To address the signal and
the reference individually, they must differ in a selected parameter, such as
the wavelength.

Here, we demonstrate continuous sub-0.1 degree phase locking of a single-
photon Mach-Zehnder interferometer (MZI) in the dual-wavelength configu-
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ration. To lock the phase, we use spectrally stable 1.5 nW reference light
adaptively corrected for intensity fluctuations, and as a result, we reach ex-
ceptional phase stability of 0.05 degrees for 15 hours demonstrated for the
signal.

Figure 4.1: Experimental setup for an interferometer with active phase locking.
The signal and the reference are injected into the interferometer and co-propagate
through 8 m of fibers and 0.5 m of free space in each arm. The interferometer is
assembled to maximize interference visibility for a broad spectrum and simultane-
ously provide fast phase switching. At the interferometer outputs, the signal and
the reference are separated and detected. The detected reference is processed by
a PID controller, and consequently, the phase is locked via a fiber stretcher. Le-
gend: light-emitting diode (LED), interference filter (IF), polarizing beam splitter
(PBS), fiber coupler (FC), phase dispersion compensator (PDC), fiber stretcher
(FS), electro-optic phase modulator (EOM), quarter-wave plate (QWP), photo-
diode (PD), sensitive photodiode or single-photon detector (SPD), proportional-
integral-derivative controller (PID), analog-to-digital convertor (ADC).

The phase lock is carried out by an active feedback loop consisting of
a detector, a proportional-integral-derivative (PID) controller, and a phase
modulator. The principle is the following: A phase fluctuation is imprinted
to the detected light as an intensity fluctuation. Subsequently, the produced
electronic signal is evaluated by the PID controller, and an appropriate vol-
tage is fed into the phase modulator in order to compensate for the initial
phase fluctuation. The precision and speed of this approach depend on no-
ise, frequency response, and dynamic range of the feedback loop. However,
maintaining high phase precision in the long term also requires the optimi-
zation of the optical part of the setup. Firstly, it is necessary to avoid relative
phase drift between the signal and the reference, which implies their perfect
spectral stability. Secondly, the phase lock has to be immune to fluctuations
of the reference intensity. To achieve this feature, we adaptively adjust the
phase-locking setpoint to follow the intensity fluctuations. However, there is
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another deteriorating effect, which we refer to as local setup detuning (for
detailed description see Section 3.1.4). If intensity drops only in one arm (or
output) of the interferometer, the phase estimation of the reference becomes
biased since the intensity decrease is indistinguishable from phase drift in
this case. Consequently, we observe relative phase drift between the signal
and the reference. In this work, we aimed to reduce all these undesired ef-
fects and optimize the control electronics in order to achieve the best possible
phase-locking performance.

Figure 4.2: Comparison of stabilized and non-stabilized MZI. In stabilized MZI,
the reference and the signal are represented by the red line and the orange line,
respectively. (a) Stability in the time domain. The blue line represents the phase in
non-stabilized MZI and the black line corresponds to the phase drift compensated
during the phase locking (see the right vertical axis). The inset shows the stability
in the short term. (b) Spectral power density G of the phase noise. (c) Allan
deviation of the phase noise. The gray line illustrates the noise level of the signal
acquisition.

The experimental setup is depicted in Fig. 4.1. To achieve intensity and
spectrally stable sources, we use fiber-coupled light-emitting diodes with ad-
ditional spectral and polarization filtering. The signal and the reference are
merged and co-propagate through the MZI. We can tune a relative phase be-
tween the signal and the reference, allowing us to lock the phase to the most
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stable point of π
2 while operating the signal at an arbitrary phase. To achieve

this ability, we developed a component called phase dispersion compensator.
The element enables for slight tuning of dispersion in the setup by contra-
directional tilting of two high-dispersion glass plates. At each MZI output,
the wavelengths are demultiplexed via a dichroic optical isolator assembled
from a polarizing beam splitter, a quarter-wave plate, and an interference
filter. We reach negligible crosstalk of 30 photons/s from the reference to the
signal, equivalent to extinction better than 80 dB. To reduce air flux and
temperature instabilities, we cover the whole setup with styrofoam plates
during all measurements. The main benefit of the passive protection is in
suppressing the local setup detuning.

The active phase lock is carried out by a feedback loop composed of the
photodiodes, PID controller, and a fiber stretcher. The reference with the
power of 1.5 nW impinges silicon photodiodes with NEP=9 fW/

√
Hz and

2 kHz bandwidth. The resulting electronic signals are processed by an in-
house developed analog PID controller. Compared to a conventional PID con-
troller, the circuit is provided with an adaptive setpoint, which corresponds
to the correct phase regardless of the intensity fluctuations of the reference.
The PID controller is fine-tunable in each parameter via 10-turn precision
potentiometers. As a result, the target phase is set with high accuracy. To
provide correct phase estimation for the adaptive setpoint, we include ad-
ditional tunability to cancel out detection offsets and to balance detection
efficiencies. The PID controller is designed to drive a custom-made fiber
stretcher with 7.2 µF capacitance, 1 kHz bandwidth, a half-wave voltage of
0.11 V, and a dynamic range of ±275 µm [66].

Now, let us present the results of the phase stability. We compare the
performance of the MZI with and without the active stabilization and pre-
sent the phase stability in three ways: in the time domain, in the frequency
domain, and via the Allan deviation. The results in the time domain are
depicted in Fig. 4.2(a). Typical phase drift of non-stabilized MZI is shown
on the left side. On the right side, we show phase noise for stabilized MZI
(orange and red lines) and the phase compensated during the stabilization
process (black line). The inset represents a detailed view of the phase noise.
While the phase lock is active, a phase drift of 4000 degrees per 15 hours
is virtually eliminated. In terms of standard deviation accumulated over a
typical single-photon sampling frequency of 1 Hz, we reach 0.05 degrees for
the signal and 0.002 degrees for the reference within a 15-hour interval.

Further, we analyze the spectral power density of the phase noise shown
in Fig. 4.2(b). During the stabilization process, the phase noise is suppressed
by 9 orders of magnitude for frequencies in the range 10−3 to 10−5 Hz. For
frequencies above 10−3 Hz, the phase noise is primarily given by detection
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noise. Furthermore, we evaluate the Allan deviation of the phase noise de-
picted in Fig. 4.2(c). For the signal, we reach Allan deviation below 2 × 10−2

degrees for time intervals from 10 s to more than 5 hours. The minimum
value 2 × 10−3 degrees is achieved for 103 s. Allan deviation of the reference
is evaluated to be smaller than 10−3 degrees.

In summary, we have implemented a novel technique of continuous phase
locking for single-photon circuits and networks. We have experimentally de-
monstrated phase locking of 8.5 m long fiber-based MZI with a phase stan-
dard deviation of 0.05 degrees maintained over 15 hours. To the best of
our knowledge, our results represent the most precise phase locking within
single-photon interferometers. Since our method can be implemented in a
vast majority of interferometric networks, it can significantly improve the
performance of many phase-sensitive applications in information processing,
quantum metrology, and quantum communication.
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Abstract: We report a single-photon Mach-Zehnder interferometer stabilized to a phase
precision of 0.05 degrees over 15 hours. To lock the phase, we employ an auxiliary reference
light at a different wavelength than the quantum signal. The developed phase locking operates
continuously, with negligible crosstalk, and for an arbitrary phase of the quantum signal. Moreover,
its performance is independent of intensity fluctuations of the reference. Since the presented
method can be used in a vast majority of quantum interferometric networks it can significantly
improve phase-sensitive applications in quantum communication and quantum metrology.
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1. Introduction

Interferometers locked to a specific phase are widely used in many fields of photonics research and
technology, such as quantum information processing [1,2], quantum metrology [3–5], quantum
communication [6–10], and tests of fundamental physics [11–13]. In these applications, precise
phase control of single-photon interferometers and photonic routers is crucial [8,12,14]. For
instance, the phase stability determines the amount of quadrature squeezing required for protocols
in quantum metrology [15,16]. In quantum cryptography and quantum communication, phase
instabilities increase the bit error rate, which deteriorates the speed and security [17]. Generally,
sub-degree stability is considered to be sufficient for most applications except for ultra-sensitive
ones such as loop-based protocols where the phase error cumulates each roundtrip [14,18,19].

Although in classical interferometry, the sub-degree phase stabilization is feasible, at the
single-photon level it is extremely challenging due to Poissonian photodetection noise. As a
consequence, the typical precision of single-photon phase locking is a few degrees, and the
response is slower than 0.1 s [17,20]. An efficient strategy to overcome the photodetection noise
is to lock the phase via a bright reference light co-propagating with the signal photons. To
address the signal and the reference individually, they must differ in a selected parameter. The
universal approach, suitable for both free-space and fiber setups, is to differentiate the signal and
the reference by wavelength [6,8,9]. An alternative approach, suitable for free-space setups only,
is to add a small transversal displacement between the signal and the reference beams [1,11].

Optimal phase locking should possess the following features: excellent phase stability, long-
term performance, continuous operation, and minimal crosstalk between the signal and the
reference. Most of the works in the field of single-photon interferometer phase locking did not
satisfy more than two of these requirements [6,15,17,20–22]. Specifically, most of them are
limited to short-term operation and few-degree stability. Two works demonstrated continuous
operation, reasonably low crosstalk, and 0.2-degree stability in the short term [8] or a 4-degree
stability in the long term [23]. However, achieving all of the desired features simultaneously has
not been reported so far.

Here we demonstrate continuous sub-0.1 degree phase locking of a single-photon Mach-
Zehnder interferometer (MZI) in the dual-wavelength configuration. To lock the phase, we use
spectrally stable 1.5 nW reference light adaptively corrected for intensity fluctuations, and as
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a result, we reach exceptional phase stability of 0.05 degrees for 15 hours demonstrated for
the signal. Moreover, using integrated electro-optic modulators embedded in MZI, we achieve
sub-ns phase switching. The single-photon signal is virtually free of crosstalk from the reference
and exhibits visibility of 99.6% for 3 nm spectral width, enabling short-pulse operation. These
properties make our approach directly applicable in many quantum protocols requiring fast
photonic routing or low-latency feedforward operation [13,14]. Furthermore, the presented
phase stabilization can facilitate demanding loop-based protocols [14,18,19,24,25] and enable
ultra-stable operation of time-bin quantum communication protocols [6–8,12].

2. Methods

The phase lock is commonly carried out by an active feedback loop consisting of a detector,
a proportional-integral-derivative (PID) controller, and a phase modulator. The principle is
following: A phase fluctuation is imprinted to the detected light as an intensity fluctuation.
Subsequently, the produced electronic signal is evaluated by the PID controller, and an appropriate
voltage is fed into the phase modulator in order to compensate for the initial phase fluctuation.
The precision and speed of this approach depend on noise, frequency response, and dynamic
range of the feedback loop. However, there are additional challenges one has to count on. In this
section, we will focus on intensity and wavelength-related issues and ways how to suppress them.
Although these issues are not commonly addressed, they can significantly limit the performance
of the active feedback loop, especially while aiming at long-term sub-degree stability.

Conventionally, the PID controller evaluates the actual phase error by comparing the intensity
detected at a single interferometer output with a constant setpoint. However, as depicted in
Fig. 1(a), this solution cannot distinguish between intensity and phase fluctuations. Therefore the
setpoint does not correspond to the desired phase if the intensity of the reference fluctuates. This
issue can be overcome by evaluating the setpoint using the actual intensity of the reference. As
shown in Fig. 1(b), this is possible by monitoring both interferometer outputs, summing their
outcomes, and using a fraction of the sum as the setpoint. Apart from suppressing the influence
of intensity fluctuations, this adaptive setpoint improves the signal-to-noise ratio (SNR) by a
factor of 2 since two independent noisy detectors are averaged.

Although the adaptive setpoint eliminates efficiently the total intensity changes, it does not
sufficiently respond to local intensity fluctuations caused by an asymmetric misalignment of the
setup (e.g. detuning in a single arm). This effect, which we call local setup detuning (LSD), is
typically much weaker than the total intensity drift, but it is harder to determine and correct for.
LSD spoils the phase estimation, which consequently leads to a phase error since the setpoint no
longer corresponds to the desired phase. We divide LSD into two types described by parameters
µO and µA as illustrated in Fig. 1(c).

The first type of LSD is relative detuning between interferometer outputs which is equivalent
to a time-dependent loss µO at a single output port. The phase estimation φEST using output
intensities I1 and I2 is described as

φEST = arccos

⎡⎢⎢⎢⎢⎢⎢⎣

I1
V2

− I2
V1

(1 − µO)
I1 + I2 (1 − µO)

⎤⎥⎥⎥⎥⎥⎥⎦
, (1)

where V1 and V2 are visibilities at the corresponding output ports. If µO = 0, φEST is equivalent
to the real phase φ. However, if µO ≠ 0, the phase is estimated with an error given as φEST − φ.
For example, let us assume that µO = 1% is introduced in the reference. Then the incorrect phase
estimation causes a phase error of 0.3 degrees. Here we assume a high-visibility regime and
phase locked close to π

2 (parameters relevant to our setup). This example illustrates that even
small detuning would cause non-negligible phase error.
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Fig. 1. Phase locking with (a) constant setpoint and (b) adaptive setpoint. Phase versus
intensity (interference fringe) is plotted for time t1 and t2. The phase is set to 90 degrees in
t1, and then in t2, the total intensity decreases. (a) If the phase is locked using one detector
and a constant setpoint, the phase lock cannot distinguish between intensity and phase drift.
Consequently, decreased intensity in t2 leads to a phase locking error. (b) By detecting both
outputs, the setpoint can be adaptively corrected for the intensity fluctuations. Therefore,
the phase is kept constant despite decreased intensity in t2. (c) An extended model of MZI
including LSD parameters µO and µA.

The second type of LSD is described by detuning of a single arm in the interferometer,
equivalent to time-dependent loss µA, which impacts the visibility and intensity distribution
between the outputs. As a consequence, the phase estimation is biased since we have no access
to the actual visibility during the stabilization process. To describe this effect, it is necessary to
express the intensities and visibilities in Eq. (1) using transmittances T1 and T2 of beam splitters
employed. For simplicity, let us assume perfect coherence and µO = 0. Then the corresponding
equation for the estimated phase in MZI reads

φEST = arccos

[︄
T2(1 − T2)(1 − 2T1)µA + 2

√︁
T1T2(1 − T1)(1 − T2)(1 − µA) cos φ

2
√︁

T1T2(1 − T1)(1 − T2)(1 − T1µA)

]︄
. (2)

From this analysis, the phase estimation error is negligible if µA is small (less then 10%)
and the first beam splitter is balanced perfectly (T1 = 0.5). Unfortunately, fiber couplers show
a strong dependence on wavelength, so the splitting ratio for either the signal or the reference
typically differs from 50:50. We will demonstrate this effect using parameters relevant to our
setup. Let us assume that the reference phase is locked at π

2 and the interferometer arm losses are
relatively detuned by 1%, which corresponds to µA = 1%. This detuning can potentially impact
both the signal and the reference. But in our case, the fiber couplers are designed for the signal
with the wavelength 810 nm, thus T1,2 ≈ 0.5 and the signal phase is estimated correctly. However,
for the reference with the wavelength 840 nm, the fiber couplers are unbalanced (T1,2 = 0.35).
According to Eq. (2), the reference phase is estimated with a 0.1-degree error. Consequently, the
phase is locked with a 0.1-degree error.

