
Petr Osička

Concept analysis of
three-way ordinal matrices

∼ Dissertation Thesis ∼

Olomouc, 2012

Address of the author

Petr Osička
Data analysis and modeling lab
Department of Computer Science
Faculty of Science, Palacký University
17. listopadu 12
CZ-779 00 Olomouc
Czech Republic
osicka@acm.org

Keywords: object-attribute data, three-way data, triadic concept analysis,
concept trilattice, fuzzy attributes

Declaration
Hereby I declare that the thesis is my original work.

Some parts of this thesis are based on outcomes of the joint scientific work
with Radim Bělohlávek (radim.belohlavek@acm.org) (sections 2.1 to 2.4,
and chapter 3); and Radim Bělohlávek (radim.belohlavek@acm.org) and
Vilém Vychodil (vilem.vychodil@upol.cz) (chapter 4). All authors have even
share in the results and findings contained in the respective parts.

Petr Osička

Věnuji svým rodič̊um

i

Preface

The goal of the work summarized in the thesis was to extend an already
existing method of relational data analysis to a fuzzy setting. The method
in question is Triadic Concept Analysis (TCA), a relatively new method
aiming at extraction of hierarchy of clusters from a tree-dimensional table
representing a relationship between the collection of objects, the collection of
attributes, and collection of conditions. In basic setting, the relationship is a
yes-no relationship, that is, the input table describes presence/absence of at-
tributes of objects under conditions. Such a setting is suitable for attributes
with clearly defined boundaries, but it is not appropriate for attributes de-
scribed by vague terms, like “tall” or “cheap”. In order to represent such
attributes properly one needs to allow the relationship between objects,
attributes, and conditions to be a matter of degree rather than a yes-no
relationship. Of course, to analyze this data we cannot use methods suited
for ordinary bivalent data. Hence, we need to either develop new methods,
or appropriately extend methods suited for ordinary data. For this work, I
had chosen the later and extended TCA in a way that allows for analysis of
graded data.

The results contained in this thesis can be roughly divided into two parts.
The first part, contained in the first three chapters, develops TCA in a fuzzy
setting. The chapters provide both, a theoretical treatment of the method,
and the description of related algorithms accompanied with experiments.
The second part, contained in the last chapter, develops a particular appli-
cation of TCA to a decomposition of three-way ordinal data. I consider this
application very interesting and important.

The results summarized in the thesis are outcome of a joint research with
my colleagues at the Department of Computer Science, Palacky University.
First and foremost I’d like to thank prof. Radim Bělohlávek who introduced
me to the topic, encouraged me and kept me on track the whole time.
Without his help this thesis would have hardly existed. My thanks also
goes to my colleague Vilém Vychodil, for collaborating with me and for
his assistance with creation of some pictures included in this thesis. My
thanks belong to my friend and colleague Jan Outrata who helped me with
typesetting and provided me with feedback on some parts of the first draft.

ii

I’d like to express the warmest thanks to my parents and to my family who
supported me in all possible ways during my studies, and to my friends who
always believed in me and encouraged me.

Petr Osička
Olomouc, April 2012

Contents

Contents iii

1 Problem setting 1

1.1 Introduction . 1

1.2 Preliminaries . 4

1.2.1 Fuzzy sets and fuzzy logic 4

1.2.2 Formal concept analysis 7

1.2.3 Concept trilattices . 9

2 Triadic concept analysis in fuzzy setting 13

2.1 Introduction . 13

2.2 Concept forming operators . 15

2.3 Triadic fuzzy concepts . 17

2.4 Basic theorem . 20

2.5 Reduction to ordinary TCA 24

2.6 Algorithms . 27

2.6.1 Transformation to the ordinary case 27

2.6.2 Trias in fuzzy setting 28

2.6.3 Experiments . 32

2.7 Illustrative examples . 38

2.8 Summary and topics of future work 41

3 Triadic fuzzy Galois connections 45

3.1 Introduction . 45

3.2 Axiomatizing Galois connections of triadic fuzzy contexts . . 45

3.3 Representation of triadic fuzzy Galois connections 50

3.3.1 Cartesian representation 50

3.3.2 Cut-like representation 52

3.3.3 Application of the Cartesian representation 55

3.4 Summary and topics of future research 57

4 Decomposition of three-way ordinal data 59

4.1 Introduction . 59

4.2 Optimal decomposition using triadic factors 62

4.3 Transformations between induced spaces 65

4.4 Algorithms . 68

4.5 Illustrative example . 69

4.6 Summary and topics of future research 72

References 73

Chapter 1

Problem setting

1.1 Introduction

There are areas of human activity in which one needs to analyze large
amounts of data. Examples of such data are medical records, whole genomes
obtained by genome sequencing, data obtained from social networks, or data
obtained from surveys. These datasets are too large or disorganized for peo-
ple to understand them directly. To overcome this difficulty, methods of
data mining aim to discover a small amount of the most essential, possibly
unknown information or knowledge from such datasets. The newly obtained
information is then more comprehensible by humans.

In the thesis we focus on a Triadic Concept Analysis (TCA), a partic-
ular method that aims to extract potentially interesting clusters from data
describing relations between objects, attributes and conditions. TCA be-
longs to a broader class of methods, that are to some extent inspired by
our understanding of the manner in which human individuals organize the
concepts their encounter. We can view TCA as an extension of Formal Con-
cept Analysis (FCA), a method that belongs to this class too. In order to
explain the goals of this work and their motivation, we first introduce both
aforementioned methods.

Formal concept analysis FCA is a method of data analysis that deals
with object-attribute data, i.e. data describing a relationship between col-
lections of objects and attributes. It aims at extraction of a hierarchically
ordered set of clusters, called formal concepts, from the input data. Formal
concepts are particular pairs 〈A,B〉 where A is a set of objects and B is a
set of attributes. A and B are maximal in the sense that A is a maximal
set of objects having all attributes from B, and vice versa. FCA can be
seen as a formalization of traditional theory of concepts. Namely, there is
a correspondence between formal concepts and the notion of a concept as a

2 Chapter 1. Problem setting

unit of thought in Port-Royal logic, where a concept consists of an extent
(objects covered by the concept) and an intent (attributes covered by the
concept). For example the extent of a concept “fish” consist of all fishes (e.g.
gold fish, salmon) while its intent consists of the properties that fishes have
(live underwater, have fins, have branchia). Whence the name formal con-
cept. The set of all formal concepts of a given data, called a concept lattice,
can be ordered by subconcept-superconcept hierarchy according to which
a greater, more general concept covers more objects than a smaller, more
specific concept. This ordering roughly corresponds to a way humans orga-
nize collections of things by their observed features. For example, the term
“mammal” is considered more general than the term “cat”, because each
cat is a mammal. In this sense, the extent of the concept “cat” is a subset
of the extent of the concept “mammal” (in data desribing animals and their
features). A concept lattice equipped with the subconcept-superconcept or-
der is indeed a complete lattice and can be easily visualized by its Hasse
diagram.

The research on FCA started with Wille’s paper [52]. Since then, strong
mathematical foundations were developed [30]. A survey on algorithms for
computation of formal concepts can be found in [42], currently the most
efficient family of algorithms was studied in a series of papers [40, 41, 42].
FCA has many applications as a data mining method in various fields, e.g.
[11, 25, 28], as a foundation for other methods of data analysis, most notably
the Boolean factor analysis [12], or as a preprocessing tool for other data
mining methods [47]. Technical details of FCA are summarized in Section
1.2.2.

Triadic concept analysis TCA is an extension of FCA which takes into
account conditions (e.g. time instances, weather conditions, different par-
ticipants in a survey) in addition to objects and attributes. Thus, instead
of two-dimensional tables TCA is concerned with three-dimensional tables
that capture a to-have-under relation (objects have attributes under condi-
tions). Triadic concepts are triplets 〈A,B,C〉, where A is a set of object, B
is a set of attributes, and C is a set of conditions, such that A, B, C are
maximal in the sense that all objects of A have all attributes of B under all
conditions of C. The set of all triadic concepts of a given data, called a con-
cept trilattice, can be structured by three quasiorders induced by inclusion
of object, attribute, and condition sets and forms a complete trilattice, for
details see Section 1.2.3.

The developement of TCA was inspired by works of a philosopher Charles
S. Peirce on pragmatism and by his system of categories [43]. TCA was stud-
ied in a series of papers [20, 43, 53]. Interesting connections to modal logic
were described in [27]. In a recent paper, an application to decomposition
of tree-way Boolean matrices was proposed [16].

1.1. Introduction 3

In basic setting, the input tables to both FCA and TCA contain biva-
lent attributes, i.e. each table entry is either 1 or 0. The attributes are
considered qualitative rather than quantitative. That is, we are concerned
with attributes like “being tall” rather than “speed in km/h”. In FCA,
more general attributes (mostly quantitative and categorical) can be han-
dled using so-called conceptual scaling [30]. However, there are qualitative
attributes for which the bivalent approach is not sufficient. For example,
consider the attribute “being tall”. Such attribute is vague by nature. If we
characterize someone as being tall we do not specify precisely how tall that
person is. In order to classify people into two sets, the set of tall people
(for which “being tall” has value 1) and the set of people that are not tall
(and therefore “being tall” has value 0) one has to select a precise thresh-
old. But that is not very appropriate and leads to absurd situations. For
example, let’s say that the threshold is 180 cm. Then a person with 180.1
cm is classified as tall, but a person with 179.9 cm is classified as not tall.
This does not correspond with the meaning of attribute “being tall” at all.
The right model for such attributes is a fuzzy set [54]. Using a fuzzy set,
one can model “being tall” more smoothly, e. g. a person 180.1 cm tall
has this attribute to the degre 0.9 and a person 179.9 cm tall to the degree
0.85. To summarize the previous discussion, in order to work with vague
attributes, one has to allow the relationship between objects and attributes
(and conditions) to be a matter of degree. For FCA, several generalizations
that allowed graded attributes were proposed. We will follow the approach
developed independently by Belohlavek [3, 4] and Pollandt [49]. For survey
of some of the other approaches, see [10]. For TCA such an extension does
not exist at the moment. To develop this extension is the main purpose of
this work.

While developing TCA in fuzzy setting we had one its particular applica-
tion in mind — a decomposition of three-way ordinal data. There has been
a growing interest in decompositions of tree-way (or more generally, multi-
way) data recently. A good overview with many references is [37]. Methods
of three-way data decomposition are considered to be important and have
applications in many areas, including psychometrics, chemometrics, signal
processing, computer vision, neuroscience, and data mining. However, many
known methods were designed to work with numeric data (e.g. real numbers)
and are not applicable to ordinal data because they distort the meaning of
the data [45]. Our main motivation was to contribute to the field of mul-
tiway data decomposition with an attempt to fill this gap. Inspired by the
approach of utilizing formal concepts as factors in decomposition of ordinal
matrices [15], we developed TCA in fuzzy setting in a hope that fuzzy tri-
adic concepts can be used as factors in decomposition of three-way ordinal
matrices (and thus provide a generalization of [16]). It turned out that this
is indeed possible. The associated results are summarized in Chapter 4.

4 Chapter 1. Problem setting

The work is organized as follows. In the rest of this chapter, we give an
overview of the fundamentals of fuzzy sets and fuzzy logic, formal concept
analysis, and triadic concept analysis. We do so in order to make the work
more self-contained and to unify the notation.

In Chapter 2 we develop triadic concept analysis in fuzzy setting. We
study the notions of triadic context, concept forming operators, and triadic
concept, and their properties, investigate the structure of concept trilattices
and prove a generalization of Theorem 2, and provide an illustrative exam-
ple. Then we present a theorem dealing with a connection to ordinary TCA
and discuss some of its consequences. In the rest of the chapter we develop
two algorithms for computation of the set of all triadic fuzzy concepts of a
given input data. We conclude with remarks on future research.

In Chapter 3 we study triadic fuzzy Galois connections, the basic math-
ematical structures behind TCA of data with fuzzy attributes. We present
their axiomatization and a representation theorem describing one-to-one re-
lationship between triadic fuzzy Galois connections and ternary fuzzy rela-
tions. In the rest of the chapter we focus on representation of triadic fuzzy
Galois connections by ordinary triadic Galois connections.

Chapter 4 contains material on decompositions of three-way matrices.
First, we describe how triadic fuzzy concepts can be utilized as factors.
Then we provide a strong theorem on optimality of decomposition, initial
results regarding algorithms, and an illustrative example.

1.2 Preliminaries

1.2.1 Fuzzy sets and fuzzy logic

In this section we recall the fundamental notions from fuzzy logic and fuzzy
sets theory. For a more detailed treatment on the material contained in this
section we refer the reader to [8, 35].

A concept central to fuzzy logic is the concept of graded truth. In fuzzy
setting, we allow logical propositions to not only be fully true or fully false,
but also partially true. The set L of all truth degrees, which we allow the
logical propositions to take as their truth value, needs to be well structured.
This is usually done by equipping L with certain operators which play a role
of truth functions of logical connectives. The properties of such connectives
are then set according to a simple natural requirements having its roots
in ordinary mathematical logic and expressing the way multivalued logic
should behave [8, 35]. In this work we assume that the truth degrees form
a complete residuated lattice [51]. A complete residuated lattice L is a tuple
〈L,∧,∨,⊗,→, 1, 0〉 such that

(i) 〈L,∧,∨, 1, 0〉 is a complete lattice with the greatest element 1 and the

1.2. Preliminaries 5

least element 0, i.e. a partially ordered set, where infima (∧) and
suprema (∨) of arbitrary subset of L exist,

(ii) 〈L,⊗〉 is a commutative monoid with the neutral element 1, i.e. ⊗ is
associative and commutative, and a⊗ 1 = a holds for all a ∈ L,

(iii) the adjointness property a⊗b ≤ c iff b ≤ a→ c holds for all a, b, c ∈ L.

The operations ⊗ and → are taken as truth functions of conjunction and
implication, respectively, ∧ and ∨ are semantical counterparts of universal
and existential quantifiers, respectively. Truth functions of other logical
connectives are defined in terms of operations of residuated lattices, e. g.
↔ (the truth function of the equivalence connective) is defined as

a↔ b = (a→ b) ∧ (b→ a).

By adjointness property, many important properties of ⊗ and → can be
obtained. As an example we provide the following:

Lemma 1. Let L = 〈L,∧,∨,⊗,→, 1, 0〉 be a residuated lattice, a, b, c ∈ L,
and I be an index set. Then it holds:

• ⊗ is isotone in both arguments,

• → is antitone in first and isotone in second argument,

• a→ b = 1 if and only if a ≤ b,

• a⊗ (a→ b) ≤ b, b ≤ a→ (a⊗ b),

• a⊗ b ≤ a, a ≤ b→ a,

• (a⊗ b)→ c = a→ (b→ c),

• a→ ∧
i∈I bi =

∧
i∈I(a→ bi),

• ∨i∈I ai → b =
∧

i∈I(ai → b).

Although, we will depend on properties of (complete) residuated lattices
thorough this work, presenting their complete list is out of its scope. Instead,
we refer the reader to [8].

Complete residuated lattices cover a wide range of structures of truth
degrees, including all of the most widely used ones. Perhaps the most com-
mon example is the unit interval L = [0, 1] with ∧,∨ being maximum and
minimum, respectively, ⊗ being a (left-continuous) t-norm, and → given by
a → b = ∨{c | a ⊗ c ≤ b}. Particular cases (and in a sense the important

6 Chapter 1. Problem setting

ones [8, 35]) are standard Lukasiewicz, Gödel, and product algebras where
⊗ is defined by

a⊗ b =


max(0, a+ b− 1) (Lukasiewicz algebra)
min(a, b) (Gödel algebra)
a · b (product algebra)

In applications, another common choice of L is a finite chain equipped with
a restriction of a t-norm. For example, L = {a1 = 0, . . . , an = 1} ⊆ [0, 1]
with ⊗ defined either by ai ⊗ aj = amax(i+j−n,0) (Lukasiwicz chain) or as
a restriction of Gödel t-norm to L. Residuated lattices are used in several
areas of mathematics, most notably in mathematical fuzzy logic [35].

Now we recall the notions related to fuzzy sets and fuzzy relations. A
L-set (fuzzy set) A in a universal set X is a map A : X → L. For x ∈ X,
A(x) is the degree to which x belongs to A. The set of all L-sets over X
is denoted by LX . A fuzzy set A is also denoted by {A(x)/x | x ∈ X}, we
do not enumerate elements x ∈ X such that A(x) = 0. If there is only one
x ∈ X such that A(x) 6= 0, i.e. A = {A(x)/x}, we call A a singleton.

The operations with L-sets are defined componentwise. For example, the
union of L-sets A,B ∈ LX is defined as L-set (A ∪B) ∈ LX such that

(A ∪B)(x) = A(x) ∨B(x)

for all x ∈ X.

An L-set A is an ordinary subset of an L-set B if A(x) ≤ B(x) for all
x ∈ X, denoted by A ⊆ B. In fuzzy setting, subsethood of L-sets should be
a matter of degree. Indeed, the degree S(A,B) to which A is a subset of B
is defined as

S(A,B) =
∧
x∈X

A(x)→ B(x) (1.1)

It is easy to see (by basic properties of residuated lattices, cf. [8]), that
A ⊆ B if and only if S(A,B) = 1. The degree of equality of A and B is
defined as

A ≈ B =
∧
x∈X

A(x)↔ B(x). (1.2)

For a ∈ L, an a-cut of an fuzzy set A is a crisp set aA ⊆ X, such that
x ∈ aA if A(x) ≥ a.

An n-ary L-relation (fuzzy relation) R between sets U1, . . . , Un is an L-
set in U1 × . . . Un. A binary fuzzy relation R ∈ LX×X is an L-equivalence
(fuzzy equivalence), if the the following conditions hold for all x, y, z ∈ X:

R(x, x) = 1 (reflexivity),

R(x, y) = R(y, x) (symmetry),

R(x, y)⊗R(y, z) ≤ R(x, z) (transitivity).

1.2. Preliminaries 7

Moreover, if R(x, y) = 1 implies x = y, R is an L-equality (fuzzy equality). A
binary fuzzy relation Q on a set X equipped with an L-equivalence relation
≈ is an L-quasiorder (fuzzy quasiorder) if it is reflexive and transitive. Note
that the 1-cut of fuzzy equality is an ordinary equivalence relation, and that
the 1-cut of a fuzzy quasiorder is an ordinary quasiorder relation.

The Cartesian product of fuzzy sets A1, . . . , An in X1, . . . , Xn, respec-
tively, is the n-ary fuzzy relation A1 ⊗ · · · ⊗ An in X1 × · · · × Xn defined
by

(A1 ⊗ · · · ⊗An)(x1, . . . , xn) = A1(x1)⊗ · · · ⊗An(xn) (1.3)

For example, the Cartesian product of fuzzy sets A ∈ LX and B ∈ LY is the
binary relation A⊗B on X×Y given by (A⊗B)(x, y) = A(x)⊗B(y). It is
well known that for fuzzy sets A1, A2, B1, B2 the following inequality holds

S(A1, A2)⊗ S(B1, B2) ≤ S(A1 ⊗B1, A2 ⊗B2). (1.4)

If we take L = {0, 1} with ⊗ being minimum (the truth function of
ordinary conjunction), adjointness yields that → is the truth function of or-
dinary implication. Thus, in this case, L is the two-element Boolean algebra
and all of the above notions coincide with their ordinary counterparts, i.e.
fuzzy sets become ordinary sets, fuzzy relations become ordinary relations,
and similarly for other notions.

1.2.2 Formal concept analysis

In this section we give an overview of the notions from formal concept anal-
ysis and its extension to fuzzy setting. For a more complete treatment on
the material contained in this section we refer the reader to [8, 30].

