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PREFACE 
 

The thesis presented contains consolidated publications spanning from 2018 to 2022 that are 

partitioned into sections and intercorrelated based on the objectives and the proposed 

hypothesis that follow scientific protocols. The thesis uses a dataset from the Frydek Mistek 

district to apply various models to the intent prediction and mapping of potentially toxic 

elements (PTEs) in soil. Additional auxiliary datasets employed in the thesis are from Sentinel 2, 

Landsat 8, the digital elevation model, soil chemical properties, and visible near-infrared 

spectroscopy to improve the prediction of PTEs in agricultural soil. PTE namely Pb, Sb, Mn, Cr, 

Cd, Cr, Ni, and Mn were studied in conjunction with a series of learning algorithms and auxiliary 

datasets in the prediction and the mapping of PTE levels in the agricultural soils of the Frýdek-

Místek district. In addition, a source distribution assessment and a health risk assessment of the 

study area were carried out. The Department of Soil Science and Soil Protection at the Czech 

University of Life Sciences (CZU), Prague, provided oversight for the entire thesis, and grant 

providers and co-authors are recognized in the relevant publications.  

Nevertheless, the study also used different PTEs datasets, including legacy datasets and 

preferential sampling datasets, to predict PTEs in agricultural soil on a national scale (Czech 

Republic). To our knowledge, no other study has investigated this, possibly due to the uncertainty 

of the fusion of legacy data and preferential sampling datasets, as well as ensembles, in the 

prediction of PTE in agricultural soil on a national scale. The manuscript for this study is currently 

under review. The use of preferential sampling data and legacy data in conjunction with 

ensemble models improved PTE prediction on a national scale. The study will facilitate the use of 

preferential sampling data in known polluted areas to supplement legacy data and improve 

prediction on a national scale. However, the composition of papers based on scientific findings 

obtained from various papers in this thesis suggests that there is no single modeling approach 

that is deemed to be the best in all studies. Below are the papers that constitute the thesis. 
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1.0 LITERATURE REVIEW 

1.1 Soil pollution  

The term soil pollution refers to the presence of an anomalous chemical or substance in a higher-

than-normal concentration that has a negative impact on any non-targeted organism (FAO & 

ITPS, 2015). Potentially toxic elements (PTEs) have anthropogenic sources, can occur naturally in 

soils as mineral components, and can be dangerous in high quantities. Soil pollution is frequently 

not precisely assessed or visible, making it a hidden concern. Pollutants are becoming more 

diversified because of agrochemical and industrial advances. Soil surveys to differentiate 

pollutants are time-consuming and costly due to their diversification, leading to variation. The 

effects of soil pollution are further influenced by soil properties, which restrict contaminants' 

mobility, bioavailability, and residence time (FAO & ITPS, 2015). Industrialization, wars, mining, 

and intensification in farming have left a legacy of contaminated soils worldwide (Bundschuh et 

al., 2012; Luo et al., 2009). Soil has been used as a sink for dumping strong and liquid pollutants 

since urban expansion. It was carefully planned so once the toxins were buried and out of sight, 

they would pose no threat to human health or the environment and would eventually disappear 

(Swartjes & Siciliano, 2012). The primary sources of soil pollution are anthropogenic, resulting in 

a buildup of toxins in soils that may reach alarming levels (Cachada et al., 2017a). The attributes 

of soil allow it to naturally accommodate and support the mobility of inorganic chemicals or 

potentially toxic elements (PTEs) such as chromium (Cr), cadmium (Cd), arsenic (As), manganese 

(Mn), nickel (Ni), lead (Pb), zinc (Zn), copper (Cu), mercury (Hg), antimony (Sb), and cobalt (Co) 

(Sun & Chen, 2016). PTEs have been classified as the third most significant threat to soil processes 

in Europe and whole Eurasia, the fourth in North Africa, the sixth in Asia, the seventh in the 

Northwest Pacific, the eighth in North America, and the ninth in Sub-Saharan Africa and Latin 

America (FAO & ITPS, 2015). 

1.2 Potentially toxic elements 

Potentially toxic elements (PTEs) are abundant natural components of the earth's crust soils 

(Iñigo et al., 2011; Kabata-Pendias and Mukherjee, 2007). PTE is a generic terminology given to 

poisonous metal(loid)s that are detrimental to either human well-being or a sustainable 
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environment. Although part of PTEs has anthropogenic sources, some elements can happen 

naturally in soils as components of minerals. One of the many substantial detrimental effects of 

human practices on aquatic and terrestrial ecosystems is the widespread mobilization and 

distribution of pollutants from their natural reservoirs into the atmosphere, soil, and water (Hou 

et al., 2017; Zhao et al., 2014). Soil contamination cannot be regularly evaluated or outwardly 

seen, making it a concealed threat. The diverse variety of contaminants is continuously advancing 

due to agrochemical and industrial developments. Nevertheless, the impacts of soil 

contamination also depend upon soil properties since this control the mobility, bioavailability, 

and residence time of PTEs (FAO & ITPS, 2015). Attempting to address soil PTE contamination 

introduces some unique problems such as i) PTEs are non-destructible and frequently 

accumulate rather than degrade in soils (Maas et al., 2010); ii) they have a wide range of health 

effects, and the health vulnerability is complicated by their oxidation state and associated 

bioavailability disparities (Walker et al., 2003); and iii) there are numerous diffusional sources of 

PTE contamination (Qu et al., 2020).  Excessive levels of PTEs in soils not only have an impact on 

soil health, but due to their persistence in the environment and long biological half-lives, they 

can accumulate in the food chain and potentially impair human health (Ackermann, 1980; 

N’guessan et al., 2009; Xie et al., 2012). Although the negative consequences of PTEs have long 

been known and that contemporaneous prominence and its impact on PTEs persists and is 

escalating in some locations, most formerly cultivated land, mining area, industrial area and 

metallurgical tailing dumpsites are now abandoned (Gholizadeh et al., 2015). 

1.3 Sources of PTEs 

PTEs can enter the soil through divergent pathways, namely geogenic sources and anthropogenic 

sources. The fundamental sources of soil contamination are anthropogenic, resulting in the 

sowing of contaminants in soils that may reach levels of concern (Cachada et al., 2017b). Source 

of pollutant occurs from different sources, namely natural enrichment, agricultural activities 

(land application of fertilizers, animal manures, composts, pesticides), industrial activities, 

transportation system, atmospheric deposition, waste management and treatment, and mining 

(Basta et al., 2005; Jiménez-Ballesta et al., 2017; Khan et al., 2008; Zhang et al., 2010). PTEs of 

anthropogenic sources are typically more mobile and bioavailable in soil than PTEs of lithogenous 
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or pedogenic origin (Kaasalainen & Yli-Halla, 2003; Keeperman, 2000). According to Seaward et 

al. (1990) Thevenon et al., (2011), natural processes such as weathering of rocks, erosion, rock 

formation and volcanic eruption play a significant role in the emission and exposure of enormous 

quantities of PTEs such as Al, Cu, Hg, Mn, Ni and Zn into the environment, particularly soil.  Scragg, 

(2005) reported that agricultural production was the primary human influence exerted on the 

soil. The ever-growing human population is the fulcrum that pushes farmers to produce more 

and apply agrochemicals such as fertilizers and pesticides to enhance yield and productivity. 

Application of agrochemicals like foliar sprays rich in PTEs, for instance, Co, Cu, Fe, Mn, Mo, Ni 

and Zn, to soil essentially for plant growth (Lasat, 1999), successively during every crop season 

elevates the PTE concentration in the soil. However, recent publications by Liang et al. (2017); 

Luo et al., (2009); Nicholson et al., (2003) suggested that anthropogenic activities related to 

agronomic practices such as the use of fertilizers, fungicides and fossil fuel combustion have 

contributed to the high accumulation of Cu, Hg, Mn, Pb or Zn in soils. For example, lead arsenate 

and arsenate compounds used to control pests in fruit orchards in New Zealand and Australia are 

rich in Cu, Cr and As (Wuana and Okieimen, 2014); these elements are likely to increase the 

concentration of PTEs in soil beyond the tolerable limits. Basta et al. (2005) recounted that the 

application of biosolids like sewage sludge, industrial waste and compost to agricultural fields 

results in the increment of PTEs such as As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Mo, Zn, Tl and Sb in the soil. 

Industrial activity coupled with mining as well as tailings discharges a large amount of PTEs that 

contaminates the soil. For instance, huge lead (Pb) and zinc (Zn) ore mining, as well as metal 

smelting, has the propensity in contaminating the soil and poses an ecological risk. According to 

the FAO and ITPS (2018) reports, the United Nations Environmental Assembly (UNEA-3) agreed 

on a resolution calling for expedited actions and collaboration to address and manage soil 

pollution worldwide.  

1.4 Spatial distribution of PTEs  

PTE's spatial distribution is primarily related to the source of pollution, which is primarily soil 

pollution, and is thus more pervasive (Borůvka et al., 2005) and may be detrimental to the 

environment and human health due to their degree of toxicity and tenacity in nature. However, 

the spatial distribution of confined pollution has a significant structure, with probable pollution 
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adjacent to the point source declining with distance away from the source (Borůvka et al., 2005). 

Soil physiochemical characteristics typically significantly impact PTE spatial distribution 

mechanisms (Mahmoudabadi et al., 2015). According to  Zhao et al. (2010), the enrichment index 

of PTEs can sometimes be associated with various soil qualities and their spatial distribution of 

index enrichment for some PTEs like Cd, Ni, and Zn related to spatial structures of pH, OM, sand, 

and clay. The metal deposit can be enhanced by increasing soil pH, organic matter, cation 

exchange capacity, and the amount of iron and manganese oxides (Lake et al., 1984). PTE 

moieties have a significant impact on soil chemical mobility and bioavailability in soil (Zhang et 

al., 2018). The bioavailable proportion of a PTE in soils, on the other hand, is critical in its 

accumulation by organisms. PTEs emitted by anthropogenic activities are thought to have a high 

bioavailability (Bolan et al., 2014). As a result, recognizing the chemical form of PTEs in soils might 

be useful for analyzing their significant environmental concerns (Sun et al., 2019). The soil surface 

cation exchange model of PTEs binding reactions explains the bonding of metal ions to the 

surface of the mineral functional group to generate a more stable molecular unit (Christl & 

Kretzschmar, 1999). However, the major surface functional groups are inorganic hydroxyl groups 

which attach to surface Al, Fe, Mn, or Si on oxides or Al and Si exhibited on the margins of clay 

particles (Zachara & Westall, 2018). The surface complexation model has been predicated on 

observing that ion sorption occurs at specific surface sites (Christl & Kretzschmar, 1999).  

1.5 Potentially toxic elements for study 

1.5.1 Antimony  

Antimony occurs naturally in the environment and enters the environment through a variety of 

human applications such as type-metal alloy (with lead to prevent corrosion), in electrical 

applications, pewter, in primers and tracer cells in munition manufacture, semiconductors, 

flameproof pigments and glass, medicines for parasitic diseases, as a nauseant, as an 

expectorant, combustion of fossil fuels (Bradl, 2005). However, it is mainly produced from the 

ores stibnite (Sb2S3) and valentinite (Sb2O3). Even though most Sb contamination appears to 

come from mining and industrial emission sources, such as smelting, it frequently co-occurs with 

arsenic (Telford et al., 2009). 
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1.5.2 Arsenic   

Arsenic is chemically related to phosphorous since both belong to the same periodic table V-A 

(Bradl, 2005a). Arsenic is deposited into the soil anthropogenically through a variety of sources, 

including point sources, which are industrially orientated (mining, smelting, metal hardening, 

paints, textile, industrial dusts, medicinal, pharmaceutical, wastewater, pesticides, smelting of 

gold, production of iron and steel, industrial waste, combustion of fossil fuel, industrial waste). 

Furthermore, it enters the soil through diffusion pathways brought on by agricultural activities 

(application of arsenic in herbicides, cattle and sheep dips and insecticides). Pesticides account 

for about 80% of As production; however, because of their toxicity, pesticides no longer contain 

large amounts of As, although it is nevertheless a dominant PTEs in pesticides (Deschamps and 

Matschullat, 2011). Agricultural practices such as pesticides, fertilizers, sewage sludge, and 

manure are significant sources of As in agricultural soils (Kabata-Pendias & Szteke, 2015a). 

According to Falandysz and Rizal, (2016), As can exist in inorganic and organic forms, but the 

inorganic one is more prevalent in the soil. Due to its noxious nature, arsenic can be 

hyperaccumulating in plants such as mushrooms (Falandysz & Borovička, 2013).  

1.5.3 Cadmium 

Cadmium is regarded as one of the most environmentally hazardous metals, negatively impacting 

all biological functions (Bernard, 2008). Cadmium accumulation in the soil and the environment 

exhibits a very negative impact on the environment and food quality. The anthropogenic 

occurrences of Cd in the soil via point source are metallurgy, mining, phosphate fertilizer 

production, pigments and paints, electronics, industrial and incineration dust and fumes, 

wastewaters, pesticides, battery, PVC products, colour pigments. In contrast, some diffuse 

sources are accumulation from phosphatic fertilizers (containing 2-200 Cd mg/kg), domestic and 

sewage sludge, wear of automobile tires, lubricants and mining and metallurgical activities, 

pollutions from mining and smelting operations and atmospheric deposition from the 

combustion of fossil fuels (Smiljanić et al., 2019). 
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1.5.4 Chromium 

Naturally, Cr is among the few PTEs that do not occur in elemental but exist in compound forms 

such as chromite (Wuana & Okieimen, 2011). Smith (1995) asserted that the mineral chromite, 

FeCr2O4, is mined as a significant ore product of chromium. It is applied as an electroplating 

process emission and the disposal of Cr-containing wastes primary sources of Cr-contamination. 

Jeřábková et al. (2018)  and Smiljanić et al. (2019) reported that the anthropogenic sources of Cr 

can be put into two sources, namely point sources like mining and metallurgy, metal plating, 

rubber, photography, industrial dust and fumes, tanning, leather industry, chemical industry, 

fertilizers, textile industry, paints and pigments, and the diffuse ones that can be wastewater and 

sludge from dyeing and tanning industries. Mobility of Cr is affected by soil sorption properties 

such as clay content, iron oxide content, and the amount of organic matter present. Surface 

runoff can transport Cr in its soluble or precipitated form to surface waters; soluble and desorbed 

Cr complexes can leach from soil into groundwater; the leachability of Cr(VI) increases as soil pH 

increases; however, the majority of Cr released into natural waters is particle associated and is 

eventually deposited in the sediment or soil (Smith, 1995).  

1.5.5 Copper  

PTE copper is malleable, ductile, and a good conductor of heat and electricity. This is 

distinguished by a crystalline structure that absorbs frequencies in the visible range. Cu rapidly 

combines to organics in the soil, indicating that maybe a small fraction of copper will be detected 

in solution as ionic copper, Cu (II). Cu solubility is dramatically decreased at pH 5.5, close to the 

optimal farmland pH of 6.0–6.5 (Eriksson et al., 1997; Martínez & Motto, 2000). The sources of 

copper in the soil and the environment, as propounded by Smiljanić et al. (2019), are point 

sources such as mining and metallurgy, plating, rayon, electrical and electronic waste, pesticides, 

paints and pigments, textile industry, explosive, and diffuse sources like manures, fertilizers, 

pesticides, sewage sludge and atmospheric fall out resulting from the combustion of fossil fuels 

and industrial processes. 
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1.5.6 Manganese 

Manganese is among the most prevalent metals in soils, occurring as oxides and hydroxides and 

cycling via its three oxidation states which are found mainly as pyrolusite (MnO2) and, to a smaller 

extent, rhodochrosite (MnCO3)(LENNTECH, 2008). The anthropogenic source of Mn that is 

introduced into the soil and the environment in a point and the diffuse source is through the 

production of ferromanganese steels, electrolytic manganese dioxide for use in batteries, alloys, 

catalysts, fungicides, antiknock agents, pigments, dryers, wood preservatives, coating welding 

rods (Bradl, 2005b). Manganese is a mineral nutrient that is required by all plant species 

(PlantProbs.net, 2019). On the other hand, Mn is accumulated by species such as diatoms, 

mollusks, and sponges. Manganese dioxide is employed as a catalyst, and when chemically linked 

to potassium to form potassium permanganate, it is a powerful oxidant and disinfectant. 

Manganese oxide (MnO) and manganese carbonate (MnCO3) are two other compounds that 

have applications: the first is used in fertilizers and ceramics, while the second is the starting 

material to produce other manganese compounds (LENNTECH, 2008). 

1.5.7 Nickel 

Most of the nickel on earth is unavailable because it is trapped in the planet's iron-nickel molten 

core, which contains 10% nickel. It has been estimated that the entire amount of nickel dissolved 

in the sea is roughly 8 billion tons. Although the organic matter has a high capacity for metal 

absorption, coal and oil contain significant amounts. Nickel content in soil can range from 0.2 

ppm to 450 ppm in some clay and loamy soils. The anthropogenic source from the point and the 

diffuse sources are fertilizers, manures, metal refining, smelting, burning of coal and industrial 

sewage sludge, emissions from mining and smelting operations, an atmospheric fallout from the 

combustion of fossil fuels, mining and metallurgy, electroplating, production of iron and steel, 

industrial dust, industrial aerosols, incineration of waste, fertilizers, combustion of coal, battery, 

chemical industries, food processing industries (Alloway, 2013). Khodadoust et al. (2004) 

reported that the most common application of Ni is as a constituent of steel and other metal 

products, and metal plating industries, fossil fuel burning, and nickel mining and electroplating 

are significant nickel contributors to pollution in the soil. 
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1.5.8 Lead  

Lead (Pb) is a naturally occurring bluish-grey metal that is commonly found as a mineral in 

combination with other elements such as Sulphur (PbS, PbSO4) or oxygen (PbCO3), and its 

concentration in the earth's crust ranges from 10 to 30 mg/kg (USDHHS, 2007). The typical mean 

Pb content for surface soils worldwide is 32 mg/kg and ranges from 10 to 67 mg/kg (Kabata-

Pendias, 2010a). The source of Pb introduced into the soil via point and diffuse sources are mining 

and metallurgy, industrial dust and fumes, application of lead in gasoline, combustion fossil fuel, 

solid waste, solid waste combustion and incineration, industrial waste, paints and pigments, 

explosives, ceramics and dishware, some types of PVC, pesticides, fertilizers, manufacturing of 

lead-acid batteries, urban runoff, exhaust gases of petrol engines, which account for nearly 80% 

of the total Pb in the air, pesticides, fertilizer impurities, emissions from mining and smelting 

operations, and atmospheric fallout from the combustion of fossil fuels. Soils near Pb mines may 

contain as high as 0.5% Pb content (Galušková et al., 2011; Alloway, 2013). In a global context, 

Pb in soils averages around 27 mg/kg, with level differences for individual soils ranging from 3-

90 mg/kg. Pb concentrations in Cambisols and Histosols were significantly higher than in 

Arenosols (Kabata-Pendias and Szteke, 2015b). 

1.5.9 Zinc 

Anthropogenic activities increase Zn concentrations are rising abnormally. Due to the apparent 

accumulation of Zn in soils, plants frequently experience Zn uptake that their systems cannot 

handle. Greaney (2005) reported that Zn could disrupt soil activity by interfering with the activity 

of microbes and earthworms, which slows the degradation of organic matter. Zn concentrations 

in soils worldwide range from 30-100 mg/kg on average, while significantly more significant 

amounts can be found in calcareous and organic soils (Kabata-Pendias and Szteke, 2015). 

Similarly, anthropogenic Zn sourcing from diverse agricultural and mining operations may raise 

Zn levels in specific soils (Araújo et al., 2017). Point and diffuse sources of Zn are mining and 

metallurgy, galvanization, plating iron and steel, electroplating, fertilizers, metal waste, 

fertilizers, manures, pesticides, sewage sludge. 
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1.6 Pollution assessment-based receptor model (PAB-RM) 

The validity and dependability of soils for crop production, particularly urban, peri-urban, and 

agricultural soils, should be investigated to assess the impact and toxicity of PTE pollution. Huang 

et al. (2018) and Sawut et al. (2018) asserted that indices could reliably measure the state of soil 

contamination and the extent to which human activity impacts the soil and the environment. The 

use of pollution indices allows for measuring environmental risk and the degree of soil 

deterioration, illustrating the systematic relevance of evaluating soil quality with indices (Adamu 

and Nganje, 2010). In addition, the index (enrichment factor, ecological risk) allows researchers 

to assess whether PTE accumulation in soil was generated by a human or natural source (Peter 

and Adeniyi, 2011). Nonetheless, computed pollution indices values notify researchers and other 

stakeholders about the extent of pollution in the environment, allowing them to take appropriate 

action when necessary. Moreover, pollution assessment indices are significant for monitoring soil 

quality and indicate long-term resilience, especially in urban, peri-urban, and agro-ecosystems 

(Norbaya et al., 2014). These indices are frequently used to quantify PTE pollution in agricultural 

soil, urban soil, peri-urban soil and the environment.  

1.7 Digital soil mapping 

Digital soil mapping (DSM) or predictive soil mapping is presently the most effective way to 

predict the spatial variation of soil/sediment over an area (McBratney et al., 2003a). According 

to Minasny and McBratney (2016), DSM or predictive soil mapping has become a successful 

subdiscipline of soil science. Iqbal et al. (2005) stated that spatial variability of soil physical 

properties within or between soils is, at most times, inherent due to geological and pedological 

soil formation factors. However, some of the variability may be caused by other management 

practices. The factors work together on a temporal and spatial scale, and the content is further 

adjusted by the spatial heterogeneity deposition of soil properties. Zhu et al. (2018) reported that 

environmental covariates and soil relationships in spatial predictions are fitted with a model and 

the learned nexus and are subsequently applied to spaces or locations where data (soil/sediment 

data) are unknown. Usually, DSM forms a quantitative soil environment relationship centered on 

the modelling points or sample observation points to characterize the nexus between soil and 
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environmental covariates such as climate variables, geological variables, slope and topographic 

wetness index (Penizek & Boruvka, 2008). DSM applies models to compute soil property values 

at unknown locations (Heung et al., 2016; McBratney et al., 2003a; Minasny and McBratney, 

2016; Zhu et al., 2001). Globally, the soil science communities have adopted DSM for mapping 

soil properties and classes (Arrouays et al., 2014) and, to a significant extent, to predict the 

concentration of PTEs in the soil/sediments. Due to its high accuracy compared to conventional 

mapping, many stakeholders (e.g., FAO) have embraced DSM usage. DSM is consistent for 

sustainable land management (Padarian et al., 2019), and by extension, it is valuable and efficient 

in the spatial prediction of PTEs. Significant to the success and applicability of spatial predictions 

are the underlying assumptions employed in describing the relationships and how these 

relationships are characterized (Zhu et al., 2018b). Soil mapping techniques have improved by 

the progression of geographical information technology and computational technology (Zhang et 

al., 2017). Lagacherie and McBratney (2006) defined digital soil mapping as the creation and 

population of spatial soil information systems by numerical models inferring the spatial and 

temporal variations of soil types and soil properties from soil observation and knowledge from 

related environmental variables. The accumulation of PTEs in the soils/sediments has been a 

worldwide concern (González-Macías et al., 2006; Liu et al., 2003), as it poses an utmost threat 

to human health (Chen et al., 2015). According to Chen et al. (2009), one of the feasible roles of 

studies is the inhibition of PTEs in the soil. On the other hand, spatial prediction of PTEs provides 

an avenue to delineate the distribution of potentially toxic elements, their concentration, 

occurrence and knowing their source of pollution.  

DSM approaches include conventional statistical techniques, machine learning algorithms (MLA), 

geostatistical methods and hybrid approaches (Chen et al., 2019). The traditional approaches 

include the application of commonly used non-spatial statistical techniques such as multiple 

linear regression (Jiang et al., 2019), partial least square regression (Lago et al., 2021), generalized 

linear models and linear mixed models (Doetterl et al., 2013). The statistical methods were 

applicable in the modelling of soil organic carbon (SOC) (Gomes et al., 2019), PTEs (Ballabio et al., 

2018)  and soil properties (Shi et al., 2011). While such statistical methods are uncomplicated to 

implement, their requirements for unbiased and comparable distribution with huge datasets are 
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sometimes an obstacle (Chen et al., 2019). These approaches are also characterized by a relative 

paucity of spatial information, making them less dependable and inappropriate for identifying 

regional variations (Lian et al., 2009). According to Kempen et al. (2012), DSM applications are 

centered on scientific research and are regionally based specific. Human activities can pollute 

confined areas with well-defined borders from point sources or contaminate wider land surfaces 

diffusely. However, identifying the source of PTEs is frequently difficult if the point source cannot 

be determined at the place where large concentrations of the element are observed (Tóth et al., 

2016). DSM of PTEs content of topsoil within specific regions of the earth, such as European 

coverage, aids in assessing spatial patterns and hotspots on the continent (Tóth et al., 2016). 

Whilst the spatial variability of PTEs is naturally associated with point sources of pollution, other 

parameters such as wind speed and direction are also relevant and should not be overlooked 

(Taghizadeh-Mehrjardi et al., 2021). Behrens et al. (2018) applied DSM in multi-scale terrain 

feature generation and their respective efficiency for a deep learning algorithm. Costa et al. 

(2018) reported that the digital elevation models (DEM) are extensively used in digital soil 

mapping (DSM) and are chosen based on metrics and indicators (quality criteria) that are 

supposed to reflect how effectively a particular DEM depicts the terrain surface. 

1.7.1 Geostatistical approaches 

Geostatistical approaches encapsulate simple/ordinary kriging, cokriging, universal kriging, and 

empirical Bayesian kriging. Geostatistical techniques are commonly used to interpolate 

geographical characteristics with considerable spatial autocorrelation, including climate factors, 

ecological soil properties, and geological elements, such as PTEs. The application of geostatistical 

modelling approaches cut across broader spectra such as application in soil SOC (Bangroo et al., 

2020; Peng et al., 2013; Wang et al., 2015), soil properties (López-Granados et al., 2005; Vašát et 

al., 2013), PTEs (Ash et al., 2014; Linnik et al., 2020; Łyszczarz et al., 2020) and analyzing 

remote/proximal sensing images (Zawadzki et al., 2005; van der Meer, 2012). The advantages of 

geostatistical interpolation include the (i) capacity to account for directional factors, such as soil 

pollution (PTEs), soil erosion, siltation flow, lava flow, and wind movement, as well as (ii) the 

potential to surpass the lowest and highest point values. The limitations of geostatistical analysis 
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are the smoothing effects of kriging and the fact that spatial interpolation evaluates physical data 

in a continuous domain. 

1.7.2 Sequential gaussian simulation (SGS) 

The fundamental idea behind SGS is to reconstruct sequential grid points using the empirical 

distribution's temporary proportion (i.e., in this case the PTEs data). It generates an output that 

is relatively like the accurate spatial actuality of an interest parameter. Even though the data 

should be detectable, the interpolated points symbolize the variogram approach and the nugget 

effect's local noise (Goovaerts, 2001). Moreover, it is premised on the multi presumption of a 

random feature model (Goovaerts, 2001; Johari et al., 2020). The data set appears to provide the 

critical standard score change, ensuring the logic of the univariate data distribution at the very 

least. For more information on SGS, refer to Gholampour (2019). 

1.7.3 Machine learning approaches 

With low soil data and auxiliary environmental data, MLA techniques can tolerate nonlinearity 

and multicollinearity and counteract overfitting (Gautam et al., 2011). MLA models include an 

array of methods and are not limited to random forest, cubist, support vector machines, Bayesian 

regularized neural network, regularized random forests, conditional inference forest, extreme 

gradient boosting, gaussian process regression, multivariate adaptive regression splines, partial 

least square regression, Bayesian generalized linear model, M5 tree model and quantile 

regression forest. 

Random forest (RF) is defined as the assemblage of diverse regression and/or classification trees. 

Breiman, (2001) created the algorithm and asserted that its higher accuracy level could be 

compared to adaptive boosting. Gislason et al. (2006) and Heung et al. (2014) articulated that 

the computational ability of RF is faster. The variable handling capacity of the RF is both 

categorical and continuous. According to Díaz-Uriarte and Alvarez de Andrés (2006), RF does not 

need variables preselection and it is capable of handling noise due to its robust nature. Cutler et 

al. (2007) documented that the algorithm begins with several tree samples (ntree) from the data 

sampled. The operation is modified employing which the predictors (mtry) are sampled 
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arbitrarily; afterwards, every ntree grows a regression tree and the RF algorithm chooses the 

utmost split between the variables sampled instead of all the variables (Nawar and Mouazen, 

2017). The default value mtry is considered the square root of the totality of the variables (Abdel 

Rahman et al., 2014). Sega and Xiao (2011) proposed the formulae for RF regression which is 

given as 

RF=
1

M
∑ f̂m

∗M
m=1 (Xθ) 

In which M represents the mth bagging repeatedly tree (m=1,….., M), Xθrepresents the covariates 

and the f̂m
∗ (Xθ) also denotes the mth tree of an individual test case.  

Support vector machine (SVM) is an MLA that generates an optimum disengaging hyperplane to 

distinguish categories that have similarities and are not independent in a linear way. Vapnik 

(1995) developed the algorithm, which was meant for purposes of classification and in recent 

times, it has been adopted for solving regression-oriented problems. Li et al. (2014) 

communicated that SVM is one of the best classifier techniques and it has been applied in a 

diverse field. This study employs the regression aspect of SVM (support vector machine 

regression - SVMR). SVMR was initiated by Cherkassky and Mulier (2006) as a regression based 

on kernel and its computation functions with a linear regression model that possesses a 

multivariate space feature. John et al. (2020) indicated that the SVMR utilizes a hyperplane linear 

regression that establishes a nonlinear relationship, and it is possible for the space feature. 

Vohland et al. (2011) outlined that epsilon (ε)-SVMR utilizes a trained dataset to procure a 

represented model as an insensitive feature, which is used to map data independently with the 

optimum epsilon ε- deviation from dependent data training. The preset distance ε error inside is 

ignored from the actual value, and if the error is seen to be bigger than the epsilon (ε), it is 

compensated for by the soil property. The model also reduces the intricacy of training data to a 

broader subset of support vectors. The equation as proposed by Vapnik (1995) is given as  

 y(x) =  ∑ αk
N
k=1 K(x, xk) +  b, 

In which the b represents the scalar threshold, K(x, xk) representing the kernel function, α 

denoting the Lagrange multiplier, N symbolizing the number dataset,  xk representing the data 
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input and y is the data output. One of the critical kernels used is the SVMR operation with the 

Gaussian Radial Basis Function (RBF). The RBF kernel was applied to ascertain the optimum SVMR 

model that is essential to procure the finest penalty set factors C and the kernel parameters 

gamma (γ) for the PTEs training data.  

Multivariate adaptive regression splines (MARS) were created by Friedman (1991) as a nuanced 

technique and a non-parametric regression method that generates multiple linear regression 

models across a wide range of predictor values. Its quantitative approach that divides training 

data into simple linear segments (splines) with varying gradients using a splitting approach 

(slope). MARS makes no assumptions about the primary relationships between the dependent 

variable and independent factors (Zhang et al., 2016). Splines are frequently connected smoothly 

with piecewise polynomials, also known as basic functions (BFs), resulting in a comprehensive 

framework that can compensate both linear and nonlinear behavior (Zhang et al., 2016). 

Friedman (1991) and Zhang et al. (2016) provide more information on the MARS algorithm. 

M5 model tree is a numerical prediction algorithm, and its splitting criterion is based on the 

standard deviation of the values in the subset T of the training data that reaches a specific node 

(which is an analogue of entropy). M5 model tree however perfoms a binary decision tree with 

linear regression functions at the terminal (leaf) nodes that can forecast uninterrupted numerical 

attributes Quinlan (1992). The divide-and-conquer strategy is used to build tree-based models. 

Two steps are necessary for model tree generation. Making a decision tree using a splitting 

criterion is the first step. models. 

 Cubist implements a related approach to boosting but is called "committees," which make 

iterative decisions in sequence. This model employs instance and model-based coupling 

techniques to create a multivariate regression from training data. Quinlan (1992) and Kuhn and 

Johnson (2013)  reported that the cubist primary value is to enhance the multiple trainings 

committees and also augment the weight to ensure it is well balanced. Similarly, the cubist model 

training committees (above one mostly) boosting method shares similarities with sequential 

series tree development with weight-adjusted. Kuhn et al. (2013) recounted that the cubist 
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model is typically used to apply amended depending on the number of neighbours, based on 

prediction rules. However, Kuhn et al. (2014) stated that the cubist regression model utilized in 

classification and regression is prevalent and extensively used in R as a package. The cubist model 

follows the same method as in random forests.  

Partial least square regression (PLSR) technique has the leverage of eliminating the challenge of 

multidimensionality between many predictor variables (Mishra et al., 2020). The algorithm can 

be used to perform and analyze independently for each number of characteristics ranging from 

1 to 10 (Agyeman et al., 2022). After superimposing the explanatory variables to an original 

space, the algorithm concurrently uncovers a linear regression method linking the predictor 

variables and the correlation between the explanatory variables in the new projected space 

(Gamon et al., 1992). Ehsani et al. (1999) provide more information on the PLSR algorithm.  

The Gaussian process regression (GPR) is a technique of nonparametric modeling (Vasudevan et 

al., 2009; Y. Zhang & Xu, 2021). This is a supervised machine learning technique for general 

regression and probabilistic classification problems.  Wang et al. (2020) attribute GPR's utility to 

its ease of use and high accuracy. GPR can also help to reduce dataset overfitting (Ballabio et al., 

2019).  

Quantile regression forest (QRF) is a variation on the RF method (Meinshausen, 2006). It keeps 

track of all observation samples in each decision tree node, their average values, and their 

variation. It also evaluates the provisional distribution of prediction results predicated on this 

information (Dharumarajan et al., 2019).  

Bayesian techniques are the best way to solve learning problems, and any other approach that 

does not approximate them should also perform worse on average. They are extremely effective 

for data model comparative study because they automatically and quantitatively 

automatically embody (Jr et al., 2003). Under Bayes' Rule, complex approaches automatically 

self-punish. Bayesian approaches complement neural networks (NNs) by overcoming an 

excessively flexible network's proclivity to explore virtually nonexistent or excessively convoluted 

data models (Tchagang & Valdés, 2019). Traditional backpropagation NN training methods utilize 

a solitary set of variables (weights, biases, etc.), the Bayesian method to NN modelling techniques 
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considers all potential values of network parameters, weighted by the probability of each set of 

weights. Applying the Bayesian regularized neural network approach, Bayesian inference is 

utilized to derive the posterior probability distribution of weights and connected attributes from 

a prior probability distribution based on updates offered by the training set (Tchagang and 

Valdés, 2019). 

Extreme gradient boosting (EGB) is a decision tree that uses a gradient-boosted method to 

enhance speed and precision (Climent et al., 2019). It is a regression and categorization problem 

that is solved sequentially by a set of limited prediction techniques, with each new design 

focusing to rectify the imperfections of the earlier models (Agyeman et al., 2022). The EGB is a 

pragmatic and modular application of Friedman's gradient boosting framework that is premised 

on Friedman's original gradient boosting technique (Climent et al., 2019).  

Regularized random forest (RRF) is the latest change to random forest (RF), which applies a 

regularization structure to random forests and integrates it into the tree increasing algorithm 

(Deng, 2013). RRF, as displayed in, produces high feature subsets, and reduces the number of 

characteristics used in categorization and regression problems (Deng et al., 2012). To preclude 

overfitting, regularization typically involves adding a penalty to an error function. 

Bayesian generalized linear model in a modeling approach that presumes generalized linear 

models (GLMs) with factors in an enclosed environment of prevalent preference (e.g., in 

monotonic or convex regression), but maintaining a genuine posterior variation backed by a 

system of linear restrictions and limitations can be challenging, particularly when some 

limitations are legitimate and implementable, culminating in a decreased feature subspace. 

Bayesian methods eliminate the need for a nonlinear remedy by repeatedly sampling from 

posterior probabilities. Another advantage of the Bayesian technique is its versatility in assessing 

ambiguity in calculated random impacts and hyperparameter functionalities. Bayesian inference 

is based on data obtained instead of the assumption of infinite data populations. These 

inferences advantage Bayesian techniques because all inferences are accurate and not 

approximated, and the results are understandable (Congdon, 2007; Ntzoufras, 2011).  
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Conditional inference forest (CIF) is a tree-growing technique popular in bioinformatics 

applications (Nicodemus et al., 2010). Theoretically, CIF varies from traditional random forests in 

that it separates the alternative of the isolating different factors from the agglomeration of the 

already selected partitioned variable's dividing point (Hothorn et al., 2012). The optimal control 

divide parameter is largely decided in the first step, and an associative test is performed between 

the potential split parameters and the response. CIF techniques are used in addition to a 

provisional grid for the potential composite relevance measure, enabling for superior appraisal 

of each parameter's independent commitment and discrimination of observables from 

erroneous relationships (Delerce et al., 2016). When sampling without substitution is used, the 

CIF two-step method yields a non-biased split variable alternative and a test statistic when the 

quadratic version is used.  

1.7.4 Ensemble modeling  

Putting various models together to leverage each other's strengths while avoiding each other's 

weaknesses to produce good modeling predictions gave way to the ensemble modeling 

approach. It is essentially a hybridized model that combines the output of multiple modeling 

approaches into a single modeling approach to produce a more efficient output. Stacking is an 

ensemble technique for achieving maximum generalization precision by combining the results of 

various machine learning methods into a single component technique (Breiman, 1996; Malone 

et al., 2014). The basic concept of a typical ensemble model is divided into two stages: the initial 

level (Level 0), which contains the sub model, and the final level, which contains all the sub 

model's predictions piped through a meta-learning algorithm to give a final prediction due to the 

sub model's departure from level 0. The ensemble model in the thesis is made up of four sub 

models and the stack tree or meta-learner is a standalone modeling approach that uses the 

weights generated by the sub models to produce the final predictions.  

1.7.5 Application of proximal and remote sensing in DSM 

Proximal and remote sensing technologies are changing into efficient means for obtaining vast 

amounts of geographical data (Brevik et al., 2016). The advent of new statistical techniques and, 

eventually, machine learning, enables new ways to interpret these data (Lu, 2010). These 
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techniques have significantly altered soil mapping today (McBratney et al., 2003b) and provided 

new approaches for the digital mapping of polluted soils with PTEs. The development of proximal 

and remote sensing has been acknowledged as a suitable and successful remote and contactless 

discovering method for detecting and analyzing soil contaminants (Choe et al., 2008a). Applying 

proximal and remote sensing methods can be a useful resource in the phases of pollution 

research and environmental concern assessment and can ultimately lead to a noticeable 

decrease in pollution issues in both natural and man-made environments (Asmaryan et al., 2014; 

Gholizadeh et al., 2018; Wu et al., 2007).Visible near infrared  (Vis-Nir) spectroscopy has been 

successfully utilized by Bray et al. (2009) to detect quantified PTEs in polluted and unpolluted soil 

with varying concentrations of PTEs (Cu, Zn, Cd, and Pb). Ren et al. (2009), on the other hand, 

reported that applied reflectance spectroscopy was used to evaluate the content of PTEs such as 

As and Cu in mining areas. Soil samples were examined employing HyMap hyperspectral imagery 

and a varied multiple endmember spectral mixture modelling (VMESMA) computational 

technique to determine the distribution sequence and proportion of remnant tailing materials in 

the research area (Cocks et al., 1998). On the other hand, the application of remote sensing in 

the potentiality investigation of the spectral variability associated with PTEs to map the spread 

of PTEs in impacted areas of a mining region in southeast Spain using HyMap data (Choe et al., 

2008). 

1.8 Environmental covariates 

The concept of vegetation/soil-environment relationships has frequently been presented in an 

equation with six key environmental factors. Jenny (1941) proposed that the nature and 

characteristics of soil at any location are the result of the interactions of five soil-forming factors, 

namely 'c' - climate; 'o' - vegetation and living organisms; 'r' - relief, topography, and landscape 

attributes; 'p' - parent material, lithology; and 'a' - time or age. McBratney et al. (2003) proposed 

the SCORPAN model, in which soil (as either soil classes, Sc, or soil attributes, Sa) is an empirical 

quantitative function of seven environmental covariates: 

S = f (s, c, o, r, p, a, n)  
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where s: soil, other properties, or prior knowledge of the soil at a point; c: climate, climatic 

properties of the environment at a point; o: organisms, vegetation or fauna or human activity; r: 

topography, landscape attributes; p: parent material, lithology; a: age, the time factor; and n: 

space, relative spatial position. Multiple approaches may be used to incorporate auxiliary terrain 

information (Penížek & Borůvka, 2006). However, gathering terrain information utilizing digital 

techniques of the earth's surface is generally deposited in a repository that is guided by 

computers. The data classes typically obtained by researchers are presented in several categories 

employed in quantifying mapping PTEs, soil properties, and so on (Penížek et al., 2016). The 

technique for acquiring data for covariates generally considers the ground height, density, 

observation coordinates, and the GIS-based algorithm. In this thesis, the use of spectral indices 

was considered and explored to determine the feasibility of using a mathematical equation based 

on a remote sensing dataset.  

1.9 Remote sensing 

The "art and science of deriving information from measurements made at a distance" has been 

defined as remote sensing (Colwell, 1997). Measurements of electromagnetic radiation from the 

earth's surface are made in two ways: passive and active. Passive remote sensing collects 

electromagnetic data generated by the interaction of the sun's energy and surface materials, 

such as measurements collected by satellite sensors. Active remote sensing gathers data from 

the earth's surface because of an emitted signal, such as LiDAR (Light Detection and Ranging) or 

radar. Spectral data remote sensing provides direct information about the surface properties of 

soils, vegetation, or other materials. Remotely sensed spectral properties at the surface can be 

linked to environmental covariates that influence soil development. As a result, the spectral 

properties can potentially be used to infer other soil characteristics. Remote sensing data can be 

used to map variations in relief, climate, organisms, parent material, and even time (indirectly). 

The spatial detail, spectral wavelengths of imagery, and even the season of the year or other 

temporal aspects of the physical environment that influence data acquisition timing should all be 

considered. Satellite images can be obtained from free hub such as the European Space Agency's 

Copernicus Open Access Hub and the earthexplorer.usgs.gov. Some of the imageries that can be 
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extracted are Landsat and Sentinel. The popularly used imageries are the Sentinel 2 and the 

Landsat 8. 

1.9.1 Image fusion  

The goal of image fusion was to combine multiple input images into a more informative single 

composite image. Fusion usually blends low to medium spatial resolution hyper/multispectral 

images with high spatial resolution panchromatic images to produce an image that retains both 

the spectral and spatial resolution of the hyper/multispectral and panchromatic images. 

Depending on the fusion stage, image fusion is performed at three different levels (Pohl et al., 

1998): 

1- Pixel level   2- Feature level,   3-Decision level 

The pixel level is the image composition's lowest processing level. The most popular and effective 

image fusion techniques at the pixel level are Hue, Intensity, Saturation (IHS), Gram Schmidt (GS), 

Principal Component Analysis (PCA), and wavelet.  

1.10 Bivariate mapping  

Bivariate mapping refers to the method of characterizing spatial objects including grid cells or 

area polygons based on the values of two variables (Speich et al., 2015). By visualizing the two 

variables as a single output employing a single-color legend, a bivariate color scheme is 

generated. A bivariate map depicts the spatial relationships between two raster layers (Tyner, 

2010). Spatial relationship can then be examined as a single output map for use in a range of 

applications. When two variables have a spatial relationship, it suggests that they are 

interdependent. Beard and Mackaness (2006) express similar points of view in the scenario of 

uncertain spatial analysis, in which the feature and a method for analyzing its predictive ability 

are highly symbolically depicted in a bivariate map. Moreover, multiple studies have compared 

and demonstrated that the efficiency of bivariate maps varies, and the results vary depending on 

the map reader's knowledge and experience (Hope & Hunter, 2013; Roth, 2013). For more 

information on the bivariate mapping procedure, see Kebonye et al. (2022) and Trumbo (1981). 
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The map function would generate a bivariate map that incorporated spatially distinct features 

from both layers. 

1.11 Knowledge deficit 

Considering the above literature, spatial prediction of PTEs and their effects in agricultural soil 

has always been a challenge. The premium placed on agricultural soil due to its use for crop 

production has thus pushed a lot of research traffic in the direction of new ways to abate or 

reduce the influx of PTEs into agricultural soil to a tolerable minimum. DSM has bridged the gap 

in terms of improving the availability of updates and quantitative and reliable soil data and 

information to support decision-making in relation to sustainable soil management. Prediction 

of PTEs over the year using DSM incorporates a wide range of environmental covariates, including 

remote sensing, terrain attributes, a digital elevation model, and other allied auxiliary datasets 

that aid in the prediction of PTEs in the soil. Nonetheless, the potential for determining PTEs in 

agricultural soil by combining spectral indices estimated from remote sensing datasets with 

terrain attributes remains untapped. Spectral indices estimated from satellite imagery for the 

spatial prediction of PTEs in soil require a relationship with allied ancillary datasets with 

representation of the earth's surface, such as DEM, because they contain information about the 

elevation of geological (ground) features such as valleys, mountains, and landslides, to name a 

few. This provides details information needed in ensuring good predictions that are useful to 

decision makers and end user.   

PTEs accretion in soil, as an important factor influencing soil structure and function, has a 

significant impact on cultivated land quality, causing soil compaction and nutrient loss, resulting 

in a decrease in agricultural product production and quality (Zhao et al., 2017). A high 

concentration of PTEs in agricultural soil reduces the productivity of agriculture, the microbial 

activity in the soil, makes the soil infertile, and it enters the food chain. (Toth et al. 2016, Vácha, 

2021). More specifically, elevated PTEs in the soil have a higher tendency to be harmful to human 

health, soil flora and fauna. Different crop production methods can have varying effects on PTE 

uptake from soil to plant, posing various health risks to residents via the food chain (Antoniadis 

et al., 2017, Liu et al., 2013, Zhuang et al., 2009). The current concept of health risk assessment 
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in all areas of interest is largely based on the mean values of the study area, as well as the 

maximum and minimum values. These types of health risk assessments do not provide a 

complete picture of the health status of the study area, but rather a good idea of it. In contrast, 

using a sample location approach to assess health in an area of interest is a paradigm shift in 

health risk assessment that provides a comprehensive overview of the area of interest as well as 

detailed information on health risk status per each sampled location.  

Understanding, analyzing, and controlling PTEs pollution requires knowledge of PTEs sources. 

Principal component analysis combined with multiple linear regression, UNMIX, chemical mass 

balance, and geostatistics combined with geographic information system (GIS) techniques have 

all been used to assign PTE sources (Fei et al., 2019). Positive matrix factorization (PMF), 

recommended by the United States Environmental Protection Agency (USEPA, 2014), is an ideal 

receptor model that can quantitatively calculate the contributions of potential sources to soil PTE 

contamination at each data point under nonnegative constraints and data uncertainty (Huang et 

al., 2018). Moreover, according to Paatero et al. (2014) and Brown et al. (2015), the application 

of the PMF receptor model has drawbacks, resulting in disparities between measured and 

predicted PTE content, which impacts factor contributions. One of the best ways to improve 

model performance in DSM, and thus reduce errors and improve prediction efficiency, is to 

hybridize the modeling approach with a different model. Based on this context, ecological risk 

was combined with PMF to produce ER-PMF, which provides less differences and has a higher 

likelihood of reducing errors between measured and predicted PTE content. This practice is novel 

and provides an appropriate orifice to reduce errors resulting from source distribution 

assessment to the minimal level. 

Some metals, such as zinc (Zn) and iron (Fe), play important roles in crop production because 

they are essential nutrients for plant growth, development, and productivity. Elevated levels of 

metals in the soil, such as Zn, have a devastating effect on plant growth. It is common practice to 

use alternative auxiliary datasets to predict these PTEs in soil. However, the combination of 

pretreatment methods used in pretreating spectral datasets is uncommon. More importantly, 

the interaction of macronutrients and micronutrients in the soil is critical for maintaining soil 

balance for crop growth. Nonetheless, leveraging the stimulating and antagonistic effects of 
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macro- and micronutrients in soil, as well as a visible near-infrared spectroscopy dataset, for the 

prediction of PTEs in soil, particularly zinc, is unexplored terrain. 

Monitoring agricultural soil on a regular basis to ensure that it is in good condition for agricultural 

production is critical. The collection and use of legacy data collected from national agencies and 

allied bodies that share pollution monitoring goals has gone a long way toward assisting in the 

monitoring of soil pollution levels and providing pragmatic and realistic solutions to the problem. 

Legacy data is frequently used in the prediction and mapping of PTEs in agricultural soil to 

monitor pollution levels and soil quality. The sampling regime appears to be wide at times, 

capturing few polluted areas during the sampling process, due to the vastness of the area 

sampled for periodic monitoring. The spatial process and sampling location are not thought to 

be stochastically independent in preferential sampling. When the area of interest is deemed 

polluted or has a peculiar problem, this sampling procedure is initiated. There have been studies 

that use either preferentially sampled or legacy data. What has not previously been done is the 

combination of preferential sampling datasets and legacy data with the goal of improving 

prediction performance. Preferential sampling in polluted areas within a larger area to 

supplement legacy data for soil quality and pollution monitoring improves prediction, identifies 

high polluted areas, and provides tailored solutions based on pollution outcomes. 

Fusion is commonly characterized in remote sensing as the integration of two or more images 

with varying spectral and spatial features (Khosravi et al. 2022). As a result, the fusion product 

includes all the characteristics of both single images, making it more informative (Palsson et al., 

2018). The fusion procedure must retain the resulting fused image's spectral and spatial 

resolutions while avoiding spectral and/or spatial distortion (Qu et al., 2018). Moreso, most study 

have applied data fusion of remote sensing imageries in prediction of PTEs or soil properties.  

Moreover, it is rare combining terrain attributes to data fusion of Sentinel 2 and Landsat 8 in the 

prediction of PTEs in agricultural (Agyeman et al. 2022). The geological terrain is an important 

and influential factor in predicting PTEs such as Sb in soil (Agyeman et al. 2022). Given the 

circumstances of pedogenesis and the evolution of development, environmental covariates have 

the greatest influence on the impactful categorization of the spatial variability of PTEs in soil 

(Zeraatpisheh et al., 2020). PTEs enrichment in agricultural soils results from a combination of 
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anthropogenic and natural processes, including parent material weathering and subsequent 

pedogenesis (Agyeman et al. 2022). Therefore, there is a dearth in combining the remote sensing 

dataset along with terrain attributes to harness the potential in prediction of PTEs in the soil.  

Nonetheless, the use of regression kriging with a combined auxiliary dataset from Sentinel 2 and 

Landsat 8 (data fusion), as well as terrain attributes, to improve PTE prediction efficiency has 

never been explored. 
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2.0 OBJECTIVES & HYPOTHESES 

 

Paper 1: Using spectral indices and terrain attribute datasets and their combination in the 

prediction of cadmium content in agricultural soil 

Hypothesis: Using prediction models with reasonable accuracy, soil pollution can be spatially 

predicted. 

Objectives: The goals of this study are to (i) determine the variability of prediction Cd in 

agricultural soil using spectral indices or terrain attributes coupled with modeling algorithms and 

(ii) determine whether combining spectral indices and terrain attributes coupled with modeling 

algorithms can improve Cd prediction efficiency in agricultural soil. 

 

 Paper 2: Human health risk exposure and ecological risk assessment of potentially toxic element 

pollution in agricultural soils in the district of Frýdek-Místek, Czech Republic: a sample location 

approach 

Hypothesis: Increased levels of PTEs in a study area beget carcinogenic and non-carcinogenic 

health risk exposures. 

Objectives:     The primary objective of this paper is to create a digitized soil map that highlights 

the human-related health risks posed by PTEs, as well as to estimate and map pollution indices 

outputs, the pattern of PTE spatial distribution, source apportionment, and determine 

carcinogenic and non-carcinogenic health exposures using a sample location approach.    

 

Paper 3: Ecological risk source distribution, uncertainty analysis, and application of 

geographically weighted regression cokriging for prediction of potentially toxic elements in 

agricultural soils. 

Hypothesis: The impact of agriculture and industry on soil health in the study area can be 

ascertained through the use of reliable pollution indices and multivariate statistics. 

Objectives:  The specific objectives of this paper are (i) to determine the environmental risk level 

of the study area, (ii) evaluate ER-PMF (ecological risk-positive matrix factorization) and PMF 

(positive matrix factorization) receptor models for estimating PTE source allotment, (iii) employ 

ecological risk-assessed PTE values to calculate PCA and a correlation matrix, (iv) estimate the 
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uncertainty based on the receptor models and assess the efficiency of the prediction of PTEs 

based on geographical weighted regression or a hybridized model. 

 

Paper 4: Optimal zinc level and uncertainty quantification in agricultural soils via visible near-

infrared reflectance and soil chemical properties 

Hypothesis: The relationship between soil properties, pollutant contents, and auxiliary datasets 

allows for the application of reliable models to detect the concentration of these elements (PTEs). 

Objectives: The study's objectives are to (i) quantify the concentration of Zn in cultivated soil 

based on a series of MLAs coupled with Vis-NIR spectral reflectance; (ii) determine whether 

combining Vis-NIR, soil chemical properties, and MLAs in the estimation of Zn content in 

agricultural soil will improve prediction accuracy; (iii) determine the level of uncertainty that will 

be propagated in both contexts, and (iv) evaluate the performance of a single pretreated method 

versus a combination of pretreatment methods. 

 

Paper 5: Quantification of the optimal cadmium level in agricultural soil using legacy data, 

preferential sampling, Sentinel 2, Landsat 8 coupled with ensemble model. 

Hypothesis: The combination of legacy data and data from preferential samples will improve soil 

pollution spatial prediction over a larger area. 

Objectives: The study's specific objectives are to compare the prediction of Cd in agricultural soil 

using two distinct Cd datasets; (i) to apply the different spatial resolution of remote sensing 

datasets to the prediction of Cd in agricultural soil; (ii) to assess the propensity of ensemble 

models coupled with diverse Cd datasets and remote spatial resolution datasets; (iii) and (iv) 

finally, to assess uncertainty using ensemble-sequential gaussian simulation (EnSGS). 

 

Paper 6: Prediction of the concentration of antimony in agricultural soil using data fusion, terrain 

attributes combined with regression kriging. 

Hypothesis: The use of data fusion, terrain attributes, and a hybridized modeling approach 

improves prediction over using either data fusion or a terrain attribute coupled modeling 

algorithm for prediction. 
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Objectives: The specific goals of this study are as follows: (i) apply data fusion coupled with 

regression kriging approaches to the estimation of Sb concentration in agricultural soil (scenario 

1); (ii) add terrain attributes to data fusion datasets combined with regression kriging techniques 

to estimate Sb content in agricultural soil (Scenario 2); (ii) compare scenario 1 and scenario 2, 

and (iv) map the uncertainties propagated by both scenarios.   
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3.0. METHODOLOGY  

3.1. Study area 

The study area is located in the Frýdek-Místek District within the lower reach of the Moravian-

Silesian Region in the Czech Republic, Europe. The community is a combination of previous two 

independent towns, specifically Silesian Frýdek and the Moravian Místek. The area under study 

is positioned within the geographical coordinates ranging from Latitude 49° 41' 0" to 49° 50' 0” 

North and Longitude 18° 10' 0" to 18° 50' 0" East at an altitude ranging between 225 and 327 m 

above sea level, characterized by a cold temperate climate and a high amount of rainfall even in 

dry months. In Frýdek-Místek, the summers are hot and partly cloudy, and the winters are cold, 

dry, windy and mainly cloudy (Weather Spark, 2016). Temperatures range mostly from -5°C to 

24°C throughout the year, rarely falling below -14°C or rising over 30°C, while the average annual 

precipitation ranges between 685 and 752 mm (Weather Spark, 2016).  The area survey of the 

district is projected at 1208 km2, with 39.38% of the land allocated for agricultural activities and 

49.36% for forest land. The farmland within the study area is close to the Ostrava city in which 

the steel industry is located, and therefore it becomes a critical area for the evaluation of PTEs 

distribution and soil quality within and around surrounding communities. The PTEs pollution in 

the area is caused by atmospheric deposition emitted from the steel industry nearby, vehicular 

emission, abrasion from tires, and agricultural activities (e.g., pesticide and insecticide 

applications) (Agyeman et al., 2020). Major soil types are primarily Cambisols and Stagnosols 

(Kozák et al, 2010). These soils dominate the Czech Republic and are found at mean elevation 

ranges of 455.1 m for Stagnosols and 493.5 m for Cambisols. (Vacek et al., 2020).  According to 

WRB, (2015), Cambisols cover about 1.5 billion hectares worldwide, and its reference soil group 

principally is well represented in the boreal and the temperate regions. The soils are primarily 

composed of colluvial, alluvial, or aeolian deposits. A cambic diagnostic horizon characterizes 

them with fine sandy loam texture, clay content of >4 % with less carbonate content by a lithic 

discontinuity (Kozák et al., 2010). 

 

https://cs.wikipedia.org/wiki/Moravskoslezsk%C3%BD_kraj
https://cs.wikipedia.org/wiki/Moravskoslezsk%C3%BD_kraj
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Figure 1. Study area and locations of the sampling points  

3.1.2. Soil sampling and analysis 

 

A total sample of 115 topsoil’s was collected from agricultural land in the district of Frýdek-

Mistek. A regular grid was the sample pattern adopted, and the soil sample intervals were 2 by 2 

km using a handheld GPS unit (Leica Zeno 5 GPS). Samples were collected using a steel auger to 

the depth of 0 to 20 cm for topsoil. The samples obtained was packaged in Ziploc bags, correctly 

labelled, and transported to the laboratory. The samples were air-dried, crushed by a mechanical 

device (Fritsch disk mill pulverize) and then sieved (< 2 mm) to obtain a pulverized sample (Pavlů 

et al., 2018). A gram of the dried, homogenized, and sieved soil sample (sieve size <2 mm) was 
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inserted in a Teflon bottle and well labelled. 7 mL of 35% HCl and 3 mL of 65% HNO3 (use 

automatic dispensers - a special dispenser for each acid) were dispensed in each Teflon bottle 

and gently closed the cap to enable the sample to remain overnight for reactions (aqua regia 

procedure). Then the mixture was placed on a hot metal plate for 2 hours to stimulate the process 

of digestion of the sample and left to cool. The mixture was transferred to a prepared 50mL 

volumetric flask and then diluted with deionized water to 50 mL. The diluted supernatant was 

then filtered into 50mL PVC tubes. Also, 1 mL of the diluted solution was further diluted with 9 

mL of deionized water and filtered into a 12 mL test tube prepared for PTE pseudo-concentration 

of the PTEs in this sample. PTEs (As, Cd, Cr, Cu, Mn, Ni, Pb, Zn, Sb) concentration was measured 

by ICP-OES (inductively coupled plasma optical emission spectrometry) (Thermo Fisher Scientific 

company, USA) in compliance with standard procedures and protocols. The quality assurance and 

control (QA/QC) procedure was ensured by assessing the standard reference material for each 

sample (SRM NIST 2711a Montana II soil). PTEs with low or half detection limits were excluded 

from this study. The detection limits of the PTEs used in this investigation are 0.0002 mg/L (Cd), 

0.0007 mg/L (Cr), 0.0060 mg/L (Cu), 0.0001 mg/L (Mn), 0.0004 mg/L (Ni), 0.0015 mg/L (Pb), 

0.0067 mg/L (As), 0.0082 mg/L (Sb) and 0.0060 mg/L (Cu and Zn). Furthermore, the quality 

control and quality assurance process were ensured for each analysis by evaluating the reference 

criteria. Duplicate analysis was performed to guarantee that the error was minimized. 

3.2. Modeling approaches  

We applied the diverse modelling approach from the geostatistical, MLA and a hybrid model in 

the number of research undertaken. The varied techniques employed are empirical Bayesian 

kriging, ordinary kriging, inverse distance weighting, random forest, cubist, support vector 

machine regression, and self-organizing map. Furthermore, the following algorithms were 

applied, Bayesian regularized neural network, regularized random forests, conditional inference 

forest, extreme gradient boosting, gaussian process regression, multivariate adaptive regression 

splines, partial least square regression, Bayesian generalized linear model, M5 tree model, 

support vector machine regression, cubist M5 tree model and quantile regression forest. In 

addition, we applied a hybrid algorithm that hybridizes ordinary kriging with machine learning 
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models (random forest, cubist, conditional inference forest and extreme gradient boosting) to 

create a regression kriging approach. 

3.3. Model performance  

The performance of the models chosen for this investigation was assessed. The models were 

trained using 75% of the dataset (86 observation points), and then validated using the remaining 

25% of the dataset (i.e., 29 observation points). The model's performance was assessed using 

mean absolute error (MAE), root-mean-square error (RMSE), median absolute error (MdAE), 

concordance correlation coefficient (CCC), ratio of performance to interquartile distance (RPIQ), 

and coefficient of determination (R2) 

3.4. Pollution assessment  

3.4.1 Single pollution index (PI) 

The Single Pollution Index (PI) is an index for determining which PTEs poses the greatest threat 

to a soil environment. Tomlinson et al. (1980) introduced the PI, and the equation is given as 

 PI =
Cn

Bn
   

Where Bn is the geochemical background value of the PTEs in the soil (mg/kg) and the Cn is the 

concentration of the PTE in the soil (mg/kg). PI is categorized into a low level (PI ≤ 1), moderate 

level (1 < PI ≤ 3), considerable level (3 < PI ≤ 6), or high level (PI > 6). 