So far, we have discussed phase errors caused by intensity fluctuations. Now let us briefly
discuss the impact of wavelength fluctuations. As the phase φ and the wavelength λ are
fundamentally connected by equation φ = 2πΛλ , Λ being optical path difference, wavelength
instabilities in general affect the phase. In the dual-wavelength configuration, the phase error is
present if the phase between the signal and the reference drifts relatively. The relative phase drift
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φs − φr for small wavelength drift ∆λ is described as

φs − φr = 2π
(︃
Λs

λ2
s
∆λs − Λr

λ2
r
∆λr

)︃
, (3)

where indices s and r denote the signal and the reference, respectively. One way to eliminate the
relative phase drift is to precisely balance the interferometer arms. Then chromatic dispersion
should be equal in each arm to achieve Λs = Λr = 0 for both wavelengths. In practice,
interferometers usually have some degree of imbalance and in some cases, the imbalance is even
required. Then it is beneficial to lock the signal and the reference wavelengths in order to avoid
the relative phase drift. An interesting question in this case is which wavelength gap to choose
between the signal and the reference. In case of zero chromatic dispersion Λs = Λr there is no
preferred wavelength gap. However, if dispersion is present, then Λs ≠ Λr and the conventional
wavelength locking cannot avoid the relative phase drift. In this case it is convenient to minimize
the dispersion by choosing a small wavelength gap or to employ a more sophisticated wavelength
locking, taking into account the dispersion. Note however that the smaller the wavelength gap
the harder is to separate wavelengths at the output.

3. Experiment

The experimental setup is depicted in Fig. 2. Single-mode coupled light-emitting diode (LED)
provides an intensity and spectrally stable source of the reference. The spectral stability is further
improved by adding interference filters with a central wavelength of 840 nm and full width at
half maximum (FWHM) of 21 nm. In the signal ports, arbitrary light within the 3 nm FWHM
around 810 nm can be injected. For active phase locking characterization, we injected the signal
in a single input port. The signal is generated by a single-mode coupled and spectrally filtered
LED, which perfectly simulates spectral properties of typical quantum photonic sources such as
a spontaneous parametric down-conversion pumped by ultra-short pulses. Before coupling into
the MZI, both the signal and the reference are horizontally polarized.

The signal and the reference are merged at a balanced fiber coupler (FC1) and co-propagate
through the MZI. To achieve simultaneously high visibility and fast switching capabilities, the
MZI combines fiber and free-space elements. Single-mode polarization-maintaining fiber part
of a total length of 8 m provides inherent spatial and polarization overlap together with the
phase control. Path balancing, polarization filtration, and dispersion compensation are achieved
in 0.5 m of free space. Balanced fiber couplers optimized for 810 nm are used to split and
merge the interfering light. Their splitting ratios are estimated to be 51:49 for the signal and
35:65 for the reference. The splitting ratio of FC1 can be effectively modified to perfect 50:50
operation by adjusting losses in one MZI arm. The arm lengths are balanced in the free space
by micrometric translation of one coupling lens. Thanks to the 21 nm broad spectrum of the
reference, we can balance MZI arms within approximately two wavelengths, i.e., with phase
precision of ±2π. To improve polarization degree of light, two pairs of polarizing beam splitters
(PBSs) with extinction greater than 30 dB are used. One pair of PBSs is placed in the free-space
part, and the other pair is included in the wavelength separation part. The MZI allows for sub-ns
switching via 10 GHz integrated electro-optic modulators (EOMs) as presented in the work [14].
The switching operates in a different frequency region (MHz-GHz) than the active phase locking
(≤kHz), therefore there is no interaction between these processes. The switching capability is
crucial in applications of the MZI, however, it significantly increases chromatic dispersion in
the MZI. To cancel out the dispersion, we compose MZI arms symmetrically. Namely, the fiber
lengths are balanced with mm precision, and similar EOMs are placed in both arms. Additional
dispersion compensation and manipulation are performed in free space with a custom component
called phase dispersion compensator consisting of two elements, PDC1 and PDC2. As shown
in Fig. 3(a), the PDC1 consists of two 1 cm thick high-dispersion SF10 glass plates mounted
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Fig. 2. Experimental setup for an interferometer with active phase locking. The signal and
the reference are injected into the interferometer and co-propagate through 8 m of fibers and
0.5 m of free space in each arm. The interferometer is assembled to maximize interference
visibility for a broad spectrum and simultaneously provide fast phase switching. At the
interferometer outputs, the signal and the reference are separated and detected. The detected
reference is processed by a PID controller, and consequently, the phase is locked via a fiber
stretcher. Legend: light-emitting diode (LED), interference filter (IF), polarizing beam
splitter (PBS), fiber coupler (FC), phase dispersion compensator (PDC), fiber stretcher (FS),
electro-optic phase modulator (EOM), quarter-wave plate (QWP), photodiode (PD), sensitive
photodiode or single-photon detector (SPD), proportional-integral-derivative controller
(PID), analog-to-digital convertor (ADC).

on contra-directional tilting stages. The PDC1 allows for manipulating the relative optical path
between the wavelengths without any misalignment of their fiber coupling. Thus we can set an
arbitrary relative phase between the signal and the reference. This enables the reference to be
locked at the most sensitive point of the interference fringe (phase π

2 ) regardless of the signal
phase. PDC2 consists of a fixed SF10 glass plate with 3 cm thickness to compensate for the
residual dispersion. As a result, we reach the visibility of 99.6% for both MZI outputs for the 3
nm broad signal and 98.6% for one output of the 21 nm broad reference.

Fig. 3. (a) Phase dispersion compensator PDC1 used for tuning the relative phase between
the signal and the reference. (b) Fiber stretcher used for the phase locking. By applying
voltage to a piezoelectric crystal, the fiber coiled around two aluminium segments is stretched
and the phase is changed. (c) Schematic sketch of the PID controller. Detected reference
intensities I1, I2 (their voltage equivalents) are processed by the adaptive setpoint term (set)
and a fraction of their sum is used as the setpoint. The setpoint is subtracted with I1 and
the resulting error signal is split among proportional, integral, and derivative terms. While
the proportional term simply amplifies the error signal, the integral term operates with low
frequencies (up to 10 Hz), and the derivative term responds to high-frequency components
of the error signal (kHz). Proportional, integral, and derivative terms are summed, and the
resulting signal is after amplification applied to the fiber stretcher.
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At each MZI output, the wavelengths are demultiplexed via a dichroic optical isolator assembled
from a PBS, a quarter-wave plate (QWP), and an interference filter. We reach negligible crosstalk
of 30 photons/s from the reference to the signal, equivalent to extinction better than 80 dB. The
separation occurs at the narrow-band interference filter centered at 810 nm, where the signal
passes through while the reference is reflected back. Subsequently, the reference is reflected
at the PBS. This is possible since the reference polarization is transformed from horizontal
to vertical by bi-directional propagation through a 45-degree oriented QWP and π phase shift
caused by reflection at the interference filter. Since the QWP undesirably changes the signal
polarization, we use a compensatory QWP after the wavelength separation part. Before the
detection, both the signal and the reference are coupled into a single-mode fiber. For the signal,
polarization-maintaining fibers are used, which facilitates its transfer to following experimental
stages. During active phase locking tests, the signal with the power of about 1 pW (4 · 106

photons/s) impinges directly the ultra-sensitive silicon photodiodes with noise equivalent power
(NEP) of 1.4 fW/

√
Hz and 30 Hz bandwidth. For single-photon measurements, we use single-

photon avalanche diodes with a 50 Hz dark count rate plugged into a time tagger. The overall
loss of the signal is around 80%, including mixing and separation of the reference. The loss is
slightly higher for the reference since all components are optimized for the signal wavelength.
The system was not optimized for minimum losses, though.

The active phase lock is carried out by a feedback loop composed of the photodiodes, PID
controller, and a fiber stretcher. The reference with the power of 1.5 nW impinges silicon
photodiodes with NEP=9 fW/

√
Hz and 2 kHz bandwidth. The resulting electronic signals are

processed by an in-house developed analog PID controller schematically sketched in Fig. 3(c).
Full electronic scheme is available in GitHub repository [31]. Compared to a conventional PID
controller, the circuit is provided with the adaptive setpoint described in Methods. Therefore,
we lock the phase regardless of the intensity fluctuations of the reference. The PID controller
is fine-tunable in each parameter via 10-turn precision potentiometers. As a result, the target
phase is set with high accuracy. To provide correct phase estimation for the adaptive setpoint, we
include additional tunability to cancel out detector offsets and to balance detection efficiencies.
The PID controller is designed to drive a custom-made fiber stretcher depicted in Fig. 3(b). It has
7.2 µF capacitance, 1 kHz bandwidth, 0.11 V half-wave voltage, and dynamic range of ±275
µm [26]. Since the extent of the phase drift is much smaller in our case, we use only ±110 µm
corresponding to the output voltage range of the PID controller.

To reduce air flux and temperature instabilities, we cover the whole setup with styrofoam
plates during all measurements. The passive protection reduces the temperature drift from 2◦C
peak-to-peak per 2 hours to a peak-to-peak drift of 0.3◦C per 15 hours. Our setup is placed on
a 60x60x6 cm breadboard with no additional damping of mechanical vibrations. For the data
acquisition, we use an 8-channel 18-bit analog-to-digital converter set to a sampling frequency of
16 Hz. We increase SNR by averaging the data samples to 1 Hz except for the detailed spectral
characterization (Fig. 4(b)) and inset in Fig.(a) showing the short-term stability. We collect data
at each detector, and additionally, we monitor the voltage applied to the fiber stretcher. The
knowledge of the driving voltage, together with the information on half-wave voltage, allows for
the evaluation of the compensated phase drift. The collected data are processed by an algorithm
based on Eq. (1). Apart from the output intensities, it requires additional parameters such as
the visibility of each MZI output and a ratio of losses in the MZI outputs. For measurements
with a non-stabilized phase, these parameters are periodically recovered as interference fringes
are scanned spontaneously due to the phase drift. While the stabilization process is running,
interference fringe scanning is not possible, thus the additional parameters are independently
measured before the stabilization starts.
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Fig. 4. Comparison of stabilized and non-stabilized MZI. In stabilized MZI, the reference
and the signal are represented by the red line and the orange line, respectively. (a) Stability in
the time domain. The blue line represents the phase in non-stabilized MZI and the black line
corresponds to the phase drift compensated during the phase locking (see the right vertical
axis). The inset shows the stability in the short term. (b) Spectral power density G of the
phase noise. (c) Allan deviation of the phase noise. The gray line illustrates the noise level
of the signal acquisition.

4. Results and discussion

We compare the performance of the MZI with and without the active stabilization and present
the phase stability in three ways: in the time domain, in the frequency domain, and via the Allan
deviation. The results in the time domain are depicted in Fig. 4(a). The typical phase drift
of non-stabilized MZI is shown on the left side. On the right side, we show phase noise for
stabilized MZI (orange and red lines) and the phase compensated during the stabilization process
(black line). The inset represents a detailed view of the phase noise. For further analysis, we use
only black, orange, and red datasets since they were achieved within the same environmental
conditions. While the phase lock is active, a phase drift of 4000 degrees per 15 hours is virtually
eliminated. In terms of standard deviation accumulated over a typical single-photon sampling
frequency of 1 Hz, we reach 0.05 degrees for the signal and 0.002 degrees for the reference
within a 15-hour interval.

Further, we analyze the spectral power density of the phase noise shown in Fig. 4(b). During
the stabilization process, the phase noise is suppressed by 9 orders of magnitude for frequencies
in the range 10−3 to 10−5 Hz. For frequencies above 10−3 Hz, the phase noise is primarily given
by detection noise. Furthermore, we evaluate the Allan deviation of the phase noise depicted in
Fig. 4(c). Allan deviation corresponds to root mean square phase drift for a variable time interval
τ [27]. For the signal, we reach Allan deviation below 2 × 10−2 degrees for time intervals from
10 s to more than 5 hours. The minimum value 2 × 10−3 degrees is achieved for 103 s. Allan
deviation of the reference is evaluated to be smaller than 10−3 degrees.



Research Article Vol. 31, No. 8 / 10 Apr 2023 / Optics Express 12569

The results show that the reference exhibits higher phase precision than the signal. This
discrepancy has two reasons. Firstly, the signal is affected by a higher amount of detection
noise than the reference. Specifically, the detection noise overlaps with the signal up to 103 s as
illustrated by the gray line in Fig. 4(c). Secondly, the signal is slightly affected by the residual
LSD leading to increased phase error in the long term. Considering the aforementioned reasons,
the Allan deviation of the signal should be interpreted as an upper bound of the real phase error
in the MZI. On the other hand, the Allan deviation of the reference gives the lower bound of the
real phase error since it does not reflect LSD. We estimate that in the short term, where LSD
is negligible, the real Allan deviation follows the reference curve, whereas, in the long term,
it approaches the signal curve. The measured phase precision of the reference illustrates the
ultimate performance of the phase lock. Therefore, the direct demonstration of sub-10−3 degree
Allan deviation for time intervals up to 104 s is feasible provided that we completely cancel out
LSD and improve SNR of the signal detection.

Although, in general, the performance of phase locking is dependent on the reference phase
(the best performance is achieved in π/2), we are not limited to a specific phase value of the
signal. In Fig. 5, we show the phase locking for an arbitrary signal phase while being locked with
the reference close to π/2. This is possible due to full phase tunability between the signal and
the reference achieved by the phase dispersion compensator element (see Experiment for details).
Figure 5(a) shows the full tunability for a classical signal, while in Fig. 5(b) we demonstrate the
tunability for the single-photon signal (count rate approx. 5 × 105 counts/s, integration time
1 s). Additional results at the single-photon level were achieved previously with preliminary
versions of the setup. Firstly, we demonstrated balanced time-bin multiplexing for photon-number
resolving detection using a loop configuration [14]. Secondly, we demonstrated the Fock state
conversion exploiting feedforward control of the interferometer [13]. These experiments were
performed before a significant improvement of the phase lock, hence they do not reflect the
unprecedented phase stability presented here.

Fig. 5. Complete phase tunability via the phase dispersion compensator demonstrated for
a classical signal (a) and single photons (b). Although the reference is locked at the most
sensitive phase π

2 , we are able to tune arbitrary splitting ratio T:R for the signal.