An input to FCA is a two-dimensional table representing the relation
between objects and their attributes. An entry in the table contains 1 (or a
cross) if the object corresponding to the entry has the attribute correspond-
ing to the entry, otherwise the entry is 0 (or empty space). Technically,
the input is represented by a formal context. A formal context is a tuple
〈X,Y, I〉 where X and Y are non-empty sets and I is a binary relation be-
tween X and Y . X is then interpreted as the set of objects, Y as the set of
attributes. If 〈x, y〉 ∈ I we say that object x has attribute y. The relation
I induces a pair of concept forming (or arrow) operators, ↑ : 2X ← 2Y and
↓ : 2Y → 2X , defined for A ⊆ X, B ⊆ Y by

A↑ = {y ∈ Y | 〈x, y〉 ∈ I for all x ∈ A}
B↓ = {x ∈ X | 〈x, y〉 ∈ I for all y ∈ B}

That is, ↑ assigns to a set A of objects the set of all attributes shared by
all objects from A. In similar manner, ↓ assigns to a set B of attributes

8 Chapter 1. Problem setting

the set of all objects that have all attributes from B. ↑ and ↓ form a Galois
connection, turning ↑↓ and ↓↑ into closure operators on X and Y , respectively
[30].

A formal concept is a pair 〈A,B〉, A ∈ X, B ∈ Y such that A = B↓ and
B = A↑. A and B are called the extent and intent of 〈A,B〉. The set of
all formal concepts of a formal context 〈X,Y, I〉 is called the concept lattice
of 〈X,Y, I〉, denoted by B(X,Y, I). Each concept lattice can be partially
ordered by a natural concept order (see Section 1.1) defined as

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 iff B2 ⊆ B1, (1.5)

A concept lattice ordered by (1.5) is indeed a complete lattice. In the op-
posite direction the relationship also holds, i.e. each complete lattice is
isomorphic to a concept lattice of some formal context [30].

In the literature, several generalizations of FCA that allowed it to handle
data with fuzzy attributes have been proposed. We follow the approach
developed independently in [3, 4] and [49].

While in the ordinary case the relationship between objects and at-
tributes is a yes-no relationship, in the fuzzy setting, this relationship is
a matter of degree. Given a residuated lattice L, an L-context (fuzzy con-
text) is a tuple 〈X,Y, I〉, where X and Y are non-empty sets and I is an
L-relation between X and Y . The sets X and Y are interpreted as sets of
objects and attributes, respectively. For each x ∈ X and y ∈ Y , the degree
I(x, y) is the degree to which object x has attribute y, or alternatively, the
truth degree of proposition “object x has attribute y”. A fuzzy context in-
duces a pair of concept-forming operators, ↑ : LX → LY and ↓ : LY → LX

defined for A ∈ LX and B ∈ LY by

A↑(y) =
∧
x∈X

A(x)→ I(x, y),

B↓(x) =
∧
y∈Y

B(y)→ I(x, y).

Now, A↑(y) is the degree to which each object of A has the attribute y,
B↓(x) is the degree to which all attributes from B are shared by object x.

An L-concept (fuzzy concept) is a pair 〈A,B〉, A ∈ LX and B ∈ LY , such
that A = B↓ and B = A↑. As in the ordinary case, A is called the extent,
and B is called the intent of 〈A,B〉. The set of all fuzzy concepts forms
an L-concept lattice (fuzzy concept lattice) B(X,Y, I). The natural concept
order is defined using the ordinary subsethood of extents and intents:

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 iff B2 ⊆ B1,

Each fuzzy concept lattice ordered by concept order is a complete lattice.
However, the relation in the opposite direction does not hold in general [8].

1.2. Preliminaries 9

1.2.3 Concept trilattices

I this section we recall the basics of triadic concept analysis. For more details
see [20, 22, 53].

A triadic context is a quadruple 〈X,Y, Z, I〉 where X, Y , and Z are non-
empty sets, and I is a ternary relation between X, Y , and Z. X, Y , and Z
are interpreted as the sets of objects, attributes, and conditions, respectively;
I is interpreted as the “to have-under relation”. That is, if 〈x, y, z〉 ∈ I we
say that object x has attribute y under condition z. For convenience, a
triadic context is denoted by 〈X1, X2, X3, I〉.

From a triadic context, a number of formal (dyadic) contexts can be
derived. For {i, j, k} = {1, 2, 3} and a set Ck ⊆ Xk we obtain a dyadic
context

Kij
Ck

= 〈Xi, Xj , I
ij
Ck
〉

defined by

〈xi, xj〉 ∈ IijCk
iff for each xk ∈ Ck : xi, xj , xk are related by I. (1.6)

A triadic context is usually depicted as |X3| tables corresponding to dyadic
contexts K12

{x3} for x3 ∈ X3, see Table 1.1

We denote the concept forming operators induced by Kij
Ck

by (i,j,Ck). A
triadic concept is a triplet of sets 〈C1, C2, C3〉, C1 ⊆ X1, C2 ⊆ X2, and

C3 ⊆ X3, such that for every {i, j, k} = {1, 2, 3} we have Ci = C
(j,i,Ck)
j ;

C1, C2, and C3 are called the extent, intent, and modus of 〈C1, C2, C3〉,
respectively. The set of all triadic concepts is called the concept trilattice of
〈X1, X2, X3, I〉 and denoted by T (X1, X2, X3, I) or T (K).

Let bik : 2Xi×2Xk → T (K) be a map which to a pair of sets Ci ⊆ Xi and

Ck ⊆ Xk assigns a triple 〈A1, A2, A3〉 such that Aj = C
(i,j,Ck)
i , Ai = A

(i,j,Ck)
j ,

and Ak = A
(i,k,Aj)
i . Then 〈A1, A2, A3〉 is a triadic fuzzy concept. That is,

starting with a pair of sets Ci, Ck, one can obtain a triadic concept using
concept forming operators three times.

Now we recall the basic notions and results regarding triordered sets and
trilattices [53, 22].

A triordered set is a quadruple V = 〈V,.1,.2,.3〉, where V is non-
empty set, for i ∈ {1, 2, 3} .i is a quasiorder on V , i.e. a reflexive and
transitive binary relation on V , and for ∼i=.i ∩ &i, and all v, w ∈ V the
following two conditions hold for all assignments {i, j, k} ∈ {1, 2, 3}:

v ∼i w and w ∼j v implies v = w (1.7)

v .i w and v .j w implies v &k w (1.8)

10 Chapter 1. Problem setting

(1.8) is called the antiordinal dependence property. Since the relation ∼i

is an equivalence on V , .i induces an order relation ≤i on the equivalence
classes of V/ ∼i, turning 〈V/ ∼i,≤i〉 into a partially ordered set.

Let Vi, Vk ⊆ V . An element v ∈ V is called an ik-bound of 〈Vi, Vk〉 if
vi .i v and vk .k v for every vi ∈ Vi and vk ∈ Vk. An ik-bound v is
called an ik-limit of 〈Vi, Vk〉 if u .j v for every ik-bound u of 〈Vi, Vk〉. In
every triordered set 〈V,.1,.2,.3〉 there is at most one ik-limit v of 〈Vi, Vk〉
satisfying v .k u for every ik-limit u of 〈Vi, Vk〉. If such v exists, we call v an
ik-join of 〈Vi, Vk〉 and denote it ∇ik(Vi, Vk). A triordered set (V,.1,.2,.3)
in which the ik-join exists for all i 6= k (i, k ∈ {1, 2, 3}) and all pairs 〈Vi, Vk〉
of subsets of V is called a complete trilattice.

In what follows we will recall the structural properties of concept trilat-
tices. It is easy to see, that for i ∈ {i, j, k} a relation .i on T (K) defined

〈A1, A2, A3〉 .i 〈B1, B2, B3〉 iff Ai ⊆ Bi

is a quasiorder and that 〈T (K),.1,.2,.3〉 is a triordered set. An order
filter in the quasiordered set 〈V,.i〉 is a subset F ⊆ V for which v ∈ F
whenever u ∈ F and u .i v, for every u, v ∈ V . The set of all order filters
of 〈V,.i〉 is denoted by Fi(V). A principal filter of 〈V,.i〉 generated by
v ∈ V is the order filter [v)i = {u ∈ V | v .i u}. A subset X ⊆ Fi(V)
is called i-dense with respect to V if each principal filter of 〈V,.i〉 is the
intersection of some order filters from X . The following theorem proved in
[53] establishes that concept trilattice is indeed a complete lattice and that
each complete trilattice is isomorphic to a concept trilattice of some triadic
context.

Theorem 2 (basic theorem of triadic concept analysis).
Let K = 〈X1, X2, X3, I〉 be a triadic context. Then:
(1) T (K) is a complete trillatice for which the ik-joins can be described as
follows ({i, j, k} ∈ {1, 2, 3}):

∇ik(Xi,Xk) = bik(
⋃
{Ai | 〈A1, A2, A3〉 ∈ Xi},

⋃
{Ak | 〈A1, A2, A3〉 ∈ Xk}),

(2) a complete trilattice V = 〈V,.1,.2,.3〉 is isomorphic to T (K) if
and only if there exist mappings κ̃i : Xi → Fi(V) (i = 1, 2, 3) such that:

(i) κ̃i is i-dense with respect to V,

(ii) A1 ×A2 ×A3 ⊆ I iff
3⋂

i=1

⋂
ai∈Ai

κ̃(ai) 6= ∅ for all Ai ⊆ Xi.

PROOF. The proof can be found in [53]. �

1.2. Preliminaries 11

z1 y1 y2
x1 1 0
x2 1 0

z2 y1 y2
x1 1 1
x2 0 1

Table 1.1: A triadic context depicted as two dyadic contexts

1

2

3

Figure 1.1: Triadic diagram of a concept trilattice corresponding to the
triadic context from Table 1.1

Using so called triadic diagrams, it is possible to visualize some triordered
sets (and thus concept trilattices). However, there are triordered sets which
cannot be depicted using only straight lines, see [20, 53]. A diagram of a
small triordered set is depicted in Figure 1.1. The triangular area consists of
three systems of parallel lines corresponding to three equivalence relations
∼1, ∼2, and ∼3. The circles at the intersections depict the elements of
V . The side diagrams are Hasse diagrams of ordered sets 〈V/ ∼1,≤1〉,
〈V/ ∼2,≤2〉, and 〈V/ ∼3,≤3〉. That is, all elements lying on the same line
belong to the same equivalence class of the corresponding equivalence. If
we depict a concept trilattice, the side diagrams can be labeled by objects,
attributes, or conditions. Particular components of a triadic concept can be
then read off the labels of side diagrams by including all labels of elements,
that are under the corresponding equivalence class.

Chapter 2

Triadic concept analysis in
fuzzy setting

2.1 Introduction

In this chapter we proceed with a development of triadic concept analysis
in fuzzy setting. As discussed above, our main motivation is to allow the
method to deal with graded relational data. We consider it to be important
because, first, there are relational data with vague attributes in practice,
and second, existing methods that deal with three-way matrices are de-
signed for numerical data. When applied to relational data, their output is
hard to interpret in relational context, which we may understand as that
these methods distort the intended meaning of the data. First of all, the
entries in relational data are truth degrees and as such they can be of purely
symbolic nature (i.e. not numbers). In such a case methods designed for
numerical data are clearly not applicable. Even if the truth degrees are ex-
pressed as numbers (e.g. unit interval [0, 1] or its subset), the use of such
methods remains inappropriate. There are several reasons. Firstly, it is well
known, that the operations on the set of truth degrees are semantical coun-
terparts (i.e truth functions) of logical connectives. Thus, they have specific
properties coming from the requirements on behavior of logical connectives.
In general, these properties are not shared by numerical operations (e.g.
arithmetic operations) which renders them inappropriate for working with
truth degrees. Secondly, outputs of methods designed for numerical data
may be hard to interpret as truth degrees. For example, it may happen that
the numbers are negative or, more generally, that they do not belong into
unit interval [0, 1].

In formal (dyadic) concept analysis, the notion of a formal concept is a
simple formalization of the notion of a concept as understood by Port-Royal
logic. For triadic concept analysis the inspiration comes from Peirce’s system

14 Chapter 2. Triadic concept analysis in fuzzy setting

of categories. To emphasis the intended interpretation of triadic contexts
and triadic concepts, in their paper [43] Lehmann and Wille first enumerate
the Peirce’s categories.

In his lecture on pragmatics (1903) he [Peirce] gave the following
description of his categories:

• Category the First is the Idea of that which is such as it is
regardless of anything else. That is to say, it is a quality of
feeling.

• Category the Second is the Idea of that which is such as
it is as being Second to some First, regardless of anything
else, and in particular regardless of any Law, although it
may conform to a law. That to say, it is a Reaction as an
element of the phenomenon.

• Category the Third is the Idea of that which is such as it
is as being a Third, or Medium, between a Second and a
First. That is to say, it is Representation as an element of
the phenomenon.

Then they argue

The. . . description of the three categories allows us to interpret
the triadic relationship as follows: the object g is a First as some
suchness to which the attribute m is a Second as some accident
while the condition b is a Third as some medium between g and
m. In different situations, the Third as medium may be un-
derstood more specifically as relation, mediation, representation,
interpretation, evidence, evaluation, modality, meaning, reason,
purpose, condition etc. concerning a present connection between
and object and an attribute.

In this interpretation, the objects are considered as entities that exists
by themselfs and the attributes are viewed as determining objects (i.e. as
object descriptions) that cannot exist without them. Conditions are then
understood as mediating relations between objects and attributes, such as
different evidences, conditions, opinions etc. under which objects have at-
tributes. In graded setting, this interpretation remains valid. We only allow
attributes to be vague, that is to describe object in degrees.

This chapter is organized as follows. The notions of fuzzy triadic con-
text and concept-forming operators are studied in Section 2.2. Section 2.3
contains material on fuzzy triadic conceps and their properties. The basic
theorem and its proof are contained in Section 2.4. Connections to triadic
concept analysis in ordinary case are studied in Section 2.5. Section 2.6 con-
tains material on algorithms for computation of all triadic fuzzy concepts

2.2. Concept forming operators 15

contained in a triadic context. In Section 2.7 we present an illustrative ex-
ample. We conclude with remarks on future research and open problems in
Section 2.8.

This chapter is based on results originally published in the following
papers:

• R. Belohlavek, P. Osicka. Triadic concept analysis of data with
fuzzy attributes Proc. of The 2010 IEEE International Conference on
Granular Computing (GrC 2010), 2010, San José, USA

• R. Belohlavek, P. Osicka. Triadic concept lattices of data with
graded attributes International Journal of General Systems 41 (5) (2012),
93-108

• P. Osicka Algorithms for computation of concept trilattice of triadic
fuzzy context. Proceedings of 14th International Conference on In-
formation Processing and Management of Uncertainty in Knowledge
Based Systems. (accepted in March 2012).

2.2 Concept forming operators

Definition 3. A triadic L-context (triadic fuzzy context, or just triadic
context) is a quadruple 〈X,Y, Z, I〉 where X, Y , and Z are non-empty sets,
and I is a ternary fuzzy relation betweenX, Y , and Z, i.e. I : X×Y×Z → L.

The sets X, Y , and Z are interpreted as sets of objects, attributes, and
conditions, respectively. The relation I is a “to-have-under” relation, that is
I(x, y, z) = a means that “object x has attribute y under condition z to the
degree a”. For convenience, we will use the notation K = 〈X1, X2, X3, I〉,
i.e. we use subscripts 1, 2, and 3 to distinguish between objects, attributes,
and conditions. Moreover, if the ordering of x1, x2, x3 is not relevant, we
denote I(x1, x2, x3) also by I{x2, x3, x1}, or I{x3, x1, x2}, or I{x1, x3, x2},
etc.

From a triadic context K = 〈X1, X2, X3, I〉 one can obtain a number of
dyadic fuzzy contexts. Given a fuzzy set Ck ∈ LXk , K induces a dyadic
fuzzy context Kij

Ck
= 〈Xi, Xj , I

ij
Ck
〉, where IijCk

is defined by

IijCk
(xi, xj) =

∧
xk∈Xk

Ck(xk)→ I{xi, xj , xk} (2.1)

The previous definition is a generalization of (1.6). Namely, (1.6) expresses
the ordinary (over a two-element Boolean algebra) semantics of the following
formula of predicate logic:

16 Chapter 2. Triadic concept analysis in fuzzy setting

The pair 〈xi, xj〉 belongs to IijCk
iff for each xk ∈ Xk the fact that

xk belongs to Ck implies that the triple 〈xi, xj , xk〉 belongs to I.

If we write down the semantics over residuated lattices of this formula, we
obtain precisely (2.1).

We denote the concept-forming operators induced by a dyadic context
Kij

Ck
by (i,j,Ck). That is, for a fuzzy set Ci ∈ LXi we define a fuzzy set

C
(i,j,Ck)
i ∈ LXj by

C
(i,j,Ck)
i (xj) =

∧
xi∈Xi

Ci(xi)→ IijCk
(xi, xj). (2.2)

The following lemma describes basic properties of concept-forming oper-
ators.

Lemma 4. Let {i, j, k} = {1, 2, 3}. Then

(a) A
(i,j,Ck)
i (xj) =

∧
〈xi,xj〉∈Xi×Xk

((Ai(xi)⊗ Ck(xk))→ I{xi, xj , xk}),

(b) A
(i,j,Ck)
i = C

(k,j,Ai)
k ,

(c) S(Ai, Bi)⊗ S(Ck, Dk) ≤ S(B
(i,j,Dk)
i , A

(i,j,Ck)
i),

(d) if Ai ⊆ Bi and Ck ⊆ Dk then B
(i,j,Dk)
i ⊆ A(i,j,Ck)

i ,

for any Ai, Bi ∈ LXi, Ck, Dk ∈ LXk .

PROOF. (a)

Ai,j,Ck
i (xj) =

∧
xi∈Xi

Ai(xi)→ IijCk
(xi, xj) =

=
∧

xi∈Xi

(
Ai(xi)→

∧
xk∈Xk

(Ck(xk)→ I{xi, xj , xk})
)

=

=
∧

xi∈Xi

∧
xk∈Xk

(Ai(xi)→ (Ck(xk)→ I{xi, xj , xk})) =

=
∧
〈xi,xk〉∈Xi×Xk

(Ai(xi)⊗ Ck(xk)→ I{xi, xj , xk})

(b) Follows from (a) by commutativity of ⊗.

(c) Consider the dyadic fuzzy context 〈Xi ×Xk, Xj , Iik,j〉 defined by

Iik,j(〈xi, xk〉, xj) = I{xi, xj , xk},

and fuzzy sets Ai⊗Ck and Bi⊗Dk in Xi×Xk defined by (1.3). According

to (a), A
(i,j,Ck)
i (xj) = (Ai⊗Ck)Iik,j and B

(i,j,Dk)
i (xj) = (Bi⊗Dk)Iik,j . Using

(1.4) S(Ai, Bi)⊗S(Ck, Dk) ≤ S(Ai⊗Ck, Bi⊗Dk). Now, [6] implies S(Ai⊗
Ck, Bi ⊗ Dk) ≤ S((Bi ⊗ Dk)Iik,j , (Ai ⊗ Ck)Iik,j) from which the assertion
readily follows.

2.3. Triadic fuzzy concepts 17

(d) A consequence of (c). Namely, A ⊆ B is equivalent to S(A,B) = 1;

therefore, if Ai ⊆ Bi and Ck ⊆ Dk then 1 = 1 ⊗ 1 ≤ S(B
(i,j,Dk)
i , A

(i,j,Ck)
i),

whence B
(i,j,Dk)
i ⊆ A(i,j,Ck)

i .

�

Remark 5. (1) Let K(j) = 〈Xi × Xk, Xj , I
(j)〉 be a dyadic fuzzy context

defined by I(j)((xi, xk), xj) = I{xi, xj , xk}, and denote the concept forming
operators induced by K(j) by (j). Then Lemma 4 (a) states, that for all

Ai ∈ LXi and Ak ∈ LXk the equality A
(i,j,Ak)
i = (Ai ⊗Ak)(j) holds.

(2) It is well known that LXi equipped with an order relation ≤ defined
for all A,B ∈ LXi as A ≤ B iff A ⊆ B is a partially ordered set (in fact, it
is a complete lattice, cf [35]). Lemma 4 (d) implies that if we look at (i,j,Ck)

as at a map assigning to a pair of fuzzy sets Ai ∈ LXi and Ak ∈ LXk an
fuzzy set in Xj , then this map is antitone in both arguments.