3.4.2 Pollution load index (PLI)  

The PLI is often used to measure the average amount of soil pollution indices. This index provides 

a direct way to display the soil deterioration resulting from the accumulation of PTEs. Tomlinson 

et al. (1980) introduced this equation, and the equation is given as 

    PLI = √PI1 × PI2 × PI3 × … … × PIn
n   

Where n represents the number of analyzed PTEs, PLI is categorized into a low level (PLI ≤ 1), 

moderate level (1 < PLI ≤ 2), high level (2 < PLI ≤ 5), or extremely high level (PLI > 5) based on the 

degree of pollution. 
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3.4.3 Ecological risk assessment (ER and RI) 

Risk index (RI) is the index for determining the degree of ecological risk caused by soil 

concentrations of PTEs. The index (RI) was introduced and applied by Hakanson (1980) and the 

equation is given as  

    RI = ∑ Er
in

i=1   

In which n is the number of PTEs and Er
I

 is the single index of the ecological risk index factor, 

which the equation is given by 

    Er
I = Tr

i  × PI  

The Tr
i is the toxicity response coefficient of specific PTE (Hakanson, 1980) and the PI represents 

the single pollution index. The toxicity response coefficient of the PTEs used are 30 (Cd), 10 (As), 

5 (Cu), 5 (Pb), 2 (Cr), 2 (Zn), 2 (Ni) and 1 (Mn) (Håkanson 1980). The Er has five classifications: low 

risk (Er ≤ 40), moderate risk (40 < Er ≤ 80), considerable risk (80 < Er ≤ 160), high risk (160 < Er ≤ 

320), and very high risk (Er ≥ 320). The RI has four categories, namely, low risk (RI ≤ 150), 

moderate risk (150 < RI ≤ 300), considerable risk (300 < RI ≤ 600), or very high risk (RI > 600).  

3.5. PMF model 

Positive Matrix Factorization (PMF), EPA–PMF v5.0 (U.S. EPA, 2014) is a statistical method used 

to measure the contribution of the source of samples to the composition or fingerprints of the 

source. The U.S. Environmental Protection Agency uses this receptor model, developed by 

Paatero (1997) and Paatero &Tapper (1994). The model does not require any profile source and 

all the data is weighted by using uncertainty. According to Norris et al. (2008), PMF is used mainly 

in solving source contributions and source profile that is dataset composition based which is 

given by this equation 

      Xij =  ∑ (gik
p
k=i fkj +  eij)     

In which Xij  is the ith elemental concentration measured in the jth sample p represents the factor 

number, f the source profile species, g the sample contribution, j and i are the number of samples 
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and chemical species, and eij denotes the species. Where K= 1 in the p source, i = 1 of the elements 

and j = 1 of the samples. 

The determination of the contribution, as well as profiles factors, is given by this equation 

Q = ∑ ∑ (
Xij 

Uij
)

2m

j=1

n

i=1
 

where m denotes the number of PTEs investigated, n signifies the number of soil samples, 

and Uij means the uncertainty of PTEs j in soil sample i. Uij is determined based on the PTEs 

content (Cij), the relative standard deviation (σ) (that is standard deviation divided by the mean), 

and the method detection limit (CMDL). Therefore, it implies that the PTEs content is above 

CMDL value, Uij is computed as: 

Uij = √(σ ×  Cij)
2

+CMDL 
2        

PMF model recommends that the data below the detection limit would be substituted with the 

value of CMDL/2, i.e., data that does not occur in this study and the associated uncertainty is 

calculated as: 

Uij   =
5

6⁄ CMDL  

Moreover, the constraint of no significant negative contribution (Gik), the maximum optimal 

factors were derived using the multilinear engine algorithm in PMF. It is noteworthy to note that 

the minimum Q can be global or local. Consequently, multiple attempts using diverse starting 

points were carried out to reach the global minimum Q and reliable solution. 

3.6. Health risk assessment 

The ever-growing human population and human endeavour to ensure that the planet remains 

heaven for humanity are under constant constraint. Frequently, scientists, policymakers, and 

other stakeholders push the limits of research in several ways. However, no matter the initiative 

and the best course of utilizing research, the world is now and then polluted. Humans are 

exposed to PTEs in three different forms every day, including inhalation, ingestion, and dermal 
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contact (Wang et al., 2017). The following equations determine the exposure pathways to 

humans by PTEs (see Table 1). 

                                        CDIing =
C×IRing×EF ×ED

BW ×AT
 10−6  

 

    CDIinh =
C ×  IRinh×EF × ED

PEF ×  BW ×AT
  

 

    CDIderm =
C×SA×AF×ABS×EF×ED

BW×AT
 ×  10−6  

 

    CDItotal = CDIing + CDIinh + CDIderm   

 

The parameters CDIing (chronic dialy intake-ingestion), CDIinh (chronic dialy intake-inhalation) and 

CDIderm (chronic dialy intake-dermal) and reference values of the indices of the above equations 

are listed in Table 1. 
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Table 1: Exposure factors used in CDI estimation for non-carcinogenic and carcinogenic risk. 

Variables Description Units Values   Values   

      Adults Children   

C Concentration of  
PTEs of present study 

mg/kg       

IRing Ingestion rate mg/d 100 200 US EPA, 2011 

IRinh Inhaling rate m3/d 20 7.65 USEPA 1991 

EF Exposure frequency days/year 350 350 US EPA, 2011 

ED Exposure duration year 24 6 US EPA, 2011 

SA Skin surface area cm2 1530 860 Eziz et al., 2018 

AF Soil adherence factor mg/cm2/d 0.07 0.2 US EPA, 2011 

ABS Dermal absorption factor   0.001 0.001 US EPA, 2011 

PEF Particle emssion  factor m3/kg 1.36 × 109 1.36 × 109 US EPA, 2011 

BW Average body weight kg 70 15 US EPA, 2013 

AT N-C Average time for  
non-Carcongenic risk 

day ED  × 365 ED  × 365 Wang et al., 2017; 

Eziz et al., 2018; 

AT Ca Average time for  
non-Carcongenic risk 

day  70  × 365 70   × 365 Wu et al., 2019 

CF Units conversion factor kg.mg-1 1 × 10-6      1 × 10-6      US EPA, 2002 

Specific reference 
 dose for  
ingestion 

RfDo mg/kg/day Cd (1×10-3), Cr (3×10-3), Cu 
(4.0×10-2), Ni (2×10-2), Pb 
(3.50×10-3), Zn (3×10-1),  
As (3×10-4)and Mn (0.14) 

                                                       Li et al. 2015; 
                                                      USDOE 2011; 

                                                            Qing et al. 2015; 
                                                De Miguel et al. 2007;  

                                                             Teng et al., 2015 Specific reference  
dose for  
dermal contact 

RfDABS mg/kg/day Cd (5×10-5), Cr (6×10-5), Cu 
(1.2×10-2), Ni (5.4×10-3), Pb 
(5.3×10-4), Zn (6×10-2) and 
Mn (0.05) 
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Specific reference  
dose for 
 inhalation 

RfDi mg/m3  Cd (1×10-3), Cr (2.86×10-
5), Cu (4.02×10-2), Ni 
(2.06×10-2), Pb (3.52×10-
3), Zn (3×10-1)and  Mn (0.8) 

Oral slope factor  SFo ((mg/kg/day)-1) Cd (15), Cr (0.5), Ni (0.84), 
Pb (0.28), and As (1.5) 

Absorbed dose 
 slope factor 

SFad ((mg/kg/day)-1) Cd (15), Cr (0.5), Ni (0.84), 
Pb (0.28), and As (3.66) 

Inhalation slope 
 factor 

SFi ((mg/m3)-1) Cd (15), Cr (0.5), Ni (0.84), 
Pb (0.28), and As (15.1) 
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 3.6.1. Non – carcinogenic risk assessment  

The equation of the potential non-carcinogenic risk for a single PTE was computed as the hazard 

quotient (H.Q), which is given by the equation: 

    HQ =  
𝐶𝐷𝐼𝑖

RfD
  

Where RfD represents the reference dose (mg/kg/d), the estimated daily exposure to the human 

population and i is the exposure pathway (soil ingestion, dermal, or inhalation). The 

determination of comprehensive health risk of all the PTEs studied was done by computing HQ 

values. The values were summed up and expressed as the hazard index (HI), which is given by 

equation 14 (US EPA, 1989) : 

    HI = ∑ HQ =  HQing +  HQinh +  HQderm  

Whereby HQing, HQinh and HQderm represent the hazard quotient for ingestion, inhaling and 

dermal, respectively. A report from USEPA, (2002) explicitly outlined that when the HI < 1, then 

it presupposes that there is a potential to impact health if humans exposed to PTEs negatively. 

However, Eziz et al., (2018) mentioned that if HI > 1, there is also the propensity for non-

carcinogenic health risks to emerge. 

3.6.2 Carcinogenic risk assessment 

The US EPA, (1989) report stated that the likelihood of cancer of any kind developing might be 

attributed to humans being exposed to carcinogenic risk (CR).  

    CR = 𝐶𝐷𝐼𝑖 × SF    

    TCR =  ∑ CR =  CRing +  CRinh +  CRderm  

In which CR, TCR and SF values represent carcinogenic risk (no unit), total carcinogenic risk (no 

unit) and slope factor for carcinogenic PTEs (mg/kg/d), respectively. TCR values should range 

from 1 × 10-6 to 1 ×10 -4. That is the tolerable standard that proves no significant health threat to 

humans (Hu et al., 2012). 
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3.7. Spectral indices 

A spectral index is a mathematical equation that is applied to an image's various spectral bands 

per pixel. The bands considered necessary for the computation of spectral indices such as clay 

mineral ratio (CLAYMR), ferrous mineral ratio (FMR), iron oxide ratio (IOR), carbonate normalized 

ratio (CNR), rock outcrop normalized ratio (RONR), and normalized difference built-up index 

(NDBI) were used to estimate the indices.  

 Clay Minerals Ratio (CLAYMR) is a geological index for identifying mineral features containing 

clay and other minerals, such as alunite, using two shortwave infrared (SWIR) bands (Drury. 1987, 

(Segal 1982, Kienast et al. 2017).  

Ferrous minerals (FMR) are a geological index that uses the shortwave infrared (SWIR) and near-

infrared (NIR) bands to identify rock features that contain some amount of iron-bearing minerals 

(Segal 1982, Kienast et al. 2017). 

 Iron oxide (IOR) index is a geological index that uses red and blue bands to identify rock features 

that have been oxidized by iron-bearing sulfides (Segal 1982, Kienast et al. 2017). 

Carbonate normalized ratio (CNR) is a geological index that uses red and green bands to identify 

carbonate features that contains the calcium carbonate-bearing minerals (Segal 1982, Kienast et 

al. 2017). 

Rock outcrop normalized ratio (RONR) is a geological index that uses green and short-wave 

infrared bands to identify sedimentary features that contains the sedimentary (bright pixels) 

verse igneous (dark pixels) parent material (Segal 1982, Kienast et al. 2017). 

Normalized difference built-up index (NDBI) uses NIR, and SWIR bands are used in the built-up 

Index (NDBI) to highlight manufactured built-up areas. Urbanization is one of the most 

conspicuous soil pollutions because it includes anthropogenic causes, caused by human activities 

such as: urban fabric, industrial, commercial, and transportation units; mines, dumps, and 

construction sites; sports and leisure facilities, which endanger functional diversity; and a variety 

of environmental and spatial planning issues such as urban sprawl, food safety, community 

vulnerability to climate change, and pollution (soil, air, water, and noise). The intent of including 

this index is to determine the impact of built-up infrastructure on soil pollution (Zha et al. 2003). 

The spectral index formulas are given as 
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𝐶𝐿𝐴𝑌𝑀𝑅 =  
𝑆𝑊𝐼𝑅 1

𝑆𝑊𝐼𝑅 2
              

FMR =  
𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
                         

IOR =  
𝑅𝐸𝐷

𝐵𝐿𝑈𝐸
                          

𝐶𝑁𝑅 =  
𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁

𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁
         

RONR =  
𝑆𝑊𝐼𝑅 1 − 𝐺𝑅𝐸𝐸𝑁 

𝑆𝑊𝐼𝑅 2 + 𝐺𝑅𝐸𝐸𝑁
 

    𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅  

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
                

(SWIR - short wave infrared, NIR - near infrared) 

3.8. Data fusion  

The Gram-Schmidt (GS) data fusion approach, which is based on an orthogonal vector algorithm 

(Khosravi et al. 2022), was used in this study. In this method, all images are converted to vector 

imagery while retaining the same pixel dimension at a transformed high spatial resolution scale. 

Thus, the GS data fusion transformation is carried out for the high spatial resolution bands (Laben 

et al., 2000). In this thesis the images employed Sentinel 2A and Landsat 8-OLI bands. The 20m 

spatial resolution Sentinel 2A bands 11 and 12 were downscaled to 10m using GS approach to 

obtain consistent spatial resolution with the band 2, band 3, band 4 and band 8. Similarly, the 

Landsat 8-OLI bands 2 to 7 were equally resampled from 30m spatial resolution to 10m spatial 

resolution using GS fusion approach. The Landsat 8-OLI bands 2 to 7 were fused to the 10m 

Sentinel Bands using GS fusion approach. These bands from Sentinel 2 and Landsat 8 were chosen 

because possess the same spectral similarities.  
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3.9. Methodology summary for each paper 

3.9.1. Methodology 1 

Using spectral indices and terrain attribute datasets and their combination in the prediction of 

cadmium content in agricultural soil. 

The study explores the application of spectra indices estimated from sentinel 2 bands, the 

application of terrain attributes and the combination of both auxiliary dataset in the prediction 

of Cd in agricultural soil.  The modeling approach was partitioned into three scenarios, comprised 

of the prediction using terrain attributes coupled with digital soil mapping (DSM) approaches 

(Scenario 1), prediction using spectral indices combined with DSMs approaches (Scenario 2), and 

prediction using a combination of terrain attributes, spectral indices, and DSMs approaches 

(Scenario 3). The study employed six modeling approaches including Gaussian process regression 

(GPR), partial least square regression (PLSR), extreme gradient boosting (EGB), multivariate 

adaptive regression splines (MARS), Bayesian regularized neural network (BRNN), regularized 

random forest (RRF), Bayesian generalized linear model (BGLM), and M5 tree models. The 

validation of the precision of the modeling approach was determined by the application of 

concordance correlation coefficient (CCC), root mean square error (RMSE), mean absolute error 

(MAE), median absolute error (MdAE), and the coefficient of determination (R2).  

3.9.2. Methodology 2 

Human health risk exposure and ecological risk assessment of potentially toxic element pollution 

in agricultural soils in the district of Frýdek Místek, Czech Republic: a sample location approach. 

The study performed comprehensive health exposure assessment applying the sample location 

approach in agricultural soil. The method applied in the study was unparallel to the normal 

approach where the estimated mean of each PTEs used are applied in the estimation of the 

carcinogenic and non-carcinogenic health risks. The sample location data from each sample point 

was used in the estimation of the health risk in other to decentralize the assessment based on 

the 2 by 2 km of the study area. The carcinogenic and non-carcinogenic effects of the PTEs (i.e., 

lead, arsenic, chromium, nickel, manganese, cadmium, copper, and zinc) were quantified using 

the health risk assessment equation. The output of the children’s and the adults CDItotal (Chronic 
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Daily Intake total) values for non-carcinogenic risk and carcinogenic risk were mapped to 

determine the high, moderate and the low exposure degree in the study area. On the other hand, 

positive matrix factorization (PMF) was applied to determine the source distribution of the PTEs 

correlating it the potential pollutants within the study area. 

3.9.3. Methodology 3 

Ecological risk source distribution, uncertainty analysis, and application of geographically 

weighted regression cokriging for prediction of potentially toxic elements in agricultural soils.  

In this study the application of hybridized models was applied to enhance the practicability and 

the efficiency of PMF and modeling algorithm such as cokriging and geographical weighted 

regression. A pollution index such as ecological risk was used to estimate the ecological risk of 

the study area, and the estimated output was applied in the PMF receptor models to compare 

the results with the parent model PMF.  Validation criteria such as RMSE, MAE, and R2 were used 

to determine the efficiency and ability to minimize error in the estimation of the source 

distribution. The study also investigated the feasibility of using geographical weighted regression 

(GWR) and the hybridization of GWR and cokriging (GWRCoK) in predicting the concentration of 

PTEs (i.e., lead, arsenic, chromium, nickel, manganese, cadmium, copper, and zinc) in the study 

area.  

3.9.4. Methodology 4 

Optimal zinc level and uncertainty quantification in agricultural soils via visible near-infrared 

reflectance and soil chemical properties. 

This study determines the optimal level of Zn in the agricultural soil using two distinct 

approaches, namely: (1) employing visible near-infrared spectra reflectance along with machine 

learning algorithms (MLAs) (Context 1), and (2) applying visible near-infrared spectra reflectance, 

soil chemical properties (SCP), and MLAs (Context 2). As an auxiliary dataset, SCP such as 

magnesium (Mg), potassium (K), iron (Fe), copper (Cu), and phosphorus (P), which serve as micro 

and macro nutrients, were used as an auxiliary dataset combined with visible near-infrared 

spectra reflectance to predict Zn in the soil. The spectral ranges from 350 to 400, as well as 2401 
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to 2500 nm, were eliminated due to noise, and the spectral range from 400 to 2400 nm was 

pretreated using Savitzky-Golay filter (SG), logarithmic transformation (log(1/R), standard normal 

variate (SNV), correction maximum reflectance (CMR), discrete wavelet transformation (DWT), 

and multiplicative scatter correction (MSC). More so some pretreated techniques were combined 

to such as DWT-CMR (discrete wavelet transform-correction maximum reflectance), SG-LOG-

MSC (savitzky-golay smoothing-logarithm1/R-multiplicative scatter correction). SG-LOG-SNV 

(savitzky-golay smoothing-logarithm1/R-standard normal variate), SG-SNV-MSC (savitzky-golay 

smoothing-standard normal variate - multiplicative scatter correction), DWT-SNV-MSC (discrete 

wavelet transform-standard normal variate-multiplicative scatter correction), DWT-LOG-MSC 

(discrete wavelet transform-logarithm1/R-multiplicative scatter correction) to determine their 

applicability and performance compared to the individual pretreated methods. The following 

MLAs were used: conditional inference forest (CIF), partial least square regression (PLSR), M5 

tree model (M5), extreme gradient boosting (EGB), and support vector machine regression 

(SVMR). The uncertainty of the prediction was mapped based on each context using prediction 

intervals like mean, 95% and 5%. The figure represents the flowchart of the study (Figure2) 

 

 Figure 2. Schematic diagram for the workflow for this study 
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3.9.5. Methodology 5 

Quantification of the optimal cadmium level in agricultural soil using legacy data, preferential 

sampling, Sentinel 2, Landsat 8 coupled with ensemble model. 

The research was based on the application of legacy datasets (LD) and the usage of preferentially 

sampled datasets plus legacy data (PS-LD). Furthermore, the study also explored the usage of 

Sentinel 2 (S2) and Landsat 8 (L8) datasets from different spatial resolutions, that is, 10 m and 20 

m. In S2, the 20m bands such as band 11 and 12 were downscaled to 10m bands to harmonize 

with bands 2, 3, 4, and 8. Alternatively, bands 2, 3, 4, and 8 were also upscaled to 20m bands to 

be in sync with bands 11 and 12. With this, therefore, we obtained two different auxiliary 

datasets from S2 with 20m and 10m spatial resolution. On the other hand, L8 bands from 2 to 7, 

which are of 30m spatial resolution, were resampled to 10m and 20m spatial resolution to obtain 

distinct auxiliary datasets. The resampling, downscaling, and upscaling were done using the 

bilinear approach in ArcGIS. The modeling approaches used were ensemble models with four 

sub-models and a meta learner (Figure 3). The modeling uncertainty was also determined using 

a hybridized model ensemble sequential gaussian simulation (EnSGS). The ensemble models used 

in this paper were composed of ten distinct algorithms that allow a model to appear twice in the 

ensemble models created. If a model appears as a meta learner, it will appear once as a sub-

model, or altenatively a model appear twice as a sub-model in the four ensemble models created. 

This enables varying the predictive strength of modeling approaches in ensemble models. 

Despite this, the same data input was used in each ensemble model during the modeling process. 
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Figure 3. Schematic diagram for the workflow for this study 
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3.9.6. Methodology 6 

Prediction of the concentration of antimony in agricultural soil using data fusion, terrain 

attributes combined with regression kriging. 

This study harnesses the potential of combining remote sensing images such as Sentinel 2 and 

Landsat 8 into a data fusion. The research also applies terrain attributes in conjunction with the 

data fusion in the prediction of antimony (Sb) in the agricultural soil. Sb prediction was done 

using two approaches: prediction using data fusion coupled with regression kriging (scenario 1) 

and Sb prediction using data fusion, terrain attributes, and regression kriging (scenario 2). The 

modeling techniques used in the estimation of Sb concentration in agricultural soil included 

cubist regression kriging (cubist_RK), conditional inference forest regression kriging (CIF_RK), 

extreme gradient boosting regression kriging (EGB_RK), and random forest regression kriging 

(RF_RK). The model validation was performed using root mean square error (RMSE), mean 

absolute error (MAE), bias, and coefficient of determination (R2). The figure represents the 

flowchart of the study (Figure 4). 

 

Figure 4. Represents a schematic diagram for the workflow of the study 
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4. SUMMARY AND CONCLUDING REMARKS 

4.1 Summary of key findings and discussion  

The general outlook of the study is to determine the spatial prediction of PTEs using digital soil 

mapping techniques in agricultural soil, with an extended focus on source distribution 

assessment as well as health risk exposure assessment. The auxiliary datasets applied in this 

study are Sentinel 2, terrain attributes, Landsat 8, visible near-infrared spectroscopy, and the 

application of soil properties to aid in the prediction of diverse PTEs in the soil. The study also 

makes use of a data fusion process that combines satellite images such as Sentinel 2 and Landsat 

8 into a composite image to extract ancillary datasets to aid in enhancing as well as obtaining 

better prediction. The use of this diverse dataset aided in the exploration of various avenues for 

obtaining a better prediction of PTEs in the study area. In some cases, a combination of remote 

sensing datasets and terrain attributes were used solitary, combined, and compared to ascertain 

the best auxiliary dataset along with modeling algorithms in the prediction of PTEs in the soil. It 

was apparent that the combination of varied auxiliary datasets provided better results than using 

one auxiliary dataset. This combination increases prediction efficiency and decreases marginal 

errors. 

Paper 1 

The results indicate that in scenario 1, the eight modelling techniques employed used terrain 

attributes as auxiliary datasets in conjunction with Cd data quantified using ICP-OES. MARS had 

the lowest MdAE (0.21), accompanied by RRF (0.32), PLSR (032), BRNN (035), the M5 tree model 

(035), EGB (036), and GPR and BGLM (044 and 0.46, respectively). M5 tree modeling produced 

the lowest RSME (0.45), followed by BRNN (0.48), PLSR (0.51), GPR (0.53), BGLM (0.54), RRF 

(0.80), EGB (0.83), and MARS (1.29). According to the calculated MAE results, the M5 tree 

approach had the lowest MAE (0.37), accompanied by BRNN, which had the second lowest MAE 

(0.40), PLSR (0.42), GPR (0.45), BGLM (0.46), EGB (0.52), RRF (0.55), and MARS (0.66). According 

to the R2 values, the M5 tree model produced the highest value of R2 = 0.77 out of the eight 

modelling techniques used to predict the concentration of Cd in the soil.  Other modeling 

approaches' R2 values were within acceptable precision and accuracy ranges, namely 0.73 for 
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BRNN, 0.71 for PLSR, 0.70 for GPR, 0.69 for BLGM, 0.68 for MARS, and 0.61 for RRF. Only the EGB 

modeling method performed poorly, with R2 = 0.47, which is unacceptable. Using the CCC 

assessment methods, the CCC prediction ranges between 0.41 and 0.73 for the modeling 

approaches. The M5 tree model had the highest CCC value, while MARS had the lowest. The 

consolidated results showed that the M5 tree modeling approach combined with terrain 

attributes and the measured Cd concentration was the best modeling approach for predicting Cd 

in the soil with the highest prediction efficiency and lowest error. Similarly, in scenario 2, where 

spectral indices were used as the auxiliary dataset with the same eight modeling approaches, 

EGB (extreme gradient boosting) was the best modeling approach for predicting Cd in agricultural 

soil, with the highest CCC and R2 values of 0.76 and 0.83 and the lowest MAE of 0.33, respectively. 

In scenario 3 the prediction of Cd in agricultural soil was done using a combination spectral 

indices and terrain attributes along with similar 8 modeling approaches. The cumulative 

performance of the modeling approaches in predicting Cd in agricultural soil using spectral 

indices, terrain attributes, and modeling approaches indicated that the M5 tree (R2 =0.84, RMSE 

= 0.39, MAE = 0.31, MdAE = 0.24 and CCC = 0.81) modeling approach is the best approach for 

predicting Cd with higher precision and a consistent minimal error margin. 

When modeling Scenario 1 (prediction based on terrain attributes) and Scenario 3 (prediction 

based on terrain attributes and spectral indices) were compared, GPR, MARS, BRNN, and BGLM 

performed better using terrain attributes alone as auxiliary datasets than when combined. The 

PLSR, EGB, RRF, and M5 tree models, on the other hand, performed significantly better in 

Scenario 3 than in Scenario 1. When Scenarios 2 and 3 were compared, it was clear that GPR, 

EGB, MARS, RRF, and BGLM performed better in Scenario 2 than the respective modeling 

methods in Scenario 3. In Scenario 3, the PLSR, BRNN, and M5 tree models outperformed the 

respective modeling techniques in Scenario 2. It can be reported that the application of terrain 

attributes, spectral indices, and the integration of spectral indices as auxiliary datasets has 

demonstrated the ability of the PLSR and M5 tree model approaches to predict Cd consistently 

and optimize prediction performance in all scenarios with elevated efficiency and minimized 

error. According to Kalambukattu et al. (2018), a combination of terrain attributes and spectral 

indices has the potential to optimize results with high accuracy. Multiple studies, including 
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Goydaragh et al., (2021), and Xu et al., (2019), proposed and applied diverse auxiliary datasets 

like spectral datasets with environmental variables, such as terrain attributes, to boost modeling 

results, particularly in comparison to simply employing spectral datasets or environmental 

variables. In predicting PTEs such as Cd in soil, geological terrain is an important and influential 

factor. Soil parent composites are formed because of long-term relationships between bedrock, 

climatic conditions, and geomorphic mechanisms. Several parameters, including the number of 

data points, the type of model, the variability of soil properties, and the capabilities of 

environmental variables to explain soil variations, can all have an impact on model prediction 

performance (Taghizadeh-Mehrjardi et al., 2020). The M5 tree model has been used in a plethora 

of research and has proven to produce results with high accuracy and little error, as in the current 

study. Kumar and Deswal, 2020a, Heddam, 2021, and Sihag et al., 2019, investigated the 

efficiency of various modeling methods for the assessment of PTEs in soil and discovered that the 

M5 tree modeling approach was the best model for Cu and Zn assessments. Besides that, Biabani 

et al. (2016) and Rahimikhoob (2016) used the M5 tree model algorithm to assess the daily 

reference of evapotranspiration and predict the temporal evolution of clear water and 

discovered that the M5 tree model method produced satisfactory results when quantifiable 

metrics such as R2, RMSE, and MAE were considered, with less deviation from arithmetic values. 

It can be concluded that using the M5 tree modeling technique with the integration of terrain 

attributes and spectral indices outperforms the use of spectral indices or the terrain attributes 

separately in predicting Cd in agricultural soil.The M5 tree model is composed of many tree 

structures constructed with subsets, and a tree configuration with the fewest errors must be 

constructed to avoid overfitting (Kumar and Deswal, 2020). 

Paper 2 

The results revealed that the pollution assessment of the soils in the study area using diverse 

pollution assessment indexes (pollution index, pollution load index, ecological risk and risk index), 

based on the application of the local background value and the European average value, 

displayed a range of pollution levels due to differences in the threshold limits from differing 

geochemical background levels. The principal components analysis and positive matrix 

factorization, respectively, identified the sources of pollution and the distribution of PTE sources. 
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The CDItotal (Chronic Daily Intake total) of the PTEs per sampled data implied that children were 

more exposed than adults regarding the non-carcinogenic risk. Even so, the quantified hazard 

quotient (HQ) for children based on non-carcinogenic risk appears to be higher than the HQ for 

adults. The estimated HQs values for PTEs at the minimum and maximum values (both children 

and adults) are as follows: As > Pb > Cr > Mn > Cd > Ni > Cu > Zn. The study proved that ingestion 

was the most likely route for PTEs exposure in the study area. The variability of the measured 

PTEs concentrations per sampled location revealed that the HI (for children) values estimated 

per 2 X 2 km indicated that 7 of the sampled locations were greater than 1. However, the 

calculated HI indicated that 6.1% (1.01E+00 to 2.05E+00, or 7 out of 115 sampled locations) of 

the overall study area posed a high non-carcinogenic risk to children. In terms of carcinogenic 

risk, the chronic daily intake of Cd, Cr, Pb, Ni, and As was calculated. For the carcinogenic risk, the 

CDItotal for adults and children is given in the following order: Pb > Cr > Ni > As > Cd. Children had 

higher CDItotals than adults, regardless of PTE computed value.  

PTEs can cause cardiovascular disease, poor respiratory function, cognitive deficits, reproductive 

toxicity, and bone damage in children (Madrigal et al. 2018). The Cr CDItotals for the carcinogenic 

risk of adults and children were higher than those of the other PTEs. Moreover, the CDI total of 

children was considerably higher than that of adults. The CR for all PTEs in adults was detected 

to be substantially lower than in children. According to Agyeman et al. (2021), children are more 

sensitive to the health effects of PTEs due to oral and finger practice and seem to be extremely 

susceptible to PTEs. Children's HI values were likwise revealed in the following studies: Agyeman 

et al. (2021), Han et al. (2020), Natasha et al. (2020), Wang et al. (2020), Bhandari et al. (202), 

and Zheng et al. (2020). The calculated HI for adults is not statistically significant because it is less 

than the reference value of 1; this implies that if exposed, a non-carcinogenic adverse impact on 

an adult is unlikely.  

When the current TCR is compared to similar studies conducted in Ostrava, Czech Republic, by 

Weissmannova et al. (2019), it appears that Pb poses a significant carcinogenic risk to children, 

Cd poses a moderate risk, and Cr poses a very high risk. This supports the current study's findings 

that children are more vulnerable to the health risks associated with PTE than adults. In contrast, 

Kebonye et al. (2021) confirmed recent findings that children in riverine soils are more 
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susceptible to PTE exposure than adults (Czech Republic). PTEs accumulate in fat tissues and have 

a negative impact on the functions of the central nervous system, immune and endocrine 

systems, urogenital and cardiovascular systems, and normal cellular metabolism (Wang et al. 

2015, Wang et al. 2013). 

Paper 3 

Substantial research has used these multivariate statistics in source assessment to evaluate the 

proportion of PTEs in soil, which include Chen et al. (2015), Tao et al. (2017), Agyeman et al. 

(2021), and Hossain Bhuiyan et al. (2021b). To enhance precision and reliability, the minimum Q 

value was reduced to regulate the residual matrix. The system was run 20 times, with run 3 being 

the crucial point for the factors loadings and discharged. For both receptor models (ER-PMF and 

PMF), three factors were released, indicating the various percentage contributions or PTE 

percentage contributions determined in the source distribution analyses. To be selected as a 

dominant element, PTEs must have a minimum 44.5% or higher percentage contribution in the 

factor loadings. Cu (64.6%) and Ni (71.1%) dominated factor 1 in the ER-PMF receptor model, 

while As (77.5%) and Cd (44.7%) dominated in the PMF receptor model. Cr (66.20%) and Mn 

(71.40%) influenced factor 2 in the ER-PMF receptor model, and Cu (72.6%) and Ni (76.6%) 

influenced factor 2 in the PMF receptor model. In the ER-PMF receptor model, As (75.7%), Cd 

(45.9%), and Pb (47.4%) dominated factor 3, whereas in the PMF receptor model, Cr (55%) and 

Mn (65.6%) dominated factor 3. The R2, RMSE, and MAE values also indicated that the prediction 

of Cd and As in agricultural soil by GWRCoK (geographical weighted regression-Cokriging) range 

from 0.945 to 0.961, compared to 0.636 to 0.713 for GWR (geographical weighted regression). 

The error margins estimated using RMSE and MAE were 1.272 and 0.749 for GWRCoK, and 2.636 

and 1.819 for MAE, respectively. 

Arsenic and cadmium had similar spatial distribution patterns in both approaches. The PTE 

distribution pattern was observed in the southeastern part of the study area and moved 

anticlockwise to the northwestern area. The maps had moderate to high hotspots, but the 

GWRCoK map had more intense hotspots than the GWR. Cr and Cu exhibited a similar distribution 

pattern on the GWR spatial distribution map, principally in the southwestern to northwestern 
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quadrants. Chromium had more hotspots stretching from northeast to southeast than Cu. Cr and 

Cu were more concentrated in the maps southwestern to northwestern areas, but Cu also 

showed a patch of a hotspot in the map's northeastern area. John et al. (2021) achieved optimal 

results by combining cokriging with Gaussian process regression. Many papers have combined 

GWR and ordinary kriging, including Kumar et al. (2012), Wang et al. (2012), Ye et al. (2017), and 

Pereira et al (2018). Ye et al. (2017) compared the effectiveness of geographically weighted 

regression kriging (GWRK) with multiple linear regression kriging (MLRK) and ordinary kriging 

(OK) and discovered that combining GWR with geostatistical algorithms such as OK produced 

better results in predicting soil organic content than MLRK and OK. Besides this, Imran et al. 

(2015) used GWRK for growth and yield modeling in West Africa, leading to the conclusion that 

GWRK is superior to KEDLN (KED with a local kriging neighborhood) and regression kriging, with 

considerably lower prediction uncertainty. 

Five of the eight PTEs evaluated (As, Cd, Ni, Pb, and Zn) produced a higher accuracy level (R2) in 

the ER-PMF approach than in the PMF approach. The closer the R2 value is to one, the better the 

prediction accuracy, according to Li et al. (2016), John et al. (2020), and Kebonye et al. (2021). 

According to Molinaro et al. (2005), determining the error rate or generalizability of the chosen 

model is a critical process in presenting results. Based on the overall average of R2, RMSE, and 

MAE values calculated for the receptor models, ER-PMF had a high R2 average (0.93) with a low 

RMSE (2.63) and MAE average (1.55), whereas PMF had a high R2 average (0.93) with a higher 

RMSE (13.11) and MAE average (8.20). This means that ER-PMF can identify sources with greater 

accuracy and less error than PMF in source apportionment. Guan et al. (2019) compared three 

receptor models (PMF, UNMIX, and grouped principal component analysis/absolute principal 

component scores (GPCA/APCS)) and concluded that the GPCA/APCS receptor model was 

optimal based on the estimated R2 values. In a similar manner, Salim et al. (2019) likened PCA-

MLR and PMF, and the authors used R2 to evaluate which receptor model seemed to be more 

dependable with high model efficiency; PMF was found to be optimal. Furthermore, Salim et al. 

(2019) used the Nash-Sutcliffe efficiency and quantified the percentage error, which was 

previously used by Moriasi et al. (2007) and Yang et al. (2013b) to determine the receptor model 

with the lowest percentage error while optimizing efficiency. 
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Paper 4 

The results indicate that integrating the CIF modeling method along with Vis-NIR datasets (RAW, 

CMR, MSC, DWTCMR, SGLOGMSC, SGLOGSNV, SGSNVMSC, DWTSNVMSC, DWTLOGMSC) 

produced satisfactory results in Zn prediction in agricultural soils. The integration of CIF and the 

MSC pretreated dataset produced the best overall Zn prediction results (R2 = 0.70, RMSE = 21.42 

mg/kg, MdAE = 9.89, RPIQ = 1.51). The use of PLSR in conjunction with the Vis-NIR spectral 

dataset produced similar results, apart from CMR and DWTCRM, which produced minimal 

results. Nonetheless, the DWTLOGMSC dataset, in conjunction with the PLSR (R2 = 0.56, RMSE = 

24.84 mg/kg, MdAE = 12.98, RPIQ = 1.03), proved to be the most effective method for Zn 

prediction in agricultural soils. Except for the DWTLOGMSC dataset, the results from the M5 

modeling technique combined with the Vis-NIR spectral dataset are satisfactory. The M5 tree 

model was the best method for predicting Zn in agricultural soil when combined with the MSC 

dataset (R2 = 0.72, RMSE = 21.08 mg/kg, MdAE = 13.69, RPIQ = 1.63). However, combining the 

DWTSNVMSC dataset and the EGB modeling approach produced the best Zn prediction results in 

agricultural soil (R2 = 0.64, RMSE = 22.82 mg/kg, MdAE = 12.46, RPIQ = 1.08). The combination of 

SVM and VIS-NIR spectral reflectance produced satisfactory results for four of the nine VIS-NIR 

spectral datasets used as the auxiliary dataset for Zn prediction in agricultural soil (MSC, CMR, 

SGLOGMSC, SGSNVMSC). The fusion of the MSC dataset and the SVM yielded the best results (R2 

= 0.52, RMSE = 24.98 mg/kg, MdAE = 13.77, RPIQ = 0.77). The overall assessment of the modeling 

approaches in context 1 indicates that the combination of the M5 tree model and the MSC 

dataset (R2 = 0.72, RMSE = 21.08, MdAE = 13.69, RPIQ = 1.63) was the best approach for 

predicting Zn concentration in agricultural soil in context 1 with higher accuracy and minimal 

errors. Similarly in context 2 the overall evaluation of the modeling approaches suggested that 

CIF-DWTLOGMSC + SCP was the best method that was able to predict Zn concerntration in 

agricultural soil with minimal errors and high accuracy. 

The overall evaluation of the best models in each of the five modeling approaches in both context 

1 and 2 revealed that the combination of Vis-NIR spectral reflectance, soil chemical properties, 

and machine learning techniques produced the best prediction. Based on this, CIF-DWTLOGMSC 

+ SCP was clearly the best overall technique for predicting Zn content in agricultural soil, with 
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significantly lower errors than the best models in the other modeling techniques and 

contexts.The use of Vis-NIR spectra reflectance in conjunction with the influence of micro and 

macro nutrients (soil chemical properties) on Zn prediction in agricultural soil has yielded 

remarkable results. The interaction of Zn as a micronutrient with the other micro and 

macronutrients may have had a significant impact on the best results in context 2. It is worth 

noting that the antagonistic and stimulating effects of soil macro and micronutrient interactions 

may have accounted for the best results in contexts 2 than in context 1. Geomorphological terrain 

has a significant impact on the quantification of PTEs such as Zn in soil, and interactions between 

bedrock, climatic conditions, and geomorphologic processes may result in the formation of soil 

parent composites. (Agyeman et al., 2022a, Agyeman et al., 2022b, Agyeman et al., 

2022c). Kebonye et al. (2021) used soil chemical properties (Ca, Ti, Zn, Sr, Zr, Ba, Pb, and Th) in 

conjunction with MLAs to predict As concentrations in soil. Similarly, John et al., (2021) used 

MLAs in tandem with soil chemical properties such as potassium, calcium, sodium, magnesium, 

phosphorus, and vanadium to predict Sulphur in soil. John et al. (2020) used soil properties (i.e., 

Ca, Mg) in connection with terrain properties and a remote sensing dataset to predict soil organic 

carbon in alluvial soil.  From another study, Hong et al., 2019a, Hong et al., 2019b used soil 

chemical properties in addition to Vis-NIR spectral reflectance, and the authors reported that the 

combination of Vis-NIR spectral reflectance, soil chemical properties, and an appropriate MLA 

model may improve prediction performance. The use of a pretreatment combined algorithms in 

conjunction with a single modeling and ensemble models to predict PTEs and soil organic carbon 

in a variety of soils and conditions has been tested and proven reliable (Biney et al., 2022; Biney 

et al., 2022c). The authors applied the hybridized pretreatment method in three different 

agricultural fields under three different measurement conditions (wet, dry, and field).  However, 

no pretreatment is the best pre-processing method for predicting Zn concentration in soil, 

according to Kooistra et al. (2001). Even though raw spectra reflectance has a relatively high 

performance in the prediction of Zn in agricultural soil, the use of a combined predicted method 

and the inclusion of SCP has improved the prediction and reduced errors. Other pre-processing 

techniques must also be used to investigate the impact of various data treatment scenarios on 

the results of subsequent processing (Khosravi et al., 2018). 

https://www.sciencedirect.com/science/article/pii/S0301479722022745?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S0301479722022745?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S0301479722022745?via%3Dihub#bib3
https://www.sciencedirect.com/science/article/pii/S0301479722022745?via%3Dihub#bib3
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Paper 5 

The result presents the Cd concentration prediction in agricultural soil using remote sensing 

datasets from Landsat 8 (L8) and Sentinel 2 (S2) (i.e., with a spatial resolution of 10 m) coupled 

with ensemble models as well as PS-LD and LD (Context 1). Four ensembling 

modeling approaches were used to predict Cd in agricultural soil using L8 and S2 as auxiliary 

datasets. The PS-LD results revealed that in ensemble 1, Cd prediction yielded R2, RMSE, MAE, 

and MdAE values of 0.76, 0.66, 0.35, and 0.13 for L8 and 0.75, 0.67, 0.37, and 0.16 for S2. The L8 

prediction of Cd in agricultural soil in ensemble 2 yielded R2, RMSE, MAE, and MdAE values of 

0.75, 0.65, 0.41, and 0.22, respectively, whereas in S8, Cd concentration was predicted with R2, 

RMSE, MAE, and MdAE values of 0.58, 0.90, 0.48, and 0.19, respectively. L8 produced 0.64 (R2), 

0.82 (RMSE), 0.52 (MAE), and 0.22 (MdAE) in the prediction of Cd concentration in agricultural 

soil using ensemble 3, whereas S2 produced 0.71 (R2), 0.69 (RSME), 0.42 (MAE), and 0.21 (MdAE) 

(MdAE). The ensemble 4 results indicated that using L8 Cd prediction yielded 0.74, 0.66, 0.38, 

and 0.17 for R2, RMSE, MAE, and MdAE, respectively, whereas S2 yielded 0.69, 0.71, 0.44, and 

0.21 for R2, RMSE, MAE, and MdAE, respectively.  Except for ensemble 3 of L8, which produced 

satisfactorily predicted Cd in agricultural soil with R2, RMSE, MAE, and MdAE values of 0.58, 0.48, 

0.37, and 0.14, the prediction results for LD of Cd using the four ensemble models produced 

abysmal results for both the S2 and L8 in 10m spatial resolution for both remote sensing datasets. 

However, ensembles 3 L8 and ensembles 1 L8, which produced the best prediction results in the 

prediction of Cd in agricultural soil, were the optimal modeling approaches based on the 

application of LD and PS-LD. Similarly, in context 2 (using 20m spatial resolution), the optimal 

prediction outputs from the LD and PS-LD coupled with ensemble models revealed that ensemble 

1 of S2 was the overall best prediction approach for predicting Cd concentration in agricultural 

soil. 

The cumulative best approach in the prediction of Cd in agricultural soil either using S2 and L8 

from both 10m and 20m spatial resolution along with the ensemble models indicates 

unequivocally that the application of ensemble 1 of S2 of PS-LD with spatial resolution of 20m 

was the appropriate and best method for the prediction of Cd in agricultural soil with minimum 

errors and a higher R2 value. This implies that using remote sensing datasets with higher spatial 
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resolution does not necessarily mean that prediction results will be improved; rather, it is 

dependent on the modeling techniques used as well as the spatial distribution of the dataset. 

Chen et al. (2004), who improved the accuracy of spectral unmixing by resampling the Ikonos 

image resolution from 4 to 30 m, observed the precision increase obtained by coarsening the 

image resolution. Obtaining better results from modeling an area is not solely dependent on the 

auxiliary dataset, but the ability to select the appropriate modeling approach in conjunction with 

the dataset may have a higher proclivity to produce good results. According to Zhou et al. (2021), 

predictions from modeling approaches created with coarse spatial resolution sensors can be 

comparable, if not superior, to models created with higher resolution sensors. The use of remote 

sensing images in the prediction of soil properties in a rural agricultural environment revealed 

that the low spatial resolution soil prediction approach demonstrated productive accuracy when 

compared to the higher spatial resolution approach (Xu et al., 2017). Kim et al. (2012) used a 

multi-scale modeling approach, soil series by remote sensing dataset application in a wetland 

ecosystem and discovered that datasets extracted from remote sensing images with lower or 

coarse spatial resolution performed better than datasets extracted from images with higher 

spatial resolution. Xia and Zhang (2022) conducted a comparative analysis of remote sensing 

images for the prediction of soil pH in the soil, and the authors discovered that using higher 

resolution remote sensing images in the prediction of soil properties in the soil does not 

necessarily increase prediction efficiency when compared to using medium resolution images. 

Even though the current study is unique in that PS-LD and LD are evaluated using ensemble 

modeling, numerous studies have applied Sentinel 2 and Landsat 8 datasets and their 

combinations to a wide range of fields. The massive and prevalent data streams generated by 

satellite sensors, on the other hand, can ensure that soil surveillance and mapping procedures 

for large areas are created precisely, quickly, and successfully (Malenovsk et al., 2012). 

Furthermore, some satellite images are hampered by image quality factors. Because of its broad 

spatial coverage, quick revisit time, and ability to acquire data without regard for local air traffic 

limitations, satellite data can be valuable. Unfortunately, due to haziness or the need for parched 

and bald soil environmental conditions, these predefined reconsideration times may not be 

sufficient for adequate temporal coverage (Crucil et al., 2019). Other complexities for satellite 
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applications can include low image resolution and limited access to high-quality temporal and 

spatial images because of adverse atmospheric conditions and sensor requirements (Xiang et al., 

2011). S2 has improved spatial and spectral capabilities for discriminating rangeland 

management practices (Sibanda et al., 2016), estimating forest canopy cover and leaf area index 

(LAI) (Korhonen et al., 2017), and increasing the categorization quality of built-up areas 

(Korhonen et al., 2017). 

Resampling remote sensing datasets from coarse to fine spatial resolutions, or vice versa, does 

not always result in good prediction efficiency. Most of the time, these images loose quality 

during the resampling process, which can have an impact on the pixels that are extracted and 

used to predict PTEs or soil properties in the soil. The primary difference between down- and up-

scaling synthetic and original images is that finer or coarser spatial details must be restored in 

the original down/up-scaling (Khosravi et al., 2022), and thus the inability to maintain spatial 

detail has an impact on image quality. In S2, some images have 20 and 10m spatial resolution, 

and not all bands were supposed to be resampled to either higher or lower spatial resolution, as 

in L8. For example, the use of some resampled bands in S2, such as Bands 2, 3, 4, and 8, from 10 

m to 20m spatial resolution, in conjunction with unsampled bands 11 and 12, improved Cd 

prediction using PS-LD. The S2 and L8 prediction results were even closer when using bands that 

could be similar for both sensors, but the error outputs in the result for the spatial resolution of 

20m of S2 were lower than for L8 in PS-LD. This implies that using original bands without 

resampling produces better results with less error. The combination of original bands and 

resampled bands produces better predictive modeling results than resampling all bands into 

different spatial resolutions. This means that the unsampled band retains the captured image 

details and qualities without distortion. The original bands contain useful data for predictive 

mapping. As a result, using original captured satellite images in prediction modeling is critical. 

Even though resampling can be useful for obtaining higher or coarser spatial resolution of bands 

for a specific goal, a combination of original bands in their original states and resampled bands 

has a better chance of producing good results. 
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Paper 6 

The regression kriging (RK) approaches RF_RK, Cubist_ RK, EGB_ RK, and CIF_ RK produced R2 

values of 0.67, 0.49, 0.81, and 0.42 in scenario 1. The best results were obtained with the EGB_RK 

(R2 = 0.81) approach, followed by the RF_RK approach (R2 = 0.67). The regression kriging methods 

cubist_ RK (R2 = 0.49) and CIF_RK (R2 = 0.42) produced abysmal results with R2 values below 0.5. 

EGB_RK had the lowest degree of error in the prediction of Sb in agricultural soil in terms of 

estimated error (RMSE and MAE). The modeling approach RF_RK had the least bias in the 

prediction of Sb in agricultural soil, with a bias of 0.31, followed by CIF_RK with a bias of 0.33, 

EGB_RK with a bias of 0.37, and cubist_RK with a bias of 0.40. According to the overall 

performance of the regression kriging modeling approaches, EGB_RK was the best modeling 

technique for predicting Sb in agricultural soil, with high prediction performance, low error 

margins, and detectable bias. In scenario 2, however, the cumulative prediction accuracy of the 

modeling techniques in predicting Sb concentration in agricultural soil revealed that the EGB_RK 

(R2= 0.76, RMSE = 1.07, BIAS = 0.11, and MAE = 0.48) modeling approach was the best modeling 

method capable of predicting Sb concentration in agricultural soil with better efficiency, a lower 

error margin, and a satisfactory degree of bias. The cumulative assessment of the scenarios 

revealed that the three modeling approaches, EGB_RK, CIF_RK, and cubist_RK, significantly 

improved in scenario 2 compared to scenario 1. The overall modeling efficiency of the modeling 

techniques in predicting Sb in agricultural soil, on the other hand, indicated that the EGB_RK in 

the scenario 2 modeling approach is the best modeling method capable of predicting the 

concentration of Sb in agricultural soil with higher efficiency, minimal error margin, and a 

satisfactory degree of bias. According to Hengl et al. (2004), Umali et al. (2012), and Zhang et al. 

(2012), the use of RK in learning algorithms that incorporate spatial interpolation produces better 

spatial interpolation results in the prediction of soil properties and PTEs. When combined with 

an appropriate modeling algorithm, the spatial interpolation aspect of ordinary kriging produces 

good results. OK has the potential to produce good results when used in the prediction of PTEs 

and soil properties, according to Pham et al., 2019 and Pham et al., 2019. RK has consistently 

proven to be more precise when there is a strong correlation between predicted PTE and 

environmental covariates (Keskin and Grunwald, 2018). It is critical to emphasize that the 
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selection of ecologically consistent environmental covariates that correlate with the response 

variable with a robust autocorrelation with data makes RK more appropriate. More auxiliary 

datasets could be selected to improve the accuracy of the RK method (Pham et al., 2019). 

According to Kim et al. (2015), EGB tends to screen out the efficiency of modeling techniques by 

reducing the potential limitations of other modeling strategies, such as computational 

complexity. Furthermore, EGB can aid in modeling standardization (Jia et al., 2019), hyper-

parameter tuning (Probst et al., 2019), local minima (Kawaguchi, 2019), elevated discrepancies 

(Li et al., 2020), and technology transfer (Kim et al., 2020). 

4.2. Concluding remarks 

The combination of various spectral pretreatment algorithms together with machine learning 

algorithms and appropriate auxiliary datasets improves Zn prediction outcomes. 

The combination of data fusion, terrain attribute, and regression kriging modeling approaches 

produces optimal results with a high R2 value, minimal errors, and bias. 

For better prediction outcomes, proxies or additional data sets can be combined with soil 

characteristics that have a strong correlation with response variables. 

Furthermore, combining terrain attributes with data fusion has the potential to reduce error, 

bias, and predict with high accuracy. 

Combining preferential sampling with legacy datasets, as well as an appropriate modeling 

approach and a well-correlated remote sensing dataset, yields good results. 

Using higher spatial resolution remote sensing datasets along with input data in the prediction 

of PTEs or soil properties in the soil does not necessarily mean good results will be produced. 

The best results will be achieved through a combination of environmental covariates with a high 

correlation with the response variable, combined with appropriate modeling techniques 

predicting potentially toxic elements in agricultural soil. 

The use of mean, maximum, and minimum values in health risk estimation does not provide a 

comprehensive picture of a research area’s health state. 
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The continuous application of agriculturally related inputs such as phosphate fertilizers and other 

anthropogenic activities (e.g., the steel industry) can increase the level of PTEs in soils. 

Using a pollution assessment-based receptor model (ER-PMF) has been shown to be reliable and 

practical in estimating distribution sources. 

Geographical weighted regression cokriging proved to be more reliable and efficient in the 

mapping of PTEs in the agricultural soil than the application of geographical weighted regression. 

Each study requires a different modeling approach that is appropriate for the type of dataset 

used because there is no one modeling approach that fits all datasets. 
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A B S T R A C T   

The continuous demand placed on farmland to yield optimal harvest is dependent on the continuous application 
of agrochemicals and fertilizers to increase soil fertility and manage diseases. Successive application of fertilizers 
and use of agrochemicals coupled with metal and steel industries introduce potentially toxic elements into the 
soil. Active agricultural activities and industrial emissions that result in atmospheric cadmium (Cd) injection and 
active deposition on agricultural soil (particularly from the primary metal industry, steel and iron industrial 
production). The concentration of cadmium in the study area exceeds the local background value. As a result, 
excessive cadmium soil concentration will contribute to increased toxic and carcinogenic effects, with negative 
implications for both environmental and human health. Therefore, determining the spatial distribution of Cd is 
critical for environmentally friendly agricultural production and reducing Cd emission into soils. The goals of this 
study are to (i) determine the variability of Cd prediction in agricultural soil using spectral indices or terrain 
attributes coupled with modeling algorithms, and (ii) determine whether combining spectral indices and terrain 
attributes coupled with modeling algorithms can improve Cd prediction efficiency in agricultural soil. The study 
applied three modelling scenarios, comprised prediction using terrain attributes coupled with digital soil map-
ping (DSM) approaches (Scenario 1), prediction using spectral indices combined with DSMs (Scenario 2), and 
prediction using a combination of terrain attributes, spectral indices, and DSMs (Scenario 3). Gaussian process 
regression (GPR), partial least square regression (PLSR), extreme gradient boosting (EGB), multivariate adaptive 
regression splines (MARS), Bayesian regularized neural network (BRNN), regularized random forest (RRF), 
Bayesian generalized linear model (BGLM), and M5 tree models were the DSMs used in the study. The M5 tree 
model and terrain attributes {Scenario 1 R2 = 0.77, concordance correlation coefficient (CCC) = 0.73, root mean 
square error (RMSE) = 0.45, mean absolute error (MAE) = 0.37 and median absolute error (MdAE) = 0.35}, EGB 
and spectral indices {Scenario 2, R2 = 0.83, CCC = 0.76, RMSE = 0.54, MAE = 0.33 and MdAE = 0.23} and the 
M5 tree model, spectral indices and terrain attributes {Scenario 3, R2 = 0.84, CCC = 0.81, RMSE = 0.39, MAE =
0.31 and MdAE = 0.24} were the overall best combinations that predicted Cd in the agricultural soil. The overall 
evaluation of the approaches suggested that the combination of spectral indices, terrain attributes, and the M5 
tree model in Scenario 3 was the optimal technique for predicting Cd in agricultural soil. Thus, a combination of 
environmental covariates with a high correlation with the response variable, combined with appropriate 
modeling techniques predicting potentially toxic elements in agricultural soil, will produce the best results.   

1. Introduction 

Soil pollution by potentially toxic elements (PTEs) is a worldwide 
problem due to the negative implications on the ecosystem and the 
prospective risk to human health. PTEs are an umbrella term for “heavy 
metals,” “trace elements,” and “toxic elements” with weight densities 

greater than or less than 5 g/cm2 (Ali et al., 2013; Fang et al., 2016). The 
ever-increasing human population and efforts to meet their demands 
have culminated in the expansion of farmlands and the application of 
tons of agrochemicals and fertilizers to increase yield. According to 
Adimalla, (2020) and Song et al., (2018), as agricultural advancements 
have risen tremendously, PTEs pollution has been increased as a result of 
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the application of fertilizers. Due to the high level of PTEs in agricultural 
soil, it has become challenging for soils to fulfill their functional role as a 
natural resource for the continued coexistence of plants, animals, and 
humanity, which is dependent on the balances of their structure and 
composition, as well as the chemical, biological, and physical properties 
(Gupta et al., 2020; Lehmann et al., 2020). The direct impact of PTEs, 
specifically cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As), 
has reduced the soil’s ability to play its potential role as a habitat for 
macro- and microorganisms, resulting in soil deterioration, endangering 
food quality, reliability, and security, and exacerbating potential haz-
ards to human health via the food chain (Jia et al., 2019; Shi et al., 
2014b). 

Over the years the continuous agricultural soil research and efforts to 
improve precision agriculture, thereby reducing the use of agrochemi-
cals and the application of fertilizers that potentially pollute farmland, 
have piqued the interest of people all over the world. These in-
vestigations have resulted in a critical assessment of PTEs in agricultural 
soil to determine concentration levels as well as their effect, as the soil is 
used to grow food crops for human consumption. According to, Kesha-
varzi et al., (2018); Adimalla and Wang, (2018); Adimalla et al., (2019); 
and Agyeman et al. (2021), a premium has been placed on agricultural 
soil for two reasons: first, the agricultural food channel that is polluted is 
the primary source of consumption directly across different food prod-
ucts., such as vegetables, fruits, rice, and wheat, which can sometimes 
trigger health potential dangers; and second, densely gathered PTEs 
permeate through the microscopic pores and enter the soil and 
groundwater system, deteriorating soil/groundwater quality, which 
seems to have significant consequences on living beings. 

Digital soil mopping (DSM) approaches can be classified in four 
categories namely, the conventional statistical techniques such as mul-
tiple linear regression (Agyeman et al., 2021), geostatistical approach 
like ordinary kriging (Agyeman et al., 2021), machine learning algo-
rithm such as support vector machine (Asgari et al., 2020a,b; Sakizadeh 
et al., 2017; Tajik et al., 2019, 2020; Zeraatpisheh et al., 2020) and 
combination of to two or more modeling approaches to form a hybrid-
ized model such as ensemble (Agyeman et al., 2021; Chen et al., 2019). 
According to Minasny and McBratney (2016), DSM has effectively 
converted into an important subdiscipline of soil science. However, 
spatial variability of soil physiochemical properties within or between 
soils are generally intrinsic in nature due to geological and pedological 
soil formation factors, even though some variability might very well be 
induced by other management practices (Iqbal et al., 2005). The vari-
ables interfere on a spatially and temporally scale, and the distribution 
of soil properties modifies the content even further (Agyeman et al., 
2021). Zhu et al., (2018) however indicated that, in spatial predictions 
environmental covariates (i.e., spectral indices, digital elevation model) 
and soil relationships are fitted with a model as well as the discovered 
relationship and then implemented to spaces or positions where the soil 
data or sediment data is available. DSM methods are technically quan-
titative soil-environment interactions based on observed points that 
distinguish the relationship between soil and environmental covariates 
like terrain attributes, spectral indices, and climatic datasets. DSM has 
been widely used in soil science around the world for mapping soil 
properties and classes, as well as, to a significant extent, predicting PTE 
concentrations in soil or sediments (Arrouays et al., 2014). 

Over the years, the use of environmental covariates in DSM has 
proven to be useful, reliable, and effective in predicting and mapping 
PTEs (Azizi et al., 2022) or soil properties and farmers cannot apply DSM 
to render judgement due to spectral and spatial resolution issues (Zare 
et al., 2021). Multiplicity of research has applied either one or more 
terrain attributes (John et al., 2021), remote sensing dataset (Zhang 
et al., 2017) and climatic data (John et al., 2021b) to serve as an 
auxiliary dataset coupled with measured data to predict PTEs or other 
properties in the soil. Environmental covariates have enhanced multiple 
facets of soil surveying around the world, which include pre-mapping, 
designing efficient and effective field sampling strategies, and 

implementing spatial prediction approaches (Boettinger, 2010). Based 
on soil-forming factors and the SCORPAN technique, the DSM technique 
measure the connections between soil properties or PTEs and environ-
mental factors (McBratney et al., 2003). There are several studies that 
have applied machine learning algorithm (MLA) in the prediction and 
mapping of PTE and soil properties including extreme gradient boosting 
(Goydaragh et al., 2021), cubist, (Biney et al., 2022), support vector 
machine regression, (wan et al., 2019), random forest, (Mao et al., 
2021), partial least square regression (Vašát et al., 2017), extreme 
learning machine (Khosravi et al., 2018) and artificial neural network 
(Pyo et al., 2020). Numerous studies have used MLA in conjunction with 
environmental covariates such as terrain attributes and remote sensing 
datasets (e.g., spectral indices, Sentinel 2, Landsat 8) to predict PTEs in 
agricultural soil (Shi et al., 2014a; Wang et al., 2018, 2014; Zhao et al., 
2012). However, finding research that uses spectral indices, terrain at-
tributes, and their combinations to predict PTE content is challenging. 

Active agriculture, metal and steel industries are among the indus-
trial activities in the study area, so determining the chemical composi-
tion of agricultural soil is critical. The goals of this study are to (i) 
determine the variability of Cd prediction in agricultural soil using 
spectral indices or terrain attributes coupled with modeling algorithms, 
and (ii) determine whether combining spectral indices and terrain at-
tributes coupled with modeling algorithms can improve Cd prediction 
efficiency in agricultural soil. Thus, the current study intends to use 
selected DSM approaches and environmental covariates such as terrain 
attributes and spectral indices estimated from Sentinel-2 satellite im-
agery for the prediction of Cd in agricultural soil by three distinct ap-
proaches, namely, assessing the impact of terrain attributes in the 
prediction of Cd (Scenario 1), assessing the impact of spectral indices in 
the prediction of Cd (Scenario 2) and assessing the impact of combined 
terrain attributes and spectral indices in the prediction of Cd (Scenario 
3). We hypothesized that combining environmental covariates (spectral 
indices and terrain attributes) with an appropriate MLA has the potential 
to improve prediction efficiency. 

2. Materials and methods 

2.1. Study area 

The study location is in the district of Frydek Mistek, Czech Republic. 
It is located at latitude of 49◦ 41′ 0′ north and longitude of 18◦ 20′

0′ east, at elevation of 225 to 327 m above sea level (Agyeman et al., 
2020). It has hilly topography and highlands from the exterior Carpa-
thians. According to the Koppen classification, the study area has a Cfb 
= oceanic temperate climate with high rainfall even during dry months 
(John et al., 2021). Over the year, the temperature ranges from − 5 to 
24 ◦C, with average temperatures falling below − 14 ◦C or increasing 
above 30 ◦C. The maximum annual precipitation is 83 mm, with a 
minimum overall accumulation of 17 mm (Weather Spark, 2016). Crops 
grown in the study area include oilseeds, corn, sunflower, and grape-
vines, as well as cereals like wheat, oats, barley, and rye. The district of 
Frydek Mistek has a total land area of 1208 km2 (39.38 % for agricul-
tural activities and 49.36% for forestland), and the land area utilized for 
this study is 889.8 km2. The study area is identified by extensive agri-
culture activities as well as different metal works (such as fabrication, 
pneumatic cylinders, valves, regulators, and so on) and steel companies 
(such as the production of cold-rolled steel strips and sheets, anisotropic 
electrical steel strips and sheets). The color, structure, and carbonate 
composition of the soil are all easily distinguishable. Nonetheless, the 
soil’s parent materials have a medium to fine texture. They are most 
commonly found in aeolian and colluvial deposits, which are also 
defined by top and subsurface mottles that can be observed in some soil 
regions and are primarily followed by concrete and whitening. They are 
differentiated by a cambic diagnostic horizon with fine sandy loam (e.g., 
cambic horizon and anthropedogenic horizons) texture, a clay concen-
tration of more than 4%, and a lithic discontinuity with low carbonate 
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content (Kozák et al. 2010). However, cambisols and stagnosols were the 
most prevalent soil types in the study area (Kozák et al. 2010). These 
soils are common throughout the Czech Republic and can be found at 
elevations ranging from 455.1 to 493.5 m (Vacek et al., 2020). 