Let us compare our results with other state-of-the-art experiments across various interferometer
configurations and target applications. Niwa et al. reported 20 pm phase noise between 0.3
mHz and 1 Hz in 5x5 cm free-space MZI [28]. The results are achieved for strong light
and classical detectors. They use advanced passive and active methods of protection against
environment changes: the setup is placed in a vacuum chamber with 1 mK thermal stability, and
the MZI elements are composed of ultralow expansion glass. In comparison, we reach phase
noise around 100 pm within a much larger frequency interval (0.02 mHz to 1 Hz) for an 8 m
long fiber interferometer placed in a standard lab environment. In the field of single-photon
experiments, the phase stability is typically in order of a few degrees [6,15,17,20–23,29]. Five of



Research Article Vol. 31, No. 8 / 10 Apr 2023 / Optics Express 12570

the aforementioned works are limited to short-term operation (up to few minutes) [6,15,20–22],
whereas long-term stability (up to several hours) is achieved only in three works [17,23,29]. To
the best of our knowledge, the most precise stabilization of a single-photon interferometer has
been reported by Toliver et al. [8] and Roztocki et al. [30]. Toliver et al. achieved a 200 s phase
lock with a standard deviation of 0.2 degrees. In contrast, we demonstrate a standard deviation of
0.05 degrees for more than 15 hours. Roztocki et al. reached Allan deviation below 0.2 degrees
from 10−1 s to 104 s, but these results were demonstrated only for a bright reference light (the
phase was not reconstructed using an independent signal as in our case). In contrast, we reach
Allan deviation below 5 × 10−3 degrees for the reference within the same interval.

Our results demonstrate the unprecedented performance of dual-wavelength phase locking
across single-photon interferometers. Our approach will work for all types of interferometers
and complex interferometric networks, including fiber and free-space propagation. Regarding
free-space interferometers, phase locking might be even simpler, as a small spatial displacement
between the signal and the reference can substitute the wavelength separation. However, this
scheme is not free from the relative phase drift between the signal and the reference since the
index of refraction in air locally changes for each of the displaced paths [29]. In terms of
fiber configuration, it is recommended to use polarization-maintaining architecture to avoid
polarization drift inside the interferometer. Polarization drift causes an effect similar to LSD,
affecting the phase locking. If polarization-maintaining architecture cannot be used, it is possible
to employ an active polarization control. Although we demonstrate the phase-locking on a
balanced interferometer, the technique can be utilized for unbalanced interferometers as well,
provided that a sufficiently coherent source is employed as the reference. However, highly
coherent sources can bring additional challenges due to random interference on optical surfaces
and elements, leading to intensity fluctuation throughout the setup.

5. Conclusion

We have implemented a novel technique of continuous phase locking for single-photon circuits
and networks. Our approach extends dual-wavelength stabilization methods by the adaptive
setpoint, enabling precise phase locking despite the fluctuating intensity. We show that the
adaptive setpoint, together with thorough optimization in all possible degrees of freedom, leads
to unprecedented stability even with faint optical signals. We have experimentally demonstrated
sub-0.1 degree phase locking of 8.5 m long fiber-based MZI for more than 15 hours. Specifically,
we have reached a phase standard deviation of 0.05 degrees, which is equivalent to the path
displacement of about 100 pm. To the best of our knowledge, our results represent the most
precise phase locking of single-photon interferometers. Moreover, we have reached complete
phase tunability of the device and negligible crosstalk from the reference to the single-photon
signal. Since our method can be implemented in a vast majority of interferometric networks, it
can significantly improve the performance of many phase-sensitive applications in information
processing, quantum metrology, and quantum communication.
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Chapter 5

Photonic switch

In this chapter, we present experimental research in photonic switching pub-
lished as work [1]. The photonic switch is implemented as a Mach-Zehnder in-
terferometer with embedded integrated EOMs. The main aim was to achieve
sub-ns switching with a high extinction and low latency, enabling advanced
feedforward protocols. In this article, apart from the switching capabilities,
we demonstrate active time multiplexing via the loop configuration of the
switch. Since the article was limited to four pages only, we enclose an exten-
ded discussion of the loop-based time multiplexing at the end of this chapter.
A resume of the article follows, the full article is enclosed below.

Fast splitting, switching, and routing of light are critical tools of photo-
nic technology in the rapidly developing fields of optical communication and
optical information processing. We have developed a low-latency switchable
coupler employing a high-visibility fiber MZI. We demonstrate fast switching
of the coupler by changing its operation between any splitting ratios in a
fraction of nanosecond. The splitting ratio is controlled using low-voltage
electronic signal compatible with the output of the majority of photodetec-
tors, which is crucial for utilization of the coupler in optical feedback and
feedforward circuits. We show outstanding performance of the reported de-
vice in two demanding applications, namely a balanced time-multiplexed
device for photon-number-resolving detectors and an active preparation of a
photonic time-bin encoded 4-level state with time-bin separation in the range
of tens of nanoseconds.

The developed coupler is based on a fiber MZI where the splitting ratio
can be switched by changing the optical phase using an integrated waveguide
EOM, see Fig. 5.1. The MZI was implemented to have high interference visi-
bility resulting in high extinction ratio, exceptional phase stability enabling a
long-term continuous operation (already discussed in the previous chapter),
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Figure 5.1: Simplified experimental scheme of the switchable coupler showing the
signal and reference beams entering the MZI and being separated at its output.
Phase dispersion compensator (PDC) and fiber stretcher (FS) are used to lock the
MZI phase based on the reference detection at the photodiodes (PD1,2). Integrated
electro-optic modulator (EOM) driven by FPGA based electronics is employed for
switching the coupler between arbitrary splitting ratios. The output signals are
detected by single-photon avalanche diodes (SPAD1,2).

and fast modulation with low overall latency between a control electronic sig-
nal and the response of the switching. In what follows we will discuss these
design goals and the corresponding features of the presented solution.

High interference visibility operation requires perfect indistinguishability
of interfering optical signals at the output of the MZI in all relevant degrees of
freedom, namely path, spatial mode, polarization, time, and frequency. The
path information is reduced by making the signals in both arms of the MZI
of the same intensity by slight tuning of losses. Also, the splitting ratio of
the output fiber splitter has to be close to 50:50. Spatial indistinguishability
is inherent in single-mode fiber implementation. Polarization-maintaining fi-
bers are utilized throughout the setup to keep the polarization constant in
time and the same for both the MZI arms. All connector splices are made to
minimize polarization crosstalk between the fiber axes, and additional polari-
zation filtering is also included. The MZI arms are carefully adjusted to have
the same optical path length using tunable air gaps. The difference between
the MZI arms is further minimized by placing the components symmetrically
in both arms. This is particularly important for the components exhibiting
strong dispersion such as integrated EOMs and dispersion compensators. Ha-
ving all these degrees of freedom under control and precisely adjusted, we
have reached the interference visibility of 99.55% in the optical bandwidth
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of 3 nm around 810 nm (equivalent to spectral bandwidth of 1.3 THz and
pulse length down to 300 fs). It results in switching with the extinction ratio
of 26 dB for continuous as well as pulsed optical signals.

The response time, also termed latency, of the realized switchable coupler
is given by the propagation delay of the optical signal from the input to
the output of the device and, also, by the response of the phase modulator
employed. The coupler is approximately 9 m long, which corresponds to the
delay of 45 ns. It can be decreased below 10 ns easily by reducing the pi-
gtail length of the constituent components and shortening the fiber stretcher
sacrificing its dynamic range. The waveguide integrated LiNbO3 EOM fea-
tures 10 GHz bandwidth with negligible impact on the overall latency. The
modulator is controlled by voltage signals within 0 – 2.2 V using electronic
pulse generator with 3.5 ns pulse width and 0.4 ns rise time for the response
characterization, and a field-programmable gate array (FPGA) with 10 ns
clock period to control complex measurement protocols. The FPGA was sup-
plemented with a GaAs FET 6-bit digital attenuator with the 0.5 dB step
to generate pulse sequences used for switching the coupler between arbitrary
splitting ratios.

Figure 5.2: (a) Examples of fast switching. Red and blue data points correspond
to two outputs of the interferometer. (b) Loop-based temporal multiplexing using
the reported switchable coupler: scheme of the experiment (up) and various con-
figurations of time-bin encoded 4-level photonic signal (down).

The time response was evaluated by setting a fixed initial splitting ratio
and sending an electronic control pulse to the coupler. The switching pro-
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cess was observed at the output ports while the single-photon level signal
was injected in the first input port of the device. The accumulated photon-
counting histograms are shown in Fig. 5.2(a) for various initial and target
splitting ratios to demonstrate arbitrariness of the switching. The data are
depicted without corrections, except for SPAD afterpulses subtraction (ma-
ximum 1% of the signal) and normalization, to show the temporal evolution
of the transmittance and reflectance. The switching speed determined as the
rise time (10%-90%) of the measured histograms is 0.7 ns, though the actual
response of the coupler switching is estimated to be less than 0.1 ns. The
limiting factors of the switching speed measurement were detection jitter,
the shape of the driving pulse, and time-tag resolution.

The input optical pulse can be multiplexed in many time bins when re-
flected part of the signal is fed from the output of the coupler to its input
to create a loop, as shown in Fig. 5.2(b). Electronic control pulses applied to
the EOM have to be synchronized with the optical pulse repeatedly passing
the coupler. This scheme follows the proposal of a time-multiplexed device
for photon-number-resolving detectors [74]. The reported switching protocol
can be generalized to arbitrary time multiplexing. We demonstrate full con-
trol over the amplitude of the individual time bins with the mean fidelity
of 98.9%. Several examples of time-bin encoded 4-level optical system are
depicted in Fig. 5.2(b). Tunable routing of the input signal to the resulting
time bins can be complemented by their arbitrary phase modulation using
EOMs in both the MZI arms. Starting from single photon input, such the
routing represents an efficient way of preparing a photonic multi-level system
(qudit). A second switchable coupler would be needed for the qudit analysis
at the receiver.

To conclude, we have presented the sub-nanosecond switchable coupler
optimized for routing faint optical signals and single photons. We have veri-
fied full tunability of the splitting ratio from 0:100 to 100:0 with the excep-
tional extinction of 26 dB. We have reached for the first time the balanced
operation of loop-based photon-number-resolving detector exploiting the full
control over the splitting ratio and ultimate stability of the developed coupler.
Furthermore, we have demonstrated the deterministic preparation of photo-
nic time-bin four-level qudit with a clock cycle of 60 ns using the presented
coupler and a single delay loop.
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Photonic routing is a key building block of many optical
applications challenging its development. We report a
2 × 2 photonic coupler with a splitting ratio switchable
by a low-voltage electronic signal with 10 GHz bandwidth
and tens of nanoseconds latency. The coupler can operate
at any splitting ratio ranging from 0:100 to 100:0 with the
extinction ratio of 26 dB in optical bandwidth of 1.3 THz.
We show sub-nanosecond switching between arbitrary
coupling regimes including a balanced 50:50 beam splitter,
0:100 switch, and a photonic tap. The core of the device
is based on a Mach–Zehnder interferometer in a dual-
wavelength configuration allowing real-time phase lock
with long-term sub-degree stability at single-photon level.
Using the reported coupler, we demonstrate for the first
time, to the best of our knowledge, a perfectly balanced
time-multiplexed device for photon-number-resolving
detectors and also the active preparation of a photonic tem-
poral qudit state up to four time bins. Verified long-term
stable operation of the coupler at the single-photon level
makes it suitable for a wide application range in quantum
information processing and quantum optics in general. ©
2019 Optical Society of America

https://doi.org/10.1364/OL.44.005844

Fast splitting, switching, and routing of light are critical tools of
photonic technology in the rapidly developing fields of optical
communication and optical information processing, including
demanding applications such as quantum cryptography [1],
neuromorphic computing [2,3], photonic simulations [4],
scalable boson sampling [5,6], universal quantum computing
[7], entanglement synthesizing [8], and photon counting [9]. In
the last few years, high-efficiency single-photon generation has
been demonstrated employing active time multiplexing [10–
12]. Optical switching has also facilitated a recent pioneering
demonstration of postselection-loophole-free violation of Bell’s
inequality with genuine time-bin entanglement [13].

The most advanced modulation, processing, and detection
schemes require ultra-low latency between the control signal
and the switch response, together with a large bandwidth and
high extinction. Furthermore, the continuous tunability with
an arbitrary splitting ratio is required [1,7]. The universal
routing device would also be able to coherently superpose two

incident signals acting as a coupler switchable between various
splitting ratios. Free-space polarization-based switchable cou-
plers using Pockels cells [6,8,9] feature ultra-low loss; however,
they require high switching voltage. Consequently, they can-
not provide continuous tunability, and it is very demanding
to reach ultra-low latency. An alternative technique utilizes
cross-phase modulation in a Sagnac interferometer driven by an
auxiliary strong optical pulse [14]. This approach is polarization
insensitive and exhibits medium loss and high speed; however,
the latency is high, making its usage impractical in most loop-
based schemes and temporal multiplexing in general. Another
approach employs electro-optic phase modulators (EOMs) in
a Mach–Zehnder interferometer (MZI) [13]. Using integrated
EOMs instead of free-space modulators, we can reach ultra-high
speed and low latency at the cost of increased loss.

The MZI operates as a 2× 2 variable beam splitter and allows
the continuous tuning of its splitting ratio. The main drawbacks
of the MZI-based switchable coupler are the extinction ratio
limited by visibility of the MZI and its phase instability causing
the drift of the splitting ratio. The visibility optimization is
particularly challenging in the case of a spectrally broad signal,
such as short optical pulses and the majority of single-photon
sources, and with dispersion elements utilized as a part of the
MZI. The phase stability issue can be addressed by active phase
locking, though it is notoriously difficult at a single-photon level
or with fluctuating input signal.

In this Letter, we present a low-latency switchable coupler
employing a high-visibility fiber MZI. An auxiliary light beam
is injected into the MZI, co-propagates with a single-photon
signal, and enables real-time continuous phase locking with a
unique sub-1 deg long-term stability. The picowatt-level aux-
iliary beam is wavelength separated with virtually no crosstalk
to the signal. We demonstrate fast switching of the coupler by
changing its operation between any splitting ratios in a frac-
tion of a nanosecond. The splitting ratio is controlled using
low-voltage electronic signal compatible with the output of the
majority of photodetectors, which is crucial for utilization of the
coupler in optical feedback and feedforward circuits. We show
outstanding performance of the reported device in two demand-
ing applications, namely, a balanced time-multiplexed device
for photon-number-resolving detectors and active preparation
of a photonic time-bin encoded four-level state with time-bin
separation in the range of tens of nanoseconds.

