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Abstrakt 
Cílem této práce je implementace algoritmu pro dolování z dat pro použití v astrofyzice. 

V práci jsou představeny základní pojmy a principy dolování z dat. Zejména jeho 
obecná definice, rozlišení mezi klasifikací a regresí a vyhodnocování přesnosti modelu. Text 
se zabývá převážně učením s učitelem. 

Blíže představeny jsou algoritmy založené na rozhodovacích stromech. Je definován 
rozhodovací strom jako model a uveden obecný algoritmus pro tvorbu rozhodovacích stromů 
z dat. Jsou diskutována různá kritéria dělení v uzlech (zejména založená na etropii), kritéria 
pro ukončení růstu a ořezávání stromů. Pro ilustraci jsou uvedeny vybrané algoritmy - ID3, 
C A R T , RainForest a B O A T . 

Na dříve uvedených informacích je založena kapitola o souborech rozhodovacích stromů. 
Zabývá se základními způsoby jejich kombinací (bagging a arcing). Detailněji je popsán 
obecný algoritmus náhodných lesů a RandomFores t™ jako příklad jeho praktické real­
izace. 

Na základě srovnání algoritmů a provedených experimentů v literatuře jsou k imple­
mentaci vybrány náhodné lesy. Implementovaný algoritmus je detailněji popsán - k dělení 
uzlů používá Gini entropie a průměrnou kvadratickou chybu, ignoruje chybějící hodnoty a 
pro kombinaci výstupů jednotlivých stromů používá většinové hlasování / průměr. Jako 
formát vstupních a výstupních dat je zvolena podmnožina A R F F formátu. Architektura 
implementace je ilustrována U M L diagramy s popisujícím komentářem. Jednotlivé aspekty 
implementace jsou stručně popsány - implementačním jazykem je C++11, je využívána 
knihovna Boost (zejména chytré ukazatele, serializace, nastavení parametrů a konfigurační 
soubory, . . . ) společně s dalšími volně dostupnými knihovnami (google-glog pro logování, 
googletest pro jednotkové testování, . . . ) . Grafického výstupu je dosaženo tiskem modelu 
náhodného lesu do X M L souboru a jeho transformací skriptem do jazyka DOT. 

Pro ověření validity a vlastností implementace a jejího srovnání s jinými implemen­
tacemi náhodných stromů (Waffles, R F - A C E a R - balíček randomForest) jsou navrženy, 
popsány a provedeny exprimenty: klasifikace astronomických těles na základě barevných 
indexů, regrese rudého posuvu na základě barevných indexů, osm klasifikačních a pět regres­
ních experimentů na datech z U C I repository. Průběh experimentů je plně automatizován 
skripty (Bash, Python a R) a je měřena doba učení modelů. Z výsledků experimentů vy­
plývá, že autorova implementace si vedla výborně při klasifikaci a průměrně při regresi; z 
časového hlediska měla problémy při datech s mnoha instancemi. 

Výsledkem práce je zdokumentovaná, snadno rozšiřitelná implementace náhodných lesů 
v jazyce C++ s grafickým znázorněním modelu, mnoha možnostmi nastavení a experi­
mentálně ověřenou funkčností. Diskuze o dalším možném pokračování projektu se zabývá 
zejména odstraněním problémů s časovou náročností a přidáním nových funkcionalit. 



Abstract 
This bachelor thesis describes selection, design and implementation of a data mining algo-
ritm for astrophysical usage. The implementation of the random decision forests algorithm 
in C++ is evaluated on two astrophysical and some general experiments. Experiments 
are both classification and regression with time measuring. For comparison another three 
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in classification. 
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Chapter 1 

Introductions 

"But the cleverest algorithms are no substitute for human intelligence and knowl­
edge of the data in the problem." (Leo Breiman and Adele Cutler) 

Astronomy has became a data rich science. The evolution of instruments and detectors 
caused exponential growth of astronomical data. For example the Large Synoptic Survey 
Telescope will produce data flow of about 20-30 T B per night [ ]. Need for effective 
and useful exploration of the data leads to birth of a new discipline - Astroinformatics. 
Astroinformatics applies data mining techniques on massive astronomical data sets. 

The main goal of this thesis is to select and implement data mining algorithm based 
on decision trees suitable for astrophysical usage. Output of the thesis will be functional 
program which will be able to perform classification and regression and which will meet the 
requirements given by external consultant. 

The thesis is divided into seven chapters. Chapter 2 introduces main concepts and 
terms. Chapter 3 describes data mining methods based on decision trees. Chapter 4 stud­
ies models based on ensembles of decision trees. The random decision forests algorithm is 
described in detail in subsection 4.4.1. In chapter 5 we presents design and implementation 
of the random decision forests algorithm. The program is console application implemented 
in C++11. It uses Boost library and some other free libraries. Trained models are de/seri-
alized in X M L format. The trained model can be visualized. Chapter 6 demonstrates two 
astrophysical and some validation experiments. It also compare my implementation with 
related implementations. Last chapter (7) discusses achieved results and opportunities for 
further development. 
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Chapter 2 

Data mining and classification 

Data Mining (DM) is part of the more general process called Knowledge Discovery, Knowl­
edge Discovery from Data, Knowledge Discovery in Data or K D D (some authors call K D D 
often Data Mining; this may be confusing) [18, 2]. K D D has evolved from the intersection 
of such fields as databases, machine learning, pattern recognition, data visualization and 
others [13]. We define K D D [14] as "non-trivial extraction of implicit, previously unknown 
and potentially useful information from data". This interactive and iterative process consists 
of following steps [ ]: 

1. Learning the application domain 

2. Creating a target dataset 

3. Data cleaning and preprocessing 

4. Data reduction and projection 

5. Choosing the function of data mining 

6. Choosing the data mining algorithm(s) 

7. Data mining 

8. Interpretation 

9. Using discovered knowledge 

Data Mining involves fitting models to or determining patterns from observed data. Most 
data mining algorithms consist of three components: the model, the preference criterion 
and the search algorithm. [13] 

The model has some function and the representational form (we focus on use of tree-like 
structures as models) and it contains parameters that are to be determined from data. The 
model should reflect useful knowledge. 

The preference criterion is a basis for preference of one model or parameters over another 
on the given data. It is usually measure in form of goodness-of-fit of the model on the data 
including some term to avoid overfitting. 

The search algorithm is used to find particular models and parameters. 
Then data mining algorithm is usually instantiation of the model, the preference criterion 

and the search algorithm. (For example model based on decision tree, with classification 
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Figure 2.1: Simple illustration of the knowledge discovery process 

function, with model preference based on generalization error, determined by greedy search 
using a heuristic function.) 