2.2. Soil analysis and sampling 

A total of 115 topsoil samples were collected from agricultural land 
in the Frydek Mistek district (Fig. 1). The sample pattern was a standard 
grid, and the soil sample ranges were kept to 2 X 2 km using a handheld 
GPS (Leica-Zeno 5 GPS) device at depths ranging from 0 to 20 cm. Soil 
samples were placed in Ziploc bags, labelled, and delivered to the lab-
oratory. The soil samples obtained were air-dried before being crushed 
by a machine (Fritsch disk mill pulverize) and sieved to obtain a pul-
verized soil sample (2 mm). In a Teflon container, one gram of the dried, 
7 ml homogenized, and sieved soil sample (sieve size 2 mm) was placed 
and labelled. of 35% HCl and 3 ml of 65% HNO3 were administered 
(utilizing automatic dispensers—one for each acid) into each teflon 
bottle, and the cap was gently closed to enable the sample to sit over-
night for reactions to occur (aqua regia procedure) (Cools, 2016; Tej-
necký et al., 2015). After the soil sample had been digested, the mixture 
was deposited on a heated metal plate for 2 h to aid digestion before 
being permitted to cool. The mixture was filtered to obtain supernatant. 
The supernatant was diluted to 50 ml with deionized water in a 50- ml 
volumetric flask. After that, the diluted supernatant was filtered into 
PVC tubes with a capacity of 50 ml. The concentration of PTEs was 
determined by ICP–OES (inductively coupled plasma–optical emission 
spectrometry) (Thermo Fisher Scientific Corporation, USA) in compli-
ance with standard techniques and methods. Similarly, the quality 
control and quality assurance methods were ensured by examining the 
reference criteria for each study. To verify that the mistake was minimal, 
a duplicate analysis was performed. 

2.3. Modelling techniques 

The data was divided into a test dataset (with 25% for validation) 
and a training dataset using a random approach (75% for calibration). 
The training data was utilized to calibrate the regression models, and the 
test dataset was used to evaluate generalization abilities. All the 
modeling techniques were conditioned to a 10-fold cross-validation 
process that was repeated five times. The DSM approaches that were 
employed in this study are: Gaussian process regression (GPR), partial 
least square regression (PLSR), extreme gradient boosting (EGB), 
multivariate adaptive regression splines (MARS), Bayesian regularized 
neural network (BRNN), regularized random forest (RRF), Bayesian 
generalized linear model (BGLM) and the M5 tree model. Below is a brief 
description of the modeling approaches: 

2.4. Gaussian process regression 

The Gaussian process (GPR) is a nonparametric modelling method 
(Vasudevan et al., 2009; Zhang and Xu, 2021). This is a supervised 
machine learning approach for solving regression and probabilistic 
categorization issues in general. The present study examined the asso-
ciation between Cd levels and ancillary datasets, such as spectral indices 
and terrain attributes. Wang et al. (2020) credit the usefulness of GPR to 
its accessibility and high precision. Furthermore, GPR can aid in 
reducing dataset overfitting (Ballabio et al., 2019). The model was 
developed using Rstudio and applying the method “gaussprLinear,” as 
well as libraries or packages (kernlab), and no tuning parameters were 
used. 

2.5. Partial least square regression 

The advantage of the PLSR algorithm is that it eliminates the prob-
lem of many features dimensionality among the predictor variables 

Fig. 1. Czech Republic (A), the district of Frydek Mistek (B), Study area with training and test dataset used (C) Study area with sampling locations (D).  
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(Mishra and Nikzad-Langerodi, 2020). The algorithm was applied in the 
present research to operate and evaluate independently for each number 
of features, ranging between 1 and 10. The algorithm simultaneously 
discovers a linear regression model connecting the predictor variables 
and the relationship between the explanatory variables in the new 
projected space after projecting the explanatory variables to an original 
space (Gamon et al., 1992). For more details on the PLSR algorithm, 
refer to Ehsani et al., (1999). The model was developed using Rstudio 
and applying the method “xgbTree,” as well as libraries or packages that 
included the “xgboost” and “gamma” tuning parameters. 

2.6. Extreme gradient boosting 

Extreme gradient boosting (EGB) is a decision tree with a gradient- 
boosted approach that is improved for speed and precision (Climent 
et al., 2019). It is a sort of regression and characterization issue that is 
executed successively by an ensemble of restricted prediction algo-
rithms, with each new design aiming to correct the flaws of the previous 
model. The EGB is based on Friedman’s original gradient boosting 
approach (Climent et al., 2019), which is a practical and modular 
implementation of Friedman’s gradient boosting framework. The model 
was developed using Rstudio and applying the method “xgbTree,” as 
well as libraries or packages with the “xgboost” and “gamma” tuning 
parameters. 

2.7. Multivariate adaptive regression splines 

Friedman (1991) introduced MARS as a nuanced approach for 
organizing synergistic or interactive with minimal variable links among 
a collection of input factors and the target dependent. It is a nonpara-
metric quantitative technique that uses a partitioning approach to split 
training datasets into simple linear segments (splines) with different 
gradients (slope). MARS assumes no hypotheses about the fundamental 
correlations of the dependent and independent factors (Zhang and Goh, 
2016). The splines are commonly linked smoothly, and the piecewise 
polynomials, also referred to as basic functions (BFs), producing a 
comprehensive framework that can accommodate both linear and 
nonlinear behavior (Zhang and Goh, 2016). For more details on the 
MARS algorithm, refer to Friedman, (1991) and Zhang and Goh (2016). 
The model was constructed using Rstudio and applying the method 
“earth,” as well as libraries or packages “earth” and tuning parameters 
“nprune”. 

2.8. Regularized random forest 

Random forest which has been regularized (RRF), is the most recent 
variation of random forest (RF), which incorporates a regularization 
structure into the tree-increasing process (Deng and Runger, 212). RRF 
provides large feature subsets and decreases the number of features 
utilized in categorization and regression tasks, as shown in (Deng and 
Runger, 2012). Regularization usually entails applying a penalty to an 
error function to prevent overfitting. The model was built using Rstudio 
and applying the method “ RRF,” as well as “RRF” libraries and tuning 
parameters “mtry”. 

2.9. Bayesian regularized neural network 

The best approach for dealing with learning problems is to use 
Bayesian approaches, and any other approach that does not resemble 
them should perform worse on average. They are especially useful for 
data model comparative studies because they embody automatically and 
quantitatively (Gauch et al., 2003). A Bayesian technique is a complex 
technique that is inherently self-punishing, according to Bayes’ Rule. 
Tchagang and Valdés, (2019) proposed that Bayesian techniques com-
plement neural networks (NNs) by overcoming an overly flexible net-
work’s inclination to explore almost nonexistent or excessively 

complicated data models. The Bayesian method for NN modelling 
techniques analyses all probable values of network parameters weighted 
by the likelihood of each set of weights. Traditional backpropagation NN 
training methods use a single set of variables (weights, biases, etc.). 
Using the Bayesian regularized neural network approach, Bayesian 
inference is used to construct the posterior probability distribution of 
weights, which are linked to the attributes of a prior probability distri-
bution based on updates provided by the training set (Tchagang and 
Valdés, 2019). The model was generated using Rstudio and applying the 
“brnn” method, as well as libraries or packages “brnn” and “neurons” 
tuning parameters. 

2.10. Bayesian generalized linear model (BGLM) 

The Bayesian statistical approach infers generalized linear models 
(GLMs) with variables in a contained environment of common interest 
(e.g., in monotonic or convex regression), but establishing a legitimate 
posterior distribution supported by a system of linear constraints can be 
difficult, especially when some constraints are valid and enforceable, 
resulting in a reduced feature subspace. By sampling from posterior 
probabilities multiple times, Bayesian techniques obviate the necessity 
for a nonlinear solution. The versatility of the Bayesian technique for 
comprehensive evaluation of the ambiguity in the calculated random 
impacts and functionalities of hyperparameters is an additional feature. 
Bayesian inference is based on the collected data rather than on the 
presumption of limitless data populations. Bayesian approaches benefit 
from these inferences because all inferences are precise and not 
approximated, and the outcomes are comprehensible (Congdon, 2007; 
Ntzoufras, 2011). The model was developed using Rstudio and applying 
the “bayesglm” method, as well as libraries or packages “arm” and no 
tuning parameters. 

2.11. M5 tree model 

Quinlan (1992) created model trees as a type of regression tree that 
connects leaves to multivariate regression models. Model trees are a 
method of interacting with continuous class complications that provides 
conceptual recognition of the information as well as a nonlinear 
regression sit comfortably of the class (Etemad-Shahidi and Mahjoobi, 
2009). They have a traditional decision tree structure, but instead of just 
discrete different classifiers, the leaves use linear functions. Quinlan 
(1992) developed M5 model trees, which were then recreated and 
enhanced in a framework named M5′ by Wang and Witten, (1996). An 
M5′ tree model, like regression trees, is an effective learning approach 
for determining real values that works well with large datasets. The M5′

tree model algorithm commences by iteratively partitioning the instance 
space to construct a regression tree, and the spliced principle is applied 
to reduce intrasubject variance in values bottom from the root via the 
subsidiary to the node (Etemad-Shahidi and Mahjoobi, 2009). The 
variance is determined by computing the standard deviation of the 
values that expanded from the root through the division to the node and 
evaluating the forecasted reduction in discrepancy as a direct conse-
quence of analyzing each component at that node (Etemad-Shahidi and 
Mahjoobi, 2009). The model was created using Rstudio and applying the 
method “M5′′, as well as the libraries or packages “RWeka: and tuning 
parameters “prune”. 

2.12. Environmental covariates 

The use of geological spectral indices and terrain attributes as 
auxiliary datasets in the prediction of Cd in agricultural soil was chosen 
because of the impact and influence they have on the spatial distribution 
of PTEs in agricultural soil. For instance, according to Ding et al. (2017) 
terrain attributes such as slope and elevation have impact on the dis-
tribution of PTEs in the soil. Furthermore, PTEs are more effectively 
adsorbed in clay particles as the clay particle content increases, and the 
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elevated the clay mineral composition, the relatively easy it is to adsorb 
in soil. 

In modelling Cd, terrain attributes were obtained with disparate sets 
of terrain derivatives that were sourced. The covariates were extracted 
from ASTER datasets utilizing a digital elevation model (DEM) with a 
spatial resolution of 30 m (https://doi.org/10.5067/ASTER/AST 
L1A.003) and treated with the SAGA-GIS terrain analysis toolbox. 
However, the 30 m spatial resolution processed DEM obtained was 
resampled using bilinear resampling method in ArcGIS to 10 m spatial 
resolution. The terrain attributes applied are elevation, slope, LS-factor, 
channel network base level, channel network drainage and relative 
slope position. The chosen terrain attributes are due to the relationship it 
has with Cd. 

Sentinel 2 images of the study area were extracted from the European 
Satellite Agency (https://www.copernicus.eu/en/copernicus-services/ 
emergency) in August 2020, and the bands were processed using 
SNAP software. The bands were at different resolutions of 10 m, 20 m, 
and 60 m. Bands were resampled into 10 m pixels using SNAP software 
to ensure that all the data were harmonized and have a uniform reso-
lution. The spectral indices, such as clay mineral ratio (CLAYMR), 
ferrous mineral ratio (FMR), iron oxide ratio (IOR), carbonate normal-
ized ratio (CNR), rock outcrop normalized ratio (RONR) and normalized 
difference built-up index (NDBI), were estimated using the bands 
required for its computation. The formulas of the spectral indices are 
given as: 

CLAYMR =
SWIR1
SWIR2

(1)  

FMR =
SWIR
NIR

(2)  

IOR =
RED

BLUE
(3)  

CNR =
RED − GREEN
RED + GREEN

(4)  

RONR =
SWIR1 − GREEN
SWIR2 + GREEN

(5)  

NDBI =
SWIR − NIR
SWIR + NIR

(6)  

2.13. Model validation and accuracy assessment 

Validation and accuracy assessment of the DSM modelling ap-
proaches employed in this study were performed using the coefficient of 
determination (R2), root mean square error (RSME), mean absolute error 
(MAE) and median absolute error (MdAE). The regression model ex-
presses R2, which represents the variance of the proportion in the 
response. The RMSE determines the magnitude of the variations within 
the independent quantification categorize of the model predictive per-
formance, whereas MdAE and MAE confirm the true quantifiable value. 
The study applied the Lin Concordance correlation coefficient (CCC) to 
determine the goodness of fit of the modeling approach measured 
(Lawrence and Lin, 1989). According to Viscarra Rossel et al., (2014), 
the CCC precise scale ranges from − 1 to + 1, with 0.9 or greater 
denoting perfect agreement, 0.8 to 0.9 denoting substantial agreement, 
0.65 to 0.8 denoting moderate agreement, and 0.65 denoting poor 
agreement. To determine the best model using the validation metrics, 
the R2 and the CCC value should be close to 1, meaning the better the 
accuracy of the model. Similarly, the closer the RMSE, MdAE, and MAE 
to zero, the better the accuracy. 

2.14. Data analysis 

R studio was used to analyze the predictive performance of the 
modelling approaches. ArcGIS version 10.8 was used to create the 
optimal prediction as well as the spatial distribution maps of Cd. The 
spatial prediction intensity analysis was performed using the inverse 
distance weighting interpolation (IDW) technique. IDW estimates the 
values of the unknown situation within the sampling space, employing a 
linear confluence of values and assigns weights utilizing its inverse 
feature. IDW has a relatively lower marginal error than other interpo-
lation techniques due to its capacity to allocate weights prior to pre-
diction, making it more appropriate for generating precise spatial 
distribution maps. The flow chart of the study is presented in Fig. 2. 

Fig. 2. The flow chart of the study.  
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3. Results and discussion 

3.1. Data description 

The summary descriptive statistics of the dataset used in this study 
are shown in Table 1. The maximum values, minimum values, median, 
mean, standard deviations (SD), coefficient of variations (CV), skewness, 
and kurtosis for the entire datasets, training dataset, test dataset, and 
environmental covariates are shown in table 1. The concentration of Cd 
varied from 0.61 (minimum value) to 7.28 mg/kg (maximum value). 
The coefficient of variation of Cd was estimated to be 55.10%. According 
to Wilding (1985) the criteria of the coefficient of variation can be 
categorized into high (CV greater than 35%), moderate (CV 15–35%) 
and lowest (CV less than 15%) variable classes. This result suggested 
that the CV of Cd in the study area is high, and the homogeneous dis-
tribution of Cd in the study area and its pollution source might be 
attributed to a local enrichment source (Agyeman et al., 2021c). The 
mean concentration of Cd (1.84 mg/kg) in the study area is relatively 
high compared to the local background value of Cd (0.2 mg/kg) reported 
by Nemecek (1992). It was 9.2 times higher than the local background 
values. In comparison, the mean concentration values of Cd to the na-
tional background value according to Czech decree No.152/2016 Coll. 
for agricultural soil (0.5 mg/kg) indicated that the national background 
value is 3.68 less than the reported mean concentration value of Cd. 
Similarly, the current study’s mean concentration values of Cd in agri-
cultural soil were found to be higher than the mean concentration values 
of Cd in agricultural soil in the Silesia region of Poland reported by, 
Piekut et al. (2018) {Bielski County (0.63), Czestochowa (1.06), Gliwice 
(0.50), Jastrzebie-Zdroj (0.50), Mikolow County (0.98), Myszkow 
County (0.99), Rybnik (0.50), Tychy (0.50), Wodzislaw County (0.50), 
Zabrze (1.63), Zory (0.50)}. The world average value (0.41 mg/kg), 
European average value (0.28 mg/kg) and upper continental crustal 
(0.10 mg/kg) level of Cd reported by Kabata -Pendias, (2011) were 
found to be lower than the current Cd mean concentration levels in the 
present study. The estimated skewness and kurtosis values were above 1 
(see Table 1), which implies that the distribution of Cd is irregular, 
skewed in the right direction and leptokurtic based on Chandrasekaran 
et al., (2015) categorized description of the data distribution. The 
standard deviation (SD) of Cd was 1.01, implying a high level of het-
erogeneity due to the high concentration level of Cd. The statistical 
description of the environmental covariates mean values range from 
− 0.22 to 378.36, median − 0.27 to 3.61.59, SD 0.08 to 93.55, CV − 0.27 
to 193.70, skewness − 0.82 to 6.83, kurtosis –0.04 to 59.49, maximum 
value of 0.19 to 902.11 and the minimum values − 0.45 to 244.03. 

Clay mineral ratio (CLAYMR), ferrous mineral ratio (FMR), iron 
oxide ratio (IOR), carbonate normalized ratio (CNR), rock outcrop 

normalized ratio (RONR) and normalized difference built-up index 
(NDBI), channel network base level (CNBL), channel network drainage 
(CND) and relative slope position (RSP), digital elevation model (DEM). 

3.2. Relative importance for Cd and environmental covariates 

The chosen environmental covariates relative importance for the 
prediction of Cd concentration in the agricultural soil are presented in 
Fig. 3. The environmental covariates obtained for the prediction of Cd in 
the soil displayed a diverse degree of relative importance in the asso-
ciation with Cd based on the weights. However, based on the results, it 
was evident that the most important 6 environmental covariates that 
exhibited superior performance in the prediction of Cd in the agricul-
tural soils are L.S. Factor, slope, DEM, CND, CNBL, and RSP. The 
weighted performances for these environmental covariates were 
32.37%, 16.38%, 10.99%, 10.11%, 8.53%, and 8.17% for L.S. Factor, 
slope, DEM, CND, CNBL, and RSP, respectively. These 6 environmental 
covariates are all the covariates extracted from the terrain analysis. On 
the other hand, the environmental covariate spectral indices estimated 
from Sentinel 2 satellite imagery exhibited minimal performance with 
the weighted values 3.33%, 2.85%, 2.52%, 1.91%, 1.52% and 1.31% for 
clayMR, RONR, NDBI, IOR, CNR and FMR, respectively. The study area 
is distinguished by highlands and lowlands; the effect of slope length on 
erosion; and the steep slope factor, which most likely has an effect on 
slope steepness. This factor influenced the L.S factor, which was the 
most important covariate in the prediction of Cd in the agricultural soil. 
The terrain attributes were more relevant in the prediction of Cd in the 
agricultural soil, which is practically true for the terrain’s attributes 
based on the geomorphology of the study area. Taghizadeh-Mehrjardi 
et al. (2020) applied terrain attributes and remote sensing datasets to the 

Table 1 
Shows the statistical description of the PTE and environmental covariates.   

Median Mean SD C V Skewness Kurtosis Minimum Maximum 

Cd (N-115-mg/kg) 1.61  1.84  1.01  55.10  2.84  10.45  0.61  7.28  
Dataset for modeling 

Training (N-85-mg/kg) 1.61  1.89  1.11  0.59  2.82  9.18  0.78  7.28 
Test (N-30-mg/kg) 1.51  1.67  0.66  0.39  0.59  − 0.26  0.61  3.21  

Environmental covariates 
DEM 361.59  378.36  93.55  24.70  1.95  7.73  240.33  902.11 
Slope 0.07  0.09  0.08  92.80  2.40  7.84  0.00  0.49 
LS-Factor 0.79  1.26  1.65  130.60  4.10  24.00  0.01  13.08 
CNBL 353.67  363.79  78.44  21.60  0.86  0.52  244.03  623.01 
CND 7.89  15.06  29.17  193.70  6.83  59.49  0.00  279.10 
RSP 0.04  0.07  0.11  163.70  4.89  34.39  0.00  0.92 
clayMR 1.95  1.86  0.32  17.30  − 0.82  − 0.04  1.00  2.33 
FMR 0.59  0.69  0.24  34.80  1.06  0.17  0.40  1.46 
IOR 1.10  1.14  0.22  19.70  0.77  − 0.21  0.82  1.78 
RONR 0.78  0.73  0.18  24.20  − 1.86  4.69  0.05  1.10 
CNR 0.64  0.72  0.23  31.60  0.72  − 0.68  0.41  1.29 
NDBI − 0.27  − 0.22  0.15  − 65.00  0.75  − 0.53  − 0.45  0.17  

Fig. 3. Showing relative importance between Cd and environmental covariates.  
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prediction of soil organic carbon (SOC) in the soil, and terrain attributes 
such as slope and DEM were shown to be more relevant for the SOC 
content prediction in soil than remote sensing-based covariates. Besides, 
the impact of terrain attributes on predicting Cd content can be closely 
linked to variability in other soil physical properties as well as the 
presence of agricultural production in lower hilly terrain. 

Geological terrain is an essential influential factor for the prediction 
of PTEs such as Cd in the soil. Over extended durations of time, re-
lationships between bedrock, climatic conditions, and geomorphic 
mechanisms result in the development of soil parent composites. Envi-
ronmental covariates have the greatest influence on the impactful 
categorization of the spatial variability of PTEs in soil, depending on the 

circumstance pedogenesis and the evolution development (Zeraatpisheh 
et al., 2020). The authors also suggested that the use of machine learning 
algorithms in the prediction of PTEs or soil properties in soil should 
consider the soil formation mechanism (Zeraatpisheh et al., 2020), 
which includes the mineral composition as well as the geological char-
acteristics of the soil being studied. The enrichment of Cd in agricultural 
soils is due to a combination of anthropogenic and natural processes, 
such as parent material weathering and subsequent pedogenesis. As a 
result, the use of auxiliary datasets that are in tune with pedogenesis 
factors such as parent material (by employing a remote sensing - based 
spectral dataset to distinguish geochemical correlates of parent material, 
e.g., ferrous mineral ratio) in conjunction with a machine learning al-
gorithm aid in predicting PTE (Cd) concentrations in soil. For example, 
Zhang et al. (2020) used machine learning algorithms (e.g., ANN, SVM) 
to spatially predict the concentration of PTEs (e.g., Cd) in urban soil by 
coupling soil parent materials such as Fe2O3, Al2O3 as auxiliary datasets 
to aid in the identification of the pollution source of the PTEs while 
increasing prediction efficiency. Wu et al. (2016), on the other hand, 
used machine learning algorithms such as ANN and GPR combined with 
soil formation factors (parent material, topography) and reported that 
machine-learning techniques adept of remedying non-linear problems, 
such as ANN and GPR, could also be used to develop soil background 
estimation models. Even though PTE pollution is largely determined by 
the concentration and transformation of PTEs in soils of various genesis, 
the determination of the spatial variability of PTEs in soil is dependent 
on the determination of the appropriate soil genesis factor that is linked 
to the PTEs under investigation. 

Table 2 
Assessment of modeling methods on Cd prediction using terrain attributes.  

Modeling techniques R2 RMSE MAE MdAE CCC 

GPR  0.70  0.53  0.45  0.44  0.61 
PLSR  0.71  0.51  0.42  0.32  0.64 
EGB  0.47  0.83  0.52  0.36  0.47 
MARS  0.68  1.29  0.66  0.21  0.41 
RRF  0.61  0.80  0.55  0.32  0.46 
BRNN  0.73  0.48  0.40  0.35  0.68 
BGLM  0.69  0.54  0.46  0.46  0.60 
M5  0.77  0.45  0.37  0.35  0.73 

GPR-gaussian process regression, PLSR-partial least square regression, EGB- 
extreme gradient boosting, MARS- Multivariate adaptive regression splines, 
RRF-regularized random forest, BRNN- Bayesian regularized neural network, 
BGLM- Bayesian generalized linear model, M5-tree model. 

Fig. 4A. Cadmium content (mg/kg) values measured vs predicted in scenario 1 for each of the four model optimal fitness curves (BRNN- Bayesian regularized neural 
network, BGLM- Bayesian generalized linear model, EGB- extreme gradient boosting, GPR-gaussian process regression). 
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3.3. Prediction based on terrain attributes (Scenario 1) 

Table 2 displays the performance of the various modelling ap-
proaches used for the prediction of Cd in agricultural soil, while the 
fitness curves for the predicted and measured Cd are presented in 
Figs. 4A and 4B. Eight modelling approaches were used, employing 
terrain attributes as the auxiliary datasets coupled with Cd data 
measured using ICP–OES. MARS had the least MdAE (0.21), followed by 
RRF (0.32), PLSR (0.32), BRNN (0.35), M5 tree model (0.35), EGB 
(0.36), and GPR and BGLM with 0.44 and 0.46, respectively. The M5 
tree modelling approach yielded the lowest RSME value (0.45), followed 
by BRNN (0.48), PLSR (0.51), GPR (0.53), BGLM (0.54), RRF (0.80), 
EGB (0.83), and MARS (1.29). The estimated MAE results also revealed 
that M5 tree model had the lowest MAE (0.37), followed by BRNN 
having the second lowest MAE (0.40), PLSR (0.42), GPR (0.45), BGLM 
(0.46), EGB (0.52), RRF (0.55), and MARS (0.66). The closer the RMSE, 
MAE and MdAE values are to zero, the higher the precision and the more 
accurate the model is in predicting Cd in agricultural soil. The R2 values 
revealed that, out of the 8 modelling approaches used to predict the 
concentration of Cd in the soil, M5 tree model obtained the highest value 
of R2 = 0.77, which is a good prediction based on Li et al., (2016) pre-
cision and model assessment criteria. The R2 values of the other 
modelling approaches were within the acceptable precision and accu-
racy range, i.e., 0.73 for BRNN, 0.71 for PLSR, 0.70 for GPR, 0.69 for 
BLGM, 0.68 for MARS and 0.61 for RRF. Only the EGB modelling 
approach performed poorly, exhibiting R2 = 0.47, which is unaccept-
able. With the exception of the R2 value obtained for EGB, the differ-
ences in the R2 values of the modeling approaches in predicting Cd were 

relatively close and within the acceptable modeling assessment range. 
However, the differences in the computed modeling errors for each of 
the modelling approaches used were also relatively small, which did not 
exceed 1.3 for RMSE, 0.7 for MAE and 0.5 for MdAE. Based on the CCC 
assessment criteria, the Cd predictions from the modeling approaches 
ranged between 0.41 and 0.73. The M5 tree model, on the other hand, 
had the highest CCC for predicting Cd in agricultural soil, while MARS 
had the lowest. The R2 (0.77) of the M5 tree model, on the other hand, 
was the highest of all the techniques considered, with the CCC (0.73) 
providing the best 1:1 fit between measured and predicted Cd. 

The cumulative results indicated that the combination of the M5 tree 
modeling approach coupled with terrain attributes and the measured Cd 
concentration was the optimal modeling approach that predicted Cd in 
the soil with higher prediction efficiency and minimal error. Neissi et al., 
(2020) applied M5 tree model and geographical information system in 
the spatial interpolation of the sodium absorption ratio and concluded 
that the performance of the M5 tree modelling combined with inverse 
distance weighting and kriging interpolation methods produced the best 
results. Kumar and Deswal (2020) assessed the capacity of the M5 tree 
model to predict phosphorus removal which yielded acceptable results 
(R2 = 0.987, RMSE = 0.033 and MAE = 0.0258). The M5 tree model has 
been applied in various disciplines and proven to have the capacity to 
yield a high accuracy level with minimal error, as in the present study. 
Kumar and Deswal (2020), Sui et al., (2016), Heddam, (2021) and Sihag 
et al., (2019) assessed the performance of diverse modelling approaches 
for the evaluation of PTEs in soil and found that the M5 tree modelling 
approach was the optimal model for determinations of Cu and Zn. 
Similarly, Biabani et al., (2016) and Rahimikhoob, (2016) applied the 

Fig. 4B. Cadmium content (mg/kg) values measured vs predicted in scenario 1 for each of the four model optimal fitness curves (M5 tree model, MARS- Multivariate 
adaptive regression splines, PLSR-partial least square regression, RRF-regularized random forest). 
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M5 tree model algorithm for assessment of the daily reference of 
evapotranspiration and the prediction temporal evolution of clear water 
and found that the M5 tree model method produced satisfactory results 
considering the performance indicators, such as R2, RMSE and MAE, 
with less aberration from the arithmetical values. 

3.4. Prediction based on spectral indices (Scenario 2) 

Table 3 summarizes the performance of the modelling approaches 
used to predict Cd in agricultural soil using eight different models 
coupled with spectral indices as the auxiliary dataset, whereas the 

fitness curves between the measured dataset and the predicted dataset 
are shown in Figs. 5A and 5B. According to the estimated validation and 
accuracy results, M5 tree model had the lowest RSME value of 0.49. 
BRNN, was the second algorithm that obtained a minimal RSME (0.50) 
accompanied by PLSR (0.51), GPR (0.52), EGB (0.54), BGLM (0.54), 
RRF (0.56) and MARS (1.38). Except for MARS, which produced a high 
RMSE value in comparison to the others, the difference in the estimated 
RMSE was relatively close. The performance of algorithms in terms of 
MAE is in following order: EGB (0.33) > RRF (0.38) > M5 Tree (0.42) >
BRNN (0.44) > PLSR (0.45) > GPR (0.46) > BGLM (0.48) > MARS 
(0.70). The MAE values of all modelling approaches were relatively 
close. Conversely, the obtained MdAE values ranged from 0.18 to 0.51. 
Only two of the modeling approaches’ R2 values were within the good 
performance zone, according to the results of their R2 values (i.e., EGB 
R2 = 0.83 and M5 tree model R2 = 0.76). All the modelling approaches 
of the other 6 algorithms yielded acceptable results, and the R2 values 
ranged from R2 = 0.61 to 0.75. The CCC values of the modeling ap-
proaches ranged between 0.30 and 0.76, with MARS obtaining the 
lowest CCC value and EGB obtaining the highest CCC value. The R2 
value of 0.83 obtained by the EGB modeling approach was nevertheless 
revealed to be the highest of all the techniques deemed, with a corre-
sponding CCC value of 0.76 providing the optimal 1:1 fit between 
measured and predicted Cd. The precision and accuracy level of the 
modelling approaches in the prediction of Cd in the agricultural soil was 
relatively moderate to high based on the R2, CCC, RMSE, MAE, and 
MdAE results obtained. Based on the cumulative performance of the 
modeling approaches in terms of the validation and accuracy assessment 
criteria, EGB was the best modeling approach for predicting Cd in 

Table 3 
Assessment of the performance of various modelling approaches using spectral 
indices.  

Modeling techniques R2 RMSE MAE MdAE CCC 

GPR  0.71  0.52  0.46  0.51  0.65 
PLSR  0.74  0.51  0.45  0.46  0.67 
EGB  0.83  0.54  0.33  0.23  0.76 
MARS  0.61  1.38  0.70  0.18  0.30 
RRF  0.70  0.56  0.38  0.27  0.60 
BRNN  0.75  0.50  0.44  0.47  0.68 
BGLM  0.69  0.54  0.48  0.50  0.63 
M5  0.76  0.49  0.42  0.44  0.68 

GPR-gaussian process regression, PLSR-partial least square regression, EGB- 
extreme gradient boosting, MARS- Multivariate adaptive regression splines, 
RRF-regularized random forest, BRNN- Bayesian regularized neural network, 
BGLM- Bayesian generalized linear model, M5-tree model. 

Fig. 5A. Cadmium content (mg/kg) values measured vs predicted in scenario 2 for each of the four model optimal fitness curves (BRNN- Bayesian regularized neural 
network, BGLM- Bayesian generalized linear model, EGB- extreme gradient boosting, GPR-gaussian process regression). 
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agricultural soil, with the highest CCC and R2 values of 0.76 and 0.83 
and the lowest MAE of  0.33, respectively. 

Goydaragh et al., (2021) applied EGB coupled with environmental 
variables as one of the modelling approaches in the prediction of soil 
organic carbon in the soil and yielded an R2, RMSE, MAE, and MdAE 
values of 0.32, 0.72, 0.56, and 0.42 respectively. Comparing perfor-
mance of EGB in this study to the results obtained in the above 
mentioned by, Goydaragh et al., (2021), it was evident that the EGB 
modeling technique in the current study performed extremely well in all 
validation and assessment criteria. EGB outperformed MLR, SVM, and 
RF models in predicting Mn removal in soil with the least error (RMSE =
1.4, MAE = 0.81) and the highest coefficient (R2 = 0.88) (Bhagat et al., 
2020). The R2 result obtained by Bhagat et al. (2020) (R2 = 0.88, RMSE 
= 1.4, MAE = 0.81) was higher than those R2 value obtained in the 
current study (R2 = 0.83, RMSE = 0.54, MAE = 0.33), but when the 
RMSE and MAE results from both studies are compared, it can be 
inferred that the estimated errors were 2.61 (RMSE) and 2.48 (MAE) 
times less in the current study. According to Ma et al., (2019), EGB has a 
significant advantage over other MLAs, such as ANN and SVM, in terms 
of selecting responsive features via relevance rankings and limiting 
model overfitting by defining the default orientation of splitting for 
missing datasets or values. Numerous research findings have shown that 
EGB can enhance predictive performance by incorporating key features 
in predicting metal ion concentrations, forest terrestrial biomass, and 
PTEs concentrations (Joharestani et al., 2019). Zhao et al., (2022) re-
ported that comparing their studies to other studies, EGB has demon-
strated reasonable model performance in estimating pollution indices 
using sensitive wavelengths. In the computation of PTEs concerntration 

in soil or sediments, EGB outperformed other MLA modelling ap-
proaches, such as RF, SVM, and ANN (Bhagat et al., 2021). However, 
EGB has the benefit of reducing underestimation and overestimation (Li 
et al., 2020). According to, Kim et al., (2015), EGB has a proclivity to 
filter out model performance, thereby minimizing potential limitations 
encountered in other modelling approaches, such as overfitting. None-
theless, EGB can help to reduce modelling normalization issues, (Jia 
et al., 2019), the need for hyperparameter tuning, (Probst et al., 2019), 
local minima, (Kawaguchi and Bengio, 2019), higher irregularities, (Li 
et al., 2020), and strategies in technology transfer (Kim and Geum, 
2020). 

3.5. Prediction based on terrain attributes and spectral indices (Scenario 
3) 

The concentration of Cd was also predicted by combining the 
modelling approaches with terrain attributes and spectral indices, while 
the fitness curves for the measured dataset and predicted dataset are 
displayed in Figs. 6A and 6B. The performance of the modelling methods 
is presented in Table 4. Accordingly, R2 values were within the 
acceptable prediction efficiency range (0.5 to 1), except for MARS (R2 =

0.26), which exhibited abysmal performance. The M5 tree approach 
obtained the highest R2 value of 0.84, accompanied by PLSR R2 = 0.74, 
BRNN R2 = 0.73, EGB R2 = 0.67, GPR R2 = 0.65, RRF R2 = 0.62, and 
BGLM R2 = 0.61. The computed RMSE values revealed that the M5 tree 
model yielded a minimal error value of 0.39, which is the preferred 
value because the smaller the error value is, the more efficient the 
modelling approach. Furthermore, BRNN was the next model that 

Fig. 5B. Cadmium content (mg/kg) values measured vs predicted in scenario 2 for each of the four model optimal fitness curves (M5 tree model, MARS- Multivariate 
adaptive regression splines, PLSR-partial least square regression, RRF-regularized random forest). 
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obtained the lowest RMSE value of 0.49, followed by PLSR (0.49), GPR 
(0.55), BGLM (0.58), EGB (0.68), RRF (0.76) and MARS (1.54). The 
performance of the modelling approaches with regards to MAE and 
MdAE ascends in this order: M5 tree > PLSR > BRNN > EGB > GPR >
BGLM > RRF > MARS, for MAE and M5 tree > EGB > PLSR > RRF >
MARS > BRNN > GPR > BGLM for MdAE. With the exception of MARS 
in RMSE and MAE, which had a slightly higher error margin, the mar-
gins between the estimated error criteria for the modeling approaches 
were relatively small. The estimated CCC values of the modeling ap-
proaches were within the range of 0.19 as the least for the MARS 
modeling approach and 0.81 as the highest for the M5 tree modeling 
approach. However, based on the R2 value of 0.84, the M5 tree model 
exhibited the highest of all the techniques deemed, with the CCC value 
of 0.81 providing the optimal 1:1 fit between measured and predicted 
Cd. The cumulative performance of the modelling approaches in the 
prediction of Cd in agricultural soil using spectral indices, terrain at-
tributes, and MLA suggested that the M5 tree modelling approach is the 
optimal approach that predicts Cd with higher precision and a consistent 
minimal error margin. 

Comparing modelling Scenario 1 (prediction based on terrain attri-
butes) to modelling Scenario 3 (prediction based on terrain attributes 
and spectral indices), it is obvious that GPR, MARS, BRNN, and BGLM 
performed better using terrain attributes alone as the auxiliary datasets 
than their combination. However, the PLSR, EGB, RRF, and M5 tree 
models performed significantly better in Scenario 3 than in Scenario 1. 
On the other hand, comparing Scenarios 2 and 3, it was evident that 
GPR, EGB, MARS, RRF, and BGLM exhibited superior performance in 
Scenario 2 than in the respective modelling methods in Scenario 3. 

Contrariwise, the PLSR, BRNN, and M5 tree models performed better in 
Scenario 3 than the respective modelling techniques in Scenario 2. It can 
be inferred that the use of terrain attributes, spectral indices, and the 
combination of spectral indices and terrain attributes as auxiliary 
datasets has revealed the ability of the PLSR and M5 tree model ap-
proaches to consistently predict Cd and improve prediction efficiency in 
all scenarios with high efficiency and minimal error. Kalambukattu 
et al., (2018) reported that a combination of terrain attributes and 
spectral indices has the propensity to optimize results with good accu-
racy levels. In comparison to modelling Scenario 1, the R2, RMSE, MAE, 
and MdAE values of the PLSR, EGB, RRF, and M5 tree models improved 
by a range of 0.50 to 17.60%, 1.98 to 9.46%, 2.05 to 10.55%, and 3.87 to 
18.25%, respectively in Scenario 3, except for the MdAE of the RRF. 
Except for the R2 of the BRNN modelling approach, the R2, RMSE, MAE, 
and MdAE values of PLSR, BRNN, and the M5 tree model improved by 
1.28 to 5.3%, 1.11 to 5.30%, 3.18 to 15.30%, and 12.12 to 28.12%, 
respectively in Scenario 3 than in Scenario 2. Several studies, such as, 
Goydaragh et al., (2021) and Xu et al., (2019), combined spectral 
datasets with environmental variables, such as terrain attributes, which 
improved the modelling results compared with using either spectral 
datasets or environmental variables. 

3.6. Comparison of optimal models based on the modelling approaches 

The three modelling Scenarios yielded great results, and the optimal 
modelling technique that predicted Cd in the agricultural soil for each 
modelling Scenarios was the M5 tree model for Scenario 1, the EGB for 
Scenario 2 and the M5 tree model for Scenario 3. Among the three 

Fig. 6A. Cadmium content (mg/kg) values measured vs predicted in scenario 3 for each of the four model optimal fitness curves (BRNN- Bayesian regularized neural 
network, BGLM- Bayesian generalized linear model, EGB- extreme gradient boosting, GPR-gaussian process regression). 
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techniques, the M5 tree model from Scenario 3 yielded the best results 
across all five accuracy and validation assessment approaches (R2, 
RMSE, MAE, MdAE, CCC). Scenario 2′s cumulative performance 
compared to Scenario 1 suggested that Scenario 2 produced better re-
sults than Scenario 1. When M5 tree model results for Scenario 3 are 
compared to M5 tree model results in Scenario 1, the M5 tree model in 
Scenario 3 improves the R2 value by 4.6%. Similarly, the computed error 
in both scenarios (i.e., Scenario 1 and 3) shows that RMSE, MAE, and 
MdAE improved by 6.57%, 8.82%, and 18.25% in the M5 tree model in 
scenario 3 than in scenario 1. In comparison, the estimated CCC of the 
M5 tree model in scenario 1 (0.76) compared to the M5 tree model in 

scenario 3 (0.81) indicated an 2.87% improvement in performance, 
particularly in scenario 3. In contrast, comparing scenarios 3 and 2, it 
was clear that the R2, RMSE and MAE improved by 0.95%, 15.64% and 
2.51%, respectively, in favor of Scenario 3. Furthermore, when the 
computed CCC values for the optimal modeling approaches in the pre-
diction of Cd in agricultural soil for Scenario 3 (0.81–M5 tree model) and 
2 (0.71–EGB) were compared, the M5 tree model obtained CCC values 
improved by 5.24%. As a result, it can be extrapolated that the combi-
nation of terrain attributes and spectral indices coupled with the M5 tree 
modelling technique is an improvement over the application of terrain 
attributes or spectral indices in isolation with MLAs in the prediction of 
Cd in agricultural soil. The M5 tree model is made up of many tree 
structures built with subsets, and a tree configuration with the fewest 
error must be built so that can avoid overfitting (Kumar and Deswal, 
2020). In comparison, the scatter plot between the measured and pre-
dicted for the optimal predictions for all approaches shows that the M5 
tree model (Fig. 6B) had a better goodness of prediction than the other 
two optimal models (refer to Figs. 4B and 5A). 

3.7. Spatial prediction intensity analysis 

The spatial prediction intensity of the optimal modelling predictions 
per modelling approach and the spatial prediction of Cd in the agricul-
tural soil are shown in Fig. 7A. The spatial prediction of Cd and the EGB- 
spectral index prediction map share the same similar hotspot pattern. 
The hotspot can be seen in the northwest to southwest in the clockwise 
direction. On the other hand, the spatial prediction of the M5 tree 
model-terrain and the M5 tree model-terrain spectral map distribution 

Fig. 6B. Cadmium content (mg/kg) values measured vs predicted in scenario 3 for each of the four model optimal fitness curves (M5 tree model, MARS- Multivariate 
adaptive regression splines, PLSR-partial least square regression, RRF-regularized random forest). 

Table 4 
Assessment of the performance of various modelling approaches using spectral 
indices and terrain attributes.  

Modeling techniques R2 RMSE MAE MdAE CCC 

GPR  0.65  0.55  0.47  0.41  0.58 
PLSR  0.74  0.49  0.41  0.30  0.68 
EGB  0.67  0.68  0.42  0.26  0.64 
MARS  0.26  1.54  0.85  0.35  0.19 
RRF  0.62  0.76  0.52  0.32  0.48 
BRNN  0.73  0.49  0.41  0.37  0.66 
BGLM  0.61  0.58  0.50  0.46  0.55 
M5  0.84  0.39  0.31  0.24  0.81 

GPR-gaussian process regression, PLSR-partial least square regression, EGB- 
extreme gradient boosting, MARS- Multivariate adaptive regression splines, 
RRF-regularized random forest, BRNN- Bayesian regularized neural network, 
BGLM- Bayesian generalized linear model, M5-tree model. 
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Fig. 7A. Cadmium spatial prediction and the best prediction techniques from the three modeling approaches [EGB- extreme gradient boosting, M5- M5 tree model].  

Fig. 7B. Spatial distribution variance between the observed Cd and predicted Cd for the optimal prediction in each scenario (M5-TA (M5 tree model-terrain 
attribute), EGB-SI (extreme gradient boosting-spectral indices) and M5-TA-SI (M5 tree model -terrain attributes-spectral indices)). 
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can be seen in the southwestern area of the map. The hotspot on the 
maps can be attributed to iron and steel production industries in the 
study area, phosphate fertilizer application on farmlands, particularly in 
the southeastern part, and atmospheric deposition of Cd on the soil. 
Hutton, (1983) suggested that iron and steel production and phosphate 
fertilizer application are the major anthropogenic sources of Cd in the 
soil. According to WHO (2010), the health effects of Cd include tubular 
renal dysfunction, acute pneumonitis with pulmonary oedema and lung 
cancer development. Cadmium poisoning can cause disruptions in the 
calcium metabolic rate and the creation of kidney stones, as well as 
softening of the bones and osteoporosis in those who are predisposed by 
working and living in cadmium-contaminated areas (WHO, 2010). The 

spatial prediction maps revealed that the M5-terrain and M5-terrain- 
spectral spatial distribution maps exhibited moderate prediction in-
tensity patterns of 3.05 and 3.99 prediction intensities, respectively. Due 
to the active agricultural activities in that area, a high prediction in-
tensity pattern was observed in the southeastern part. Cd and the EGB 
spatial prediction intensity map, on the other hand, revealed that their 
prediction intensity was very high, with prediction intensities of 6.49 
and 6.01, respectively. The high prediction intensity in the Cd and the 
EGB spatial prediction intensity map is due to the metal and steel pro-
duction and the agricultural activities (e.g., fertilizer application) in the 
northeastern and southeastern parts of the area. Men et al., (2019), on 
the other hand, argued that the smaller the extent, the more likely the 

Fig. 8A. Maps showing the level of uncertainty at 2.5%, 97.5% and mean based on BGLM, BRNN, EGB and GPR modeling approaches for the prediction of Cd in the 
agricultural soil. 
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sources are spatially homogeneous in nature. Similarly, the larger 
spatial intensity prediction implies that the impacts of myriad sources 
are primarily spatial. 

Fig. 7B depicts the interpolation prediction variance between pre-
dicted and measured Cd values. The variance between the optimal Cd 
prediction and the observed Cd suggests that there is little over and 
under prediction, as shown by the spatial variance distribution maps for 
M5-TA, EGB-SI, and M5-TA-SI. The M5-TA and M5-TA-SI both displayed 
low spots prediction in the southeastern, northeastern, and northwest 
areas of the map. Similarly, EGB-SI and M5-TA-SI shared a low spot 
prediction in the southwestern area of the map, and EGB-SI exhibits a 
low spot prediction in the southwestern area of the map. The 

overprediction was most noticeable in the southeastern region of the 
spatial distribution variance map, which was more pronounced for the 
M5-TA and M5-TA-SI. The combination M5 tree model coupled with 
terrain attributes and spectral indices clearly revealed areas that were 
under predicted and were not revealed by using either covariate in the 
prediction of Cd in agricultural soil. It follows that both covariates 
complement each other, assisting in highlighting areas that were 
underpredicted by M5-TA and EGB-SI. 

3.8. Uncertainty assessment 

The efficiency of pollution assessment is dependent on effective and 

Fig. 8B. Maps showing the level of uncertainty at 2.5%, 97.5% and mean based on M5 tree, MARS, PLSR and RRF modeling approaches for the prediction of Cd in 
the agricultural soil. 
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precise mapping of PTEs in soil. However, in order to reduce the bias in 
pollution estimation induced by mapping techniques, it is critical to 
understand the uncertainty of soil PTE pollution evaluations initiated by 
mapping error as well as the differences in pollution analysis between 
multiple mapping techniques. The estimation of prediction uncertainty 
is critical in the tracking of ambiguity and out-of-time sample predict-
ability. In this study, uncertainty was estimated for the 8 modeling al-
gorithms used in the prediction of Cd in the agricultural soil. The 
uncertainty was predicted based on the 2.5% prediction interval, 97.5% 
prediction intervals, and the mean prediction. The uncertainty mapping 
patterns shared by the modeling techniques BGLM, PLSR M5 tree model, 
and GPR were similar, with low uncertainty dominating across the study 
area in the 2.5%, 97.5%, and mean uncertainty maps, respectively. 
However, patches of moderate to high uncertainty were exhibited in the 
southeastern and southwestern areas of the uncertainty map. The un-
certainty for the BRNN and EGB maps displayed predominantly low 
uncertainty for the 2.5% uncertainty distribution map all over the study 
area, with a spot of moderate uncertainty in the southeastern and 
southwestern enclave of the map. However, the mean uncertainty and 
the 97.5% equally exhibited low to moderate uncertainty levels with 
slightly higher uncertainty for both modeling approaches in the south-
eastern and southwestern regions of the map. The RRF and MARS al-
gorithms also displayed low to moderate uncertainty levels all over the 
study area for the 2.5% and 97.5% prediction intervals. Nevertheless, 
the mean predictions for the algorithms likewise exhibited a high level 
of uncertainty in the southeastern and southwestern areas of the map 
(see Figs. 8A and 8B). 

4. Conclusion 

This study applies a series of modeling algorithms to predict Cd in 
agricultural soil in an area in the southeastern part of the Czech Re-
public. Three different scenarios were applied by combining the terrain 
attributes coupled with modelling approaches (Scenario 1), spectral 
indices combined with modelling approaches (Scenario 2), and a com-
bination of terrain attributes, spectral indices, and modelling ap-
proaches (Scenario 3). According to the obtained results, except for EGB, 
all the modelling approaches in Scenario 1 produced acceptable results. 
However, the overall assessment in Scenario 1 indicated that the M5 tree 
model was the best model capable of predicting Cd in agricultural soil 
using terrain attributes as an auxiliary dataset. The cumulative results in 
Scenario 2 suggested that EGB combined with spectral indices produced 
the best results. However, the performance of Scenario 2 compared to 
Scenario 1 suggested that using spectral indices as an auxiliary dataset 
combined with modelling approaches yielded better results than using 
terrain attributes. Except for MARS, all the models performed very well 
in Scenario 3. However, the cumulative analysis revealed that the M5 
tree model combined with terrain attributes and spectral indices pro-
duced the best results in Scenario 3, with high R2 and CCC values and 
minimal error margins. The overall comparison of the optimal modeling 
scenarios revealed that the combination of spectral indices and terrain 
attributes to the M5 tree model produced the best results, yielding the 
highest Cd prediction results with higher R2 and CCC values and the 
lowest RMSE, MAE, and MdAE values. In conclusion, it was clear that 
not all modeling approaches produced optimal results when auxiliary 
datasets were combined. As a result, this study suggests that the best 
model for predicting Cd in agricultural soil is a combination of envi-
ronmental covariates such as spectral indices and terrain attributes 
combined with the appropriate modeling approach like the M5 tree 
model. 

CRediT authorship contribution statement 

Prince Chapman Agyeman: Conceptualization, Methodology, 
Writing – original draft, Visualization. Vahid Khosravi: Data curation, 
Investigation. Ndiye Michael Kebonye: Software, Data curation. 

Kingsley John: Software, Visualization. Luboš Borůvka: Supervision. 
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Mapping soil properties with soil-environmental covariates using geostatistics and 
multivariate statistics. Int. J. Environ. Sci. Technol. 18 (11), 3327–3342. https://doi. 
org/10.1007/S13762-020-03089-X/TABLES/5. 

John, K., Agyeman, P.C., Kebonye, N.M., Isong, I.A., Ayito, E.O., Ofem, K.I., Qin, C.Z., 
2021b. Hybridization of cokriging and gaussian process regression modelling 
techniques in mapping soil sulphur. Catena (Amst) 206 Catena 206. https://doi.org/ 
10.1016/j.catena.2021.105534. 

John, K., Bouslihim, Y., Ofem, K.I., Hssaini, L., Razouk, R., Okon, P.B., Isong, I.A., 
Agyeman, P.C., Kebonye, N.M., Qin, C., 2021c. Do model choice and sample ratios 
separately or simultaneously influence soil organic matter prediction? Int. Soil Water 
Conserv. Res. https://doi.org/10.1016/J.ISWCR.2021.11.003. 

Kalambukattu, J.G., Kumar, S., Arya Raj, R., 2018. Digital soil mapping in a Himalayan 
watershed using remote sensing and terrain parameters employing artificial neural 
network model. Environ. Earth Sci. 77 (5), 1–14. https://doi.org/10.1007/S12665- 
018-7367-9/FIGURES/13. 

Kawaguchi, K., Bengio, Y., 2019. Depth with nonlinearity creates no bad local minima in 
ResNets. Neural Networks 118, 167–174. 

Keshavarzi, B., Abbasi, S., Moore, F., Mehravar, S., Sorooshian, A., Soltani, N., 
Najmeddin, A., 2018. Contamination level, source identification and risk assessment 
of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in 
street dust of an important commercial center in Iran. Environ. Manage. 62 (4), 
803–818. https://doi.org/10.1007/S00267-018-1079-5. 

Khosravi, V., Doulati Ardejani, F., Yousefi, S., Aryafar, A., 2018. Monitoring soil lead and 
zinc contents via combination of spectroscopy with extreme learning machine and 
other data mining methods. Geoderma 318, 29–41. 

Kim, M., Geum, Y., 2020. Predicting Patent Transactions Using Patent-Based Machine 
Learning Techniques. IEEE Access 8, 188833–188843. 

Kim, S., Choi, Y., Lee, M., 2015. Deep learning with support vector data description. 
Neurocomputing 165, 111–117. 
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A B S T R A C T   

A resilient environment is essential for society’s long-term viability. Receptor models have evolved into an 
excellent tool for detecting pollution sources and evaluating each source’s empirical contributions based on 
ecological datasets. One hundred and fifteen soil sample were collected from the district of Frydek Mistek in the 
Czech Republic and the concentration of arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), manganese 
(Mn), nickel (Ni), lead (Pb)and zinc (Zn) measured inductively coupled plasma–optical emission spectrometry. 
The results suggested that the hybridized receptor models ER-PMF and PMF identified the following geogenic, 
steel industries, vehicular traffic, and agro-based activities such as pesticide and fertilizer applications as the 
primary sources in the source distribution. The ER-PMF source pollution identification efficiency ranged from R2 
0.872–0.970, RMSE 0.128–17.344 and MAE 0.085–10.388, whereas the PMF R2 ranged from 0.883 to 0.960, 
RMSE 0.246–79.003 and MAE 0.145–49.925. The overall assessment of the efficiency of the receptor models 
suggests that the ER-PMF appears to yield more efficient results in pollution source identification compared to 
PMF. The PTEs mapping using geographical weighted regression (GWR) and a hybridized regression approach, 
geographical weighted regression cokriging (GWRCoK), revealed that GWRCoK had a higher goodness of fit in 
the spatial prediction maps than GWR. According to Hakanson’s risk index classification, the ecological risk level 
in the study area was moderate to high (risk level = 51 observed locations out of 115, or 44.35%); however, 
Chen’s risk index reclassification indicated that the toxicity level in the study area was moderate to extremely 
high (risk level = 113 observed locations out of 115, or 98.26%). However, the uncertainty assessment results 
indicated that the DISP interval ratio of the hybridized ER-PMF model was lower than that of the parent PMF 
model. However, it was clear that the random error that could occur in the DISP based on the DISP interval ratio 
was likely to be lower in the ER-PMF receptor model than in the parent model. The assessment of PTEs in soil has 
been widely published, but this study recommends using a pollution assessment-based receptor model (ER-PMF), 
which has been shown to be reliable and practical in estimating distribution sources.   

1. Introduction 

Due to the human population explosion, there has been a concerted 
effort over the years to till the land in order to increase yield in sequence 

to feed the ever-growing human population, which has seen rapid 
development with intensive industrial revolution to enhance agricul-
tural activities and precision farming. Aside from the rapid development 
of industries and increased agricultural investment, it is well known that 

Abbreviations: DISP -, Dsiplacement; ER-PMF, Ecological risk-positive matrix factorisation; PMF, Positive matrix factorisation; RMSE, Root means square error; 
MAE, Mean absolute error; PTEs, Potential toxic elements; GWR, Geographical weighted regression; GWR-CoK, Geographical weighted regression-Cokriging; KED, 
Kriging with extenal drift; R2, R squared. 
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agriculture production activities in third-world countries have pla-
teaued, which has a devastating effect on traditional agriculture. Soil is 
an essential nonrenewable treasure that serves as the source and reser-
voir of various pollutants, such as potentially toxic elements (PTEs) 
(Hossain Bhuiyan et al., 2021a). Numerous anthropogenic practices, 
such as urban sprawl, large-scale farming, and rapid industrialization, 
have always been the source of soil nutrient toxicity with PTEs and, as a 
result, are of global concern. According to Kumar et al. (2019) and 
Keshavarzi and Kumar (2019), human activities such as urban expan-
sion, intensive farming, and industrial growth, are the primary drivers 
that inject PTEs into urban soil and have generated concerns globally. 
PTEs can enter the environment through anthropogenic activities such 
as agricultural activities (i.e., of fertilizers, pesticides, livestock ma-
nures, sewage sludge) and natural source like parent materials (Wu 
et al., 2020; Bayraklı and Dengiz, 2020). As a result, the risk associated 
with the injection of PTEs into agricultural soil must be mitigated to 
protect the ecosystem, human health, and the environment. PTEs in 
agricultural soils showed high spatial heterogeneity due to natural 
sources and anthropogenic activities, making identifying specific risks a 
difficult task in most urban and peri-urban agricultural soils. It is well 
known that the advancement of urban expansion, as well as intensifi-
cation of agricultural activities example has been the major orifice for 
potentially toxic element (PTE) pollution in agricultural soils (Kars and 
Dengiz, 2020), which has attracted worldwide attention due to their 
toxicity, endless availability, and tenacity (Tóth et al., 2016, Adimalla 
et al., 2019). PTE accumulation in agricultural soils might, however, 
result in deterioration of soil physiology and function (Beattie et al., 
2018). 

Pollution studies, notably soil pollution, are conducted worldwide to 
resolve various forms of soil type pollution, such as agricultural soil, 
urban soil, industrial soil, forest soil, and other environmental types of 
pollutants of interest to soil scientists, researchers, and other community 
stakeholders. Zhang et al. (2012) and Li et al. (2015) disclosed that PTEs 
are considered lethal since they appear to bioaccumulate and have sig-
nificant implications for public health and environmental quality. 
Kelepertzis (2014) discovered that anthropogenic activities were pri-
marily responsible for the elevation of the content of PTEs in urban and 
agricultural soils. Interestingly, in today’s world, a variety of anthro-
pogenic practices, such as the consistent application of fertilizers and 
pesticides to agricultural fields, reckless wastewater irrigation, vehicular 
traffic and atmospheric deposition (Zhang and Wang, 2020), play 
crucial roles in the accumulation of PTEs in the soil across various urban 
and peri-urban areas around the globe. However, PTEs introduced into 
the environment, especially the soil, directly and indirectly impact 
plants, animals, and humans. Nevertheless, according to Zhang and 
Wang (2020), the effect of human activities, inferred on the environ-
ment due to irrational land use planning and a poor understanding of 
environmental conservation and soil erosion worldwide, has increased 
tremendously. 

The need to improve the spatially differing correlation between the 
dependent variable and the independent variables prompted the 
development of geographically weighted regression (GWR) from the 
multiple linear regression (MLR) model (Brunsdon et al., 1996, Wang 
et al., 2020). The creation of GWR has yielded better modelling results 
than some traditional models, such as MLR, in terms of improving the 
grasp of the spatially varied correlations between environmental vari-
ables and PTEs (Fu et al., 2021). In recent years, there has been a trend to 
combine ordinary kriging (OK) with GWR, which has produced excellent 
results in predicting PTEs, soil organic carbon, and other environmental 
variables in soil or water. Among such papers that hybridized GWR with 
a geostatistical algorithm are Kumar et al. (2012), Wang et al. (2012), 
Pereira et al. (2018) and Ye et al. (2017). In this study, we hybridize 
GWR with cokriging to explore other alternatives that can be used to 
replace OK to enhance prediction efficiency and reduce uncertainty. 
Geographically weighted regression cokriging (GWRCoK) is made up of 
two parts, namely, stochastic and deterministic, which are simulated 

individually. The deterministic part of GWR is simulated to predict the 
trend of prediction of a response or a targeted variable using environ-
mental covariates. However, the stochastic part of cokriging predicts the 
targeted variables by adding the residuals to the predicted variables. 
Previous research has demonstrated that novel hybrid models correlate 
with individual models. A model such as GWRK performed better than 
the other models applied, such as the ordinary least squares (OLS) model 
(Sun et al., 2019), GWR, OK (Wang et al., 2020; Shen et al., 2019), and 
regression kriging (Shen et al., 2019) models in terms of prediction ac-
curacy (Mitran et al., 2018). In terms of ambiguity and reliability, a 
two-step technique is preferable to accomplish good results other than 
geostatistics, which are highly heterogeneous ecological landscapes, be 
it urban or peri-urban agricultural soil (Chen et al., 2019). The hybrid-
ization of geostatistical models and GWR has proven to be effective and 
a resilient hybrid model that can predict PTEs in soil. 

Several authors have carried out countless research in various jour-
nals reporting on environmental pollution, soil pollution, and urban 
pollution across the globe that are detrimental to ecology and humans. 
Many of such reports are performed in developed, developing and un-
derdeveloped countries, such as Spain by Rodríguez et al. (2008), France 
by Escarré et al. (2011), China by Yang et al. (2018), Mexico by Mor-
ton-Bermea et al. (2009), Ghana by Kodom et al., (2012), Peru by 
Santos-Francés et al. (2017) and Sudan by Ashaiekh et al. (2019). In 
estimating pollution levels in a wide range of areas, such as towns, urban 
areas, peri-urban areas, hinterlands and forests, researchers and stu-
dents use several pollution indices, such as the geoaccumulation index, 
enrichment factor, single pollution index, pollution load index, Nem-
erow pollution index, contamination level, potential ecological risk 
index and other host pollution indices. These indices have been 
described by USEPA (1998) as a versatile environmental pollution 
computing tool that assesses and coordinates data, providing a depth of 
information that exposes perceptions and uncertainties but also con-
siders the likelihood of adverse ecological effects. 

Over the years, the application of receptor models to determine 
source distribution in soil has become a popular approach in soil science. 
This multivariate analytical technique helps researchers quantify the 
source contribution of PTEs percentagewise in an area of study. Huang 
et al. (2018b) characterize the receptor model as a statistical tool that 
recognizes the source pathway of PTEs and quantifies the source dis-
tribution of PTEs understudied and aids in preventing soil pollution in 
the environment. Therefore, once the PTEs under investigation source 
contributions are quantified, it provides an opportunity to deliver 
mitigation measures to alleviate pollution. Various authors have utilized 
different receptor models to determine the proportion of PTE contri-
butions in multiple regions. Among the most widely used receptor 
models are positive matrix factorization (PMF), UNMIX, chemical mass 
balance (CMB) and absolute principal component score-multiple linear 
regression (APCS-, MLR). In recent times, most authors have preferred to 
use PMF and APCS-MLR. The potential of PMF and APCS-MLR to pro-
duce a consistent result in source apportionment of a specified analysis is 
undeniable. However, in some cases, when both approaches are 
compared, one becomes superior to the other. In a comparative study, 
Guan et al. (2019) suggested that APCS-MLR produced better outcomes 
than PMF, while Yang et al. (2013a) likewise concluded that PMF out-
performed APCS-MLR and UNMIX. 