(3) As in ordinary case, a triadic fuzzy context can be depicted as |Xk|
dyadic contexts Kij

Ck
, where Ck iterates over singletons in Xk, i.e. over fuzzy

sets Ck = {1/xk} for all xk ∈ Xk.

2.3 Triadic fuzzy concepts

Definition 6. Let K = 〈X1, X2, X3, I〉 be a triadic fuzzy context. Then
a triadic L-concept (triadic fuzzy concept) of K is a triplet 〈A1, A2, A3〉
consisting of fuzzy sets A1 ∈ LX1 , A2 ∈ LX2 , and A3 ∈ LX3 , such that

for every {i, j, k} = {1, 2, 3} we have Ai = A
(i,j,Ak)
j , Aj = A

(j,k,Ai)
k , and

Ak = A
(k,i,Aj)
i . The set of all triadic fuzzy concepts of K is called the

concept trillatice of 〈X1, X2, X3, I〉, and is denoted by T (K).

Remark 7. According to Lemma 4 (a) (see also Remark 5), one can al-
ternatively define a triadic fuzzy concept as a triple 〈A1, A2, A3〉 such that
(Ai ⊗ Aj)

(j) = Ak for all assignments {i, j, k} = {1, 2, 3}. Note that in
Wille’s paper [53], the triadic concepts are defined using (j) operators. For
L = 2 (L is a two-element boolean algebra), the (j) operators coincide with
ordinary (j) operators of [53], and triadic fuzzy concepts are just ordinary
triadic concepts as defined in [53].

Now, we establish fundamental structural properties of T (K). For fuzzy
triadic concepts 〈A1, A2, A3〉, and 〈B1, B2, B3〉 ∈ T (K), {i, j, k} ∈ {1, 2, 3},
we define fuzzy relations on T (K)

〈A1, A2, A3〉 -i 〈B1, B2, B3〉 = S(Ai, Bi) (2.3)

〈A1, A2, A3〉 ≈i 〈B1, B2, B3〉 = Ai ≈ Bi (2.4)

18 Chapter 2. Triadic concept analysis in fuzzy setting

For definitions of S(A,B) and ≈ see (1.1) and (1.2). It easy to observe
that ≈i = -i ∧ %i, and that -i and ≈i are L-quasiorder and L-equality
relations, respectively. The 1-cuts of -i and ≈i, denoted by .i and hi, are
ordinary equivalence and quasiorder relations, respectively. Since A ⊆ B iff
S(A,B) = 1, and A ≈ B = 1 iff A = B, we have

〈A1, A2, A3〉 .i 〈B1, B2, B3〉 iff Ai ⊆ Bi, (2.5)

〈A1, A2, A3〉 hi 〈B1, B2, B3〉 iff Ai = Bi. (2.6)

It is immediate that hi = .i ∩ &i.

The following theorem elaborates on the connection between the fuzzy
quasiorders -1, -2, and -3.

Theorem 8. Let {i, j, k} = {1, 2, 3}. Then

(〈A1, A2, A3〉 -i 〈B1, B2, B3〉)⊗ (〈A1, A2, A3〉 -j 〈B1, B2, B3〉) ≤
≤ (〈B1, B2, B3〉 -k 〈A1, A2, A3〉),

for all triadic fuzzy concepts 〈A1, A2, A3〉 and 〈B1, B2, B3〉 from T (K). Fur-
thermore, ≈i ∩ ≈j is an L-equality on T (K).

PROOF. As 〈A1, A2, A3〉, 〈B1, B2, B3〉 ∈ T (K), we have A
(i,k,Aj)
i = Ak and

B
(i,k,Bj)
i = Bk. Lemma 4 (c) therefore yields

(〈A1, A2, A3〉 -i 〈B1, B2, B3〉)⊗ (〈A1, A2, A3〉 -j 〈B1, B2, B3〉) =

= S(Ai, Bi)⊗ S(Aj , Bj) ≤ S(B
(i,k,Bj)
i , A

(i,k,Aj)
i) =

= S(Bk, Ak) = 〈A1, A2, A3〉 -k 〈B1, B2, B3〉.

Since ≈i ∩ ≈j is an L-equivalence (an intersection of two L-equivalences),
it suffices to show that if 〈A1, A2, A3〉(≈i ∩ ≈j)〈B1, B2, B3〉 = 1 then
〈A1, A2, A3〉 = 〈B1, B2, B3〉. If 〈A1, A2, A3〉(≈i ∩ ≈j)〈B1, B2, B3〉 = 1 then
Ai ≈ Bi = 1 and Aj ≈ Bj = 1, whence Ai = Bi and Aj = Bj . But then

Ak = A
(i,k,Aj)
i = B

(i,k,Bj)
i = Bk because both 〈A1, A2, A3〉 and 〈B1, B2, B3〉

are triadic concepts. �

We immediately obtain the following corollary.

Corollary 9. For all assignments {i, j, k} = {1, 2, 3}, and all triadic fuzzy
concepts 〈A1, A2, A3〉 and 〈B1, B2, B3〉 from T (K), it holds that

if 〈A1, A2, A2〉 .i 〈B1, B2, B3〉 and 〈A1, A2, A2〉 .j 〈B1, B2, B3〉,
then 〈B1, B2, B3〉 .k 〈A1, A2, A3〉.

Furthermore, hi ∩ hj is the identity on T (K).

PROOF. Since .is are 1-cuts of -is and his are 1-cuts of ≈is, we get the
assertion by Theorem 8. �

2.3. Triadic fuzzy concepts 19

Remark 10. By Corollary 9 we can see that (T (K),.1,.2,.3) is a tri-
ordered set. Indeed, the first assertion is the antiordinal property (1.8). The
second assertion clearly implies (1.7).

The following theorem shows how to compute a triadic fuzzy concept.
Starting with two sets, Ci ∈ LXi and Ck ∈ LXk , we can obtain a triadic
fuzzy concept 〈A1, A2, A3〉 using the concept-forming operators three times.
First we compute Ai from Ci and Ck, then we compute Aj from Ai and
Ck, and finally, we obtain Ak from Ai and Aj . Moreover, 〈A1, A2, A3〉 has
convenient properties which we utilize in Section 2.4.

Theorem 11. For Ci ∈ LXi , Ck ∈ LXk with {i, j, k} = {1, 2, 3}, let Aj =

C
(i,j,Ck)
i , Ai = A

(i,j,Ck)
j , and Ak = A

(i,k,Aj)
i . Then 〈A1, A2, A3〉 is a triadic

fuzzy concept, denoted by bik(Ci, Ck).

bik(Ci, Ck) has the smallest k-th component among all triadic fuzzy con-
cepts 〈B1, B2, B3〉 with the greatest j-th component satisfying Ci ⊆ Bi and
Ck ⊆ Bk. In particular, bik(Ai, Ak) = 〈A1, A2, A3〉 for each triadic fuzzy
concept 〈A1, A2, A3〉.

PROOF. First, observe that Ci ⊆ Ai and Ck ⊆ Ak. Indeed, Ci ⊆ Ai holds
true because Ai is the closure of Ci w.r.t. the closure operator on Kij

Ck
.

Ck ⊆ Ak because by definition of Ak, Lemma 4(a) yields that the inclusion
is equivalent to Ck(xk) ≤ Ai(xi)⊗Aj(xj)→ I{xi, xj , xk} being true for every
〈xi, xk〉, which is equivalent to Ai(xi)⊗Aj(xj)⊗Ck(xk) ≤ I{xi, xj , xk}. The
last inequality holds true because

Ai(xi)⊗Aj(xj)⊗ Ck(xk) ≤
≤ (Aj(xj)⊗ Ck(xk)→ I{xi, xj , xk})⊗Aj(xj)⊗ Ck(xk) ≤
≤ I{xi, xj , xk}.

Next, we prove that 〈A1, A2, A3〉 is a triadic fuzzy concept. Ak = A
(i,k,Aj)
i

is satisfied by definition. Consider Aj . Due to Lemma 4(d), Aj = C
(i,j,Ck)
i ⊇

A
(i,j,Ak)
i and Aj ⊆ (A

(j,k,Ai)
j)(j,k,Ai) = A

(j,k,Ai)
k = A

(i,j,Ak)
i , thus Aj =

A
(i,j,Ak)
i . The proof for Ai is similar.

Let 〈B1, B2, B3〉 be a triadic fuzzy concept with Ci ⊆ Bi and Ck ⊆ Bk.

Then Bj = B
(i,j,Bk)
i ⊆ C

(i,j,Ck)
i = Aj . This shows that 〈A1, A2, A3〉 has the

greatest j-th component among all concepts 〈B1, B2, B3〉 that satisfy Ci ⊆
Bi and Ck ⊆ Bk. Let now Bj = Aj . Then Ai = A

(i,j,Ck)
j ⊇ B

(i,j,Bk)
j = Bi

thus Bi ⊆ Ai, whence Ak = A
(i,k,Aj)
i ⊆ (B

(i,k,Bj)
i = Bk.

Finally, if 〈A1, A2, A3〉 is a triadic fuzzy concept, thenAj = A
(i,j,Ak)
i , Ai =

A
(i,j,Ak)
j , and Ak = A

(i,k,Aj)
i by definition. Hence, bik(Ai, Ak) = 〈A1, A2, A3〉.

�

20 Chapter 2. Triadic concept analysis in fuzzy setting

The following theorem enables us to look at triadic fuzzy concepts as
at maximal cubicals contained in data. Its consequences are of importance
in a particular application of TCA, decompositions of three-way ordinal
matrices, see Chapter 4.

Theorem 12 (geometrical interpretation of triadic concepts). For every
triadic fuzzy context K = 〈X1, X2, X3, I〉:

(a) If 〈A1, A2, A3〉 ∈ T (K) then A1⊗A2⊗A3 ⊆ I. Moreover, 〈A1, A2, A3〉
is maximal with respect to pointwise set inclusion, i.e. there does not
exist 〈B1, B2, B3〉 ∈ 〈LX1 ,LX2 ,LX3〉 other than 〈A1, A2, A3〉 such that
Ai ⊆ Bi for every i = 1, 2, 3.

(b) If A1 ⊗ A2 ⊗ A3 ⊆ I then there exists 〈B1, B2, B3〉 ∈ T (K) such that
Ai ⊆ Bi for every i = 1, 2, 3.

PROOF. (a) Let {i, j, k} = {1, 2, 3}. From 〈A1, A2, A3〉 ∈ T (K) it follows

that Ak(xk) = A
(i,j,k)
i =

∧
(xi,xj)∈Xi×Xj

Ai(xi) ⊗ Aj(xj) → I{xi, xj , xk}.
Furthermore,

Ai(xi)⊗Aj(xj)⊗Ak(xk) =

= Ai(xi)⊗Aj(xj)⊗
∧

xi∈Xi,xj∈Xj
(Ai(xi)⊗Aj(xj)→ I{xi, xj , xk}) ≤

≤ Ai(xi)⊗Aj(xj)⊗ (Ai(xi)⊗Aj(xj)→ I{xi, xj , xk}) ≤
≤ I{xi, xj , xk}.

Let 〈A1, A2, A3〉 and 〈B1, B2, B3〉 be triadic fuzzy concepts with Ai ⊆ Bi

for every i = 1, 2, 3. Applying Corollary 9 to A1 ⊆ B1 and A2 ⊆ B2

we get B3 ⊆ A3; in a similar manner, B1 ⊆ A1 and B2 ⊆ A2, hence
〈A1, A2, A3〉 = 〈B1, B2, B3〉, proving maximality of 〈A1, A2, A3〉.

(b) Let {i, j, k} = {1, 2, 3} and bik(Ai, Ak) = 〈B1, B2, B3〉. Due to Theo-
rem 11, Ai ⊆ Bi and Ak ⊆ Bk. Moreover

Bj(xj) = A
(i,j,Ak)
i (xj) =

=
∧

xi∈Xi,xk∈Xk
(Ai(xi)⊗Aj(xk)→ I{xi, xj , xk)} ≥

≥ ∧xi∈Xi,xk∈Xk
(Ai(xi)⊗Ak(xk)→ Ai(xi)⊗Ak(xk)⊗Aj(xj)) ≥

≥ Aj(xj),

thus Aj ⊆ Bj , finishing the proof. �

2.4 Basic theorem

In this section we broaden the material on the structure of T (K). Our goal
is to prove a generalization of the basic theorem of ordinary triadic concept

2.4. Basic theorem 21

analysis. After we do so, we show that the new theorem is indeed a proper
generalization, i.e. that for L = 2 both theorems coincide.

Let K = 〈X1, X2, X3, I〉 be a triadic fuzzy context and T (K) the corre-
sponding concept trilattice. Recall, that (〈T (K),.1,.2,.1〉 is a triordered
set (Remark 10), and thus we can proceed with the following construction.

Consider the mappings κi : Xi × L→ T (K) defined by

κi = {〈A1, A2, A3〉 ∈ T (K) | Ai(xi) ≥ a} (2.7)

for every i ∈ {1, 2, 3}, xi ∈ Xi and a ∈ L. It is easy to check, that κi(xi, a)
is an order filter in 〈T (K),.i〉. Moreover, for each triadic fuzzy concept
〈A1, A2, A3〉 ∈ T (K), the principal filter [〈A1, A2, A3〉)i can be obtained as
intersection of all filters κi(xi, Ai(xi)) over all xi ∈ Xi, i. e.

[〈A1, A2, A3〉)i =
⋂

xi∈Xi

κi(xi, Ai(xi)). (2.8)

Therefore, the set κi(Xi×L) is i-dense w.r.t. (〈T (K),.1,.2,.1〉. Moreover,
a ≤ b implies κi(xi, b) ⊆ κi(xi, a).

Theorem 13 (basic theorem of triadic concept analysis in fuzzy setting).
Let K = 〈X1, X2, X3, I〉 be a triadic fuzzy context.

(1) T (K) is a complete trilattice for which the ik-joins are defined for
every i, k ∈ {1, 2, 3}, i 6= k, by:

∇ik(Xi,Xk) = bik

(⋃
{Ai|〈A1, A2, A3〉 ∈ Xi},

⋃
{Ak|〈A1, A2, A3〉 ∈ Xk}

)
.

(2) A complete trilattice V = 〈V,.1,.2,.3〉 is isomorphic to T (K) if
and only if there are mappings κ̃i : Xi × L→ Fi(V), i = 1, 2, 3, such that

(i) κ̃i(Xi × L) is i-dense with respect to V;

(ii) A1⊗A2⊗A3 ⊆ I iff
⋂3

i=1

⋂
xi∈Xi

κ̃i(xi, Ai(xi)) 6= ∅, for every Ai ∈ LXi,
i = 1, 2, 3;

(iii) a ≤ b implies κ̃i(xi, b) ⊆ κ̃i(xi, a) for every a, b ∈ L, xi ∈ Xi, i =
1, 2, 3.

PROOF.

(1): Corollary 9 implies that T (K) is a triordered set. Moreover, T (K)
is a complete trilattice due to Theorem 11.

(2): “⇒”: Let ϕ be an isomorphism between V and T (K). Define a
mapping κ̃i : Xi × L → V by κ̃i(xi, b) = ϕ(κ(xi, b)). As observed above,
κi(Xi × L) is i-dense w.r.t. T (K) and a ≤ b implies κi(xi, b) ⊆ κi(xi, a).
Therefore, κ̃i satisfies (i) and (iii). If A1 ⊗ A2 ⊗ A3 ⊆ I, Theorem 12

22 Chapter 2. Triadic concept analysis in fuzzy setting

(b) yields a concept 〈B1, B2, B2〉 ∈ T (K) for which Ai ⊆ Bi for all i ∈
{1, 2, 3}. Clearly, 〈B1, B2, B2〉 ∈

⋂3
i=1

⋂
xi∈Xi

κi(xi, Ai(xi)). Conversely,

if 〈B1, B2, B2〉 is an element of
⋂3

i=1

⋂
xi∈Xi

κi(xi, Ai(xi)), one has Ai ⊆
Bi for all i ∈ {1, 2, 3}. Monotony of ⊗ and Theorem 12 (a) thus yield
A1 ⊗ A2 ⊗ A3 ⊆ B1 ⊗ B2 ⊗ B3 ⊆ I. Therefore, A1 ⊗ A2 ⊗ A3 ⊆ I iff⋂3

i=1

⋂
xi∈Xi

κi(xi, Ai(xi)) 6= ∅ iff
⋂3

i=1

⋂
xi∈Xi

κ̃i(xi, Ai(xi)) 6= ∅, proving
(ii).

“⇐”: Let ψ be a mapping ψ : V → LX1 × LX2 × LX3 defined by ψ(v) =
〈Av

1, A
v
2, A

v
2〉 where

Av
i (xi) =

∨
Lv
i,xi
.

where Lv
i,xi

= {a ∈ L | v ∈ κ̃i(xi, a)}. Since V is a triordered set, [v)1 ∩
[v)2 ∩ [v)3 = {v}. (i) implies that [v)i is the intersection of all κ̃i(xi, a) that
contain v, i.e. [v)i =

⋂
xi∈Xi

⋂
a∈Lv

i,xi

κ̃i(xi, a). Therefore,

3⋂
i=1

⋂
xi∈Xi

⋂
a∈Lv

i,xi

κ̃i(xi, a) = {v} 6= ∅.

In particular, for every collection of ai,xi ∈ Lv
i,xi

(i = 1, 2, 3 and xi ∈ Xi),⋂3
i=1

⋂
xi∈Xi

κ̃i(xi, ai,xi) 6= ∅, and (ii), applied to fuzzy sets Ai defined by
Ai(xi) = ai,xi for each xi ∈ Xi, thus yields

a1,x1 ⊗ a2,x2 ⊗ a3,x3 ≤ I(x1, x2, x3).

Using a⊗ (
∨

j bj) =
∨

j(a⊗ bj) (identity of complete residuated lattices),
one therefore gets

Av
1(x1)⊗Av

2(x2)⊗Av
2(x2) =

= (
∨

a1,x1∈L
v
1,x1

a1,x1)⊗ (
∨

a2,x2∈L
v
2,x2

a2,x2)⊗ (
∨

a3,x3∈L
v
3,x3

a3,x3) =

=
∨

a1,x1∈L
v
1,x1

∨
a2,x2∈L

v
2,x2

∨
a3,x3∈L

v
3,x3

a1,x1 ⊗ a2,x2 ⊗ a3,x3 ≤ I(x1, x2, x3),

verifying Av
1⊗Av

2⊗Av
2(x2) ⊆ I. (ii) then yields

⋂3
i=1

⋂
xi∈Xi

κ̃i(xi, A
v
i (xi)) 6=

∅. Due to (iii),⋂3
i=1

⋂
xi∈Xi

κ̃i(xi, A
v
i (xi)) ⊆

⋂3
i=1

⋂
xi∈Xi

⋂
a∈Lv

i,xi

κ̃i(xi, a) = {v},

whence ⋂3
i=1

⋂
xi∈Xi

κ̃i(xi, A
v
i (xi)) = {v}. (2.9)

Using adjointness, one easily verifies that for Âv
3 = Av

1
(1,3,Av

2) we also have
Av

3 ⊆ Âv
3 and Av

1 ⊗ Av
2 ⊗ Âv

3 ⊆ I. Due to (ii) and (iii), the latter inclusion

2.4. Basic theorem 23

and (2.9) imply
⋂2

i=1

⋂
xi∈Xi

κ̃i(xi, A
v
i (xi)) ∩

⋂
x3∈X3

κ̃3(x3, Â
v
3(x3)) = {v}.

In particular, Âv
3(x3) ∈ Lv

3,x3
which implies Âv

3 ⊆ Av
3 because as Av

3(x3) =∨
Lv
3,x3
≥ Âv

3(x3). To sum up, Âv
3 = Av

3. The same way, one proves Âv
1 = Av

1

and Âv
2 = Av

2.

This shows ψ(v) ∈ T (K).

If v1 .i v2 for v1, v2 ∈ V then clearly, Lv1
i,xi
⊆ Lv2

i,xi
for every xi ∈ Xi,

whence Av1
i ⊆ Av2

i , showing that ψ preserves .i.