0146-9592/19/235844-04 Journal © 2019 Optical Society of America
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Fig. 1. Simplified experimental scheme of the switchable coupler
showing the signal and reference beams entering the MZI and being
separated at its output. Phase dispersion compensator (PDC) and
fiber stretcher (FS) are used to lock the MZI phase based on the refer-
ence detection at the photodiodes (PD1,2). Integrated electro-optic
modulator (EOM) driven by FPGA-based electronics is employed for
switching the coupler between arbitrary splitting ratios. The output
signals are detected by single-photon avalanche diodes (SPAD1,2).

The developed coupler is based on a fiber MZI where the
splitting ratio can be switched by changing an optical phase
using an integrated waveguide EOM (Fig. 1). The MZI was
implemented to have high interference visibility resulting in
a high extinction ratio, exceptional phase stability enabling
long-term continuous operation, and fast modulation with
low overall latency between a control electronic signal and the
response of the switching. In what follows, we will discuss these
design goals and the corresponding features of the presented
solution.

High-interference visibility operation requires perfect indis-
tinguishability of interfering optical signals at the output of the
MZI in all relevant degrees of freedom, namely, path, spatial
mode, polarization, time, and frequency. The path information
is reduced by making the signals in both arms of the MZI the
same intensity by slight tuning of losses. Also, the splitting ratio
of the output fiber splitter has to be close to 50:50. Spatial distin-
guishability is inherent in single-mode-fiber implementation.
Polarization-maintaining fibers are utilized throughout the
setup to keep the polarization constant in time and the same
for both MZI arms. All connector splices are made to minimize
polarization crosstalk between the fiber axes, and additional
polarization filtering is also included. The MZI arms are care-
fully adjusted to have the same optical path length using tunable
air gaps. The difference between the MZI arms is further mini-
mized by placing the components symmetrically in both arms.
This is particularly important for the components exhibiting
strong dispersion such as integrated EOMs and dispersion com-
pensators. Having all these degrees of freedom under control
and precisely adjusted, we have reached the interference visibil-
ity of 99.55% in the optical bandwidth of 3 nm around 810 nm
(equivalent to spectral bandwidth of 1.3 THz and pulse length
down to 300 fs). It results in switching with the extinction ratio
of 26 dB for continuous as well as pulsed optical signals.

A usual problem of interferometric circuits is a random phase
fluctuation caused by temperature changes, airflow, and vibra-
tions. These adverse effects can be only partially reduced using
passive methods such as thermal stabilization and acoustic and
vibration isolation. On-chip circuit implementations exhibit

improved stability; however, a few-degree drift per minute is
still present. Therefore, active stabilization is necessary to keep
the phase fluctuation small enough for advanced applications.
Particularly, long-term operation of the photonic routing circuit
with the ultimate extinction ratio requires a phase stability better
than 1 deg. Comparing the output signal to a fixed setpoint and
adjusting the phase based on the error signal represents a com-
mon solution in the case of the strong classical signal. However,
such an approach is fundamentally limited by a photocounting
noise when a weak optical signal is used [15]. Inherently stable
interferometers [16] or repeating the stabilization and mea-
surements steps [17] are possible solutions at the single-photon
level. The best-performing technique uses an auxiliary strong
optical reference co-propagating with the signal through the
MZI and enabling real-time phase lock. In fibers, the reference
and the signal overlap spatially and have to be multiplexed in
different degrees of freedom with the wavelength being the
typical choice [18]. We utilize 100 pW reference at 830 nm
obtained from a spectrally and single-mode filtered luminescent
diode. Its large spectral width of 10 nm allows for locking not
only the optical phase but also the autocorrelation maximum,
which signifies zero relative optical path of the interferometer.
The reference is separated at the output of the MZI using a
sequence of a polarizing beam splitter (PBS), quarter-wave plate
(QWP), and a 3 nm interference filter (IF) centered at 810 nm
acting together as a wavelength-selective optical isolator. The
transmitted signal is detected by single-photon avalanche
diodes, while the reflected reference impinges an ultra-sensitive
photodiode (PD) with NEP= 9 fW/

√
Hz. The amplified PD

signal from both MZI output ports is processed by a custom
proportional-integral-derivative (PID) controller with the
setpoint set at the maximum fringe slope and adaptively cor-
rected for amplitude fluctuations of the reference. The produced
electronic error signal is fed to a fiber stretcher (FS) with the
dynamic range of 35 µm. The stabilization bandwidth is set to
30 Hz. The crosstalk from the reference to the signal is below
10 photons/s (i.e., photon crosstalk probability below 10−6 for
100 ns time bin). To manipulate the relative phase between the
reference (locked to π/2) and the signal, we insert in the MZI
a custom-made dispersion compensator formed by two tilted
high-dispersion SF10 glass plates.

The response time, also termed latency, of the realized switch-
able coupler is given by the propagation delay of the optical
signal from the input to the output of the device and also by
the response of the phase modulator employed. The coupler
is approximately 9 m long, which corresponds to the delay of
45 ns. It can be decreased below 10 ns easily by reducing the
pigtail length of the constituent components and shortening the
FS, sacrificing its dynamic range. Further decreasing the latency
of the device seems to be superfluous especially when triggered
by free-running single-photon detectors considering their
typical recovery time of 10–30 ns. The waveguide integrated
LiNbO3 EOM features 10 GHz bandwidth with negligible
impact on the overall latency. The modulator is controlled by
voltage signals within 0–2.2 V using an electronic pulse genera-
tor with 3.5 ns pulse width and 0.4 ns rise time for the response
characterization, and a field-programmable gate array (FPGA)
with 10 ns clock period to control complex measurement pro-
tocols. The FPGA is supplemented with a GaAs 6-bit digital
attenuator with the 0.5 dB step to generate pulse sequences used
for switching the coupler between arbitrary splitting ratios.
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We have verified the stability of the splitting ratio during
continuous-wave operation and characterized the time response
of the coupler to a fast-changing control signal, to demonstrate
the outstanding performance of the developed coupler. The
long-term stability was characterized by acquiring the output
intensity for various fixed splitting ratios, particularly the most
sensitive 50:50 ratio. Noise spectrum of the coupler trans-
mittance shows 60 dB improvement for the actively real-time
stabilized coupler. Allan deviation reaches the value of 5× 10−4

for sub-second acquisition times (affected by detector fluctu-
ations) and exhibits a plateau at 10−4 for longer measurement
durations. This is equivalent to phase stability of 0.6 deg, i.e.,
the optical path difference of the coupler’s core interferometer is
kept smaller than 1.5 nm for dozens of minutes.

The time response was evaluated by setting a fixed initial
splitting ratio and sending an electronic control pulse to the
coupler. The switching process was observed at the output
ports while the single-photon level signal was injected in the
first input port of the device. The measurement was repeated
many times due to the random nature of the photon detection
process, and all detection events were recorded on a time tagger.
The accumulated photon-counting histograms are shown in
Fig. 2 for various initial and target splitting ratios to demonstrate
arbitrariness of the switching. The data are depicted without
corrections, except for single-photon avalanche diodes (SPAD)
afterpulses subtraction (maximum 1% of the signal) and nor-
malization, to show the temporal evolution of the transmittance
and reflectance. The switching speed determined as the rise time
(10%–90%) of the measured histograms is 0.7 ns, though the
actual response of the coupler switching is much faster. The
measurement is affected by the SPAD jitter (0.3 ns), the rise time
of the electronic control pulse (0.4 ns), and a resolution of the
time tagger (0.16 ns). After correcting for these contributions,
the rise time of the coupler switching is estimated to be less than
100 ps, which is compatible with the integrated EOM speed of
10 GHz.

Fig. 2. Examples of fast switching with the splitting ratios:
(a) 100 : 0→ 0 : 100, (b) 100 : 0→ 25 : 75, (c) 100 : 0→ 50 : 50,
(d) 100 : 0→ 75 : 25, (e) 50 : 50→ 0 : 100, and (f ) 55 : 45→
17 : 83. Red and blue data points correspond to two outputs of the
interferometer. The error bars are smaller than the data points.

Fig. 3. Loop-based temporal multiplexing using the reported
switchable coupler: (a) scheme of the experiment and (b)–(g) vari-
ous configurations of time-bin encoded four-level photonic signal.
Particularly, the panel (b) shows the balanced operation suitable for
time-multiplexed photon-number-resolving detection.

The input optical pulse can be multiplexed in many time bins
when the reflected part of the signal is fed from the output of
the coupler to its input to create a loop, as shown in Fig. 3(a).
Electronic control pulses applied to the EOM have to be syn-
chronized with the optical pulse repeatedly passing the coupler.
This scheme follows the proposal of a time-multiplexed device
for photon-number-resolving detectors [19]. Recently, the
scheme was experimentally verified, employing a binary switch
based on a free-space Pockels cell with the latency of 2.4 µs
corresponding to a fiber delay loop length of 480 m [9]. The
utilized fixed splitting ratio switching results in non-uniform
probability distribution of finding a photon in individual time
bins. Employing the tunable coupler reported here, we were
able to reach the fully balanced operation and, at the same time,
decrease the latency to 60 ns corresponding to a 12 m long fiber,
i.e., a direct connection between the output and input pigtails of
the coupler.

The reported switching protocol can be generalized to arbi-
trary time multiplexing. We demonstrate full control over the
amplitude of the individual time bins with the mean fidelity
of 98.9%. Several examples of the time-bin encoded four-level
optical system are depicted in Figs. 3(b)–3(g). The tunable
routing of the input signal to the resulting time bins can be com-
plemented by their arbitrary phase modulation using EOMs
in both MZI arms. Starting from single-photon input, such
routing represents an efficient way of preparing a photonic
multi-level system (qudit). A second switchable coupler would
be needed for qudit analysis at the receiver.

The overall loss of the coupler and the loop represents the
main limitation of a photon-number-resolving loop detector,
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as the signal is diminished in each cycle in the loop. The extinc-
tion ratio of the coupler determines the minimum probability
of releasing a photon before the first full cycle. Here, we have
focused on the extinction ratio and latency of the coupler and
not performed an extensive loss optimization; hence, the total
loss during a single cycle is approximately 80%. It limits the
multiplexing to four balanced time bins [Fig. 3(b)]. Using the
same fiber architecture with low-loss off-the-shelf compo-
nents, the total loss could be decreased down to approximately
50%, with the main contribution stemming from the integrated
EOM, which corresponds to eight balanced round trips. Further
loss reduction is expected with the promising development of
integrated phase modulators. Thin-film lithium-niobate EOM
with 100 GHz bandwidth and on-chip loss of 0.1 dB was
reported recently [20], though further reduction of the fiber-to-
chip coupling loss and improvement of the optical bandwidth
would be necessary to reach the presented coupler performance.
On-chip implementation of optical delay loops required for
loop-based detectors and computing represents another sig-
nificant challenge. Alternatively, a free-space configuration of
the whole circuit can be adopted using bulk modulators and
delay lines with estimated overall loss slightly below 10%. We
estimate time multiplexing to 30–40 of non-saturated equiprob-
able channels to be ultimately possible. It might be challenging,
however, to reach very low latency and large electronic band-
width due to high driving voltage required by bulk electro-optic
modulators. Ultimately, the response time can be reduced below
150 ns for discrete switching [6,8].

It is important to stress that the inevitable presence of losses
does not prevent utilization of the switchable coupler in a range
of single-photon application in the field of quantum technology.
Except for a few rare measurement protocols, e.g., conditioning
on the vacuum state, the finite efficiency can be corrected for.
The quality of the produced quantum state or quantum trans-
formation is not typically decreased by losses, but the rate of
the process is affected. Particularly, in applications employing
measurement in coincidence basis [21,22], the reported coupler
will perform nicely despite its nonzero loss.

We have presented a sub-nanosecond switchable coupler
optimized for routing faint optical signals and single photons.
The measured overall latency of the coupler is 45 ns with a
possibility of reduction below 20 ns, which is comparable with
the recovery time of the state-of-the-art single-photon detec-
tors. We have verified full tunability of the splitting ratio from
0:100 to 100:0 with the exceptional extinction of 26 dB and
unparalleled long-term stability of one part in 10,000. We have
reached for the first time the balanced operation of a loop-based
photon-number-resolving detector exploiting full control
over the splitting ratio and ultimate stability of the developed
coupler. Furthermore, we have demonstrated the deterministic
preparation of photonic time-bin four-level qudit with a clock
cycle of 60 ns using the presented coupler and a single delay
loop. We envision the use of the reported device in advanced
feedback-and feedforward-based schemes of electro-optical
control of light, where a detection of a fraction of the light signal
changes the splitting ratio of the remaining signal. The low-
latency switchable coupler is a key device instantly applicable in
a vast number of applications such as time-multiplexed single-
photon sources [11], photon-number-resolving detectors [9],

and various time-bin encoded communication protocols [13],
including quantum key distribution [1] and hyper-entangled
states preparation and measurement [23].
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Supplement: Loop-based time multiplexing
Here, we will provide a refined discussion of the time multiplexing schema-
tically depicted in Fig. 5.3. Incident pulse is distributed into n time bins
relatively delayed by ∆t, corresponding to the loop delay. Real-time cont-
rol of MZI transmittance T (t) enables arbitrary intensity distribution of the
output pulse train. Indeed, this approach is limited by the loop loss, here
expressed as the transmittance µ. The output intensity for n-th bin I

(n)
OUT

reads

I
(1)
OUT = IINT1

I
(n)
OUT = IIN [1 − T1] [1 − Tn]µn−1

n−1∏
i=2

Ti for n ≥ 2, (5.1)

where Ti describes the transmittance for i-th time bin, thus Ti = T (t0 + i∆t)
if t0 is the switching time of the first bin. This is a generic model of output

Figure 5.3: A scheme of loop-based time multiplexing using a MZI switch with
fast control of transmittance T (t). Incident pulse is split between an output and
a loop with delay ∆t and transmittance µ. For each roundtrip of the looped pulse
T (t) is modified, therefore an arbitrary train of n pulses is generated.

intensity distribution for given transmittances. However, it does not tell us
how to prepare a specific time-bin pattern. To prepare a specific time-bin
pattern, we have to first consider that we cannot set Ti directly, but we set
a phase in the MZI since

T = (1 + V cosφ)
2 . (5.2)

We can see that the transmittance setting is limited by the MZI visibility.
Using Eqs. (5.2) and (5.1), we can find the corresponding phase settings
for the MZI. In practice, we used an iterative algorithm instead of solving
these equations analytically. Mainly, we were interested in the regime of the
balanced multiplexing where I(i)

OUT = constant for all i. For this regime, we
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performed an analysis of imperfect phase settings and the limitation of n
(number of output pulses) due to setup loss.