Every effective model’s efficiency and practicality stem from its ca-
pacity to predict or model with optimal efficiency and a low marginal 
error. Nonetheless, the current approach being introduced tends to 
combine PMF and a pollution assessment index to estimate source 
apportionment. Some of the drawbacks of PMF stated by some authors 
include inconsistencies in the predicted contribution for each probable 
pollution source (Haji Gholizadeh et al., 2016) and the inadequacy of 
PMF based on R2 results (model efficiency) (Liu et al., 2020). The 
insidious nature of PTEs in the earth’s crust, combined with the need for 
some of these metals or metalloids for human subsistence, has made it 
impossible to eliminate them from the environment. As a result, the 
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continuous pollution of the environment with these metals(loid)s is an 
eternal event. Numerous studies, including Liu et al. (2014), Sayadi et al. 
(2015a), Chen and Lu (2018), Wu et al. (2018), Zhu et al. (2018), 
Keshavarzi and Kumar (2020), Agyeman et al. (2021), Hossain Bhuiyan 
et al. (2021b) and many authors, have relied on either one or multiple of 
these pollution indices to determine the pollution levels of a piece of 
land, area, community, urban area, peri-urban areas and other mean-
ingful places that are of interest to researchers. According to Sayadi et al. 
(2015a, 2015b), ecological risk is a technique for evaluating the po-
tential risk of the environment impacted by exposure to one and 
sometimes more environmental factors through an environmental risk 
assessment. Gao et al. (2013) stated that the ecological risk index is 
commonly used to fully assess the possibility of toxicity and environ-
mental dangers caused by PTEs. This index was developed by Håkanson 
(1980) to compute the level of pollution in soil and sediments. It is 
common and has been done frequently to use existing multivariate tools 
in research, such as PMF, ER, GWR, and Cok. To the best of our 
knowledge, no research has attempted to combine these multivariate 
statistical tools as has been done in the current paper. PMF will be hy-
bridized with ER to produce a hybridized receptor model that will be 
compared to the parent receptor model (PMF). In contrast, GWR will be 
hybridized with Cok to create a new hybridized algorithm for predicting 
and mapping PTEs in soil. What is the environmental risk level of the 
productive soil in the study area? We hypothesized that determining the 
impact of agriculture and industries on the soil health of the study area 
would depend on the appropriate pollution indices used. What is the 
uncertainty based on the receptor models used? This research seeks to 
harness the potential of the ecological risk index to evaluate the possible 
PTE toxicity level and the ecological risk exposure of the study area. The 
specific objectives of this paper are to determine the environmental risk 
level of the study area, evaluate ER-PMF and PMF receptor models for 
estimating PTE source allotment, employ ecological risk-assessed PTE 

values to calculate PCA and a correlation matrix, estimate the uncer-
tainty based on the receptor models and assess the efficiency of the 
prediction of PTEs based on geographical weighted regression or a hy-
bridized model. 

2. Materials and methods 

2.1. Study area 

The study area is situated within the district of Frýdek-Místek, with 
57 peri-urban and urban areas (see Fig. 1). The research region is 
positioned at a latitude of 49◦410’’ north and a longitude of 18◦200’’ 
east at an elevation of 225–327 m above sea level, with a cold temperate 
temperature and a high amount of rainfall even in dry months. Frýdek- 
Místek has humid, partially wet summers and cold, dry, windy summers, 
and most winters are cloudy. Temperatures vary slightly between − 5◦C 
and 24 ◦C throughout the year and are seldom below − 14 ◦C or above 
30 ◦C, whereas the average annual precipitation is between 685 and 752 
mm (Weather Spark, 2016). The geomorphology of the study area dis-
plays a rugged terrain that is considered part of the Moravian-Silesian 
Beskydy and the outer carpathian mountain and the highest moun-
tains. The area survey of the district is estimated at 1208 km2, with 
39.38% of the land area for cultivation and 49.36% being forests. The 
measurement of the study area sampled from the Frýdek-Místek district 
is 889.83 km2. A significant area for evaluating the distribution and 
related ecological impacts of PTEs is Trinec and Vitkovice. In and around 
the district, some parts of Ostrava, which form part of the area under 
investigation, are endowed with industries such as the steel industry and 
metal works (Agyeman et al., 2022). 

Weather parent material, which is generally proportionately 
composed of sandy and silty soils, is used to characterize the physical 
and chemical properties of the soil (Kozák, 2010). The soil reaction, on 

Fig. 1. Study area map and the sampling points.  
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the other hand, lies in the neutral to weakly acidic range, which is a 
favorable medium for aggressive microbial degradation and chemical 
fertility (Kozák, 2010). The soil texture has a moderate and satisfactory 
physical capability, with a high level of permeability and significant 
water retention, as well as interior draining (Vacek et al., 2020). The soil 
properties are clearly distinguished from the color, structure, and car-
bonate content of the soil. The soil contains medium and fine textures, 
which come from its parent materials. They are mainly colluvial, allu-
vial, or aeolian deposits. In certain sections of the field, there are mottles 
in the top and subsoil, followed mainly through concrete and blanching. 
However, cambisols and stagnosols are the predominant soil types 
(Kozák, 2010). In the Czech Republic, these soils are prevalent and range 
from 455.1 to 493.5 m (Vacek et al., 2020). 

2.2. Soil sampling and soil analysis 

A total sample of 115 topsoils was collected across 57 peri-urban and 
urban areas within the district of Frydek Mistek. A regular grid sampling 
technique was adopted, and the soil sampling gaps were 2 × 2 km using 
a handheld GPS unit (Leica Zeno 5 GPS) at a depth of 0–20 cm. The 
samples taken were packed in Ziploc polythene bags, properly labelled, 
and brought to the laboratory. The samples were air-dried, crushed by a 
mechanical device (Fritsch disk mill pulverize) and then sieved (<
2 mm) to obtain a pulverized sample. One gram of a dried but homog-
enized and sieved soil sample (sieve size< 2 mm) was deposited in a 
Teflon bottle and labelled. Seven milliliters of 35% HCl and three ml of 
65% HNO3 were dispensed into Teflon bottles, and the cup was closed 
halfway to allow a further reaction to take place overnight (aqua regia 
procedure). The mixture was placed on a hot metal plate for 2 h to 
stimulate the process of digestion of the sample and left to cool. The 
mixture was then filtered to obtain a supernatant. The supernatant was 
transferred into a 50 ml volumetric flask and then diluted with deion-
ized water to 50 ml. The diluted supernatant was then filtered into 50 ml 
PVC tubes. In addition, 1 ml of the diluted solution was diluted with 
9 ml of deionized water and filtered into a 12 ml test tube prepared for 
PTE pseudo concentration of PTEs in the samples. To identify metal 
concentrations, inductively coupled plasma–optical emission spec-
trometry (ICP–OES) (Thermo Fisher Scientific, USA) was utilized 
following standard procedures and protocols. The quality assurance and 
control (QA/QC) approach was ensured by analyzing the standard 
reference material for each sample (SRM NIST 2711a Montana II soil). 
PTEs with low or half detection limits were excluded from this study. 
The detection limits of the PTEs utilized in this study are 0.0002 (Cd), 
0.0007 (Cr), 0.0060 (Cu), 0.0001 (Mn), 0.0004 (Ni), 0.0015 (Pb), 
0.0067 (As), and 0.0060 (Zn). Moreover, for each analysis, the quality 
control and quality assurance processes were ensured by checking the 
reference criteria. Duplicate analysis was carried out to ensure that the 
error was minimized. 

2.3. Pollution indices 

To measure PTE pollution’s influence and toxic effects, the homo-
geneity of peri-urban and urban areas must be analyzed. On this basis, 
pollution indicators, including the ecological risk and single pollution 
index (PI), were employed to quantify the pollution level in the research 
region. The use of pollution indices allows for a consistent assessment of 
the condition of environmental pollution and the amount of human in-
fluence affecting the landscape and ecosystem in particular (Sawut et al., 
2018; Huang et al., 2018a). Therefore, these parameters are extensively 
utilized in monitoring PTE pollution in polluted soils or, from a larger 
perspective, the ecosystem. 

2.4. Single pollution index (PI) 

The proportion of PTE concentration to geochemical background 
values is defined as PI. PI was pioneered by Tomlinson et al. (1980) and 

the equation is given as 

PI =
Cn

Bn 

where Bn is the geochemical background value of the PTE in the soil 
(mg/kg) and Cn is the concentration of the PTE in the soil (mg/kg). PI is 
categorized into an absent PI< 1, low level (1 < PI<2), moderate level 
(2 < PI<3), strong level (3 < PI<5), or high level (PI > 6). 

2.5. Ecological risk 

The potential ecological risk index (ER and RI) is utilized to quantify 
the magnitude of the ecological hazard associated with toxic element 
concentrations in the environment or in soil. Håkanson (1980) formu-
lated the index, and the equation is given as 

RI =
∑n

i=1
Ei

r 

where n is the number of PTEs and EI
r is the ecological risk index 

factor, which is given as 

EI
r = Ti

r × PI 

Ti
r denotes the toxicity response coefficient of a specific PTE, 

(Hakanson, 1980)and PI represents the single pollution index. The 
toxicity response coefficients of the PTEs used were 30 (Cd), 10 (As), 5 
(Cu), 5(Pb), 2(Cr), 2(Zn), 2(Ni) and 1(Mn). The ER has five classifica-
tions: low risk (EI ≤ 40), moderate risk (40 < EI ≤ 80), considerable risk 
(80 < EI ≤ 160), high risk (160 < EI ≤ 320), and very high risk (EI ≥
320). The RI has four categories, namely, low risk (RI ≤ 150), moderate 
risk (150 < RI ≤ 300), considerable risk (300 < RI ≤ 600), or very high 
risk (RI > 600). 

2.6. Positive matrix factorization (PMF) 

The source distribution study was executed using a multivariate re-
ceptor model such as PMF (US-EPA PMF 5.0 software) (U.S. EPA, 2014). 
PMF is a receptor model developed to quantify chemical mass balance, 
and the data matrix (original) X is expressed in the following order m x 
n, which may be written as 

X = GF +E 

G (m × p) is a factor contribution matrix, F (p × n) is a factor profile 
matrix, and E (m × n) is a residual error matrix. E is given as 

eij =
∑p

k=1
gik fki − xij  

where i signifies elements 1 to m, j denotes elements 1 to n, and k rep-
resents the source from 1 to p. 

The PMF model acquires the contributions and profiles of the 
released factor by decreasing the objective function Q underneath the 
limitation of nonnegative contributors, and the solution in the US-EPA 
PMF software is approximated by the Multilinear Engine-2 (ME-2) 
(Paatero, 1999). 

Q =
∑n

i− 1

∑m

j− i

(
eij
/

uij
)2  

where uij is the uncertainty in the jth chemical element for sample i, and 
the authors previously discussed the uncertainty and the parameters 
involved (Agyeman et al., 2021). 

2.7. Ecological risk positive matrix factorization receptor model (ER- 
PMF) 

The traditional approach in estimating source apportionment using 
the PMF receptor model uses raw data acquired after laboratory analysis 
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to compute the source apportionment. The ER-PMF receptor model 
approach uses the calculated ER values of each PTE from every sampled 
point instead of the raw data to calculate the source contribution of each 
PTE. The receptor model ER-PMF is given as 

(
ERi

r

)

ij =
∑

Ti
r ×

(Cn)ij

(Bn)i  

where (ERi
r)ij is the computed ecological risk of each PTE from the jth 

source in the ith sampling location,(Cn)ij is the concentration of the 
single PTE in the soil in the jth source from the ith sampling site, (Bn)i is 
the concentration of the respective PTE under investigation of its 
geochemical background level and Ti

rrepresents the toxicity response. 

2.8. Geographical weighted regression (GWR) 

GWR is a deterministic model that is an extension of an ordinary least 
square regression. GWR in a modelling process always considers 
nonstationary but spatial predictor relationships and employs the 
varying spatial coefficient in a linear local model (Song et al., 2017). 
According to LI et al. (2020), the traditional regression approach cannot 
calculate the global variables with an elevated degree of precision 
because soil qualities fluctuate with environmental variability. To cap-
ture spatial variability, a GWR creates local variables as opposed to 
global ones, such as local R2, local coefficient and local model residual 
(Costa et al., 2018). Please see the supplementary materials for more 
information on the equation and the definition of the GWR parameters. 

2.9. Random forest 

The assemblage of varied regression trees and categorization is 
known as a random forest (RF). Breiman (2001) developed the method 
and claimed that it is comparable to accuracy in adaptive boosting. The 
computing ability of RF is faster, according to Gislason et al. (2006) and 
Heung et al. (2014). The RF’s variable handling capabilities are cate-
gorical and continuous. According to Díaz-Uriarte, Alvarez de Andrés 
(2006), RF does not require variable preselection, and due to its robust 
nature, it is capable of handling noise. Cutler et al. (2007) established 
that the algorithm starts with a number of tree samples (ntree) taken 
from the data sampled. The operation is changed so that the predictors 
(mtry) are randomly selected. Each ntree creates a regression tree, and 
the RF algorithm selects the utmost split between the variables sampled 
rather than all of them (Nawar and Mouazen, 2017). Please see the 
supplementary materials for more information on the application of the 
modeling approach random forest. 

2.10. Data partitioning 

A random data split approach was used to divide the data into a test 
dataset (with 25% for validation) and a training dataset (75% for cali-
bration). The training dataset was used to calibrate the regression 
models, while the test dataset was utilized to assess generalization ca-
pabilities (Kooistra et al., 2003). This was done to determine the suit-
ability of the various models used to estimate PTE source 
apportionment. All the models were subjected to a 10-fold 
cross-validation process that was repeated five times. Each receptor 
model’s factor contributions or scores were employed as predictors or 
explanatory variables (PTEs) to predict the target variables. R was used 
to carry out the modelling procedure. 

2.11. Validation and accuracy assessment 

A selection of validation standards was utilized to determine the 
most reliable model suitable for predicting source apportionment such 
as pollution evaluation-based positive matrix factorization receptor 
models and PMF to examine the validity of the receptor model and its 

validation. The receptor models were evaluated using the mean absolute 
error (MAE), root mean square error (RMSE), and R square, also known 
as the coefficient dedication (R2). R2 expresses the proportionate inter-
change in the response using the regression model. The model prediction 
capability is defined by the RMSE and the fluctuation dimension inside 
the independent dimension, whereas the MAE determines the true 
quantitative value. Please see the supplementary materials for more 
information on the equations for the validation and accuracy criteria. 

2.12. Data modelling techniques 

This study utilized random forest (RF), which has been identified as 
the most successful and dependable technique for prediction and soil 
mapping in soil science in the current era. Furthermore, Kebonye et al. 
(2021) and John et al. (2020) validated the effectiveness, dependability, 
and practicality of the MLA technique in soil science prediction and 
mapping. MLA is essentially an automated methodology that allows for 
the definition of a learning process based on the amount of data, 
allowing for multicollinearity and nonlinearity. Multicollinearity and 
nonlinearity, according to Gautam et al. (2011), help to avoid overfitting 
in the case of constrained soil sample positions. 

2.13. Data analysis 

PMF EPA 5.0 were used to conduct quantitative models (for source 
distribution estimation). Both principal component analysis and Pearson 
correlation matrix assessment were performed using RStudio. Modelling 
and spatial distribution maps of the PTEs were analyzed using ArcGIS 
version 10.2.1, and the ordinary kriging (OK) interpolation technique 
was employed. 

The OK interpolation technique allowed us to estimate the spatial 
distribution of PTEs in the location under investigation. Kriging is an 
interpolation that predicts values of variable at locations where data are 
not available based on the spatial pattern of the available data. 

Cokriging (CoK) is a geostatistical interpolation technique that em-
ploys a variety of variable forms in the prediction of a specific variable 
(John et al., 2021). Tziachris et al. (2019) stated that the explanatory 
variable must have a sturdy correlation with the response variable. 
Please see the supplementary material for more information on the 
equation and the application of OK and CoK. 

3. Results 

3.1. Sample descriptive statistics 

The statistical description of the PTE data is presented in Table 1, 
indicating the maximum and minimum PTE concentrations, median, 
mean, standard deviation, kurtosis, skewness, coefficient of variability 
and other average PTE values from a different country. The PTEs 
analyzed for this research are Cd, Cr, Cu, Mn, As, Ni, Pb, and Zn. The PTE 
mean values decrease in the order of Mn<Zn<Pb<Cr<Cu<Ni<As<Cd. 
The maximum and minimum values range between 7.28 mg/kg to 
1691.76 mg/kg and 0.16 mg/kg to 186.02 mg/kg, respectively. The 
kurtosis and skewness of the PTE estimated values also range between 
1.37 and 11.77 and 0.79–3.04, respectively. As evaluated by the stan-
dard deviation, the average value of variability in the dataset ranges 
from 1.01 to 259.35. The distribution of dataset points in series 
throughout the estimated means measured using the coefficient of 
variation (CV) also ranged from 33.01 to 92.96. The geochemical 
background from the world average value (WAV), upper continental 
crust (UCC), European average value (EAV) extracted from Kabata--
Pendias (2011) are also captured in Table 1. 
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4. Multivariate analysis 

4.1. Ecological risk correlation matrix (ER-CM) and ecological risk 
principal component analysis (ER-PCA) 

Table 2 indicates the metallic relationship of the following PTEs: 
ecological risk cadmium (ERCd), ecological risk arsenic (ERAs), 
ecological risk copper (ERCu), ecological risk chromium (ERCr), 
ecological risk nickel (ERNi), ecological risk manganese (ERMn), 
ecological risk lead (ERPb) and ecological risk zinc (ERZn). The esti-
mated ER-CM of the PTEs showed a high correlation between ERCd and 
ERAs, with r = 0.90. Other high correlation values were observed be-
tween ERCd and ERPb, ERCd and ERAs, ERZn and ERPb, and ERAs and 
ERPb, with r values = 0.85, 0.78, 0.83 and 0.75, respectively. However, 
some of the PTEs exhibited a moderate relationship with one another, 
such as ERAs and ERZn, as well as ERCu and ERNi, which both recorded 
r = 0.62 and 0.68, respectively. 

The whole dataset was analyzed using ecological risk-principal 
component analysis (ER-PCA). The ER-PCA discharged three principal 
components, accounting for 83% of the total cumulative explained 
variance captured in Table 3. The relationship between the ER-PTE 
values was very high, and therefore, the r-value was fixed at r = 0.75. 
The first component loadings (PC 1) were for the ER-PTE ERPb, ERZn, 
ERAs, and ERCd, with r values ranging from 0.81 to 0.92 (see Table 3). 
PC 2 loadings produced ERNi and ERCu as the dominant ER-PTEs, ac-
counting for 23% of the explained variance with corresponding r values 
= 0.92 and 0.86, respectively. The final PC loadings (PC3) also 
explained 19% of the variance, accounting for r values r = 0.78 for 
ERMn and r = 0.87 for ERCr. 

The computation of the source distribution in soil has gained popu-
larity within the field of soil science and EPA. PMF is one of the useful 
multivariate statistical software programs used to estimate the source 
apportionment of most areas. Considerable research, including Chen 
et al. (2015), Tao et al. (2017), Agyeman et al. (2021) and Hossain 
Bhuiyan et al. (2021b), has applied this tool in source analysis to 
determine the contribution of PTEs in soil. To control the residual ma-
trix, it was necessary to reduce the minimum Q value to enhance ac-
curacy and assurance. The system ran 20 times and run 3 was the 
relevant factor selected for the factors loading discharged. Three factors 

were released for both receptor models (ER-PMF and PMF), indicating 
the various percentage contributions or the PTE percentage contribu-
tions ascertained in the source distribution analyses. For PTEs to prevail 
over a factor, a minimum of 44.5% or higher percentage contribution 
must be attained to be selected as a dominant element. Factor 1 was 
dominated by Cu (64.6%) and Ni (71.1%) for the ER-PMF receptor 
model and by As (77.5%) and Cd (44.7%) for the PMF receptor model 
(see Table 4). Factor 2 was highly influenced by Cr (66.20%) and Mn 

Table 1 
The statistical description of the PTEs.   

Mn Ni Pb Zn As Cd Cr Cu 

Standard Deviation  259.35  6.78  18.51  34.35  4.95  1.01  9.38  9.98 
Kurtosis  1.37  2.49  18.80  7.32  11.77  10.45  2.69  4.90 
Skewness  0.79  1.63  3.67  2.11  3.04  2.84  1.33  2.04 
Minimum (mg/kg)  186.02  4.86  9.56  37.48  1.85  0.61  10.90  7.88 
Maximum (mg/kg)  1691.76  42.39  155.69  272.18  30.42  7.28  62.78  62.62 
Median (mg/kg)  664.39  13.75  30.10  75.47  4.57  1.61  26.90  19.68 
CV  37.10  41.97  54.68  40.31  92.96  55.16  33.01  44.27 
Mean values (mg/kg)  699.03  16.15  33.86  85.22  5.32  1.84  28.43  22.54 
a UCC(mg/kg)  900.00  20.00  15.00  70.00  1.80  0.10  100.00  17.30 
b WAV (mg/kg)  488.00  29.00  27.00  70.00  6.83  0.41  59.50  38.90 
c EAV (mg/kg)  524.00  37.00  32.00  68.10  11.60  0.28  94.80  17.30 

Kabata-Pendias (2011) abc, CV (Coefficient of variation) 

Table 2 
Ecological risk correlation matrix.   

ERMn ERNi ERPb ERZn ERAs ERCd ERCr ERCu 

ERMn  1.00               
ERNi  0.24  1.00             
ERPb  0.42  0.21  1.00           
ERZn  0.38  0.45  0.83  1.00         
ERAs  0.38  0.07  0.75  0.62  1.00       
ERCd  0.43  0.30  0.85  0.78  0.90  1.00     
ERCr  0.49  0.27  0.28  0.27  0.25  0.34  1.00   
ERCu  0.40  0.69  0.35  0.44  0.16  0.31  0.29  1.00  

Table 3 
Correlation between the ER-PTE (ecological risk-potential toxic element) values.  

ER for PTEs PC 1 PC 2 PC 3 

ERMn  0.29  0.17  0.78 
ERNi  0.10  0.92  0.10 
ERPb  0.90  0.16  0.17 
ERZn  0.81  0.41  0.10 
ERAs  0.91  -0.08  0.19 
ERCd  0.92  0.15  0.22 
ERCr  0.11  0.14  0.87 
ERCu  0.16  0.86  0.24 
Eigenvalues  3.29  1.85  1.54 
% Variance explained  41.00  23.00  19.00 
Cumulative % total      83.00 

Source apportionment 

Table 4 
The source percentage contribution for each factor loading of the ER-PMF re-
ceptor model.   

F1% F2% F3%  F1% F2% F3%  

ER-PMF  PMF 

As  24.30    75.70   77.50  7.70  14.90 
Cd  29.10  25.10  45.90   44.70  30.70  24.60 
Cr  13.00  66.20  20.80   1.10  43.90  55.00 
Cu  64.60  32.40  2.90   20.40  72.60  7.00 
Mn  0.10  71.40  28.50   0.20  34.30  65.60 
Ni  71.10  28.90  0.10   22.10  76.60  1.30 
Pb  19.80  32.80  47.40   39.10  26.70  34.20 
Zn  36.50  28.40  32.10   36.10  43.80  20.10  
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(71.40%) in the ER-PMF receptor model, and Cu (72.6%) and Ni 
(76.6%) likewise dictated factor 2 in the PMF receptor model. The final 
factor (factor 3) in the ER-PMF receptor model was monopolized by As 
(75.7%), Cd (45.9%) and Pb (47.4%), and similarly, in the PMF receptor 
model, Cr (55%) and Mn (65.6%) predominated factor 3. 

4.2. Pollution indices assessment 

The estimated single pollution index showed varying pollution levels 
for each PTE (see Table S1). Unlike Cd, which exhibited pollution levels 
at all sample locations, Mn, Cr, Ni, Pb, Zn, Cu, and As showed some 
pollution levels at some locations. Of the (115) samples analyzed, 76 
samples exhibited low concentrations for Mn, 9 for Ni, 63 for Pb and Zn, 
24 for As, 3 for Cd, 2 for Cr and 7 for Cu. However, some of the samples 
reported moderate levels of pollution, such as Mn (16), Pb (4), Zn (7), As 
(2) and Cd (26). Cadmium displayed high and very high levels of 
contamination at 56 and 30 locations, respectively. Similarly, Mn, Pb, 
Zn and As also showed a high pollution level at a single sampled spot. 
Arsenic displayed a very high-level pollution level for 3 sampled sites, 
similar to Pb at a sampled location. 

4.3. Potential ecological risk index 

The estimated potential ecological risk index of PTEs investigated by 
ERs and RIs is shown in supplementary table S2. Most of the PTEs 
investigated, such as Mn, Ni, Pb, Zn, Cr, and Cu, exhibited a slight 
ecological risk entirely in the study area. Cadmium, on the other hand, 
posed a moderate to extremely high ecological risk, with 15 locations 
posing a moderate ecological risk, 77 posing a high ecological risk, 19 
posing a relatively high ecological risk, and 4 posing an extremely high 
ecological risk. The risk level of the study area computed revealed that 
64 of the locations had a slight risk level, while 44 of the locations had a 
moderate risk level. In addition, 6 of the total sampled locations also 
displayed high risk-prone areas, while a sampled location also fell within 
a quite strong risk location. 

4.4. Spatial analysis 

The spatial distribution of some of the PTEs showed the same dis-
tribution patterns. These were As and Cd, as well as Pb and Zn (see  
Fig. 2). The northeastern and southwestern parts of the spatial distri-
bution map exhibited high levels of As and Cd, while the northwestern 
and southwestern parts indicated deficient levels of As and Cd. Simi-
larly, Pb and Zn also displayed hotspots in the northeastern and south-
western parts of the map, with a moderate spatial pollution distribution 
level in the southwestern and northwestern parts of the map. The other 
PTEs, such as Cr, Cu, and Ni, showed similar hotspots in the northeastern 
part of the map and exhibited hotspots in the northwestern part of the 
map. Manganese, chromium and copper also displayed hotspots in the 
southwestern part of the map. 

5. Discussion 

5.1. Sample descriptive statistics 

The concentration of PTEs under investigation compared to the same 
UCC PTEs in Table 1 suggested that Cu, Cd, As, Pb and Zn of the current 
studies were higher than the respective UCC PTEs. Similarly, the mean 
concentrations of Mn, Pb, Zn, and Cd from the WAV and EAV reported 
by Kabata-Pendias (2011) are found to be lower when compared to the 
mean concentrations of the respective PTEs in the current study. 
Comparing the mean values to the local background values of the 
following PTEs: Cd (0.2 mg/kg), ZN (80 mg/kg) and Mn (545 mg/kg) 
reported by Němeček, & Podlesakova (1992) suggests that their mean 
concentration is lower than the current respective PTEs in the current 
study. However, the following PTEs: As (10 mg/kg), Cr (70 mg/kg), Cu 

(25 mg/kg), Ni (30 mg/kg), and Pb (50 mg/kg) mean of concentrations 
of the background values reported Němeček, & Podlesakova, (1992) 
were found to be higher than the respective PTEs in the current study. 
Gholizadeh et al. (2015), reported the mean concentration of the PTEs 
such as Cu, Mn, Cd, Pb and Zn in six study areas including Pokrok [Cu 
13.76 mg/kg, Mn 599.40 mg/kg, Cd 0.27 mg/kg, Pb 18.43 mg/kg and 
Zn 25.26 mg/kg], Radovesice [Cu 14.20 mg/kg, Mn 541.30 mg/kg, Cd 
0.17 mg/kg, Pb 13.70 mg/kg and Zn 21.98 mg/kg], Březno [Cu 
14.37 mg/kg, Mn 680.90 mg/kg, Cd 0.16 mg/kg, Pb 14.17 mg/kg and 
41.50 Zn mg/kg], Merkur [Cu 12.22 mg/kg, 590.00 Mn mg/kg, Cd 
0.16 mg/kg, Pb 17.53 mg/kg and Zn 13.56 mg/kg], Pruné řov [Cu 
15.81 mg/kg, Mn 552.60 mg/kg, Cd 0.11 mg/kg, Pb 14.38 mg/kg and 
26.83 Zn mg/kg] and Tumerity [Cu 15.03 mg/kg, Mn 753.10 mg/kg, Cd 
0.12 mg/kg, Pb 12.25 mg/kg and Zn 25.61 mg/kg] proximate to mining 
industries compared to the mean concentration of the respective PTEs in 
the current study, which suggested that the PTEs’ mean concentrations 
in the current study are higher, except for Mn (Tumerity). Similarly, 
Weissmannová et al. (2019) reported the total median concentration of 
Mn (1370.92 mg/kg), Pb (37.71 mg/kg), Zn (204.56 mg/kg), Cd 
(0.21 mg/kg), Cr (21.11 mg/kg), and Cu (17.46 mg/kg) in industrial 
affected soils by coal mining and metallurgy in Ostrava, located in the 
Moravia–Silesian Region of the Czech Republic closer to the current 
study area, and comparing their total median concentration to the cur-
rent study area suggests that Cd, Cr, and Cu of the current study area are 
higher. 

The distribution of the data skewness varied considerably due to the 
difference in the data values analyzed from each sampled location. The 
skewness of the data distribution revealed that, apart from Mn, all the 
calculated skewness values were greater than + 1. According to Chan-
drasekaran et al. (2015), if the skew value is greater than + 1, it can be 
concluded that the distribution is irregular. The data being analyzed is 
very anomalous, skewed in the right direction, and leptokurtic. The 
calculated standard deviation values indicated that the SD values were 
higher due to the high concentration of PTEs with high variable het-
erogeneity in the study area. The coefficient of variation (CV) showed 
the degree of heterogeneity in PTE concentrations in the soil. Therefore, 
if the CV is ≤ 20%, it is inferred to be low variability, 21%<CV ≤ 50% is 
said to be moderate variability, 50% <CV ≤ 100% indicates high vari-
ability, and if the CV is greater than 100%, it is thus considered to be 
exceptional variability. The CV of the PTEs in the study area indicated 
that Mn, Cr, Ni, Cu and Zn had accrued 37.10%, 33.01%, 41.97%, 
44.27% and 40.31%, respectively. This suggests that Mn, Cr, Ni, Cu, and 
Zn have a moderately varied distribution, and hence a relatively ho-
mogeneous distribution. However, Pb, Cd and As showed high vari-
ability, with CV values of 54.68%, 55.16% and 92.96%, respectively. 
These results clarified that Pb, Cd and As are nonhomogeneous and that 
their pollution is motivated by anthropogenic activities in the study 
area. 

5.2. Multivariate analysis 

The relationship between the ER-PTEs suggested a nexus between 
the elements, which indicates that the elements are highly related and 
might share a close source. ER-PTEs with r = 0.75 or higher, such as 
ERPb and ERZn, share a more significant relationship and pose a higher 
metallic connection. On the other hand, ER-PTEs with 
r = 0.50–0.75 share a relatively moderate association, and their 
metallic connections are moderately bonded. 

The source of the PTEs was established using the estimated ER 
values, and the results indicated that ERPb, ERZn, ERCd, and ERAs from 
PC1 were largely anthropogenic origins. The PC1 clustered PTEs may 
share the same or similar pattern of occurrence in the environment. 
Their elevation beyond the standard threshold may be due to vehicle 
traffic, industrial activities, atmospheric deposition, intensive farming, 
and urbanization. However, the results also explained that PC2 and PC3 
ER-PTEs, such as ERMn, ERCu, ERNi and ERCr, are principally geogenic 
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Fig. 2. Spatial distributions of PTEs using ordinary kriging interpolation.  
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elements. This is consistent with Borůvka et al. (2005) report that the 
positively associated PTEs within the same PC and their projected angle 
reveal their source of occurrence. The elevation in concentrations of 
PTEs from geogenic origin, compared to UCC, WAV, and EAV (see 
Table 1), might be due to a boost in anthropogenic activities. Forty 
percent of the land in the study area is engaged in intensive farming, and 
the district is home to the metal and steel industries. These human ac-
tivities pose an ecological threat to the environment. The ensemble in 
PC2, whose primary source shows that the environment is primarily 
natural rather than anthropogenic, also implies that anthropogenic ac-
tivities significantly support Ni and Cu. This is congruent with other 
studies confirming that agricultural soil has been improved by Ni-based 
fertilizers and Cu-based fertilizers (Harasim, Filipek, 2015a, 2015b; 
Agyeman et al., 2021). Other tenants, such as industrial activities, may 
also provide a boost (Harasim, Filipek, 2015a, 2015b). Clusters in PC 3 
further suggested that the excess Mn and Cr in environmental soil have a 
geogenic origin and may be exacerbated by Mn and Cr buildup above the 
usual ecological threshold due to the steel industry and agriculture ac-
tivities (Keshavarzi and Kumar, 2020). 

5.3. Source distribution by receptor models 

Factor 1 loadings in ER-PMF were dominated by Cu and Ni, con-
trolling 51.89% of the total share of factor 1 loadings in ER-PMF, 
whereas in PMF it was predominated by As and Cd, controlling 
50.66% of the total share of factor 1 loadings in PMF (See Figs. 3 and 6). 
The primary sources of Ni and Cu in the ER-PMF receptor model of factor 
1 might be attributable to geological sources rather than anthropogenic 
sources, as supported by PCA analysis. The source of As and Cd in factor 
1 of the PMF receptor model is attributable primarily to an anthropo-
genic source. Even though Ni and Cu of factor 1 loading of ER-PMF are 
more from geogenic sources, the spatial distribution map of Ni and Cu in 
Fig. 2 highlights hotspots in the southwestern and northwestern areas of 
the map that are active farmlands, implying that the anthropogenic 
source is augmenting the geogenic source. Furthermore, Huang et al. 
(2021) reported that the geographical empirical analysis performed can 
explicitly show local conditions during research, which is thought to be 
a highly efficient approach to determining pollution hotspots and 
investigating pollution sources. Literature has shown that Ni is primarily 
of geogenic origin (Antić-Mladenović et al., 2011; Hseu et al., 2017; Li, 
Öztürk and Dengiz et al., 2020, 2020). Their elevation in the study area 
suggests that anthropogenic activities such as nickel-based fertilizer for 
agriculture. Copper is regarded as one of the seven micronutrients 
required for plant growth, and 5–30 mg kg1 of Cu in crop tissues is 
generally considered adequate (Adriano, 2005). Cu has been widely 

used as a fungicide, particularly in vineyards, for many decades (Bal-
labio et al., 2018). On the other hand, the sources of As and Cd in factor 1 
of the PMF receptor model are attributable to anthropogenic sources, 
which is confirmed by the PCA analysis in this study. The spatial dis-
tribution of As and Cd in the study area exhibits hotspots in the north-
eastern and southeastern areas of the map where there are active 
agricultural activities and the presence of steel and metal industries. 
Arsenic’s inclusion in animal feed and its application in agro-related 
products such as fertilizer, insecticides, herbicides, and fungicides ac-
count for its elevation in the soil study area. When combined with other 
PTEs, such as Zn, arsenic is an agronomically related and potent pair of 
elements that can be primarily found in agricultural products such as 
pesticides, farmyard manure, and fertilizers. Yang et al. (2017), Liang 
et al. (2017) and Hu and Cheng (2013) reported that PTEs such as As 
contribute significantly to soil pollution through the use of agro-based 
fertilizers, for instance, phosphate fertilizers and ammonium phos-
phate fertilizers, which lead to the elevation of As. Cadmium and arsenic 
are correlated due to their existence in chemical fertilizers such as 
phosphate fertilizers. This is consistent with reports made by Robertsa 
(2014), Corguinha et al. (2015), and Wang et al. (2016) confirming that 
phosphate fertilizers contain PTEs such as As and Cd. In addition, 
Mamut et al. (2018) and Shao et al. (2016) likewise posited that Cd 
enrichment in the soil might be primarily attributed to the use of fer-
tilizers and pesticides to enhance crop productivity. The current results 
of this study are corroborated by Fei et al. (2019) report, emphasizing 
that excessive Cd concentrations in Shanghai agricultural soils should be 
attributed to Cd-rich agro-related practices. 

Factor 2 of the ER-PMF receptor model was highly influenced by Cr 
and Mn, controlling 52.62% of the total share of the factor 2 loadings in 
ER-PMF as presented in Fig. 3, whereas in the PMF it was dictated by Cu 
and Ni, accruing 44.37% of the total share of factor 2 loadings in PMF. 
The source of Cr and Mn in the study area is primarily from geogenic 
sources, which is supported by the PCA analysis in this study. However, 
the spatial distribution of Mn and Cr on the map (Fig. 2) highlights 
hotspots in the southwestern and northwestern areas of the map. Human 
activities within the community foretell the involvement of associated 
anthropogenic activities that enhance the geogenic source of the PTEs to 
exceed the allowed level. Lv and Wang (2018), Gao and Wang (2018) 
and Cui et al. (2018) acknowledged that the Cr and Mn sources of 
occurrence are primarily natural sources. Similarly, studies by Men et al. 
(2018),Chen et al. (2018a), Lv (2019), and Ma et al. (2018) have also 
confirmed the same results but further added that the excesses of Cr and 
Mn in the soil beyond the tolerable limits may be due to human activities 
augmenting the geogenic source, especially in agro-based communities 
and industrial-based environs. Chromium elevation in some areas in the Fig. 3. Percentage proportion of each factor in each PTE of the ER-PMF re-

ceptor model. 

Fig. 4. Percentage proportion of each factor in each PTE of the PMF recep-
tor model. 
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Fig. 5. Taylor’s diagram comparing receptor model performance. The semicircles in red on axis x indicate the root mean square error values. The − 900 curves 
moving from the y-axis to the x-axis denote the standard deviation values. The straight green line originating from the origin is the Pearson correlation value, and 
Ref= 1 is the reference value. 

Fig. 6. Spatial prediction of receptor model factor contributions.  

P.C. Agyeman et al.                                                                                                                                                                                                                            



Process Safety and Environmental Protection 164 (2022) 729–746

739

study areas (southwestern and the northwestern regions of the map) 
may result from a collaborative effort between a geogenic origin and 
anthropogenic sources such as active farming in the study area. Cr levels 
have risen in recent decades due to crop intensification, excessive use of 
pesticides and fertilizers, and agronomical reuse of treated wastes and 
byproducts of industrial activities (Gattullo et al., 2020). 
Zeremski-Škorić et al. (2010) reported that the occurrence of Cr has been 
detected in fertilizers used, particularly organic composts and phosphate 
fertilizers. Manganese, on the other hand, is a good metal utilized in the 
steel industry to manufacture ferromanganese steel. Mn elevation in the 
soil may be attributed to the steel industry in the study area. 

Factor 3 of the ER-PMF receptor model was dominated by As, Pb, and 
Cd, accounting for 61.63% share of factor 3 loadings in ER-PMF, 
whereas Cu and Ni dominated in PMF, accounting for 44.37% share of 
factor 3 loadings in PMF. The sources of pollution of As, Pb, and Cd in 
factor 3 of ER-PMF are primarily anthropogenic, whereas the Cu and Ni 
factors 3 of PMF are more geogenic, as confirmed by the PCA analysis 
estimated and the spatial distribution map of the hotspots highlighted on 
the maps. The high level of Pd in the soil may be attributed to an anti-
knock agent; vehicle tires, vehicle exhaust fumes, and chimneys account 
for a high concentration of Pb in some parts of the study area. Chalking, 
leaded paints, industrial smelting, alloying, and scraping are other fac-
tors contributing to Pb pollution in the soil. Gan et al. (2018) and Jin 
et al. (2019) reported that vehicular traffic, antiknock agents, car tires, 
break wear, and other vehicle-based processes are responsible for 
increasing the concentration of Pb in the soil in most communities. 
Furthermore, Li et al. (2013) iterated that pollution might originate from 
leaded gasoline usage. The sources of the other PTEs identified in factor 
3 loading have already been discussed in the previous sections. 

5.4. Model performance and spatial distribution of factors 

The receptor models were subjected to accuracy and validation 
assessment via a machine learning algorithm (random forest). Both were 
cross validated using the coefficient of determination (R2), root mean 
square error (RMSE) and mean absolute error (MAE). The assessment 
was performed on the PTE understudy whose source apportionment was 
duly estimated using ER-PMF and PMF approaches. The computed R2 for 
the PTEs from both models demonstrated that the ER-PMF model had a 
more significant percentage accuracy level for more PTEs than the PMF 
model (see Table 5). Of the 8 PTEs assessed, 5 (As, Cd, Ni, Pb and Zn) of 
the PTEs obtained a higher accuracy level (R2) in the ER-PMF approach 
than in the PMF approach. According to Li et al. (2016), John et al. 
(2020) and Kebonye et al. (2021), the closer the R2 value is to 1, the 
better the prediction accuracy. Molinaro et al. (2005) outlined that the 
critical process in presenting results is determining the error rate or 
generalizability of the chosen model. Therefore, the marginal error of 
the receptor model approaches was also computed alongside the accu-
racy assessment level. The RMSE of both receptor model approaches 
showed that the ER-PMF calculated errors were far lower than those of 
PMF. The error level for six of the eight PTEs (Cr, Cu, Mn, Ni, Pb, and Zn) 
out of the ER-PMF receptor model was significantly reduced (see 
Table 5). The overall average of R2, RMSE, and MAE values estimated 
for the receptor models revealed that ER-PMF had a high R2 average 

(0.938) with a low RMSE (2.634) and MAE average (1.559), whereas 
PMF had a high R2 average (0.936) with a higher RMSE (13.116) and 
MAE average (8.208). This means that in source apportionment, 
ER-PMF can identify sources with greater accuracy and less error than 
PMF. 

Similarly, the computed MAE error level corroborated similar results 
as the RMSE and revealed that the closer the RMSE and MAE computed 
error was to zero, the better the model approach. As a result, the cu-
mulative performance of the receptor models (R2, RMSE, and MAE) 
revealed that the ER-PMF approach outperforms the parent receptor 
model (PMF) in source apportionment estimation. Guan et al. (2019) 
compared three receptor models (PMF, UNMIX and grouped principal 
component analysis/absolute principal component scores 
(GPCA/APCS)) and based on the estimated R2 values; the authors 
concluded that the GPCA/APCS receptor model was optimal. Similarly, 
Salim et al. (2019) compared PCA-MLR and PMF, and the authors used 
R2 to determine the receptor model that is more reliable with high model 
efficiency; PMF was found to be optimal. Additionally, Salim et al. 
(2019) applied the Nash-Sutcliffe efficiency and quantified the per-
centage error, which has been previously used by Moriasi et al. (2007) 
and Yang et al. (2013b), to ascertain the receptor model with minimal 
percentage error while simultaneously optimizing efficiency. In this 
study, instead of the Nash-Sutcliffe efficiency, we applied R2, RMSE and 
MAE, which are also widely utilized to determine model efficiency and 
error margin in modelling approaches or statistical evaluation. In a 
different case, Huang et al., (2018c) applied a modified receptor model 
to compute PTEs in the soil. The author outlined that principal 
component analysis-multiple linear regression with distance 
(PCA-MLRD) compared to PMF and APCS-MLR showed that PCA-MLRD 
was optimal. This suggests that the hybridization of the existing receptor 
model tends to yield better results, as similarly performed in this recent 
study. Furthermore, hybridizing PMF with pollution assessment indices 
(ecological risk) improves source apportionment efficiency while 
significantly reducing errors. 

The receptor models were further subjected to additional perfor-
mance assessment through the Taylor diagram (see Fig. 5) (Taylor, 
2005). We have two variables in different colors on the Taylors diagram, 
red representing the ER-PMF receptor model and blue representing the 
PMF receptor model. Both receptor models have the same variables: the 
PTEs inscribed in the diagram with unique symbols but differentiated by 
color in the diagrammatic representation. The results presented in the 
Taylor diagram suggested that all the receptor models yielded equiva-
lent values of normalized standard deviation spanning between 0.75 and 
1. Furthermore, the results showed the ratio of the standard model de-
viation to the standard reference value deviation. Based on the Taylors 
diagram, it can be interpreted that out of the 8 PTE variables assessed for 
both models, the hybridized receptor model that is ER-PMF is optimal. 
Five (Cu, Pb, As, Cd and Ni) out of the 8 PTEs from the ER-PMF receptor 
model showed superior performance against similar PTEs from the PMF 
receptor model. However, Zn assessment was nuetral for both models. 
The cumulative performance of both receptor models from the Taylor 
diagram indicates the higher efficiency of the hybrid receptor model 
ER-PMF to the parent model PMF. 

The spatial distribution map of the factor scores of both receptor 

Table 5 
Performance of the receptor models.   

As Cd Cr Cu  

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

ER_PMF 0.961 1.596 0.771 0.963 17.344 10.388 0.872 0.128 0.085 0.910 0.447 0.279 
PMF 0.948 1.27 0.594 0.958 0.246 0.145 0.883 3.599 2.35 0.918 3.413 2.164  

Mn Ni Pb Zn  
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

ER_PMF 0.918 0.174 0.115 0.970 0.22 0.152 0.967 0.872 0.502 0.943 0.292 0.181 
PMF 0.932 79.003 49.925 0.960 1.59 1.074 0.947 5.305 2.645 0.941 10.498 6.765  
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model approaches was mapped using ordinary kriging interpolation, as 
represented in Fig. 6. Factor 1 for the ER-PMF approach showed hotspots 
in the northwestern and northeastern spatial distribution maps. This 
result suggests that vigorous agricultural activities and industrial ac-
tivities complementing the geogenic sources that pollute the soil in the 
study area. The PMF factor 1 spatial distribution map hotspot was 
envisaged at the northeastern and southeastern parts of the map. This 
will be attributed to the steel plant and agricultural activities in the 
southeastern part of the study area. The steel plant is located between 
the northeastern and eastern parts of the study area map. The factor 2 
spatial distribution map of both receptor models was visualized within 
the northwestern and southwestern parts of the map. Both maps dis-
played hotspots with ER-PMF factors showing high hotspots in the 
southwestern area and moderate hotspots on the northwestern side. 
Nevertheless, PMF factor 2 showed a dotted hotspot in both the north-
western and southeastern parts of the map. The factor 3 spatial distri-
bution map of the ER-PMF receptor model shares a similar hotspot with 
the factor 1 PMF spatial distribution due to the similar elements domi-
nating the factor loadings (As and Cd). This implies that factor 1 of PMF 
and factor 3 of ER-PMF are anthropogenically oriented elements, vali-
dating that those continual human activities in the study area pollute the 
soil. Factor 3 of the PMF approach hotspots can be seen in small portions 
of the southwestern and southeastern spatial distribution maps. Hotpots 
can be attributed to multiple sources, such as the steel industry, atmo-
spheric deposition, and agronomic practices (that is, the application of 
agrochemicals). 

5.5. Potential ecological risk index 

The potential ecological risk estimated based on Hakanson theory 
suggested that the study area’s ecological risk level was minimal for all 
PTEs (Mn, Ni, Pb, Zn, Cr, Cu) except As and Cd. Even though the envi-
ronment appears to be primarily a moderately risky area, a few sampled 
locations indicated a moderate level of environmental risk (As). Cad-
mium ecological risk assessment revealed that communities within the 
study area’s enclave are at risk of Cd intake by ingestion, dermal 
ingestion, or inhalation. Much literature on the health risk of Cd to 
humans, flora, and fauna has indicated devastating repercussions on 
humans, whether ingested, dermal or inhaled. An array of literature on 
potential carcinogenic- and noncarcinogenic-related diseases, as well as 
ecological threats posed by Cd, are captured copiously by Åkesson et al. 
(2014), Wang et al. (2015), Wu et al. (2016), Yu et al. (2017), Satarug 
et al. (2017b), Satarug et al. (2017a) and Qasemi et al. (2019). The risk 
index (RI) assessment found that the toxicity level for such locations is 
high in the northeastern and southeastern parts of the RI kriging spatial 

distribution map (Fig. 7). The northeastern region of the map is home to 
a variety of industries, including the steel industry. In contrast, the 
southwestern hotspot may be attributed primarily to agricultural prac-
tices prevalent in the communities. Chen et al. (2018b) reclassified the 
RI grading standard, stating that if RI< 70, it denotes slight risk, 70 <RI 
≤ 140 moderate risk, 140 <RI ≤ 280 strong risks, 280 <RI ≤ 560 quite 
strong and RI greater than 560 signifies extreme risk level. When the 
Chen et al. (2018) classification for RI is compared to the Hakanson 
(1980) classification, if Chen’s classification is applied, the toxicity level 
of the study area is higher. Thus, the hotspots range from moderate to 
extremely risk-prone environments based on Chen’s classification, i.e., 
risk level = 113 observed locations out of 115, or 98.26%, and based on 
Hankason’s classification, i.e., risk level = 51 observed locations out of 
115, or 44.35%. 

5.6. Spatial analysis 

The spatial distribution analysis of PTEs in urban and peri-urban 
areas of the study area identified some hotspots of PTEs in some areas, 
suggesting elevated PTEs in some parts of the spatial distribution map. 
Reimann (2005) and Reimann et al. (2008) proposed that creating a 
geochemical spatial distribution map is a very valuable tool that helps to 
extrapolate much information from the area. The spatial distribution 
maps (Fig. 2) indicated that As and Cd share the same distribution 
pattern with hotspots in the northeastern and southeastern maps. The 
steel and metal industries are located within the northeastern part of the 
study area, with moderate farming activity within that enclave. The 
land-use type visible in the southeastern part of the hotspot area is 
essentially agricultural land. Their hotspots in the northeastern and 
southeastern parts of the spatial distribution map might be due to the 
steel industry and agriculture. Cd’s anticorrosive nature makes it easier 
to use as a coating agent for steel, brass, iron, and aluminum. According 
to Lambert et al. (2011), steel industries are significant sources of 
pollution to soils due to production activities such as scrap metal melting 
of metalloids in a furnace to determine which iron is recycled, and the 
pollution may linger in the soil for a while even if the steel industry is 
closed. Chromium, copper, manganese, and nickel shared relatively 
similar spatial distribution patterns at some sampled locations. Hotspots 
were exhibited by Cr, Cu and Ni in the northeastern and northwestern 
parts of the spatial distribution map (see Fig. 2). The steel industry and 
metal works are located in the northeastern part of the study area, which 
might be responsible for the elevation of the PTEs beyond the standard 
threshold. These PTEs (Cr, Cu and Ni) are very useful in the steel in-
dustry because of their alloy formative abilities and mechanical prop-
erties for steel, providing an anticorrosive property that keeps the metal 
impervious to corrosion (Satyendra, 2014a; Satyendra, 2014b; Blog, 
2020). 

On the other hand, the hotspot envisaged on the northeastern part of 
the PTEs (Cr, Cu and Ni) can be attributed to anthropogenic assistance 
such as atmospheric deposition and intensive agro-related activities in 
the area. This is consistent with a study carried out by Huang et al. 
(2019) reporting that anthropogenic sources such as fertilizers, atmo-
spheric deposition, fungicides, the proximity of agricultural sites near 
industrial activities, sewage irrigation and plastic films can elevate the 
concentration of PTEs in soil. Zinc and lead also showed the same spatial 
distribution pattern and hotspots in the northeastern and southeastern 
map parts. This result might be ascribed to the vehicular traffic, steel 
industry, atmospheric deposition, and agricultural production in the 
southeastern area. Phosphatic fertilizers applied to the soil uninten-
tionally potentially add Pb to the soil. However, manures and biosolids 
from livestock manure and compost applied to urban and peri-urban 
land or soil increase the concentration of PTEs such as Pb and Zn 
(Basta et al., 2005). Metal smelting in steel industries accounts for an 
extensive upsurge in Pb and Zn levels in the soil that is injurious to the 
health of the ecology (Wuana and Okieimen, 2014). 

The selection of the best fitted variogram models for the spatial Fig. 7. Spatial distribution of risk index (RI) values using ordinary kriging.  
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prediction of the PTEs using ordinary kriging is presented in supple-
mentary material Table S 5. The spatial dependence of the PTEs in the 
study was determined by assessing semivariance, which depicted the 
estimated index that was predicted with a spherical semivariance 
method with nugget effects. The nugget sill ratio was calculated using 
the Cambardella et al. (1994) criteria for spatial dependency. According 
to the criteria reported by Cambardella et al. (1994) a nugget sill ratio of 
25% indicates that spatial prediction exhibited strong spatial depen-
dence. However, if the ratio is between 25% and 75%, it implies a 
moderate spatial dependence, and when the ratio is above 75%, it 
suggests a weak or poor spatial dependence. The spatial dependency of 
the nugget to sill ratio (C0/C0 þ C) was expressed in percentiles. Based 
on the estimated nugget to sill ratio, it was clear that the PTEs As (0.00), 
Cd (0.00), Cu (0.00), and Pb (2.29) had strong spatial dependence. Other 
PTEs, such as Cr (28.71), Mn (70.01), Ni (54.51), and Zn (36.37), on the 
other hand, exhibited moderate spatial dependence. 

5.7. Uncertainty analysis 

The effectiveness of the receptor models was subsequently evaluated 
by calculating the uncertainty of the receptor models in the source 
distribution and risk assessment. To validate the uncertainty evaluation 
of the receptor model results, Table S3 shows the base model displace-
ment technique and the bootstrap base model approach. The depend-
ability and resilience of the receptor models were emphasized in the 
precision of the results; however, displacement (Disp) was judged to be a 
crucial step for the screening solution. The rationale of the models was 
that the frequency of swaps factors depending on the model solution 
remained inversely proportional to the degree of swaps factors depen-
dent on the model solution (Brown et al., 2015). The DISP swap results 
per receptor model in the present study were 0.05–0.07 for ER-PMF, 
while the PMF of the receptor models had modest swaps ranging from 
0.03 to 0.06 (See Table S4). The DISP swap performance in the ER-PMF 
was well characterized with negligible data inaccuracies, while the other 
receptor model (PMF) efficiency was normal. Regardless, a swap ap-
pears to provide conditional random defects, well-defined receptor 
model solutions, and a prospective rotational uncertainty that might or 
may not show up in model performance (Paatero et al., 2014). The 
calculated DISP results were appropriate because of the lesser percent-
age change (i.e., less than 1) in the Q (DISP percent dQ, see Table S 4), 
which is compatible with Brown et al. (2015); Wu et al. (2020); and 
Wang et al. (2019, 2021) report. 

The bootstrap technique used in the current work was set to 100 
iterations, with factor loading BS mappings of 100% for all receptor 
models (See Table S4). This signifies that in this study, the receptor 
models’ reliability in delivering ideal results per factor loading was 
100% per receptor model. The heterogeneity of the source species 
contributions and the box plot of the factors at each receptor model 
primarily focused on the DISP and the BS assessment are shown in 
Figures S 1–3. The relevance of the source profile ambiguity retrieved 
from the model run indicates the receptor model’s box plot’s coherence. 
In certain aspects, the base run values for PTE concentrations from the 
receptor models were beyond the interquartile range. For instance, in 
the ER-PMF receptor model, Mn, Ni, As, and Cr were discovered outside 
the interquartile range in factor 1, Mn, Zn, Pb, and Cr were found outside 
the interquartile range in factor 2, and Mn, Ni, Zn, As Cr and Cu were 
found outside the interquartile range in factor 3 (see Figs. S4–6). 
However, the following PTEs were discovered outside the interquartile 
range in the PMF receptor model: Ni, Pb, Zn, As, Cu, Cr, and Cd for factor 
1, Zn for factor 2, and Cr, Zn, and Pb for factor 3. Considering the BS’s 
influence on the observation and the concentration error computation 
addressed in the base run, a biased BS run could be attributable. Most of 
the PTEs in the factor loading were discovered beyond the interquartile 
range, according to Wang et al. (2021) and Qiao et al. (2021). 

Table S3 shows the uncertainty interval ranges (i.e., minimum 5th 
and maximum 95th) as well as the base values of the base error 

calculation for each receptor model. The receptor models’ interval ratios 
are crucial in computing the interval ranges predicated on the split of the 
uncertainty, which corresponds to the midpoints (Brown et al., 2015; 
Paatero et al., 2014). The DISP and BS interval ratios, which showed 
performance comparable for each PTE in each receptor model, were 
used to maintain the coherence of uncertainty results for each receptor 
model, as shown in Fig S3. PTEs with large interval ratios showed 
greater uncertainty (Hu et al., 2020); for instance, in Fig. S3, the Cd 
interval ratio of the ER-PMF receptor model was shown to be closer to 
the apex, i.e., 101 to 102 for factors 1 and 3. It also had a high interval 
ratio, 102 for factor 3, as it approached the apex. Cd on the ER-PMF 
interval ratio chart, on the other hand, showed a high interval ratio 
for factors 1–3 that was closer to the apex 100. The BS interval ratios 
measured for each receptor model were significantly higher than the 
DISP interval ratio, premised on the computed uncertainty for each re-
ceptor model. According to Wu et al. (2020), this might be classified as 
random errors, which account for a significant fraction of the overall 
uncertainty. When the hybridized receptor model ER-PMF was 
compared to the parent model PMF, it was revealed that for factors 1–3 
(ER-PMF), models exhibited decreased interval ratios in the BS uncer-
tainty interval (PMF). When comparing the DISP uncertainty interval 
ratio, the ER-PMF showed a smaller interval ratio in more of the PTEs 
discharged by the factor loadings than the parent model PMF. The in-
terval ratios decreased random error and boosted efficiency by 
combining the PMF with pollution assessment indicators such as ER. 

5.8. Geographically weighted regression analysis 

Mapping the PTE concentration of the agricultural soil was per-
formed using geographically weighted regression and geographically 
weighted regression cokriging (GWRCoK) (see Figs. 8 and 9). The ap-
proaches used to predict the spatial distribution of PTEs resulted in a 
variety of spatial distribution patterns, as did the techniques used to 
investigate the spatial relationship between terrain attributes and PTEs. 
The model (GWR and GWRCoK) was evaluated based on the prediction 
accuracy of the PTE distribution in the soil using R2, RMSE, and MAE. 
The spatial distribution of arsenic and cadmium exhibited similar spatial 
distribution patterns for both approaches (GWR and GWRCok; see 
Figs. 8 and 9). The PTE distribution pattern was seen in the southeastern 
part of the study area, moving to the northwestern area in the anti-
clockwise direction. The maps exhibited moderate to high hotspots, but 
the GWRCoK map showed more intense hotspots than the GWR. The R2, 
RMSE, and MAE also suggested that the efficiency of the prediction of Cd 
and As in the agricultural soil by GWRCoK was 0.945–0.961 compared 
to 0.636–0.713 for GWR. The error margins estimated based on RMSE 
and MAE were 1.272 and 0.749 for GWRCoK and 2.636 and 1.819 for 
MAE, respectively (see Table 6). 

For the GWR spatial distribution map, the distribution pattern for Cr 
and Cu showed a similar distribution pattern, primarily in the south-
western to northwestern quadrants. Chromium had more hotspots that 
extended from the northeast to the southeast than Cu. The GWRCoK map 
for Cr and Cu was more concentrated in the southwestern to north-
western areas of the map, but Cu also showed a patch of a hotspot in the 
map’s northeastern area. The prediction accuracy of both models for Cr 
and Cu was significantly low, from 0.063 to 0.075 and 0.071–0.393 for 
R2 for GWR and GWRCoK, respectively. The error margins range from 
8.986 to 9.617, 6.422–6.457, 2.021–2.466, and 1.346–1.477 for GWR 
and GWRCoK, respectively. Manganese and nickel from the GWRCoK 
spatial distribution map shared a similar pattern, but Mn showed more 
hotspots in the northwest. In contrast, Ni also displayed hotspots in the 
southwestern and southeastern regions. Based on the GWR spatial dis-
tribution map for Mn and Ni, Mn showed more patches of hotspots in the 
southwestern and southeastern regions than Ni. The prediction effi-
ciency based on both approaches for Mn and Ni was low for both models, 
but Ni prediction in GWRCok was good (0.794). The error margin for Mn 
for both models was too high, and GWR was 2.42 times higher than 
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GWRCoK. Zinc and lead likewise exhibited similar spatial distribution 
patterns with hotspots in the southeastern area of the map for both 
approaches, but Pb and Zn displayed hotspots in the northeastern region 
as well. GWRCok exhibited a goodness of fit for Pb and Zn, with R2 

values of 0.981 and 0.975, respectively, compared to 0.425 and 0.293 
for GWR. The error margin for RMSE and MAE was relatively low, 
ranging between 1.301 and 2.208 for GWRCok and 19.613 and 28.753 
for GWR. The magnitude of the error estimated by the GWR approach 

was 8.901 (RSME) and 8.94 (MAE) times greater than that of the 
GWRCok. This suggests that hybridizing cokriging with GWR yields 
better results than GWR. John et al. (2021) hybridized cokriging with 
Gaussian process regression and yielded optimal results. Numerous pa-
pers have hybridized GWR with ordinary kriging, such as Kumar et al. 
(2012), Wang et al. (2012), Ye et al. (2017) and Pereira et al. (2018). Ye 
et al. (2017) compared the performance of geographically weighted 
regression kriging (GWRK) with multiple linear regression kriging 
(MLRK) and ordinary kriging (OK), and the author concluded that hy-
bridizing GWR with geostatistical algorithms such as OK yielded good 
results in predicting soil organic content is soil better than MLRK and 
OK. The author added that GWRK predicted SOC with less uncertainty 
and greater accuracy. This is consistent with the results obtained in this 
study. Similarly, Imran et al. (2015) used GWRK for growth and yield 
modelling in West Africa, concluding that GWRK is better than KEDLN 
(KED with a local kriging neighborhood) and regression kriging in 
general and that prediction uncertainty in GWRK was significantly 
reduced. This study demonstrated that the combination of cokriging and 
GWR can increase the efficiency of PTE prediction, thereby significantly 
reducing the error. This approach has undoubtedly optimized the 
channels of uncertainty provided by the sample selection design, 
empirical modelling techniques, and accessible covariate data sources, 

Fig. 8. shows the spatial distribution of PTEs using geographically weighted regression cokriging (GWRCoK) and GWR.  

Fig. 9. shows the spatial distribution of PTEs using geographically weighted regression cokriging (GWRCoK) and GWR.  

Table 6 
shows the performance of the model used in the prediction of PTEs in soil.   