In literature this three components are often mixed up in a description of a particular 
algorithm. 

2.1 Model functions 

Model function specify the kind of knowledge to be mined. The common functions in data 
mining practice are classification, regression, clustering, outlier analysis, characterization, 
discrimination, association analysis, . . . We are interested in classification and regression. 

2.2 Classification and regression 

Classification and regression (or numerical prediction) are one of the most common tasks in 
D M . Classification predicts (or maps) a data item into one of several predefined categorical1 

labels (or classes). Regression predicts a numerical value. 
Both learning method are supervised. This mean that the class label (or predicted 

attribute for regression) for each training tuple is provided (in contrast with unsupervised 
learning where is not). We call such data labeled data. Table 2.1 shows example of such 
labeled data. 

Let Xi, ..., Xm, Y be a random variables where Xi is attribute variable and has domain 
Dom(Xj). The number of attribute variables is m. The random variable Y has domain 
Dom(y) = {1, k} for classification problem or Dom(y) = M for regression problem. We 
call Y the class label or predicted attribute. 

A classifier C is a function C : Dom(Xi) x . . . x D o m ( X m ) —> Dom(y) . 
1 Categorical values are discrete and unordered. 
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sepal length sepal width petal length petal width class of iris plant 
5.1 3.5 1.4 0.2 Iris-setosa 
4.9 3.0 1.4 0.2 Iris-setosa 
5.7 2.8 4.1 1.3 Iris-versicolor 
6.3 3.3 6.0 2.5 Iris-virginica 
5.8 2.7 5.1 1.9 Iris-virginica 

5.9 3.0 5.1 1.8 Iris-virginica 

Table 2.1: Iris classification data set [3] 

2.3 Model representation 

There exists many models include decision trees and rules, neural networks, Bayesian net­
works, support vector machines, hidden Markov model and others. Model representation 
determines both the flexibility of model in describing the data and the interpretability of 
the model by humans. We are interested in decision trees. 

2.4 Attributes 

Attributes as well as class labels may be categorical, ordinal or numerical. Some prepro­
cessing of input data is often recommended. It may include for example discretization 
of continuous attributes, outlier detection, cleaning, feature normalization (scaling), filling 
missing values etc. Good visualization can help with this task. 

Some algorithms do not support numerical values then discretization must be performed. 
Or they do not support missing values than missing values must be filled. And so on. 

2.5 Handling missing values 

Missing values complicate both training and classification phase. But simple deleting in­
stances with missing attributes may be a waste. One approach is to replace missing value 
by most frequent (for categorical) or average (for numerical) value of attribute (which may 
introduce some noise into data) [4]. Second approach is when calculating the splitting cri­
teria for attribute X j , than simply ignore all instances with missing value for attribute X{. 
On the other hand, the splitting criteria should be reduced proportionally as nothing has 
been learned from these instances. There exists also another more sophisticated approaches 
to handling missing values. 

2.6 Measuring the performance 

The generalization error is probability to misclassify of unknown instance X and it is rarely 
known (because underlying distribution D of the labeled instance space is known only in 
synthetic cases). Classification accuracy is one minus generalization error. The training 
error is defined as percentage of correctly classified instances of training set. Training error 
is typically more optimistic than true generalization error. 

Holdout and cross validation and it's variations are techniques used to empirically esti­
mate generalization error. Holdout method randomly split given dataset into training and 
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test sets (usually two-thirds of data is considered for training set) and error on test set is 
considered to be final estimation. 

Another commonly used method is k-fold cross-validation which randomly divides dataset 
into k mutually exclusive subsets of approximately equal size. Then each subset is taken 
as test set and remaining subsets are taken as training data. For each that taken subset 
is computed training error and k training errors can be averaged (or otherwise combined) 
to produce final estimation. Special cases of this method are 2-fold cross-validation (where 
k = 2) and leave-one-out cross-validation where k is equal to number of observations in 
the given dataset so it's very computational expensive (because training process is repeated 
many times). 

Bootstrapping technique random samples full data with replacement. Instead of repeat­
edly analyzing subsets of data, it repeatedly analyze subsamples of data. 

Not only predictive performance is important measure of classifier's quality, but also 
stability, discriminatory power, simplicity of model. [32] 

2.7 Mining astrophysical data 

Astrophysical classification and prediction tasks do not differ from general predictive prob­
lems much. Astrophysical experiments obviously consist of large collection of training data 
and great deal of unlabeled data. Numerical attributes are more common than categorical. 
Missing values are usually not present. The number of attributes are rarely very high. 

We present experiments (6.1.1 and 6.1.2) which try to demonstrate common astrophys­
ical data mining task. One for regression and one for classification problem. 

We need to clarify that particular real-world experiment may differ greatly from the 
above characterization. 
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Chapter 3 

Decision trees 

Decision trees (DT) are class of predictive data mining (DM) methods which use decision 
tree as predictive model. They can be used either for classification or regression problems. 
Because learning such model is complex task many algorithms and frameworks were in­
troduced. They differ in their approaches to solving particular problems, but underlying 
concept is most often the same - splitting the set of examples on a split attribute(s) in top-
down manner - such algorithm is called Top-Down Induction of Decision Trees (TDIDT). 
The T D I D T has been known since the mid-1960s. [4] 

The decision tree is a flowchart-like tree structure. Each internal node denotes a test 
on an attribute(s), each branch represents an outcome of the test, and each leaf node hold 
a class label (or target value). The topmost node is root node. Example of decision tree is 
shown in figure 3.1. [18] 

Decision trees are very popular, because their representation in tree form is intuitive 
an easy interpretable by human. The learning and classification steps of decision trees are 
simple and fast. The decision trees can handle high dimensional data. In general, decision 
trees have good accuracy. [18] 

Play? 

no yes no yes 

Figure 3.1: A simple decision tree 

3.1 Decision tree learning 

The task is build from given dataset predictive model which can predict class or numerical 
value. Such algorithm we call tree inducer. Because complexity of searching optimal tree 
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Algorithm 3.1 Growing decision tree 

1. Split a given dataset on split condition into two or more subsets and create internal 
split node. 

2. For each subset: 

(a) If stopping criterion triggered, then mark subset as leaf node and assign value to 
it 

(b) else apply point 1. on subset. 

most algorithms search reasonably good decision tree. The result do not depend on particular 
order in which the examples are given [ ]. 

3.2 Splitting criteria 

Most of the algorithms works in greedy style trying maximize/minimize some heuristic 
function in each node. 