This analysis of imperfect phase settings is important for the estimation of
the robustness of the protocol since, in real experiments, the phase switching
is discretized to a finite number of switching levels. For example, in [1], we
controlled the switching voltage by a 6-bit digital attenuator, achieving 64
switching levels. Also, the half-wave voltage of the phase modulation may
drift. In Fig. 5.4, we show how non-optimal phase settings influence the
balanced time multiplexing. This analysis is done for µ = 90%, extinction
200:1 and for n = 8 (blue), n = 12 (orange), and n = 16 (green). We simulate
the imperfect phase settings by adding a random offset to each Ti. The offsets
have Gaussian distribution with the standard deviation of 0.07% (left) and
0.7% (right).

Figure 5.4: Non-perfect voltage settings of balanced time multiplexing with µ =
90% and extinction 200:1 for n = 8 (blue), n = 12 (orange), and n = 16 (green).
This simulation is performed by adding random offsets to the optimal sequence of
transmittances. The offsets have Gaussian distribution with the standard deviation
of 0.07% (left) and 0.7% (right).

We can observe that the time multiplexing is very sensitive to phase
imperfections since even an error smaller than 1% significantly affects the
intensity distribution. This is caused mainly by very high (or low) transmit-
tances when the sequence is started. Then, a tiny deviation from the optimal
value significantly changes the output intensity. We can see, however, that the
error does not increase with the total number of time bins. This is correct
if the transmittances are not biased thus the mean value of the imperfect
transmittances is equal to the mean value of the perfect transmittances. To
satisfy this condition, we have to precisely stabilize the phase. In work [2], we
demonstrated a long-term phase stability of 0.05 degrees, which corresponds
to the relative phase error of 0.03%. Therefore, our MZI is capable of very
precise time multiplexing in this context.
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Loss per cycle (1 − µ) max cycles min step |Ti − Ti+1|
5% 60 0.01 %
10% 36 0.03 %
20% 20 0.06 %
50% 8 0.25 %
90% 3 2.3 %

Table 5.1: The maximum number of the balanced time bins for a given loss per
cycle (1 − µ), evaluated for 26 dB extinction. In the third column, a minimal step
between neighboring transmittances is computed.

The second type of analysis we performed is how the loss limits the num-
ber of balanced time bins. For a given loss, we maximized the number of time
bins, and we also evaluated the minimal step between neighboring transmit-
tances min(|Ti−Ti+1|). For this analysis, we used 26 dB extinction of our MZI
switch [1]. The results are summarized in Table 5.1. With the increasing loss,
the number of time bins rapidly decreases since the loss scales exponentially
with the number of roundtrips. Therefore, we were limited to 4 balanced
time bins in the work [1]. However, currently, we focus on an alternative
approach using free-space switching and a free-space delay line. Although
this approach is slower regarding the switching response and the repetition
rate (as discussed in Section 3.2.2), it can provide ultra-low losses. Recently,
we reached 6.5% of loss per roundtrip, enabling tens of balanced time bins.
Also, we developed a way how to switch between 25 partially dependent le-
vels with a single EOM, although conventional free-space switching provides
only a few discrete levels. Since the switching levels are very stable and each
is continuously adjustable for arbitrary modulation, we aim for at least 12
balanced time bins using this approach.

In the third column of Table 5.1, we show the minimal step between
neighboring transmittances min(|Ti − Ti+1|). This parameter is essential for
discrete switching, where continuous tuning of each level is impossible. For
example, this is the case of a digital attenuation of a driving pulse. Here,
the discretization leads to the modulation step of 2−b where b is the number
of bits. In practice, however, the transmittance step is not equidistant due
to the cosine dependence between the phase and transmittance described by
Eq. (5.2).

Balanced multiplexing is beneficial especially for photon-number resolving
detection. Conventionally, the photon-number resolving detection is perfor-
med by splitting the measured state between an array of single-photon de-
tectors. Instead of that, the time multiplexing splits the measured state into
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several time windows, using one single-photon detector solely. Additionally,
we can combine the path and time multiplexing. Then, the total number of
detection channels is given by a product of time and path channels. There-
fore, 12 balanced time bins split between an array of 10 detectors provide
120 detection channels.

So far, we have discussed the balanced operation of time multiplexing.
However, we can create an almost arbitrary time-bin pattern depending on
the properties of the switch and loop, as discussed above. For example, if
we perform the time-bin multiplexing of a single-photon state, we prepare a
time-bin qudit state

|ψ⟩ =
n∑

i=1
ai |ti⟩ , (5.3)

provided we can set a phase for each time bin. This can be easily done by
adding an EOM to the output. To demodulate the qudit state, a clone of
the time-bin multiplexing device has to be used. To perfectly overlap the
neighboring time bins, the mutual phase stability of both loops has to be
provided. Alternatively, a single time-multiplexing device can be used twice,
once for the qudit preparation and once for the demodulation (measurement).
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Chapter 6

Fock state conversion

In this chapter, we present theoretical and experimental research in probabi-
listic Fock state conversion [3]. The conversion is performed by linear optics,
with the core element being a feedforward-controlled photonic switch. Firstly,
we present a theoretical model of the conversion with the aim of maximizing
the conversion efficiency. Secondly, we experimentally demonstrate |2⟩ → |1⟩
conversion using an extended version of the photonic switch described in the
previous chapter. A resume of the article follows, the full article is enclosed
below.

Preparation and controlled manipulation of nonclassical states of light lies at
the heart of quantum optics and represents a key tool for the rapidly develo-
ping optical quantum technologies. Since the class of experimentally available
deterministic unitary operations on quantum states of light is rather limited,
it is extremely useful and fruitful to consider also probabilistic conditional
operations that significantly extend the scope of quantum states that could
be prepared, and transformations that could be implemented. The prime
examples of such operations are the conditional single-photon addition and
subtraction [76–83].

Here we study the model problem of conversion of a Fock state |m⟩ to a
Fock state |n⟩ with n < m by subtraction of m − n photons. We consider
a scheme involving k elementary photon subtraction blocks and we demon-
strate that the success probability of the scheme is maximized if we actively
and adaptively choose a suitable transmittance of the beam splitter in jth
subtraction block depending on the measurement outcomes of all the previ-
ous blocks. We experimentally demonstrate this feedforward-based protocol
for the conversion of a two-photon Fock state |2⟩ to the single-photon state
|1⟩ using an electronically controlled variable fiber beam splitter formed by
a Mach-Zehnder interferometer with electrooptics modulators placed in its
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arms [1]. Our measurement results clearly confirm the potential advantage
of the feedforward-based photon conversion scheme.

Figure 6.1: Fock state conversion schemes. (a) The simplest way of |2⟩ → |1⟩
conversion utilizing single beam splitter. (b) Feedforward-enhanced |2⟩ → |1⟩ con-
version using two beam splitters. (c) Generic scheme for |m⟩ → |n⟩ conversion
exploiting k beam splitters.

Let us illustrate the protocol principle on a simple case of |2⟩ to |1⟩
conversion. The most straightforward scheme uses one beam splitter and a
photon-number-resolving detector, as depicted in Fig. 6.1(a). The conversion
is successful if one photon is subtracted at the beam splitter and one photon
reaches the output. This occurs maximally in 50% cases for the beam splitter
transmittance T1 = 0.5. Now consider we add a second beam splitter with
feedforward-controlled transmittance T2 as shown in Fig. 6.1(b). If no photon
is subtracted at BS1, we repeat the subtraction attempt with BS2 set to
T2 = 0.5. However, if one photon is subtracted at BS1, we activate the feedfor-
ward to steer the remaining photon directly to the output (T2 = 1). Indeed,
another possibility is that both photons are subtracted at BS1, leading to
unsuccessful conversion. For this reason, T1 in two-step conversion has to
be higher than in single-step conversion to reach the maximal probability
of success. Specifically, for T1 = 2

3 the success probability is maximized to
66.7%.

We can extend the scheme to arbitrary |m⟩ → |n⟩ conversion using k
subtraction steps. The generic scheme depicted in Fig. 6.1(c) uses all me-
asurement outcomes to optimally set beam splitter transmittances Tj. The
following explanations illustrate the principles of calculating conversion pro-
babilities. However, for full understanding, we refer the reader to the publi-
cation below. The equation describing the probability of success P (m,n|k)
reads

P (m,n|k) =
m−n∑
j=0

(
m

j

)
Tm−j

1 (1 − T1)jPmax(m− j, n|k − 1). (6.1)

where Pmax(m,n|k) denote the maximum achievable conversion probability.
Pmax(m,n|k) can be solved by finding roots of the dT1 derivative of Eq. 6.1.
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Figure 6.2: Optimal photon conversion probabilities Pmax(m, n|k) are plotted for
6 combinations of m and n.

Figure 6.3: Experimental setup for feedforward-enhanced |2⟩ → |1⟩ conversion.
The main optical parts of the setup include a variable beam splitter BS1 and an
electrooptically switchable beam splitter BS2 implemented as Mach-Zehnder inter-
ferometer. The feedforward control of BS2 is triggered by detection of a photon in
the output port AUX1. Legend: laser diode (LD), half-wave plate (HWP), polari-
zation beam splitter (PBS), phase dispersion compensator (PDC), fiber stretcher
(FS), electro-optic phase modulator (EOM), quarter-wave plate (QWP), photodi-
ode (PD), single-photon detector (D), interference filter (IF).

The whole process of finding Pmax(m,n|k) is iterative, starting from the sim-
plest cases of conversion. In Fig. 6.2, we show maximal conversion probabi-
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lities depending on the number of subtraction steps. For 9 conversion steps,
the probability of success varies around 85%, depending on the conversion
type. Increasing the number of subtraction steps leads to asymptotically de-
terministic conversion. However, in practice, detection efficiency is finite, and
the scheme is affected by losses. As a consequence, the probability of success
is smaller than optimal, and the produced output state becomes a mixture
of Fock states. Despite these facts, we found out that the scheme remains
beneficial even for inefficient detection and for a certain amount of losses.
Details are included in the publication below.

Figure 6.4: (a) Table of coincidence tagging, where C(i, j) denotes a coincidence
event between detector Di and Dj . For neighbouring detectors an event is counted
twice, because if two photons reach the same output port AUX1, AUX2 or OUT,
they trigger the coincidence event only with 50% probability. (b) Experimental
results of conversion probability Pexp(2, 1|k) for k = 1, 2 depending on effective
spitting ratio Teff. Blue dots representing data of feedforward-enhanced conversion
k = 2 are plotted against the single beam splitter conversion k = 1 shown as red
dots. Black and grey lines represent upper bounds for the ideal conversion. Error
bars are smaller than the point size.

Now let us describe a proof-of-principle experimental demonstration of
feedforward-enhanced |2⟩ → |1⟩ Fock state conversion as sketched in Fig.
6.1(b). The main aim of our experiment is to verify the feasibility of feed-
forward-controlled photon subtraction and demonstrate the potential advan-
tage of feedforward-based scheme in comparison to the elementary single-step
photon subtraction block in Fig. 6.1(a). The experiment is therefore designed
such as to emulate a perfect lossless setup for both schemes. We overcome the
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optical losses and finite detection efficiency by effectively balancing the losses
in all channels and measuring two-photon coincidence events that indicate
either success or failure of the Fock state conversion. We thus postselect only
the cases when both input photons reach the single photon detectors and are
detected. In this approach, the overall losses are factored out and cancelled in
the calculation of the effective success probabilities of both schemes, that are
determined as ratios of the measured two-photon coincidence counts. Addi-
tionally, the projection onto the two-photon subspace enables us to emulate
the two-photon source with a highly attenuated coherent state.

Our experimental setup is depicted in Fig. 6.3. An attenuated laser diode
periodically driven by 1 ns pulses at 2 MHz repetition rate produces signal
photons at 810 nm. The signal passes through a tunable beam splitter BS1
realized as a sequence of a half-wave plate and a polarization beam splitter.
Subsequently, the signal enters a switchable beam splitter BS2 implemented
as a Mach-Zehnder interferometer described in the previous chapter. To pro-
vide the projection into a two-photon subspace, we need to discriminate at
least between Fock states |2⟩ and |1⟩ at each output. We simplify generic
photon-number-resolving detection by splitting the signal between two sili-
con avalanche photodiodes with detection efficiencies around 65%. To trigger
the feedforward control of BS2, electronic pulses generated by D1A and D1B
are utilized. The pulses are merged, set to π/2 modulation voltage, and fed
into an EOM.

Results of feedforward-enhanced |2⟩ → |1⟩ conversion are shown in Fig. 6.4(b).
For comparison, we include data of single beam splitter conversion achieved
by deactivation of the feedforward. Our results show that the proposed pro-
tocol can work experimentally with nearly ideal performance. Extension to
arbitrary |m⟩ → |n⟩ conversion is possible, provided additional detection
multiplexing is implemented. To improve the probability of success, an ex-
tension of the experimental setup up to k beam splitters would be necessary.
A resource-efficient approach would be reusing single beam splitter for k ti-
mes in a loop [84, 85]. Although our fiber-based experimental setup is not
suitable for cascading due to a high amount of loss, an alternative approach
using free-space electrooptic modulator-based switches would be convenient.
The loss can be reduced below 10% per cycle, making it practical even wi-
thout a coincidence basis.

In summary, we have proposed and experimentally demonstrated a feed-
forward-enhanced scheme for optical Fock state conversion via multiple pho-
ton subtraction. In our approach, we use all preceding measurements out-
comes to optimally set transmittances of tapping beam splitters. Our fin-
dings clearly demonstrate the usefulness and advantages of the presented
feedforward-based method.
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Abstract: Engineering quantum states of light represents a crucial task in the vast majority
of photonic quantum technology applications. Direct manipulation of the number of photons
in the light signal, such as single-photon subtraction and addition, proved to be an efficient
strategy for the task. Here we propose an adaptive multi-photon subtraction scheme where a
particular subtraction task is conditioned by all previous subtraction events in order to maximize
the probability of successful subtraction. We theoretically illustrate this technique on the model
example of conversion of Fock states via photon subtraction. We also experimentally demonstrate
the core building block of the proposal by implementing a feedforward-assisted conversion of
two-photon state to a single-photon state. Our experiment combines two elementary photon
subtraction blocks where the splitting ratio of the second subtraction beam splitter is affected by
the measurement result from the first subtraction block in real time using an ultra-fast feedforward
loop. The reported optimized photon subtraction scheme applies to a broad range of photonic
states, including highly nonclassical Fock states and squeezed light, advancing the photonic
quantum toolbox.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Preparation and controlled manipulation of nonclassical states of light lies at the heart of quantum
optics and represents a key tool for the rapidly developing optical quantum technologies. Since
the class of experimentally available deterministic unitary operations on quantum states of light
is rather limited, it is extremely useful and fruitful to consider also probabilistic conditional
operations that significantly extend the scope of quantum states that could be prepared, and
transformations that could be implemented. The prime examples of such operations are the
conditional single-photon addition and subtraction [1–8]. These elementary operations can
be utilized to generate highly non-classical states with negative Wigner function [3,4,8–12],
implement various optical quantum gates and operations [13–18], realize probabilistic noiseless
quantum amplifiers [19,20], distill continuous-variable entanglement [21–23] or to probe the
fundamental properties of quantum mechanics [24,25]. Also many alternative schemes for optical
quantum state preparation and manipulation via conditional single-photon or homodyne detection
have been proposed and demonstrated [26–30].