GWR  GWRCoK  

R2 RMSE MAE  R2 RMSE MAE 

As  0.713  2.636  1.819   0.945  1.272  0.749 
Cd  0.636  0.608  0.359   0.961  0.196  0.124 
Cr  0.075  8.986  6.457   0.071  2.466  1.346 
Cu  0.063  9.617  6.422   0.393  2.021  1.447 
Mn  0.107  243.943  186.396   0.168  76.955  51.806 
Ni  0.041  6.462  4.761   0.794  1.215  0.894 
Pb  0.425  13.981  7.824   0.981  2.208  1.301 
Zn  0.293  28.753  19.613   0.975  3.229  2.215  
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as well as increased decision-makers’ confidence by accounting for 
reliably calculated prediction ambiguity and enhanced efficiency level. 

5.9. Advantages of ER-PMF over PMF 

According to research findings such as Al-Anbari et al. (2015); Baran 
Jerzy Wieczorek Ryszard Mazurek Krzysztof Urban et al. (2017), 
pollution index preference is correlated to pollution threshold, source, 
and the ecological risk of PTEs. Assessing pollution thresholds utilizing 
varied pollution indices, including EF, Er, PI, and Igeo, gives the 
research scientist a rough inkling of the pollution degree as well as the 
corresponding source route of PTEs. Estimating ecological risk gives the 
research the fair idea of the pollution level of the research area and 
probable identify the source route based on the precise scale can outline 
a locality’s environmental risk level. ER-PMF input source is the esti-
mated ecological values that give the research a reasonable idea of the 
pollution source, whereas in PMF, UNMIX, and APCS-MLR receptor 
models’ raw datasets are used, which means the source of the PTEs 
cannot be known until source distribution analysis is performed. 
ER-PMF analysis gives the researcher the validation based on the pre-
liminary assessment made, whereas with PMF, the research is yet to 
determine the source distribution assessment made. The ER-PMF dataset 
obtained from ER estimation is focused on distinguishing between nat-
ural and anthropogenic pollution source processes, rendering it rela-
tively easy to recognize pollution sources predicated on the precise scale 
utilized, whereas the PMF dataset needs to be analyzed to determine the 
natural and anthropogenic pollution source. Therefore, it easier and 
serves as a confirmatory analysis in ER-PMF than PMF. ER-PMF can 
apportion sources with high R2 and low error, whereas PMF can 
apportion sources with high R2 and a corresponding high error value. 
The use of ER allows for the easy recognition of impactful pollution 
sources, regardless of whether anthropogenic or geogenic (Gąsiorek 
et al., 2017; Z. Wang et al., 2015). ER-PMF have a relatively small DISP 
uncertainty interval than the parent model, indicating that random error 
is lowered and therefore performance is increased. In ER-PMF the 
dormant PTEs in every factor loading accrues higher percentage domi-
nance per factor loading than in PMF. This increases the prediction ef-
ficiency in ER-PMF than in PMF. According to Paatero et al. (2014), the 
evaluated uncertainty in PMF assessment is to apply DISP intervals, and 
predicated on the result obtained, ER-PMF outperforms the parent 
model PMF. The estimation of ecological risk necessitates the use of a 
single pollution index or contamination factor, which necessitates the 
inclusion of geochemical background levels to provide a rough estimate 
of the amount of pollution caused by preindustrial sources. The signif-
icance of ER is that it provides an avenue for stakeholders to make de-
cisions and manage natural resources while considering toxic levels, 
ecological sensitivity, and synergies between PTEs (Gąsiorek et al., 
2017; Mazurek et al., 2017). 

6. Conclusion 

This study assessed source distribution using an ecological risk 
approach, estimated uncertainty assessment, and the application of 
geographically weighted regression cokriging for the prediction of the 
following PTEs: As, Cr, Cu, Cd, Pb, Mn, Ni, and Zn. The results indicated 
that the calculated risk index ranged from low to high according to the 
Hakanson categorization, but Chen’s categorization increased the 
ecological risk from high to extremely high toxicity. The spatial 
assessment revealed varied hotspots for PTEs in peri-urban and urban 
areas, ranging from minimally spatially distributed to elevated hotspot 
areas. The steel industry, agrochemicals, fertilizer applications, vehic-
ular traffic, and antiknock agents were all identified as potential pol-
luters of the PTEs in the study by the receptor model. The evaluation of 
the receptor model efficiency and the magnitude of error computation 
revealed that when the ER-PMF and the PMF were compared, the ER- 
PMF outperformed the PMF in 5 (As, Cd, Ni, Pb, and Zn) of the 8 PTEs 

evaluated. Furthermore, the RMSE and MAE computed errors revealed 
that the hybrid receptor model ER-PMF margin of error was significantly 
reduced in six (Cr, Cu, Mn, Ni, Pb, and Zn) of the eight PTEs. The hy-
bridized GWRCoK model outperformed GWR in predicting the distri-
bution pattern of PTEs in the study area by improving the efficiency of 
PTE prediction, resulting in a significant reduction in error. The uncer-
tainty assessment of the receptor models indicated that the DISP interval 
ratio of the hybridized ER-PMF model was less than that of the parent 
PMF model, and thus in the ER-PMF receptor model, random error that 
could arise in the DISP based on the DISP interval ratio was likely to be 
less than PMF. The cumulative performance of the receptor model 
indicated that ER-PMF was superior to PMF. Based on the comprehen-
sive analysis, the ecological status of the study area revealed that the 
toxicity levels of some of the areas are potentially risky and have the 
tendency to pose a health-related risk to the people who live in the 
communities. As a result, practical measures should be implemented to 
mitigate the community’s potentially risky and highlight risky areas. 
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Ličina, V., 2011. Impact of controlled redox conditions on nickel in a serpentine soil. 
J. Soils Sediment. 11 (3), 406–415. https://doi.org/10.1007/s11368-010-0325-0. 

Ashaiekh, M.A., Eltayeb, M.A.H., Ali, A.H., Ebrahim, A.M., Salih, I., Idris, A.M., 2019. 
Spatial distribution of total and bioavailable heavy metal contents in soil from 
agricultural, residential, and industrial areas in Sudan. Toxin Rev. 38 (2), 93–105. 
https://doi.org/10.1080/15569543.2017.1419491. 

Ballabio, C., Panagos, P., Lugato, E., Huang, J.H., Orgiazzi, A., Jones, A., 
Montanarella, L., 2018. Copper distribution in European topsoils: An assessment 
based on LUCAS soil survey. Sci. Total Environ. 636, 282–298.  

Baran Jerzy Wieczorek Ryszard Mazurek Krzysztof Urban, A., Klimkowicz- 
Pawlas, Agnieszka, ski, Baran, A., Wieczorek, Á.J., Wieczorek, J., Mazurek, R., 
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Abstract 

Background: Human activities considerably contribute to polluting potentially toxic element (PTEs) levels in soils, 
especially agricultural soils. The consistent introduction of PTEs in the environment and the soil pose health-related 
risks to humans, flora and fauna. One hundred and fifteen samples were collected in the district of Frydek Mistek 
(Czech Republic) in a regular grid form. The soil samples were air-dried, and the concentrations of PTEs (i.e. lead, 
arsenic, chromium, nickel, manganese, cadmium, copper, and zinc) were determined by ICP-OES (inductively cou-
pled plasma optical emission spectrometry). The purpose of this study is to create digitized soil maps that expose the 
human-related health risks posed by PTEs, estimate pollution indices, ascertain the spatially distributed patterns of 
PTEs, source apportionment and quantify carcinogenic and non-carcinogenic health risks using the sample location 
approach.

Results: The results revealed that the pollution assessment of the soils in the study area using diverse pollution 
assessment indexes (pollution index, pollution load index, ecological risk and risk index), based on the application of 
the local background value and the European average value, displayed a range of pollution levels due to differences 
in the threshold limits from differing geochemical background levels. The principal components analysis and posi-
tive matrix factorization, respectively, identified the sources of pollution and the distribution of PTE sources. Mapping 
the health index and total carcinogenic risk highlighted hotspots of areas within the study area that require immedi-
ate remediation. The self-organizing map (SeOM) revealed a diversified colour pattern for the factor scores. A single 
neuron exhibited a high hotspot in all factor loadings on different blocks of neurons. Children’s CDItotal (Chronic Daily 
Intake total) values for non-carcinogenic risk and carcinogenic risk were found to be greater than adults’, as were their 
HQ (hazard quotients) and CR (carcinogenic risk) values. According to the health index of non-carcinogenic risk, 6.1% 
of the study area sampled posed a potential risk to children rather than adults. Corresponding to the sampled point-
wise health risk assessment, 13.05% of the sampled locations are carcinogenic to children. The estimated health risk in 
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Background
Soil contamination suggests the presence of a chemical 
or foreign substance in concentrations above the normal 
threshold, which may be detrimental to an organism or 
humans [1]. This means of environmental pollution has 
become a primary ecological concern due to the time-
less period of potentially toxic elements (PTEs) in nature 
coupled with the contamination of agricultural soils [2]. 
Although the more significant part of toxicity has anthro-
pogenic origins, a few contaminants can typically happen 
in soils as components of weathering of rock deposits, 
and they can be toxic at high concentrations [3, 4]. Fur-
thermore, contamination of the soil periodically cannot 
be precisely assessed or seen outwardly, rendering it a 
latent threat.

Human health depends on a sustainable agricultural 
sector with minimum human interference, which acts as 
a forerunner to a sustainable healthy livelihood. However, 
agricultural soil directly impacts human health, and it 
is crucial for food safety; PTEs are the most hazardous 
contaminants due to their build-up in crops [5]. There 
exists a considerable volume of literature indicating that 
the accumulation of PTEs in the soil is not exclusively the 
result of anthropogenic phenomena, but rather the result 
of a collaborative effort between geogenic and anthro-
pogenic activities [6–8]. Due to the agrochemical and 
industrial developments, the numerous contaminants are 
continually progressing. These pollutant varieties tend 
to form complexes with certain organic compounds in 
the soil and produce various metabolites through their 
biological activity. All of these are combined with the 
soil system and extracted through laboratory analysis. 
PTEs such as aluminium, arsenic, beryllium, cadmium, 
lead, mercury, nickel, and radium may have the ability to 
exude toxic effects that are hazardous to humans, such as 
carcinogenic effects, teratogenic effects, and endothelial 
dysfunction [9–11]. According to FAO and ITPS [1], the 
adverse impact of contaminants from agricultural soils, 
as they regulate the mobility, bioavailability, and resi-
dence of PTEs, depends on their properties, respectively. 

These pollutants (PTE) have the potential to impact cli-
mate, soil, and water, as well as endangering organisms/
animals, humans, food security, health, and life [12]. 
However, according to Zukowska and Biziuk [13], the 
presence of PTEs in the ecosystem (e.g., vegetable soil) 
causes them to change from a solid-state to either ionic 
ligands or, via biomethylation to metallic organic moie-
ties, which can be potentially hazardous to the health 
of humans, animals, and the entire eco-environment via 
the food chain. PTEs exhibits potential danger to human 
health owing to environmental contamination and are 
classified into two risk categories: carcinogenic and non-
carcinogenic risk. Crentsil and Anthony [14] argued that 
health risk assessment is a high-profile methodology 
recognized as a valuable, critical method for identifying 
anthropogenic tendencies that are detrimental to human 
health. Chen  et  al. [15] indicated that a detailed under-
standing of the potential health risks posed by soil PTEs 
is necessary for informed decision-making by stakehold-
ers to reduce contamination, reduce human exposure 
and protect humans from risk.

There is no question of the natural source of PTEs in 
agricultural soil. Regrettably, their increase in agricul-
tural soils is a direct consequence of over-fertilization, 
which pollutes the soil with PTEs such as Pb, Cd, Zn, Ni, 
Cu, as well as other polluting sources such as wastewa-
ter irrigation (As, Pb, Hg, Cd), compost (Pb, Co, Cd, Zn), 
pesticide application (Cd, Pb, Cu, Zn), sub-standard fer-
tilizer, and industrial activities (Mn, Ni, As, Pb, Zn, Cr, 
Cu, Cd) [16, 17]. It has been suggested by Kim et al. [18] 
and Yang et al. [19] that soil-bound PTEs risk assessment 
is based on metallic soil content, which may lead to inac-
curacy and the necessity for costly remediation of soil. 
Its important to note, however, that PTEs contamination 
is not limited to agricultural land. Nevertheless, it may 
also be detected in living tissues, where it is, for the most 
part, irreparable [20]. Eziz et  al. [21] and Mamut et  al. 
[2] disclosed that PTEs might potentially cause havoc to 
humans, flora and fauna in the environment. Extensive 
study has been undertaken in the contemporary era in 

the agricultural soil was high, with both carcinogenic and non-carcinogenic risks that could threaten persons living in 
the study area, particularly children.

Conclusion: In general, the continuous application of agriculturally related inputs such as phosphate fertilizers and 
other anthropogenic activities (e.g., steel industry) can increase the level of PTEs in soils. The use of mean, maximum, 
and minimum values in health risk estimation does not provide a comprehensive picture of a research area’s health 
state. This study recommends using a sampled pointwise or location health risks assessment approach, which allows 
researchers to identify high-risk environments that exceeds the recommended threshold as well as areas on the verge 
of becoming high risk, allowing for rapid remedial action.

Keywords: Health risk, Source apportionment, Ecological risk, Spatial distribution, Principal component analysis, Self-
organizing map
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the disciplines of PTEs impact on human health, ecologi-
cal risk, and highlighting environmental impacts [21–25]. 
Despite the abundance of literature on health concerns 
published worldwide, there is a dearth of documenta-
tion and research in the study area. However, according 
to Kampa and Castanas [26], health risk assessment is a 
practical and indispensable tool for recognizing and eval-
uating the dangers to human health caused by PTEs via 
various routes of exposure. The active agricultural pro-
duction and number of industrial activities in the study 
area make monitoring human health exposure via PTEs 
critical. Indigenous health is a primary necessity in the 
study area. Hence a qualitative and comprehensive risk 
evaluation of agricultural soil health is necessary and 
appropriate. The primary objective of this paper is to cre-
ate a digitized soil map that highlights the human-related 
health risks posed by PTEs, as well as to estimate and 
map pollution indices outputs, the pattern of PTE spatial 
distribution, source apportionment, and determine car-
cinogenic and non-carcinogenic health exposures using 
a sample location approach. This research will contrib-
ute significantly to the awareness of the dangers of PTE 
exposure in humans and livestock in the study area.

Materials and methods
Study area
The study site is located in the Czech Republic within the 
district of Frydek Mistek. Rugged terrain and mountains 
from the exterior Carpathians characterize the study 
area’s geomorphology. The Carpathians, mountains and 
valleys are differentiated by natural rock and undulating 
relief. However, there are two mountain ranges in the 
northern section of the research region partitioned into 
highlands clusters by river valleys. The district’s geologi-
cal terrain is predominantly carbon-producing, making it 
an attractive shelter for Paskov and Staříč mining activi-
ties that are currently inactive [27].

The study area is characterized by extensive agricul-
tural activity as well as various metal works (such as fab-
rication, pneumatic cylinders, valves, regulator, etc.) and 
steel industries (such as the production of cold-rolled 
steel strips and sheets, anisotropic electrical steel strips 
and sheets). It is geographically positioned at a latitude 
of 49°41′0′ North and a longitude of 18°20′0′ East at an 
altitude of 225–327 m above sea level [8]. Oilseeds, corn, 
sunflower, and grapevines are among the crops grown in 
the study area, as is the principal production of cereals 
such as wheat, oats, barley, and rye. Using the Koppen 
classification, the study area was classified as Cfb = oce-
anic temperate climate with high rainfall even during 
the dry months [28]. Throughout the year, the tempera-
ture ranges typically from − 5 °C to 24 °C, with temper-
atures rarely falling below −  14  °C or rising over 30  °C. 

The average highest rainfall for the year is 83 mm, with 
a minimum average total accumulation of 17  mm [29]. 
The estimated area for this study is 889.8   km2 extruded 
from a total land area of 1208   km2 (39.38% for agro-
nomic activities and forest land 49.36%) for the district 
of Frydek Mistek. The soil’s colour and its structure to its 
carbonate concentration of the soil’s properties may be 
readily recognized from each other. The prevalent soils in 
the study area have bleached and paler coloration as well 
as dark colour in the topsoil. Nevertheless, the parent 
materials of the soil have a medium and fine texture. In 
most cases, they are found in aeolian and colluvial depos-
its, which are also characterized by mottles in the top and 
subsurface that can be seen in some soil regions, which 
are usually followed by concrete and whitening. A cam-
bic diagnostic horizon distinguishes them with fine sandy 
loam texture, a clay concentration of more than 4%, and a 
lithic discontinuity with reduced carbonate content [30]. 
Nevertheless, the prevalent soil types in the study are 
cambisols and stagnosols [30]. These soils predominate 
the Czech Republic and can be found at elevations rang-
ing from 455.1 to 493.5 m [31].

Soil sampling and analysis
A total of 115 topsoil samples were collected from agri-
cultural land in the district of Frydek Mistek (Fig. 1). The 
sampling pattern was a standard grid, and the soil sam-
ples distances remained 2 × 2  km applying a hand-held 
GPS (Leica-Zeno 5 GPS) device at 0–20 cm deeper into 
the soil. The soil samples collected were deposited in 
Ziploc bags, categorized, and taken to the research labo-
ratory. To obtain a pulverized soil sample, the obtained 
soil samples were air-dried before being crushed by a 
machine (Fritsch disk mill pulverize) and mesh sieved 
(2 mm). In the Teflon container, 1 g of the dried, homog-
enized, and sieved soil sample (sieve size 2  mm) was 
placed and labelled. 7  ml of 35% HCl and 3  ml of 65% 
 HNO3 (use automatic dispensers—a special dispenser 
for each acid) were dispensed in each bottle of Teflon 
and gently closed the cap to enable the sample to remain 
overnight for reactions to take place (aqua regia proce-
dure). The supernatant was placed on a hot metal plate 
for 2 h to promote digestion of the sample and left to cool 
when the soil sample was dissolved.

The supernatant was transferred into a prepared 50-ml 
volumetric flask and then diluted with deionized water 
to 50 ml. The diluted supernatant was then filtered into 
50  ml PVC tubes. In addition, 1  ml of diluted concen-
tration was further diluted with 9 ml of deionized water 
and filtered into a 12  ml test tube prepared to evaluate 
the pseudo-total PTE content. The ICP-OES (induc-
tively coupled plasma optical emission spectrometry) 
(Thermo Fisher Scientific Corporation, USA) was utilized 
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to ascertain the concentration of PTEs (Mn, Ni, As, Pb, 
Zn, Cr, Cu, Cd) in compliance with standard procedures 
and protocols. Moreover, the quality control and qual-
ity assurance process were ensured by checking each 
sample’s standards reference material (SRM NIST 2711a 
Montana II soil). The detection limits of the PTEs utilized 
in this study are 0.0002 (Cd), 0.0007 (Cr), 0.0060 (Cu), 
0.0001 (Mn), 0.0004 (Ni), 0.0015 (Pb), 0.0067 (As), and 
0.0060 (Zn). Duplicate analysis was carried out to ensure 
that the error was minimized. Pre-treatment analysis of 
soil samples was conducted at the Czech University of 
Life Science Prague.

Pollution indices assessment
The productive soil quality of agricultural land must be 
assessed to evaluate the effects and toxicity of PTE pol-
lution. Based on this, various pollution indices such as 
the pollution index (PI), the pollution load index (PLI), 
the comprehensive ecological risk (ER) and the risk 

index (RI) were utilized to assess the pollution status of 
the study region. Huang et al., [32] and Sawut et al. [33] 
argue that indices can reliably measure the quality of soil 
contamination and the extent to which human activity 
impacts the soil environment. These indices are widely 
used in the assessment of PTE contamination in agricul-
tural soil.

Single pollution index (PI)
The single pollution index (PI) is characterized as the 
concentration of PTE in a sample relative to its geochem-
ical or geological background level. Tomlinson et al. [34] 
introduced the PI, and the equation is given as

where Bn connotes the geochemical background values of 
the PTEs in the soil (mg/kg) and Cn symbolizes the PTE 

(1)PI =
Cn

Bn
,

Fig. 1 Location map showing the sampled site with sampling points
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concentrations in the soil (mg/kg). The PI precise scale is 
classified as PI ≤ 1 (low level), 1 < PI ≤ 3(moderate level), 
3 < PI ≤ 6 (considerable level) and PI ≥ 6 (high level).

Pollution load index (PLI)
The PLI is often used to measure the average amount 
of soil pollution. This index provides a direct way to 
display the soil deterioration resulting from the accu-
mulation of PTEs. Tomlinson et al. [34] introduced this 
equation, and the equation is given as

where n represents the number of analysed PTEs, PLI is 
categorized into four classes such as PLI ≤ 1 (low level), 
1 < PLI ≤ 2 (moderate level), 2 < PLI ≤ 5 (high level), or 
PLI > 5 (extremely high level) centred on the intensity of 
pollution.

Ecological risk assessment (ER and RI)
Ecological risk (ER) is a measure employed to quantify 
the degree of ecological threat posed by PTE accumu-
lation in soil. The index ER was pioneered and applied 
by Hakanson [35], and the equation is given as:

The risk index (RI) is defined as the aggregate of each 
PTE’s estimated ecological risk:

The Ti
r is the toxicity response coefficient of specific 

PTE [34], and the PI represent the single pollution 
index. The toxicity response coefficient of the PTEs 
used are 30 (Cd),10 (As), 5(Cu), 5(Pb), 2(Cr), 2(Zn), 
2(Ni) and 1(Mn). The ER has 5 classifications: ER ≤ 40 
(low risk), 40 < ER ≤ 80 (moderate risk), 80 < ER ≤ 160 
(considerable risk), 160 < ER ≤ 320 (high risk), and 
EI ≥ 320 (very high risk). The RI has 4 classes, namely 
RI ≤ 150 representing the low risk, 150 < RI ≤ 300 indi-
cating the moderate risk, 300 < RI ≤ 600 signifying the 
considerable risk and RI > 600 representing the very 
high risk.

Positive matrix factorization (PMF) model
The EPA–PMF v5.0 receptor model [36] is a multivari-
ate receptor modelling approach used to estimate the 
contribution of the source of PTEs or hazardous sub-
stance samples to fingerprints or the composition of 
the source. The U.S. Environmental Protection Agency 
utilizes this receptor model, developed by Paatero [37]; 

(2)PLI = n
√

PI1 × PI2 × PI3 × . . . · · · × PIn,

(3)EI
r = Ti

r × PI.

(4)RI =
n

∑

i=1

Ei
r .

Paatero and Tapper [38]. The model does not require 
any profile source, and all the data are weighted by 
using uncertainty. According to Norris et al. [39], PMF 
is used mainly in solving source contributions and 
source profile that is dataset composition based which 
is given by this equation:

in which p represents the factor number, f the source pro-
file species, g the sample contribution, j and i signifies the 
quantity of samples and chemical species, and eij denotes 
the species.

This equation determines the contribution as well as 
profile factors:

in which m represents the quantity of analysed PTEs, n 
denotes the number of sampled soils, and Uij refers to 
the uncertainty of PTE j in soil sample i. The parameters 
used to determine the uncertainty Uij and the minimum 
Q were previously defined by the authors [8].

Health risk assessment
The ever-growing human population and human 
endeavour to ensure that the planet remains a haven 
for humanity are under constant constraint. Fre-
quently, scientists, policymakers, and other stakehold-
ers push the frontiers of research in many ways, and 
no matter the initiative and the best course of utilizing 
research, the world is now and then polluted. Humans 
are exposed to PTEs in three different forms every day, 
including inhalation, ingestion, and dermal contact. 
There are three procedures to assess the probability of 
human PTE exposure in peri-urban, urban, and rural 
settings, according to Wang et  al. [40]. PTE exposure 
pathways to humans are calculated using the following 
equations:

(5)Xij =
p

∑

k=i

(

gik fkj + eij
)

,

(6)Q =
n

∑

i=1

m
∑

j=1

(

εij

uij

)2

,

(7)CDIing =
C × IRing × EF × ED

BW × AT
10−6,

(8)CDIinh =
C × IRinh × EF × ED

PEF × BW × AT
,

(9)
CDIderm =

C × SA × AF × ABS × EF × ED

BW × AT
× 10−6,
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Additional file  1: Table  S1 contains the definitions of 
the variables  CDIing,  CDIinh, and  CDIderm, as well as refer-
ence values for the indices of the preceding Eqs. (7–10).

Non‑carcinogenic risk assessment
The equation of the potential non-carcinogenic risk for a 
single PTEs was computed as the HQ (hazard quotient), 
which is given as Eq. (11):

RfD (see Additional file  1: Table  S1) represents the 
reference dose (mg/kg/d), and it is the estimated daily 
human population exposure. The determination of a par-
ticular health hazard of all the PTEs analysed was done 
by computing HQ values. The sum of the values was 
reported as the HI (hazard index), which is provided as 
Eq. (12) [41]:

whereby  HQing,  HQinh and  HQderm represent the hazard-
ous quotient for inhaling, ingestion and dermal, respec-
tively. A report from USEPA [42] explicitly outlined that 
when the HI < 1, it presupposes that there is a potential to 
negatively impact health if PTEs are exposed to humans. 
However, Eziz et al. [21] mentioned that if HI > 1, there is 
also the propensity for non-carcinogenic health risks to 
emerging.

Carcinogenic risk assessment
According to the USEPA’s [41] findings, the possibility of 
developing cancer of any sort may be ascribed to humans 
being exposed to carcinogenic risk (CR). Equations  (13 
and 14) were employed to evaluate the carcinogenic risk 
of PTEs such as As, Ni, Pb, Cd, and Cr:

in which the variables TCR, CR, and SF reflect total car-
cinogenic risk (no unit), carcinogenic risk (no unit), and 
slope factor for carcinogenic PTEs (mg/kg/d), respec-
tively. TCR values should be in the range of 1 × 10–6 to 
1 × 10–4. That is a reasonable standard that demonstrates 
no considerable risk to human health [43]. All the expo-
sure factor values utilized in the health risk calculation 
are listed in Additional file 1: Table S1.

(10)CDItotal = CDIing + CDIinh + CDIderm.

(11)HQ =
CDI

RfD
.

(12)HI =
∑

HQ = HQing + HQinh + HQderm,

(13)CR = CDI × SF,

(14)TCR =
∑

CR = CRing + CRinh + CRderm,

Analysis of data
The data were statistically analysed using kyplot for prin-
cipal component analysis, RStudio for projected principal 
component loadings, EPA-PMF 5.0 to estimate source 
apportionment, and excel in quantifying the potential 
health risk as well as  Pearson correlation matrix. PTE 
modelling, spatial distribution maps, and health risk 
assessment were interpolated   using ordinary kriging in 
an R software environment. The factor scores of the PMF 
receptor model were likewise mapped using a self-organ-
izing map (SeOM).

Kohonen [44] created SeOM by combining an artificial 
neural network with unsupervised learning techniques 
for organizing, evaluation, and predictions. SeOM was 
employed in this study to visualize factor score contribu-
tion as well as determine the number of clusters within 
the factor scores of the PMF receptor model in an agri-
cultural urban and peri-urban soil. The SeOM assess-
ment data act as an input dimensional vector variable 
[45, 46]. Melssen et al. [47] defined a neural network as 
having a single input layer that connects an input vector 
to a vector output with a unitary weight vector. SeOM 
generates a two-dimensional map composed of several 
neurons or nodes knitted together into a hexagonal, cir-
cular, or square topological layout based on their close-
ness [45]. Based on metrics, topographic error (TE) and 
quantization error (QE), map sizes were examined, and 
a SeOM model with 0.086 and 0.904 was chosen as a 
55-map unit (5 × 11). The neuron structure was selected 
based on the empirical equation node number, which was 
given as:

 in which the m denotes the quantity of SeOM map neu-
rons, n representing the input data quantity.

Results and discussion
PTEs concentration in soil
Statistical standards such as mean, median, skewness 
and kurtosis, standard deviation were employed to 
detect the PTEs concentration levels in the sampled soil 
(see Table  1). Table  1 includes PTEs estimated mean 
concentrations of the UCC (upper continental crust), 
WAV (world average values), and EAV (European aver-
age values) reported by Kabata-Pendias [48]. PTE con-
centrations (Zn, Pb, Mn, Cr, Cu, As, Ni, Cd) varied from 
186.02 to 1691.76  mg/kg (Mn), 37.48 to 272.18  mg/
kg (Zn), 9.56 to 155.69  mg/kg (Pb), 10.9 to 62.78  mg/
kg (Cr), 7.88 to 62.62  mg/kg (Cu),4.86 to 42.39  mg/kg 
(Ni),1.85 to 30.42 mg/kg (As) and 0.61 io 7.28 (Cd) mg/
kg. In the agricultural soil, the concentration of PTEs 
declined in the following order: Mn > Zn > Pb > Cr > C
u > Ni > As > Cd > (see Table 1). The general PTEs mean 

(15)m = 5 ×
√
n,
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concentration in the soil was relatively high than the 
EAV threshold, specifically Pb, Mn, Zn, Cd, and Cu. In 
the current study, the mean value  of cadmium is 6.57 
times greater than that of EAV (see Table 1), as are the 
concentrations of Mn (1.33), Pb (1.06), Cu (1.06), and 
Zn (1.06), (1.33). Although there may be a geogenic 
source, evidence suggests that anthropogenic activi-
ties significantly compensate for the elevation in PTE 
concentrations. Toth [49] reported some PTEs thresh-
olds from the Ministry of Environment Finland (MEF), 
and As (5.0 mg/kg) and Cd (1.0 mg/kg) threshold lim-
its were lower than the current study’s corresponding 
PTEs. The mean concentration of Cr (100.0  mg/kg), 
Cu (100.0  mg/kg), Pb (60.0  mg/kg), Ni (50.0  mg/kg), 
and Zn (200.0  mg/kg) from the MEF threshold limits, 
on the other hand, was found to be greater than the 
respective PTEs mean concentration from the current 
study.

Conversely, the mean concentrations of the follow-
ing PTEs, like Pb, Mn, Zn, and Cd, in our current study 
are similarly greater than the same PTEs from the world 
average value (WAV) threshold  limit [48] (see Table  1). 
PTEs (Mn, Pb, Zn, and Cd) concentration levels in the 

current study are 1.48, 1.25, 1.21, and 4.49 times greater 
than WAV concentration threshold. Similarly, when the 
PTEs studied mean concentration values were compared 
to the PTEs of the UCC (Table 1), it was discovered that 
Zn, Pb, Cd and As are higher than the respective PTEs in 
the UCC. Comparatively, the mean concentration levels 
of Zn, Pb, Cd and As surpassed those of  UCC by 2.26, 
1.55, 3.57 and 18.4 times respectively.

The present study indicated that elevated values of 
some PTEs than those of UCCs indicate that anthropo-
genic sources play a vital role in pollution. The assertion 
is compatible with Jia et  al. [50] point of view. The pre-
sent mean concentration of PTEs in the current research 
relative to the mean concentration of PTEs in Sweden 
[48] suggests that the concentration of PTEs exceeded 
the threshold limits of the PTEs in Sweden (see Table 1). 
A comparable comparison to PTEs concentration lev-
els reported in Brazil and the United States [48] shows 
that the following PTEs, Mn, Pb, Zn, and Cd, are lower 
than those reported in the present study (see Table  1). 
Comparing the concentration values of PTEs with those 
obtained from Japan [48] revealed that most of the PTEs 
under analysis were lower than those from Japan, except 

Table 1 PTE concentrations in the study site, basic data, toxic element, and geochemical background levels (number sample 115 per 
each PTE)

a World average value (WAV)
b Upper continental crust (UCC)
c European average value (WAV), [48] (page 41 and 42), coefficient of variability (CV) A [51], B [109], C [110], D [111]

PTEs (mg/kg)

Mn Ni Pb Zn As Cd Cr Cu

Mean 699.03 16.15 33.86 85.22 5.32 1.84 28.43 22.54

Median 664.39 13.75 30.10 75.47 4.57 1.61 26.90 19.68

Local background  valueA – 30.00 50.00 80.00 – 0.20 70.00 25.00

FinlandB – 60.00 60.00 150.00 10.00 0.50 100.00 100.00

AustriaC – 35.00 30.00 100.00 – 0.40 54.00 35.00

SpainD – 25.50 26.50 57.00 14.00 – 57.00 17.50

Sweden 411.00 13.00 18.00 65.00 3.80 0.17 22.00 17.00

Japan – 26.00 24.00 89.00 – 0.33 58.00 48.00

Brazil 535.00 25.00 22.00 73.00 – 0.18 86.00 109.00

USA 550.00 19.00 19.00 60.00 7.20  < 0.01–41 54.00 25.00

UCC b 900.00 20.00 15.00 70.00 1.80 0.10 100.00 17.30

WAVa 488.00 29.00 27.00 70.00 6.83 0.41 59.50 38.90

EAVc 524.00 37.00 32.00 68.10 11.60 0.28 94.80 17.30

Minimum 186.02 4.86 9.56 37.48 1.85 0.61 10.90 7.88

Maximum 1691.76 42.39 155.69 272.18 30.42 7.28 62.78 62.62

Range 1505.74 37.53 146.13 234.70 28.57 6.67 51.88 54.74

Standard Deviation 259.35 6.78 18.51 34.35 4.95 1.01 9.38 9.98

Kurtosis 1.37 2.49 18.80 7.32 11.77 10.45 2.69 4.90

Skewness 0.79 1.63 3.67 2.11 3.04 2.84 1.33 2.04

CV % 39.04 49.29 61.51 45.52 108.23 62.86 34.88 50.71



Page 8 of 25Agyeman et al. Environmental Sciences Europe          (2021) 33:137 

for Pb and Cd (see Table 1). The current mean values of 
the PTEs (Ni, As, and Cr) in the study area were found to 
be lower when compared to the agricultural soil thresh-
old limits in Finland, Austria, and Spain. On the other 
hand, Pb, Zn, and Cd levels in the current study were 
higher than the respective PTEs from Spain, but lower 
than the corresponding threshold limits from Finland 
and Austria. Cadmium mean concentrations in the pre-
sent study were significantly higher than the threshold 
limit (see Table 1) from Finland and Austria. Predicated 
on the Nemecek and Podlesakova [51] report, the local 
background values (LBV) for Ni, Pb, Cr, and Cu from the 
district of Frydek Mistek revealed that the mean con-
centration of PTEs was within the permissible threshold 
limit (see Table 1). However, the mean concentrations of 
Cd and Zn in the study were higher than the local back-
ground values reported by Nemecek and Podlesakova 
[51] (see Table 1).

The estimated standard deviation values were high 
due to the concentration of PTEs with high variable het-
erogeneity in the study region. The computed skewness 
values were used to determine the normality and abnor-
malities of the distribution of PTEs values. According to 
Chandrasekaran et al. [52], if the PTE skew value ranges 
from 1 to − 1, it can be viewed as a regular distribution. 
Notwithstanding, if the PTE value is slightly skewed posi-
tively (> 1), the distribution is anomalous. The calculated 
kurtosis and skewness values were usually greater than 1; 
thus, the distribution of PTEs is believed to be irregular, 
skewed in the right direction and leptokurtic.

The CV (coefficient of variation) represents the extent 
of heterogeneity within PTE concentrations, pursu-
ant to Karimi Nezhad et al. [53]. If the CV is between 0 
and 20%, it is assumed that the PTEs are from a natural 
source, and if it is greater than 20%, it indicates the influ-
ence of anthropogenic activity. As a result, a CV of 20% 
shows low variability, a CV of 50% indicates moderate 
variability, a CV of 50% indicates significant variability, 
and a CV of 100% suggests extraordinarily high variabil-
ity. The CV of the PTEs in the present agricultural soils 
declined in the following order As > Cd > Pb > Cu > Ni > 
Zn > Mn > Cr. The results evidenced that the PTEs Cr, 
Zn, Mn, and Cr are moderately variable and homoge-
neous. The high variability of Cd, Pb, and Cu inferred a 
non-homogeneous variability of PTEs, clearly indicating 
that the possible human-related influence. Arsenic (As) 
showed a very abnormal CV suggesting an exceptionally 
high variability. According to the distribution of Cd, Pb, 
and Cu non-spatial homogeneity, there is a likely local 
source of enrichment substance.

Chemometric approach
Multivariate analysis of PTEs
The primary source of pollution in the study area was 
detected utilizing principal component analysis (PCA). 
It is a supportive approach that can make valuable sug-
gestions about PTE paths and primary sources [54]. The 
loadings of the principal components (PCs) extracted 
from the principal correlation values were fixed at or 
above 0.50 in this study (Table 2; Fig. 2). Following the cri-
terion, PC 1 and PC 2 were statistically significant, accru-
ing 71.21% of the data variance. PC1 explained 52.38% of 
the variance explained by the PTEs Pb, Zn, As, Mn, Cr, 
and Cd, in that order. According to the report in Table 2, 
some of the PTEs (Pd, Zn, As, and Cd) in PC1 had a 

Table 2 Principal component illustrating the contributions of 
PTEs in the study area

PTEs PC1 PC2

Mn 0.621 0.195

Ni 0.497 0.709

Pb 0.877 − 0.306

Zn 0.872 − 0.076

As 0.788 − 0.491

Cd 0.907 − 0.311

Cr 0.501 0.288

Cu 0.577 0.667

Eigenvalues 4.191 1.506

% variance explained 52.38 18.83

cumulative % total 71.21

Fig. 2 Showing principal component contribution loadings 
projections
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strong positive load ranging from 0.7 to 0.9, while other 
tenants, such as Mn and Cr, had a moderate positive load 
(0.5–0.7). This indicated that PC1 concentrations might 
be attributable to a variety of sources, including anthro-
pogenic and parental material components. Agrochemi-
cals such as lead arsenate herbicides or pesticides, which 
are essential sources of agricultural soil chemicals, are 
agronomically linked to As and Pb [55]. Existing stud-
ies by Nicholson et  al. [56] and Luo et  al. [57] estab-
lished that livestock manure and fertilizer are important 
sources of As and Pb. The findings of the current study 
support this statement. The origins of Zn and Mn (r val-
ues = 0.872 and 0.621, respectively) may be traced back to 
the convergence of anthropogenic and geogenic sources 
(liming). According to Mantovi et  al. [58], Zn concen-
tration in soil surges may be linked to the application of 
waste resulting from animal husbandry and phosphate 
fertilizers. Cd and Cr accumulation in soils are related 
to the forging of metal, sewage and chemical fertilizers 
[59–62]. PC2 (18.83% of the overall variance) showed rel-
atively high positive loading for PTEs such as Cu and Ni. 
As a result, Cu and Ni have a comparable source of pollu-
tion. Cu concentrations in topsoil are probably caused by 
fertilizers, other agricultural pollutants, and urban waste 
[63]. The presence of Nickel (Ni) in soil originates from 
both the parent material (lithosphere) and the anthropo-
genic deposition [64]. 

The correlation matrix (see Table  3) among the stud-
ied PTEs demonstrated the existence of a relation-
ship between the PTEs. PTEs correlation revealed a 
strong relationship between the  PTEs. Pb (lead) and 
Zn (zinc) demonstrated a strong positive connection 
with PbAs (r-value = 0.75), AsCd (r-value = 0.9), CdPb 
(r-value = 0.85), and CdZn (r-value = 0.78). As a result, 
it is critical to emphasize that they may have the same 
or nearly analogous origins. Other correlations between 
PTEs, such as As and Zn (r-value = 0.63) and Ni and Cu 
(r-value = 0.69), likewise exhibited a robust nexus, indi-
cating that the pollution cause might be correlated or 

close together. Cd and As had the highest correlation 
value, while Ni and As had the least positive correlation 
(r-value = 0.07). All the PTEs had a positive relationship 
and no negative correlation.

Spatial distributions of PTEs in the study area
The PTEs spatial distributions in the study area are 
depicted in Fig. 3. As and Cd shared the same distribu-
tion map pattern, likewise Cr and Mn. The distribution 
pattern of As and Cd primarily was centred in the east-
wards and the south-eastern area of the map. The map 
shows hotspots around the eastern (i.e. the steel indus-
try) and the south-eastern part, but the As distribution 
map appears to be denser than Cd. Spatial variability of 
Cu and Ni showed hotspots across the northwestern, 
southwestern, and south-eastern parts of the map. The 
source distribution of Cu and Ni spatially in the map may 
be attributed to the steel industry and agrochemicals; this 
is coherent with the earlier study carried out by Krishna 
and Govil [65].

Moreover, Salonen and Korkka-Niemi [66] identified 
certain PTEs such as Ni and Cu as minute spatial and 
temporal distribution in world soils present in parent soil 
materials. Furthermore, Cr and Mn showed more undu-
lated spatial distribution across the entire map except for 
the south-eastern part that looks relatively clean. Cr spa-
tial variability appears to be denser than that of Mn. The 
abundance of Cr is caused by a variety of human-related 
activities such as electroplating. In addition, the indus-
trial  utilization of chromium in alloy creation, such as 
the steel industry and sewage discharge, are responsible 
for the Cr hotspots on the map. According to Goovaerts 
[67], the source of PTEs such as Cr, the geochemical/geo-
logical background of Cr  is normal in generally. None-
theless, its accumulation in agricultural soils may well 
be altered by anthropogenic sources related at times. 
Even though Mn is naturally occurring, the regular injec-
tion of manganese sulphate to farmland  to boost yields 
in plants such as veggies and beans continuously raises 

Table 3 Showing the correlation matric between PTEs

Mn Ni Pb Zn As Cd Cr Cu

Mn 1.00

Ni 0.24 1.00

Pb 0.42 0.21 1.00

Zn 0.38 0.45 0.83 1.00

As 0.38 0.07 0.75 0.62 1.00

Cd 0.43 0.30 0.85 0.78 0.90 1.00

Cr 0.49 0.27 0.28 0.27 0.25 0.34 1.00

Cu 0.40 0.69 0.35 0.44 0.16 0.31 0.29 1.00
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the concentration of PTEs [68]. The eastern and south-
eastern areas of the map exhibited a sectorial spatial pat-
tern distribution of Zn and Pb. The distribution of Pb and 
Zn  spatially  is linked directly to fertilizer application 
on farmlands, vehicular traffic, steel industry, and fuel 
knocking, which is consistent with the preceding study 
by Rodriguez et al., [69] stating that elevated levels of Zn 

and Pb in cultivated soil are due to anthropogenic factors 
composed by human-associated activities.

Source apportionment via PMF
The source apportionment of PTE contributions was per-
formed applying the PMF receptor model, and the total 
number of samples included in the PMF analysis for each 

Fig. 3 The spatial distribution of PTEs in agricultural soil
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PTE was 115 (see Fig. 4). The minimum Q controls the 
residual matrix, which guarantees that an acceptable 
number of factors are generated. The PMF discharged 
factors loading that ran for twenty iterations, and all of 
the minimal Q converge in the current paper. Among the 
20 iterations, run 14 was chosen to discharge the factor 
loadings and the proportional contributions of each PTE 
in the study. For a PTE to dominate a factor loading, the 
percentage dominant was fixed at 40% or more.

Factor 1 provided high factor loadings values com-
prising Pb and Zn (47.3% and 41.4%, respectively). The 
predominance of Pb and Zn in agricultural soil can be 
traced primarily to several sources. The dominant PTEs 
(Pb and Zn) in factor 1 are principally anthropogenic 
origin, evidenced by the projected principal component 
contribution loadings (Fig. 2) and have a strong correla-
tion. They have elevated mean concentrations above the 
regulated thresholds, that is, WAV and EAV. Chakraborty 
et al. [70] and Khosravi et al. [71] reported that Zn and 
Pb are the principal PTEs pollutants in peri-urban and 
urban agricultural soil. The high level of Pb in the agri-
cultural fields may be attributable to vehicular traffic, 
abrasion of tyres, knocking of fuel, and a limited geogenic 
source. Earlier reports from Tepanosyan et al. [72] and Li 
et al. [73] suggested that Pb accumulation in the soil may 

be attributable to automotive traffic, fuel knocking, and 
abrasion tyres. Similarly, Arditsoglou and Samara, [74] 
Hjortenkrans et al. [75] and Guan et al. [76] reported that 
Pb is deposited throughout agricultural fields via road 
networks used by automobile machines that connect 
vicinities, suburbs, and farmlands, where automobiles, 
agricultural-based machinery, and discharge equipment’s 
which is Pb-containing exhaust, triggering soil pollu-
tion. Nevertheless, the source of Zn in the soil might 
be accredited to the steel industry within the study area 
and the wearing of vehicular tyres. Al-Khashman and 
Shawabkeh [77] and Wang et al. [78] recounted that the 
level of Zn in the soil might be attributable to the steel 
industry and tyre wearing. The metal and steel industries 
employ a high amount of Zn, which is generally used 
as an anti-corrosive agent in other metal products and 
exhibits galvanizing and alloy forming properties. There-
fore, factor 1 source of pollution will be ascribed to the 
blend of the steel industry and vehicular traffic.

Factor 2 was controlled by Cu and Ni, accounting for 
57.2% and 61.7% factor loading, respectively. The hot-
spots on Factor 2 spatial distribution map indicated that 
the Cu and Ni hotspots in the northwest enclave origi-
nated primarily from agricultural activities. The PCA 
projection in Fig. 2 suggests that the source of Ni and Cu 

Fig. 4 Factor profile indicating the proportional contribution of PTEs from PMF receptor model
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in the farmlands is mostly linked towards the geogenic 
origin. Nevertheless, Cu excess beyond the EAV also 
hints at a collaborative effort between geogenic sources 
and anthropogenic sources such as livestock manure. 
Copper accretion is correlated chiefly to cattle manure 
[79] because the confluence of Cu and Zn functions as a 
complement (anti-bacterial agent in the gut) [80], which 
boosts microbial activity and also modulates weaning 
patterns [81]. The application of Cu-rich manure (espe-
cially from livestock like pigs) and phosphate-based ferti-
lizers, according to Cheng et al., [82] and Xiong et al. [79], 
may perhaps ultimately lead to Cu accumulation in agri-
cultural soil. Even though Ni concentrations in agricul-
tural area may be attributed to a geogenic source, the high 
levels recorded at specific sample locations are confirmed 
by the spatial distribution map (Fig.  3), demonstrating 
that the steel industry is the polluting catalyst. Accord-
ing to Al-Khashman [77] and Harasim and Filipek [83], 
the steel and metal industries, food processing, tyre wear, 
vehicular traffic, and corrosion appear to be the sources 
of Ni contamination. Numerous reports like Li et al. [84] 
and Chen et al. [85] have indicated that Ni arises through 
manufacturing activities such as steel manufacturing and 
metal processing. Ni plays a vital function in the creation 
of alloys such as nickel stain (a tin and nickel alloy), sil-
ver (a copper, nickel, zinc) and nickel bronze alloy (a tin 
and copper solution). Factor 2 pollution will primarily be 
attributable to geogenic sources, which will be bolstered 
by steel production industries and livestock manure.

Factor 3 was overshadowed by As, which had a source 
contribution of 72.2%. Most insecticides, herbicides, and 
pesticides, like sodium arsenate, calcium arsenate and 
lead arsenate, are high in arsenic and used in a variety 
of agricultural applications. Bhattacharya et  al. [86] dis-
covered that agrochemicals of this sort, such as sodium 
arsenate, calcium arsenate and lead arsenate,  are high 
inorganic As. In previous research, Micó et  al. [87] and 
Nicholson et  al. [56], Jayasumana et  al. [88, 89] sug-
gested that the potential sources of As-enrichment in 
soil are agrochemicals. Furthermore, Liu et  al. asserted 
that animal wastes containing organo-arsenic feed addi-
tives constitute a significant source of arsenic pollution 
in agricultural fields due to concentrated animal feeding 
activities. Factor 3 source of pollution will be ascribed to 
agrochemicals.

Cr and Mn controlled the final factor (factor 4) with a 
contribution load of 47% and 49%, respectively. Thus, the 
chromium concentration in the agricultural field might 
be attributed to a geogenic source. However, in some 
sampled locations, excesses based on maximum values 
also point to an anthropogenic source supplementing the 
geogenic source. In addition, the consistent application of 
phosphate fertilizer to the soil during each crop season 

introduces Cr into the soil, raising the concentration of 
Cr in farmlands. Liu et  al. [90] recounted that the con-
centration of Cr per bag of phosphate fertilizer ranges 
from 30 to 3000  mg/kg. Nonetheless, current literature 
by Zhang et al. [91] indicated that high-level Cr concen-
trations in cultivated soils that exceed the permissible 
threshold limit are not limited to agro-related sources 
but rather a blend of parental material and anthropogenic 
sources. The mean concentration of Mn in the current 
agricultural soils is 1.43 and 1.33 times greater than the 
WAV and the EAV permissible threshold. This suggested 
that the high levels might be attributed to a diverse 
source such as the steel industry and fungicides. Accord-
ing to Bradl [92] Mn is used in the steel industry to pro-
duce ferromanganese steel. However, Shaw [93] reported 
that fungicides had been an integral component of plant 
disease management regimens for agronomic crops. Fun-
gicides are applied to agricultural fields to prevent or 
limit the spread of fungus-caused disease. The successive 
application of manganese-based fungicides such as foliar 
fertilizers to increase yield elevates Mn concentration in 
agricultural soil. Factor 4 source pollution will be linked 
to a geogenic source that is actively augmented by the 
steel industry and fungicides.

The shown self-organizing map (SeOM) illustrates the 
concentration of PTEs in the PMF factor loadings as 
component planes composed of individual neurons. The 
component plane exhibited diverse colour patterns, as 
shown in Fig.  5. Based on the number of samples used 
in this study, the suitable neurons per mapped map was 
55. The SeOMs were created with various colours, and 
the more similar the colour pattern, the more identical 
the sample attributes. Factor 1 and 3 components plane 
bore a striking resemblance in colour to the neighbour 
distance plot (U–Matrix). Factor 1 component plane was 
loaded with dominant PTEs such as Pb and Zn with a 
single high neuron on the left side of the map on the sixth 
block of neurons. Factor 2 component plane was loaded 
with the dominant PTEs Cu and Ni, exhibiting moderate 
to high neurons. The high neuron was envisaged on the 
fourth block of neurons of the map. Factor 3 was loaded 
with dominant PTE  such as  As, and the high neuron 
equally was seen on the Fourth block of neurons. Fac-
tor 4 was controlled by the PTEs like Mn and Cr, and the 
SeOM displayed a variety of colour shades from mild to 
moderate, moderate to a high neuron. The high neuron 
was seen on the tenth neurons block.

Generally, a redder colour neuron was displayed in the 
SeOMs. The component plane of the factor1 SeOM map 
showed a hotspot for the dominant PTEs. The proportion 
of Pb, Zn, Cd, and As is predominantly anthropogenic 
in origin, accounting for 70.76% of factor 1 loading, con-
firming that SeOM for the factor 1 component plane is 
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Fig. 5 Component planes for each PMF factor scores loadings (PMF factor scores SeOM) variable output
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primarily anthropogenic. Factor 2 percentage proportion 
was dominated by geogenic PTEs (Ni, Cu, Mn, and Cr), 
which accounted for 75.94% of the cumulative variation. 
The factor 2 component plane was more geogenic due to 
the significant percentage proportion accrued by Ni, Cu, 
Mn, and Cr in factor 2 loading. Based on the PTEs (Pb, 
Zn, Cd, and As) percentage proportion (80.11%) accu-
mulated, the factor 3 SeOM component plane is more 
anthropogenic. Based on the percentage proportion 
(67.33%) accrued by the PTEs (Ni, Cu, Mn and Cr), factor 
4 component plane was ascribed to geogenic source.

K-means (silhouette) on the training map resulted in 
three distinct clusters (1–3). The partitioned three clus-
ters developed using the K-means technique are displayed 
in distinct colours that correspond to the U-Matric com-
ponent plane boundaries. Based on the silhouette tech-
nique (see Fig.  6), the cluster was ideal. The four-factor 
component planes represent the four-factor loadings in 
the PMF receptor model, which is simplified to allow for 
appropriate clustering interpretation [94]. The cluster-
ing of the 115 observation points allotted sampled points 
as follows; cluster 1 gathered the most soil samples, 102, 
out of a total of 115, cluster 2 received 12 samples, but 
Cluster 3 only obtained 1 (see Fig. 6). Due to the diverse 
anthropogenic and natural processes that influence soil 
formation, it is complicated to have appropriately differ-
entiated cluster patterns in the distributed map [95].

Contamination assessment of PTEs based on local 
background (LBV) and European average values (EAV)
LBV and EAV were the geochemical background levels 
used in assessing pollution levels in the study area. The 
PTEs employed in the LBV, on the other hand, were Cd, 
Cu, Cr, Ni, Pb, and Zn, and the EAV As, Cd, Cu, Cr, Ni, 
Mn, Pb, and Zn. However, a comparison of pollution lev-
els based on PI, PLI, ER, and RI was performed using the 
associated PTEs in both background levels.

Additional file 1: Table S2 shows the calculated single 
pollution index (PI) for the EAV, and the results sug-
gested that the pollution level of the PTEs ranged from 
low to high. Mn pollution was observed in 22 of the 115 
soil samples and As in 86, when PI was measured using 
EAV. Some of the locations sampled had a moderate level 
of pollution, and 92 of the areas sampled had a moderate 
level of Mn and As (67). (i.e. using the EAV). Manganese 
and arsenic pollution levels were high in a single observa-
tion location (sampled point 18 for Mn) and in 3 sampled 
areas for As. The PI for the following PTEs was estimated 
using both EAV and LBV as the geochemical background 
values: Cd, Cu, Cr, Zn, Ni, and Pb (see Additional file 1: 
Tables S2 and S5). Nickel, lead, zinc, chromium, and cop-
per levels were low when EAV was used as the geochemi-
cal background level in 106, 44, 44, 113, and 108 sampled 
locations. Based on LBV as the geochemical background 
level, the number of sampled locations 106, 105, 61, 115 
and 84 exhibited low pollution levels for the following 
PTEs Cu, Cr, Zn, Ni, and Pb. In EAV, Ni, Pb, Zn, Cd, Cr, 

Fig. 6 Number clusters classification components
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and Cu showed moderate pollution levels in 9, 67, 70, 29, 
2, and 7 sampled locations, respectively, whereas, in LBV, 
moderate pollution levels were found in 9, 9, 27, 84 and 
53 sampled locations, except for Cr, which showed none. 
In comparison, Pb, Zn, and Cd pollution levels estimated 
using EAV suggested that Pb, Zn, and Cd exhibited a 
considerable pollution level in 4, 1 and 73 sampled loca-
tions, respectively, whereas using LBV just a single sam-
pled location showed a significant pollution level for Pb 
and Zn, and 27 for Cd. The number of sampled locations 
with high levels of Cd pollution in the study area was 13 
based on EAV and 88 based on LBV.

The estimated pollution load index (PLI) exhibited a 
varied response for both background levels; however, all 
background levels revealed low pollution levels in 104 
locations for EAV and 103 locations for LBV. Further-
more, for 7 locations, both background values showed 
moderate pollution. Only 3 locations had high pollution 
levels for EAV and 4 for LBV, but one (sample point 104 
with PLI value 498: see Additional file  1: Table  S4) had 
very high pollution levels for both background levels. The 
spatial distribution patterns of the pollution level based 
on both background levels were comparable (Fig. 7). The 
PLI maps revealed moderate pollution levels with patches 
of the hotspot and low spots in the south-eastern part of 
the map. These hotspots are consistent with the observed 
high PI values.

The ecological risk (ER) approach was utilized to exam-
ine the influence of various PTEs on cultivated soils. 
Except for Cd, the results of the ER assessment of cul-
tivated soil samples indicated a low-risk analysis for all 
PTEs (Ni, Pb, Zn, Cr, and Cu) in both background lev-
els used (see Additional file 1: Tables S3 and S6). Based 
on the background levels application, 15 of the 115 ana-
lysed locations revealed a moderate ecological risk level 

for the EAV, but none showed a moderate ecological risk 
level for LBV. On the other hand, 13 locations exhibited a 
considerable ecological risk level for LBV and the EAV 77 
observed locations. Based on the background levels, the 
high ecological risk level was 78 for the LBV and 19 for 
the EAV. In contrast, both background levels exhibited 
very high ecological risk in 24 for LBV and 4 for EAV for 
the background levels in sampled locations, respectively.

The calculated risk index of the study region also 
indicated that 3 sampled locations had low ecologi-
cal risk levels for LBV and 64 for EAV (see Additional 
file  1: Table  S4). Relatively, the LBV and EAV exhib-
ited moderate ecological risk levels in 70 and 44 sam-
pled locations, respectively. Similarly, the risk index 
based on the application of the LBV as the geochemical 
background level revealed that 36 of the sampled loca-
tions were considerably risky, whereas the EAV, 6 sam-
pled locations were considerably risky. Only 6 of the 
sampled locations had a very high ecological risk for 
the LBV, while EAV a sample location exhibited high 
ecological risk. The RI-OK (risk index ordinary krig-
ing) spatial distribution map revealed that the major-
ity of the risk-prone areas were in the northeastern 
and southwestern parts of the map for the potential 
ecological risk index based on EAV (PERI-EAV) and 
the northwestern to southwestern parts of the map 
for the potential ecological risk index based on LBV 
(PERI-LBV) (Fig. 8). According to the maps, the under-
lying cause of pollution in that region may be mostly 
traced to industrial and agricultural activities. The PLI 
and RI values for agricultural soils in Frydek Mistek’s 
district indicated  that pollution levels range from low 
PTE pollution to very high pollution risk. As a result, 
it’s critical to identify PTE pollution sources on agri-
cultural soil. LBV use is recommended, particularly 

Fig. 7 Spatial distribution of PLI_OK (pollution load index kriging) displaying the levels of pollution for Ni, Pb, Zn, Cd, Cr and Cu in the study area
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when anthropogenic impacts and high levels of pollu-
tion are anticipated, because these levels might vary 
significantly among lithogenic contexts and should be 
examined in pedologically and geologically homogene-
ous areas [96]. However, using a reference geochemical 
background (e.g., EAV, UCC, and WAV) in the quanti-
fication of pollution level allows information about soil 
quality assessment to be analysed on a worldwide scale, 
enabling comparative studies beyond the local scale, 
and pollution indices that require reference geochemi-
cal background in their computation to be more multi-
purpose [96, 97].

Potential human health risk
Non‑carcinogenic risk
The computed  CDItotals, HQ and HI values for non-Car-
cinogenic risk are displayed in Additional file  1: Tables 
S7–S10. The  CDItotal distribution of PTEs in cultivated 
soils in the current research (children and adults) is pre-
sented in the following decreasing order: Mn > Zn > Pb > 
Cr > Cu > Cd > Ni > As (see Additional file 1: Tables S4 and 
S5). Additional file 1: Tables S4 and S5 illustrate the total 
non-carcinogenic intake  (CDItotal) of adults and children. 
The CD total values for children compared to adults indi-
cate that children are slightly higher than adults. The 
 CDItotal of the PTEs per sampled data (see Additional 
file 1: Table S7 and S8) suggested that the children expo-
sure rate is higher than that of the adults. However, the 
children’s computed hazard quotient (HQ) appears to 
be higher than the adults HQ (Additional file  1: Tables 
S9–S10). Based on the maximum and minimum range 
values of the HQs of children and adults per PTE, which 
fall between the following ranges such as 4.90E−02 to 
2.82E−01 (Cr), 3.12E−03 to 2.72E−02 (Ni), 2.53E−03 to 
2.01E−02 (Cu), 7.91E−02 to 1.30E+00 (As), 1.70E−02 to 

1.55E−01 (Mn), 3.51E−02 to 5.72E−01 (Pb), 1.60E−03 
to 1.16E−02 (Zn) and 8.42E−03 to 1.01E−01 (Cd) for 
children whereas the adults are 5.37E−03 to 3.10E−02 
(Cr), 3.34E−04 to 2.92E−03 (Ni), 2.71E−04 to 2.15E−03 
(Cu), 8.48E−03 to 1.39E−01 (As), 1.82E−03 to 1.66E−02 
(Mn), 3.77E−03 to 6.14E−02 (Pb), 1.72E−04 to 1.25E−03 
(Zn) and 9.19E−04 to 1.10E−02 (Cd). The calculated 
HQs values for PTEs of the minimum and maximum val-
ues (both children and adults) descend in this order As > 
Pb > Cr > Mn > Cd > Ni > Cu > Zn. The findings confirmed 
that ingestion was the most probable route for people in 
the study area to be exposed to PTEs. The variability of 
the measured PTEs concentration per sampled location 
revealed that the HI (for children) values estimated per 
2 × 2  km suggested that 7 of the sampled location were 
higher than 1. Nonetheless, the HI estimated also sug-
gested that 6.1% (1.01E+00 to 2.05E+00 that is 7 out of 
115 sampled locations) of the total study area posed a 
high non-carcinogenic risk to children (see Additional 
file 1: Table S9). Similarly, 13.04% of the entire sampled 
area (i.e. 0.704–0.90, or 15 out of 115 for children) is on 
the verge of exceeding the allowable threshold if remedial 
action is not undertaken (see Additional file 1: Table S9). 
Children are more vulnerable to the health impacts of 
PTEs due to oral and finger practice, according to Agy-
eman et  al. [98], and appear to be highly susceptible to 
PTEs. Numerous studies that employ PTE mean values 
to determine the risk to human health have consistently 
confirmed a High HI or lower risk level. Children’s HI 
values in some studies that reported high or low HI val-
ues for children are as follows: Agyeman et al. [98] Han 
et al. [99], Natasha et al. [100], Wang et al. [101], Bhandari 
et al. [102] and Zheng et al. [103]. The computed HI for 
the adult is not statistically  significant considering it is 
lower than the reference value 1; it thus implies that if 

Fig. 8 Potential ecological risk index spatial distribution of (PERI-Kriging) showing pollution levels for Ni, Pb, Zn, Cd, Cr and Cu in the study area
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exposed, a non-carcinogenic adverse impact on an adult 
is not likely.

The spatial distribution of the hazard quotient of the 
PTEs per sample location suggested that the As, Pb, and 
Cd hazard quotient (AsHQ, PbHQs and CdHQs) for 
both children and adults showed similar colour patterns 
and hotspots in the northeastern and the south-eastern 
part of the map (see Figs.  9 and 11). The steel industry 
and agricultural activities in the suburbs are extremely 
probable to account for the hotspots, predicated on the 
commonality of the hazard quotient maps of As, Pb, and 
Cd. Chromium and manganese also share similar col-
our patterns of the hazard quotient spatial distribution 
map. Both (CrHQs and MnHQs) showed hotspots at 
the southwestern part of the map and moderate-to-low 
patches all over (see Figs. 9 and 10). This might be attrib-
utable to the usage of phosphate fertilizer and fungicides 
on agricultural fields to increase yield. This is supported 
by the estimated PMF, which revealed that Cr and Mn 
were the major PTEs in the factor 3 loadings.