With relation to size of training set decision tree with many nodes typically overfit data, 
which may lead to small training error. Overfitting mean that tree lack generalization - it 
describes training set but not underlying relationships. On other hand, decision tree with 
small capacity can underfit data, resulting to poor training error. [32] 

3.2.1 Univariate splitting criteria 

Univariate means that split is according to the value of a single attribute. The inducer 
searches for the best attribute upon which to split. There are several widely used functions 
for attribute selection. Impurity-based are Gini impurity, Information gain, Gain Ration, 
twoing criterion, etc. From statistical methods we mention just )(2-test. Random selec­
tion of attribute is also possible. Common problem of selecting methods is bias towards 
attributes with larger domains. Some algorithms (Gain Ration, Distance Measure) perform 
normalization to deal with bias. [24] 

Goodness of split criterion is not so important for predictive accuracy, but significantly 
influence the size of unpruned tree [26]. 

The entropy of the set D is 

K 

i=l 

where pi is the probability that an instance A j belongs to class Y\ and it is estimated by 
Unit of entropy is bit for b = 2. 

The Gini impurity is Gini(D) = 1 — ^2i=iPf-
For the numerical target the sum of squares is used as measure of entropy: S(D) = 

^2iLi(Yi — y)2, where y is the predicted value (most commonly the average of the target 
values) and Yj is the i th target value. 
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3.2.2 Multivariate splitting criteria 

In multivariate splitting criteria more attributes may participate in a single node split. 
Multivariate splitting criteria are mostly based on linear combination of the attributes. 
Methods used for finding best linear combination can be performed using a greedy search, 
linear programming, linear discriminant analysis and others. This type of criteria may 
dramatically improve tree's performance, but is more complicated to find best multivariate 
split, hence this criteria are much less popular. [24] 

3.3 Surrogate splits 

For each split node is given an ordered set of surrogate splits, consisting of an attribute 
label and a rule. Surrogate splits maximize the "predictive association" with the primary 
split. The surrogate split is used when classify a new example with missing attribute. [11] 

3.4 Stopping criterion 

Using the stopping criterion is sometimes called pre-pruning as opposite to post-pruning. 
Stopping criterion determine when to stop growing decision tree. As stopping criterion we 
may use (and possibly combine): 

• all instances in subset belong to single class Y, 

• splitting criteria is not greater than a threshold, 

• maximum tree depth was reached, 

• size of subset is lower than threshold, 

• ... 

3.5 Discretization 

Many tree inducers require all attributes to take categorical values. Thus continuous at­
tributes must be discretized. The simplest approach is to just treat continuous values as 
categorical ones, but this is unlikely to be efficient. 

The common method is to divide a continuous attribute into intervals. Ranges of each 
interval may be equal size, this we call equal width intervals. Another method, where the 
number of instances in each interval are equal, is known as equal frequency intervals method. 
Both methods share same problem - how many intervals to choose? 

ChiMerge algorithm is statistical approach to data discretization. It discretize each at­
tribute separately with use of \ 2 test to determine similarity of two intervals. If intervals are 
very similar, then they can be merged. ChiMerge works recursively in bottom-up manner, 
and uses class information - in that it is supervised. 

The discretization may be global or local. Local discretization is performed at each 
node of the decision tree. Global discretization (e.g. ChiMerge) converts each continuous 
attribute to categorical one once. Global discretization may be applied on dataset only once 
and independently on data mining algorithm. [ ] 

10 



3.6 Post-pruning 

Because employing good stopping criterion is complicated, post-pruning method was sug­
gested. Also it can compensate, to some extent, for the sub-optimality of greedy tree 
induction [ ]. Loosely stopping criteria is used which let the tree to overfit the training 
set. Than over-fitted tree is pruned back into smaller tree by cutting branches that are not 
contributing to the generalization accuracy. 

There are several pruning algorithms. Most of them traverse tree bottom-up or to-down 
and prune nodes if it improves a certain criteria. 

Cost-complexity pruning In the first stage, a sequence of increasingly smaller trees are 
build on the training data (from the original tree before pruning to the root tree by 
replacing one or more of the sub-trees in the predecessor tree with suitable leaves). In 
the second stage one of this trees is chosen as the pruned tree, based on its accuracy 
on a pruning set. [28, 24] 

Reduced error pruning This method does not build sequence of trees. Simple traverse 
over the internal nodes bottom-up and prune node if pruning node does not reduce 
accuracy. Pruning set is used to estimate accuracy. 

Pessimistic pruning Pessimistic pruning avoids the need for a separate pruning set by 
using a statistical correlation test. Procedure traverse tree in top-down direction and 
because descendants of pruned nodes are removed from the pruning process, procedure 
is relatively fast. 

Error-based pruning Error-based pruning is an evolution of pessimistic pruning and it's 
implemented in C4.5 algorithm. 

Minimum description length (MDL) pruning The minimum description length can 
be used for evaluating the generalized accuracy of node. MDL-based pruning methods 
are more popular for large dataset because they scale well [25, 33]. 

3.7 Datasets 

Two basics dataset are needed for D T learning and evaluating - training and testing dataset. 
Some post-pruning algorithms may require special pruning dataset. 

3.8 Algorithms 

In this section we briefly introduce basic algorithms ID3, C A R T and two newer and inter­
esting scalable algorithms. 

3.8.1 ID3 

ID3 (Iterative Dichotomiser 3) algorithm is one of the best known examples of tree inducer. 
It employs top-down, greedy search through space of possible decision trees in divide-and-
conquer manner. Simplified algorithm is described in algorithm 3.2. 

ID3 starts with a training set of instances and their class labels. The training set is 
recursively partitioned into smaller subsets on split attribute. Each attribute is evaluated 
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Algorithm 3.2 Summary of the simplified ID3 algorithm for boolean-valued functions [ | 
ID 3 (Instances, Target Attribute, Attributes) 

• Create a Root node for the tree. 

• If all Instances are positive (or negative), return the single-node tree Root, with la­
bel + (or —) 

• If Attributes is empty, return the single-node tree Root, with label = most common 
value of Target Attribute in Instances. 

• Otherwise 

o A -(—the attribute from Attributes with highest information gain 

o Let Instancesvi be the subset of examples that have values Vi for A 

o If Instancessvi is empty 

• Than below this new branch add a leaf node with label = most common 
value of Target Attribute in Instances 

• Else below this new branch add the subtree 
ID3(Instancesvi, TargetAttribute, Attributes — {A}) 

using a statistical test to determine which one should be tested in split condition. The 
information gain is used as statistical test. 

C4.5, the successor of ID3, uses gain ratio as splitting criteria. C4.5 can handle missing 
values and continuous attributes. It performs error-based pruning after the growing phase. 