Conditional photon subtraction can be performed by sending the light beam at a beam splitter
that taps off a part of the signal that is subsequently measured with a single photon detector
whose click heralds the photon subtraction. In the experiments one usually employs a highly
unbalanced beam splitter to reduce the negative influence of imperfect photon detection with
non-unit efficiency η. This makes the experimental photon subtraction closer to the action of
annihilation operator â, however at the expense of reduced success probability. With the advent
of superconducting single-photon detectors and rapidly improved quantum detection efficiencies
exceeding 90% [31,32] it nevertheless becomes relevant to investigate also a different regime of

#385609 https://doi.org/10.1364/OE.385609
Journal © 2020 Received 18 Dec 2019; revised 18 Feb 2020; accepted 18 Feb 2020; published 6 Apr 2020
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approximate photon subtraction where one attempts to maximize the success probability by a
suitable choice of the transmittances of the tapping beam splitters.
It was shown previously that the success probability of photon subtraction from a travelling

beam of light can be increased by a feedforward-controlled loop-based scheme [33,34] where the
light beam is repeatedly injected into the photon subtraction device until a subtraction event is
detected. This approach enables asymptotically deterministic photon subtraction. The resulting
subtraction operation depends on the input state and can be generally expressed as a mixture of
quantum filters tkn̂â [34], where n̂ is the photon number operator, k is the number of loops the
light beam has passed until a photon was subtracted, and |t| < 1 is the beam splitter amplitude
transmittance. In this paper we further investigate the advantages of feedforward-based photon
subtraction and we consider general multi-photon subtraction schemes involving a sequence of
several elementary photon subtraction blocks, where the transmittance of each tapping beam
splitter is controlled by measurement results from all preceding elementary photon subtraction
blocks.

Specifically, we study the model problem of conversion of a Fock state |m〉 to a Fock state |n〉
with n < m by subtraction of m−n photons. We consider a scheme involving k elementary photon
subtraction blocks and we demonstrate that the success probability of the scheme is maximized if
we actively and adaptively choose a suitable transmittance of the beam splitter in jth subtraction
block depending on the measurement outcomes of all the previous blocks. We find that this
advantage of feedforward persists even for inefficient detectors and certain amount of optical
losses. We experimentally demonstrate this feedforward-based protocol for the conversion of a
two-photon Fock state |2〉 to the single-photon state |1〉 using an electronically controlled variable
fiber beam splitter formed by a Mach-Zehnder interferometer with electrooptics modulators
placed in its arms [35]. Our measurement results clearly confirm the potential advantage of the
feedforward-based photon conversion scheme.
We note that efficient extraction of a single or several photons from a light beam can be

also implemented with the use of quantum light-atoms interactions [36,37]. The interaction of
electromagnetic field in a cavity with atoms flying through it may also serve for quantum non-
demolition photon counting with applications including observation of progressive quantum state
collapse, preparation and stabilization of Fock states of the field and tomographic characterization
of the cavity field states [38–41]. The atom based schemes are very promising but also very
technologically demanding. Here we instead focus on simple and practicable all-optical setups
with the goal to design schemes exhibiting high success probability while requiring only a few
tunable beam splitters and single photon detectors.
The rest of the paper is organized as follows. Theoretical description and analysis of the

protocol is provided in Section 2. The experimental setup is described in Section 3 where also the
experimental results are presented and discussed. Finally, Section 4 contains brief conclusions.

2. Theory

Here we present theoretical derivation of optimal feedforward-based schemes for conversion
of optical Fock state |m〉 to Fock state |n〉 via subtraction of m − n photons. We first describe
the method on the illustrative example of conversion of a two-photon Fock state |2〉 to the
single-photon state |1〉 and then generalize the procedure to arbitrary |m〉 → |n〉 conversion with
m > n. The |2〉 → |1〉 conversion can be accomplished by single photon subtraction, whose
simplest instance is depicted in Fig. 1(a). The input Fock state |2〉 impinges on a beam splitter
with amplitude transmittance t and reflectance r, where it is transformed into an entangled state
of output spatial modes A and B,

|2〉A |0〉B → t2 |2〉A |0〉B +
√
2tr |1〉A |1〉B + r2 |0〉A |2〉B. (1)
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The output auxiliarymode B ismeasuredwith a photon number resolving detector. The conversion
is successful if a single photon is detected, which occurs with probability P(2, 1) = 2T(1 − T),
where T = t2 = 1 − r2. This probability is maximized for T = 1

2 and we get Pmax(2, 1) = 1
2 . If

the detector on output mode B detects two photons, then the input state is destroyed and cannot
be recovered. However, if no photons are detected, then we know that the output state of mode
A is still the two-photon Fock state |2〉 and we can attempt to repeat the photon subtraction.
The resulting feedforward-enhanced scheme is shown in Fig. 1(b). A second beam splitter and
detector are placed after the first beam splitter, and the transmittance of the second beam splitter
is controlled by the feedforward signal from the first detector. Let T1 and T2 denote the intensity
transmittances of the first and second beam splitter, respectively. If the first detector detects one
photon, then T2 is set to 1. On the other hand, if the first detector detects no photons, then T2 is
set to 1

2 . The overall success probability of this two-stage conversion scheme reads

P(2, 1|2) = T2
1 ×

1
2
+ 2T1(1 − T1) × 1 = 2T1 − 3

2
T2
1 . (2)

This probability is maximized for T1 =
2
3 , and we get Pmax(2, 1|2) = 2

3 .

Fig. 1. Fock state conversion schemes. (a) The simplest way of |2〉 → |1〉 conversion
utilizing single beam splitter. (b) Feedforward-enhanced |2〉 → |1〉 conversion using two
beam splitters. (c) Generic scheme for |m〉 → |n〉 conversion exploiting k beam splitters.

We now present a generic protocol for k-step conversion of Fock state |m〉 to Fock state
|n〉, where m > n and k ≥ 1 denotes the number of elementary photon subtraction steps. The
scheme is illustrated in Fig. 1(c) where the transmittance Tj of beam splitter BSj is controlled
by the measurement outcomes of all preceding detectors Dl, l < j. Let Pmax(m, n|k) denote the
maximum achievable conversion probability with k steps. Suppose that we have found all optimal
probabilities Pmax(m − j, n|k − 1). Considering the scheme in Fig. 1(c) as a combination of the
first beam splitter and detector and a block performing optimal feedforward controlled conversion
with k − 1 steps, we can write

P(m, n|k) =
m−n∑
j=0

(
m
j

)
Tm−j
1 (1 − T1)jPmax(m − j, n|k − 1). (3)

The optimal transmittance T1 can be determined by finding roots of the polynomial
dP(m, n|k)

dT1
= 0 (4)

and choosing the root that lies in the interval [0, 1] and maximizes P(m, n|k). Explicitly, the
polynomial equation reads

m−n∑
j=0

(
m
j

)
Tm−j−1
1 (1 − T1)j−1[(m − j)(1 − T1) − jT1]Pmax(m − j, n|k − 1) = 0. (5)

There are n − 1 non-optimal roots T1 = 0 and if we divide the Eq. (5) by Tn−1
1 we end up with a

polynomial equation of order m − n that can be solved either numerically or even analytically for
m − n ≤ 4.
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The optimal probability Pmax(m, n|k) can be calculated iteratively. It is useful to formally
define Pmax(m, n|0) = 0, m > n > 0, and we also have that Pmax(m,m|k) = 1. Specifically,
we first determine Pmax(n + 1, n|j) starting from j = 1 and proceeding up to j = k. We then
continue with determination of Pmax(n + 2, n|j), 1 ≤ j ≤ k, and we repeat the whole calculation
for all Pmax(n + l, n|j) with increasing l until we reach n + l = m. In Fig. 2 we plot the optimal
probabilities Pmax(m, n|k) for 6 combinations of m and n and for up to 9 subtraction steps. We
can see that the conversion probability increases with the number of steps k and asymptotically
approaches 1.

Fig. 2. Optimal photon conversion probabilities Pmax(m, n|k) are plotted for 6 combinations
of m and n.

Imperfect single photon detectors with non-unit detection efficiency η will lead to production
of mixtures of various Fock states. The errors in conditional single photon subtraction due to
imperfect detection can be reduced by using highly unbalanced beam splitter at the expense of
reducing the overall success probability of the protocol. Since we here instead study the regime
that maximizes the probability of state conversion, imperfect detection will unavoidably play a
role. Let us illustrate this on the above considered example of |2〉 → |1〉 conversion. Remarkably,
the normalized conditional output state ρout is the same for both single-step conversion with
T1 =

1
2 and two-step conversion with T1 =

2
3 and T2 =

1
2 or T2 = 1,

ρout =
1

2 − η |1〉〈1| +
1 − η
2 − η |0〉〈0|. (6)

The overall probabilities of state preparation for the single- and two-step schemes exhibit similar
dependence on η,

P(2, 1|1, η) = 1
2
η(2 − η), P(2, 1|2, η) = 2

3
η(2 − η), (7)

however with different prefactors. This shows that the advantage of feedforward-based scheme
is preserved even for inefficient detection. Specifically, for a given output state quality we may
achieve higher state preparation probability with feedforward.

Since the feedforward-controlled switchable beam splitter will in practice introduce additional
optical losses, we now investigate amore refinedmodel of the setup in Fig. 1(b)with a lossy channel
with transmittance ηO inserted in between the beam splitters BS1 and BS2, see inset in Fig. 3(b).
We assume that ηO is constant and does not depend on the setting of the transmittance of BS2,
which is well justified for setups based on interferometric schemes with feedforward-controlled
electrooptic modulators. In order to compare the feedforward-based scheme with the elementary
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photon subtraction block in Fig. 1(a), we again consider the |2〉 → |1〉 Fock state conversion and
we investigate the trade-off between the state conversion probability P(2, 1) and the single-photon
fraction p1 in the conditionally generated output state ρout = p1 |1〉〈1| + (1 − p1)|0〉〈0|. For the
elementary photon subtraction block in Fig. 1(a) we get a simple parametric dependence of
P(2, 1) and p1 on the transmittance T of beam splitter BS,

P(2, 1) = 2η(1 − T)[1 − (1 − T)η], p1 =
T

1 − (1 − T)η . (8)

For η ≥ 1
2 the maximum achievable probability of state conversion is 1

2 , achieved for T = 1 − 1
2η .

At this point, p1 = 2 − 1
η . For η <

1
2 the maximum probability reads 2η(1 − η), which is however

approached in the undesirable limit T → 0, when also p1 → 0. On the other hand, in the limit
T → 1 also p1 → 1 but at the cost of vanishing success probability, P(2, 1) → 0, a well-known
limit of the standard photon subtraction scheme. The trade-off between P(2,1) and p1 for the
elementary photon subtraction block is plotted in Fig. 3 as blue solid line for two different η.
The choice η = 60% corresponds to detection of photons with (an array of) ordinary avalanche
photodiodes while η = 0.85% illustrates the performance for highly efficient detectors such as
superconducting single photon detectors.

Fig. 3. Trade-off between probability of 2 → 1 Fock state conversion P(2, 1) and the
single-photon fraction p1 in the output state is displayed for two different detection efficiencies
η = 0.6 (a) and η = 0.85 (b). The blue solid line represents result for the elementary photon
subtraction block in Fig. 1(a). Black lines show results of the feedforward-based scheme
with additional optical losses quantified by the effective transmittance η0. The various lines
in panel (a) correspond to ηO = 0.9 (solid line), 0.8 (dashed line), 0.7 (dot-dashed line)
and 0.6 (dotted line) while the lines on panel (b) are plotted for ηO = 0.95 (solid line), 0.9
(dashed line) and 0.85 (dash-dotted line). The inset in panel (b) shows the optical model of
the feedforward-based scheme with included optical losses of the switchable beam splitter
BS2.

For the feedforward-based scheme with additional optical losses where the transmittance of
BS2 is actively switched between T2 and 1, we obtain

P(2, 1) = 2η {1 − T1 − η + ηT1[2 − T1 − ηO(1 − T2)(1 − T1 + ηOT1(1 − T2))] + ηOT1(1 − T2)} ,

p1 =
ηOT1[1 − T1 + ηOT1T2(1 − T2)]

1 − T1 − η + ηT1[2 − T1 − ηO(1 − T2)(1 − T1 + ηOT1(1 − T2))] + ηOT1(1 − T2) . (9)

For any given η, ηO and target conversion probability P(2, 1) we numerically optimize T1 and
T2 to achieve maximum single-photon fraction p1 in the output state. The results of numerical
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optimization are plotted in Fig. 3 for two different detection efficiencies η and several different
levels of added optical loss. The maximum achievable single-photon fraction is limited by the
additional optical losses, p1 ≤ ηO. If ηO(3η − 1) ≥ 1, then the maximum conversion probability
reads Pmax(2, 1) = 2

3 , and is obtained for

T1 =
3η − 1
3η

, T2 = 1 − 1
ηO(3η − 1) . (10)

The single photon fraction achieved at this point reads

p1 = 2ηO − 1 + 2ηO

3η
. (11)

The graphs in Fig. 3 indicate that the feedforward-based scheme becomes advantageous provided
that ηO & η, i.e. the additional optical losses should be comparable to or smaller than the
effective losses in single-photon detection. In our proof-of-principle fiber-based experiment
at 810 nm reported below, the losses imposed by electrooptic modulators and other optical
components result in ηO . 20%. However, an alternative approach using free-space electrooptic
modulator based switches could reduce losses below 10%, yielding ηO & 90%, making the
scheme applicable in practice.