Copper and nickel share similar hotspots pattern in 
the northwestern and the northeastern part of the haz-
ard quotient spatial distribution map (see Fig. 10). Never-
theless, Ni showed more clearer or denser hotspots than 
copper. The PMF factor discharged confirms the hotspot 
pattern of Cu and Ni since Cu and Ni were the dominant 
PTEs in factor 4. Zinc showed a hotspot in the north-
western part of the map, which might be attributed to 
agriculture fertilizer and other tenants such as steel and 
metal industries that use zinc to coat iron and steel as a 
protective layer to inhibit corrosion.

The spatial distribution map of the adult and chil-
dren hazard indexes has a similar colour pattern and 
hotspots. The children’s degree of prediction based on 
the precise scale, on the other hand, suggested that the 
children residing within the enclave of the northeastern 
and south-eastern parts of the HI children spatial dis-
tribution map are exposed and vulnerable to PTEs (see 
Fig.  11). Therefore, premised on the children’s HI dis-
tribution map scale, it can be inferred that HI values of 

Fig. 9 Spatial distribution of hazard quotient (HQ) of PTEs (As, Cd and Cr) per sampled location
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0.8 or higher are risk-prone areas, and thus corrective 
action should be made to mitigate the imminent threats 
to children.

Carcinogenic risk
CDItotal, TCR, and CR for both children and adults were 
computed, as shown in Additional file  1: Tables S11–
S14. The chronic daily intake was calculated for Cd, Cr, 
Pb, Ni, and As. The  CDItotal for adults and children are 
given in this descending order Pb > Cr > Ni > As > Cd. 
The  CDItotal for children per sampled location for 
each PTE ranges between 1.20E−05 to 6.89E−05 (Cr), 
5.33E−06 to 4.65E−05 (Ni), 2.03E−06 to 3.34E−05 
(As) 1.05E−05 to 1.71E−04 (Pb) and 6.65E−07 to 
7.99E−06 (Cd), whereas the adults Cr 5.13E−06 to 
2.95E−05, Ni 2.29E−06 to 1.99E−05, As 8.71E−07 to 
1.43E−05, Pb 4.50E−06 to 7.32E−05 and Cd 2.85E−07 
to 3.42E−06. Regardless of the estimated value of the 
PTEs, children’s  CDItotals were higher than adults. PTEs 

cause various health issues in children, including cardi-
ovascular disease, poor respiratory function, cognitive 
deficits, reproductive toxicity, and bone damage [104]. 
Adults and children had higher Cr  CDItotals than the 
other PTEs. Furthermore, children’s  CDItotal was signif-
icantly higher than adults’ (see Additional file 1: Tables 
S11 and S12). The CR for all PTEs in adults was found 
to be significantly lower than that of children.

The difference in measured values per sampled loca-
tion exhibited different values for TCR. Based on the 
maximum and minimum values of the estimated TCR, 
it was apparent that the TCR of the children at all the 
observation points were found to be higher than that of 
the adult. The results revealed that 13.05% (i.e. 1 × 10 
−4 to 2.60E−04 13.04%, that is 15 sampled points out of 
115) of the sampled locations estimated TCR values 
for children were above 1 ×  10–6 to 1 ×  10−4. However, 
the TCR estimated (for children) indicated that 45.22% 
(i.e. 7.02E−05 to 9.59E−05, that is 52 sampled points 

Fig. 10 Spatial distribution of hazard quotient (HQ) of PTEs (Cu, Mn and Ni) per sampled location
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out of 115) of the sampled locations are on the verge 
of exceeding the carcinogenic risk threshold if correc-
tive measures are not enforced (see Additional file  1: 
Table S11 and S12). Nevertheless, several sampled loca-
tions’ estimated TCR for adults exceeded the permis-
sible threshold, while 2.16% (i.e. 7.26E−05 to 8.78E−05, 
or 3 out of 115 sampled locations) are on the cusp of 
exceeding the threshold. Due to the variability of meas-
ured PTEs values per sample location, the tendency of 
carcinogenic risk to befall a child is higher than that of 
an adult. Based on location-wise sampled data, the car-
cinogenic risk of the study area implies that some of the 
sample locations are carcinogenically risky to children 
compared to adults.

As a result, the likelihood of indigenous peoples, par-
ticularly children, being exposed to carcinogenic-related 
health risks is significant at some sample locations 
(13.04% or 15 sampling points out of 115) for children. 
Furthermore, the CR and HI of children were shown to 

be higher than that of adults, showing that children are 
nevertheless more likely to be exposed to PTEs because 
of their behavioural patterns, which increase the propen-
sity for skin, particularly hand contact.

The spatial prediction of As and Cd carcinogenic risk 
for adults and children showed a similar hotspot pattern 
in the northeastern and south-eastern parts of the map 
(see Fig. 12). However, the hotspots anticipated that chil-
dren with carcinogenic arsenic risk (CRAs) had a denser 
colour pattern, as evidenced by the predicted values. The 
spatial distribution of children’s carcinogenic chromium 
risk (CRCr) revealed patches of hotspots, mainly in the 
northwestern and southwestern parts of the map (see 
Fig. 12). On the other hand, the adult displayed sporadic 
dotted moderate distribution with a broad scale of mild, 
moderate distribution across the study area. Nickel car-
cinogenic risk prediction, on the other hand, revealed 
moderate hotspots with a combination of high patches 
of hotspots in the northwest and the majority of the 

Fig. 11 Spatial distribution of hazard quotient (HQ) of PTEs (Pb and Zn) and health index (HI) per sampled location
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eastern enclave for both adults and children (see Fig. 13). 
Despite the similarities, the predicted values showed that 
the degree of exposure to children is greater than that of 
adults. The carcinogenic exposure rate of children to that 
of adults for Pb (CRPb) distribution map revealed mod-
erate to high hotspots for children from the northeast 
to the southwest. Meanwhile, the adult CRPb map pre-
diction revealed a continuous low hotspot with multiple 
dotted hotspots from the northeastern to the southwest-
ern part of the map (see Fig. 13). When the current TCR 
is compared to similar studies conducted by Weissman 
nova et  al. [105] in Ostrava, Czech Republic, it appears 
that Pb poses a significant health carcinogenic risk, Cd 
poses a moderate risk, and Cr poses a very high risk to 
children. This confirms the current study’s findings that 
children are more vulnerable to PTE-related health risks 
than adults. In contrast, Kebonye et  al. [106] affirmed 
the recent findings that children are more susceptible 

to PTEs exposure than adults in riverine soils, Příbram 
(Czech Republic).

The TCR maps for the children and adults have similar 
hotspot patterns from the northeast to the southwest (see 
Fig. 13). The TCR of that of children predicted values, on 
the other hand, revealed that the children residing within 
the enclave of the northeastern to the southern were in 
imminent danger. It can be inferred from the moder-
ate to high hotspots patterns that begin at 1.0E-04 and 
higher (children TCR map) suggest  that the  risk associ-
ated with carcinogenic-related health issues in children, 
such as cancer of the skin, kidney, bladder, lung, pros-
tate, and stomach, may occur earlier or later in their life 
journey. Numerous studies show that PTEs amass in fat 
tissues and subsequently negatively impact functions of 
the central nervous structure, immune and the endocrine 
systems, the urogenital and cardiovascular systems, and 
normal cellular metabolism [107, 108].

Fig. 12 Spatial distribution of hazard quotient (HQ) of PTEs (As, Cd and Cr) per sampled location
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Conclusion
In this study, a sample location technique was used to 
assess human health risk exposure and ecological risk 
of PTEs pollution in agricultural soils in the district of 
Frydek Mistek, Czech Republic. The utilization of the 
local background value and the European average value 
in the computation of pollution levels such as the single 
pollution index, pollution load index, and potential eco-
logical risk revealed a variety of pollution levels based 
on dissimilarities in the threshold limits from disparate 
geochemical background levels. The PCA identified the 
primary pollution sources in the research area and con-
firmed the significant statistics of 71.21%. It suggested 
that the pollution source originated from a combination 
of sources, such as anthropogenic and geogenic sources. 
Pb and Zn (factor 1), Cu and Ni (factor 2), As (factor 3), 
and Mn and Cr (factor 4) predominate in various factor 

loadings, according to the source apportionment. The 
pollution assessment revealed that the pollution levels 
and ecological risk assessment ranged from low to high 
for pollution degrees and an exhibition of low to high 
pollution levels for pollution load index estimation. The 
health assessment risk for both carcinogenic and non-
carcinogenic for adults and children indicated that the 
children are more exposed to adults. The sampled point-
wise health risk assessment suggested that 13.05% of the 
totals sample locations are carcinogenically risky to chil-
dren, and 6.04 of the sampled locations are likewise non-
carcinogenically risky. The health risk spatial distribution 
map exposed the ecologically risky areas imminent to 
human health, especially children. PTEs in the soil can be 
increased by continually utilizing agricultural inputs and 
other anthropogenic activities such as the steel produc-
tion industries. Due to the variability in observed PTEs 
concentration, the traditional approach of estimating 
health risk using mean concentration does not accurately 

Fig. 13 Spatial distribution of hazard quotient (HQ) of PTEs (Ni and Pb) and total carcinogenic risk (TCR) per sampled location
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reflect the health condition of the area under study. We 
suggest that using the sampled location approach for 
future health risk assessment computations is essen-
tial. This enables the researcher to fully comprehend the 
study area and proffer remedial countermeasures at eco-
logically risky locations and on the verge of entering the 
high-risk zone. In general, the findings of this study are 
both informative and practical knowledge of the contam-
ination of PTEs within the district of Frydek Mistek and 
the health-related risk status of individuals living in the 
neighbourhood.
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A B S T R A C T   

Zinc (Zn) is a vital element required by all living creatures for optimal health and ecosystem functioning. 
Therefore, several researchers have modeled and mapped its occurrence and distribution in soils. Nonetheless, 
leveraging model predictive performances while coupling information derived from visible near-infrared (Vis- 
NIR) and soils (i.e. chemical properties) to estimate potential toxic elements (PTEs) like Zn in agricultural soils is 
largely untapped. This study applies two methods to rapidly monitor Zn concentration in agricultural soil. Firstly, 
employing Vis-NIR and machine learning algorithms (MLAs) (Context 1) and secondly, applying Vis-NIR, soil 
chemical properties (SCP), and MLAs (Context 2). For the Vis-NIR information, single and combined pretreat-
ment methods were applied. The following MLAs were used: conditional inference forest (CIF), partial least 
squares regression (PLSR), M5 tree model (M5), extreme gradient boosting (EGB), and support vector machine 
regression (SVMR) respectively. For context 1, the results indicated that M5-MSC (M5 tree model-multiplicative 
scatter correction) with coefficient of determination (R2) = 0.72, root mean square error (RMSE) = 21.08 (mg/ 
kg), median absolute error (MdAE) = 13.69 and ratio of performance to interquartile range (RPIQ) = 1.63 was 
promising. Regarding context 2, CIF with spectral pretreatment and soil properties [CIF-DWTLOGMSC + SCP 
(conditional inference forest-discrete wavelet transformation-logarithmic transformation-multiplicative scatter 
correction-soil chemical properties)] yielded the best performance of R2 = 0.86, RMSE = 14.52 (mg/kg), MdAE 
= 6.25 and RPIQ = 1.78. Altogether, for contexts 1 and 2, the CIF-DWTLOGMSC + SCP approach (context 2) was 
the best Zn model outcome for the agricultural soil. The uncertainty map revealed a low to high error distribution 
in context 1, and a low to moderate distribution in context 2 for all models except CIF, which had some patches 
with high uncertainty. We conclude that a multiple optimization approach for modeling Zn levels in agricultural 
soils is invaluable and may provide fast and reliable information needed for area-specific decision-making.   

1. Introduction 

For many years, reasonably accurate and reliable conventional lab-
oratory methods such as the Inductively Coupled Plasma Optical Emis-
sion Spectroscopy (ICP-OES) and Atomic Absorption Spectroscopy 
(AAS) have been solely used to quantify elemental levels in different 
environmental matrices including soils, vegetation and water (e.g. 
Gomez et al., 2007; Tighe et al., 2004; Nomngongo et al., 2013). 
Already, there are dozens of researches that confirm the importance of 

these methods for quantifying elemental levels specifically in soils. 
Nonetheless, the limits allied to the increase in costs of purchasing such 
methods plus the actual analytical procedures, time constraints involved 
in sample analysis as well as the non-environmentally friendly side of 
the methods remain a challenge. Since results from these analytical 
methods are important for different soil-related decisions and applica-
tions, alternative methods had to be developed to address this cause. 
Fortunately, proximal soil sensing has allowed for fast, rapid, 
cost-effective and environmentally friendly monitoring of soil elemental 

* Corresponding author. 
E-mail address: agyeman@af.czu.cz (P.C. Agyeman).  

Contents lists available at ScienceDirect 

Journal of Environmental Management 

journal homepage: www.elsevier.com/locate/jenvman 

https://doi.org/10.1016/j.jenvman.2022.116701 
Received 23 August 2022; Received in revised form 25 October 2022; Accepted 1 November 2022   

mailto:agyeman@af.czu.cz
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2022.116701
https://doi.org/10.1016/j.jenvman.2022.116701
https://doi.org/10.1016/j.jenvman.2022.116701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2022.116701&domain=pdf


Journal of Environmental Management 326 (2023) 116701

2

levels while leveraging machine learning algorithms (MLAs) to obtain 
reliable estimates (Bellon-Maurel et al., 2010). For these estimates, 
different proxies are normally applied alongside the MLAs to estimate 
variables of interest. Common proximal sensors used in soil-related 
studies include the portable visible near-infrared spectrometer (vis--
NIR) (e.g. Khosravi et al., 2018), portable X-ray fluorescence spec-
trometer (pXRF) (Kebonye et al., 2021) and electromagnetic (EM) 
induction instruments such as the EM38 (e.g. Khongnawang et al., 
2022). 

Some of the many good examples of using MLAs coupled with 
proximal sensing data including vis-NIR (400–1200 nm) and shortwave 
infrared (1200–2500 nm) reflectance spectroscopy have been used to 
analyze the spectrally active attributes of soil and sediment samples, 
which include PTEs (Khosravi et al., 2018), soil organic carbon (Hutengs 
et al., 2019), soil organic matter (Hong et al., 2019a), sediments (Jiang 
et al., 2018), and soil attributes such as pH, soil organic matter and 
nitrogen content (Ahmadi et al., 2021). Certainly, vis-NIR combined 
with diverse soil-measured datasets such as those obtained via pXRF is 
gaining popularity in soil science because of the previously mentioned 
benefits. These benefits are also corroborated by Bellon-Maurel et al. 
(2010). Moreover, since the application of proximal sensors mostly in-
volves minimal sample pre-processing (e.g. grinding and pulverization) 
to facilitate or improve measurements, therefore, vis-NIR may well be 
suitable for long and rapid surveillance of soil PTE contents. Even 
though soil PTEs are spectrally unresponsive (Stenberg et al., 2010), 
their interactions with spectrally active soil components such as clay, 
SOM, and Fe oxides might well permit for Vis-NIR prediction of these 
metals (Wang et al., 2014; Y. Wu et al., 2007). Low PTE concentrations 
lack spectral properties within the Vis-NIR region; nevertheless, the 
association between the content levels of these featureless elements and 
the responsive soil attributes can be used to estimate their enriched 
levels (Khosravi et al., 2018; Wu et al., 2007). The prediction of PTEs in 
soils and sediments using Vis-NIR spectral reflectance coupled with 
MLAs is increasing. In the past, Vis-NIR coupled with MLA was mostly 
used to predict soil properties including soil organic carbon and organic 
matter. The application of spectral reflectance coupled with MLAs for 

quantifying PTEs is widely reported by researchers including Biney et al. 
(2022); Cao et al. (2020); Devianti et al. (2019); Shi et al. (2014); Luce 
et al. (2017); Wang et al. (2014) and Xu et al. (2021). The combination 
of Vis-NIR and MLAs in the estimation of PTE content in soil has become 
an effective alternate tool for evaluating the concentration of PTEs in 
soil or sediments. Even though there is no one sure way of predicting the 
concentration of PTEs in the soil or sediments, the complementary 
relationship between Vis-NIR spectra reflectance coupled with MLAs has 
pushed the frontiers of predictive soil mapping. Despite the popularity of 
partial least squares, support vector machine, cubist, and random forest 
as complementary algorithms for spectra reflectance, it is worth 
emphasizing that there are no single MLAs that are best suited for 
spectral reflectance datasets for the estimation of PTE in sediment and 
soils. Researchers have applied different algorithms such as ensemble 
(Biney et al., 2022), extreme learning machine (Khosravi et al., 2018), 
Generalized Regression Neural Network (Xu et al., 2021), extreme 
gradient boosting (Zhao et al., 2022), stepwise multiple linear regression 
and multiple linear regression (Choe et al., 2009) coupled with spectra 
reflectance in the prediction of PTEs in sediments or soil. On account of 
the existing literature regarding the application of proximal sensors for 
monitoring PTEs in soils, generally few studies predict PTE levels in 
agricultural soils while leveraging information from Vis-NIR spectros-
copy and soil chemical properties. The benefits of such an approach may 
facilitate rapid elemental monitoring in agricultural soils and also allow 
for conclusions to be drawn regarding the main drivers of PTEs within 
these specific soils. 

The current study aims to capitalize on the potential for modeling Zn 
concentration levels in agricultural soil by combining a Vis-NIR spectral 
reflectance dataset with soil chemical properties and MLAs. The esti-
mation of Zn concentration levels in cultivated soils is done in two ways: 
the prediction of Zn concentration in agricultural soil using machine 
learning algorithms and Vis-NIR spectra reflectance (Context 1) and the 
prediction of Zn concentration in agricultural soil using Vis-NIR spectra 
reflectance, soil chemical properties, and machine learning algorithms 
(Context 2). The study’s objectives are to (i) quantify the concentration 
of Zn in cultivated soil based on a series of MLAs coupled with Vis-NIR 

Fig. 1. The map Czech Republic (A), Frydek Mistek district (B), Research location coupled with the partitioned dataset employed (training and test) (C) Study area 
with sampling locations (D). 
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spectral reflectance; (ii) determine whether combining Vis-NIR, soil 
chemical properties, and MLAs in the estimation of Zn content in agri-
cultural soil will improve prediction accuracy; (iii) determine the level 
of uncertainty that will be propagated in both contexts and (iv) to 
evaluate the performance of a single pretreated method versus a com-
bination of pretreatment methods. 

2. Materials and methods 

2.1. Study location 

The study setting is in the Czech Republic’s Frydek Mistek local 
municipality (see Fig. 1). The study location’s landscape is distinguished 
by steep terrain and mountainous from the outer Carpathians. The site 
location is differentiated by comprehensive commercial agriculture as 
well as a myriad of metal and steel industries, and it is geographically 
located at 49◦ 41′ 0′ north and 18◦ 20′ 0′ east, at an altitude of 225–327 
m above sea level (Agyeman et al., 2020). However, using categoriza-
tion by Koppen, the study location is categorized as having Cfb =
temperate oceanic weather with elevated rainfall even throughout the 
dry months (John et al., 2021). The landmass used for this study is 889.8 
km2, which is fashioned out of a total landmass of 1208 km2 for the 
entire Frydek Mistek district (39.38 percent for farmland activities and 
49.36 percent used for forest cover). The soil’s colour scheme, structure, 
and calcareous content can all be differentiated. Notwithstanding, the 
soil’s parent materials have an intermediate to smooth texture. How-
ever, they are often commonly reported in aeolian and colluvial de-
posits, which are further best described by upper and subsoil mottles. 
These are visible in some soil geographic areas and are frequently 
accompanied by cementitious materials and bleaching. A cambic diag-
nostic horizon with a smooth sandy loam composition, a clay content 
greater than 4%, and a lithic disconnection with low carbonate content 
distinguishes them (Kozák et al., 2010). Notwithstanding, the most 
common soil types in the research setting were cambisols and stagnosols 
(Kozák et al., 2010). These soils can be found across the Czech Republic 
at elevations ranging between 160.6 m and 455.1 m for stagnosol and 
59.6–493.5 m for cambisols Vacek et al. (2020). 

2.2. Soil analysis and sampling 

Some 115 topsoil samples were obtained from cultivated land in the 
Frydek Mistek local municipality (Fig. 1). The sample design was a 
regular grid, with soil sample intervals held to 2 × 2 km based on a hand- 
held GPS (Leica-Zeno 5 GPS) device and maximum depths ranging from 
0 to 20 cm. Before being transported to the research lab, the soils were 
pre-labeled and placed in polythene bags. The soil samples were dried 
with air before being crushed using a Fritsch disk mill pulverize machine 
and mesh sieved to achieve a finely ground and homogeneous soil 
sample (less than 200 mesh, 74 μm). Each 1 g processed sample (i.e., 
powdered, thoroughly mixed, mesh sieved) was inserted into a labeled 
Teflon bottle. For each Teflon bottle, 7 ml of 35% HCl and 3 ml of 65% 
HNO3 were added (via fully automated dispensers—one per acid), and 
the lid was delicately sealed to allow the sample to remain overnight for 
sample reactions to occur (aqua regia procedure) (Cools, 2016). After 
dissolving the soil sample, the mixed solution was placed for 120 min on 
a hot plate (metal) to facilitate digestion before being allowed to cool. 
The supernatant was obtained by filtering the mixture. The supernatant 
was poured into a 50-ml Pyrex beaker and watered down to the same 
volume with deionized water. The watered-down supernatant was then 
filtered further into 50 ml PVC tubes. Furthermore, 1 ml of the diluted 
concentration was diluted with 9 ml of de-ionized water and filtered into 
a 12 ml test tube to measure the pseudo-total PTE concentration in the 
solution. Following standard procedures and protocols, ICP-OES 
(inductively coupled plasma-optical emission spectrometry) (Thermo 
Fisher Scientific Corporation, USA) was used to determine the content 
levels of zinc, magnesium (Mg), potassium (K), iron (Fe), copper (Cu), 

and phosphorus (P) respectively. The detection limits of the elements 
were 0.0060 mg L-1 (Cu), 0.0184 mg L-1 (Fe), 0.0934 mg L-1 (k), 
0.0029 mg L-1 (Mg), 0.0067 mg L-1 (P) and 0.0060 mg L-1 (Zn). 
Moreover, quality control and quality assurance (QC/QA) processes 
were guaranteed by going over the reference guidelines for each anal-
ysis. The duplicate analysis was conducted to ensure that errors were 
kept to a minimum. 

Modeling using machine learning algorithms (MLAs). 
Machine learning algorithms (MLAs) applied were, extreme gradient 

boosting, conditional inference forest, support vector machine, M5 tree 
model and partial least squares regression. Based on these MLAs, the 
datasets were each randomly split into two parts, the testing (25%) and 
training (75%) set. The training set generated the regression models 
showing the relationships between the response variable (i.e. zinc) and 
the predictor variables (i.e. Vis-NIR and soil chemical property data) 
while the testing data evaluated the performance of each model. De-
scriptions of the models are provided below together with the packages 
applied in the software R. 

2.3. Conditional inference forest (CIF) 

Conditional inference forest is a tree-growing method that is 
commonly used in bio-informatics applications (Nicodemus et al., 
2010). Theoretically, CIF differs from the conventional random forest in 
that it has more robust splitting capabilities (Hothorn et al., 2006). 
These splitting capabilities result in less biased variable selections 
(Delerce et al., 2016). The software R package “party” was used to run 
this model. 

2.4. Extreme gradient boosting (EGB) 

The extreme gradient boosting (EGB) model is a form of decision tree 
algorithm although with slightly better performance (Chen and Guest-
rin, 2016). Most EGB applications are noted in mining (Chen and 
Guestrin, 2016). Furthermore, the EGB model can optimize as well as 
adjust its hyper-parameters based on the dataset being applied (Nguyen 
et al., 2022). For this study, the EGB model was applied and executed 
through the “XGBoost” package in software R. 

Partial least squares regression (PLSR). 
The PLSR algorithm has been widely applied for spectral data. This 

model is advantageous because it can eliminate the challenges associ-
ated with multidimensionality between different predictor variables 
(Mao et al., 2021). This model resembles a linear regression model by 
assuming a linear association between the response and predictor vari-
ables (Gamon et al., 1992). Ehsani et al. (1999) provide more details 
about this model. The PLSR model was implemented using the R pack-
age “PLS”. 

2.5. Support vector machine regression (SVMR) 

Support vector machine is another famous model widely applied in 
different disciplines (Li et al., 2014). Initially proposed by Vapnik 
(1995) for supervised classification, this model now features in 
regression-based problems. In this study, the regression version of SVM 
(support vector machine regression-SVMR) is applied. This model cre-
ates an optimal disconnecting hyperplane to differentiate classifications 
that are comparable but not linearly autonomous (John et al., 2020). 
The SVMR model was applied in the software R based on the package 
“e1071”. 

2.6. M5 tree model (M5) 

The M5 model is a kind of decision tree centered on regression than 
classification tasks (Etemad-Shahidi and Mahjoobi, 2009). Originally 
this model was developed by Quinlan (1992) but later Wang and Witten 
(1996) improve this model and call it M5 trees. The M5 initially builds 
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several decision trees via recursive splitting. At the end of each tree, a 
linear function is grafted following the pruning of the overgrown trees 
(Etemad-Shahidi and Mahjoobi, 2009). The M5 model was run using the 
“Rweka” package. 

2.7. Spectral data preprocessing 

Obtaining spectra reflectance measurements in the field and the 
laboratory is usually not easy because of the various unsuitable dis-
crepancies. Thus, pretreatment and preprocessing of the spectra reflec-
tance measurements are necessary to correct such discrepancies (Biney 
et al., 2022; Dor et al., 2015). One of the most obvious benefits of using 
data pre-processing is that it can help mitigate or significantly decrease 
the number of undesirable variations that can occur during sample 
collection and laboratory processing. Some of these undesirable in-
consistencies include missing values, baseline variations, noises, and so 
on. According to Engel et al. (2013) these differences can sometimes 
mask the “true” chemically significant relationship of the internal 
mechanism, lowering the predictive outcome of the variable of interest. 
Before being subjected to the pre-processing methods described, the raw 
spectra were converted to reflectance. Multiple sample composite 
characteristics and spectroradiometer operational circumstances usually 
cause some nonlinear characteristics between the independent and 
dependent variables which result in random noise, numerous different 
scattering impacts, and threshold drift. Hence, some spectral pre-
processing techniques are applied to mitigate these issues. The spectral 
data had a wavelength range of 350–2500 nm; some spectral ranges 
from 350 to 400, as well as 2401–2500 nm, were eliminated due to 
noise, and the spectral range from 400 to 2400 nm was pretreated. The 
following pretreatment techniques were applied in this study: 
Savitzky-Golay filter (SG), logarithmic transformation (log (1/R), stan-
dard normal variate (SNV), maximum reflectance correction (CMR), 
discrete wavelet transformation (DWT), multiplicative scatter correc-
tion (MSC), and raw spectra dataset. Moreover, several combinations 
such as DWT-CMR, SG-LOG-MSC, SG-LOG-SNV, SG-SNV-MSC, 
DWT-SNV-MSC and DWT-LOG-MSC were adopted to determine their 
applicability and performance in comparison to the individual pre-
treatment methods. The spectral set of data is influenced primarily by 
the device’s processing, acquisition, and environmental factors (Dor 
et al., 2015; Mao et al., 2021) The pretreatment procedure was done in 
the software R, and the R packages employed were libraries signal, 
KernSmooth, pls, wavelets, and tripack. 

3. Mapping procedures 

3.1. Sequential Gaussian simulation (SGS) maps 

The basic concept behind SGS is to simulate consecutive grid points 
using the provisional proportion of the empirical distribution (i.e., in 
this case, the PTEs data). It generates an output resembling the actual 
spatial reality of a variable of interest. Although it is expected that the 
datasets are identifiable, the interpolated points resemble the variogram 
approach and the local noise of the nugget effect (Goovaerts, 2001). 
Besides that, it is based on a random feature model’s multi-Gaussianary 
assumption (Goovaerts, 2001; Johari et al., 2020). The dataset provides 
crucial regular score modification, ensuring at least the logic of the 
univariate data distribution. For more information on SGS refer to 
Gholampour and iranica (2019). In this study, the SGS method was 
mainly used to show the spatial distribution and characteristics of each 
soil chemical property. For each of the chemical properties, 1000 re-
alizations of each property were generated and eventually, the means for 
each were computed. These are the individual maps observed in Fig. 3. 

3.2. Bivariate maps 

Bivariate mapping is the technique of classifying spatial objects like 

grid cells or area polygons based on the values of two parameters 
(Speich et al., 2015). A single colour legend is used to visualize the two 
variables as a single output called a bivariate colour scheme. A bivariate 
map displays the spatial interactions between two raster layers (Tyner, 
2010). Spatial associations can then be explored as a single output map 
for different applications of interest. When two variables exhibit some 
spatial relationship, it is an indicator that there is some dependence 
between them. Beard & Mackaness (2006) express analogous points of 
view in the context of the ambiguity visual representation scenario, in 
which the characteristic and a method for determining its unpredict-
ability are symbolically represented in a bivariate map. Moreover, the 
efficiency of bivariate maps is compared and shown to vary by multiple 
pieces of research, and in each case, the results are dependent on the 
map reader’s knowledge and experience (Hope and Hunter, 2013; Roth, 
2013). For details about the bivariate mapping procedure in digital soil 
mapping and regarding the theory we refer to research by Trumbo 
(1981). The Zn over/underestimation and Zn prediction raster layers 
were both used to generate a bivariate map showing the spatial associ-
ations of the two features as a single raster layer elucidating the cold and 
hot spots regions for contexts 1 and 2 respectively. 

3.3. Zinc prediction and uncertainty maps 

To map the Zn levels in the study area, a regression kriging approach 
was implemented whereby each of the models, extreme gradient 
boosting, conditional inference forest, support vector machine, M5 tree 
model and partial least squares regression were combined with ordinary 
kriging (i.e. hybridization). A covariate grid comprising the Vis-NIR and 
soil chemical spatial information was used to predict the Zn levels across 
the study area. Having obtained the final Zn predictions from each or-
dinary kriging hybridized model, the lower and upper prediction in-
tervals would be generated by adding and subtracting 1.960 multiplied 
by the square root of the kriging variances for each model. The lower 
and the upper prediction intervals were used as uncertainty estimates for 
the Zn models. We refer to Kebonye et al. (2022) for the explanations 
regarding the hybridization procedure. 

3.4. Assessment accuracy and validation of the models 

The coefficient of determination (R2), the ratio of performance to 
interquartile range (RPIQ), bias, root mean square error (RSME), and 
median absolute error (MdAE) were used to assess the accuracy and 
validation of the modeling techniques used in this study. The R2, which 
represents the variance of the proportion in the response, is expressed by 
the regression model. The RPIQ is defined as the interquartile range (IQ 
= Q3-Q1) divided by the RMSE, and it represents the propagation of 
wider population residuals (Bellon-Maurel et al., 2010). The RMSE de-
termines the size of the different variants within the individual mea-
surement, which enables the approach prediction accuracy, whereas the 
MdAE confirms the true measurable value. The higher the R2 and the 
lower the RMSE, according to Li et al. (2016), the better the prediction 
and accuracy. According to Wang et al. (2014), for a model to be 
considered satisfactory/acceptable, it must have an R2 value between 
0.5 and 0.75, and if the R2 value is 0.75 or higher, the model is 
considered good. To be considered satisfactory or good, a model must 
have R2 values ranging from 0.5 to 0.75 (satisfactory) and 0.75 or higher 
(good), with corresponding minimal error margins. 

4. Results and discussion 

4.1. Data description 

The study elemental median concentration levels were 75.47 mg/kg 
(Zn), 18070.73 mg/kg (Fe), 1217.25 mg/kg (K), 608.83 mg/kg (P), and 
19.68 mg/kg (Cu). The maximum and minimum concentration values of 
the elements ranged from 37.48 mg/kg to 272.18 mg/kg for Zn, 
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8650.32 mg/kg to 79901.24 mg/kg for Fe, 497.51 mg/kg to 3535.68 
mg/kg for K, 685.68 mg/kg to 5970.05 mg/kg for Mg, 294.55 mg/kg to 
2903.09 mg/kg for P, and 7.88 mg/kg to 62.62 mg/kg for Cu. Based on 
the estimates of kurtosis and skewness the elemental datasets each 
showed non-normal distributions. Since the modeling approaches cho-
sen for this study are nonparametric, there was no need to execute any 
form of data transformation before modeling. Based on the coefficient of 
variation (CV) criteria proposed by Wilding (1985), all the elements 

exhibited a high CV greater than 35% except for elements K and Mg, 
which displayed moderate CV estimates. The element levels decreased 
in the same order for all the percentiles 25th, 50th and 75th respectively. 
The decrease order was Fe > Mg > K > P > Zn>Cu. Conversely, Horák 
et al. (2018) reported the mean concentration of K (19045.20 mg/kg), P 
(467.23 mg/kg) and Cu (36.51 mg/kg) in arable land around Lovětín, 
Czech Republic. The mean concentration of P in the current study is 
relatively higher although estimates for K and Cu are lower. The 

Fig. 2. Visible near infrared reflectance of various 
pretreated method both single and combined plotted 
employing the reflectance against the wavelength in 
RStudio using ggplot {RAW, CMR - correction 
maximum reflectance, MSC - multiplicative scatter 
correction, DWT - discrete wavelet transform, DWT- 
CMR (discrete wavelet transform-correction 
maximum reflectance), SG-LOG-MSC (savitzky-golay 
smoothing-logarithm1/R-multiplicative scatter 
correction). SG-LOG-SNV (savitzky-golay smoothing- 
logarithm1/R-standard normal variate), SG-SNV- 
MSC (savitzky-golay smoothing-standard normal 
variate - multiplicative scatter correction), DWT-SNV- 
MSC (discrete wavelet transform-standard normal 
variate-multiplicative scatter correction), DWT-LOG- 
MSC (discrete wavelet transform-logarithm1/R- 
multiplicative scatter correction)}.   

Table 1 
Using visible near-infrared reflectance to predict Zn concentration (Context 1-model validation).  

Auxiliary 
Dataset 

R2 RMSE MdAE RPIQ R2 RMSE MdAE RPIQ R2 RMSE MdAE RPIQ 
CIF PLSR M5 TREE 

RAW 0.70 21.81 13.78 1.48 0.60 24.65 16.26 0.99 0.66 22.56 14.18 1.43 
CMR 0.71 21.44 11.82 1.53 0.18 31.28 23.55 0.11 0.65 22.95 13.51 1.36 
MSC 0.70 21.42 9.89 1.50 0.55 25.28 13.82 0.99 0.72 21.08 13.69 1.63 
DWT-CMR 0.71 21.46 12.59 1.52 0.17 31.31 23.63 0.11 0.66 22.79 11.88 1.32 
SG-LOG-MSC 0.70 21.72 10.68 1.62 0.56 24.98 13.49 1.01 0.64 22.58 11.81 1.01 
SG-LOG-SNV 0.65 22.51 11.32 1.44 0.26 29.20 21.78 0.12 0.61 23.59 14.88 1.30 
SG-SNV-MSC 0.70 21.71 10.65 1.63 0.55 25.29 13.71 0.99 0.67 22.11 12.24 1.46 
DWT-SNV-MSC 0.71 21.57 10.28 1.62 0.56 25.14 13.81 1.01 0.67 22.56 10.06 1.43 
DWT-LOG-MSC 0.69 22.03 11.45 1.62 0.56 24.84 12.98 1.03 0.49 26.47 16.77 0.71  

R2 RMSE MdAE RPIQ R2 RMSE MdAE RPIQ      
EGB SVMR     

RAW 0.59 23.82 12.50 1.18 0.30 28.37 16.59 0.31     
CMR 0.51 25.73 15.18 0.90 0.52 26.25 14.23 0.29     
MSC 0.64 22.87 13.00 1.11 0.52 24.98 13.77 0.77     
DWT-CMR 0.47 28.17 18.07 0.66 0.47 27.12 14.92 0.28     
SG-LOG-MSC 0.41 27.64 12.80 0.76 0.50 25.31 14.60 0.75     
SG-LOG-SNV 0.27 31.27 14.42 0.79 0.47 25.76 13.31 0.82     
SG-SNV-MSC 0.53 24.83 12.16 0.99 0.52 25.03 13.68 0.76     
DWT-SNV-MSC 0.64 22.82 12.46 1.08 0.47 26.12 14.31 0.62     
DWT-LOG-MSC 0.51 25.38 13.43 0.84 0.45 26.33 14.66 0.63     

Note: RAW, CMR - correction maximum reflectance, MSC - multiplicative scatter correction, DWT - discrete wavelet transform, DWT-CMR (discrete wavelet transform- 
correction maximum reflectance), SG-LOG-MSC (savitzky-golay smoothing-logarithm1/R-multiplicative scatter correction). SG-LOG-SNV (savitzky-golay smoothing- 
logarithm1/R-standard normal variate), SG-SNV-MSC (savitzky-golay smoothing-standard normal variate - multiplicative scatter correction), DWT-SNV-MSC (discrete 
wavelet transform-standard normal variate-multiplicative scatter correction), DWT-LOG-MSC (discrete wavelet transform-logarithm1/R-multiplicative scatter 
correction. 
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above-mentioned results may also suggest differences in agricultural 
activities across many parts of the country. Furthermore, it may be that 
various lithological factors uniquely contribute to the content levels of 
different abundant elements like K and Fe in agricultural soils. The mean 
Zn concentration in this study is relatively high when compared to the 
mean Zn concentration (80 mg/kg) of the local background value re-
ported by Nemecek & Podlesakova (1992). According to the current 
study, the agricultural soil Zn levels may indicate some form of 
enrichment over time. 

4.2. Spectral response of soil samples 

Aside from the raw spectra reflectance, the selected spectra used in 
this study are shown in Fig. 2 after being pretreated using either a single 
pretreatment technique or a combined pretreatment technique. The 
diversity of the measured reflectance from the 115 soil samples is 
depicted on the raw plot in Fig. 2, which shows a weak peak of ab-
sorption from 450 nm to 650 nm that appears to overlap with the visible 
region. According to Song et al. (2012), some features in the visible 
region wavelengths including 430 nm, 500 nm, 530 nm, and 650 nm are 
caused by electronic transitions of the Fe3 + in oxy/hydroxides. 
Consequently, there is a possibility of Iron oxide absorption or bonding 
with other metal cations or hydroxyl groups, which has a visible spectral 
activity (Wu et al., 2005). CRM, RAW, DWTCRM, MSC, and SGLOGSNV 
pre-treated spectra reflectance plots are very similar. This was based on 
the soil samples’ comparatively similar spectrally active properties, as 
well as differences between iron oxide minerals, which exhibit varying 
spectral responses at dissimilar wavelengths. The pretreated plotted 
DWTLOGMSC, DWTSNVMSC, SGLOGMSC, and SGSNVMSC, on the 
other hand, exhibit an inversely proportional characteristic to the pre-
treated plotted spectra reflectance CRM, DWTCRM, MSC and 
SGLOGSNV. The O–H clay minerals are impacted by the typical loca-
tions of the spectral reflectance peaks (Kooistra et al., 2003; Song et al., 
2012). In contrast, the peak region 1410 nm–2210 nm of the spectra 
shown in Fig. 2 is commonly thought to be associated with the hydroxyl 
(O–H) bond (White, 1971). The peak is a composite material made up of 
clay minerals; otherwise, the hydroxyl includes kaolinite and smectite 
clay forms, with the former typically exhibiting peaks at 2210 nm 
(Nayak and Singh, 2007). Even so, some frail peaks around 2250 nm and 
2450 nm were linked to the C–H bond in the organic matter, particularly 
lignin and humic acid (Ben-Dor et al., 1997), as well as carbonates 
(Ben-Dor et al., 1997; Ben-Dor and Banin, 1990; Gaffey, 1987). 

4.2.1. Predicting Zn concentrations in agriculture soil using VIS-NIR 
(context 1) 

Table 1 shows the validation of the models for predicting Zn con-
centration in agricultural soil using the Vis-NIR spectral dataset (Context 
1). Figure SF1, on the other hand, shows a scatter plot of the measured 
and predicted values of the calibration model (the best model in each 
modeling approach), displaying the line of best fit and the relationship 
between the predicted and measured values. On the raw spectra 
reflectance, a single pretreatment technique and a combination of two or 
three pretreatment techniques were used, based on the five modeling 
techniques, to predict Zn in agricultural soil. The results showed that 
combining the CIF modeling approach with Vis-NIR datasets (RAW, 
CMR, MSC, DWTCMR, SGLOGMSC, SGLOGSNV, SGSNVMSC, 
DWTSNVMSC, DWTLOGMSC) produced satisfactory results in Zn pre-
diction in agricultural soils. More specific, the combination of CIF and 
the MSC pretreated dataset yielded the overall best Zn prediction results 
(R2 = 0.70, RMSE = 21.42 mg/kg, MdAE = 9.89, RPIQ = 1.50) (See 
Table 1 model validation). The application of PLSR along with the Vis- 
NIR spectral dataset likewise produced satisfactory results, except for 
CMR and DWTCRM, which generated marginal results. Nevertheless, 
DWTLOGMSC dataset, along with the PLSR (R2 = 0.56, RMSE = 24.84 
mg/kg, MdAE = 12.98, RPIQ = 1.03), was the best approach for Zn 
prediction in the agricultural soils. Based on the M5 modeling technique 

and the Vis-NIR spectral dataset, the results are satisfactory apart from 
the DWT-LOG-MSC dataset, which only yielded abysmal results. The M5 
tree model, combined with the MSC dataset (R2 = 0.72, RMSE = 21.08 
mg/kg, MdAE = 13.69, RPIQ = 1.63), was the best method to predict Zn 
in agricultural soil. The application of the EGB modeling approach 
coupled with the Vis-NIR spectral dataset revealed that out of the 9 
spectral auxiliary datasets, 3 (DWTCRM, SGLOGSNV, SGLOGMSC) of 
the Vis-NIR spectral datasets applied along with EGB produced unsat-
isfactory results. However, combining the DWTSNVMSC dataset and the 
EGB modeling approach (R2 = 0.64, RMSE = 22.82 mg/kg, MdAE =
12.46, RPIQ = 1.08) produced the best Zn prediction results in agri-
cultural soil. The combination of SVM and the VIS-NIR spectral reflec-
tance yielded satisfactory results for 4 (MSC, CMR, SGLOGMSC, 
SGSNVMSC) of the 9 VIS-NIR spectral datasets used as the auxiliary 
dataset for Zn prediction in agricultural soil. The optimal approach was 
the combination of MSC dataset and the SVM (R2 = 0.52, RMSE = 24.98 
mg/kg, MdAE = 13.77, RPIQ = 0.77). When comparing the optimal 
prediction performance per modeling technique in context 1, it was 
evident that M5-MSC produced the best R2 value of 0.72, followed by 
CIF-MSC R2 = 0.70, EGB-DWTSNVMSC R2 = 0.64, PLSR-DWTLOGMSC 
R2 = 0.56, and SVMR-MSC R2 = 0.52. The estimated RMSE of the 
optimal approaches, however, revealed that M5-MSC had the lowest 
RMSE value of 21.08 mg/kg, followed by CIF-MSC RMSE = 21.42 mg/ 
kg, EGB-DWTSNVMSC RMSE = 22.82 mg/kg, PLSR-DWTLOGMSC 
RMSE = 24.84 mg/kg, and SVMR-MSC RMSE = 24.98 mg/kg. The 
MdAE estimated values of the optimal modeling technique, on the other 
hand, revealed that CIF-MSC had the lowest MdAE value of 9.89, fol-
lowed by EGB-DWTSNVMSC MdAE = 12.46, PLSR-DWTLOGMSC 
MdAE = 12.98, M5-MSC MdAE = 13.69, and SVMR-MSC MdAE =
13.77. The optimal modeling approach’s estimated RPIQ revealed that 
M5-MSC had the highest RPIQ of 1.63, followed by CIF-MSC RPIQ =
1.50, EGB-DWTSNVMSC RPIQ = 1.08, PLSR-DWTLOGMSC RPIQ =
1.03, and SVMR-MSC RPIQ = 0.77. The overall evaluation of the 
modeling approaches in context 1 suggests that the combination of the 
M5 tree model and the MSC dataset was the best approach in context 1 
for predicting Zn concentration levels with higher accuracy and minimal 
errors. 

The M5 tree model is a linear technique that estimates in-
terdependences in the collection of data by exposing nonlinear data from 
each approach. The splitting requirements of an M5 model tree are 
derived from the computation of discrepancy at each node. The standard 
error of the class values that arrive at a node is used to examine the 
mistake in the M5 tree model. The model attribute with the highest 
projected results for error reduction is occasionally selected for parti-
tioning there after each model attribute has been evaluated at that node 
(Sihag et al., 2019). Sihag et al. (2019), compared the performance of 
MLAs such as multilayer perceptron neural networks and the M5 model 
tree, and found that the M5 tree model predicted Zn content in the soil 
better than the multilayer perceptron neural network. M5 model Tree 
can present high correlation coefficient values and minimal MAE and 
RMSE errors and has been discovered to be more suitable for estimating 
bearing capacity (Khorrami et al., 2020). Sattari et al. (2018) applied the 
M5 tree model and support vector machine model in the prediction of 
ground water level, however, the author reported that the M5 tree 
model produces results that are simpler and clearer, easier to apply, and 
easier to decipher than the SVMR algorithm. The M5 model tree with 
wavelet regression can be more effective than artificial neural network 
modeling techniques in estimating sediment yield, as a comparison of 
the two reveals that the M5 model tree provides precise and under-
standable expressions for use by design engineers (Goyal, 2014). 
Agyeman, et al., (2022) used the M5 modeling technique and other 
machine learning algorithms, as well as spectral indices and terrain 
attribute data sets, to estimate cadmium concentration in cultivated soil. 
They discovered that the M5 modeling technique was the best approach 
for estimating Cd concentration in the soil with high performance and 
minimal errors. 
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4.3. Predicting the concentration of Zn using visible near-infrared 
reflectance and soil chemical properties (context 2) 

Table 2 shows zinc predictions using VIS-NIR spectra reflectance and 
soil chemical properties (SCP) (Mg, K, Cu, P, and Fe) as ancillary data-
sets for the model’s validation. Figure SF2(calibration model) depicts a 
scatter plot of the calibration model’s measured and predicted values 
(the best model in each modeling approach), displaying the line of best 
fit and the relationship between the predicted and measured values. 
These soil chemical properties are micronutrients (Fe, Cu) and macro-
nutrients (Mg, K, P) which interact differently with Zn. The results 
indicated that in the CIF modeling approach, combining the Vis-NIR +
SCP with the CIF modeling techniques yielded good predictions with R2 
values ranging between 0.85 and 0.87. Similarly, the RMSE, MdAE and 
RPIQ validation assessment criteria also ranged from 14.52 to 18.29 
mg/kg (RMSE), 6.25 to 11.34 (MdAE) and 0.96 to 1.78 (RPIQ). Based on 
the results, it was clear that CIF-DWTLOGMSC + SCP (R2 = 0.86, RMSE 
= 14.52 mg/kg, MdAE = 6.25, RPIQ = 1.78) was the best predictive 
model approach for predicting Zn in soil with the minimum RMSE and 
MdAE values and the high RPIQ value. In the PLSR modeling approach, 
the results suggested that six of the 9 Vis-NIR + SCP combined with the 
PLSR modeling technique yielded satisfactory results with the other 3 
producing unsatisfactory results. The R2, RMSE, MdAE and RPIQ values 
ranged between 0.27 and 0.69, 21.30–29.14 mg/kg, 9.69 to 21.14 and 
0.13 to 1.34 respectively. The results indicated that the combination of 
PLSR and the auxiliary dataset RAW + SCP (R2 = 0.69, RMSE = 21.30 
mg/kg, MdAE = 9.69, RPIQ = 0.95) was the optimal approach in the 
prediction of Zn in the soil with high R2 and minimal RMSE and MAE 
values. The M5 tree model approach combination with the auxiliary 
dataset yielded good and satisfactory results for all the 9-dataset used. 
However, the R2, RMSE, MdAE and the RPIQ results ranged from 0.71 to 
0.83 (R2), 16.57–21.35 mg/kg (RMSE), 8.88 to 15.21 (MdAE) and 0.92 
to 1.99 (RPIQ) correspondingly. The best combination pair in the PLSR 
modeling approach was the combination of PLSR and the RAW + SCP 
(R2 = 0.83, RMSE = 16.57 mg/kg, MdAE = 8.88, RPIQ = 1.99) auxiliary 
dataset. The EGB modeling approach coupled with the Vis-NIR + SCP 
datasets doled out good results with the R2, RMSE, MdAE and RPIQ 

values ranging between 0.65 and 0.89, 15.72–22.58 mg/kg, 7.33 to 
11.55 and 0.94 to 1.74 correspondingly. Notwithstanding, the RAW +
SCP dataset and PLSR were the most effective combinations for pre-
dicting the concentration of Zn in agricultural soil, with R2 = 0.89 and 
RPIQ = 1.74 values and low RMSE and MdAE values of 15.72 mg/kg and 
7.33, respectively. Finally, the results proved that the results from the 
combination of SVMR, SCP, and Vis-NIR were satisfactory, with the R2, 
RMSE, MdAE, and RPIQ values ranging from 0.60 to 0.74 (R2), 
21.98–25.75 mg/kg (RMSE), 9.97 to 14.31 (MdAE), and 0.62 to 0.79 
(RPIQ). The outcome further revealed that the combination of SVMR 
and the auxiliary dataset RAW + SCP (R2 = 0.74, RMSE = 21.98 mg/kg, 
MdAE = 9.97, RPIQ = 0.79) produced the best results for Zn prediction 
in agricultural soil. 

When the optimal modeling approaches for the five techniques were 
compared, it was definite that EGB-RAW + SCP had the best R2 value of 
0.89, followed by CIF-DWTLOGMSC + SCP R2 = 0.86, M5-RAW + SCP 
R2 = 0.83, SVMR-RAW + SCP R2 = 0.74, and PLSR-RAW + SCP R2 =
0.69. The optimal approaches of the five modeling techniques were 
compared, and CIF-DWTLOGMSC + SCP had the lowest RMSE and 
MdAE obtained values, with RMSE and MdAE of 14.52 mg/kg and 6.52, 
respectively. The other optimal approaches for RMSE and MdAE per-
formance per modeling techniques are as follows 15.72 mg/kg (EGB- 
RAW + SCP), 16.57 mg/kg (M5-RAW + SCP), 21.30 mg/kg (PLSR-RAW 
+ SCP) and 21.98 mg/kg (SVMR-RAW + SCP) (RMSE) and 7.33 (EGB- 
RAW + SCP), 8.88 (M5-RAW + SCP), 9.69 (PLSR-RAW + SCP) and 9.97 
(SVMR-RAW + SCP) (MdAE). The RPIQ results, on the other hand, 
indicated that the M5-RAW + SCP had the highest RPIQ (1.99), while 
the other predicting modeling approaches had 1.78 (CIF-DWTLOGMSC 
+ SCP), 1.74 (EGB-RAW + SCP), 0.95 (PLSR-RAW + SCP), and 0.79 
(SVMR-RAW + SCP) respectively. The cumulative assessment of the 
optimal prediction modeling approaches from the five modeling tech-
niques indicated that CIF-DWTLOGMSC + SCP was the best method that 
was able to predict Zn in agricultural soil with minimal errors. 

CIF which is not commonly applied in the field of soil science, is a 
type of decision tree technique for iterative binary partitioning. CIF 
incorporates the framework into a well-defined data analysis setting 
predicated on factorization tests, to distinguish between substantial and 

Table 2 
Using visible near-infrared reflectance and soil chemical properties to predict Zn concentration (Context 2-model validation).  

Auxiliary 
Dataset 

R2 RMSE MdAE RPIQ R2 RMSE MdAE RPIQ R2 RMSE MdAE RPIQ 
CIF PLSR M TREE 

RAW þ SCP 0.86 17.70 8.43 1.22 0.69 21.30 9.69 0.95 0.83 16.57 8.88 1.99 
CMR þ SCP 0.86 18.29 11.34 0.96 0.30 28.10 18.89 0.42 0.71 21.22 12.79 0.92 
MSC þ SCP 0.86 18.00 9.83 1.10 0.59 24.41 14.84 1.24 0.73 20.36 14.43 1.26 
DWT-CMR þ SCP 0.85 18.18 10.24 1.09 0.42 26.54 16.85 0.70 0.83 17.13 10.52 1.60 
SG-LOG-MSC þ SCP 0.86 17.69 10.34 1.10 0.59 24.07 13.29 1.27 0.79 18.46 10.12 1.21 
SG-LOG-SNV þ SCP 0.85 18.22 9.88 1.06 0.27 29.14 21.74 0.13 0.73 20.59 13.20 1.15 
SG-SNV-MSC þ SCP 0.86 17.88 10.24 1.18 0.58 24.41 14.73 1.24 0.73 20.28 14.40 1.54 
DWT-SNV-MSC + SCP 0.87 17.61 9.76 1.08 0.62 23.36 15.62 1.34 0.69 21.35 15.21 1.25 
DWT-LOG-MSC + SCP 0.86 14.52 6.25 1.78 0.63 23.05 13.96 1.34 0.77 19.11 10.38 1.36  

R2 RMSE MdAE RPIQ R2 RMSE MdAE RPIQ      
EGB SVMR     

RAW þ SCP 0.89 15.72 7.33 1.74 0.74 21.98 9.97 0.79     
CMR þ SCP 0.72 21.03 10.12 1.05 0.67 24.59 13.35 0.43     
MSC þ SCP 0.73 21.71 11.55 0.73 0.65 23.23 13.15 0.73     
DWT-CMR þ SCP 0.76 19.88 10.02 1.19 0.65 25.75 14.31 0.33     
SG-LOG-MSC þ SCP 0.74 20.66 10.37 0.97 0.61 23.99 13.86 0.72     
SG-LOG-SNV þ SCP 0.65 22.58 8.15 0.80 0.62 23.78 13.19 0.69     
SG-SNV-MSC þ SCP 0.77 20.35 10.74 0.94 0.65 23.26 13.08 0.73     
DWT-SNV-MSC + SCP 0.77 19.93 10.68 1.16 0.60 24.12 12.66 0.64     
DWT-LOG-MSC + SCP 0.72 21.11 11.52 1.41 0.60 24.13 12.50 0.62     

Note: RAW + SCP-(RAW-soil chemical properties), CMR-SCP – (correction maximum reflectance-soil chemical properties), MSC + SCP – (multiplicative scatter 
correction-soil chemical properties), DWT + SCP – (discrete wavelet transform-soil chemical properties), DWT-CMR + SCP (discrete wavelet transform-correction 
maximum reflectance-soil chemical properties), SG-LOG-MSC + SCP (savitzky-golay smoothing-logarithm1/R-multiplicative scatter correction-soil chemical prop-
erties), SG-LOG-SNV + SCP (savitzky-golay smoothing-logarithm1/R-standard normal variate-soil chemical properties), SG-SNV-MSC + SCP (savitzky-golay 
smoothing-standard normal variate - multiplicative scatter correction-soil chemical properties), DWT-SNV-MSC + SCP(discrete wavelet transform-standard normal 
variate-multiplicative scatter correction-soil chemical properties), DWT-LOG-MSC + SCP (discrete wavelet transform-logarithm1/R-multiplicative scatter correction- 
soil chemical properties). 
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unimportant advancements (Das et al., 2009). CIF has the proclivity to 
limit overfitting and model biases. However, CIF quantifies the inde-
pendent variable significance of each parameter for every tree by 
initially splitting the relationship into combinations and then running 
tests on the tree with out-of-bag projections. The variable relevance in 
forests depends on the outcomes of numerous trees, attempting to avoid 
the uncertainty of different trees. The benefit of the new forest 
improvement algorithm over the conventional CART tree/forest is that it 
precludes ambiguous factors from being recognized as considerable 
simply because they have a larger number of categories or are iterative 
(Das et al., 2009). van Wesemael et al., (2019) applied CIF and found 
that it performed better in the selection of variables that have a strong 
relationship with a component that is consistent with the model’s 
constraint. The CIF approach has been successfully used to relate aspects 
of soil heterogeneity to crop development heterogeneity (Goffart et al., 
2022). Kapo et al. (2014) outlined that CIF can assess a comprehensive 
set of ecological variables that led to stressor-response presumptions at 
the statewide and eco-regional levels. Goydaragh et al. (2021)employed 
CIF in conjunction with ecological variables to estimate the concentra-
tion of soil organic carbon. While Cubist + Ba was the best model in that 
scenario, CIF + Ba and CIF outperformed random forest, EGB, CART, 
and conditional inference tree. 

4.4. Comparison of the best models in contexts 1 and 2 predicated on 
modeling techniques 

The optimal models from the five modeling techniques applied in Zn 
prediction in the agricultural soil are CIF-MSC, PLSR-DWTLOGMSC, M5- 
MSC, EGB-DWTSNVMSC, and SVMR-MSC respectively (Context 1) and 
CIF-DWTLOGMSC + SCP, PLSR-RAW + SCP, M5-RAW + SCP, EGB- 
RAW + SCP, and SVMR-RAW + SCP (Context 2). The assessment of the 
optimal model in each context using CIF modeling techniques based on 
R2, RMSE, MdAE, and RPIQ revealed that CIF-DWTLOGMSC + SCP 
performed better in context 2 than the optimal model CIF-MSC in 
context 1 (See Table ST1-model validation). The performance of the Vis- 
NIR spectra in conjunction with the SCP and CIF in context 2 resulted in 
an increase in the R2 value of 10.33%, an increase in the RPIQ value of 
8.38%, and a decrease in the marginal errors of 19.21% for RMSE and 
22.53% for MdAE. The combination of PLSR and the auxiliary datasets 
RAW + SCP (context 1) and DWT-LOG-MSC (context 2) and their output 
revealed that the fusion of PLSR with RAW + SCP predicted Zn content 
in the soil better than the application of PLSR and DWT-LOG-MSC. The 
prediction efficiency of the best models in PLSR revealed that R2 
increased by 10.43% in context 2 over context 1, while marginal errors 
decreased by 7.67% and 14.53% for RMSE and MdAE in context 2 over 
context 1. The best prediction approach in the M5 tree model suggested 
that RAW + SCP (context 2) and MSC (context 1) were the best com-
binations for predicting the concentration of Zn in agricultural soil. 
Their performance output, however, suggested that M5-RAW + SCP 
predicted Zn in agricultural soil better than M5-MSC. The R2 and RPIQ 
values of M5-RAW + SCP are 7.54% and 9.89% higher than those of M5- 
MSC, respectively, while the RMSE and RPIQ values of M5-RAW + SCP 
are 11.97% and 21.33% lower than those of M5-MSC. Conversely, RAW 
+ SCP and DWT-SNV-MSC were optimal models in EGB for both con-
texts. The output of the models EGB-RAW + SCP and EGB-DWTSNVMSC 
revealed that EGB-RAW + SCP model performed better than EGB- 
DWTSNVMSC with R2 and RPIQ 16.83% and 23.36% higher whiles 
the RMSE and MdAE values decreased by 18.45% and 25.89% in EGB- 
RAW + SCP than EGB-DWTSNVMSC. The RAW + SCP and MSC auxil-
iary dataset set combined with SVMR was the better auxiliary dataset for 
Zn prediction in the agricultural soil. Nonetheless, the combination of 
RAW + SCP and SVMR produced the best results when compared to MSC 
and SVMR. The study’s results exhibited that while RMSE and MdAE 
error dropped by 6.39% and 15.98% in SVMR-RAW + SCP, respectively, 
the R2 and RPIQ values in SVMR-RAW + SCP were 17.13% and 1.23% 
higher than in SVMR-MSC. The cumulative assessment of the optimal 

models in the five modeling approaches revealed that the combination 
of Vis-NIR spectral reflectance, soil chemical properties, and machine 
learning techniques produced the best prediction. Based on this, it was 
blatantly evident that CIF-DWTLOGMSC + SCP was the best technique 
for predicting Zn content in agricultural soil overall, with much lower 
errors than all the best models in each modeling technique and context. 

The combination of Vis-NIR spectra reflectance and the influence of 
micro and macro nutrients (soil chemical properties) on Zn prediction in 
agricultural soil has produced remarkable results. The interaction of Zn 
as a micronutrient with the other micro and macronutrient might have 
had a profound influence on the optimal results in context 2. It is 
important to note that the antagonistic and stimulation effects of the 
interaction of soil macro and micronutrients might have accounted for 
the optimal results in contexts 2. The influence of geomorphological 
terrain on the quantification of PTEs such as Zn in the soil is significant, 
and the interactions among bedrock, climatic conditions, and geo-
morphologic processes may lead to the formation of soil parent com-
posites (Agyeman, et al., 2022). The utilization of MLAs in the 
estimation of PTEs in soil could consider the soil formation process, 
which incorporates the mineralogical composition coupled with the 
geomorphological properties of the soil being studied (Agyeman, et al., 
2022; Zeraatpisheh et al., 2020). The right proportion of soil micro-
nutrients and macronutrients provides optimal soil health. However, the 
act of applying Zn-based fertilizers such as ammoniated zinc, zinc sul-
fate, and chelated zinc soil to boost fertility may lead to the enrichment 
of some micronutrients such as Zn, rendering the soil potentially toxic. 
Kebonye et al. (2021) applied soil chemical properties (i.e., Ca, Ti, Zn, 
Sr, Zr, Ba, Pb and Th) combined with MLAs in the prediction of the 
concentration of As in the soil. John et al., (2021) similarly employed 
MLAs in conjunction with soil chemical properties such as potassium, 
calcium, sodium, magnesium, phosphorus, and vanadium in the pre-
diction of sulphur in the soil. John et al. (2020) applied soil properties (i. 
e., Ca, Mg) coupled with terrain properties along with a remote sensing 
dataset for soil organic carbon prediction in alluvial soil. In the esti-
mation of the content of cadmium and lead in polluted soil in Iran 
Bazoobandi et al. (2019), applied soil properties such as total nitrogen, 
phosphorus, and organic carbon. Due to the pedogenesis and evolu-
tionary development of the area under investigation, the use of soil 
chemical properties as an auxiliary dataset in conjunction with 
modeling techniques in predicting the content of PTEs in soil has a 
greater influence on the response variable (e.g., Zn). Agyeman, et al., 
2022 predicted nickel concentration in soil using soil chemical proper-
ties (Ca, Mg, k) and a hybridized MLA in peri-urban and urban soil. In 
another study,Hong et al. (2019) used soil chemical properties in 
addition to Vis-NIR spectral reflectance, and the authors reported that 
the combination of Vis-NIR spectral reflectance, soil chemical proper-
ties, and an appropriate MLA model may improve prediction 
performance. 