3.8.2 C A R T 

C A R T (Classification and Regression Trees) construct binary trees. The C A R T is able to 
solve regression tasks (in this case it looks for splits that minimize the prediction squared 
error). It uses surrogates for overcoming the problems caused by missing values and uses 
pruning. It uses Gini impurity as splitting criteria. 

3.8.3 RainForest 

RainForest is unifying framework for decision trees construction that separates the scalabil­
ity aspects of algorithm from the central features that determine the quality of the tree [17]. 
Framework applied to split selection method results in the scalable version of the origin 
method without modifying the result of the method. Only univariate splits are supported. 

Framework concentrate on the tree growing phase, since it is a very time consuming due 
to its data-intensive nature. 

Method at each node of the tree maintains for each attribute AVC-set („Attribute-Value, 
Classlabel"), which describe the training tuples at the node - it holds aggregate information. 
The size of AVC-set at node N depends only on the number of distinct values of attribute 
and the number of classes in the subset at N. The set of all AVC-sets at some node is 
AVC-group. This sets typically should fit in memory (even if original training set can't). 
RainForest provides also techniques for handling the case when even AVC-group does not 
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Figure 3.2: B O A T algorithm 

fit in memory. [18] 

3.8.4 B O A T 

B O A T stands for .Bootstrapped Optimistic yllgorithm for Tree Construction. B O A T con­
structs several levels of the tree just with two pass over training dataset. B O A T was found 
to be two or three times faster than RainForest, while constructing exactly the same tree. 
A n additional advantage of B O A T is that it can be used for incremental updates. The 
algorithm is not based on the use of any special data structures. The key idea is optimistic 
approach to tree construction in which we construct an initial tree using a small subset of 
the training data and refine it to arrive at the final tree. [16, 18] 

Since training data D can not fit into memory, algorithm use subset D C D, which 
can fits into memory. Then algorithm use bootstrapping and compute trees. From gener­
ated trees are obtained coarse splitting criteria. The coarse splitting criteria reduces set of 
possible splitting criteria at every node. They are created by traversing trees in top-down 
manner and comparing splitting attribute X. If each X is not identical, node and subtree 
are removed. If X numerical, from splits points we can obtain a confidence interval. If X is 
categorical, than subsets induced by the splits must be identical in all subtrees. Otherwise, 
node and subtree are removed. Result of this procedure is tree T" made from „overlapping 
parts" of bootstrapped trees. Resulting tree is evaluated on all data and if tree is not correct, 
the learning process is repeated. 

Algorithm is illustrated on figure 3.2. 
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Chapter 4 

Ensemble methods 

Methods to make trees more stable and provide accurate predictions are ensemble methods 
such as bagging, arcing and boosting. First we introduce two components of test set error, 
the bias and the variance. 

4.1 Bias and variance 

The bias measures the accuracy or quality of the match, since the variance measures the 
precision or specificity of the match. Low bias means on average we accurately estimate 
underlying distribution F from training dataset D. A low variance means that the estimate 
of F does not change much as the training set varies. We can adjust the bias and variance 
of classifiers, but they are not independent [11]. Unstable classifiers can have low bias on a 
large range of datasets, but their problem is high variance [(3]. 

4.2 Bagging predictors 

Bagging predictors [ ] (or bootstrap aggregation) is a method for generating multiple versions 
of a predictor and using these to get a aggregate predictor. This method can be used either 
for classification (majority voting) or regression (average) problems. Tests show that bagging 
can give substantial gains in accuracy, with critical factor in improvement of stability. On 
other hand method can degrade the performance of stable procedures and we lose tree's 
interpretable structure. 

Parameters for method are 1) number of bootstrap replicates (Breiman suggest from 20 
to 50), 2) size of the bootstrap learning set (Breiman suggest same size as size of training 
data set). 

We can also get test set (or pruning set) by sampling with replacement from the training 
set. 

4.3 Arcing classifiers 

Arcing is acronym for adaptively resample and combine. Basis of method is that the weights 
in the resampling are increased for those cases most often misclassified and the combining 
is done by weighted voting. Main effect of bagging and arcing is to reduce variance. Arcing 
seems to usually do better at this.[6] 
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Algorithm 4.1 Random decision forest for regression or classification [19] 

1. For b = 1 to B: 

(a) Draw a bootstrap sample D'b of size iV from training data D. 

(b) Grow a random-forest tree to the bootstrapped data, by recursively repeating 
the following steps for each terminal node of the tree, until the stopping criterion 
is reached. 

i . Select m variables at random from the p variables. 
i i . Select the split condition among the m. 

i i i . Split the binary node. 

2. Output the ensemble of trees {7b}f. 

To make a prediction at a new instance X : 

Regression fr

B

f(X) = ^ £ f = 1 T b ( A ) . 

Classification C^(X) = majority vote {Cb(X)}f, where C&(-) is the class prediction of 
6th tree. 

4.4 Algorithms 

4.4.1 Random decision forests 

The term "random decision forests" (RDF) was introduced by Ho (1995) [21]. The essence 
of the method is to build multiple trees in randomly selected subspaces of the feature space. 

Breiman (1996) [ ] introduced bagging (see 4.2), a precursor to his version of random 
forests. 

The Random Fore s t s™ 1 ( R F ™ ) as described by Breiman (2001) [ ] is a combination 
of tree predictors. Each tree casts a unit vote for the most popular class at input X. The 
Random Forests do not overfit as more trees are added, but produce a limiting value of 
the generalization error. It is as good as Adaboost, it's relatively robust to outliners and 
noise, it's faster than boosting, it gives useful internal estimates of error, strength, correla­
tion and variable importance and it's simple and easily parallized. Random Forests where 
implemented also on G P U [34, 35]. The method is most effective for problems involving 
high dimensional data because of the existence of more subspaces [21]. 

Breiman's R F uses bagging in tandem with random feature selection. Each tree is grown 
on the new training set using random feature selection while the new training set is drawn 
from the dataset with replacement. No pruning is done. This builds a large collection of 
de-correlated trees [19]. Breiman's R F have many another features (variable importance, 
proximities, interactions, . . . ) , but for our purposes the only core idea is important. 

1Random Forests™ is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford 
Systems for the commercial release of the software. 
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Random input selection 

The simplest case is formed by selecting at random, at each node, a small group of m input 
variables to split on. 

Using linear combinations of inputs 

If there are only a few inputs, we may define more features by taking random linear combina­
tion of L inputs. At a given node, L variable are randomly selected and added together with 
multiplication coefficients uniformly generated from range [—1,1]. F linear combinations 
are generated and then search for the best split is made over these. 