3. Experiment

In this Section we report on a proof-of-principle experimental demonstration of feedforward-
enhanced |2〉 → |1〉 Fock state conversion as sketched in Fig. 1(b). Themain aimof our experiment
is to verify the feasibility of feedforward-controlled photon subtraction and demonstrate the
potential advantage of feedforward-based scheme in comparison to the elementary single-
step photon subtraction block in Fig. 1(a). The experiment is therefore designed such as to
emulate a perfect lossless setup for both schemes. We overcome the optical losses and finite
detection efficiency by effectively balancing the losses in all channels and measuring two-photon
coincidence events that indicate either success or failure of the Fock state conversion. We thus
postselect only the cases when both input photons reach the single photon detectors and are
detected. In this approach, the overall losses are factored out and cancelled in the calculation of
the effective success probabilities of both schemes, that are determined as ratios of the measured
two-photon coincidence counts. Additionally, the projection onto the two-photon subspace
enables us to emulate the two-photon source with a highly attenuated coherent state.
Our experimental setup is depicted in Fig. 4. An attenuated laser diode periodically driven

by 1 ns pulses at 2 MHz repetition rate produces signal photons at 810 nm. The signal passes
through tunable beam splitter BS1 realized as a sequence of a half-wave plate and a polarization
beam splitter. Subsequently, the signal enters switchable beam splitter BS2 implemented as a
Mach-Zehnder interferometer (MZI) with a 10 GHz integrated electro-optic phase modulator
PM-0K5-10-PFU-PFU-810-UL from EOSpace (EOM), enabling low-voltage and low-latency
switching performance [35]. While the phase control is performed in an 8 m long MZI part
formed of polarization-maintaining fibers, precise arm balancing, and dispersion compensation
are done in 1 m long air gap. As a result, we reach the interference visibility 99.55% enabling
the switching with extinction greater than 400:1. The MZI has an overall transmission of ∼ 20%.
Due to the presence of environmentally induced phase fluctuations in MZI, an active phase-lock
is implemented. It exploits auxiliary light at 830 nm acting as a phase reference. Particularly, we
use a single-mode coupled luminescent diode with additional polarization and spectral filtering
resulting in 3 nm bandwidth and power of 100 pW. The reference and the signal are merged and
co-propagate through the MZI. Subsequently, at the outputs, the wavelengths are separated with
a sequence of a polarizing beam splitter, a quarter-wave plate, and an interference filter acting
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together as an optical isolator. Phase fluctuations are monitored with ultra-sensitive photodiodes,
evaluated with a custom-made analog proportional-integral-derivative (PID) controller, and
compensated with a fiber stretcher performing at 1 kHz bandwidth and dynamic range of 35 µm.
Our technique provides continuous tunability and sub-degree stability of the phase.

Fig. 4. Experimental setup for feedforward-enhanced |2〉 → |1〉 Fock state conversion. The
main optical parts of the setup include a variable beam splitter BS1 and an electrooptically
switchable beam splitter BS2 implemented asMach-Zehnder interferometer. The feedforward
control of BS2 is triggered by detection of a photon in the output port AUX1. Legend: laser
diode (LD), half-wave plate (HWP), polarization beam splitter (PBS), phase dispersion
compensator (PDC), fiber stretcher (FS), electro-optic phase modulator (EOM), quarter-wave
plate (QWP), photodiode (PD), single-photon detector (D), interference filter (IF).

To provide the projection into two-photon subspace we need to discriminate at least between
Fock states |2〉 and |1〉 at each output. We simplify generic photon number resolving detection by
splitting the signal between two silicon avalanche photo-diodes with detection efficiencies around
65%. However, compared to the ideal photon number resolving detection we can discriminate the
Fock state |2〉 only with 50% probability, which we take into account in data analysis. To provide
balanced detection we optimize the setup to achieve equal click probabilities for neighbouring
detectors DjA and DjB. Since loss in AUX1 port is much smaller than loss induced by BS2
we modify the splitting ratio of BS1 in order to compensate the imbalance. This approach is
equivalent to imposing an additional artificial loss in the AUX1 port. It is then relevant to evaluate
the effective splitting ratio of BS1 as the ratio of the signal detected at AUX2 and OUT ports to
signal detected at AUX1 port. Particularly, we determine the effective transmittance Teff of BS1
as (N0A +N0B +N2A +N2B)/(N0A +N0B +N1A +N1B +N2A +N2B) where Ni denotes count rate
at detector Di. In our experiment, Teff acts the same way as T1 in the lossless case described by
Eq. (2). To trigger the feedforward control of BS2, electronic pulses generated by D1A and D1B
are utilized. The pulses are merged, set to π/2 modulation voltage and fed into EOM. To reach
the same shape and timing of the pulses, discriminators and delay lines are used (not shown in
the scheme).
For data collection and processing, a custom made 16-channel coincidence unit is utilized

[42]. To avoid random detection events, the measurement is triggered by the laser diode driving
pulse. We detect all of the possible 15 combinations of two-coincidences as listed in Fig. 5(a). A
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coincidence event is tagged as successful if one photon of the pair is detected at the output signal
port OUT, while the other photon is heralded at AUX1 or AUX2 port. All other coincidence
events are tagged as unsuccessful. Events discriminated only with 50% probability are counted
with double rate. The effective success probability of conversion is then determined as the ratio
of successful coincidence counts to all coincidence counts. The input coherent state contains a
small amount of higher photon-number states that may be falsely indicated as two-coincidences
and influence the results. Evaluating higher-order coincidences we estimate that spurious
two-coincidences form ∼1% of the signal causing a relative error of 0.4% in the worst case.
Further reduction of the error is achievable by additional attenuation of the signal source, however,
at the expense of a decreased rate of the two-photon state.

Fig. 5. (a) Table of coincidence tagging, where C(i, j) denotes a coincidence event between
detector Di and Dj. For neighbouring detectors an event is counted twice, because if two
photons reach the same output port AUX1, AUX2 or OUT, they trigger the coincidence event
only with 50% probability. (b) Experimental results of conversion probability Pexp(2, 1|k) for
k = 1, 2 depending on effective spitting ratio Teff. Blue dots representing data of feedforward-
enhanced conversion k = 2 are plotted against the single beam splitter conversion k = 1
shown as red dots. Black and grey lines represent upper bounds for the ideal conversion.
Error bars are smaller than the point size.

Results of feedforward-enhanced |2〉 → |1〉 conversion are shown in Fig. 5(b). For comparison,
we include data of single beam splitter conversion achieved by deactivation of the feedforward.
According to Eq. (2), the best possible performance Pmax(2, 1|2) = 66.7% is predicted for
T1 = 66.7%. Experimentally we reach a very close value of Pexp(2, 1|2) = (66.0 ± 0.1)% for
Teff = (66.30 ± 0.05)%. Error caused by spurious coincidences is estimated as 0.2%.

Our results show that the proposed protocol can work experimentally with nearly ideal
performance. Extension to arbitrary |m〉 → |n〉 conversion is possible, provided additional
detection multiplexing would be used. To improve the probability of success, an extension of the
experimental setup up to k beam splitters would be necessary. A resource-efficient approach
would be reusing single beam splitter for k times in a loop [33,34]. Although our fiber-based
experimental setup is not suitable for cascading due to a high amount of loss, an alternative
approach using free-space electrooptic modulator based switches would be convenient. The loss
can be reduced below 10% per cycle, making it practical even without the need of a coincidence
basis. The limitation of this approach is the higher latency of the feedforward estimated to tens
of nanoseconds ultimately [43–45].
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4. Conclusion

In summary, we have proposed and experimentally demonstrated a feedforward-enhanced scheme
for optical Fock state conversion via photon subtraction. In our approach, the transmittances of
tapping beam splitters are controlled by all procedening measurement outcomes to maximize the
success probability of photon subtraction for a given setup complexity, i.e. a given maximum
number of elementary photon subtraction blocks. Our results for |2〉 → |1〉 conversion are
directly applicable to single photon subtraction from a single-mode weakly squeezed vacuum state
that can be approximated as |0〉 + ε |2〉, since the dominant vacuum term does not contribute to
the subtraction. Our findings clearly demonstrate the usefulness and advantages of the presented
feedforward-based method, which can be utilized for an arbitrary input state. Note however, that
for input superpositions of Fock states, the output state would depend on the overall transmittance
of the beam splitters hence a mixed state would be generated even with perfect detection. In such
case one could investigate the trade-off between state preparation quality, as quantified e.g. by
state fidelity, and success probability of the protocol and choose the most suitable operating point.

Funding

Grantová Agentura České Republiky (19-19189S); Univerzita Palackého v Olomouci (IGA-PrF-
2019-010).

Acknowledgments

We thank Michal Dudka for the development and implementation of custom electronics.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,”

Phys. Rev. Lett. 92(15), 153601 (2004).
2. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of

light,” Science 306(5696), 660–662 (2004).
3. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum

information processing,” Science 312(5770), 83–86 (2006).
4. J. Neergaard-Nielsen, B. Nielsen, C. Hettich, K. Mølmer, and E. Polzik, “Generation of a superposition of odd photon

number states for quantum information networks,” Phys. Rev. Lett. 97(8), 083604 (2006).
5. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically

poled KTiOPO 4,” Opt. Express 15(6), 3568–3574 (2007).
6. N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on

photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics
4(9), 655–660 (2010).

7. M. Bellini and A. Zavatta, “Manipulating light states by single-photon addition and subtraction,” in Prog. Optics, vol.
55 (Elsevier, 2010), pp. 41–83.

8. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E.
Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed
vacuum,” Phys. Rev. A 82(3), 031802 (2010).

9. A. Ourjoumtsev, F. Ferreyrol, R. Tualle-Brouri, and P. Grangier, “Preparation of non-local superpositions of
quasi-classical light states,” Nat. Phys. 5(3), 189–192 (2009).

10. J. Neergaard-Nielsen, M. Takeuchi, K. Wakui, H. Takahashi, K. Hayasaka, M. Takeoka, and M. Sasaki, “Optical
continuous-variable qubit,” Phys. Rev. Lett. 105(5), 053602 (2010).

11. O. Magana-Loaiza, R. d. J. Leon-Montiel, A. Perez-Leija, A. URen, C. You, K. Busch, A. Lita, S. Nam, R.
Mirin, and T. Gerrits, “Multiphoton Quantum-State Engineering using Conditional Measurements,” arXiv preprint
arXiv:1901.00122 (2019).

12. M. Cooper, L. J. Wright, C. Söller, and B. J. Smith, “Experimental generation of multi-photon Fock states,” Opt.
Express 21(5), 5309–5317 (2013).

13. J. Fiurášek, “Engineering quantum operations on traveling light beams by multiple photon addition and subtraction,”
Phys. Rev. A 80(5), 053822 (2009).



Research Article Vol. 28, No. 8 / 13 April 2020 / Optics Express 11643

14. P. Marek and J. Fiurášek, “Elementary gates for quantum information with superposed coherent states,” Phys. Rev. A
82(1), 014304 (2010).

15. A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Ježek, and U. Andersen, “Experimental demonstration of a
Hadamard gate for coherent state qubits,” Phys. Rev. A 84(5), 050301 (2011).

16. R. Blandino, F. Ferreyrol, M. Barbieri, P. Grangier, and R. Tualle-Brouri, “Characterization of a π-phase shift
quantum gate for coherent-state qubits,” New J. Phys. 14(1), 013017 (2012).

17. A. Coelho, L. Costanzo, A. Zavatta, C. Hughes, M. Kim, and M. Bellini, “Universal continuous-variable state
orthogonalizer and qubit generator,” Phys. Rev. Lett. 116(11), 110501 (2016).

18. L. Costanzo, A. Coelho, N. Biagi, J. Fiurášek, M. Bellini, and A. Zavatta, “Measurement-induced strong Kerr
nonlinearity for weak quantum states of light,” Phys. Rev. Lett. 119(1), 013601 (2017).

19. A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics
5(1), 52–56 (2011).

20. M. Usuga, C. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. Andersen, “Noise-powered
probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).

21. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by
coherent photon subtraction,” Phys. Rev. Lett. 98(3), 030502 (2007).

22. H. Takahashi, J. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki,
“Entanglement distillation from Gaussian input states,” Nat. Photonics 4(3), 178–181 (2010).

23. Y. Kurochkin, A. S. Prasad, and A. Lvovsky, “Distillation of the two-mode squeezed state,” Phys. Rev. Lett. 112(7),
070402 (2014).

24. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of
single photons to/from a light field,” Science 317(5846), 1890–1893 (2007).

25. A. Zavatta, V. Parigi, M. Kim, H. Jeong, and M. Bellini, “Experimental demonstration of the bosonic commutation
relation via superpositions of quantum operations on thermal light fields,” Phys. Rev. Lett. 103(14), 140406 (2009).

26. S. A. Babichev, B. Brezger, and A. I. Lvovsky, “Remote preparation of a single-mode photonic qubit by measuring
field quadrature noise,” Phys. Rev. Lett. 92(4), 047903 (2004).

27. E. Bimbard, N. Jain, A. MacRae, and A. Lvovsky, “Quantum-optical state engineering up to the two-photon level,”
Nat. Photonics 4(4), 243–247 (2010).

28. K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E. Wu, H. Zeng, Y.-C. Jeong,
R. Filip, O. Morin, and J. Laurat, “Optical synthesis of large-amplitude squeezed coherent-state superpositions with
minimal resources,” Phys. Rev. Lett. 115(2), 023602 (2015).

29. M. Yukawa, K. Miyata, T. Mizuta, H. Yonezawa, P. Marek, R. Filip, and A. Furusawa, “Generating superposition of
up-to three photons for continuous variable quantum information processing,” Opt. Express 21(5), 5529–5535 (2013).

30. D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of
optical Schrödinger’s cat states,” Nat. Photonics 11(6), 379–382 (2017).

31. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P.
Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214
(2013).

32. H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat,
“High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near
infrared,” Opt. Lett. 41(22), 5341–5344 (2016).

33. J. Calsamiglia, S. M. Barnett, N. Lütkenhaus, and K.-A. Suominen, “Removal of a single photon by adaptive
absorption,” Phys. Rev. A 64(4), 043814 (2001).

34. P. Marek, J. Provazník, and R. Filip, “Loop-based subtraction of a single photon from a traveling beam of light,” Opt.
Express 26(23), 29837–29847 (2018).

35. V. Švarc, M. Nováková, G. Mazin, and M. Ježek, “Fully tunable and switchable coupler for photonic routing in
quantum detection and modulation,” Opt. Lett. 44(23), 5844–5847 (2019).

36. J. Honer, R. Löw, H. Weimer, T. Pfau, and H. P. Büchler, “Artificial atoms can do more than atoms: deterministic
single photon subtraction from arbitrary light fields,” Phys. Rev. Lett. 107(9), 093601 (2011).

37. S. Rosenblum, O. Bechler, I. Shomroni, Y. Lovsky, G. Guendelman, and B. Dayan, “Extraction of a single photon
from an optical pulse,” Nat. Photonics 10(1), 19–22 (2016).

38. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deleglise, U. B. Hoff, M. Brune, J.-M. Raimond, and S. Haroche,
“Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature 446(7133), 297–300 (2007).

39. C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche,
“Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).

40. S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, “Reconstruction of
non-classical cavity field states with snapshots of their decoherence,” Nature 455(7212), 510–514 (2008).

41. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M.
Brune, J.-M. Raimond, and S. Haroche, “Real-time quantum feedback prepares and stabilizes photon number states,”
Nature 477(7362), 73–77 (2011).

42. J. Hloušek, M. Dudka, I. Straka, and M. Ježek, “Accurate Detection of Arbitrary Photon Statistics,” Phys. Rev. Lett.
123(15), 153604 (2019).



Research Article Vol. 28, No. 8 / 13 April 2020 / Optics Express 11644

43. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear
optics quantum computing using active feed-forward,” Nature 445(7123), 65–69 (2007).