Given the introduction of SCP in context 2, the results of the pre-
dictive performance of the modeling approaches in both contexts vary 
significantly. The differences in RMSE values of the modeling approach 
in contexts 1 and 2 are quite visible, which may be attributed to the 
significant variation between the predicted and actual measured values. 
The minimal variation, on the other hand, indicates the closeness of the 
variation between the response and the predicted values. This is 
consistent with Biney et al. (2022)’s report that high RMSE values 
indicate that the predicted and true responses differ significantly, 
whereas a small RMSE indicates that the predicted and true responses 
are very close. The application of a single pretreatment algorithm on raw 
data for the prediction of soil properties or PTEs in the soil is very 
common and reliable due to its environmental friendliness and 
cost-effectiveness. The act of hybridizing these known pretreatment al-
gorithms on raw spectral reflectance for the prediction of PTEs or soil 
properties is uncharted. The use of a pretreatment combined algorithm 
in conjunction with a single modeling and ensemble models to predict 
PTEs and soil organic carbon in a variety of soils and conditions have 
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been tested and proven reliable (Biney et al., 2022; Biney et al., 2022c). 
The authors used the hybridized pretreatment method in three distinct 
agricultural fields under three distinct measurement conditions (wet, 
dry, and field). The combined pretreatment technique could be one 
option for eliminating or minimizing multiple artifacts at the same time. 
This implies that the application of combined pretreatment techniques 
along with an appropriate modeling approach is reliable and could be 
used in any soil type and under different conditions. The effectiveness 
and reliability of obtaining satisfactory and good prediction results are 
dependent on the conditions preceding the selection of appropriate 
modeling approaches as well as the best pretreatment combination used. 
Under certain circumstances, the spectral properties trend linked to a 
specific parameter during spectral quantification may intersect with the 
response pattern (e.g., PTEs) connected with some other factor. This 

might positively or negatively affect the prediction outcome due to the 
likelihood of masking out significant information. According to several 
authors, these factors may contribute to an increase or decrease in 
prediction accuracy (Dor et al., 2015; J. Biney et al., 2022). According to 
Kooistra et al. (2001) no pretreatment is the best pre-processing method 
for predicting Zn concentration in the soil. Even though the performance 
of raw spectra reflectance in the prediction of Zn in agricultural soil is 
relatively high, the use of a combined predicted method and the inclu-
sion of SCP has improved the prediction and reduced errors. Other 
pre-processing techniques must also be used to explore the impact of 
numerous data treatment scenarios on subsequent processing results 
(Khosravi et al., 2018). The current application and combination of 
pretreatment algorithms, modeling approaches, and SCP in various 
contexts yielding satisfactory and good results conform to the 

Fig. 3. Mean values (mg/kg) of 1000 SGS realizations of the soil chemical properties (Cu, Mg, K, P and Fe) in agricultural soils.  
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recommendations of Khosravi et al. (2018). 

5. Mapping of the zinc, soil chemical properties and bivariate 
mapping of optimal modeling approaches and over/under 
predictions 

The distribution of the soil chemical properties spatially in the 
agricultural soil is presented in Fig. 3. To model the soil chemical 
properties using SGS, semi-variograms were fitted. For all the semi- 
variogram plots (the soil chemical properties) the spherical approach 
was considered suitable. According to Heuvelink et al., (2001), the 
nugget sill ratio of a good spatial modeling approach should be less than 
0.25, which implies that the model has higher spatial autocorrelation. A 
nugget sill ratio of 0.25–0.75 indicates moderate spatial autocorrelation, 
whereas a nugget sill ratio of 0.75 or greater indicates weak or poor 
spatial autocorrelation but greater spatial randomness. In this study, the 
nugget sill ratio of the elements mapped was above 0.75, except for Fe 
(0.56), which displayed moderate spatial autocorrelation (See Table 
ST2). This implies that the elements whose nugget sill ratio was above 
0.75 exhibited stronger randomness, which thus further accentuates that 
the propensity of human activities to impact the concentration of those 
elements in the soil is somehow exceedingly high. The spatial variability 
of the elements, particularly Fe, Mg, and K, revealed a hotspot in the 
northeastern and southern areas of the research site. Mg and K, on the 
other hand, displayed hotspots in the northwest and southeast regions of 

the study area. Cu and P exhibited hotspots in the study area’s southwest 
and northwest enclaves. 

The bivariate map in Fig. 4 shows the distribution of the optimal 
prediction in each approach for each context. In Context 1, the CIF-MSC 
(A), EGB-DWTSNVMSC (B), and M5-MSC (C) approaches exhibited high 
prediction and overestimation in the southeast area of the map. Simi-
larly, the high prediction and moderate estimation were displayed in the 
northeastern area of the map. The modeling approaches PLSR- 
DWTLOGMSC (D) and SVM-MSC (E) exhibited high prediction and 
overestimation in the northeastern area, and SVM-MSC (E) further 
showed overestimation in the southeastern area of the map. In the sec-
ond context, high prediction and overestimation were displayed in the 
northeastern and southeast regions of the map for the following models: 
CIF-DWTLOGMSC-SCP (A), EGB-RAW-SCP (B), PLSR-RAW-SCP (D) and 
SVM = RAW-SCP (E). Equally, the modeling approaches CIF- 
DWTLOGMSC-SCP (A), EGB-RAW-SCP (B), PLSR-RAW-SCP (D) and 
SVM-RAW-SCP (E) exhibited high prediction and low estimation in the 
southeastern area, with patches of high prediction and low estimation in 
the northeastern region of the map. Again, the modeling approaches 
showed high prediction and moderate estimation were likewise spotted 
in the northeast and southeast regions of the map. The modeling 
approach PLSR-DWTLOGMSC (D) showed a high prediction and over-
estimation in the northeast and southeast areas of the map. Compara-
tively, the addition of soil chemical properties to visible near-infrared 
reflectance in the prediction of Zn in the agricultural soil has exposed 

Fig. 4. Bivariate mapping showing the optimum 
modeling techniques’ prediction of Zn concentration 
in agricultural soil and over or under prediction in 
prediction contexts 1 and 2 {optimal modeling ap-
proaches in prediction context 1 (A = CIF-MSC,B =
EGB-DWTSNVMSC, C = M5-MSC, D = PLSR- 
DWTLOGMSC, E = SVM-MSC) optimal modeling ap-
proaches in prediction context 2 (A = CIF- 
DWTLOGMSC-SCP, B = EGB-RAW-SCP, C = M5- 
RAW-SCP, D = PLSR-RAW-SCP, SVM = RAW-SCP)}. 
(Note: For clarity, the bivariate map legend depicts 
the 9-colour range as well as the rating system used.). 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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Fig. 5. Uncertainty assessment of Zn in the agricultural employing visible near infrared as the ancillary dataset (Context 1) {conditional inference forest (A), extreme 
gradient boosting (B), M5 tree model (C), Partial least squares regression (D), support vector machine (E). 
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Fig. 6. Uncertainty assessment of Zn in the agricultural soil employing visible near infrared and soil cmeical properties as the ancillary dataset (Context 2) {con-
ditional inference forest (A), extreme gradient boosting (B), M5 tree model (C), Partial least squares regression (D), support vector machine (E). 
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areas that are high, moderate, and low estimated as well as high pre-
diction areas. In some regions with high predictions, anthropogenic 
impacts like the use of zinc in steel industries and the application of Zn- 
based fertilizers may be responsible for the variability of the concen-
tration of zinc in the agricultural soil as shown by the predictions and the 
over/underestimated bivariate map. The content of PTEs in agricultural 
soil can be raised by anthropogenic causes such as fertilizers, air depo-
sition, fungicides, the closeness of agricultural locations to industrial 
facilities, sewage irrigation, and plastic films (Huang et al., 2019). 
Conversely, the level of PTEs like Zn increases when composted manure, 
biosolids from animal manure, and compost are added to agricultural 
soil (Basta et al., 2005). A considerable increase in Zn levels in the soil 
caused by metal processing in the steel industry is harmful to the 
ecosystem (Wuana et al., 2011). 

5.1. Uncertainty 

Uncertainty assessment in mapping and modeling processes is an 
important part of evaluating the practical limits, potential ramifications, 
and effectiveness of risk performance analysis that is compatible with 
decision-making process steps. The uncertainty assessment in this study 
was performed in two distinct contexts, namely assessment of uncer-
tainty based on the prediction of Zinc using Vis-NIR spectra reflectance 
(context 1) and uncertainty assessment premised on Zn prediction in the 
agricultural soil employing Vis-NIR spectra reflectance and soil chemical 
properties (context 2). 

In context 1, the propagation of uncertainty using the lower limit 
(2.5) revealed that the CIF and EGB modeling approaches exhibited a 
low to moderate degree of uncertainty, with patches of high uncertainty 
in the southeast area of the map (Fig. 5). Similarly, the PLSR and SVM 
showed moderate levels of uncertainty with patches of high uncertainty 
in the northeast and southeast regions of the map. Nevertheless, the M5 
tree model displayed mostly low to moderate levels of uncertainty in the 
whole study area, with patches of varying degrees of uncertainty in the 
northwest region of the map. Except for PLSR and SVM, which exhibited 
an elevated degree of uncertainty in the northeast and southeast areas of 
the study area, the mean uncertainty assessment for the modeling ap-
proaches was generally low to moderate. The upper limit (97.5) of the 
modeling approaches exhibited a low to moderate degree of uncertainty 
for all the modeling techniques, with patches of high uncertainty. In 
context 2, the uncertainties propagated in the lower limit were relatively 
low to moderate for all the modeling approaches except for the CIF 
modeling approach, which presented a high degree of uncertainty in the 
northeast and southeast regions of the study area (Fig. 6). Similarly, the 
mean uncertainty propagated by the modeling approaches displayed 
low to moderate uncertainties, with the CIF modeling approach dis-
playing an elevated level of uncertainty in the northeast and southeast 
regions of the study area. The upper limit uncertainty propagated by the 
modeling approaches was likewise from low to moderate, with the CIF 
modeling approach exhibiting an elevated level of uncertainty in the 
northeastern and southeastern enclaves of the study area. Compara-
tively, adding the soil chemical properties to the Vis-NIR spectra 
reflectance has reduced the level of uncertainty propagated in all the 
modeling approaches in context 2, except for the CIF modeling 
approach, which exhibited a high level of uncertainty across the pre-
diction intervals. The elevated level of uncertainty propagated in the 
northeastern and southeastern enclaves by CIF modeling approaches in 
the study area is expected due to the steel industry, metal works, and 
intensive agriculture in the southeastern part of the study region. 

6. Conclusion 

This study employs two distinct methods for Zn prediction in agri-
cultural soil by combining visible near-infrared reflectance spectroscopy 
with machine learning algorithms (Context 1) and the application of 
visible near-infrared reflectance spectra, soil chemical properties, and 

machine learning algorithms (Context 2). The study’s findings revealed 
that the combination of pretreatment techniques, as opposed to the 
application of a single technique, tends to produce optimal results. The 
study discovered that combining soil chemical properties (SCP) with 
visible near-infrared spectra reflectance can improve prediction per-
formance. The study’s findings suggested that SCP had a positive impact 
on RAW spectra reflectance in agricultural Zn prediction, which could 
be attributed to SCP’s antagonistic and stimulating effect on Zn. Even 
though no pretreatment combined with SCP produced good results, the 
positive impact of pretreatment of RAW spectra reflectance before use 
reduced modeling errors, especially in context 2. Because there is no 
single pretreatment approach that is generically sufficient for soils, the 
application of combined pretreatment methods to spectral reflectance 
for prediction is promising. It can generate appropriate spectral reflec-
tance capable of yielding good results, the combination of pretreatment 
techniques leverages its strengths on the weaknesses of other pretreat-
ment techniques. The study demonstrates that using SCP in conjunction 
with spectral reflectance and an appropriate modeling approach yielded 
unrivaled results in uncertainty assessment, lowering the degree of un-
certainty propagation in context 2 compared to context 1. The SCP, 
along with spectral reflectance and modeling approaches, is very 
appealing for environmental pollution surveillance, prediction assess-
ments, and precision farming. 
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2022c. Using spectral indices and terrain attribute datasets and their combination in 
the prediction of cadmium content in agricultural soil. Comput. Electron. Agric. 198, 
107077 https://doi.org/10.1016/J.COMPAG.2022.107077. 

Ahmadi, A., Emami, M., Daccache, A., He, L., 2021. Soil properties prediction for 
precision agriculture using visible and near-infrared spectroscopy: a systematic 
review and meta-analysis. Agronomy 11, 433. https://doi.org/10.3390/ 
AGRONOMY11030433. Page 433 11.  

Basta, N.T., Ryan, J.A., Chaney, R.L., 2005. Trace element chemistry in residual-treated 
soil: key concepts and metal bioavailability. J. Environ. Qual. 34, 49–63. https://doi. 
org/10.2134/JEQ2005.0049DUP. 

Bazoobandi, A., Emamgholizadeh, S., Ghorbani, H., 2019. Estimating the Amount of 
Cadmium and Lead in the Polluted Soil Using Artificial Intelligence Models, 
pp. 933–951. https://doi.org/10.1080/19648189.2019.1686429 26, 10.1080/ 
19648189.2019.1686429.  

Beard, K., Mackaness, W., 2006. Visual Access to Data Quality in Geographic Information 
Systems, pp. 37–45. https://doi.org/10.3138/C205-5885-23M7-0664 30, 10.3138/ 
C205-5885-23M7-0664.  

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M., McBratney, A., 
2010. Critical review of chemometric indicators commonly used for assessing the 
quality of the prediction of soil attributes by NIR spectroscopy. TrAC, Trends Anal. 
Chem. 29 (9), 1073–1081. 

Ben-Dor, E., Banin, A., 1990. Near-infrared reflectance analysis of carbonate 
concentration in soils. Appl. Spectrosc. 44, 1064–1069. https://doi.org/10.1366/ 
0003702904086821. 

Ben-Dor, E., Inbar, Y., Environment, Y.C.-R.S. of, 1997, Undefined, 1997. The 
Reflectance Spectra of Organic Matter in the Visible Near-Infrared and Short Wave 
Infrared Region (400–2500 Nm) during a Controlled Decomposition Process. 
Elsevier. 
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indicator for organic matter dynamics in temperate agricultural soils. Agric. Ecosyst. 
Environ. 274, 62–75. https://doi.org/10.1016/J.AGEE.2019.01.005. 
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A B S T R A C T   

Potentially toxic elements in agricultural soils are primarily derived from anthropogenic and geogenic sources. 
This study aims to predict and map antimony (Sb) concentration in soil using multiple regression kriging in two 
distinct modeling approaches, namely Sb prediction using data fusion coupled with regression kriging (scenario 
1) and Sb prediction using data fusion, terrain attributes, and regression kriging (scenario 2). Cubist regression 
kriging (cubist_RK), conditional inference forest regression kriging (CIF_RK), extreme gradient boosting regres-
sion kriging (EGB_RK) and random forest regression kriging (RF_RK) were the modeling techniques used in the 
estimation of Sb concentration in agricultural soil. The validation results suggested that in scenario 1, EGB_RK 
was the optimal modeling approach for Sb prediction in agricultural soil with root mean square error (RMSE) =
1.31 and mean absolute error (MAE) = 0.61, bias = 0.37, and high coefficient of determination R2 = 0.81. 
Similarly, the EGB_RK was also the optimal modeling approach in scenario 2, with the highest R2 = 0.76, RMSE 
= 0.90, bias = 0.06, and MAE = 0.48 values than the other regression kriging modeling approaches. The cu-
mulative assessment suggested that the EGB_RK in scenario 2 yielded optimal results compared to the respective 
modeling approach in scenario 1. The uncertainty propagated by the modeling approaches in both scenarios 
indicated that the degree of uncertainty during the modeling process was distributed across the study area from a 
low to a moderate uncertainty level. However, cubist_RK in scenario 2 exhibited some elevated spots of un-
certainty levels. As a result, the combination of data fusion, terrain attributes, and regression kriging modeling 
approaches produces optimal results with a high R2 value, minimal errors as well as bias. Furthermore, 
combining terrain attributes with data fusion is promising for reducing model error, bias and yielding high- 
accuracy predictions.   

1. Introduction 

Potentially toxic elements (PTE) pollution is caused by both natural 
and anthropogenic activities. Some of the main anthropogenic sources 
are attributed to the steel industry, mining and smelting, refining, and 
processing of iron ore. As consequence, PTEs tend to be released into the 
soil, freshwater, and air where they eventually pose potential health 
concerns to residents in both urban and peri-urban areas (Agyeman 
et al., 2021a,b; Mohammadi et al., 2018; Saleh et al., 2019). Despite 
efforts to limit pollution and the proliferation of PTEs in soils and the 

environment, it has emerged as a much more significant challenge for 
the environment and public welfare in recent decades, notably with the 
advent of industries, urbanization, and agricultural production. Ac-
cording to, Babst-Kostecka et al. (2018), whenever PTEs are released 
into the ecosystem, they could remain there for decades or even gen-
erations, dispersing to remote places and accumulating in biotic and 
abiotic ecological processes. Agricultural practices such as continuous 
fertilizer application to nourish soil nutrients and for increasing yield 
have significantly changed the chemical composition of the natural 
contents of elements including Pb, Cu, Cd, As Ni, Cr, Sb and Zn in a 
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variety of agricultural soils (Nanos and Martín, 2012; Agyeman et al., 
2021). Even for agricultural soils, PTEs are primarily derived from 
anthropogenic and geogenic sources. The buildup of PTEs in agricultural 
soil over time depletes the soil quality and impedes its proper func-
tioning as well as soil biology activities, for instance, microbial activity 
(Beattie et al., 2018). 

The constant presence of these elements in the environment causes 
devastating ramifications for human beings, animals, and plants. Long- 
term human exposure to PTEs has health implications, which in some 
cases prove fatal (Adimalla et al., 2020). Inhalation of certain PTE such 
as Sb causes detrimental effects including lung inflammation, chronic 
bronchitis, heart muscle damage, liver fibrosis, inactive tuberculosis, 
altered lung functioning and gastrointestinal disorders (Cao et al., 2010; 
Podsiki and Committee, 2008). Urban and peri-urban soils over-
burdened with high Sb levels provide opportunities for Sb to be absor-
bed into the body via diverse routes such as ingestion, inhalation, and 
dermal absorption (Bagherifam et al., 2019; Wang et al., 2018). Ac-
cording to Bolan et al. (2022), the United States Public Health Services 
(i.e., US-PHS, 1992) reported that exposure to Sb causes systemic, 
neurological, immunological, genotoxic, reproductive and develop-
mental effects as well as cancer. Moreover, there is a handful of evidence 
supporting the detrimental effect of Sb pollutants and their level of 
carcinogenicity on humans (Nishad and Chemosphere, 2021). Sb 
trioxide (Sb2O3) is a potential carcinogen to humans, according to the 
US National Toxicology Program (US-NTP), it was predicated on 
mutagenicity tests on mice models and findings from preclinical devel-
opment studies (Program, 2018). Current studies, on the other hand, 
discuss the effects of multiple soil applications in the restoration of 
Sb-influenced locations on decreasing bioavailability and toxic effects of 
the pollutant (Rinklebe et al., 2020). Regardless, there is a scarcity of 
knowledge on the impact Sb has on humans to establish a link between 
the Sb-related oxides. 

Understanding the spatial distribution of PTEs in the modern era has 
become a primary objective with the advent of digital soil mapping 
(DSM), which provides a platform for using various algorithms as well as 
incorporating measures such as terrain attributes, remotes sensing im-
ageries or data fusion techniques to improve on model predictions or 
maps. According to, Minasny and McBratney (2016), the goal of DSM is 
to anticipate the spatial variability of PTEs using a variety of approaches, 
dependent on soil measurements and ecological factors. Taghiza-
deh-Mehrjardi et al. (2020), reported that the underpinning of DSM is 
the use of a mathematical model in conjunction with environmental 
variables to measure soil properties or PTEs. The use of DSM approaches 
in conjunction with environmental variables such as remote sensing 
imageries, data fusion and terrain attributes can help to elucidate the 
PTE content in various soils or sediments. Several research studies, 
including Jiang et al. (2019), Wang et al. (2018), and Wu et al. (2020), 
have employed environmental factors and DSM techniques to estimate 
PTEs contents in soil. The geomorphological features of land and terrain 
attributes are important in modeling processes because they are integral 
soil-forming processes and have an impact on soil distribution 
(McKenzie and Ryan, 1999; Zeraatpisheh et al., 2020). Terrain attributes 
are extracted from digital elevation models (DEMs) and used as an 
auxiliary variable in DSM modeling approaches. Due to their low cost 
and open access for monitoring, predicting, and mapping PTEs and soil 
properties, the use of remote sensing datasets such as Sentinel 2 and 
Landsat 8 imageries as auxiliary data for DSM has drawn increased in-
terest in research. Remote sensing imageries provide unrivaled benefits 
for monitoring the earth at different scales and resolutions (Hu et al., 
2019), and they play a significant role in worldwide and territorial soil 
or landscape surveillance and mapping (Ivushkin et al., 2019). 

Digitally predicting PTE concentrations in the soil has been of high 
interest to researchers because of the threats associated with these ele-
ments on humans, plants and organisms in communities, habitats and 
agricultural fields. A variety of predictions for PTEs in sediments, soil, 
floodplains, and other environments have been generated using machine 

learning algorithms, geostatistical-based models, or a hybridization of 
the two. Some literature applied generalized regression neural networks 
and artificial neural networks in the prediction of Cu, Mn, and Ni, 
(Sergeev et al., 2019), regression kriging in the prediction of various 
PTEs (As, Cd, Cr, Cu, Hg, Pb, Zn, Sb, Co and Ni) (Tóth, Hermann, 
Szatmári, et al., 2016), ordinary kriging and cokriging to predict Zn, As, 
Cd, Cr, Cu, Ni, Pb, Hg. Zeng et al. (2021) and Cao et al. (2017) applied 
geostatistical models, comprising ordinary kriging (OK) and regression 
kriging for the prediction of Cd. Based on the growth and academic 
synergy in the field of soil science, it is now possible to combine various 
algorithms to complement and increase the predictive performances of 
algorithms through hybridizations and ensembling to obtain 
high-quality outcomes. Hybridization of algorithms from geostatistics 
and machine learning has been applied successfully to achieve superior 
results. Such an example where hybridization has yielded good results 
includes the study by John et al. (2021) which applies cokriging and 
Gaussian process regression for mapping sulfur levels in soils. Hybridi-
zation of algorithms allows for the complementation of models to opti-
mize efficiency and minimize apparent errors. Regression kriging is a 
hybridized kriging approach that combines the kriging of predictions 
and residuals with either linear regression models or machine learning 
algorithms. For instance, Pouladi et al. (2019) applied cubist and 
random forest to ordinary kriging to generate hybridized regression 
kriging models, cubist regression kriging and random forest kriging. 
Regression kriging is a hybridized geostatistical model that somehow 
resembles universal kriging with an exterior trend. The residual vario-
gram is computed first, and then simple kriging is applied to the re-
siduals to obtain spatial prediction residuals, which is known as 
regression kriging (RK) (Bourennane et al., 2000; Hengl et al., 2003, 
2007). 

The current study explores the use of satellite imageries such as 
Landsat 8 and Sentinel 2 in a data fusion process, to harness the potential 
of using these composite data in conjunction with RK approaches to 
determine the content of Sb in agricultural soil. Secondly, this study 
aims to use the composite dataset (data fusion) in conjunction with 
terrain attributes, as well as regression kriging approaches, to estimate 
Sb for the same soil. Finally, exploits the potential of RK, which com-
bines geospatial analysis and an algorithm that incorporates the impact 
of soil physical and chemical characteristics to accommodate specific 
variations between the application of satellite images dataset and terrain 
attributes. The specific goals of this study are to (1) apply data fusion 
coupled with regression kriging approaches to estimate Sb concentra-
tions in agricultural soil (scenario 1); (2) add terrain attributes to data 
fusion datasets combined with regression kriging techniques to estimate 
Sb content in agricultural soil (scenario 2); (3) compare scenario 1 and 
scenario 2 (4), and map the uncertainties propagated by both scenarios. 

2. Materials and methods 

2.1. Study area 

The study location is in the Frydek Mistek district of the Czech Re-
public (See Fig. 1). The study area is characterized by hilly terrain and 
uplands from the external Carpathians. The study area is distinguished 
by substantial crop production as well as multiple metal and steel in-
dustries, and it undulates within a latitude of 49◦ 41′ 0′ north and 
longitude of 18◦ 20′ 0′ east, at altitudes between 225 and 327 m above 
sea level (Agyeman et al., 2020). The region has a Cfb = oceanic humid 
climate with heavy precipitation (Koppen categorization) even 
throughout the dry months (John et al., 2021b). The Study area has a 
total landmass of 1208 km2 (39.38 percent for agronomic activities and 
49.36 percent for forest cover), and the landmass used for this research 
is 889.8 km2. The color, carbonate composition, and structure of the soil 
are all conceivably discernible. Even so, the physical properties of the 
soil have a medium to smooth texture. They are most often found in 
colluvial and aeolian deposits, where they are distinguished by the top 
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surface and subsurface mottles that are visible in many soil areas and are 
usually accompanied by cementitious materials and bleaching. The soils 
are characterized by a cambic diagnostic horizon with a smooth sandy 
loam texture, a clay composition greater than 4%, and a lateritic 
disconnection with minimal calcareous composition (Kozák et al., 
2010). Despite this, stagnosols and cambisols were the most common 
soil types in the study area (Kozák et al., 2010). These soil types are 
common in the Czech Republic, with altitudes ranging from 160.6 m to 
455.1 m for stagnosol and 59.6–493.5 m for cambisols (Vacek et al., 
2020). 

2.2. Soil analysis and sampling 

Topsoil samples (115 in total) were obtained from productive land in 
the Frydek Mistek district (Fig. 1). The sampling trend was a conven-
tional grid, and the soil sampling distance was maintained at 2 × 2 km 
by employing a hand-held (GPS Leica-Zeno) gadget at depths spanning 
from 0 to 20 cm. Before transporting the sampled soil to the research 
laboratory, each sample was stored in plastic bags and pre-labeled. To 
obtain powdered soil samples, the soil samples were air-dried before 
being decimated with a mechanical device (Fritsch disk mill pulverize) 
and mesh sieved (2 mm). In a Teflon container, 1 g of dried, thoroughly 
mixed, and mesh-sieved soil sample (sieve size 2 mm) was placed and 
labeled. For each Teflon bottle, 7 ml of 35% HCl and 3 ml of 65% HNO3 
were discharged (employing fully automated dispensers—1 for every 

acid), and the lid was delicately sealed halfway to enable the sample to 
continue to stay overnight for reactions to occur (aqua regia procedure) 
(Cools, 2016). After dissolving the soil sample, the solution was placed 
on a hot plate for 2 h to speed up the digestion process before being 
allowed to cool. The supernatant was obtained by filtering the solution. 
The supernatant was transferred to a 50-ml (volumetric) flask and 
watered down with de-ionized water to 50 ml. The watered-down su-
pernatant was then filtered into 50 ml PVC tubes. Besides that, 1 ml of 
the watered-down concentration was mixed with 9 ml of de-ionized 
water and filtrated into a pre-prepared 12 ml test tube to determine 
the pseudo total PTE concentration. Potential toxic element concentra-
tions were determined following conventional guidelines employing the 
inductively coupled plasma–optical emission spectrometry (ICP–OES) 
(Thermo Fisher Scientific Corporation, USA). Moreover, the quality 
control and quality assurance procedures were guaranteed by checking 
the reference criteria for each study. The duplicate analysis was carried 
out to guarantee that errors were kept to a minimal level. 

2.3. Geostatistics 

Geostatistics is a statistical field that analyses and predicts the values 
related to spatial heterogeneity of physical processes. This includes the 
spatial and temporal coordinates of the datasets in the assessments. 
Numerous geostatistical techniques have been created as a pragmatic 
way to characterize spatial characteristics and linear interpolation 

Fig. 1. Schematic showing the study area (A), District of Frydek Mistek (B) and Czech Republic (C).  
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values for areas in which samples have not been collected. In this study, 
we employed ordinary kriging (OK) hybridizing it with machine 
learning algorithms for mapping and predicting Sb contents in soils. 
Ordinary kriging is an interpolation method that allows the user to 
quantify the spatial variability of soil properties at the investigational 
site (Agyeman, John, et al., 2021; Bishop and Geoderma, 2001). The 
equation is given as 

Z∗ (XO)=
∑n

i− 1
λi Z(XI)

where Z∗ (XO) represents the predicted value at the unquantified loca-
tion (XO), Z(XI) denotes the known or observed value at the location 
(XI), λi is the coefficient weighting at the observed location (XO) and n is 
the number of locations within the area under investigation. 

Regression kriging (RK) is a type of interpolation approach where 
there is a combination of linear models of variables that are dependent 
and auxiliary variables, such as terrain attributes of variables in which 
the residuals are kriged alongside (Odeh et al., 1995). The RK approach 
will be used in the research to spatially interpolate the distribution of Sb 
in the following order:  

➢ estimating the Sb prediction method approach by utilizing the 
regression technique in reciprocal directions,  

➢ quantifying the Sb prediction modeling approach with residuals at 
every calibration position,  

➢ modeling the covariance structure of the Sb residuals,  
➢ spatially interpolating the Sb residuals using the variogram model 

parameters and  
➢ obtaining the predicted map and combining the Sb prediction 

approach surface on the interpolated residual surface 

2.4. Modeling using machine learning algorithms (MLAs) 

The following machine learning algorithms (MLAs) were used in this 
study: extreme gradient boosting, random forest, conditional inference 
forest and cubist. 

2.4.1. Conditional inference forest (CIF) 
Conditional inference forest is a tree-developing model that is nor-

mally used in the application of bioinformatics (Nicodemus et al., 2010). 
CIF differs from the traditional random forest in theory because it dis-
tinguishes the selection of the splitting varying assortment of the split-
ting point of the already selected divided variable (Hothorn et al., 2006). 
The optimized divide variable is ascertained in the initial step and the 
associative test is run among the potential split parameters and the 
response. CIF approaches are used as a further tree-building technique 
with a conditional grid for the possible combination significance mea-
sure, allowing for superior assessment of each parameter’s independent 
commitment and discrimination of observables from erroneous corre-
lation (Delerce et al., 2016). If sampling is done without substitution and 
a test statistic, a quadratic version is utilized, and the CIF two-step 
methodology results in a non-biased split variable choice. The model 
is implemented in RStudio with the package “party”. 

2.4.2. Extreme gradient boosting (EGB) 
EGB is classified as a form of decision tree algorithm that presents a 

boosted gradient method that enhances accuracy and speed (Climent 
et al., 2019). It is both a classification and regression algorithm. EGB was 
built on Friedman’s previous gradient boosting method (Climent et al., 
2019) which is a pragmatic and flexible function of Friedman’s gradient 
boosting structure. The EGB modeling technique was applied in RStudio 
utilizing the R package “XGBoost”. 

2.4.3. Cubist 
Quinlan (1992) developed the Cubist modeling approach as an 

augmentation of the M5 tree modeling method. The model’s 

configuration is made up of preliminary factors that operate as various 
points in a decision tree and are merged with multivariate regression 
approaches. The trees are transformed into a collection of rules that are 
either exempted through clipping or integrated for easier assessment. 
The main benefit of the cubist approach is the addendum of multiple 
training committees and boosting to make the weights more affiliated 
(Quinlan, 1992; Kuhn et al., 2013). Cubist algorithms integrate boosting 
with training committees (generally more than one) and that is consis-
tent with the approach of “boosting” by progressively constructing a 
sequence of trees mostly with modified weights. The cubist approach 
employs a large number of neighbors to alter the rule-based predictive 
model. The cubist modeling approach was applied in RStudio using the 
R package “cubist”. 

2.4.4. Random forest (RF) 
A random forest (RF) model is a collective of multiple regression and 

classification trees. Breiman (2001) developed the technique and 
claimed that it outperformed adaptive boosting in terms of accuracy. 
According to Gislason et al. (2006) and Heung et al. (2014), RF’s 
computational capacity is faster. The RF’s parameter managing poten-
tial is categorical as well as uninterrupted. Due to its superior nature, RF 
does not require parameter preselection and can manage noise (Día-
z-Uriarte & Alvarez de Andrés, 2006). The RF modeling approach was 
implemented in RStudio by applying the R package “randomForest”. 

2.4.5. Environmental covariates (EC) 
The images of the Sentinel 2 satellite were obtained from a free 

satellite hub. Sentinel 2 was acquired by the European Space Agency 
Sentinel constellation wihin August 2020 (i.e., within the sampling 
period) (https://www.sentinel-hub.com/), and the bands were analyzed 
employing SNAP software. The Landsat 8-OLI satellite images were ac-
quired (wihin August 2020) from the United States geological Earth- 
Explorer website. To obtain cloud-free Landsat 8-OLI and Sentinel-2 
images of the study area, we selected images with very low cloud 
coverage and then mosaicked the most appropriate ones. Atmospheric 
correction was performed on the satellite imageries for sentinel 2 and 
Landsat 8. 

Terrain attributes were derived using various sets of sourced terrain 
derivatives. The covariates were obtained from NASA EARTHDATA and 
processed with the SAGA-GIS terrain toolbox using a DEM with a spatial 
resolution of 30 m (https://earthexplorer.usgs.gov/). Moreover, the 
treated DEM procured at 30 m spatial resolution was rescaled to 10 m 
spatial resolution in ArcGIS utilizing the bilinear resampling method. 
Slope, elevation (DEM), LS-factor, CNBL (channel network base level), 
CND (channel network drainage), and RSP (relative slope position) are 
the terrain attributes used. The selected terrain attributes are largely 
attributable to the terrain’s interaction with Sb. 

2.5. Image fusion 

Image fusion was accomplished by fusing multiple input images into 
a more informative single composite image. Fusion typically combines 
low to medium spatial hyper/multispectral images with a high spatial 
resolution panchromatic one to obtain an image preserving both spectral 
and spatial resolution of the hyper/multispectral and panchromatic 
images, respectively. 

Depending on the fusion stage, image fusion is performed at three 
different levels (Pohl et al., 1998):  

1 Pixel level,  
2 Feature level,  
3 Decision level 

The pixel level is the lowest processing level of image composition. 
At the pixel level, the most popular and effective image fusion tech-
niques are Hue, Intensity, Saturation (IHS), Gram Schmidt (GS), 
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Principal Component Analysis (PCA), and wavelet. GS approach was 
been used in this study because it has shown higher efficiency in the 
fusion of Sentinel 2 A and Landsat 8-OLI in a study conducted by 
Khosravi et al. (2022). It is based on an orthogonal vector algorithm, and 
all images are transformed to vector imagery maintaining equal di-
mensions of the pixels at a transformed high spatial resolution scale. The 
GS data fusion transformation process is thus carried out for the high 
spatial resolution bands (Laben, 2000). 

This study employed Sentinel 2 A and Landsat 8-OLI bands. The 20 m 
spatial resolution Sentinel 2 A bands 11 and 12 were downscaled to 10 m 
using Gram-Schmidt (GS) approach to obtain a consistent spatial reso-
lution with band 2, band 3, band 4 and band 8. Similarly, the Landsat 8- 
OLI bands 2 to 7 were equally resampled from 30 m spatial resolution to 
10 m spatial resolution using the GS fusion approach. The Landsat 8-OLI 
bands 2 to 7 were fused to the 10 m Sentinel Bands using the GS fusion 
approach. These bands from Sentinel 2 and Landsat 8 were chosen 
because they possess the same spectral similarities. 

2.6. Model assessment and approach 

The set of data was divided into two parts: testing (25%) and training 
(75%), with the training data being used to generate the modeling 
regression and the testing data being employed to validate the perfor-
mance of the designed models. All the modeling methods were exposed 
to a five-time replication of a ten-fold cross-validation procedure. The 
coefficient of determination (R2), bias, root mean square error (RMSE), 
mean error and mean absolute error (MAE) and bias were calculated for 
the test dataset to assess the validity and precision of the DSM modeling 
techniques used in this study. The coefficient of determination, which 
represents the variability of the ratio in the response, is expressed by the 
regression model. The RMSE and degree of severity of the variations 
from within the independent quantification are used to classify the 
predictive model’s performance, whereas MAE confirms the actual 
measurable value. 

The modeling approach was done in two distinct approaches namely 
the application of data fusion of sentinel 2 and Landsat 8 coupled with 
regression kriging approaches to the estimation of Sb concentration in 
agricultural soil (scenario 1). The modeling approach allows the appli-
cation of pixels extracted from the composite images’ fusion (refer to 
supplementary Table ST1 for details of the bands used in the image 
fusion) from the 115 observation points in the study area as an auxiliary 
dataset coupled with modeling techniques to predict the concentration 
of Sb in agricultural soil (Scenario). In scenario 2 we employed the 115 
pixels from the image fusion along with 115 samples each from terrain 
attributes (Slope, elevation or DEM, LS-factor, channel network base 
level, channel network drainage and relative slope position) combined 
with regression kriging techniques to estimate Sb content in agricultural 
soil (Scenario 2). Terrain attribute was chosen alongside data fusion of 
sentinel 2 and Landsat 8 because of the relationship it has with soils and 
also these features play a key role in the prediction of PTEs (Sb) in 
agricultural soil. Depending on the circumstances of pedogenesis and 
evolutionary development, environmental covariates have the strongest 
impact on the influential and effective categorization of the spatial 
variability of PTEs in soil (Zeraatpisheh et al., 2020). According to Ding 
et al. (2017), terrain attributes such as slope, and elevation have an 
impact on the distribution of PTEs in the soil. In any case, we are using 
data fusion of satellite images that are images of the Earth. Essentially 
environmental covariates such as slope are an important topographic 
factor that affects the migration and distribution of elements (Chu and 
Zhou, 2014). 

3. Results and discussion 

3.1. Data description and relative variable importance of environmental 
covariate to Sb 

Table 1 presents the statistical description of Sb concentration in 
agricultural soil. Sb has a median, mean, maximum, and minimum value 
of 2.26 (mg/kg), 2.61 (mg/kg), 2.26 (mg/kg), and 9.72 (mg/kg), 
respectively. According to Wilding (1985), a coefficient of variation 
(CV) greater than 35% indicates high variability. The estimated CV of Sb 
is 41.30%, implying that the CV is high. This appears to suggest that the 
CV of Sb is homogeneous within agricultural soil and that the source of 
pollution may be anthropogenic. The estimated skewness of the Sb 
distribution in the agricultural soil suggests that the skewness value is 
greater than 1, which therefore suggests that the Sb distribution does not 
follow a normal distribution. Based on that, this study is inclined to use 
nonparametric regression models in the modeling of Sb in the agricul-
tural soil, which means there is no need to log transform the dataset. 
Nevertheless, the estimated percentile distribution of Sb in the agricul-
tural soil is 2.6 for the 25th, 50th, and 75th percentiles and 3.70 for the 
90th percentile. Nakamaru et al. (2006) reported Sb concentrations in 
various agricultural soil groups with mean concentrations of 0.6 mg/kg 
(Andosol), 0.8 mg/kg (fluvisol), and 0.9 mg/kg (cambisol), which are 
2.51–3.76 times lower than the current agricultural soil Sb concentra-
tions. Zhong et al. (2020) also reported Sb concentrations in agricultural 
soil collected from different soil types: chestnut soil and red earth soil, 
with mean concentrations of 1.50 mg/kg and 2.73 mg/kg, respectively, 
in which the Sb concentration in the current study was found to be 
higher than the Sb concentration in the chestnut soil but lower than the 
Sb concentration in the red earth soil. The estimated crustal concen-
tration of Sb reported by Cai et al. (2016) and Huang et al. (2012) lies 
between 0.2 and 0.3 mg/kg. However, according to the United States 
Environmental Protection Agency and the European Union Sb is a pri-
ority pollutant, that is analogous to arsenic (Cui et al., 2015). The me-
dian concentration of Sb in agricultural soil samples (0.30 mg/kg) in 
Italy and European agricultural soils (0.20 mg/kg) samples reported by 
Reimann et al. (2014) and Reimann et al. (2012) are lesser than the 
current Sb median concentration (2.26 mg/kg) in the study area. The 
agricultural soils in southern Poland reported Sb mean and median 
concentrations of 1.23 mg/kg and 0.95 mg/kg (Gruszecka-Kosowska 
et al., 2020) as compared to higher mean and median concentrations of 
2.26 mg/kg and 2.61 mg/kg in the current study. Furthermore, in 
southwestern Poland, the mean and median concentration of Sb re-
ported by Lewińska & Karczewska (2019) in the following towns Bardo 
(0.36 mg/kg, 0.18 mg/kg), Czarnów (1.3 mg/kg, 0.16 mg/kg), Głogów 
Cu smelter (2.05 mg/kg, 0.98 mg/kg) and Nowa Wieś Legnicka (1.55 
mg/kg, 1.21 mg/kg) were found to be low compared to the current mean 
and median concentration in this study. Tóth et al. (2016a,b) detailed 
that the threshold concentration for Sb in agricultural soil in Europe is 
2.00 mg/kg which is also lower than the current concentration of Sb in 
the agricultural soil of the current study area. Antimony, unlike lead, 

Table 1 
Statistical description of Sb.  

Descriptive Statistics Sb 

Median (mg/kg) 2.26 
Mean (mg/kg) 2.61 
Minimum (mg/kg) 2.26 
Maximum (mg/kg) 9.72 
Standard deviation 1.08 
Coefficient of variation 41.30 
Skewness 4.22 
Kurtosis 20.70 
25th percentile 2.26 
50th percentile 2.26 
75th percentile 2.26 
90th percentile 3.70  
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which has received more attention in the literature, is an emerging 
pollutant with metal and metalloid properties that are released into the 
environment either naturally or through anthropogenic sources. Sb is 
not widely discussed in terms of being a soil pollutant and a food toxic, 
as are Pb, Cd, Hg, and As. 

The environmental covariates used in this study for Sb prediction in 
the cultivated soils are represented in Fig. 2. The corresponding 
importance of the relationship with Sb varied depending on the weights 
assigned to the environmental covariates used for Sb prediction in 
agricultural soil. Based on the relationship with the Sb, the relative 
importance of the environmental covariates obtained by RF, suggested 
that the most essential covariates decreases in this order B6 > LS. factor 
> slope > DEM > B3 > CNBL > CND > RSP > B4 > B2 > B5 > B1 with 
the corresponding percentile weights 35.34%, 27.90%, 13.23%, 3.93%, 
4.06%, 4.00%, 3.24%, 2.82%, 2.44%, 1.93%, 1.78% and 1.56% 
respectively. Even though short-wave infrared (Band 6 - SWIR) was the 
most relevant covariate for Sb, within the most relevant 6 covariates, 
four of the terrain attribute covariates, including LS. factor, slope, DEM, 
as well as CNBL, were found to be within the most relevant covariates. 
This is true for the study area, which is characterized by relatively 
varying terrain (i.e. high and low terrain). 

3.2. Prediction results using two different scenarios 

Table 2 present the validation results obtained in the prediction of 
the concentration of Sb in agricultural soil using two distinct scenarios 
applied on varied auxiliary datasets. The regression kriging (RK) ap-
proaches RF_RK, Cubist_ RK, EGB_ RK, and CIF_ RK produced R2 values 
of 0.67, 0.49, 0.81, and 0.42, correspondingly, in scenario 1. The 
EGB_RK (R2 = 0.81) approach produced the best results, followed by the 
RF_RK approach (0.67). The regression kriging approaches cubist_ RK 
(R2 = 0.49) and CIF_KK (R2 = 0.42) produced abysmal results with R2 

values falling below 0.5, which according to Li et al., (2016) is unac-
ceptable. The RMSE and MAE of the best-performing modeling ap-
proaches are listed in this order: EGB_RK, RF_RK, cubist_RK, and CIF_RK 
for RMSE, and EGB_RK, cubist _RK, RF_RK, and CIF_RK for MAE (refer to 
Table 2). In terms of estimated error (RMSE and MAE), EGB_RK had the 
lowest degree of error in the prediction of Sb in agricultural soil. The 
degree of bias in the prediction of Sb in agricultural soil based on the 
regression kriging approaches revealed that the modeling approach 
RF_RK had the least bias of 0.31, followed by CIF_RK with a bias of 0.33, 
EGB_RK with a bias of 0.37, and cubist_RK with a bias of 0.40. The 
overall performance of the regression kriging modeling approaches 
indicated that EGB_RK is the optimal modeling technique in the pre-
diction of Sb in agricultural soil, with high prediction performance, low 
error margins, and appreciable bias. 

In scenario 2, the regression kriging modeling approaches exhibited 

good performance, with the modeling approaches’ R2 values being 0.76, 
0.73, 0.51, and 0.48 for EGB_RK, cubist_RK, CIF_RK, and RF_RK, 
respectively. The error values of the modeling approaches based on the 
least error obtained were 0.9 (EGB_RK), 1.07 (cubist_RK), 1.15 (CIF_RK) 
and 1.17 (RF_RK) for RMSE and the MAE of 0.48 (EGB_RK), 0.59 
(cubist_RK), 0.60 (CIF_RK) and 0.62 (RF_RK). The prediction bias for the 
modeling approaches suggests that a 0.05 level of bias for the RF_RK 
modeling approach is the least prediction bias among the modeling 
approaches. The other modeling approaches such as EGB_RK, CIF_RK, 
and cubist_RK accrued degrees of biases of 0.06, 0.08, and 0.11 
respectively. The cumulative prediction accuracy of the modeling 
techniques in predicting Sb concentration in agricultural soil revealed 
that the EGB_RK modeling approach is the best modeling method 
capable of predicting Sb concentration in agricultural soil with better 
efficiency, a lower error margin, and a satisfactory degree of bias. 

When comparing scenarios 1 and 2, the obtained R2 values of the 
RF_RK and EGB_RK in scenario 1 decreased by 16.04% for the RF_RK and 
2.72% for the EGB_RK in scenario 2. Alternatively, the R2 values for the 
cubist_RK and the CIF_RK increased by a margin of 19.79% for the 
cubist_RK and 8.75% for the CIF_RK in scenario 2 compared to scenario 
1. Juxtaposing the estimated errors (RMSE and MAE) of the modeling 
approaches in both scenarios, it was evident that the error margin in 
scenario 2 decreased significantly by the marginal range of 9.97%– 
18.79% for RMSE and MAE, 6.23%–11.74% than in scenario 1. 
Conversely, the prediction biases of the modeling approaches in both 
scenarios also revealed that the biases accrued by the modeling ap-
proaches in scenario 2 decreased considerably by a marginal percentage 
range of 57.39%–72.04%. The cumulative assessment of the scenarios 
revealed that the three modeling approaches, EGB_RK, CIF_RK, and 
cubist_RK, significantly improved in scenario 2 compared to scenario 1. 
However, the overall modeling efficiency of the modeling techniques in 
predicting Sb in agricultural soil indicated that the EGB_RK in the sce-
nario 2 modeling approach is the best modeling method capable of 
predicting the concentration of Sb in agricultural soil with higher effi-
ciency, minimal error margin, and a satisfactory degree of bias. 

The majority of the environmental factors used to build the 
connection with Sb were gathered from the ground and remote sensing 
satellites. The uncertainty of the environment, the spatial variation of 
Sb, and the predictive capabilities of modeling techniques all had a 
significant impact on the reliability of the prediction. The combination 
of data fusion and terrain attributes coupled with EGB_RK has proven to 
be effective in the prediction of PTE in agricultural soils with minimal 
error, acceptable bias, and a high coefficient of determination. It has 
been reported by Hengl et al. (2004); Umali et al. (2012) and Zhang et al. 
(2012) that the application of RK that introduces spatial interpolation 
into learning algorithms exhibits better spatial interpolation results in 
the prediction of soil properties and PTEs. The spatial interpolation 

Fig. 2. Relative importance of environmental covariates to Sb (B1= Band 1, 
B2= Band 2, B3= Band 3, B4= Band 4, B5= Band 5, B6= Band 6, dem, slope, LS 
factor, CNBL = channel network base level, CND = channel network drainage, 
RSP = relative slope position). 

Table 2 
Depicts the performance of Sb prediction in agricultural soil employing data 
fusion as an ancillary dataset (scenario 1) and a combination of data fusion and 
terrain attributes as an ancillary dataset (scenario 2).  

SCENARIO 1 

ALGORITHMS R2 RMSE BIAS MAE 
RF_RK 0.67 1.40 0.31 0.70 
CUBIST_RK 0.49 1.49 0.4 0.67 
EGB_RK 0.81 1.31 0.37 0.61 
CIF_RK 0.42 1.52 0.33 0.74 
SCENARIO 2 
ALGORITHMS R2 RMSE BIAS MAE 
RF_RK 0.48 1.15 0.05 0.6 
CUBIST_RK 0.73 1.07 0.11 0.59 
EGB_RK 0.76 0.90 0.06 0.48 
CIF_RK 0.51 1.17 0.08 0.62 

{EGB_RK (extreme gradient boosting-regression kriging), RF_RK (random forest_ 
regression kriging)m CUB_RK(cubist_ regression kriging) and CIF_RK(condi-
tional inference forest_ regression kriging)}. 
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aspect of ordinary kriging when hybridized with an appropriate 
modeling algorithm yields good results. According to Pham et al. 
(2019a,b), OK has the tendency of yielding good results when applied in 
the prediction of PTEs and soil properties. The combination of data 
fusion datasets and terrain attributes, as well as the synergy established 
between covariates and modeling approaches such as EGB, has proven to 
produce acceptable results. Where there is a potent correlation between 
predicted PTE and environmental covariates, RK has consistently proven 
to be more precise (Keskin and Geoderma, 2018). In this study, it is 
evident that the relationship between the terrain attributes and Sb dis-
tribution has played a major role in the enhancement of the predicted 
results in scenario 2, especially in CIF_RK and cubist_RK. The low bias, 
RMSE and MAE in the data fusion-terrain attributes combination 
coupled with the modeling algorithms for the 3 RK models (EGB_RK, 
CIF_RK and cubist_RK) indicates that the terrain attributes combination 

with data fusion dataset information has served its purpose. It is 
imperative to highlight that the selection of environmental covariates 
that are ecologically consistent and correlate with the response variable 
with a robust autocorrelation with data makes RK more appropriate. 
More auxiliary datasets could be chosen to enhance the RK method’s 
accuracy (Pham et al., 2019). 

EGB possesses a substantial benefit above many MLAs in terms of 
selecting efficient attributes via a significance ranking system and 
limiting method prediction error by specifying the preset perspective of 
partitioning for omitted datasets or values (Ma et al., 2019). The findings 
suggest that by integrating major characteristics in evaluating metal ion 
prediction concentration levels, forest vegetation biomass, and PTE 
levels, EGB can improve prediction accuracy (Joharestani et al., 2019). 
In the estimation of PTEs in soils, EGB significantly outperforms other 
famous MLA prediction models including RF, ANN and SVM (Bhagat 

Fig. 3. Sb concentration maps based on residuals, algorithm predictions, and MLA and OK hybridization [using EGB_RK (A), RF_RK (B), CUB_RK (C), and CIF_RK (D) 
] (Scenario 1-using data of fusion Sentinel 2 and Landsat 8 as the predictors). Based on the residuals, algorithm, and combination of kriging and modeling approaches, 
the maps for each RK are arranged in columns for all the models, showing the prediction for the regression kriging models, the machine learning models, and the 
residuals. The legend beneath every row of the maps represents the precise scale for the concentration of Sb in the soil per model. {EGB_RK (extreme gradient 
boosting-regression kriging), RF_RK (random forest_ regression kriging)m CUB_RK (cubist_ regression kriging) and CIF_RK (conditional inference forest_ regres-
sion kriging)}. 

P.C. Agyeman et al.                                                                                                                                                                                                                            



Environmental Pollution 316 (2023) 120697

8

et al., 2021). EGB, on the other hand, has the benefit of minimizing both 
overestimation as well as underestimation (Li et al., 2020). Based on Kim 
et al. (2015), EGB tends to screen out the modeling techniques efficiency 
by reducing the potential limitations that other modeling strategies 
have, including computational complexity. Moreover, EGB can help 
with modeling standardization issues (Jia et al., 2019), hyper-parameter 
tuning (Probst et al., 2019), local minima (Kawaguchi, 2019), elevated 
discrepancies (Li et al., 2020), and technology transfer (Kim et al., 
2020), the demand for hyperparameter tuning (Probst et al., 2019). 

3.3. Spatial prediction of Sb using regressing kriging approaches 

The spatial distribution maps using both scenarios are presented in 
Figs. 3 and 4 for the modeling approaches RF_RK, cubist_RK, CIF_RK and 
EGB_RK. The spatial distribution maps for the modeling approaches in 
scenario 1 exhibited predominantly low to moderate spatial distribution 

of the mapped MLAs outputs and the hybridized modeling approaches 
RK with hotspots displayed in the southeastern area for the EGB_ (RK 
and prediction), cubist_ (RK and prediction) and CIF_RK spatial distri-
bution map. However, the residual maps for the modeling approaches 
displayed low spatial distribution across the entire study area with 
exception of the residual for the EGB that displayed moderate spatial 
prediction. On the other hand, the spatial distribution maps for the 
modeling approaches in scenario 2 for the MLAs and the hybridized 
modeling approach displayed low to moderate spatial distribution for 
the modeling approaches. The cubist and the CIF modeling approach 
spatial distribution map showed hotspots in the northeastern and 
southeastern regions of the study area. The residuals map showed low 
distribution except for the EGB map which displayed moderate spatial 
distribution. The spatial distribution for the EGB_RK and the EGB_pre-
diction map shared that same spatial distribution pattern. By comparing 
the RK maps for scenarios 1 and 2, the presence of terrain attributes 

Fig. 4. Sb concentration maps based on residuals, algorithm predictions, and MLA and OK hybridization [using EGB_RK (E), RF_RK (F), CUB_RK (G), and CIF_RK (H)] 
(Scenario 1-using data fusion of sentinel 2 and Landsat 8 along with terrain attributes as the predictors). Based on the residuals, algorithm, and combination of 
kriging and modeling approaches, the maps for each RK are arranged in columns for all the models, showing the prediction for the regression kriging models, the 
machine learning models, and the residuals. The legend beneath every row of the maps represents the precise scale for the concentration of Sb in the soil per model. 
{EGB_RK (extreme gradient boosting-regression kriging), RF_RK (random forest_ regression kriging)m CUB_RK (cubist_ regression kriging) and CIF_RK (conditional 
inference forest_ regression kriging)}. 
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combined with the data fusion dataset coupled with the modeling ap-
proaches highlighted levels of Sb concentration that could not be shown 
when using data fusion alone as an auxiliary dataset for predicting Sb 
concentration in agricultural soil. The RK maps for the modeling 
approach show dissimilar spatial distribution of Sb in the study area. The 
combination of data fusion to terrain attributes used in the RKs spatial 
distribution maps has exhibited spatial differences in the maps which 
may be attributed to the terrain attributes that were added to the data 
fusion as predictor variables in the prediction of the concentration of Sb 
in the agricultural soil. Even though the application of auxiliary datasets 
to modeling approaches has the tendency of improving prediction ac-
curacy and the maps produced with RKs display a comprehensive 
pattern for the Sb concentration in the agricultural soil. The RKs map for 
the modeling approaches in scenario 1 displays an erratic pattern while 
the RKs maps in scenario 2 exhibit consistent and natural spatial dis-
tribution patterns due to the introduction of terrain attributes as ancil-
lary data in the mapping of Sb in the agricultural soil. 

3.4. Uncertainty assessment based on scenarios 1 and 2 

Model uncertainty can emerge from ignoring pertinent procedures 
like the linear nonlinear sorption process, using insufficient process 
characterizations like stable or state of balance, or specifying erroneous 
boundary constraints (Keller et al., 2002). The assessment of uncertainty 
propagation generates information-based and natural uncertainties that 
are dependent on the model’s reliability, apart from variable calibration. 
Nonetheless, the prediction and uncertainty maps of the RK models for 
both scenarios are presented in Figs. 5 and 6, specifying the levels of 
uncertainty depicted by 2.5% and 97.5% prediction intervals while the 
mean prediction is denoted as such. In summary, these are presented in 
columns A to D and E to H for each modeling approach. Presented in 
Fig. 5 from columns A to D are CIF_RK (A), cubist_RK (B), EGB_RK (C) 
and RF_RK (D) for scenario 1 while in Fig. 6 the columns are such that 
there is CIF_RK (E), cubist_RK(F), EGB_RK(G) and RF_RK(H) for scenario 
2. The evaluation of the prediction maps using the mean error (ME), 

mean absolute error (MAE) and root mean square error (RMSE) is pre-
sented in Table ST2 (Supplementary Table 2). 

In scenario 1, the RKs approaches exhibited diverse levels of uncer-
tainty propagation across the entire study area. However, the lower limit 
(2.5%) and the mean prediction propagation exhibited by the modeling 
approaches were generally low with patches of moderate degree of Sb 
seen in the south-eastern area for the cubist_RK modeling approach. On 
the other hand, the upper limit (97.5%) of uncertainty propagation by 
the modeling approaches is largely low for all the modeling approaches, 
with the south-eastern areas of the map for cubist_RK recording mod-
erate degree of uncertainty propagation. The Sb mean estimate ME 
levels were 0.001 for EGB_RK, 0.004 for cubist_RK, 0.005 for CIF_RK and 
0.003 for RF_RK. The estimated MAE and RMSE for the prediction maps 
in scenario 1 are 0.288 (EGB_RK), 0.306 (cubist_RK), 0.525 (CIF_RK) and 
0.386 (RF_RK) for MAE and 0.579 (EGB_RK), 0.522 (cubist_RK), 0.971 
(CIF_RK) and 0.723 (RF_RK). The error distribution estimated for the 
maps of each modeling approach based on RSME, ME, and MAE sug-
gested that the degree of error propagated in the mean predictions is 
within 10%. The cumulative assessment of the error obtained by each 
modeling approach suggested that EGB_RK accrued the least error in the 
mapping output. 

In scenario 2, the cubist_RK displayed moderate and spots of rela-
tively high uncertainty propagation level in the north-eastern and the 
south-eastern enclaves of the map for their lower limit, upper limit and 
mean prediction maps. The estimated error margins of the mean pre-
diction maps for each model based on ME ranged between 0.001 and 
0.008, with EGB_RK obtaining the lowest (0.001) and the CIF_OK 
obtaining the highest (0.008) (See table ST2). The MAE and the RMSE 
estimated ranged between 0.260 and 0.464 for MAE and 0.513 to 0.903 
for RMSE. EGB_RK obtained the least MAE (0.260) and RMSE (0.464) 
values whereas CIF_RK obtained the highest estimated MAE (0.513) and 
RMSE (0.903) values (refer to table ST2). 

The cumulative assessment of the degree of uncertainty propagated 
by modeling approaches in the study area suggested that EGB_RK 
accrued the least error in the uncertainty maps based on the prediction 

Fig. 5. Uncertainty propagation levels for Sb distribution in the study area based on the lower limit (2.5%), the upper limit (97.5%) and mean estimation using 
CIF_RK (A), cubist_RK (B), EGB_RK (C) and RF_RK (D) modeling approaches (Scenario 1). 
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intervals (2.5% and 97.5%). More so, the application of EGB_RK, data 
fusion of sentinel 2 and Landsat 8 along with terrain attributes accrued 
the least error when comparing all maps from both scenarios. Compar-
atively moderate Sb levels were propagated in the cubist_RK map in 
scenario 2 than in scenario 1. The areas that displayed the moderate 
level of uncertainty were the areas that exhibited the high level of Sb due 
to the steel factory and the metals works within that region. Fatholo-
loumi et al. (2020) used data fusion and MLAs to predict soil properties, 
and the authors concluded that uncertainty propagation using the cubist 
model was high, which is somewhat consistent with the level of uncer-
tainty propagated by cubist_RK in this study. The integration of terrain 
attributes and data fusion not only had a stronger impact on Sb pre-
diction, particularly in cubist_RK, EGB_RK, and CIF_RK but also reduced 
prediction uncertainty in RF_RK and CIF_RK. Uncertainty quantification 
is required for spatial prediction and can corroborate the applicability of 
maps for managerial decision-making procedures (Fathololoumi et al., 
2020). It is important to note, however, that the best model does not 
always result in the lowest uncertainty in the final map (Zeraatpisheh 
et al., 2022). The use of auxiliary datasets like data fusion and terrain 
attributes has proven to be reliable and capable of producing good re-
sults, reducing error margins in uncertainty mapping. Combining 
auxiliary datasets such as MCC and RST covariates can significantly 
reduce spatial prediction uncertainty (Zeraatpisheh et al., 2022). This is 
consistent with the results obtained in the current study. 