For incommensurable input variables normalization must be performed. Normalization 
consist of subtracting means and dividing by standard deviations, each determined from 
training set. 

For use categorical inputs in linear combination this inputs must be coded into dummy 
0-1 variables. Variable with / values can be coded into I — 1 dummy variables. This 
make categorical variable I — 1 times as probable as numeric variable to be selected in node 
splitting. When many of the variables are categorical, F must be increased. 

Out-of-bag error estimate 

Out-of-bag estimates of the generalization error, the strength and correlation are computed 
as follows. From training set D form bootstrap training sets Dj, and train classifiers Tj,. This 
classifiers forms bagged predictor. Then for each X, Y from training set, aggregate votes from 
classifiers for which does not contain X, Y. This is called out-of-bag classifier. And from 
the error rate of the out-of-bag classifier we get the out-of-bag estimate for the generalization 
error. 

This estimate is as accurate as using a test set of the same size as training sets and tend 
to overestimate the current error rate. This property removes the need for stand alone test 
set. [ ] 
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Chapter 5 

Design and implementation 

5.1 Requirements 

We introduce requirements developed with consultant Petr Skoda. 
The implemented algorithm must use tree-like structure as a model and must solve 

classification and also regression problems. It should be time and memory efficient; the 
prediction accuracy is also very important. The comparison of different algorithms and the 
rationale for selection of particular algorithm must be provided. 

The implementation should run on Unix-like systems. Rich settings configuration should 
be possible via command line parameters and/or configuration files. The program should 
have object oriented design, easily extendable and modifiable. It may provide graphical 
representation of trained model. 

The important task is also the validation and test of the model on real astrophysical use 
cases. 

5.2 Comparison of algorithms 

Ensemble methods have theoretical advantages over single decision tree models [7, 19] con­
firmed by empirical experiments [5, 10, 9]. Empirical experiments show that the most 
interesting are boosted decision trees and random decision forests. Boosted decision trees 
perform better than random decision forests mainly on low dimensional data, but not sig­
nificantly. On high dimensional data random decision forests outperform boosted decision 
trees [ ] and are robust with respect to input parameters, even if strongly correlated [I]. 
Random decision forests are faster than boosting [7]. The method was successfully used in 
astronomical challenges [31, 1, 8]. And the method needs a minimum of human intervention 
- there are only few tunable parameters. 

5.3 Algorithm description 

Our random decision forest algorithm uses bagging for combination of binary decision trees. 
Binary decision trees use n randomly selected attributes at each node for learning. As 

split criteria they use Gini impurity (for categorical target) and squared error (for numerical 
target). 

For splitting on numerical attribute, data are sorted according this attribute and than 
for each possible split threshold splitting criteria is evaluated. For iV distinct values there 
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are N — 1 possible splitting thresholds. For splitting on categorical attribute, each binary 
partition is evaluated - for iV categories there are 2^ — 2 possible partitions. 

As stopping criterion are used minimum instances in node, maximal depth and minimal 
squared error (for a numerical target only). 

Instances with unknown target value are ignored. When splitting in a node on an 
attribute, instances with the unknown value for this attribute are ignored. 

For classification/prediction on the new data random decision forests use majority vote 
/ average value. Particular decision tree may return unknown value - such value is ignored 
by R D F . The unknown value may be returned because of a test on a categorical attribute. 

5.4 Data format 

The A R F F 1 data format is well-known, text-based format. My implementation supports 
subset of the A R F F format. It supports numeric and class attributes, comments, relation 
name and missing values denoted by "?" character. It does not support the Sparse A R F F 
format, string and date attributes, and quotation marks and escape characters, because 
they are not widely supported by data mining programs. 

Advantages of the A R F F format are portability, simplicity and header section with 
attributes declaration. Attributes declaration simplify parsing of data and allows better 
error checking. Disadvantages are size of the data file and missing information about the 
number of instances (this would be useful for memory allocation). 

The example of the A R F F format is on the listing 5.1. It contains comments (start with 
"%" character), dataset's name "iris", four numerical attributes, one categorical attribute 
with three possible values and data section. 

The output file is the same as input file but with appended a new attributes: with predic­
tion and numerical attribute with a "certainty" value. The certainty (attribute "bcrdf_prob") 
is based on the ratio of trees which vote for the target class to the total number of trees or 
on the squared deviation of predictions of trees. The value 1 (for classification) means that 
every tree vote for the predicted class. The value 0 (for prediction) means that every tree 
predicted the same value. 

5.5 Architecture 

Program consist of two main logical parts - data-related (5.1) and data mining related (5.2). 
Data-related part consist of data and meta data representation and input/output handlers. 
Data mining-related part consists of particular algorithms and data structures for model 
representations. 

MetaData consists of Attributes. Attribute may be Numerical Attribute or Categorica-
lAttribute. Categorical Attribute ensures mapping of string representation of categories to 
internal numerical representation and back by boost::bimap. 

Data represents dataset. It is implemented by ExtendableData for storing unknown num­
ber of instances, by OneRowData for storing data when classifying/predicting and Bagged-
Data. BaggedData acts as proxy to another Data and contains indexes to sampled instances. 
Static method getData should return a best implementation of Data for the given MetaData 
and possible count of instances. 

l rThe A R F F format description: http://weka.wikispaces.com/ARFF 
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% 1. 
% 
% 2. 
% 
% 
% 

T i t l e 

Listing 5.1: Part of the Iris data in the A R F F format 

I r i s P l an t s Database 

Sources: 
(a) Crea to r : R . A . F i sher 
(b) Donor: Michae l M a r s h a l l (MARSHALL%PLU@io. arc . nasa . gov) 
(c) Date: J u l y , 1988 

^RELATION i r i s 

ATTRIBUTE sepa l l eng th 
ATTRIBUTE sepa lwid th 
ATTRIBUTE p e t a l l e n g t h 
ATTRIBUTE pe t a lw id th 
ATTRIBUTE c lass 

NUMERIC 
NUMERIC 
NUMERIC 
NUMERIC 
{Ir is—setosa , I r i s — v e r s i c o l o r , Iris— v i r g i n i c a } 

©DATA 
5.1 ,3.5 ,1.4 ,0.2 , Ir is—setosa 
4.9 ,3.0 ,1.4 ,0.2 , I r i s - s e t o s a 
4.7 ,3.2 ,1.3 ,0.2 , Ir i s - s e t osa 

CategoricalAttribute 
-bimap  
-I- getCategorical(string) 
-I- getString(categorica) 

5 
Attribute 

+ name 
+ type 

A l . . 
«use»• 

1 
MetaData 

# attributes 
+ size(): attributes_t 
+ addAttribute(attribute) 
+ getAttribute(index) 
# serializetarchive^  

A 
l«use» 