Let 〈A1, A2, A3〉 ∈ T (K). Theorem 12 (a) and (ii) imply that there exists
v ∈ ⋂3

i=1

⋂
xi∈Xi

κ̃i(xi, Ai(xi)) and thus v ∈ ⋂xi∈Xi
κ̃i(xi, Ai(xi)). The key

observation is that v /∈ κ̃i(xi, d) for all d � A(xi) for all xi ∈ Xi. In order to
prove it, assume by contradiction that there are x′i ∈ Xi and d � Ai(x

′
i) such

that v ∈ κ̃i(x′i, d). Then (ii) implies that for all xj ∈ Xj , xk ∈ Xk we have
d⊗Aj(xj)⊗Ak(xk) ≤ I(x′i, xj , xk) and thus (d∨Ai(xi))⊗Aj(xj)⊗Ak(xk) ≤
I(x′i, xj , xk), a contradiction to the maximality of 〈A1, A2, A3〉 (Theorem 12).
Therefore Ai(xi) =

∨{a | v ∈ κ̃i(xi, a)} for each xi ∈ Xi, i = 1, 2, 3. This
proves ψ(v) = 〈A1, A2, A3〉, whence the surjectivity of ψ.

(2.9) implies that if v 6= w, then ψ(v) 6= ψ(w). Therefore ψ is injective.

If ψ(v1) = 〈A1, A2, A3〉 .i 〈B1, B2, B3〉 = ψ(v2) then Ai ⊆ Bi. (iii)
implies that for each xi ∈ Xi we have κ̃i(xi, Bi(xi)) ⊆ κ̃i(xi, Ai(xi)) which
implies [v2)i ⊆ [v1)i and therefore v1 .i v2. Thus ψ−1 preserves .i.

�

We need the following lemma.

Lemma 14. If κ̃i satisfy (i)–(iii) of Theorem 13, then κ̃i(xi, 0) = V for
each xi ∈ Xi, i = 1, 2, 3.

PROOF. Assume i = 1. Consider fuzzy sets 01 ∈ LX1 , 12 ∈ LX2 , and

13 ∈ LX3 defined for any x1 ∈ X1, x2 ∈ X2, and x3 ∈ X3 by 01(x1) = 0,
12(x2) = 1, and 13(x3) = 1. Due to (ii),

0⊗ 12 ⊗ 13 ⊆ I iff
⋂

x1∈X1

κ̃1(x1, 0) ∩
⋂

x2∈X2

κ̃2(x2, 1) ∩
⋂

x3∈X3

κ̃3(x3, 1) 6= ∅

Let v = ∇23(V, V). Then v is an 23-bound of 〈V, V 〉 and, therefore,
w .2 v and w .3 v for each w ∈ V . Applying (1.7) we get that v .1 w for
each w ∈ V .

We now claim that v is the only member of⋂
x2∈X2

κ̃2(x2, 1) ∩
⋂

x3∈X3

κ̃3(x3, 1).

24 Chapter 2. Triadic concept analysis in fuzzy setting

Indeed, assume by contradiction that there is w 6= v such that

w ∈
⋂

x2∈X2

κ̃2(x2, 1) ∩
⋂

x3∈X3

κ̃3(x3, 1).

Then w ∈ κ̃2(x2, 1) for each x2 ∈ X2 and by (iii) w ∈ κ̃2(x2, a) for each
x2 ∈ X2 and a ∈ L. (i) implies that v ∼2 w (if w <2 v then [v)i cannot be
obtained as an intersection of some subset of κ̃2(X2×L)). Similarly, we get
w ∼3 v. Therefore, (1.7) and (1.8) imply v = w, a contradiction.

Moreover, we have⋂
x1∈X1

κ̃1(x1, 0) ∩
⋂

x2∈X2

κ̃2(x2, 1) ∩
⋂

x3∈X3

κ̃3(x3, 1) 6= ∅ iff

iff
⋂

x1∈X1

κ̃1(x1, 0) ∩ {v} 6= ∅ iff

iff v ∈
⋂

x1∈X1

κ̃1(x1, 0) iff

iff v ∈ κ̃1(x1, 0) for each x2 ∈ X2.

Since v .1 w for each w ∈ V and since κ̃1(x1, 0) is an order filter, it
follows that κ̃1(x1, 0) = V . The proofs for i = 2, 3 are analogous.

�

Remark 15. Let us see that Theorem 13 indeed generalizes Wille’s basic
theorem of triadic concept analysis [53]. This is clear for (1) because Wille’s
is a particular case of (1) for L = {0, 1}. For part (2), we show that for
L = {0, 1}, the existence of mappings κ̃i satisfying (i), (ii), and (iii), is
equivalent to Wille’s conditions, i.e. to the existence of mappings κ̃′i : X1 →
Fi(V) satisfying: (i’) κ̃′i(Xi) is i-dense in V and (ii’) A1 × A2 × A3 ⊆ I iff⋂3

i=1

⋂
xi∈Ai

κ̃′i(xi) 6= ∅. In doing so, we identify sets and relations (used in
the ordinary setting) with their characteristic functions (i.e. with fuzzy sets,
used in a fuzzy setting).

Let κ̃i satisfy (i)–(iii). Define κ̃′i(xi) = κ̃i(xi, 1). To see that κ̃′i satisfy
(i’) and (ii’), it is sufficient to observe that κ̃i(xi, 0) = V for every i = 1, 2, 3
and xi ∈ Xi. The fact κ̃i(xi, 0) = V was established in Lemma 14. If κ̃′i
satisfy (i’) and (ii’) then putting κ̃i(xi, 0) = V and κ̃i(xi, 1) = κ̃′i(xi), κ̃i
clearly satisfy (i)–(iii).

2.5 Reduction to ordinary TCA

Recall that for a fuzzy set A ∈ LX , we define an ordinary set bAc ⊆ X × L
by

bAc = {(x, a) | x ∈ X, a ∈ L,A(x) ≥ a} (2.10)

2.5. Reduction to ordinary TCA 25

In the opposite direction, given an ordinary set B ⊆ X×L such that (x, a) ∈
B implies (x, b) ∈ B for all b ≤ a, and the set {a | (x, a) ∈ B} has the
greatest element, the fuzzy set dBe is defined by

dBe(x) =
∨
{a | (x, a) ∈ B}. (2.11)

We may thing of bAc as the area below A, while of dBe as the upper envelope
of B. Initially, these mapping were studied in [7] and further developed in
[8] (they were also independently introduced in [49]). In what follows, some
of the properties of b c and d e are used. An interested reader can find their
detailed description in [8].

The following theorem establishes a connection between TCA in fuzzy
setting and ordinary TCA.

Theorem 16. (crisp representation) Let K = 〈X1, X2, X3, I〉 be a fuzzy
triadic context and Kcrisp = 〈X1 × L,X2 × L,X3 × L, Icrisp〉 with Icrisp
defined by ((x1, a), (x2, b), (x3, c)) ∈ Icrisp iff a ⊗ b ⊗ c ≤ I(x1, x2, x3) be a
triadic context. Then T (K) is isomorphic to T (Kcrisp).

PROOF. Consider mappings ϕ : T (K)→ T (Kcrisp) defined by

ϕ(〈A1, A2, A3〉) = 〈bA1c, bA2c, bA3c〉, (2.12)

and ψ : T (Kcrisp)→ T (K) defined by

ψ(〈B1, B2, B3〉) = 〈dB1e, dB2e, dB3e〉. (2.13)

Theorem 12 implies that 〈bA1c, bA2c, bA3c〉 ∈ T (Kcrisp) for all 〈A1, A2, A3〉 ∈
T (K), and ψ(〈B1, B2, B3)〉 ∈ T (K) for all 〈B1, B2, B3〉 ∈ T (Kcrisp).

Namely, let 〈A1, A2, A3〉 ∈ T (K). Then

(xi, b) ∈ (bAjc(i,j,bAkc) iff

for all ((xj , a), (xk, c)) ∈ bAjc × bAkc
{(xi, b), (xj , a), (xk, c)} ∈ Icrisp iff

for all xj ∈ Xj , xk ∈ Xk, a ≤ Aj(xj), b ≤ Ak(xk)

a⊗ b⊗ c ≤ I{xi, xj , xk} iff

for all xj ∈ Xj , xk ∈ Xk

Aj(xj)⊗Ak(xk)⊗ b ≤ I{xi, xj , xk} iff

b ≤ Ai(xi).

This proves 〈bA1c, bA2c, bA3c〉 ∈ T (Kcrisp).

26 Chapter 2. Triadic concept analysis in fuzzy setting

For the opposite direction, let 〈B1, B2, B3〉 ∈ T (Kcrisp). Then

(dAje(i,j,dAke)(xi) = b iff

b =
∨
{a | dAje(xj)⊗ dAke(xj)⊗ a ≤ I(xi, xj , xk), xj ∈ Xj , xk ∈ Xk} iff

b =
∨
{a | ((xi, a), (xj , c), (xk, d)) ∈ Icrisp, ((xj , c), (xk, d)) ∈ Aj ×Ak} iff

b =
∨
{a | (xi, a) ∈ A(i,j,Ak)

j } = dAie(xi)

Therefore ψ(〈B1, B2, B3)〉 ∈ T (K).

Since dbAce = A for each fuzzy set A, the mappings ϕ and ψ are mutually
inverse and ϕ is a bijection. Moreover, bAc ⊆ bBc iff A ⊆ B for all fuzzy
sets A and B and thus ϕ preserves .1,.2,.3. �

Theorem 16 can be seen as a way in which one can transfer the results
known from ordinary TCA into TCA in fuzzy setting. As an example, we
provide an alternative proof of Theorem 13.

PROOF. (An alternative proof of basic theorem of TCA in fuzzy setting)
(1) Follows directly from Theorem 16.

(2) We will denote the conditions (i) and (ii) of Theorem 2 by (i)w and
(ii)w. Let i ∈ {1, 2, 3}.

“⇒”: Assume that there are mappings κ̃i such that (i), (ii), (iii) hold. It
suffices to show that then there are mappings κ̃wi such that (i)w and (ii)w

hold, because in such case V is isomorphic to T (Kcrisp) and by Theorem 16
V is isomorphic to T (K).

Consider the maps κ̃wi : (Xi × L) → Fi(V) defined by κ̃wi ((xi, a)) =
κ̃i(xi, a). It is easy to see that κ̃wi (Xi×L) is i-dense iff κ̃i(Xi×L) is i-dense,
which proves the condition (i)w. For allAi ∈ LXi we have thatA1×A2×A3 ⊆
I iff bA1c × bA2c × bA3c ⊆ Icrisp. Since Ai(xi) = ∨{a | (xi, a) ∈ bAic} we
have ∩3i=1 ∩xi∈Xi κ̃i(xi, Ai(xi)) 6= ∅ iff ∩3i=1 ∩xi∈Xi κ̃i(xi,∨{a | (xi, a) ∈
bAic}) 6= ∅ Using (iii) we obtain ∩3i=1∩xi∈Xi κ̃i(xi,∨{a | (xi, a) ∈ bAic}) 6= ∅
iff ∩3i=1 ∩xi∈Xi ∩a≤Ai(xi)κ̃i(xi, a) 6= ∅ iff ∩3i=1 ∩(xi,a)∈bAic κ̃

w
i (xi, a) 6= ∅ by

definition of κ̃wi . Hence the proof of (ii)w.

“⇐”: Assume that V is isomorphic to T (K). By Theorem 16 it is also
isomorphic to (Kcrisp) and thus by Theorem 2 there are mappings κ̃wi such
that (i)w and (ii)w hold. It remains to show, that there are κ̃i that comply
with (i), (ii), and (iii).

Denote by ϕw : T (Kcrisp)→ V the isomorphism between V and T (Kcrisp).
Let κwi be mappings κwi : (Xi × L)→ Fi(T (Kcrisp)) defined by

κi((xi, a)) = {〈B1, B2, B3〉 | (xi, a) ∈ Bi}. (2.14)

Then the maps κ̃wi ((xi, a)) = ϕw(κi((xi, a))) fulfill (i)w and (ii)w (see the

2.6. Algorithms 27

proof of Theorem 2). If we define κ̃i : Xi × L→ Fi(V) by

κ̃i(xi, a) = κ̃wi ((xi, a)), (2.15)

we immediately obtain that (i) holds. To see that (ii) holds, observe that
A1 ⊗ A2 ⊗ A3 ∈ I iff bA1c × bA2c × bA3c ⊆ Icrisp iff ∩3i=1 ∩(xi,a)∈bAic
κ̃wi ((xi, a)) 6= ∅ iff ∩3i=1 ∩(xi∈Xi

κ̃i(xi, a) 6= ∅ for all Ai ∈ LXi . It remains to
prove (iii). (2.13) implies that for all 〈A1, A2, A3〉 ∈ T (Kcrisp) if (xi, a) ∈ Ai

then (xi, b) ∈ Ai for all b ≤ a. By (2.14) and (2.15) we get that b ≤ a implies
κ̃i(xi, a) ⊆ κ̃i(xi, b). �

2.6 Algorithms

This section is devoted to algorithms for computation of the set of triadic
fuzzy concepts. For Boolean matrices one can compute triadic concepts us-
ing Trias algorithm proposed in [36]. However, for matrices with grades
no such algorithm exists. We present two ways to compute all triadic fuzzy
concepts. The first approach consist in transformation of the matrix with
grades into ordinary matrix, computation of the set of ordinary triadic con-
cepts using the Trias algorithm (or any other algorithm for computation
of concept trilattice in ordinary setting), and transformation of the result
back into fuzzy setting. The second algorithm is an extension of the Trias
algorithm to the case of graded data that allows for a direct computation
of triadic fuzzy concepts. We prove correctness of the presented algorithms
and discuss their computational complexity.

2.6.1 Transformation to the ordinary case

The idea behind algorithmic approach in this Section is a consequence of
Theorem 16. It follows that we can compute T (K) by carrying out the
following steps. First, we transform K into Kcrisp, i.e. we transform data
with fuzzy attributes into data with ordinary attributes. As a second step,
we use an already existing algorithm for computation of T (Kcrisp) (e.g.
Trias algorithm [36]). Finally, to compute T (K) from T (Kcrisp) we use
(2.13). From Theorem 16 it follows that this way we indeed obtain T (K).
The algorithm is listed as Algorithm 1.

On lines 1-4, the transformation of the input triadic fuzzy context K to an
ordinary context is carried out. The next step, on line 5, is the computation
of concept trilattice using some algorithm for the ordinary case. Finally,
on lines 7-8, the ordinary triadic concepts are transformed back into fuzzy
triadic concepts (see the map ψ in the proof of the previous theorem).

28 Chapter 2. Triadic concept analysis in fuzzy setting

Algorithm 1: ComputeConcepts(〈X1, X2, X3, I〉)
1. Icrisp ← ∅
2. foreach (x1, x2, x3) ∈ X1 ×X2 ×X3:
3. foreach (a, b, c) ∈ L× L× L such that a⊗ b⊗ c ≤ I(x1, x2, x3):
4. Icrisp ← Icrisp ∪ {((x1, a), (x2, b), (x3, c))}
5. Fcrisp ← ComputeOrdinaryConcepts(〈X1 × L,X2 × L,X3 × L, Icrisp〉)
6. F ← ∅
7. foreach 〈A1, A2, A3〉 ∈ Fcrisp :
8. F ← F ∪ {〈dA1e, dA2e, dA3e〉}
9. return F

Complexity Since the complexity of the whole algorithm depends on the
choice of ComputeOrdinaryConcepts, we discuss only the complexity
of transformations from and to ordinary setting. The cycle on line 2 lasts
|X1| · |X2| · |X3| iterations, while the cycle on line 3 lasts |L|3 iterations.
The backwards transformation on lines 7-8 takes |T (K)| · |L| · (|X1|+ |X2|+
|X3|) operations. Since in the worst case the number of triadic concepts
is exponential in the size of its context, the later term dominates the time
complexity. Therefore the complexity of the transformations is O(|T (K)| ·
|L| · (|X1|+ |X2|+ |X3|)).

2.6.2 Trias in fuzzy setting

In this section we show that by a direct fuzzification of Trias algorithm
[36] we obtain a direct algorithm for computation of the set of triadic fuzzy
concepts present in the input data. We call the algorithm FuzzyTrias and
list it as Algorithm 2.

For an input triadic fuzzy context K = 〈X1, X2, X3, I〉, FuzzyTrias first
on lines 2-3 constructs a dyadic fuzzy context K(1) = 〈X1, X2 × X3, I

(1)〉
where the binary relation I(1) is defined by I(1)(x1, 〈x2, x3〉) = I(x1, x2, x3).
Then it calls subroutines FirstConcept and NextConcept to compute
and iterate through the set of formal concepts of K(1). These subrou-
tines form an interface to some algorithm for computation of concept lat-
tice of dyadic fuzzy context, such are NextClosure [1] or Lindig algorithm
[2]. FirstConcept returns the first generated concept, NextConcept
returns the concept generated after the one passed to it as an argument.
In the pseudocode we use a convention that NextConcept returns false
if its argument is the last generated concept. Any other returned value
is, when interpreted as logical value, considered true. It does not matter
whether the algorithm first generates all formal concepts and then iterates
through them, or it computes formal concepts on demand. On lines 4-11
FuzzyTrias iterates through all concepts 〈A,B〉 of K(1). The extent A is

2.6. Algorithms 29

Algorithm 2: FuzzyTrias(〈X1, X2, X3, I〉)

1. foreach (〈x1, x2, x3〉 ∈ X1 ×X2 ×X3):
2. I(1)(x1, 〈x2, x3〉)← I(x1, x2, x3)
3. T ← ∅
4. 〈A,B〉 ← FirstConcept(〈X1, X2 ×X3, I

(1)〉)
5. do
6. 〈C,D〉 ← FirstConcept(〈X2, X3, B〉)
7. do
8. if A = C(1,2,D)

9. then T ← T ∪ {〈A,C,D〉}
10. while 〈C,D〉 ← NextConcept(〈X2, X3, B〉, 〈C,D〉)
11. while 〈A,B〉 ← NextConcept(〈X1, X2 ×X3, I

(1)〉, 〈A,B〉)
12. return T

considered a candidate for an extent of some triconcepts of T (K), the intent
B is in fact a binary fuzzy relation between X2 and X3 and thus can be un-
derstood as dyadic fuzzy context 〈X2, X3, B〉. On lines 7-10 the algorithm
iterates through all formal concepts 〈C,D〉 of this context. For each 〈C,D〉
it checks if A = C(1,2,D) (which is in fact a check whether 〈A,C,D〉 is a
triadic concept; see the proof of correctness that follows). If so, 〈A,C,D〉 is
added to the set of triadic fuzzy concepts. At the end, the set of all triadic
concepts is returned.

Correctness We need the following lemmas.

Lemma 17. If 〈A1, A2, A3〉 ∈ T (K), then 〈Ai, Aj〉 ∈ B(Kij
Ak

) for all {i, j, k} ∈
{1, 2, 3}

PROOF. Easy to observe from the definition of triadic fuzzy concept. �

Lemma 18. Let K = 〈X1, X2, X3, I〉 be fuzzy triadic context and K(1) =
〈X1, X2×X3, I

(1)〉 a fuzzy dyadic context with I(1)(x1, 〈x2, x3〉) = I(x1, x2, x3).
Then

(i) A
↓
I(1)

1 = I23A1
for all A1 ∈ LX1 ;

(ii) if 〈A1, A2, A3〉 ∈ T (K) then A1 is an extent of some concept in B(K(1))

PROOF.