44. X. song Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for
feed-forward photonic quantum information processing,” Opt. Express 19(23), 22723–22730 (2011).

45. Y. He, X. Ding, Z.-E. Su, H.-L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y.-M. He, X.-L. Wang,
W.-J. Zhang, S.-J. Chen, C. Schneider, M. Kamp, L.-X. You, Z. Wang, S. Höfling, C.-Y. Lu, and J.-W. Pan,
“Time-Bin-Encoded Boson Sampling with a Single-Photon Device,” Phys. Rev. Lett. 118(19), 190501 (2017).



Chapter 7

Conclusions

This Thesis represents an overview of photonic switching methods and their
applications in quantum protocols. The research presented here compiles the
results published in three articles: Firstly, we implemented a Mach-Zehnder
interferometer with ultra-fast phase switching and demonstrated loop-based
time multiplexing for qudit preparation and photon-number-resolving de-
tection [1]. Secondly, a phase stabilization technique was developed, allowing
for the stabilization of a single-photon interferometer and interferometric
networks with ultra-high precision [2]. Thirdly, a protocol for probabilistic
conversion between Fock states was proposed and implemented using a Mach-
Zehnder interferometer with feedforward operation [3].

The first part of the Thesis discusses common methods of photonic swit-
ching and compares them in the context of quantum technology. The fastest
response is enabled by interferometric schemes utilizing an integrated electro-
optic modulator, while the lowest losses are achieved using polarization swit-
ching with Pockels cells. Possible approaches to active phase stabilization of
single-photon interferometers are also discussed. The following chapter pro-
vides a brief overview of the theoretical and experimental tools used in the
research. A detailed analysis of the Mach-Zehnder interferometer is perfor-
med with an emphasis on the phase estimation under real conditions. Further,
technical aspects of phase stabilization and phase modulation are described.
Additionally, detection, data processing, and basic tools of quantum optics
relevant to our research are described. The subsequent chapters are focused
on individual research projects.

In the work [1], we present a fast single-photon switch using phase modu-
lation in a Mach-Zehnder interferometer. We aimed to achieve fast operation,
high visibility, and full tunability. Therefore, we used a hybrid configuration
of the Mach-Zehnder interferometer, combining fiber and free space. The fi-
ber part allows for fast phase control via an integrated electro-optic phase
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modulator with a 10 GHz bandwidth, while the free-space part allows for pre-
cise balancing of the interferometer together with dispersion compensation,
polarization filtering, and dispersion-based phase tunability. With this ap-
proach, we achieved sub-nanosecond switching with an extinction of 26 dB
for an optical bandwidth of 1.3 THz. Further, using a loop configuration
of the photonic switch, we performed temporal multiplexing. The incident
pulse is trapped into a loop, and during each roundtrip, a fraction is split
to the output depending on the switched phase. Using this approach, we
demonstrate full control over four time bins with a mean fidelity of 98.9%.
The potential applications are photon-number-resolving detection and qudit
encoding. Although the presented switch is impractical for the applications
due to 7 dB of loss, a low-loss polarization-based switch enabling practical
temporal multiplexing is being developed.

In the work [2], we focused on optimizing the phase stabilization of a
single-photon Mach-Zehnder interferometer with fast phase switching [2]. A
typical problem of interferometers is their phase instability caused by envi-
ronmental fluctuations. To stabilize the interferometer, we use an auxiliary
light acting as the phase reference. The reference is operating at a different
wavelength than the quantum signal. The advantage of this approach is in
continuous operation and the independence of the quantum signal. Additio-
nally, a strong reference can be used, achieving much greater speed and pre-
cision of phase stabilization compared to a single-photon reference. However,
to achieve maximum precision in the long term, additional requirements must
be satisfied. Firstly, the spectral stability of the reference and signal beams
must be ensured to exclude their mutual phase shift. Secondly, phase stabi-
lization must be independent of the overall intensity of the reference beam.
In this work, we discuss these problems and propose their solutions, e.g., by
using adaptive setpoint. Furthermore, we discuss other sources of errors in
phase stabilization, namely local detuning in the interferometer. The experi-
mental implementation of phase stabilization utilizes an active feedback loop
with a 1 kHz response, consisting of an analog PID controller, a fiber phase
modulator, and sensitive photodiodes. Thanks to a thorough optimization of
the interferometer and stabilization over all available parameters, we achie-
ved exceptional phase stability of 0.05 degrees for 15 hours, exceeding any
previous results in the field of single-photon interferometer stabilization by
1 or 2 orders of magnitude. Moreover, due to the low power of the reference
(1 nW) and efficient wavelength separation, crosstalk from the reference to
the single-photon signal is negligible.

In the work [3], we proposed and experimentally implemented a probabi-
listic protocol for the conversion between Fock states. Fock state conversion
enables the preparation of highly non-classical states, which can serve as
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resources for quantum information protocols. In our approach, photon sub-
traction is used to transform a state with a higher photon number into a
state with a lower photon number. In each subtraction step, the results of all
previous subtraction steps are considered, enabling the conversion with ma-
ximal probability. This task is implemented by a sequence of beam splitters
with feedforward-controlled splitting ratios. The theoretical analysis shows
that the probability of successful conversion is around 85% (depending on
the type of conversion) using a sequence of nine splitters. We also investi-
gate the influence of losses and limited detection efficiency on the protocol.
The analysis reveals that the protocol can offer an advantage over passive
conversion if the losses in the switchable beam splitter are lower than the
losses during detection. We experimentally demonstrated a model case of
|2⟩ → |1⟩ conversion using a sequence of two splitters. This was achieved
using a Mach-Zehnder interferometer with feedforward operation and a pas-
sive tunable beam splitter. By measuring on a coincidence basis, we replicated
the theoretical predictions of a 66.6% conversion success rate.

Currently, we have been developing a polarization-based photonic switch
with the aim of minimizing the loss while keeping the speed moderate. To-
gether with the switch, we develop an ultra-low-loss optical delay line based
on multiple reflections between plane mirrors. Apart from the loss, we aim
for a high stability of the delay line and to reduce beam aberrations. So far,
we have implemented a switch-delay-line setup with 6.5% of roundtrip loss,
a 60 ns switching window, and 25 partially dependent switching levels. Espe-
cially in terms of the switching levels, our results are unique. However, the
development of the setup is still in progress thus further improvements are
possible. As a first application of the prototype switching setup, we plan to
realize a photon-number-resolving detector. Combining multiplexing in time
and space, we aim for more than 30 balanced detection channels.

Fast photonic switching and precise phase stabilization are essential bu-
ilding blocks in quantum information processing as well as in quantum com-
munication. The conversion of Fock states enables the preparation of highly
non-classical states and the realization of a wide range of quantum operati-
ons. Therefore, we believe that our results will contribute to the development
of quantum optics and quantum technologies.
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Shrnutí výsledků práce v češtině

Tato disertační práce se zabývá experimentální realizací jednofotonového fo-
tonického spínání pomocí interferometrů s rychlým fázovým spínáním a do-
přednou vazbou, které jsou následně využity pro experimenty a techniky sou-
visející s kvantově informatickými protokoly. Zaprvé, pomocí Mach-Zehnde-
rova interferometru s rychlým fázovým spínáním a plnou fázovou laditelností
byl demonstrován princip přípravy vícedimenzionálních kvantových stavů po-
mocí rozdělení vstupního pulsu do několika časových oken [1]. Zadruhé, byla
vyvinuta technika fázové stabilizace, umožňující stabilizovat jednofotonový
interferometr a interferometrické sítě s vysokou přesností po dobu desítek ho-
din [2]. Zatřetí, pomocí Mach-Zehnderova interferometru s dopřednou vaz-
bou byl realizován protokol pro probabilistickou konverzi mezi Fockovými
stavy [3].

V první části práce jsou diskutovány různé metody fotonického spínání a
porovnánány v kontextu kvantové technologie. Nejrychlejší odezvu umožňují
interferometrická schémata využívající integrovaný elektro-optický modulá-
tor, zatímco nejnižší ztráty představuje polarizační spínání pomocí Pockel-
sových cel. Dále jsou diskutovány možné přístupy k aktivní fázové stabilizaci
jednofotonových interferometrů. Další kapitola obsahuje stručný přehled te-
oretických a experimentálních nástrojů, které byly využity v rámci výzkumu.
Je proveden detailní rozbor Mach-Zehnderova interferometru a nastíněny
technické aspekty fázové stabilizace a fázové modulace. Dále je popsána de-
tekce, zpracování dat a základní nástoje kvantové optiky relevantní pro tuto
práci. Následující kapitoly se zabývají jednotlivými výzkumnými projekty.

V práci [1] je prezentován rychlý jednofotonový přepínač využívající fá-
zovou modulaci v Mach-Zehnderově interferometeru. V našem přístupu jsme
se zaměřili primárně na rychlé fázové spínání a vysokou vizibilitu. Rychlé
fázové spínání je zajištěno pomocí integrovaného elektro-optického modulá-
toru s 10 GHz šířkou pásma. Kromě vláknových prvků však interferometr
obsahuje i objemové elementy, což umožňuje přesné srovnání ramen interfe-
rometru a umístění disperzních elementů pro kompenzaci disperze a dosažení
plné fázové laditelnosti. Díky tomuto přístupu jsme dosáhli libovolného sub-
nanosekundového spínání s extinkcí 26 dB pro šířku optického spektra 1.3
THz. Dále jsme demonstrovali dvě aplikace fotonického spínače. Propojením
jednoho výstupu se vstupem interferometru jsme dostali takzvanou smyč-
kovou konfiguraci, díky níž mohl být interferometr využit několikanásobně.
Zaprvé jsme demonstrovali rozdělení vstupního pulsu do čtyř časových oken,
což v závislosti na obsazenosti oken odpovídá různým kvantovým stavům
s dimenzí 4. Zadruhé, ve speciálním případě, kdy jsou všechna okna stejně
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obsazena a na výstup umístíme jednofotonový detektor, dostáváme zařízení
rozlišující počet fotonů.

V článku [2] jsme se zaměřili na dosažení co nejlepší fázové stabilizace
Mach-Zehnderova interferometru s rychlým fázovým spínáním [2]. Typickým
problémem interferometrů je totiž jejich fázová nestabilita způsobena fluk-
tuacemi prostředí. Aby bylo zamezeno spontánnímu fázovému driftu v in-
terferometru, je třeba jej stabilizovat. Náš přístup spočíval ve využití dvou
vlnových délek – na jedné vlnové délce je nesen kvantový signál a druhá
vlnová délka slouží jako fázová reference. Výhodou tohoto přístupu je, že fá-
zová stabilizace je prováděna kontinuálně a nezávisle na kvantovém signálu.
Navíc je možné použít relativně silný referenční svazek, a tím dosáhnout
mnohem větší rychlosti a přesnosti fázové stabilizace než by tomu bylo v
případě jednofotonového referenčního svazku. Pro dosažení maximální přes-
nosti i v dlouhočasové škále je však třeba zajistit další požadavky. Zaprvé
je třeba zajistit spektrální stabilitu referenčního a signálního svazku, a tím
vyloučit jejich vzájemné fázové rozposunutí. Zadruhé, fázová stabilizace musí
být nezávislá na celkové intenzitě referenčního svazku. V práci tyto problémy
diskutujeme a navrhujeme jejich řešení. Dále diskutujeme další zdoje chyb
fázové stabilizace, a to lokální fluktuace intenzity v interferometeru. Experi-
mentální realizace fázové stabilizace využívá aktivní zpětnovazební smyčku
s 1 kHz odezvou složenou z analogové PID regulace, vláknového fázového
modulátoru a citlivých fotodiod. Díky důkladné optimalizaci interferometru
i stabilizace přes všechny dostupné parametry jsme byli schopni dosáhnout
výjimečné fázové stability 0,05° po dobu 15 hodin, což je o 1-2 řády lepší
výsledek než jaké byly dosud dosaženy v oblasti stabilizace jednofotonových
inferferometrů. Navíc, díky nízkému výkonu referenčního svazku (1 nW) a
kvalitní separaci vlnových délek jsou přeslechy z referenčního svazku do jed-
nofotonového signálu zanedbatelné.

V článku [3] jsme navrhli a experimentálně realizovali probabilistický pro-
tokol konverze mezi Fockovými stavy. Konverze Fockových stavů umožňuje
připravit vysoce neklasické stavy, jež mohou být zdrojem pro kvantově-infor-
matické protokoly. V našem případě navrhujeme konverzi směrem dolů, tedy
měníme stav s vyšším počtem fotonů na stav s nižším počtem fotonů. K tomu
využíváme síť děličů svazku, jejichž dělicí poměr je ovládán pomocí dopředné
vazby. Z teoretické analýzy vyplývá, že pravděpodobnost úspěšné konverze je
okolo 85% (v závislosti na typu konverze) při použití sekvence 9 děličů. Dále
vyšetřujeme vliv ztrát a omezené detekční účinnosti na protokol. Z analýzy
plyne, že protokol může nabídnout jistou výhodu oproti pasivní konverzi po-
kud jsou ztráty na spinatelném děliči nižší než ztráty při detekci. Dále jsme
experimentálně demonstrovali modelový případ |2⟩ → |1⟩ konverze pomocí
sekvence 2 děličů. Toho jsme docílili pomocí Mach-Zehnderova interferome-
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tru s dopřednou vazbou a pasivního laditelného děliče svazku. Při měření
v koincidenční bázi jsme dokázali zreplikovat teoretické predikce úspěšnosti
této konverze 66,6%.

Nyní pracujeme na nové generaci fotonického spínače, který je optima-
lizován na ztráty. Společně se spínačem vyvíjíme nízkoztrátovou zpožďovací
linku umožňující realizaci komplexních kvantových protokolů využívajících
časové multiplexování. Náš přístup využívá polarizační spínání ve volném
prostoru a optickou zpožďovací linku pomocí několikanásobného odrazu na
zrcátcích. Celý systém má 6.5% ztrát na oběh, délku spínacího okna 60 ns
a 25 částečně závislých hladin. Zejména co se týče počtu hladin, jsou naše
parametry unikátní. Celý systém je však stále ve vývoji a další zlepšení v
budoucnu jsou možná. Nejbližší plánovaná aplikace fotonického spínače je
realizace detektoru rozlišujícího počet fotonů. Využitím časového i prostoro-
vého multiplexingu plánujeme zrealizovat více než 30 vyvážených detekčních
kanálů.

Výsledky našeho výzkumu rozšiřují dostupné metody fotonického spínání
a obohacují pole kvantové optiky a kvantových technologií. Rychlé fotonické
spínání i přesná fázová stabilizace jsou důležitými stavebními bloky nejen v
kvantovém zpracování informace, ale i kvantových komunikacích. Konverze
Fockových stavů umožňuje přípravu vysoce neklasických stavů a realizaci
široké škály kvantových operací.
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