Data 

- getData(metadata, instancescount): Data 
- getData(metadata): ExtendableData 
- getCategorical(instance, attribute) 
- getNumericalrinstance, attribute) 
- set(instance, attribute, value) 
- size() 

«use»i 
- - - 1 _«use» 

T T 
«use» • 

«use»" 

MetaDataReader 
- getMetaData(): MetaData 

DataReader 
- DataReader(metadata) 
- read(instancescount): Data 
- read(): ExtendableData 

DataWriter 
- write(stream, MetaData) 
- write(stream, MetaData, Data) 

ArffReader 

L 

ArffDataWriter 

Figure 5.1: Class diagram of data-related classes 
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left/right_child 

BinaryNode 
- depth 
- left_child: Node 
- right_child: Node 
- splitter 
- stopinfo: Stoplnfo 
- value 

+ isLeaf() 
# serialize(archive) 

SupervisedLearner 

+ learn(data, 
metadata, 
attributes, 
target) 

+ classify(data, instance_index) 
: categorical 

+ predict(data, instance_index) 
: numerical 

+ print(xml_stream, metadata) 
# serialize(archive) 

I 
Binary RDTree 

- maxdepth 
- splitting_criteria 
-rootnode 
- nrandomattributes 
- min size 
- BinaryRDTreefmaxdepth, 

nrandomattributes, 
minsize, 
splitting_criteria, 
min_sq_err) 

1..* 0..1 

.splitter 

0..P 

0..* 

splittingN 
criteria 

RandomDForest 
- splitting_criteria 
- njrees 
- inbag ratio  
- RandomDForest(n_trees, 

minsize, 
splitting_criteria, 
maxdepth, 
nrandomattributes, 
inbagratio, 
min_sq_err) 

1 
BinarySphtter 

attributeindex 
type  
split(data, instance_index) 

: {LEFT, RIGHT, UNKNOWN) 

BinarySplittingCriteria 

getSplitter(data, 
metadata, 
instances 
attributes, 
target): BinarySphtter 

NumericalSplitter 

- threshold 

CategoricalSplitter 
+ left_categories 
+ right_categories 

I 
Gini 

Figure 5.2: Class diagram of model-related classes 
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MetaDataReader and DataReader read input stream. They are implemented by Arff-
Reader. 

DataWriter write data and meta data to an output stream and is implemented by 
ArffData Writer. 

SupervisedLearner represents supervised data mining algorithms and models. It sup­
ports learning on given data and classifying/predicting on unseen data. It also supports 
serialization and printing of model in the X M L format. 

SupervisedLearner is implemented by RandomDForest and BinaryRDTree. RandomD-
Forest implements random decision forests algorithm. It consists of BinaryRDTrees. It uses 
bagging (with BaggedData) for training particular trees. BinaryRDTree consists of binary 
nodes (BinaryNode). It uses Binary Splitting Criteria for searching best splits. Splits are 
represented by BinarySplitter. Each internal BinaryNode contains one instance of Bina-
rySplitter. Each leaf node contains target value and information about stopping criteria -
Stoplnfo (for example "maximum depth"). 

5.6 Implementation 

The program is implemented in C++11 language. The object oriented paradigm allows 
easy functionality extending. It uses Boost C++ Libraries1 (mainly program options, se­
rialization, smart pointers and accumulators). For fast combinations computing for Gini 
impurity it uses combinations.h [20] by Howard Hinnant. Glog library handles logging (5.9) 
and for X M L creation is also used external code (5.11). 

Information about dependencies and compilation are in the README file. 

5.7 Program flow 

There are two main use cases of an experiment - training and running. The training 
phase include learning model on given data. In the running phase is such model used for 
predicting on new data. Running on the new data without target attribute we call predicting 
and running on the data with target attribute we call testing. When testing the accuracy 
can be evaluated. 

Train Program reads meta data and data. Than it trains model specified by user. Resulting 
model and meta data are serialized into file. Model may be printed in X M L into file. 

Run Program deserialize model and meta data. Than it loads new meta data. New and 
old meta data are checked. Than it reads, classify and writes to output one instance 
at time. If target value is provided in new data than number of correctly classified 
instances or root mean squared error is reported. 

5.8 Program options 

For parsing command line parameters and configuration files is used boost::program_ options. 
Details about options and configuration file format are in appendix A . 

2Boost provides free peer-reviewed portable C++ source libraries, http://www.boost.org/ 
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5.9 Logging 

For logging of various messages about progress, warnings, debug messages, etc is used glog 
(google-glog) 3 . The verbosity of the program is controlled by the environment variable 
GLOG_v; for the recommended value 2 the program parameters and learning progress is 
printed. Higher values are more verbose. Verbosity may be controlled also for each module 
separated - for example "GLOG_vmodule—main—0,RandomDForest—5" for very verbose 
messages about learning random decision forest (RandomDForest—5) and no messages about 
program parameters and program flow (main—0). For logging messages to standard error 
output GLOG _logtostderr—l must be set. 

5.10 Serialization 

Trained model (SupervisedLearner) and met a data (MetaData) are (de)serialized with boost-
:.'serialization. Deserialization of meta data allows check of the new data for compatibility -
data for classification/prediction must contain same attributes with same types, categorical 
attributes must have identical categories. Model and meta data are serialized into X M L file 
which ensures portability. 

5.11 Graphical output 

Graphical representation of the model serves user's better understanding of the experiment's 
output. The R D F graphical output is used mainly for illustrative and educational purposes, 
because ensemble models are not easily human interpretable. 

Model can be printed to file in X M L format. It uses Simple C++ class for XML writing'1. 
The class is slightly modified for providing indented output. 

The RandomDForest X M L output may be converted to D O T 5 language using script 
./utils/rdf2dot.py. The file in D O T format may be converted to various graphical outputs 
with for example Graphviz software6. 

Example of the graphical output is on figure 5.3. It is random decision forest trained 
on Iris data. The D O T file was converted to image with dot utility (part of the Graphviz). 
Another example is in the appendix B. 

5.12 Testing 

For unit testing is used googletest - Google C++ Testing Framework7. There are written 
various tests mainly for data reading. Script ./utils/run_ tests.sh provides convenient way 
to run all tests with error reporting. 