(i) By an easy computation

30 Chapter 2. Triadic concept analysis in fuzzy setting

A
↓
I(1)

1 (x2, x3) =
∧

x1∈X1

A1(x1)→ I(1)(x1, (x2, x3)) =

=
∧

x1∈X1

A1(x1)→ I(x1, x2, x3) = I23A1
(x2, x3)

(ii) Since extents of B(K(1)) are just fixpoints of the closure operator
↓
I(1)
↑
I(1) (see [8]), we have to prove that A1 is a fixpoint of ↓I(1)↑I(1) . Since

A1 ⊆ A
↓
I(1)
↑
I(1)

1 hold by definition of a closure operator, it suffices to prove

A
↓
I(1)
↑
I(1)

1 ⊆ A1. Since for every fuzzy binary relation I it holds I(x, y) =∨
〈A,B〉∈B(I)A(x)⊗B(y), we have

A
↓
I(1)
↑
I(1)

1 (x1) = I23A1

↑
I(1) (x1) =

=
∧

(x2,x3)∈X2×X3

I23A1
(x2, x3)→ I(1)(x1, (x2, x3)) =

=
∧

(x2,x3)∈X2×X3

(
∨

〈B2,B3〉∈B(I(1))

B2(x2)⊗B3(x3))→ I(1)(x1, (x2, x3)) =

=
∧

(x2,x3)∈X2×X3

∧
〈B2,B3〉∈B(I(1))

B2(x2)⊗B3(x3)→ I(1)(x1, (x2, x3)) ≤

≤
∧

(x2,x3)∈X2×X3

A2(x2)⊗A3(x3)→ I(x1, x2, x3) = A1(x1)

�

Remark 19. (a) It is easy to see that similar properties hold for dyadic
contexts K(2) and K(3).

(b) The opposite direction of (ii) does not hold. Indeed, there is a fuzzy
triadic context K such that there is A ∈ Ext(K(1)) which is not an extent
of any triconcept of T (K). Namely, let L be a three-element Lukasiewicz
chain and K = 〈X,Y, Z, I〉 be given by the following table.

z1 z2
y1 y2 y3 y1 y2 y3

x1 0.5 1 0 0 0.5 1
x2 0 1 0 1 1 1
x3 0 0 0.5 1 0 1

Then {0/x1, 0.5/x2, 1/x3} is an extent of B(K(1)), but it is not an extent
of T (K). Note that if we set L to a two-element Boolean algebra, we can
find a counterexample showing that the opposite direction of (ii) does not
hold for the ordinary case either.

2.6. Algorithms 31

The following theorem shows that FuzzyTrias is correct.

Theorem 20. Given a triadic fuzzy context K = 〈X1, X2, X3, I〉, Fuzzy-
Trias outputs T (K).

PROOF. First, observe that the following claims hold.

Claim 1: For every triadic concept 〈A1, A2, A3〉 ∈ T (K) there is B ∈
LX2×X3 such that 〈A1, B〉 ∈ B(X1, X2×X3, I

(1)) and 〈A2, A3〉 ∈ B(X2, X3, B).

Proof of Claim 1. By Lemma 18 (ii) A1 is an extent of B(X1, X2×X3, I
(1))

and therefore B = A
↓
I(1)

1 . Moreover, by Lemma 18 (i), B is precisely the
relation I23A1

. Lemma 17 then implies that 〈A2, A3〉 ∈ B(X2, X3, B). QED
Claim 1.

Claim 2: For every 〈A,B〉 ∈ B(X1, X2 × X3, I
(1)) and every 〈C,D〉 ∈

B(X2, X3, B) it holds that if A = C(1,2,D) then 〈A,C,D〉 is a triadic fuzzy
concept.

Proof of Claim 2: Since by Lemma 18 (ii) B = I23A and because 〈C,D〉 ∈
B(X2, X3, B), we have C = D(2,3,A) and D = C(2,3,A). Since A = C(1,2,D)

holds by assumption Theorem 11 yields that 〈A,C,D〉 is a triadic concept.
QED Claim 2.

From Claim 2 it follows that each triple 〈A,C,D〉 that passes the test
on line 8 is a triadic concept of K. Claim 1 then implies that every triadic
concept of K is generated on lines 4-11. �

Complexity The time complexity of FuzzyTrias depends on the time
complexity of underlying algorithm for computation of dyadic fuzzy con-
cepts. It is well known, that in the worst case the number of dyadic fuzzy
concepts is exponential in the size of the input data and in the number of
degrees in the residuated lattice, and that the computation of one dyadic
fuzzy concept takes polynomial time. The sizes of K(1) and I23A (for any
A ∈ LX1) are linear in the size of K. Since FuzzyTrias contains two
nested cycles that iterate through all the dyadic fuzzy concepts of K(1)

and I23A (lines 5-11) we can conclude that the number of iteration the al-
gorithm goes through is exponential in the size of input. Since the com-
plexity of operations done for each iteration of the inner cycle (lines 7-10)
and the complexity of the creation of K(1) (lines 1-2) are polynomial, the
complexity of the whole algorithm is dominated by the number of dyadic
fuzzy concepts. Therefore, we can conclude that the time complexity of
FuzzyTrias is O(p1(|X1|, |X2|, |X3|, |L|) · |B(K(1))| ·p2(|X1|, |X2|, |X3|, |L|) ·
max〈A,B〉∈B(K(1)){|B(X2, X3, B)|}), where p1 and p2 are polynomials that
capture the time of computation of a dyadic concept and their exact form
depends on the algorithm we choose for this task.

32 Chapter 2. Triadic concept analysis in fuzzy setting

We can look at FuzzyTrias as at an algorithm that produces one triadic
concept at a time, and then proceeds to compute the next one. That is,
every time the test on line 9 succeeds, instead of adding 〈A,C,D〉 into the
set T of so-far computed triadic concepts FuzzyTrias outputs 〈A,C,D〉
directly. Now, we are interested in the following question: How much time
does it take to compute one triadic concept? That is, once FuzzyTrias
outputs a triadic concept, how much time does it take to output the next
one? To answer this question, recall from Remark 19 (b) that extent A of
dyadic concept 〈A,B〉 produced on line 4 (or line 11 in further iterations)
is not necessarily an extent of a triadic concept. In such a case we call A
a false candidate. For every false candidate A, the test on line 9 fails in
every iteration of the cycle on lines 6-10. That is, FuzzyTrias computes
all dyadic concepts of 〈X2, X3, B〉, but does not output a triadic concept.
Since the number of dyadic concepts of 〈X2, X3, B〉 (and hence the number
of iterations of the cycle on lines 6-10) is, in the worst case, exponential in
|X1|, |X2|, |X3|, and |L|, we can conclude that computation of one triadic
may take exponential time.

2.6.3 Experiments

In this section we present results obtained from experiments we performed
in order to compare algorithms introduced in the previous section and to
study their behavior experimentally. Its contents should by no means be
understood as a full experimental evaluation of the algorithms. Rather, we
illustrate some interesting points about both algorithms and the presented
results serve as basis of and motivation for their further improvement.

We implemented both algorithms in ANSI C programing language and
ran them on dedicated machine with Intel Xeon 1.6GH CPU and 6 GB
of memory. In our implementation of FuzzyTrias we used the fuzzy
NextClosure algorithm (see [1]) for computation of dyadic fuzzy concepts.
In ComputeConcepts we used Trias ([36]) with Cbo under the hood (see
[41]) for the ComputeOrdinaryConcepts subroutine. We performed the
experiments on 100 000 randomly generated small triadic contexts. To gen-
erate them, we used the following procedure: First, we generated a random
permutation of context entries. Then we iterated through this permuta-
tion and for each entry we randomly generated (with uniform distribution)
a truth degree. This way we ensured a variability of frequencies of degree
occurrences among rows, columns, and modi. Unless stated otherwise, we
used a three-element Lukasiewicz chain as a scale of truth degrees in all
experiments.

In the first set of experiments we compared the two algorithms developed
in the previous section. For each input matrix we kept track of the number of
concepts, running times of both algorithms and the number of false extent

2.6. Algorithms 33

Table 2.1: Comparison of FuzzyTrias and ComputeConcepts in terms of run-
ning time in ms. Each row corresponds to running the algorithms on a 1000 ran-
domly generated triadic contexts of the specified size. The table contains mean
values and standard deviations of measured results.

No. of concepts FuzzyTrias Reduction
mean sd mean sd mean sd

5-5-5 371 63 105 19 697 136
10-5-5 1031 134 1524 343 15142 3562
5-10-5 1025 133 543 62 4211 559
5-5-10 1028 138 766 98 4022 586
19-5-5 2258 252 17074 3988 232057 59920
5-19-5 2261 255 2164 163 17494 1493
5-5-19 2124 222 3706 300 15431 1366

candidates generated during the run of FuzzyTrias. The measurements
are for selected sizes of triadic contexts summarized in Table 2.1. Finer vi-
sualization of the comparison can be seen in Figure 2.1. For each dimension,
we gradually enlarged its size and kept the original size of the two remaining
dimensions. This way, we could observe the behavior of algorithms for each
dimension in isolation. Clearly, the experiments suggest that FuzzyTrias
is in terms of time complexity more efficient than ComputeConcepts. We
may also observe, that the difference grows more rapidly if we enlarge the
number of objects, than if we enlarge the number of attributes, or condi-
tions. This is caused by the fact, that the number of false extent candidates
that Trias produces grows faster if we enlarge the number of objects. This
property of Trias is exhibited also by FuzzyTrias, as we can see in Figure
2.2. Enlarging the number of objects leads to faster grow of time complexity
than enlarging the number of attributes or conditions, because the number
of false extent candidates grows faster for objects than for attributes or con-
ditions. However, we need to keep in mind that we are dealing with data
where two dimension are of comparable sizes and the third one is consid-
erably larger. In order to clarify this we run FuzzyTrias on cube shaped
triadic contexts with all dimensions set to equal size. The results are de-
picted on Figure 2.4. The number of false candidates does not grow so fast
as if we enlarge only the number of objects, but still considerably faster than
if we enlarge only the number of attributes, or conditions.

The last experiment deals with dependency of time complexity of Fuzzy-
Trias on the number of truth degrees. We fixed the size of triadic contexts
to 7×7×7, and changed the size of residuated lattices we used. We consid-
ered Lukasiewicz and Gödel chains with 3 to 6 elements. The results are
depicted in Figure 2.3.

34 Chapter 2. Triadic concept analysis in fuzzy setting

6 8 10 12 14 16 18

0
20

40
60

80
10

0

objects

m
s

pe
r

co
nc

ep
t

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

Reduction
FuzzyTrias

6 8 10 12 14 16 18

0
2

4
6

8

attributes

m
s

pe
r

co
nc

ep
t

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Reduction
FuzzyTrias

6 8 10 12 14 16 18

0
2

4
6

8

conditions

m
s

pe
r

co
nc

ep
t

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

Reduction
FuzzyTrias

Figure 2.1: Comparison of time efficiencies of FuzzyTrias and ComputeCon-
cepts terms of average time needed to compute one concept. For each graph only
one dimension grows, the remaining two are set to 5.

2.6. Algorithms 35

6 8 10 12 14 16 18

0
2

4
6

8
10

No. of elements

m
s

pe
r

co
nc

ep
t

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Objects
Attributes
Conditions

6 8 10 12 14 16 18

0
1

2
3

4
5

No. of elements

fa
ls

e
ca

nd
id

at
es

 p
er

 c
on

ce
pt

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Objects
Attributes
Conditions

Figure 2.2: Comparison of time complexity and number of false candidates for
enlargement of the number of objects, attributes and conditions. In both graphs
lines correspond to growth of only one dimension, the remaining two are set to 5.

36 Chapter 2. Triadic concept analysis in fuzzy setting

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
2

4
6

8
10

12

No. of truth degrees

m
s

pe
r

co
nc

ep
t

●

●

●

●

●

Lukasiewicz
Godel

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
1

0.
2

0.
3

0.
4

No. of truth degrees

fa
ls

e
ca

nd
id

at
es

 p
er

 c
on

ce
pt

●

●

●

●
●

Lukasiewicz
Godel

Figure 2.3: Dependency of time complexity and the number of false candidates on
the number of truth degrees used.

2.6. Algorithms 37

5 6 7 8 9 10

0
2

4
6

8
10

12
14

size of context

m
s

pe
r

co
nc

ep
t

●
●

●

●

●

●

●

Lukasiewicz
Godel

5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

size of context

fa
ls

e
ca

nd
id

at
es

 p
er

 c
on

ce
pt

●

●

●

●

●

●
●

Lukasiewicz
Godel

Figure 2.4: Time complexity and false candidates for FuzzyTrias when run on
triadic context with all dimensions set to equal size. Lukasiewicz and Gödel three-
element chains are considered.

38 Chapter 2. Triadic concept analysis in fuzzy setting

Table 2.2: Triadic fuzzy context “Customers in a restaurant”, (t = taste, a =
aroma, l = look, p = price)

Fry Bender Leela Zoidberg
t a l p t a l p t a l p t a l p

steak 1 1 1 0 1 1 1 1
2

1
2 0 1

2 0 1 1 1 0
salad 1

2 0 1
2

1
2 0 0 1

2 0 1 1 1 1 1 1 1 1
2

veget. 0 0 1
2 1 0 0 0 0 1

2 0 1
2 0 1 1 1 0

wings 1 1 1
2

1
2 1 1 1

2 1 0 0 0 1
2 1 1 1 1

2

2.7 Illustrative examples

In this section, we present for illustration two small examples demonstrating
that triadic fuzzy concepts represent interesting patterns in data.

Customer survey One of typical examples of data that are easily trans-
formed into triadic fuzzy context are customer surveys. In such data, we take
products as objects, product features as attributes, and customers partici-
pating in the survey as conditions. The relation between objects, attributes,
and products then captures the degree to which customers regard particular
features of products as being of good quality. In our example, we take a
customer survey in a hypothetical restaurant as the data we use.

We consider a triadic fuzzy context consisting of a set of four objects, each
of which represents a dish in a restaurant (beef steak, cheese salad, vegetable
plate and fried chicken wings); a set of four attributes capturing features of
the dishes (taste, aroma, look, and price); and a set of four customers who
evaluate the dishes (Fry, Bender, Leela, Zoidberg). The context is depicted
in Table 2.2.

We use a three element set {0, 12 , 1} as a scale of truth degrees with the
degrees representing “bad”, “neutral” and “excellent”. A degree to which
a dish x, its feature y and a customer z are related is then interpreted as a
degree to which according to customer z, x has feature y. For example, the
degree 1 to which beef steak, taste and Fry are related is interpreted as Fry
considering the beef steak as having excellent taste.

The corresponding fuzzy concept trilattice consists of 112 triadic con-
cepts, therefore we do not comment on the interpretation of all of them.
Instead, we present a list of five interesting ones in Table 2.3 to illustrate
that triadic concepts are easily interpretable. Namely:

• Concept No. 1 represents a group of customers who find taste and
aroma of beaf steak and fried chicken wings excellent and their look
at least neutral. We can say that it describes customers who like meat

2.7. Illustrative examples 39

Table 2.3: Five interesting triadic concepts. The concepts are represented by
columns 1, 2, . . . , 5.

1 2 3 4 5

steak 1 0 1 1 1
salad 0 1 1 0 1
veget. 0 0 1 0 1
wings 1 0 1 1

2 1

taste 1 1 1 1 1
aroma 1 1 1 1

2 1
look 1

2 1 1 1 1
price 0 1

2 0 0 1

Fry 1 0 0 1 0
Bender 1 0 0 1 0
Leila 0 1 0 0 0
Zoidberg 1 1 1 1 0

dishes for their taste and aroma.

• Concept No. 2 represents customers who like cheese salad for its ex-
cellent taste, aroma and look, and partly for its price.

• Concept No. 3 can be interpreted as “customers who have no prefer-
ences in food.”

• Concept No. 4 represents customers who like beef steak and partly
fried chicken wings for their excellent taste and look and at least neu-
tral aroma.

• Concept No. 5 shows that there is no customer who finds all properties,
including price, of all dishes excellent.

Let us remark, that the selected concepts are potentially helpful for the
management of our imaginary restaurant, because they illustrate the trends
in customer behavior and the reasons for their occurrence. For example,
concept No. 1 indicates that there is a numerous group of customers who
like meat dishes. Moreover, one can see that it is because the customers like
the excellent taste and aroma of the dishes.

Students traits In the second example of this Section we consider data
describing an evaluation of student’s performances in various courses. Such

40 Chapter 2. Triadic concept analysis in fuzzy setting

data may be obtained by the way of evaluation forms filled by course tu-
tors. Here the set of objects is the set {a, b, c, d, e, f, g, h } of 8 students.
The attributes {in, re, co, cr, id, ca} correspond to students traits: intelli-
gence, responsibility, communication (i.e. the ability to communicate well),
creativity, independence, carefulness. The set of conditions is formed by par-
ticular courses which students take: Algorithms, Mathematics, Databases,
Networks, and Programing. Entries in the table represent degrees to which
students exhibit the traits during courses. As a scale of truth degrees we use
three-element set {0, 12 , 1} with degrees representing “not at all”, “partly”,
and “fully”. For example, the degree 1 to which student a, intelligence and
Algorithms are related is interpreted as student a fully exhibiting intelli-
gence during the Algorithms course. The corresponding formal context is
depicted in Table 2.4.

The concept trilattice computed from the context of Table 2.4 consists
of 112 triadic concepts, so again, we do not enumerate and interpret all of
them. Instead, in Table 2.5 we list only 4 of the most interesting ones. We
can interpret them in the following way:

• Concept No. 1 could be tagged as “practical mindedness” (in a sense
this term is understood in Computer Science). Indeed, the concept
manifests itself to high degree by carefullness, independence, and com-
munication under Databases, Networks, and Programing. Students
who belong to this concept to high degree shows tendencies to become
database or network administrators.

• Concept No. 2 can be interpreted as “tendencies to do well as a sci-
entific programer (e. g. in artificial intelligence) or the programing
languages theorist”.

• Concept No. 3 is manifested by intelligence, creativity, communica-
tion and carefulness under Algorithms and Databases. Students who
belong to this extent in high degree may have the needed skills to do
research in databases, in particular in algorithmic problems from that
area.

• Concept No. 4 represents students exhibiting to high degree intelli-
gence, responsibility, and carefulness in Algorithms and Mathematics.
We may interpret the concept as “background in formal methods”.

Careful analysis of the concepts reveals the structure (or trends) among
students.

2.8. Summary and topics of future work 41

Table 2.4: Fuzzy triadic context “Students traits”.

Algorithms Mathematics Databases Networks Programing
in re co cr id ca in re co cr id ca in re co cr id ca in re co cr id ca in re co cr id ca

a 1 1 0 0 1
2 1 1 1 0 0 1

2 1 0 1
2

1
2 0 1

2
1
2 0 1

2
1
2 0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

b 1 0 1 1 1 0 1
2 0 1

2
1
2

1
2 0 1 0 1 1 1 0 0 0 0 0 0 0 1

2 0 1
2

1
2

1
2 0

c 1
2 0 1

2
1
2

1
2 0 1

2 0 1
2

1
2

1
2 0 1

2 1 1 1
2

1
2 1 0 1 1 0 1

2 1 1
2 1 1 1

2
1
2 1

d 1 1 0 0 1
2 1 1 1 0 0 1

2 1 0 1
2

1
2 0 1

2
1
2 0 1

2
1
2 0 1

2
1
2

1
2

1
2

1
2 0 1

2
1
2

e 1 0 1 1 1 0 1
2 0 1

2
1
2

1
2 0 1 1

2 1 1 1 1
2 0 1

2
1
2 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

f 1
2

1
2

1
2

1
2

1
2

1
2 1 1

2 1 1
2 1 1 1

2
1
2

1
2

1
2

1
2

1
2 0 1

2
1
2 0 1

2
1
2 1 1

2 1 1
2 1 1

g 1
2 0 1

2
1
2

1
2 0 1 0 1 1

2 1 1 1
2 0 1

2
1
2

1
2 0 0 0 0 0 0 0 1 0 1 1

2 1 1
h 1

2
1
2 0 0 1

2
1
2

1
2

1
2 0 0 1

2
1
2 0 1 1 0 1

2 1 0 1 1 0 1
2 1 1

2 1 1 0 1
2 1

2.8 Summary and topics of future work

We developed a generalization of triadic concept analysis to fuzzy setting.
Our motivation was to allow for analysis of graded data. We provided basic
notions: triadic fuzzy context, triadic fuzzy concept, and concept forming
operators; and studied some of their properties. Next, we examined the
structure of the set of all triadic fuzzy concepts of a triadic fuzzy context.
We generalized the main structural result of the ordinary TCA — the so-
called basic theorem. We illustrated that the theorem we provide is indeed
a generalization of the classical one. We answered the natural question
whether there is some connection between TCA in fuzzy setting and TCA
in ordinary setting apart from the fact that the former is a generalization
of the latter. It happens that the theorem in which we established such a
connection can be utilized in transferring results known from ordinary TCA
into fuzzy setting. As an example, we showed an alternative proof of the
basic theorem using this technique. Then we turned to a more practical
issue and designed two algorithms for computation of the set of all triadic
fuzzy concepts, proved their correctness and analyzed their complexity. We
also performed a set of experiments, mainly in order to compare the two
proposed algorithms. We conclude with two small examples, whose aim is
to illustrate presented notions on particular data, and to some extent the
way to interpret them.