4. Conclusion 

The study assesses multiple regression kriging models for the pre-
diction of Sb in the soil based on two scenarios, namely the prediction of 
Sb concentration in agricultural soil using data fusion and regression 
kriging approaches (scenario 1) and the prediction of the concentration 
of Sb in the soil using terrain attributes, data fusion and regression 
kriging approaches (scenario 2). The results revealed in scenario 1 that 
EGB_RK was the optimum modeling approach that predicted the con-
centration of Sb in the agricultural soil with minimal error, bias, and 
high R2 value. In scenario 2, the results showed that EGB_RK was the 

optimal approach for the prediction of Sb concentrations in soil, with a 
high R2 value and low RMSE and MAE values. Nevertheless, the cu-
mulative performance of the models in both scenarios suggested that 
EGB_RK in scenario 2 performed better than the EGB_RK in scenario 1 
based on the minimal error values as well as low bias compared to error 
and the bias values obtained in scenario 1. The uncertainty propagated 
by both scenarios was largely distributed from low to moderate uncer-
tainty levels, but Cubist_RK exhibited spots of high uncertainty levels in 
the southeastern region of the map in scenario 2. The use of regression 
kriging approaches and auxiliary datasets such as data fusion from 
sentinel 2 and Landsat 8 datasets normally produces good results; 
however, combining it with terrain attributes reduces errors and bias 
and produces better results. This study recommends that the application 
of data fusion, terrain attributes coupled with an appropriate regression 
kriging approach can produce promising results while reducing mar-
ginal errors and bias. 
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Abstract 25 

The current study assesses and predicts Cd concentration in agricultural soil using two cadmium 26 

(Cd) datasets, namely legacy data (LD) and preferential sampling-legacy dataset (PS-LD). The 27 

study predicts Cd in agricultural soil using four streams of auxiliary datasets extracted from 28 

Sentinel 2 (S2) and Landsat 8 (L8) bands. The study was divided into two contexts: Cd prediction 29 

in agricultural soil using a series of ensemble modeling approaches in conjunction with a LD 30 

(context 1) and Cd prediction in agricultural soil using PS-LD (context 2) coupled with a series of 31 

ensemble models. In context 1, ensemble 1, L8 with PS-LD was the cumulative optimal approach 32 

that predicted Cd in agricultural soil with a higher R2 value of 0.76, root mean square error (RMSE) 33 

of 0.66, mean absolute error (MAE) of 0.35, and median absolute error (MdAE) of 0.13. However, 34 

with R2 = 0.78, RMSE = 0.63, MAE = 0.34, and MdAE = 0.15, ensemble 1, S2 of PS-LD was the best 35 

prediction approach in predicting Cd concentration in agricultural soil in context 2. Overall, the 36 

predictions from both contexts indicated that ensemble 1 of S2 combined with PS-LD was the 37 

most appropriate and best model for Cd prediction in agricultural soil. The modeling approaches' 38 

uncertainty in both contexts was assessed using ensemble-sequential gaussian simulation 39 

(EnSGS), which revealed that the degree of uncertainty propagated in the study area was within 40 

5% in both contexts. The combination of the PS dataset and the LD along with ensemble models 41 

and the remote sensing dataset, produced promising results. Nonetheless, the results 42 

demonstrated that the 20m spatial resolution band dataset used in the prediction of Cd in 43 

agricultural soil outperformed the 10m spatial resolution. When PS is combined with LD, an 44 

appropriate modeling approach, and a well-correlated remote sensing dataset are used, good 45 

results are obtained. 46 

 Keywords. Preferential sampling; Ensemble models; Uncertainty assessment; Legacy data; 47 

Remote sensing.  48 
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Quantification of the concentration of cadmium in agricultural soil using legacy data, 51 

preferential sampling, sentinel 2, Landsat 8, and an ensemble model. 52 

Introduction  53 

Soil pollution has caused a decline in soil quality around the world, destroying many soil habitats 54 

and rendering the soil unable to support levels of ecosystems for its intended purpose. Soil as a 55 

repository is regarded as the complexity of the ecological system that facilitates human food 56 

production processes and a diverse range of ecosystems. Soil is regarded as a record of human 57 

operations from the ancient history to today, as well as a reflection of natural phenomena that 58 

are part of evolution's heritage. For instance, soil alteration for agriculture and the burial of 59 

archaeological evidence are both examples of this (Mishra et al., 2016). The impact of pollution 60 

on soil, particularly agricultural soil, reduces soil efficiency and has a negative impact on the 61 

physicochemical and biological properties of the soil, resulting in a decrease in output. The 62 

unintentional application of fertilizers, pesticides, organic manure, and chemicals to improve soil 63 

quality in order to increase yield each crop season contributes significantly to soil toxicity due to 64 

the accumulation effect. Even so, soil is subjugated to anthropogenic impacts such as agricultural 65 

practices, which result in extreme contamination (Khosravi et al., 2022a) with potentially toxic 66 

elements (PTEs) such as cadmium, lead, arsenic, copper, zinc, chromium, and so on. PTEs, 67 

specifically cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As), have had a significant effect 68 

on the soil's capacity to fulfill its prospective role as a habitat for macro- and microorganisms, 69 

arising in soil degradation, negatively affecting quality of food, durability, and safety, and 70 

aggravating possible future dangers to human health via the food chain (Jia et al., 2019; Shi et al., 71 

2014).  72 

Sustained agricultural field exploratory studies and attempts to enhance smart farming, thus 73 

further minimizing the use of agricultural inputs like agrochemicals and the implementation of 74 

potentially polluting fertilizers, have sparked the curiosity of people all over the globe over the 75 

years (Agyeman et al., 2022b). These studies have contributed to a rigorous analysis of PTEs in 76 

agricultural soil to evaluate levels of concentration as well as their impacts as the soil is utilized 77 

to grow food crops for human and animal consumption(Agyeman et al., 2022a, 2022b). 78 
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Continuous agricultural soil research is essential for providing a method to regulate soil health 79 

issues and soil characteristics as the underpinnings of sustainable farming, attempting to address 80 

prospective health and nutrition balance problems, and tackling climatic, natural, and 81 

humanitarian emergencies. 82 

Cadmium remains one of the extremely crucial metals in the soil contaminant because it is 83 

ingested by humans and there is a narrow margin between daily caloric intake and the 84 

consumption that could have a substantial impact on human health (Asami, 1984). Unlike most 85 

other PTEs, Cd accumulates quickly and easily in edible plant parts to levels that are detrimental 86 

to nutrition while having no negative effect on plant development(Wang et al., 2019). Long-term 87 

nutritional Cd ingestion at elevated amounts can cause health complications (Nordberg et al., 88 

2002; Zhang et al., 2014). For instance, grains such as rice, as the basic food for roughly half of 89 

the world's population, have comparably low concentrations of bioavailable Zn and Fe, which 90 

may translate into higher Cd absorption efficiency in the human body when particularly in 91 

comparison to other foods (Chaney, 2015). Cd toxic effect in plants disrupts the antioxidant 92 

defense mechanism and increases the development of reactive oxygen species (ROS) (which 93 

including superoxide ions, hydrogen peroxide, and hydroxyl radicals), causing pigments, lipids, 94 

proteins, DNA, and some cellular molecules to be damaged (Srivastava et al., 2020; Unsal et al., 95 

2020). Antioxidant enzymatic like guaiacol peroxidase, superoxide dismutase, glutathione 96 

reductase, catalase, and ascorbate peroxidase aid in the reduction of oxidative stress triggered 97 

by ROS exacerbated by Cd toxic effects(Latif et al., 2020; Shiyu et al., 2020). Furthermore, Cd 98 

pollution has a negative impact on soil enzymatic operations, biogeochemistry cycles, and 99 

microbiota(Aponte et al., 2020; Suhani et al., 2021). Extreme Cd exposure to humans can cause 100 

kidney disease, respiratory disease, hepatocellular, skeletal, childbearing issues, and carcinogenic 101 

effects (Nordberg et al., 2018). Preceding assessments, for example, by the World Health 102 

Organization, have recognized renal damage as the paramount effect of long-term Cd exposure. 103 

Vertebral implications such as significantly reduced bone mineral density and a steadily 104 

increasing incidence of fractures were observed in clusters of the general population residing in 105 

the near Cd-exposed area (Nordberg et al., 2003). 106 
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The application of remote sensing datasets such as Sentinel 2 and Landsat 8 as auxiliary data for 107 

the prediction of PTEs in soil has been at the forefront of predictive mapping and prediction 108 

analysis. Despite being a low-cost tool for predictive mapping and assessment of PTEs and soil 109 

properties, it provides unrivaled benefits in monitoring the ground at different spatial resolutions 110 

and scales. Previous research such as Agyeman, Khosravi, et al., (2022b); Gorji et al., (2020); 111 

Khosravi et al., (2022b); Taghizadeh-Mehrjardi et al., (2020a); J. Wang et al., (2020) has effectively 112 

predicted PTEs and soil properties in the soil using Sentinel 2 and Landsat 8 separately or in 113 

tandem. At spatial resolutions of 30 m, Landsat 8 has been extensively used for optimized global 114 

ecological and security surveillance, as well as particularly precision mapping of PTEs or soil 115 

properties in the soil(Wulder et al., 2019). Moreover, the precision of multispectral assessment 116 

is frequently limited, owing to the spatial resolution that is coarse and broader bandwidths, as 117 

well as the benefits of the broader wavelength spectrum and comparatively preferred imaging 118 

effects (Peng et al., 2019). On the other hand, Sentinel 2, which has finer spatial resolution (10 119 

or 20 m), more obtainable spatial frequency bands, and relatively large swath widths (290 km), 120 

has piqued scientists' curiosity and demonstrates DSM's remarkable prediction accuracy (Zhou 121 

et al., 2021). 122 

Ensemble learning incorporates various varieties of modeling techniques and merges projections 123 

via a meta-learning to achieve elevated efficiency than a single learner (Sagi & Rokach, 2018). 124 

Ensemble learning models, as opposed to bagging, boosting, and averaging techniques, are 125 

occasionally used in digital soil mapping(Opitz and Maclin, 1999) but have gained popularity as 126 

many organizations have implemented the computational capabilities and sophisticated 127 

analytics software required to run such models. The stacking technique in the ensemble modeling 128 

approach can hold the competitive edge of the features of various machine learning techniques, 129 

decrease the variability of the solitary machine learning algorithms, and facilitate improved and 130 

more reliable predictions(Li et al., 2020). Previous studies including Afrifa et al., (2021); Bhagat 131 

et al., (2021); Lin et al., (2022); Tan et al., (2021); Tian et al., (2017); Q. Wang et al., (2015) have 132 

reported the efficiency of ensemble model in the prediction of PTEs. 133 

 134 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The use of legacy data in predictive mapping and prediction analysis in digital soil mapping is 135 

becoming more popular. Legacy data (LD) is data collected from a specific time or period, and it 136 

can span a year or more to monitor soil quality or pollution over a given period. A preferential 137 

sampling (PS) however, is one in which the spatial process and sampling location are not thought 138 

to be stochastically independent. This sampling procedure is initiated when the area of interest 139 

is deemed polluted or has a peculiar problem. In this study, we will use LD in the prediction of Cd 140 

in the agricultural soil and, likewise, use a combination of preferential sampling and legacy data 141 

(PS-LD) in the prediction of Cd in the soil. The combination of preferentially sampled datasets 142 

with legacy data from prediction mapping and analysis, on the other hand, is uncharted territory. 143 

The use of multi-source satellite-derived covariates via individual ML techniques (Level 0) and 144 

stacking them (Level 1) with streams of diverse resample auxiliary dataset has not been 145 

extensively explored (DAS et al. 2022). More so, the use of ensembling models in prediction is 146 

not new, nor is the use of remote sensing datasets such as Landsat 8 and Sentinel 2 in prediction. 147 

However, the use of ensemble models, Landsat 8, and Sentinel 2 at various spatial resolutions, 148 

along with preferentially sampled datasets and legacy data, has never been done before. The 149 

utilization of legacy data in tandem with data from preferential samples will influence soil 150 

pollution spatial prediction over a larger area. The current research focuses on predicting Cd in 151 

agricultural soil using a combination of preferential sampling and legacy datasets. We will analyze 152 

and compare the prediction of Cd in agricultural soil using a series of ensemble modeling 153 

approaches along with a legacy dataset (LD) (context 1) and the prediction of Cd in agricultural 154 

soil using preferential sampling-legacy dataset (PS-LD) (context 2) coupled with a series of 155 

ensemble models in this study. The study's specific objectives are to compare the prediction of 156 

Cd in agricultural soil using two distinct Cd datasets; to apply the different spatial resolution of 157 

remote sensing datasets to the prediction of Cd in agricultural soil; to assess the propensity of 158 

ensemble models coupled with diverse Cd datasets and remote spatial resolution datasets; and 159 

finally, to assess uncertainty using ensemble-sequential gaussian simulation (EnSGS). 160 
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Material and methods 163 

Study area 164 

Diverse agricultural lands such as arable land, orchards, hopfields, vineyards, agricultural land 165 

(greening) and grassland are the agricultural areas used for this study. The choice of agricultural 166 

land used in this study is scattered across the Czech Republic (Figure 1), which forms part of the 167 

4.2 million hectares of agricultural land that is approximately 42% of the total landmass of the 168 

Czech Republic. The Czech Republic is a Central European country located at 48° 33′-51°03′ N, 169 

12°05′-18°51′ E, with elevations ranging from 115 to 1603 meters above sea level. The Koppen 170 

classification of the climatic conditions of the Czech Republic is cool subarctic climate (Dfc), 171 

humid continental climate (Dfb), and temperate oceanic climate (Cfb). Based on the Czech 172 

meteorological institute, the average precipitation yearly ranges from 559 to 893mm with a 173 

corresponding yearly average temperature of 6.8 to 8.9 degree Celsius. A diversity of soil classes 174 

is found in the Czech Republic, but the predominant soil class is the Cambisol, with other minor 175 

soil types such as stagnosols and fluvisols (Kozák et al, 2010). Soil substrates are made up of a 176 

diverse scope of materials that reflect the area's multifaceted geological structure, with higher 177 

elevations influenced by gradient sediments of numerous solid rocks and reduced elevation 178 

sediments inferred primarily from aeolian, fluvial, and lacustrine sources (Chlupáč et al, 2002). 179 

The farmland has a spinning topographic feature with a mountainous region and bumpy 180 

characteristics, with plains restricted to the lowest height (Žížala et al., 2022). 181 

Insert figure 1 close to this section 182 

Soil sampling and analysis 183 

Two hundred and twenty-one legacy datasets (LD) were collected from agricultural land (arable 184 

land, orchards, hopfields, vineyards, agricultural land (greening) and grassland and additional 185 

hundred and fifteen preferential sampled (PS) dataset collected from the district of Frydek 186 

Mistek. The legacy dataset was obtained from Basal Soil Monitoring through the Central Institute 187 

for Supervising and Testing in Agriculture (ÚKZÚZ). Thus, issues of different sampling 188 

homogeneity are addressed by the Basal Soil Monitoring methodology and sampling design. 189 

Regardless of the small number of samples collected, it is safe to say that these adequately 190 
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represent the overwhelming majority of the landscape under consideration. The method used to 191 

extract the Cd for the legacy dataset is the same as for the preferential sampled dataset.  The 192 

legacy data used in this study was from 2017, as historical data might not be reflective of the 193 

present situation due to the dynamics and the recovery period. 194 

The area that was preferentially sampled is a relatively polluted area with steel industries, metal 195 

works, and intensive agricultural. The obtained soil samples were air dried prior to crushing with 196 

a machine-driven device (Fritsch disk grinder) and sieved to ascertain powdery soil sample of less 197 

than 200 mesh, 74 microns. Each 1-gram milled sample (finely ground, mixed thoroughly, mesh 198 

sieved) was placed in a clearly labelled Teflon bottle. 7 ml of 35% HCl and 3 ml of 65% HNO3 were 199 

incorporated to each Teflon bottle (via fully automated dispensers—one for each acid), and the 200 

lid was daintily encased to enable the sample to continue to stay overnight for sample reactions 201 

to occur (aqua regia procedure)(Cools, 2016). Upon dissolving the soil sample, the mixed solution 202 

was deposited on a hot plate (metal) for 120 minutes to aid digestion before being permitted to 203 

cool. The mixture was filtered to obtain the supernatant. The supernatant was injected into a 50-204 

ml Pyrex beaker and diluted with deionized water to the same volume. The supernatant was then 205 

filtered again into 50 ml PVC tubes. Besides that, 1 ml of the diluted concentration was diluted 206 

with 9 ml of de-ionized water and filtered into a 12 ml test tube to determine the solution's 207 

pseudo-total PTE concentration. ICP-OES was used to detect cadmium content levels in 208 

conformance with classic protocols and methods. 209 

Modeling procedures and ensemble modeling approach  210 

The set of data was randomly divided into two parts: testing (25%) and training (75%), with the 211 

training data used to create the modeling regression and the testing data used to validate the 212 

efficiency of the created model. Putting diverse models together to leverage each other's 213 

strengths and weaknesses to produce good modeling predictions paved the way for the 214 

ensemble modeling approach. It is essentially a hybridized model that combines the output of 215 

various modeling approaches into a single modeling approach to produce a more efficient 216 

output. Stacking is an ensemble technique that consolidates the results of various machine 217 

learning methods into a solitary component technique to achieve maximum generalization 218 
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precision (Breiman, 1996; Malone et al., 2014). The conceptual structure for a typical ensemble 219 

model follows two stages, such as the initial level (Level 0), which contains the sub model, and 220 

the final level, which contains all the predictions of the sub model piped through a meta-learning 221 

algorithm to give a final prediction owing to the sub model's departure from (level 0). Every 222 

ensemble model in this study is made up of four sub models, as shown in Figure SF1, and the 223 

stack tree or meta learner is a standalone modeling approach that uses the weights generated 224 

by the sub models to produce the final predictions. Based on the initial simulation performed on 225 

the individual models to determine the best models to be used as a meta learner for the 226 

ensemble models, the meta learners were used because of their superior individual performance 227 

over the sub-models. The packages used in the model were caretEnsemble, caretStack, brnn, 228 

bayesglm, rf, qrf, pls, cforest, xgbTree, cubist, gaussprLinear, and svmRadial. 229 

Environmental covariates (EC) 230 

Images of the Sentinel 2 satellite were obtained from an unrestricted satellite hub, and Sentinel 231 

2 was obtained from the European Space Agency in August 2020 within the sampling period, 232 

(https://www.sentinel-hub.com/) and the bands were obtained using SNAP software. The 233 

Landsat 8-OLI satellite images were downloaded from the United States geological Earth- 234 

Explorer website. Atmospheric correction was applied to satellite images. The Sentinel 2A and 235 

Landsat 8-OLI bands were used in this study at two different spatial resolutions of 10m and 20m 236 

for the selected bands listed in Figure SF2 to estimate the concentration of Cd in agricultural soil 237 

using the legacy dataset alone and in combination with the preferential sampling dataset and 238 

legacy dataset. The bands used in this study had spatial resolutions of 10 and 20 m. (refer to 239 

figure SF2 for in supplementary material for details). The bands exhibited in Figure SF2 were 240 

selected because they share wavelengths within a specific range and have similar spectral 241 

properties. The following Sentinel 2A bands 11 and 12 (that is, of 20m spatial resolution) were 242 

downscaled to 10m in ArcGIS using a bilinear approach to achieve consistent 10m spatial 243 

resolution with the bands 2, 3, 4, and 8. This was done to create the first auxiliary dataset for 244 

predicting Cd in agricultural soil. Similarly, bands 2, 3, 4, and 8 with 10m spatial resolution were 245 

upscaled to 20m spatial resolution to be in sync with bands 11 and 12 for the second auxiliary 246 
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dataset. This was accomplished in ArcGIS using a bilinear approach. Landsat 8-OLI bands 2–7 247 

(refer to figure 3), on the other hand, were downscaled from 30m spatial resolution to 20m and 248 

10m spatial resolution, respectively, using the bilinear approach in ArcGIS to obtain two different 249 

auxiliary datasets with two different spatial resolutions. The pixels from the 336 observed points 250 

of the study area's sample locations were extracted in ArcGIS from all two distinct spatial 251 

resolutions for Sentinel 2 and Landsat 8 to be used for Cd content prediction in agricultural soil. 252 

In all four streams of auxiliary dataset was obtained such as  253 

I. 10m spatial resolution of Sentinel 2 of band 2, 3, 4, 8, 11 and 12,  254 

II. 20m spatial resolution of Sentinel 2 of band 2, 3, 4, 8, 11 and 12,  255 

III. 10m spatial resolution of Landsat 8 of band 2, 3, 4, 5,6 and 7 and  256 

IV. 20m spatial resolution of Landsat 8 of band 2, 3, 4, 5,6 and 7. 257 

Bivariate mapping  258 

The approach of categorizing spatial objects such as grid cells or area polygons according to the 259 

values of two variables is known as bivariate mapping (Speich et al., 2015). A bivariate color 260 

scheme is created by visualizing the two parameters as a single output using a single-color legend. 261 

A bivariate map illustrates the spatial interrelations of two raster layers (Tyner, 2010). Spatial 262 

correlations can then be analyzed as a single output map for various applications. When two 263 

variables have a spatial connection, it indicates that they are dependent on each other. Beard 264 

and Beard & Mackaness, (2006) reflect similar viewpoints in the scenario of the uncertain spatial 265 

analysis scenario, in which the feature and a technique for evaluating its predictive ability are 266 

highly symbolic depicted in a bivariate map. Furthermore, numerous studies have contrasted and 267 

demonstrated that the effectiveness of bivariate maps varies, and the results in each case are 268 

contingent on the map reader's knowledge and experience  (Roth, 2013; Hope & Hunter, 2013). 269 

We refer to  Kebonye et al., (2022) and Trumbo, (1981) research for more information on the 270 

bivariate mapping procedure. The optimal models for the Cd preferential sampling-legacy 271 

dataset raster layer and the Cd prediction using the legacy data raster layer both produce 272 

bivariate maps based on a bivariate and a corresponding spatial extent. The raster layers of these 273 
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predictions were fused together in R using the map function, it would result in a bivariate map 274 

with spatially distinct features from both layers. 275 

Sequential gaussian simulation (SGS) 276 

SGS's basic idea is to replicate sequential grid points utilizing the empirical distribution's 277 

temporary proportion (i.e., in this case the PTEs data). It produces an output that is comparable 278 

to the precise spatial actuality of a parameter of interest. Even though the data are anticipated 279 

to be detectable, the interpolated points represent the variogram technique and the nugget 280 

effect's local noise (Goovaerts, 2001). Furthermore, it is predicated on the multi presumption of 281 

a random feature model (Goovaerts, 2001; Johari et al., 2020). The set of data seems to provide 282 

the critical standard score alteration, making sure the logic of the univariate data distribution at 283 

the very least. Refer to Gholampour et al., (2019) for more information on SGS. 284 

In this study, SGS was combined with an ensemble model to form a model known as ensemble 285 

sequential gaussian simulation (EnSGS), which was used to generate an uncertainty map for 286 

predicting Cd content in agricultural soil. The uncertainty was estimated using prediction 287 

intervals such as the first and third quarters, as well as a mean prediction for each approach. 288 

Assessment accuracy and validation of the models 289 

To evaluate the precision and validation of the modelling methods employed in this study, the 290 

coefficient of determination (R2), root mean square error (RSME), mean average error (MAE), 291 

and median absolute error (MdAE) were used. The regression model expresses R2, which reflects 292 

the variability of the proportion in the response. The RMSE and MAE determine the size of the 293 

various versions within the individual measurement, allowing the approach prediction accuracy 294 

to be determined, whereas the MdAE affirms the true measurable value. 295 
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RESULTS AND DISCUSSION  300 

Data description 301 

The descriptive summary statistics of the dataset used in this study are presented in Table 1. 302 

Presented in the table are the maximum, minimum, median, mean, geometric mean (GM), lower 303 

and upper quartile, the tenth and the ninetieth percentile, standard deviation (SD), coefficient of 304 

variation (CV), skewness, and kurtosis. The minimum and maximum Cd concentration values 305 

from the legacy dataset (LD) as well as preferential sampling-legacy dataset (PS-LD) are the same, 306 

such as 0.10 mg/kg and 8.84 mg/kg. The concentration of Cd from the LD is 0.46 mg/kg whereas 307 

the mean concentration of Cd from PS-LD is 0.93mg/kg. The national limits for cadmium 308 

concentration in agricultural soil based on the Czech decree No.152/2016 Coll are fixed at 0.5 309 

mg/kg, which is higher than the LD used in this study but based on the addition of the preferential 310 

sampling to the legacy dataset, the estimated mean concentration (0.93 mg/kg) is higher than 311 

the national background values for agricultural soil. Frydek Mistek is a relatively polluted area 312 

owing to intensive agriculture as well as the steel industry and metal works in the sub region. The 313 

geometric mean of Cd for LD and PLSD is 0.28 mg/kg and 0.51 mg/kg, with corresponding lower 314 

and upper quartile values ranging between 0.17 mg/kg and 0.36 mg/kg (LD) and 0.20 mg/kg to 315 

1.40 mg/kg (PS-LD), respectively. Nevertheless, the 10th and the 90th percentile of LD range 316 

between 0.13 mg/kg and 0.84 mg/kg for LD and for PS-LD from 0.14 mg/kg to 2.11 mg/kg. The 317 

SD for both LD and PS-LD are 0.87 and 1.13, respectively, with corresponding skewness and 318 

kurtosis values of 6.22 and 47.84 for LD and 2.86 and 12.27 for PS-LD. The CV of the dataset was 319 

above 100, indicating a high heterogeneity of Cd in the study due to the accretion of Cd 320 

concentration in the agricultural soil from diverse pollutants. 321 

Insert Table 1 close to this section 322 
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Prediction Cd using remote sensing dataset at 10m and 20m spatial resolution via ensemble 326 

models  327 

The prediction of the concentration of Cd in agricultural soil using remote sensing datasets from 328 

Landsat 8 (L8) and Sentinel 2 (S2) with a spatial resolution of 10m coupled with ensemble models 329 

as well as PS-LD and LD (Context 1) is presented in table 2. Four ensembling models were applied 330 

in the prediction of Cd in agricultural soil using L8 and S2 as the auxiliary datasets. The PS-LD 331 

results showed that in ensemble 1 Cd prediction yielded R2, RMSE, MAE, and MdAE values of 332 

0.76, 0.66, 0.35, and 0.13 for L8 and 0.75, 0.67, 0.37, and 0.16 for S2. In ensemble 2, the L8 333 

prediction of Cd in agricultural soil yielded R2, RMSE, MAE, and MdAE values of 0.75, 0.65, 0.41, 334 

and 0.22, however in S8, Cd concentration was predicted with R2, RMSE, MAE, and MdAE values 335 

of 0.58, 0.90, 0.48, and 0.19, respectively. The prediction of Cd concentration in agricultural soil 336 

using ensemble 3 revealed that L8 produced 0.64 (R2), 0.82 (RMSE), 0.52 (MAE), and 0.22 (MdAE), 337 

whereas S2 produced 0.71 (R2), 0.69 (RSME), 0.42 (MAE), and 0.21 (MdAE). The results of 338 

ensemble 4 suggested that using L8 Cd prediction yielded 0.74, 0.66, 0.38, and 0.17 for R2, RMSE, 339 

MAE, and MdAE, respectively, while the results of S2 yielded 0.69, 0.71, 0.44, and 0.21 for R2, 340 

RMSE, MAE, and MdAE, correspondingly. The prediction results for LD of Cd applying the four 341 

ensemble models generated abysmal results for both the S2 and L8 in 10m spatial resolution for 342 

both remote sensing datasets, except for ensemble 3 of L8, which produced satisfactorily 343 

predicted Cd in agricultural soil with R2, RMSE, MAE, and MdAE values of 0.58, 0.48, 0.37, and 344 

0.14 correspondingly. Ensemble 1 provided the best prediction of Cd in agricultural soil in context 345 

1 based on L8, and ensemble 1 also obtained the best model in S2 coupled with PS-LD prediction 346 

of Cd in agricultural soil. Ensemble 3 of LD was the optimal modeling approach in the prediction 347 

of Cd in agricultural soil. In the prediction of Cd in agricultural soil, Ensemble 3 of LD was the best 348 

modeling approach. However, the optimal modeling approaches based on the application of LD 349 

and PS-LD were ensembles 3 L8 and ensembles 1 L8, which produced the best prediction results 350 

in the prediction of Cd in agricultural soil. 351 

Insert Table 2 close to this section 352 
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 In context 2, prediction of Cd concentration in the agricultural soil was done using the 20m 353 

spatial resolution of the Sentinel 2 and Landsat 8 datasets along with PS-LD, LD, and ensemble 354 

models. In the PS-LD of S2 and L8, the prediction of Cd yielded satisfactory results for ensemble 355 

1 with R2, RMSE, MAE and MdAE of 0.64, 0.88, 0.43, and 0.14 for L8 and 0.78, 0.63, 0.34, and 356 

0.15 for S2. Ensemble 2 produced relatively satisfactory results for both remote sensing datasets 357 

with the following R2, RMSE, MAE, and MdAE results: 0.70, 0.78, 0.49, and 0.26 for L8 and 0.71, 358 

0.72, 0.46, and 0.24 for S2. Conversely, in ensemble 3, the prediction of the concentration of Cd 359 

in the agricultural soil yielded the following results: 0.60(R2), 0.88 (RMSE), 0.55(MAE), 360 

0.23(MdAE) for L8 and 0.69(R2), 0.72(RMSE), 0.46 (MAE) and 0.25(MdAE) for S2. Ensemble 4 also 361 

produced satisfactory results for Cd prediction in agricultural soil, yielding prediction values of 362 

0.74 (R2), 0.74 (RMSE), 0.44 (MAE), and 0.18 (MdAE) for L8 and 0.71 (R2), 0.69 (RMSE), 0.44 363 

(MAE), and 0.21 (MdAE) for S2. The application of LD along with the ensemble models in the 364 

prediction of Cd in the agricultural soil produced appalling results apart from ensemble 3 of L8 365 

the generated satisfactory result with R2 value of 0.56, RMSE 0.50, MAE 0.29 and MdAE 0.15. 366 

The optimal approach in the prediction of Cd in the approach based on the application of PS-LD 367 

in L8 was ensemble 4 and for S2 ensemble 2. Nevertheless, with LD, the optimal approaches were 368 

ensemble 3 for L8 and ensemble 1 for S2. 369 

Insert Table 3 close to this section 370 

The performance of the ensemble models in the prediction of Cd in the results displayed in Table 371 

2 and 3 showcases the ability of stacking models to predict the concentration of Cd in agricultural 372 

soil at a national scale. The modelling precision for PS-LD using 10m spatial resolution for L8 and 373 

S2 is ensemble 1> ensemble 2> ensemble 4> ensemble 3 for L8 and ensemble 1> ensemble 374 

3>ensemble 4> ensemble 2 for S2. On the other hand, the modelling precision for the prediction 375 

of Cd using 10m spatial resolution-based LD for L8 and S2 are as follows ensemble 3> ensemble 376 

2> ensemble 1> ensemble 4 for L8 and ensemble 1> ensemble 3> ensemble 2> ensemble 4 for 377 

S2. Similarly, the modeling accuracy for the prediction of Cd in the soil using remote sensing 378 

dataset of 20m spatial resolution suggested that the prediction accuracy based on the usage of 379 

Cd PS-LD is in this order ensemble 4> ensemble 2> ensemble 1> ensemble 3 for L8 and ensemble 380 

1> ensemble 4> ensemble 2> ensemble 3 for S2. Likewise, the prediction precision Cd based on 381 
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LD follows in the order ensemble 3> ensemble 2> ensemble 1> ensemble 3 for L8 and ensemble 382 

1> ensemble 4> ensemble 3> ensemble 2.  383 

In context 1, the ensemble modeling approach prediction of Cd in agricultural soil using the 10m 384 

spatial resolution of the remote sensing dataset based on PS-LD from L8 and S2 revealed that 385 

Ensemble 1_L8 was the best modeling approach with a high R2 (0.76) value and minimal MAE 386 

(0.35) and MdAE (0.13) values. On the other hand, the prediction results from LD suggested that 387 

the application of L8 of 10m spatial resolution coupled with ensemble 3 was likewise the optimal 388 

technique in the prediction of the Cd concentration in agricultural soil. Based on the output of 389 

the prediction of Cd in the agricultural soil using S2 and L8 from LD, it was evident that using L8 390 

of 10m spatial resolution as an auxiliary dataset coupled with ensemble 1 with predicted values 391 

of R2 (0.58), RMSE (0.48), MAE (0.27), MdAE (0.14) was the appropriate method in the prediction 392 

of Cd in agricultural soil. When the two optimal predictions using PS-LD and LD along with the 393 

ensemble models were compared, it was clear that ensemble 1 L8 (10m spatial resolution) along 394 

with PS-LD was the cumulative optimal approach in context 1 that predicted Cd in agricultural 395 

soil with a higher R2 value. Even though ensemble 3_L8 from LD obtained minimal RSME (0.48), 396 

the marginal increase for R2 (31.03%) in favor of ensemble 1_L8_PS-LD as against the marginal 397 

decrease of RMSE (27.27%-ensemble 3_L8_LD) indicates that ensemble 1_L8_PS-LD is the 398 

optimal approach in predicting the concentration of Cd in agricultural with minimal MdAE and 399 

MAE results and a corresponding high R2 value. 400 

The predictions result in context 2 based on the usage of 20m spatial resolution of remote sensing 401 

dataset coupled with ensemble models and PS-LD (Cd) however suggested that ensemble 1 of S2 402 

(R2 = 0.78, RMSE= 0.63, MAE= 0.34 and MdAE=0.15) was the utmost modeling method in the 403 

prediction of Cd in the agricultural soil. Even though there were other modeling approaches that 404 

predicted Cd with satisfactory results, ensemble 1 of S2 provided the best prediction with 405 

minimum errors. Nevertheless, the prediction outputs from LD revealed that the best prediction 406 

modeling method in the prediction of Cd in agricultural soil was ensemble 3 of L8 with prediction 407 

output 0.56 (R2), 0.5 (RMSE), 0.39 (MAE) and 0.15 (MdAE). Comparing the optimal predictions 408 

outputs from the LD and PS-LD coupled with ensembles models it was apparent that ensemble 1 409 
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of S2 was the overall utmost prediction approach in predicting the Cd concentration in 410 

agricultural soil. 411 

The overall best prediction approach in the prediction of Cd in agricultural soil either applying S2 412 

and L8 from both 10m and 20m spatial resolution along with the ensemble models indicates 413 

unequivocally that the application of ensemble 1 of S2 of PS-LD with spatial resolution of 20m 414 

was the appropriate and best method for the prediction of Cd in agricultural soil with minimum 415 

errors and a higher R2 value. This implies that using remote sensing datasets with higher spatial 416 

resolution does not necessarily mean that prediction results will be improved; rather, it is 417 

dependent on the modeling techniques used as well as the spatial distribution of the dataset. 418 

Chen et al. (2004) observed the precision increment obtained by coarsening the image resolution, 419 

who improved the accuracy of spectral unmixing by resampling the Ikonos image resolution from 420 

4 to 30 m. Obtaining better results from modeling an area is not solely reliant on the auxiliary 421 

dataset, but the ability to select the appropriate modeling approach along with the dataset may 422 

have a higher propensity to obtain good output. According to Zhou et al., (2021) predictions from 423 

modelling approaches created with coarse spatial resolution sensors can be comparable, if not 424 

superior, to models created with higher resolution sensors. The use of remote sensing images in 425 

the prediction of soil properties in a rural agricultural environment revealed that the soil 426 

prediction approach with a low spatial resolution evidenced productive accuracy when 427 

particularly in comparison to the approach with a higher spatial resolution (Xu et al., 2017). Kim 428 

et al., (2012) reported that the application of a multi-scale modeling approach, soil series by 429 

remote sensing dataset application in a wetland ecosystem and discovered that datasets 430 

extracted from remote sensing images with lower or coarse spatial resolution performed better 431 

than datasets extracted from images with higher spatial resolution. Xia & Zhang, (2022), applied 432 

remote sensing images in a comparative analysis for the prediction of soil pH in the soil, and the 433 

authors found that using higher resolution remote sensing images in the prediction of soil 434 

properties in the soil does not necessarily increase prediction efficiency when compared to using 435 

medium resolution images.  436 

Even though the current study is unique in that PS-LD and LD are evaluated using ensemble 437 

modeling, however, there have been numerous studies that have applied Sentinel 2 and Landsat 438 
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8 datasets and their combinations to a variety of fields. Satellite sensors' massive and prevalent 439 

data streams can, however, guarantee that soil surveillance and mapping procedures for large 440 

regions are created precisely, quickly, and successfully (Malenovsk et al. 2012). Furthermore, 441 

some satellite images are hampered by factors that affect image quality. Satellite data can be 442 

valuable because of its broad spatial coverage, quick revisit time, and potential to acquire data 443 

without regard to local air traffic limitations. Unfortunately, due to haziness or the requirement 444 

for parched and bald soil environmental conditions, these predefined reconsider times may not 445 

be sufficient for adequate temporal coverage (Crucil et al. 2019). Sometimes, other complexities 446 

for satellite applications include low image resolution and limited accessibility of high-quality 447 

temporal and spatial images, owing to adverse atmospheric conditions and sensor requirements 448 

(Xiang et al. 2011). In Finland, S2 was discovered to perform relatively better than L8 when both 449 

remote sensors were evaluated for assessing canopy cover and LAI (Korhonen, Packalen, and 450 

Rautiainen 2017). Studies comparing S2 to L8 and previous Landsat sensors discovered that S2 451 

has improved spatial and spectral capabilities for discriminating rangeland management 452 

practices (Sibanda, Mutanga, and Rouget 2016), estimating forest canopy cover and leaf area 453 

index (LAI) (Korhonen, Packalen, and Rautiainen 2017), and increasing the categorization quality 454 

of built-up areas (Pesaresi et al. 2016).  455 

Resampling remote sensing datasets from a coarse or lower spatial resolution to a higher or finer 456 

spatial resolution or vice versa does not always result in good prediction efficiency. Most of the 457 

time, during the resampling process, these images lose quality, which can have an impact on the 458 

pixels that are extracted and used to predict PTEs or soil properties in the soil. The primary 459 

distinction between down-scaling and up-scaling synthetic and original images is that finer or 460 

coarser spatial details must be restored in the original down/up-scaling (Khosravi et al. 2022), 461 

and thus inability to maintain spatial detail has an impact on image quality. Some images in S2 462 

have 20 and 10m and not all the bands were supposed to be resampled to either higher or lower 463 

spatial resolution, unlike in L8. For instance, the use of some resampled bands in S2, such as 464 

Bands 2,3,4, and 8, from 10 m spatial resolution to 20 m spatial resolution, in conjunction with 465 

unsampled bands 11 and 12, improved the prediction of Cd in agricultural soil using PS-LD. When 466 

using bands that could be similar for both sensors, the S2 and L8 prediction results were even 467 
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closer, but the error outputs in the result for the spatial resolution of 20m of S2 were lower than 468 

for L8 in PS-LD. This implies that the ability to use original bands without resampling tends to 469 

produce better results with less error. The combination of original bands and resampled bands 470 

has a higher predictive modeling ability to produce good results than resampling all the bands 471 

into different spatial resolutions. This implies that the unsampled band preserves the captured 472 

image details and qualities of the original without distortion. The original bands contain valuable 473 

information for predictive mapping. As a result, the use of original captured satellite images is 474 

critical in prediction modeling. Although resampling may be a good way to obtain higher or 475 

coarser spatial resolution of bands for a specific objective, a combination of original bands in 476 

their original states and resampled bands has a higher chance of producing good results. 477 

Ensemble model performance employing preferential sampling + legacy data (PS-LD) and 478 

legacy data (LD) 479 

The performance of the ensemble models using the standard stacking approach for the four 480 

ensemble models for the prediction of Cd in agricultural soil based on PS-LD and LD presented in 481 

tables 2 and 3 showed a wide range of prediction accuracy results, ranging from good to poor 482 

predictions. Generally, the ensemble models from the use of PS-LD exhibited high prediction 483 

accuracy compared to the prediction results from the LD used. This might be attributed to the 484 

preferential sampling collected from relatively polluted areas in the Czech Republic. Comparing 485 

the optimal models from PS-LD and LD from context 1 and context 2, it was apparent that the R2 486 

increased by a margin of 31.03 to 114.29 % in the prediction results based on PS-LD rather than 487 

LD. Even though some of the prediction results showed lower errors, their R2 values were below 488 

0.5, which is not significant statistically to be considered. According to Li et al., (2016), a model 489 

R2 prediction accuracy output of less than 0.5 is unacceptable. Nevertheless, Willmott, (1981) 490 

emphasized the importance of RMSE over R2. This assertion can be valid if the prediction 491 

accuracy of a model is 50% (0.5) or greater. In general, the ensemble 1 produced the best results 492 

for predicting Cd in agricultural soil, as evidenced by the optimal result scatter plot (Figures 2 and 493 

3). Out of the 8 optimal models from PS-LD and LD from spatial resolutions of 10m and 20m, five 494 

optimal modelling approaches were from ensemble 1. This suggests that using quantile 495 

regression forest as the meta-learning models (stack tree) for the sub models was a successful 496 
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approach that evaluated the conditional variability of the prediction results of the weighted 497 

average from the sub models. In fact, stacking techniques combine the capabilities of multiple 498 

learning algorithms to improve predictive efficiency and render the predictive algorithm quite 499 

rigorous (Taghizadeh-Mehrjardi et al., 2020b). However, we highlight that the stacking approach 500 

in ensemble 1 provided more precise predictions than the other ensembling models due to the 501 

individual models' performance forming a resilient ensemble approach, which resulted in the 502 

best results. The effectiveness of the stacking technique is typically determined by two factors: 503 

(1) the training dataset does not always provide enough information to identify a single precise 504 

method; and (2) the learning procedures of the individual method may be severely flawed (Tajik 505 

et al., 2020; Wang, 2018). Overfitting and individual modeling approaches' biases are known to 506 

be reduced by stacking. Stacking varying machine learning models, on the other hand, enhances 507 

prediction accuracy and is confirmed for improving digital soil mapping (Das et al. 2022). To 508 

improve predictive performance, the capabilities of stacking can be enjoyed in the combined 509 

effect of heterogeneous weak learners via a meta-learning model (Das et al. 2022). Stacking 510 

improved reliability by balancing assessment and prediction bias and variability throughout 511 

individual validation. 512 

 The success of ensemble models is largely dependent on aggregating the strengths of all sub 513 

models to compensate for the weaknesses of all models used to make it more robust. Numerous 514 

papers that used ensemble models reported that the combination of algorithms in an ensemble 515 

approach in predictive mapping in the prediction of potentially toxic elements as well as soil 516 

properties produced optimal results  (Wang. 2018; Sagi & Rokach, 2018). Biney et al., (2022) used 517 

an ensemble model to predict arsenic in agricultural soil, and the authors concluded that the 518 

application of an ensemble outperformed the application of individual models. In estimating soil 519 

organic carbon in Mollisols Tajik et al., (2020) applied ensemble model and the authors reported 520 

that the application of ensemble yielded outstanding results. The utilization of ensembles is 521 

prescribed for estimating farmland commodity premiums one month ahead, as a quite assertive 522 

efficiency is detected, allowing the crafted model's precision to be increased while reducing 523 

decision-making risk (Ribeiro and dos Santos Coelho, 2020). Ensemble models emerges to be a 524 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



progressive solution that requires opportunity of all mapping initiatives while also harmonizing 525 

existing maps from multiple datasets (Caubet et al., 2019). 526 

The scatterplots in figures SF3 and SF4 display measured versus predicted data for the optimal 527 

modeling approach of Cd for PS-LD and LD for both remote sensing datasets. Figure SF3 exhibits 528 

measured versus predicted of the optimal modeling approach of Cd for LD and figure SF4 for PS-529 

LD. Extreme points can be seen in the plots, which can be classified as outliers, but a positive 530 

outlier that enhances the prediction results from the modeling. The composition of a dataset for 531 

prediction largely depends on the information that is embedded in the dataset during modeling. 532 

According to  Frost, (2021) , the removal of outliers from a plot normally has the tendency to 533 

affect the prediction results because these points might possess vital information that can 534 

augment the prediction positively. However, the ability to obtain better predictions does not 535 

necessarily lie in the removal of outliers but in the ability to obtain the perfect random split or 536 

partition of a dataset for training and testing. That precise partitioned test data coupled with the 537 

appropriate modeling algorithm has the propensity to generate an optimal prediction. The 538 

scatter plot with PS-LD outliers (Figure SF4) shows more inference patterns and brings the 539 

outliers closer to the other observed points than the LD scatter plot. The act of combining legacy 540 

data to preferential sampled dataset has yielded positive results by increasing the prediction 541 

results and making the outliers less an outlier based on the scatter plots. Preferential sampling 542 

tends to be more dependable, and it compares very well to standard sampling approaches when 543 

there is no preferential sampling (Dinsdale and Salibian-Barrera, 2019).  In terms of bias, 544 

preferential sampling outperforms complete spatial randomness, though it should be 545 

acknowledged that the extent of the bias is relative (Antonelli et al., 2016). Based on the impact 546 

of adding a preferential sampling dataset to the legacy dataset, it is necessary to report that the 547 

impact of preferential sampling is strengthened with the rising prevalence of observational data 548 

in the training dataset when appropriate model validation is used. With increasing sample size, 549 

there is a higher probability of including samples from preferentially obtained tangible and 550 

intangible test and training sets. 551 

 552 
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Spatial distribution of Cd based optimal modeling approaches in each scenario 553 

The distribution pattern of the predicted Cd based on the application of diverse streams of 554 

auxiliary datasets such as 10m and 20m spatial resolution of S2 and L8 is presented in figure 2A 555 

and 2B, highlighting the mapping of the optimal predictions in each context. The optimal 556 

prediction using Cd LD spatial distribution maps revealed that the L8-10M-E3, L8-20M-E3, and 557 

S2-10m-E1 share the same spatial Cd distribution pattern with patches of hotspots in the 558 

northeastern, southeast, and central enclaves of the study area. Similarly, the modeling approach 559 

S2-10m-E1 showed hotspots in the study area's southeastern and northeastern regions. 560 

Regardless of the fact that the dominant hotspots were found in the southeast and central areas 561 

of the maps, pockets of hotspots were also found in the southwest for L8-10M-E3 and S2-10m-562 

E1, and the northeast for S2-10m-E1 and L8-20M-E3. Irrespective of the auxiliary dataset used in 563 

the prediction of Cd in agricultural soil, it was clear that the central area and the southeast 564 

enclave of the study area have elevated levels of Cd in agricultural soil. This implies that 565 

anthropogenic effect churning of agronomic and industrial practices is quite common in those 566 

regions. The distribution pattern of maps generated by PS-LD of Cd shares a similar distribution 567 

pattern in all four optimal models in each context, with hotspots realized in the southeastern 568 

sector of the map. Furthermore, the optimal model L8-20M-E4 displayed pockets of hotspots in 569 

the study area's southern and northeastern regions. 570 

 The spatial distribution exhibits the association of the optimal prediction using diverse datasets 571 

in contexts 1 and 2. The visualization of this optimal prediction is mapped using the quantile 572 

breaks option in bivariate mapping. Quantile breaks bring out the comprehensive details of the 573 

spatial variability that dignifies the nexus between the respective variables (Kebonye et al., 2022). 574 

The high Cd levels seen in the eastern part of the maps displaying the red coloration are due to 575 

the preferential sampling showing the impact of intensive agricultural, metalworking, and steel 576 

industry within that enclave. Sporadic high level (red patches) of cadmium can be seen in the 577 

central regions of all the maps indicating a consistent elevation of Cd within the central part of 578 

the study area. The maps A, B and D exhibited all colors on the precise scale which portray the 579 

undulated levels of Cd within the Czech Republic. However, the prediction output for the optimal 580 

model in PS-LD and LD mapped together (map C) shares similar patterns and displays a spatial 581 
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relationship that elicits gray, red, and pale-yellow colors, indicating low, moderate, and high Cd 582 

content in the study area. The simplicity of overlaying maps based on sampling regimes has 583 

resulted in an understandable color classification scheme. For example, in the southern region, 584 

regardless of the datasets or ensemble models used, all the maps displayed a grey color that 585 

reflected the Cd level in the area. The various assessments of connection employed to compare 586 

categorization schemes all exhibited similar behavior (Speich et al., 2015). The bivariate maps 587 

depict the nations where composite preferences conform as a result of the application of various 588 

modeling techniques and the fusion of various sampling regimes. Based on agricultural output, 589 

connections, and the overall level of Cd in the nation, areas with strong ecological integrity were 590 

identified. The fusion of the preferentially sampled dataset with the legacy data revealed that 591 

hotspots of Cd distribution in the study area are primarily found in the southeastern and 592 

northeastern enclaves. Considering the fact that using the LD optimal prediction alone revealed 593 

other hotspots in other regions of the study area, it appears clear that the pervasiveness of Cd 594 

pollution in the study area is more pronounced in the southeastern and northeastern regions of 595 

the study area. 596 

Insert figure 2A close to this section 597 

Insert figure 2B close to this section598 

Uncertainty assessment of the optimal models in context 1 and context 2 using ensemble 599 

sequential gaussians simulation approach 600 

The uncertainty assessment of the optimal models in context 1 and 2 was done using the fusion 601 

of ensemble and sequential gaussian simulation (EnSGS). The distribution of Cd in the agricultural 602 

uncertainty maps presented in figure 3 and 4 semi-variogram fit using the spherical approach in 603 

SGS presented diverse nugget sill ratio. Heuvelink et al., (2001)  reported that a good modeling 604 

technique's nugget sill ratio should be less than 0.25 to indicate higher spatial autocorrelation; 605 

0.25 to 0.75 to indicate moderate spatial autocorrelation; and 0.75 or greater to indicate poor 606 

autocorrelation but with higher spatial randomness. The nugget sill ratio of the map produced 607 

using the LD Cd datasets showed moderate spatial autocorrelations (0.25 to 0.75) for all the 608 

uncertainty maps except for map D (S2-20M-E1) which exhibited poor spatial autocorrelation 609 
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(0.87). Even though map D (S2-20M-E1) of LD showed low spatial autocorrelation it however 610 

displayed high spatial randomness. The estimated nugget sill ratio of PS-LD maps displayed high 611 

spatial autocorrelations for all the uncertainty maps with corresponding low spatial randomness. 612 

The uncertainty map was categorized into two groups, namely: the uncertainty map based on LD 613 

and the uncertainty map based on PS-LD. The maps were produced using the first quartile, third 614 

quartile, and mean. Each letter from A to D represents a different optimal prediction uncertainty 615 

map for the mean, first quartile, and third quartile arranged in a column. The uncertainty maps 616 

A and B of LD share similar patches of spatial uncertainty distribution pattern over the study area 617 

and exhibit low to high uncertainty variation in the study area. The corresponding estimated 618 

uncertainty propagation degrees for A and B were 4.04% and 2.76%, respectively. The 619 

uncertainty propagation of the maps C and D showed a mainly concentrated degree of 620 

uncertainty being exhibited in the eastern, southern, and central sections of the study area. The 621 

estimated degree of uncertainty in the study area for C and D was 0.69% and 0.57%, 622 

correspondingly. Uncertainty map A exhibited the highest uncertainty degree, and the least level 623 

of uncertainty estimated was from map D. The uncertainty levels propagated in the PS-LD maps 624 

were generally centered in the following areas: the east and central sections of the study area 625 

for map A; the west, south, and central region for B; the central part of the study area for C; and 626 

the north, south, and eastern enclave for D. The estimated degree of uncertainty propagated in 627 

the study area for each map was as follows: 4.46% (D), 3.95% (A), 3.92% (C), and 4.65% (A). Map 628 

B exhibited the highest uncertainty level, and the least level of uncertainty propagated was from 629 

map C. 630 

Insert figure 3 close to this section 631 

Insert figure 4 close to this section 632 

The uncertainty map produced in the study area based on the optimal prediction were generally 633 

low which did not exceed 5%.  The propagation of uncertainty across the study area based on 634 

varying degrees from low to high establishes the heterogeneity of the distribution of uncertainty 635 

through the combination of diverse ensemble models and SGS (EnSGS). Liao et al., (2016) 636 

contrasted bootstrap and SGS approach for modeling soil water temporal stability and 637 
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discovered that uncertainties derived by SGS have greater heterogeneity than uncertainty maps 638 

acquired by bootstrapping. Similarly, Sharififar, (2022) applied SGS and machine learning 639 

algorithms to estimate uncertainty and concluded that data variability should be regarded as a 640 

source of uncertainty that has the tendency to decrease accuracy. Based on the Cd datasets from 641 

LD and PS-LD it was obvious that the uncertainty level in LD was smaller than that of PS-LD.  642 

According to Odeh et al. (2012), the use of legacy data in DSM may introduce high levels of 643 

prediction uncertainty. This is contrary to the results obtained in this study due to the age of the 644 

legacy data that was used was quite current. The differences in the degree of uncertainty could 645 

be attributed to the legacy data being more evenly distributed, thereby spreading the degree of 646 

uncertainty more broadly throughout the area. However, because preferential sampling data is 647 

more recent but too concentrated in one region, when combined with legacy data, the 648 

uncertainty level increases due to more samples concentrated in a specific area. The combination 649 

of ensemble and SGS in uncertainty assessment is a novel practice. However according to 650 

Szatmári et al., (2019) the application of SGS in the quantification of uncertainty yield good results 651 

than the application of quantile regressing forest. The minimal level of uncertainty degree 652 

obtained in this study might likely be attributed to SGS models leveraging it higher precision on 653 

the ensemble model to obtain the great results.  654 

Insert table 4 close to this section 655 
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Conclusion 664 

The study applies remote sensing datasets such as Sentinel 2, Landsat 8, a combination of 665 

preferential sampling and legacy datasets, as well as legacy datasets coupled with ensemble 666 

models in the prediction of Cd in agricultural soil. Two contexts were applied, that is, the 667 

prediction of the concentration of Cd in agricultural soil using remote sensing datasets from 668 

Landsat 8 (L8) and Sentinel 2 (S2) with a spatial resolution of 10m coupled with ensemble models 669 

as well as PS-LD and LD (Context 1) and the prediction of Cd concentration in the agricultural soil 670 

was done using the 20m spatial resolution of the S2 and L8 datasets along with PS-LD, LD, and 671 

ensemble models (Context 2). The results suggested that in context 1, the application of 672 

ensemble 1_L8 along with PS-LD 10m spatial resolution was the overall best approach in the 673 

prediction of Cd in soil. In context 2, the results suggested that the application of PS-LD (Cd), 674 

ensemble 1 of S2 and of 20 m spatial resolution was the overall optimal approach in the 675 

prediction of Cd in agricultural soil. However, the cumulative comparison of the optimal models 676 

from both contexts (1 and 2) revealed that PS-LD (Cd), ensemble 1 of S2 and of 20 m spatial 677 

resolution, was the overall best method for the prediction of Cd in agricultural soil in this study. 678 

The combination of ensemble and SGS (EnSGS) in uncertainty estimation was under 5%. Thus, it 679 

is obvious that hybridizing SGS with an ensemble model yielded great results. The study highlights 680 

that the application of high spatial resolution of a remote sensing dataset does not necessarily 681 

mean that the best prediction results will be obtained. Nevertheless, the combination of the 682 

auxiliary dataset with an appropriate algorithm has a higher tendency to produce good results. It 683 

is also worth mentioning that the combination of preferential sampling with legacy data can 684 

generate high prediction accuracy. Therefore, regions with a study area that shows a high level 685 

of pollution should be preferentially sampled and added to legacy data to increase the prediction 686 

efficiency. Hybridizing SGS with a machine learning algorithm in uncertainty assessment has the 687 

propensity to yield good results. 688 

689 
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Figure 1 displaying the study area with sampled dataset from the Czech Republic  
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Figure 2A shows a spatial distribution of the optimal approaches in each scenario using PS-LD (preferential sampling-legacy data) and 

LD (legacy dataset) auxiliary datasets such as 10m and 20m spatial resolution of Sentinel 2 and Landsat 8 A (L8-10m-E4-PS-LD, L8-20m-

E4-PS-LD, S2-10m-E1-PS-LD, L8-10m-E3-LD, S2-20m-E1-PS-LD, L8-20m-E3-LD, S2-10M-E1-LD, and D, S2-20m-E1-LD). 

 

 



 

Figure 2B displays bivariate maps of the spatial distribution of cadmium using preferential 

sampling-legacy data(PS-LD) and legacy data (LD) across the Czech Republic based on quantile 

breaks A (L8-10m-E4-PS-LD and L8-10m-E3-LD), B(L8-20m-E4-PS-LD and L8-20m-E3-LD), C (S2-

10m-E1-PS-LD and S2-10M-E1-LD) and D (S2-20m-E1-PS-LD and S2-20m-E1-LD). 



 

Figure 3 Using  legacy dataset, Sentinel 2 and Landsat 8 datasets at 10 and 20 m spatial resolutions, respectively, in the uncertainty 

mapping (mean, quartile 1 and quartile 3)  for cadmium concerntration in Czech agricultural soils. 

 



 

 

Figure 4 Using preferential sampling-legacy dataset, Sentinel 2 and Landsat 8 datasets at 10 and 20 m spatial resolutions, respectively, 

in the uncertainty mapping (mean, quartile 1 and quartile 3) for cadmium concerntration in Czech agricultural soils. 



Table 1 summary of the statistical description of cadmium. 

Description Cd (LD) Cd (PSLD) 

Mean mg/kg 0.46 0.93 

Geometric (Mean) mg/kg 0.28 0.51 

Median mg/kg 0.24 0.37 

Minimum mg/kg 0.10 0.10 

Maximum mg/kg 8.84 8.84 

Lower (Quartile) mg/kg 0.17 0.20 

Upper (Quartile) mg/kg 0.36 1.40 

Percentile (10th) mg/kg 0.13 0.14 

Percentile (90th) mg/kg 0.84 2.11 

Standard deviation 0.87 1.13 

Coefficient Variation 190.29 121.54 

Skewness 6.22 2.86 

Kurtosis 47.84 12.27 

 

(Cd (LD) represent cadmium from legacy dataset and Cd (PS-LD) represent cadmium from 

preferential sampling and legacy dataset) 
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Table 2 showing the prediction of Cd using remote sensing datasets, legacy datasets, and 

preferential sampling plus legacy dataset (Context 1)  

LANDSAT 8 10M SPATIAL RESOLUTION   SENTINEL 2 10M SPATIAL RESOLUTION 

Legacy and preferential sampling dataset 

  R2 RMSE MAE MdAE  R2 RMSE MAE MdAE 

Ensemble 1 0.76 0.66 0.35 0.13  0.75 0.67 0.37 0.16 

Ensemble 2 0.75 0.65 0.41 0.22  0.58 0.90 0.48 0.19 

Ensemble 3 0.64 0.82 0.52 0.22  0.71 0.69 0.42 0.21 

Ensemble 4 0.74 0.66 0.38 0.17  0.69 0.71 0.44 0.21 

Legacy dataset 

  R2 RMSE MAE MdAE  R2 RMSE MAE MdAE 

Ensemble 1 0.23 0.58 0.28 0.09  0.35 0.54 0.27 0.12 

Ensemble 2 0.37 0.51 0.33 0.16  0.26 0.54 0.30 0.17 

Ensemble 3 0.58 0.48 0.37 0.14  0.37 0.51 0.34 0.21 

Ensemble 4 0.30 0.63 0.39 0.20  0.39 0.73 0.34 0.20 

 

 

 

 

 

 

 

 

 

 



Table 3 showing the prediction of Cd using remotes sensing datasets, legacy datasets, and 

preferential sampling plus legacy dataset (Context 2) 

LANDSAT 8 20M SPATIAL RESOLUTION   SENTINEL 2 20M SPATIAL RESOLUTION 

Legacy and preferential sampling dataset 

  R2 RMSE MAE MdAE  R2 RMSE MAE MdAE 

Ensemble 1 0.64 0.88 0.43 0.14  0.78 0.63 0.34 0.15 

Ensemble 2 0.70 0.78 0.49 0.26  0.71 0.72 0.46 0.24 

Ensemble 3 0.60 0.88 0.55 0.23  0.69 0.72 0.46 0.25 

Ensemble 4 0.74 0.74 0.44 0.18  0.71 0.69 0.44 0.21 

Legacy dataset 

  R2 RMSE MAE MdAE  R2 RMSE MAE MdAE 

Ensemble 1 0.29 0.57 0.27 0.09  0.44 0.58 0.32 0.09 

Ensemble 2 0.49 0.48 0.32 0.24  0.17 0.59 0.37 0.20 

Ensemble 3 0.56 0.50 0.39 0.15  0.27 0.60 0.38 0.22 

Ensemble 4 0.37 0.66 0.44 0.29  0.35 0.72 0.34 0.14 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 showing the semi variogram model fitted for Cd using the spherical technique and 

uncertainty assessment. 

  LD-EnSGS   

  RANGE NUGGET (C0) SILL (C0 + C) NUGGET /SILL RATIO  

(C0/C0 + C) 

UNCERTAINTY% 

S2-20M-E1 (D) 83709.64 0.89 0.13 0.87 0.57 

L8-10M-E3(A) 37709.12 0.73 0.25 0.74 4.04 

S2-10M-E1(C) 338782 0.74 0.4 0.65 0.69 

L8-20M-E3(B) 55907 0.74 0.31 0.70 2.76 

  PRES-LD- EnSGS  

S2-20M-E1(D) 148929.03 0.03 0.66 0.04 4.46 

L8-10M-E1(A) 347410.47 0.05 1.27 0.04 3.95 

S2-10M-E1 (C) 208852.42 0.01 0.85 0.01 3.92 

L8-20M-E4(B) 198495 0.19 0.88 0.18 4.65 

(L8 represent Landsat 8, S2 -sentinel 2. E1 to 4 referring to ensemble 1 to 4, LD-legacy dataset, 

SGS-sequential gaussian simulation, PREs-preferential sampling
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Supplementary Material



Figures SF1 represent the general concept of the ensemble techniques applied in this study. 



 

 

Figure SF2  illustrates the resampling of Sentinel 2 and Landsat 8 bands into spatial resolutions of 

10 m and 20 m into four streams of auxiliary datasets used in the prediction of Cd in agricultural 

soil using legacy datasets and preferential sampling. 



 

Figure SF3 depicts a scatter plot of measured and predicted cadmium concentrations for the 

legacy dataset using remote sensing datasets with 10m and 20m spatial resolution as auxiliary 

data (S2 represents sentinel 2 and L8 represent Landsat 8). 



 

Figure SF4 illustrates a scatter plot of measured and predicted cadmium concentrations for the 

preferentially sampled-legacy dataset using remote sensing datasets with 10m and 20m spatial 

resolution as auxiliary data (S2 represents sentinel 2 and L8 represent Landsat 8). 

 

 

 



Prince Chapman Agyeman: Conceptualization, Methodology, Writing- Original draft 

preparation, Analysis, Visualization. Luboš Borůvka: Supervision, Editing. 

Ndiye Michael Kebonye: software, Data curation. Vahid Khosravi: Data curation, Editing and 

Investigation.   Kingsley JOHN: Software, Editing, Visualization.  Ondrej Drabek: Data Curation 

and Visualization. Vaclav Tejnecky Editing, Analysis. 

 

Credit Author Statement



Declaration of interests 
 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 

Declaration of Interest Statement