3Logging library for C++. See http://code.google.eom/p/google-glog/. 
4Simple C++ class for X M L writing. See http://www.codeproject.com/Articles/5588/ 

Simple-C-class-for-XML-writing. 
5 D O T is a plain text graph description language, http://www.graphviz.org/content/dot-language  
6Graphviz is open source graph visualization software. See http://www.graphviz.org/. 
7Google C++ Testing Framework. See http://code.google.eom/p/googletest/. 
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Figure 5.3: Graphical output for random decision trees trained on Iris data (configuration: 
two trees, maximum depth is two, two random attributes) 
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Chapter 6 

Experiments 

We describe and execute one classification and one regression astrophysical experiments. 
For validation of my implementation we run experiments on well-known datasets from UCI 
repository [ ]. 

6.1 Data 

We introduce two astrophysical datasets in detail and brief summary of validation datasets. 

6.1.1 Astrophysical classification — Stars data 

The Stars data consists of three continuous attributes - the color indexes1 u-g, g-r, r-i and 
one target attribute. The target class attribute takes three values - STAR, G A L A X Y and 
QSO which stands for stars, galaxies and quasi-stellar objects. 

Data was retrieved from SDSS (Sloan Digital Sky Survey) Data Release 7 (DR7) via 
CasJobs 2 using SQL query (listing 6.1). Sample of the output file from CasJobs in CSV 
format with headers is in listing 6.2. Data consists of 3 000 labeled instances. There are no 
missing values. Data are illustrated on figure 6.1 where you can see density estimates for 
each continuous attribute dependent on target class. 

Graphical example of the random decision forest trained on the Stars data is in the 
appendix B. 

6.1.2 Astrophysical regression — Redshift data 

Redshift data was obtained from D A M E Photometric redshift Estimation tutorial 3 (five 
thousands instances was randomly sampled from tutorial's dataset which contains 30 000 
instances). Data contains four color indexes and target continuous attribute. Target at­
tribute zspec stands for photometric redshift. Data consists of 5 000 labeled instances; there 
are no missing values. On figure 6.2a you can see many outliers and on figure 6.2b are 
histograms (for clarity without outliers). 

X A color index is the difference between two magnitudes of the same star obtained with two different 
photometric filters. Magnitude is measure of the brightness of an object, measured in specific wavelength 
or wavelengths range. 

2 ht tp: / /cas j obs.sds s.org 
3http://dame.dsf.unina.it/dame_photoz.html 
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Listing 6.1: Query to retrieve classification data from CAS 
se lect top 1000 

u-g as u_g : 

g-r as g_ r : 

r—i as r _ i . 
dbo . fSpecClassN ( s . s p e c c l a s s ) as c lass 

from photoprimary p j o i n s pecpho toa l l s on p . obj id=s . obj id 
where s. specc lass = 1 
and u between 18 and 19 

union a l l 
se lect top 1000 u—g, g—r, r—i , dbo . fSpecClassN ( s . s p e c c l a s s ) 

from photoprimary p j o i n specpho toa l l s on p . obj id=s . obj id 
where s. specc lass = 2 
and u between 18 and 19 

union a l l 
se lect top 1000 u—g, g—r, r—i , dbo . fSpecClassN ( s . s p e c c l a s s ) 

from photoprimary p j o i n s pecpho toa l l s on p . obj id=s . obj id 
where s. specc lass = 3 
and u between 18 and 19 

Listing 6.2: Sample of the output file 
u _ g , g _ r , r _ i , c l a s s 
1.12368965148926,0.194650650024414,0.107603073120117,STAR 
1.2 84435 2 72 2168 ,0.51093292 2 363281 ,0.1762 75 2 53295 898 ,STAR 
1.94010353088379 ,0.910341262 817383 ,0.40412 521362 3047 ,GALAXY 
1.134143829345 7,0.431035995483398,0.2 79729843139648,GALAXY 
0.12 3207092285156,0.212028503417969, -0.0941390991210938 ,QSO 
0.361385345458984,0.199728012084961 ,0.084827423095 7031 ,QSO 
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Figure 6.1: Stars data density estimates 
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Figure 6.2: Graphs for the Redshift data 



dataset instances attributes unknown values (%) target 
stars 3000 4 0.00 categorical 

diabetes 768 8 0.00 categorical 
glass 214 10 0.00 categorical 

hepatitis 155 20 5.39 categorical 
iris 150 5 0.00 categorical 

letter 20000 17 0.00 categorical 
vote 435 17 5.30 categorical 

vowel 990 12 0.00 categorical 
zoo 101 17 0.00 categorical 

redshift 5000 5 0.00 numerical 
auto93 93 22 0.68 numerical 

autoMpg 398 8 0.19 numerical 
bodyfat 252 15 0.00 numerical 
fishcatch 158 8 6.88 numerical 
housing 506 14 0.00 numerical 

Table 6.1: Summary of datasets used in experiments 

6.1.3 Validation datasets 

Validation datasets from UCI Repository [3] were obtained from Weka Collections of datasets1 

(datasets from UCI Repository in A R F F format). The validation datasets consist of 8 
datasets with categorical target and 5 datasets with numerical target. The summary of the 
validation datasets, the stars data and the redshift data is in table 6.1. 

6.2 Experiments 

For experiments holdout validation (2.6) was chosen (because it is easy to implement). The 
flow of the experiment is: 

• Twenty times: 

o Shuffle labeled data and split them into training dataset (70%) and testing 
dataset (30%). 

o Train models on training dataset. 

o Run models on testing datasets. 

o Compute error. 

• Average errors. 

For splitting the data the waffles_ transform is used (the part of the Waffles [15]). For error 
computing and result creation various scripts in R [30] are used. 

4http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html 
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dataset bcrdf R rf-ace waffles 
Classification error (%) 

stars 4.00 3.50 5.00 3.40 
diabetes 25.20 23.80 24.70 24.50 

glass 27.50 26.60 34.60 27.20 
hepatitis 9.30 16.00 18.50 18.10 

iris 5.00 4.10 6.90 4.10 
letter 3.80 4.40 92.00 4.00 
vote 3.20 4.00 4.30 4.30 

vowel 4.40 4.90 6.90 3.60 
zoo 8.70 18.20 34.20 14.20 

Table 6.2: Classification experiments 

6.2.1 Implementations 

bcrdf The solution presented in this thesis. 

R Package randomForest [ ] (version 4.6-6) in R. The randomForest package provides 
an convenient R interface to the original Fortran programs by Breiman and Cutler 
(available at ht tp: / /www.stat .berkeley.edu/users/breiman/) . 

rf-ace The R F - A C E [12] (version vl.0.4) is implemented in C++ and targets to fast im­
plementation of random decision forests and gradient boosting trees. It is able to also 
perform feature selection. It is intensively developed since February 2011. 

waffles The Waffles [ ] (version wafnes-2011-12-6) is implemented in C++ and targets 
to be "the world's most comprehensive collection of command-line tools for machine 
learning and data mining". 