In the rest of this section we present topics of TCA of data with fuzzy
attributes we consider interesting or important, and we would like to study
in the future.

Structure of T (K) with respect to L-quasiorders In Sections 2.3 and
2.4 we studied a structure of the set of all triadic fuzzy concepts T (K) with

42 Chapter 2. Triadic concept analysis in fuzzy setting

Table 2.5: Four interesting triadic concepts. The concepts are represented by
columns 1, 2, . . . , 4.

1 2 3 4

student a 1
2 0 0 1

student b 0 1
2 1 0

student c 1 1
2

1
2 0

student d 1
2 0 0 1

student e 1
2

1
2 1 0

student f 1
2 1 1

2
1
2

student g 0 1 1
2 0

student h 1 0 0 1
2

inteligence 0 1 1 1
responsibility 1 0 0 1
communication 1 1 1 0
creativity 0 1

2 1 0
independence 1

2 1 1 1
2

carefulness 1 0 0 1

Algorithms 0 1
2 1 1

Mathematics 0 1 1
2 1

Databases 1 1
2 1 0

Networks 1 0 0 0
Programming 1 1 1

2
1
2

respect to ordinary quasiorder relation (2.5) and ordinary equivalence rela-
tion (2.6). It is of mathematical interest to investigate the structure of T (K)
with respect to graded versions of quasiorders and equivalence relations de-
fined by (2.3) and (2.4), respectively. In dyadic case, analogous investigation
is contained in [8]. It is immediate, that the proposed research leads to new,
potentially interesting concepts. Analogically to the dyadic case, where a
notion of completely lattice L-ordered set is needed as a generalization of
the notion of a lattice, in triadic setting we need to find such an general-
ization for the notion of a trilattice. Eventually, we might arrive to a more
general version of basic theorem (Theorem 13) which takes fuzzy ordering
of concepts into account.

Triadic attribute implications In ordinary setting, triadic concept anal-
ysis has two outcomes — a hierarchically ordered set of triadic concepts, and
a set of triadic attribute implications. In this chapter we studied the for-

2.8. Summary and topics of future work 43

mer, we consider the latter as an important topic of future research. There
are several options how to define the notion of a attribute implication in
triadic setting. In [31] the authors studied, among other possibilities, the
implications defined as formulas

A
C⇒ B

where A and B are sets of attributes, C is a set of conditions. The intended
meaning of the implication in a given triadic context K is: “For each con-
dition c ∈ C it holds that if an object x1 ∈ X1 has all the attributes in A
then it also has all the attributes in B”. A graded version of triadic impli-
cation has the same form, but A, B, and C are fuzzy sets of attributes and
conditions, respectively. We are then interested in grades to which implica-
tions hold in triadic context. Moreover, in fuzzy setting, phenomena that
are trivial or unnatural in ordinary case can be studied. Similarity can be
considered as belonging to them. We may, for example, try to find answer

to the question: Given two implications, A
C⇒ B and A

D⇒ B, where C and
D are similar, do the implications hold to similar degrees? Other interesting
topics include

• Entailment. Notions of syntactic and semantic entailment. Is there
an axiomatic system and a set of deduction rules that is sound and
complete?

• Nonredundancy. Study of nonredundancy, stem basis and related is-
sues.

• Algorithms. Development of algorithms for triadic implications. These
include: computation of degree to which a given implication holds in
a triadic context, computation of some canonical representation of all
triadic implications holding in a triadic context (e.g. some form of a
base) and others.

Reduction of the size of T (K) As an observant reader surely noticed,
even for a small triadic context the number of corresponding triadic con-
cepts is rather large (when compared to size of the context). Indeed, it is
well known that in the worst case the number of triadic concepts is expo-
nential in the size of triadic context. Analyzing big number of concepts is
time consuming and even impossible sometimes. It is therefore desirable to
develop methods that deal with this problem. First step in this direction
would be to check, if methods known from dyadic case can be transferred
to triadic setting. These methods can be roughly divided into two groups

• Filtering the interesting concepts. Methods in this groups require some
additional data besides the input formal context, called background

44 Chapter 2. Triadic concept analysis in fuzzy setting

knowledge. It can have various forms, e.g. attribute priorities, or
attribute dependencies. On basis of this knowledge, the methods then
select only those concepts that are compatible with it and therefore
potentially interesting.

• Factorization by similarity. Methods in this group are based on the
idea, that concepts that are sufficiently similar could be, allowing for
some degree of imprecision, considered as one concept.

Algorithms and complexity We would like to study the possibility of
designing a new algorithm for computation of of all triadic concepts, that
avoids the problem of computation of false extent candidates discussed in
Section 2.6. Whether there is a way to adjust FuzzyTrias to be more
efficient, or we need to use different approach remains to be discovered.
Another important, but rather difficult topic, is the analysis of complexity
in the average case. This topic seems to be hard because a careful analysis
of complexity in average case includes estimation of the average number of
triadic concepts present in data.

Acknowledgement The work that was summarized in this chapter was
supported by grant No. 103/10/1056 of the Czech Science Foundation.

Chapter 3

Triadic fuzzy Galois
connections

3.1 Introduction

Triadic Galois connections, studied in [21], are basic mathematical struc-
tures behind ordinary triadic concept analysis. In this chapter, we study a
generalization of triadic Galois connections to a fuzzy setting. We show that
fuzzy Galois connections play in TCA of data with fuzzy attributes a role
analogical to a role that triadic Galois connections play in ordinary TCA.
Moreover, we prove that there is a one-to-one relationship between triadic
fuzzy Galois connections and ternary fuzzy relations. Then we turn our
attention to the question, whether there is a way to represent triadic fuzzy
Galois connection by ordinary Galois connections. We present two such rep-
resentations, one of which we utilize in providing an alternative proof of the
basic theorem of TCA with fuzzy attributes.

This chapter is based on the following paper:

R. Belohlavek, P. Osicka Triadic fuzzy Galois connections as ordi-
nary connections. Proceedings of 2012 IEEE International Conference on
Fuzzy Systems. (accepted February 2012)

3.2 Axiomatizing Galois connections of triadic fuzzy
contexts

Recall from Section 2.2 that a triadic L-context 〈X1, X2, X3, I〉 induces three
operators

(i)I : LXj × LXk → LXi

46 Chapter 3. Triadic fuzzy Galois connections

for {i, j, k} = {1, 2, 3} which are defined by

(Aj , Ak)(i)I = A
(j,i,Ak)
j (3.1)

for any Aj ∈ LXj and Ak ∈ LXk . The triplet 〈(1)I , (2)I , (3)I 〉, denoted also
just by 〈(1), (2), (3)〉, is axiomatized below.

Remark 21. For convenience, we use also (A2, A1)
(3) with the meaning

(A2, A1)
(3) = (A1, A2)

(3); same for (1) and (2).

Recall that an order filter in a partially ordered set 〈L,≤〉 is any subset
K ⊆ L for which a ∈ K and a ≤ b imply b ∈ K for any a, b ∈ L.

Definition 22. Let K be an order filter in 〈L,≤〉. A triadic LK-Galois
connection between sets X1, X2, and X3 is a triplet 〈(1), (2), (3)〉 of mappings
(1) : LX2 × LX3 → LX1 , (2) : LX1 × LX3 → LX2 , and (3) : LX1 × LX2 →
LX3 , satisfying for every A1 ∈ LX1 , A2 ∈ LX2 , and A3 ∈ LX3 , that if
S(A3, (A1, A2)

(3)) ∈ K or S(A1, (A2, A3)
(1)) ∈ K or S(A2, (A1, A3)

(2)) ∈ K,
then

S(A3, (A1, A2)
(3)) = S(A1, (A2, A3)

(1)) =

= S(A2, (A1, A3)
(2)). (3.2)

Remark 23. (a) One can easily see that for L = {0, 1}, triadic LK-Galois
connections become ordinary triadic Galois connections (observe that in this
case, there are only two filters, namely K = L and K = {1} and both lead
to the same notion of an LK-Galois connection).

(b) In accordance with [5], we use the term L-Galois connections for
LL-Galois connections.

In the following theorem we provide an alternative characterization of
LK-Galois connections.

Theorem 24. For {i, j, k} = {1, 2, 3}, a triplet 〈(1), (2), (3)〉 is a triadic
LK-Galois connection iff the following conditions hold for all Ai, A

′
i ∈ LXi,

Aj ∈ LXj , Ak ∈ LXk :

(a) Ai ⊆ (Aj , (Ai, Aj)
(k))(i) (extensivity),

(b) if S(Ai, A
′
i) ∈ K then

S(Ai, A
′
i) ≤ S((A′i, Aj)

(k), (Ai, Aj)
(k)) (antitony).

PROOF. “⇒” Assume that (3.2) holds for 〈(1), (2), (3)〉. Then

S(Ai, (Aj , (Ai, Aj)
(k))(i)) =

S((Ai, Aj)
(k), (Ai, Aj)

(k)) = 1 ∈ K,

3.2. Axiomatizing Galois connections of triadic fuzzy contexts 47

proving (a).

By (a) and (3.2), we have

S(Ai, A
′
i) ≤ S(Ai, (Aj , (A

′
i, Aj)

(k))) =

= S((A′i, Aj)
(k), (Ai, Aj)

(k))

proving (b). �

In the rest of this section, we are to show a bijective correspondence
between ternary fuzzy relations and triadic L-Galois connections. That is,
we prove that triadic L-Galois connections are represented by ternary fuzzy
relations. In order to do that we need some technical results first.

Lemma 25. For {i, j, k} = {1, 2, 3}, index sets P , Q, and fuzzy sets Aip ∈
LXi, and Ajp ∈ LXj the following equality holds:

(
∨
p∈P

Aip,
∨
q∈Q

Ajq)
(k) =

∧
p∈P,q∈Q

(Aip, Ajq)
(k) (3.3)

PROOF. We prove (
∨

p∈P Aip, Aj)
(k) =

∧
p∈P (Aip, Aj)

(k) by proving that

for every Ak ∈ LX3 ,

Ak ≤ (
∨
p∈P

Aip, Aj)
(k) iff Ak ≤

∧
p∈P

(Aip, Aj)
(k).

Ak ≤ (
∨

p∈P Aip, Aj)
(k) iff (due to (3.2))

∨
p∈P Aip ≤ (Aj , Ak)(i) iff for each

p ∈ P , Aip ≤ (Aj , Ak)(i) iff for each p ∈ P , Ak ≤ (Aip, Aj)
(k) iff A3 ≤∧

p∈P (Aip, Aj)
(3). The remainder of the proof for j is analogous. �

Lemma 26. Let ((1), (2), (3)) be a triadic L-Galois connection. Then for
{i, j, k} = {1, 2, 3} and Ai ∈ LXi let the mappings ↑Ai : L

Xj → LXk and
↓Ai : L

Xk → LXj be defined as

A
↑Ai
k = (Ak, Ai)

(j)

A
↓Ai
j = (Aj , Ai)

(k).

Then 〈↑Ai , ↓Ai〉 forms a dyadic L-Galois connection between Xj and Xk [5].

PROOF. The following equality verifies the condition for dyadic L-Galois
connection:

S(Aj , A
↓Ai
k) = S(Aj , (Ak, Ai)

(j)) = S(Ak, (Aj , Ai)
(k)) = S(Ak, A

↑Ai
j)

�

48 Chapter 3. Triadic fuzzy Galois connections

Lemma 27. For {i, j, k} = {1, 2, 3} it holds

(a) a→ ({1/xi}, {1/xj})(k) = ({a/xi}, {1/xj})(k)

(b)
∧

xi∈Xi
Ai(xi)→ ({1/xi}, {1/xj})(k) = (Ai, {1/xj})(k)

PROOF. (a): By Lemma 26 we get that

a→ ({1/xi}, {1/xj}) = a→ {1/xi}↑{1/xj}

where
↑{1/xj} is a part of dyadic L-Galois connection between Xi and Xk.

[5] implies that

a→ {1/xi}↑{1/xj} = {a/xi}↑{1/xj} .
Finally, by Lemma 26 we have

{a/xi}↑{1/xj} = ({a/xi}, {1/xj})(k).

(b): Using (a) and Lemma 25 we get∧
xi∈Xi

Ai(xi)→ ({1/xi}, {1/xj})(k) =

=
∧

xi∈Xi

({Ai(xi)/xi}, {1/xj})(k)) =

= (
∨

xi∈Xi

{Ai(xi)/xi}, {1/xj})(k)) =

= (Ai, {1/xj})(k)

�

The next theorem shows that triadic L-Galois connections are just the
mappings obtained from ternary fuzzy relations by (3.1).

Theorem 28. Let I ∈ LX1×X2×X3. Let 〈(1), (2), (3)〉 be a triadic L-Galois
connection between X1, X2, and X3 and define a ternary relation I〈(1),(2),(3)〉 ∈
LX1×X2×X3 by

I〈(1),(2),(3)〉(x1, x2, x3) = ({1/x1}, {1/x2})(3) =

= ({1/x1}, {1/x3})(2) =

= ({1/x2}, {1/x3})(1).

Then

(a) The triplet 〈(1)I , (2)I , (3)I 〉 forms a triadic L-Galois connection.

3.2. Axiomatizing Galois connections of triadic fuzzy contexts 49

(b) I = I〈(1)I ,(2)I ,(3)I 〉.

(c) 〈(1), (2), (3)〉 = 〈
(1)I
〈(1),(2),(3)〉 ,

(2)I
〈(1),(2),(3)〉 ,

(3)I
〈(1),(2),(3)〉 〉.

PROOF. (a):

S(Ai, (Aj , Ak)(iI)) =

=
∧

xi Xi

Ai(xi)→
∧

xj ∈ Xj

xk ∈ Xk

Aj(xj)⊗Ak(kk)→ I(xi, xj , xk) =

=
∧

xj Xj

Aj(xj)→
∧

xi ∈ Xi

xk ∈ Xk

Ai(xi)⊗Ak(kk)→ I(xi, xj , xk) =

= S(Aj , (Ai, Ak)(jI))

We just checked that (3.2) holds for 〈(1)I , (2)I , (3)I 〉.
(b): We prove that I〈(1)I ,(2)I ,(3)I 〉 and I agree for all arguments. For every

x1 ∈ X1, x2 ∈ X2, and x3 ∈ X3 we have

I〈(1)I ,(2)I ,(3)I 〉(x1, x2, x3) = ({1/x1}, {1/x2})(3)I =

= 1⊗ 1→ I(x1, x2, x3) = I(x1, x2, x3).

(c) Using properties of residuated lattices and Lemma 27 (b) we get

(Ai, Aj)
(k)I
〈(1),(2),(3)〉 (xk) =

=
∧

xi∈Xi

Ai(xi)→
∧

xj∈xj

Aj(xj)→ I〈(1),(2),(3)〉(xi, xj , xk)

=
∧

xi∈Xi

Ai(xi)→
∧

xj∈xj

Aj(xj)→ ({1/xi}, {1/xj})(k)(xk)

=
∧

xi∈Xi

Ai(xi)→ ({1/xi}, Aj)
(k)(xk) =

= (Ai, Aj)
(k)(xk)

�

As a consequence of the previous theorem we may conclude, that (3.2)
provides an axiomatization of the mappings induced by ternary fuzzy rela-
tions by (3.1).

50 Chapter 3. Triadic fuzzy Galois connections

3.3 Representation of triadic fuzzy Galois connec-
tions

In this section, we investigate the issue of representation of triadic fuzzy
Galois connections by ordinary Galois connections. We provide two kinds
of such representation. The first one, contained in Section 3.3.1 is based on
looking at fuzzy sets A in U as the area bellow the membership function.
In the second one, presented in Section 3.3.2, we utilize so-called a-cuts, a
way to represent a fuzzy set by a nested system of ordinary sets. Finally, in
Section 3.3.3 we show an application of the first representation in proving
in a simple way by reduction the basic theorem of fuzzy concept trilattices.

3.3.1 Cartesian representation

For the first type of representation, we utilize the mappings (2.11) and (2.10).

Definition 29. An (ordinary) triadic Galois connection 〈〈1〉, 〈2〉, 〈3〉〉 between
X1 × L, X2 × L, X3 × L is called commutative with respect to bdec iff

(bdAiec, bdAjec)〈k〉 = bd(Ai, Aj)ec〈k〉 (3.4)

holds for any {i, j, k} = {1, 2, 3} and any sets A1 ∈ X1 × L, A2 ∈ X2 × L,
and A3 ∈ X3 × L.

The following definition shows how triplets of mappings on fuzzy sets in
Xis may be defined from triplets of mappings on subsets of Xi×Ls and vice
versa. (By small abuse of notation we utilize (i)〈i〉 to denote the mapping
induced by (i).)

Definition 30. Let {i, j, k} = {1, 2, 3}. For a triadic Galois connection
〈〈1〉, 〈2〉, 〈3〉〉 between X1 × L, X2 × L, X3 × L, and fuzzy sets Ai ∈ LXi ,
Aj ∈ LXj , and Ak ∈ LXk we define mappings (i)〈i〉 : LXj × LXk → LXi by

(Aj , Ak)(i)〈i〉 = d(bAjc, bAkc)(i)e (3.5)

Let 〈(1), (2), (3)〉 be a triadic L-Galois connection between X1, X2, and
X3. Then for sets Ai ∈ Xi × L, Aj ∈ Xj × L, and Ak ∈ Xk × L, we define

mappings 〈i〉(i) : (Xj × L)× (Xk × L)→ Xi × L by

(Aj , Ak)〈i〉(i) = b(dAje, dAke)(i)c (3.6)

The following theorem provides the first way to represent triadic fuzzy
Galois connections using ordinary connections.

Theorem 31. Let 〈(1), (2), (3)〉 be a triadic L1-Galois connection between
X1, X2, and X3 and 〈〈1〉, 〈2〉, 〈3〉〉 be a triadic Galois connection. between
X1 × L, X2 × L, and X3 × L.

Then the following holds:

3.3. Representation of triadic fuzzy Galois connections 51

(a) 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉 is a triadic Galois connection commutative with re-
spect to bdec.

(b) 〈(1)〈1〉 , (2)〈2〉 , (3)〈3〉〉 is a triadic L{1}-Galois connection.

(c) The map 〈(1), (2), (3)〉 7→ 〈〈1〉, 〈2〉, 〈3〉〉 is an one-to-one map between the
set of all triadic L{1}-Galois connections between X1, X2, and X3 and
the set of all triadic Galois connections between X1×L, X2×L, X3×L
that are commutative with respect to bdec.

PROOF. Let {i, j, k} = {1, 2, 3}.
(a): Let Ai ∈ Xi × L,Aj ∈ Xj × L,Ak ∈ Xk, and let Ak ∈ (Ai, Aj)

〈k〉(k) .

Then bdAkec ⊆ bd(Ai, Aj)
〈k〉(k)ec. Since

bd(Ai, Aj)
〈k〉(k)ec = bdb(dAie, dAje)(k)cec = b(dAie, dAje)(k)c,

the following chain of implications (which we denote by) proves that
〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉 is a triadic Galois connection:

bdAkec ⊆ b(dAie, dAje)(k)c S(dAke, (dAie, dAje)(k)) = 1

 S(dAie, (dAje, dAke)(i)) = 1

 bdAiec ⊆ b(dAje, dAke)(i)c
 Ai ⊆ (Aj , Ak)〈i〉(i) .

To prove the commutativity with respect to bdec observe that

(bdAiec, bdAjec)〈k〉(k) = b(dbdAiece, dbdAjece)(k)c
= b(dAie, dAje)(k)c
= (A1, A2)

〈k〉(k)

= bd(A1, A2)
〈k〉(k)ec.

(b): Let Ai ∈ LXi , Aj ∈ LXj , Ak ∈ LXk , and let Ai ⊆ (Aj , Ak)(k)〈k〉 .

Then bAkc ⊆ b(Aj , Ak)(k)〈k〉c implies

bAkc ⊆ bd(bAic, bAjc)〈k〉ec = (bdbAicec, bdbAjcec)〈k〉 = (bAic, bAjc)〈k〉

which leads to

bAic ⊆ (bAjc, bAkc)〈i〉 = (bdbAjcec, bdbAkcec)〈i〉

= bd(bAjc, bAkc)〈i〉ec
= b(Aj , Ak)(i)

〈i〉c

and thus Ai ⊆ (Aj , Ak)(i)〈i〉 .

52 Chapter 3. Triadic fuzzy Galois connections

(c): We prove that 〈〈1〉(1)〈1〉 , 〈2〉(2)〈2〉 , 〈3〉(3)〈3〉 〉 = 〈〈1〉, 〈2〉, 〈3〉〉. Let Ai ∈
Xi×L, Aj ∈ Xj×L. First observe that since Ai ∈ bdAiec and Aj ∈ bdAjec,
we have

(bdAiec, bdAjec)〈k〉 ⊆ (Ai, Aj)
〈k〉 ⊆ bd(Ai, Aj)

〈k〉ec,
and the the commutativity with respect to bdec yields

(bdAiec, bdAjec)〈k〉 = (Ai, Aj)
〈k〉.

Now, by using (3.5) and (3.6) we get

(Ai, Aj)
〈k〉(k)〈k〉 = (bdAiec, bdAjec)〈k〉.

This together with the previous observation gives the proof.

It remains to prove 〈(1)〈1〉(1) , (2)〈2〉(2) , (3)〈3〉(3) 〉 = 〈(1), (2), (3)〉. Let Ai ∈ LXi

and Aj ∈ LXj . Then by (3.5) and (3.6) we get

(Ai, Aj)
(k)〈k〉(k) = db(dbAice, dbAjce)(k)ce = (Ai, Aj)

(k)

completing the proof. �

3.3.2 Cut-like representation

The second representation is based on the notion of an a-cut of a fuzzy set.
Recall that for a fuzzy set A ∈ LU and a degree a ∈ L, the a-cut aA of A is
the ordinary subset of U defined by

aA = {u ∈ U | a ≤ A(u)}.

It is well known, that every fuzzy set is uniquely represented by a system of
its a-cuts. Indeed, we may introduce a notion of a nested system of ordinary
subsets of U in a way, that this nested system becomes just the system of
a-cut of fuzzy set. More details can be found in [8].

Although the straightforward application of the idea of a-cut turns out
to be not sound, e.g. the condition

(aA1,
aA2)

(3) = a((A1, A2)
(3))

does not hold for triadic fuzzy Galois connections, a cut-like representation
of triadic fuzzy Galois connections is possible. Such a representation is
shown in the rest of this section.

First, we introduce the appropriate notion of a nested system.

Definition 32. Let {i, j, k} = {1, 2, 3}. A system {〈(1a), (2a), (3a)〉 | a ∈ L}
of (ordinary) triadic Galois connections is called L-nested iff

3.3. Representation of triadic fuzzy Galois connections 53

1. for each a, b ∈ L such that a ≤ b, and Ai ∈ LXi , Aj ∈ LXj it holds
(Ai, Aj)

(ka) ⊇ (Ai, Aj)
(kb)

2. for all xi ∈ Xi, xj ∈ Xj , xk ∈ Xk the set {a ∈ L | xi ∈ ({xj}, {xk})(ia)}
has a greatest element.

We need the following lemmas.

Lemma 33. For {i, j, k} = {1, 2, 3}, let I ∈ LX1×X2×X3 be an L-relation,
〈(1), (2), (3)〉 be the triadic L-Galois connection induced by I and for a ∈ L
let 〈(1a), (2a), (3a)〉 be the triadic Galois connections induced by the cuts aI.
Then

(a) for every Ai ∈ 2Xi, Aj ∈ 2Xj , and a ∈ L we have

a(Ai, Aj)
(k) = (Ai, Aj)

(ka),

(b) for all fuzzy sets Ai ∈ LXi, Aj ∈ LXj , and b, c ∈ L we have

a(Ai, Aj)
(k) =

⋂
b,c∈L

(bAi,
cAj)

(ka⊗b⊗c).

PROOF. (a): Let Ai ∈ 2Xi , Aj ∈ 2Xj , and a ∈ L. Then for any xk ∈ Xk

we have

xk ∈ a(Ai, Aj)
(k) iff

∧
xi ∈ Xi

xj ∈ Xj

Ai(xi)⊗Aj(xj)→ I(xi, xj , xk) ≥ a.

Since Ai and Aj are ordinary sets the following holds∧
xi ∈ Xi

xj ∈ Xj

Ai(xi)⊗Aj(xj)→ I(xi, xj , xk) =

=
∧

xi ∈ Ai

xj ∈ Aj

1⊗ 1→ I(xi, xj , xk) =
∧

xi ∈ Ai

xj ∈ Aj

I(xi, xj , xk).

To see the claim, observe that xk ∈ (Ai, Ak)(ka) iff Ai × Aj × {xk} ⊆ aI iff
a ≤ I(xi, xj , xk) for all xi ∈ Ai, xj ∈ Aj iff

a ≤
∧

xi ∈ Ai

xj ∈ Aj

I(xi, xj , xk).

54 Chapter 3. Triadic fuzzy Galois connections

(b): Let Ai ∈ LXi , Aj ∈ LXj . Assume that xk ∈ a(Ai, Aj)
k. Then∧

xi ∈ Ai

xj ∈ Aj

A(xi)⊗A(xj)→ I(xi, xj , xk) ≥ a

and thus a ≤ A(xi) ⊗ A(xj) → I(xi, xj , xk) for all xi ∈ Xi, xj ∈ Xj . By
adjunction we get a⊗A(xi)⊗A(xj) ≤ I(xi, xj , xk).

Let b ∈ L. For any xi ∈ bAi, xj ∈ cAj we have (remember that Ai(xi) ≥
b, Aj(xj) ≥ c)

a⊗ b⊗ c ≤ a⊗Ai(xi)⊗Aj(xj) ≤ I(xi, xj , xk)

This implies that bAi×cAj×{xk} ⊆ a⊗b⊗cI and thus xk ∈ (bAi,
cAj)

(ka⊗b⊗c),
which proves a(Ai, Aj)

k ⊆ (bAi,
cAj)

(ka⊗b⊗c).

To prove the converse, let b, c ∈ L and xk ∈ (bAi,
cAj)

(ka⊗b⊗c). Then
bAi × cAj × {xk} ⊆ a⊗b⊗cI and therefore a ⊗ b ⊗ c ≤ I(xi, xj , xk) for all
xi ∈ bAi, xj ∈ cAj . Using adjunction twice and Ai(xi) < b,Aj(xj) < c for
any xi /∈ bAi, xj /∈ cAj we obtain

a ≤ A(xi)⊗A(xj)→ I(xi, xj , xk)

for all xi ∈ X,xj ∈ Xj , and therefore xk ∈ a(Ai, Aj)
(k).

�

Lemma 34. Let 〈(1)1 , (2)1 , (3)1〉 and 〈(1)2 , (2)2 , (3)2〉 be triadic L-Galois con-
nections, let I1 and I2 be the corresponding L-relations between X1, X2, and
X3. Then for {i, j, k} = {1, 2, 3} it holds that I1 ⊆ I2 iff for each Ai ∈ LXi,
Aj ∈ LXj it holds (Ai, Aj)

(k)1 ⊆ (Ai, Aj)
(k)2.

PROOF. “⇒”: The claim follows from 28, definition of (k), and antitony
of → in the second argument.

“⇐”: For any xi ∈ Xi, xj ∈ Xj , xk ∈ Xk it holds I1(xi, xj , xk) = 1 ⊗
1 → I1(xi, xj , xk) = (1/{xi}, 1/{xj})(k)1(xk) ≤ (1/{xi}, 1/{xj})(k)2(xk) =
1⊗ 1→ I2(xi, xj , xk) = I2(xi, xj , xk).

�

The next theorem provides the cut-like representation of triadic fuzzy
Galois connections.

Theorem 35. For a triadic L-Galois connection 〈(1), (2), (3)〉 between X1,
X2, and X3 denote

C〈(1),(2),(3)〉 = {〈(1a), (2a), (3a)〉 | a ∈ L}.

3.3. Representation of triadic fuzzy Galois connections 55

For an L-nested system {〈(1a), (2a), (3a)〉 | a ∈ L } of triadic Galois con-
nections between X1, X2, and X3 denote by 〈(1)C , (2)C , (3)C〉 the mappings
defined for {i, j, k} = {1, 2, 3}, and Ai ∈ LXi, Aj ∈ LXj by

(Ai, Aj)
(k)C(xk) =

∨
{a | xk ∈

⋂
b,c∈L

(bAi,
cAj)

(ka⊗b⊗c)}.

Then it holds

(a) C〈(1),(2),(3)〉 is an L-nested system of triadic Galois connections,

(b) 〈(1)C , (2)C , (3)C〉 is a triadic L-Galois connection.

(c) 〈(1), (2), (3)〉 = 〈
(1)C〈

(1),(2),(3)〉 ,
(2)C〈

(1),(2),(3)〉 ,
(3)C〈

(1),(2),(3)〉〉, and
C = C〈(1)C ,(2)C ,(3)C 〉, i.e. the mappings between the sets of all triadic L-
Galois connections and all nested systems of triadic Galois connections
are mutually inverse bijections.

PROOF. (a) It suffices to check the conditions of Definition 32.

To check the first condition, see that if a ≤ b then aI ⊇ bI and by Lemma
34 it holds (Ai, Aj)

(ka) ≥ (Ai, Aj)
(kb) for all Ai ⊆ Xi, Aj ⊆ Xj .

The second condition is proved by the following: Since xk ∈ ({xi}, {xj})(ka)
iff (xi, xj , xk) ∈ aI iff I(xi, xj , xk) ≥ a, the greatest element a such that
xk ∈ ({xi}, {xj})(ka) is clearly I(xi, xj , xk).

(b) Let xk ∈
⋂

b,c∈L(bAi,
cAj)

(ka⊗b⊗c). First, we set I ∈ LX1×X2×X3 to

I(xi, xj , xk) =
∨
{a|(xi, xj , xk) ∈ I〈(1a),(2a),(3a)〉},

where I〈(1a),(2a),(3a)〉s are ordinary relations induced by triadic Galois con-
nections in C (c.f. Theorem 28 for L = 2). The L-nestedness of C ensures
that definition of I is correct. Indeed, (1) of Definition 32 and Lemma 34
yield that I〈(1)a,(2)a,(3)a〉 ⊇ I〈(1)b,(2)b,(3)b〉 whenever a ≤ b, by (2) of Definition
32 we have that

∨{a|(xi, xj , xk) ∈ I〈(1a),(2a),(3a)〉} has the greatest element.
Therefore I〈(1a),(2a),(3a)〉 = aI and by the following well-known property of
a-cuts A(x) = ∨{a | x ∈ aA} we get that I is defined correctly.

Now, by Lemma 33 xk ∈
⋂

b,c∈L(bAi,
cAj)

(ka⊗b⊗c) is equivalent to xk ∈
a(Ai, Aj)

(k), where 〈(1), (2), (3)〉 is induced by I, which proves the claim.

(c) Follows clearly from the proofs of (a) and (b). �

3.3.3 Application of the Cartesian representation

In Section 2.4 we presented a generalization of basic theorem of triadic
concept analysis for fuzzy concept trilattices. As an application of the rep-
resentation provided in Section 3.3.1, we show a simple proof this theorem

56 Chapter 3. Triadic fuzzy Galois connections

by a certain reduction utilizing the theorem for ordinary concept trilattices
from [53].

We utilize the facts that the set of all triadic (fuzzy) concepts of a triadic
(fuzzy) Galois connection 〈(1), (2), (3)〉 forms a trilattice, denoted here by
T (X1, X2, X3, 〈(1), (2), (3)〉).

Theorem 36. For a triadic LK-Galois connection 〈(1), (2), (3)〉 the trilattices
T (X1, X2, X3, 〈(1), (2), (3)〉) and T (X1×L,X2×L,X3×L, 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉)
are isomorphic. Moreover, T (X1 × L,X2 × L,X3 × L, 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉) =
T (X1 × L,X2 × L,X3 × L, I×), where

〈(x1, a), (x2, b), (x3, c)〉 ∈ I× iff c ≤ ({a/x1}, {b/x2})(3).

PROOF. To show that the assertion is valid we consider mappings

h : T (〈(1), (2), (3)〉)→ T (〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉),

g : T (〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉 → T (〈(1), (2), (3)〉)
defined by

h(〈A1, A2, A3〉) = 〈bA1c, bA2c, bA2c〉
g〈A1, A2, A3〉) = 〈dA1e, dA2e, dA2e〉.

First we show that the mapping are defined correctly. Let 〈A1, A2, A3〉 ∈
T (〈(1), (2), (3)〉) Then by Theorem 31 and Definition 30 for any assignment
{i, j, k} = {1, 2, 3}

(bAic, bAjc)(k) = b(dbAice, dbAjce)〈k〉(k)c = b(Ai, Aj)
〈k〉(k)c = bAkc.

For 〈A1, A2, A3〉 ∈ T (〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉 we have

(dAie, dAje)〈k〉(k) = d(bdAiec, bdAjec)(k)e = dbd(Ai, Aj)
(k)ece =

= dbdAkece = dAke.

Clearly, both g and h are order preserving. Theorem 31 implies that g and
h are mutually inverse.

To see that T (X1, X2, X3, 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉) = T (X1, X2, X3, I
×) it suf-

fices to show that I× is precisely the relation I
〈〈1〉(1) ,〈2〉(2) ,〈3〉(3) 〉

of Theo-

rem 28 corresponding to 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉. That is we show that c ≤
({a/x1}, {b/x2})(3) iff (x3, c) ∈ ({(x1, a)}, {(x2, b)})〈3〉(3) which is indeed true
by Definition 30. �

The following theorem shows an important fact that every fuzzy concept
trilattice is isomorphic to a certain concept trilattice.

3.4. Summary and topics of future research 57

Theorem 37. Any L-concept trilattice T (X1, X2, X3, I) is isomorphic to
the (ordinary) concept trilattice T (X1 × L,X2 × L,X3 × L, I×), where

〈(x1, a), (x2, b), (x3, c)〉 ∈ I× iff a⊗ b⊗ c ≤ I(x1, x2, x3).

PROOF. Let 〈(1), (2), (3)〉 be a triadic L-Galois connection induced by I by
Theorem 28. Using adjunction two times we get

a⊗ b⊗ c ≤ I(x1, x2, x3) iff c ≤ ({a/x1}, {b/x2})(3).

The claim then follows from Theorem 36. �

Remark 38. (a) Note that the previous theorem is essentially the Theorem
16, only this time we provide an alternative way of proving it. Namely, we
use a reduction of fuzzy triadic Galois connection to ordinary triadic Galois
connection and the fact that the sets of fixpoints they induce are isomorphic.

(b) Using Cartesian representation of fuzzy triadic Galois connections we
can provide an alternative proof of Theorem 13. The link is the equivalence
of Theorem 16 and Theorem 37 (see the alternative proof of basic theorem
in Section 2.4.)

3.4 Summary and topics of future research

We provided an axiomatization of triadic fuzzy Galois connection and es-
tablished an one-to-one correspondence between them and ternary fuzzy
relations. We presented two representation theorems that link triadic fuzzy
Galois connections to ordinary triadic Galois connection in two different
ways. We demonstrated usefulness of such a representation by an example
of carrying over a result known for ordinary TCA to a fuzzy setting.

As a part of future work, we would like to

- Find results that may be automatically carried over from ordinary case
to fuzzy case. Investigate if such results can be formally identified.

- Develop other possible types of reduction. Extend the applicability of
the presented representation to a wider class of relational methods.

Acknowledgement The work summarized in this chapter was supported
by Grant No. P202/10/0262 of the Czech Science Foundation and by re-
search plan MSM 6198959214.

Chapter 4

Decomposition of three-way
ordinal data

4.1 Introduction

Methods of matrix decomposition proved to be applicable to many fields,
e.g. psychometrics, chemometrics, signal processing, neuroscience, and data
mining [37, 38, 50]. Given an input matrix, the aim of the methods is
to find matrices whose product gives back the original matrix, or at least
approximate it to some degree. The decomposition can be understood as a
discovery of hidden entities in the matrix, usually called factors, features,
components and the like, which describe the matrix in a more economical
way. The decomposition is then viewed as a mapping of the data from
the high dimensional space of directly observable variables into the lower-
dimensional space of factors. The number of factors is then interpreted as
a dimension of the matrix [46].

For two-way matrices there is a number of decomposition methods such
as the most well-known Singular Value Decomposition (SVD), Principal
Component Analysis (PCA), and Nonnegative Matrix Factorization (NMF)
[34, 44]. The common attribute of these methods is that they are designed
to work with matrices whose entries are numerical data (e.g. real numbers).
When applied to relational data, that is, to Boolean matrices or to matrices
with grades, they distort the intended meaning of the data and factors ob-
tained by the decomposition are extremely hard to interpret [45, 46]. This
inappropriateness of known methods for dealing with relational data led to
research on methods designed specifically for it. Several of such methods
were proposed in the literature [29, 45, 46], some of them utilizing formal
concepts as factors [15, 19].

For three-way matrices, the situation is quite similar. The existing meth-
ods work well with numerical matrices, but are not well suited for relational

60 Chapter 4. Decomposition of three-way ordinal data

X
a1

b1

c1

+ · · · +

ar

br

cr

Figure 4.1: Schematic visualization of a CANDECOMP decomposition

ones. A good survey of such methods is [37]. For three-way Boolean matri-
ces, a decomposition method utilizing triadic concepts was proposed recently
in [16]. This chapter presents a generalization of this method to a fuzzy set-
ting.

The closest analogue to the method described in this chapter among
methods suited to work with numerical data is the Canonical decomposition
(CANDECOMP) [23]. Although a process of computation of this decompo-
sition differs significantly from the presented method, from a more general
point of view these two methods aim at the same type of decomposition.
The CANDECOMP decomposition has the form

X =

R∑
r=1

ar � br � cr (4.1)

where X is a n×m× p three-way matrix of real numbers, ar, br, and cr are
real vectors of sizes n, m, and p, respectively. The operator � is an outer
vector multiplication, that is, the result of ar�br�cr is an n×m×p matrix
Jr such that

(Jr)ijt = (ar)i · (br)j · (cr)t (4.2)

The sum symbol denotes a component-wise sum of three-way matrices. Us-
ing (4.2) we can rewrite (4.1) as

Xijt =
R∑

r=1

(ar)i · (br)j · (cr)t (4.3)

The lowest R such that (4.1) exists is a Shein rank of matrix X (or a rank,
for short), denoted by ρ(X). Clearly, each Jr = ar � br � cr has a rank 1.
Thus, CANDECOMP aims at decomposition of a matrix into the sum of
rank 1 matrices, as depicted visually in Figure 4.1.

Now, lets turn our attention to a method developed in this chapter. We
are given a three-way n×m×p matrix I with entries taken from a residuated
lattice. We interpret this matrix as a fuzzy relation of some triadic context.

4.1. Introduction 61

That is, the entry Iijt is a degree to which object i has attribute j under
condition t. We aim at a decomposition of I into a product

I = ◦(A,B,C) (4.4)

of a n× k matrix A, m× k matrix B, and p× k matrix C given by

◦(A,B,C)ijt =
k∨

l=1

Ail ⊗Bjl ⊗ Cjl (4.5)

with k as small as possible. The decomposition (4.5) has the following
meaning: The degree in which object i, attribute j, and condition t are
related is the truth degree of a proposition:

“There exists a factor l such that l applies to i, j is a particular mani-
festation of l, and t is one of the conditions under which l appears.”