6.3 Results 

Classification errors are in table 6.2. My implementation is comparably successful as R 
(package randomForest) and Waffles. R F - A C E is doing well except letter data where it 
fails. 

Prediction errors are in table 6.3. R and Waffles have the best results. M y implementa­
tion and R F - A C E is doing slightly worse. 

Average running times are in table 6.4. A l l implementations are comparably fast on the 
small data. My implementation is very slow on the data with many instances. 
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dataset bcrdf R rf-ace waffles 
Root-mean-square deviation 

redshift 0.0011 0.0009 0.0026 0.0010 
auto93 39.46 35.43 39.37 37.65 

autoMpg 8.72 8.56 15.81 9.791 
bodyfat 10.8 9.0 11.4 6.7 
fishcatch 15639.3 8000.0 21437.3 5878.8 
housing 33.2 12.6 17.7 13.8 

Table 6.3: Regression experiments 

dataset bcrdf R rf-ace waffles 
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stars 1.34 0.89 0.37 0.52 

C
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diabetes 0.36 0.71 0.18 0.23 

C
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ss
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n glass 0.13 0.70 0.06 0.07 
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hepatitis 0.09 0.69 0.05 0.06 

C
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iris 0.07 0.79 0.03 0.04 

C
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ss
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letter 52.84 5.50 4.11 5.44 
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vote 0.12 0.71 0.09 0.06 C
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vowel 0.94 0.78 0.46 0.38 

C
la

ss
if

ic
at

io
n 

zoo 0.07 0.71 0.04 0.03 

R
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redshift 162.04 3.43 0.38 3.18 
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n auto93 0.12 0.69 0.04 0.05 
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autoMpg 3.56 0.70 0.10 0.17 
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bodyfat 0.59 0.70 0.09 0.13 
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fishcatch 0.17 0.68 0.04 0.09 R
eg
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housing 1.59 0.77 0.22 0.29 

Table 6.4: Average running time of experiments 
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Chapter 7 

Conclusion 

This project aims to implement data mining algorithm for astrophysical usage. 
In this thesis I described theoretical background and briefly introduced interesting al­

gorithms. I choose the random decision forests and provided rationale for this selection. I 
do not known an implementation of R D F which declared efficient implementation, is well 
documented, easily extendable and provide graphical representation of trained model. So I 
designed and implemented the algorithm in C++ with usage of the Boost and other third 
party libraries. I described my implementation in detail and compared it with various 
related implementations of the random decision forests. For the comparison and for a val­
idation of implementations I performed two astrophysical experiments and 13 experiments 
on datasets from UCI repository [3]. In experiments I measured accuracy and running time 
of the implementations. 

The developed implementation is documented by this thesis, comparable accurate and 
slower on bigger datasets than related implementations. Because the implementation is 
not good scalable in depending on the number of instances a memory efficiency was not 
measured. As the only implementation enables a graphical representation of the trained 
model (I also committed extension for a textual only representation of the model into Waffles 
[15]). The implementation has the rich configuration possibilities and is easily extendable 
by inheritance. 

For the real world usage I would recommend Waffles or R (package randomForest) be­
cause of longer development time, environment providing many other algorithms and much 
more experienced authors. Astrophysicists may be interested also in some data mining pro­
grams with graphical user interface (for example Weka 1). For mining of really massive data 
sets distributed computing is the only possible way (for example see Apache Mahout 2). 

In the future work I would like to reveal bottlenecks in time efficiency (by profiling), 
measure and optimize the memory usage and extend the program for more file formats, split­
ting criteria and R D F functionalities (like out-of-bag estimates). The addition of parallelism 
may be also possible and interesting way to go. 

1Weka is collection of machine learning algorithms with GUI. See http://www.cs.waikato.ac.nz/ml/ 
weka/. 

2Apache Mahout is collection of scalable machine learning libraries. See http://mahout.apache.org/. 
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Nomenclature 

C A R T Classification and Regression Trees. 

CasJobs Catalog Archive Server Jobs System 

D M Data mining 

DR7 Data Release 7 

D T Decision trees 

ID3 Iterative Dichotomiser 3 

K D D Knowledge discovery from data 

L D A Linear discriminant analysis 

QSO Quasi-stellar object 

R D F Random decision forests 

R F Random Forests 

SDSS Sloan Digital Sky Survey 

T D I D T Top-down induction of decision trees 
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Appendix A 

Usage info 

A . l Program options 

General options (General options are set via command line parameters. Other options 
must be specified in given configuration file.): 

- I (--input-file) Path to the file with data in the A R F F format (5.4). Required. 

-C (--command) The use case - possible values are: run or train. Required. 

- A (--algorithm) The algorithm - possible values are: rdf (for random decision forest). 
Required. 

--conf ig-f i le The configuration file (A.2) with algorithm dependent options. Required. 

Training options (--command is "train"): 

--model-out The trained model will be serialized to the specified file. Required. 

--model-print The trained model will be printed in X M L to the specified file. 

--target-attribute The index of the target attribute for training (zero-indexed). The 
default is to use last attribute in data. 

Running options (--command is "run"): 

--output-file The target file for the classification/prediction results. Required. 

--model-in The file with trained model (from training; the -model-out option's file). Re­
quired. 

R D F training options (command is "train" and algorithm is "rdf): 

rdf .trees The number of trees. Recommended value is about 20-100. Required. 

rdf .min-size The stopping criteria - minimum number of instances for splitting node. 
The default value is 4. 

rdf .max-depth The stopping criteria - maximum depth of internal node. The default is 
30. 
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rdf .rand-attribs The number of random attributes used in each node, zero for using all 
attributes. The default is zero. 

rdf. inbag-ration Ratio of the bagged data to all data. The default is 1. A negative 
number for no bagging. 

rdf .min-sq-err Only for numerical target attribute. If mean squared error in node is lower 
or equal than given value, node will not split. The default is 0. 

A.2 Configuration file format 

The configuration file format is described by self-explanatory example: 

model-out = model.xml 
r d f . t r e e s = 20 
[rdf] 
min-s ize = 3 
max-depth = 10 
r a n d - a t t r i b s = 2 
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Appendix B 

Graphical representation of the model 
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Figure B . l : A trained random decision forest (with only one tree) on the Stars data (un­
limited depth, minimal size for splitting is 30 and two random attributes in each node). 
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Appendix C 

Content of CD 

In the folder thesis are the source codes of this thesis in Latex and Lyx format and the 
thesis in P D F format. 

In the folder bcrdf are source codes of the presented implementation. There are also 
data used in experiments and scripts for running experiments. More detailed description of 
the folder structure and files is in README file. 
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