Matrix A is an object×factor matrix and represents objects in terms of
factors. A can be considered as an output of the decomposition. Indeed A is
a more economical representation of I. While in I object i is represented by
a two-way n× p attribute-condition matrix Ii , in A it is described only by
a single row supposedly consisting of a smaller number of entries (this claim
is indeed true, as we prove in the next section). The relation between object
representations in attribute-condition space and in factor space is studied in
Section 4.3. Matrices B and C describe factors in terms of attributes and
conditions: B is an attribute-factor matrix whose columns depict degrees to
which attributes are manifestations of factors, C is a condition-factor matrix
whose columns describe under which conditions factors appear.

In Section 4.2 we show that (4.5) is in fact a decomposition of I into a∨
-superposition of rank 1 matrices. Indeed, an observant reader certainly

noticed that (4.5) and (4.1) are remarkably similar, we just replace the
operations of usual multiplication and summation by truth function of con-
junction and order-theoretic join operation, respectively. The differences in
algebraic properties of these operations (most notably the fact that summa-
tion is not idempotent) are part of reasons why (4.1) is inappropriate for
relational data.

To illustrate the meaning of decomposition (4.5) consider the following
example. Assume that we have data from a customer survey where cus-
tomers express their motivation for a purchase of a particular type of car.
Furthermore, se assume that the data can be transformed into a three-way
matrix I whose rows correspond to car types, columns to car features (speed,
horse power, etc.) and conditions to customers. That is, Iijt is a degree to
which feature j motivates customer t to purchase car type i. Depending on
the data, decomposition (4.5) may reveal factors that we can label as sports
cars, family cars and the like. In such a case, A characterizes types of cars

62 Chapter 4. Decomposition of three-way ordinal data

in the degrees to which they are sport cars, family cars etc.; B describes
factors by attributes that are its particular manifestations: e.g. sports car
may be to a high degree manifested by speed, acceleration and the like.
Finally, C contains degrees to which customers are motivated to buy cars
from a particular group, e.g. degrees to which particular customers want
sport cars, family cars, etc. This example is elaborated in Section 4.5.

This chapter is organized as follows: in Section 4.2 we describe how
to use triadic concepts as factors. We prove that such a decomposition is
universal and optimal. In Section 4.3 we study the relations between spaces
induced by (4.5). In Section 4.4 we deal with algorithmic and complexity
issues related to a computation of (4.5). Section 4.5 contains an illustrative
example. We conclude with some remarks on future research directions in
Section 4.6.

In this chapter, we use the following notation. We understand a three-
way n × m × p matrix I as a triadic fuzzy context K = 〈X1, X2, X3, I〉
with X1 = {1, 2, . . . n}, X2 = {1, 2, . . . ,m}, and X3 = {1, 2, . . . , p} and
I(i, j, t) = Iijt. We use analogical convention for two-way matrices and
dyadic contexts, and vectors and fuzzy sets.

This chapter is based on the following paper:

R. Belohlavek, P. Osicka, V. Vychodil. Factorizing Three-way
ordinal data using triadic formal concepts. Ninth International conference
on Flexible Query Answering System, Ghent, Lecture Notes in Computer
Science, 2011, Volume 7022/2011, 400-411, DOI: 10.1007/978-3-642-24764-
4 35

4.2 Optimal decomposition using triadic factors

In this section we show how triadic fuzzy concepts of I may be used as factors
in decomposition (4.5). First, we observe that (4.5) is a decomposition into
rank 1 matrices, which we call cuboids.

Definition 39. A 3-dimensional matrix J ∈ Ln×m×p is a cuboidal matrix
(shortly, a cuboid) if there exist vectors A ∈ Ln, B ∈ Lm, and C ∈ Lp such
that Jijt = Ai ⊗Bj ⊗ Ct, or equivalently J = ◦(A,B,C).

The role of cuboids for decompositions (4.5) is the following:

Lemma 40. I = ◦(A,B,C) for an n × k matrix A, m × k matrix B, and
p× k matrix C iff I is a

∨
-superposition of k cuboids J1, . . . , Jk, i.e.

I = J1 ∨ · · · ∨ Jk.

In addition, for each l = 1, . . . , k, Jl = ◦(A l, B l, C l), i.e. each Jl is the
product of the l-th columns of A, B, and C.

4.2. Optimal decomposition using triadic factors 63

PROOF. “⇒”: We can rewrite (4.5) in the following way

Iijt =

k∨
l=1

Ail ⊗Bjl ⊗ Ctl =

k∨
l=1

(A
l
⊗B

l
⊗ C

l
)ijt.

Clearly, (A
l
⊗B

l
⊗ C

l
) is a cuboid for each l ∈ {1, . . . , k}.

“⇐”: Let I = J1 ∨ · · · ∨ Jk. For each Jl there are Al, Bl, and C l such
that (Jl)ijt = Al

i⊗Bl
j⊗C l

t. If we consider n×k matrix A such that A l = Al,

m× k matrix B such that B l = Bl, and p× k matrix C such that C l = C l,
then we it clearly holds

Iijt = (A 1 ⊗B 1 ⊗ C 1)ijt ∨ · · · ∨ (A k ⊗B k ⊗ C k)ijt =

k∨
l=1

Ail ⊗Bjl ⊗ Ctl.

�

As shown above, in order to decompose I using a small number of fac-
tors, we need to find a small number of cuboids contained in I whose ∨-
superposition gives I again (in the following we may use the term “cuboids
cover I” for describing this situation). We say that a cuboid J is contained
in I if Jijt ≤ Iijt for all i, j, t.

In the following lemma we show that triadic fuzzy concepts of I are
maximal cuboids in I.

Lemma 41. 〈D1, D2, D3〉 is a triadic concept of I iff J = ◦(D1, D2, D3) is
a maximal cuboid contained in I.

PROOF. “⇒”. Let 〈D1, D2, D3〉 be a triadic concept. Then by Theorem 12
(a), it is maximal triple of fuzzy sets (w.r.t set inclusion on its components)
such that (D1 ⊗ D2 ⊗ D3)ijt ≤ Iijt for all i, j, t (assuming, of course, that
1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ t ≤ p). Therefore J = ◦(D1, D2, D3) is a
maximal cuboid contained in I.

“⇐”: Let J = ◦(D1, D2, D3) be a maximal cuboid contained in I. Then
by Theorem 12 (b), there is a triadic concept 〈E1, E2, E3〉 such thatD1 ⊆ E1,
D2 ⊆ E2, and D2 ⊆ E2. Maximality of J then implies 〈E1, E2, E3〉 =
〈D1, D2, D3〉. �

Let’s sum up what we know up to this point: Lemma 40 implies that the
decomposition (4.5) is a decomposition into a ∨-superposition of cuboids.
From Lemma 41 we know, that triadic concepts are cuboids contained in I.
This implies, that we can use triadic concepts as factors. In remains to show,
how, given a set of triadic concepts, we obtain matrices of the right-hand
side of (4.5). For a set

F = {〈D11, D12, D13〉, . . . , 〈Dk1, Dk2, Dk3〉}

64 Chapter 4. Decomposition of three-way ordinal data

of triadic fuzzy concepts of I (we fix this indexing of concepts, i.e. we speak
of the l-th concept in F), we denote by AF the n×k matrix in which the l-th
column coincides with the extent Dl1, by BF the m× k matrix in which the
l-th column coincides with the intent Dl2, CF the p× k matrix in which the
l-th column coincides with the modus Dl3 of the l-th concept 〈Dl1, Dl2, Dl3〉.
That is,

(AF)il = Dl1(i), (BF)jl = Dl2(j), (CF)tl = Dl3(t).

If I = ◦(AF , BF , CF), we call the triadic concepts from F factor concepts.
Given I, our aim is to find a small set F of factor concepts.

Let us remark that since triadic concepts tend to be easy to interpret,
using them as factors is intuitively appealing. The notion of triadic con-
cept is a simple formal model of human concept considered as an element
of thought according to traditional logic approach [43]. Moreover, the ex-
tents, intents, and modi of the concepts, i.e. columns of AF , BF , and CF ,
have a straightforward interpretation: they represent the objects, attributes,
and conditions to which the factor concept applies. See Section 4.5 for a
particular example.

The next theorem shows that triadic concepts are universal and optimal
factors, that is, every 3-dimensional matrix can be factorized using triadic
concepts and the factorizations that employ triadic concepts as factors are
optimal.

Theorem 42. Let I be an n×m× p matrix with degrees from L.

(1) ρ(I) ≤ min(nm, np,mp).

(2) There exists F ⊆ T (X1, X2, X3, I) with |F| = ρ(I) for which

I = ◦(AF , BF , CF).

PROOF. (1) Let F = {b12({1/i}, {1/j}) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, (see
Theorem 11). Due to Lemma 41, every member of F is a cuboid contained
in I. Moreover, for every i, j, t and 〈D1, D2, D3〉 = b12({1/i}, {1/j}, we have

(D1 ⊗D2 ⊗D3)ijt = Iijt.

Indeed, by Theorem 11 we have

(D3)t =
∧

1≤i′≤n
(D1)i′ →

∧
1≤j′≤n

(D2)j′ → Ii′j′t = 1→ (1→ Iijt) = Iijt.

Thus, for each entry Iijt in I there is a cuboid J induced by some triadic
concept of F such that Iijt = Jijt and therefore I is decomposable using F
as factor concepts. Clearly |F| ≤ mn and ρ(I) ≤ nm. One proves ρ(I) ≤ np
and ρ(I) ≤ mp in a similar way.

4.3. Transformations between induced spaces 65

(2) Assume that I = ◦(A,B,C) with k factors. Then by Lemma 40 there
are k cuboids J1, . . . , Jk such that I = J1∨ · · · ∨Jk. By Theorem 12 (b) any
cuboid Jl, (l = 1, . . . , k), is contained in some triadic concept. That is, there
is a triadic concept 〈D1l, D2l, D3l〉 such that (D1l ⊗ D2l ⊗ D3l)ijt ≥ (Jl)ijt
for all i, j, t. But by Lemma 41 triadic concepts are cuboids contained in I
and thus we can substitute Jl with (D1l ⊗D2l ⊗D3l) in the decomposition.
Thus, for each decomposition with k factors there is a decomposition using
k triadic concepts as factors. The claim then follows from the existence of
an optimal decomposition. �

4.3 Transformations between induced spaces

As we mentioned in Section 4.1, given a decomposition I = ◦(AF , BF , CF)
of an n×m×p matrix I for some k-element set F of factor concepts, matrix
A is contains descriptions of objects in term of factors.

It is therefore a natural question to ask for a transformation of a descrip-
tion of a given object in attribute-condition space Lm×p into a description
in factor space Lk, and vice versa. For the dyadic case, such transformations
are described in [19] and were utilized in [47, 48] for improving classification
of binary data.

In the attribute-condition space, the object i ∈ X1 is represented by
the m × p matrix Ii corresponding to the dyadic context 〈X2, X3, I

23
{1/i}〉

(see Section 2.2), called i-th (object) dyadic cut. In the factor space, i is
represented by the i-th row Ai of A.

Consider the transformations g : Lm×p → Lk and h : Lk → Lm×p defined
for P ∈ Lm×p and Q ∈ Lk by

(g(P))l =
∧m

j=1

∧p
t=1(Bjl ⊗ Ctl → Pjt) (4.6)

(h(Q))jt =
∨k

l=1(Ql ⊗Bjl ⊗ Ctl) (4.7)

for l ∈ {1, . . . , k}, j ∈ {1, . . . ,m} and t ∈ {1, . . . , p}.
The previous two operators have the following interpretation. (4.6) says

that the degree to which object i applies to factor l equals to a degree
to which i has every attribute j under every condition t such that j is a
manifestation of l and t is one of the conditions under which l appears;
(4.7) says that a degree to which object i has attribute j under condition t
equals the degree to which there is a factor l such that l applies to i, j is a
manifestation of l, and l is one of the conditions under which l appears.

The suitability of g and h as natural transformations between attribute-
condition and factor spaces is demonstrated by the following theorem.

66 Chapter 4. Decomposition of three-way ordinal data

Theorem 43. For i ∈ {1, . . . n}:

g(Ii) = Ai and h(Ai) = Ii .

That is, g maps the object dyadic cuts of I to the rows of A and vice versa,
h maps the rows of A to the object dyadic cuts of I.

PROOF. h(Ai) = Ii follows directly from I = ◦(A,B,C). Since A =
AF , B = BF , and C = CF , the l-th columns of A,B and C coincide with the
extent Dl1, intent Dl2, and modus Dl3 of a triadic concept 〈Dl1, Dl2, Dl3〉 ∈
F , respectively.

(g(Ii))l =
∧m

j=1

∧p
t=1(Bjl ⊗ Ctl → (Ii)jt) =

=
∧m

j=1

∧p
t=1((Dl2)j ⊗ (Dl3)t → Iijt) =

= (D
(1,2,Dl3)
l2)i = (Dl1)i = Ail.

�

The following theorem shows that g and h form an isotone Galois con-
nection.

Theorem 44. For P, P p ∈ Lm×p and Q,Qp ∈ Lk:

P ≤ P p ⇒ g(P) ≤ g(P p), (4.8)

Q ≤ Qp ⇒ h(Q) ≤ h(Qp), (4.9)

h(g(P)) ≤ P, (4.10)

Q ≤ g(h(Q)). (4.11)

PROOF. (4.8): Follows from monotony of → in second argument and
monotony of ∧

(4.9): Follows from monotony of ⊗ and ∨
(4.10): Using basic properties of residuated lattices we have

h(g(P))jt =

k∨
l=1

 m∧
j′=1

p∧
t′=1

(Bj′l ⊗ Ct′l → Pj′t′)⊗Bjl ⊗ Ctl

 ≤
≤

k∨
l=1

(Bjl ⊗ Ctl → Pjt)⊗Bjl ⊗ Ctl ≤

≤
k∨

l=1

Pjt = Pjt.

4.3. Transformations between induced spaces 67

(4.11): Using basic properties of residuated lattices we have

g(h(Q))l =
m∧
j=1

p∧
t=1

(
Bjl ⊗ Ctl → (

k∨
l′=1

Ql′ ⊗Bjl′ ⊗ Ctl′)

)
≥

≥
m∧
j=1

p∧
t=1

Bjl ⊗ Ctl → Ql ⊗Bjl ⊗ Ctl ≥

≥
m∧
j=1

p∧
t=1

1→ Ql = Ql

�

(4.8)–(4.11) are natural properties of transformations between attributes-
condition and factor spaces. For example, (4.8) shows that the higher the
degree to which an object has attributes under conditions, the higher the
degree to which factors apply to the object, while (4.9) states analogous
relationship in the opposite direction.

A geometry behind the transformations is described by the following
assertion. For P ∈ Lm×p and Q ∈ Lk, put

g−1(Q) = {P ∈ Lm×p | g(P) = Q},
h−1(P) = {Q ∈ Lk | h(Q) = P}.

Recall that S ⊆ Ls is called convex if V ∈ S whenever U ≤ V ≤ W for
some U,W ∈ S.

Theorem 45. (1) g−1(Q) is a convex partially ordered subspace of the at-
tribute and condition space and h(Q) is the least element of g−1(Q).
(2) h−1(P) is a convex partially ordered subspace of the factor space and
g(P) is the largest element of h−1(P).

PROOF. By standard application of the properties of isotone Galois con-
nections. �

According to Theorem 45, the space Lm×p of attributes and conditions
and the space Lk of factors are partitioned into an equal number of convex
subsets. The subsets of the space of attributes and conditions have least
elements and the subsets of the space of factors have greatest elements. g
maps every element of any convex subset of the space of attributes and
conditions to the greatest element of the corresponding subset of the factor
space, whereas h maps every element of some convex subset of the space of
factors to the least element of the corresponding convex subset of the space
of attributes and conditions.

68 Chapter 4. Decomposition of three-way ordinal data

Algorithm 3: ComputeFactors(X,Y ,Z, I)

compute B(X,Y, Z, I);
set S to B(X,Y, Z, I);
set F to ∅;
set U to X × Y × Z;
while U 6= ∅ do

select 〈A,B,C〉 ∈ S which maximizes |U ∩ S〈A,B,C〉|;
add 〈A,B,C〉 to F ;
set U to U \ S〈A,B,C〉;

remove 〈A,B,C〉 from S;

return F

4.4 Algorithms

Due to the above results, the problem of finding a minimal decomposition
of 〈X,Y, Z, I〉 can be seen as a problem of finding a minimal subset F ⊆
T (X,Y, Z, I) of formal concepts that cover I. We can reduce the problem
of finding a matrix decomposition to the Set Cover problem in the following
way. The universe U that should be covered corresponds to X × Y × Z.
The family S of subsets of the universe U that is used for finding a cover
contains for each triadic concept in T (X,Y, Z, I) a set of indices which the
triadic concept covers. More precisely, we set

S = {S〈A,B,C〉 | 〈A,B,C〉 ∈ T (X,Y, Z, I)},

where

S〈A,B,C〉 = {(i, j, k) |Ai ⊗Bj ⊗ Ck = Iijk}.
In this setting, we are looking for C ⊆ S as small as possible such that⋃ C = U . Thus, finding factor concepts is indeed an instance of the set-
covering problem. It is well known that the set covering optimization prob-
lem is NP-hard and the corresponding decision problem is NP-complete.
However, there exists a greedy approximation algorithm for the set covering
optimization problem which achieves an approximation ratio ≤ ln(|U |) + 1,
see [26]. This gives us a “naive” greedy-approach algorithm for computing
all factor concepts.

Algorithm 3, implementing the above-mentioned greedy approach in our
setting, first computes a set of all triadic concepts which are stored in S, see
lines 1–2. Then it iteratively selects triadic concepts from S, maximizing
their overlap with the remaining tuples in U , see lines 5–9. Notice that
the size of the overlap of 〈A,B,C〉 with U is the number of yet uncovered
indices at which the cuboid corresponding to 〈A,B,C〉 has the same value
as I. More precisely, it is the number of elements of U ∩ S〈A,B,C〉.

4.5. Illustrative example 69

The drawback of Algorithm 3 is that it first computes a possibly large set
of triadic concepts and then it selects a small subset of it as the set of factor
concepts. This difficulty can be overcome by computing the factor concepts
“on demand”. This can be done in a way analogous to the one described in
[12]. Development of such an algorithm is an issue for future research.

4.5 Illustrative example

In this section, we present an illustrative example of factorization. We con-
sider input data containing information about potential car buyers and their
motivation for the purchase of a particular type of car. Such data is usu-
ally obtained via a customer survey. We assume that customers expressed
the degrees of their motivation using a 3-element scale (not at all, partly,
significantly).

We represent the data by a triadic fuzzy context 〈X1, X2, X3, I〉, where
X1 = {a, b, c, d, e, f, g, h} is a set of cars, X2 = {hp, sp, ac, pr,mc, sa} is a
set of car characteristics: horse power, space (i.e. the car is spacious),
acceleration/speed, price, monthly cost, safety; and X3 = {A,B,C,D,E} is
a set of customers participating in the survey. The fact that x is related to
y under z to the degree I(x, y, z) is interpreted as “the attribute y motivates
the customer z for the purchase of x to the degree I(x, y, z)”. We represent
the scale of degrees used in the survey by a 3-element Lukasiewicz chain
{0, 12 , 1}, with the following interpretation:

0 . . . not at all,
1
2 . . . partly,
1 . . . significantly.

We consider I given the Table 4.1. The rows of the table correspond to cars,
the columns correspond to attributes under the various conditions (cus-
tomers).

In such data, there exists a three-element set F = {F1, F2, F3} of factor
concepts. We fix the order of objects, attributes and conditions to the
order in which they appear in Table 4.1 in order to represent the extents,
intents, and modi of the factor concepts by their characteristic vectors. For
example, the characteristic vector of the extent of F1 is 〈1, 12 , 12 , 0, 1, 0, 12 , 1〉
which means that car a belongs to the extent of F1 to the degree 1, car b to
the degree 1

2 and so forth. The factor concepts in F are represented by the
following triplets of the characteristic vectors of their extents, intents, and
modi (the vectors are separated by ;):

F1 . . . 〈1, 12 , 12 , 0, 1, 0, 12 , 1; 1, 0, 1, 0, 0, 12 ; 1, 12 , 0,
1
2 , 1〉,

F2 . . . 〈0, 12 , 0, 12 , 1, 1, 12 , 12 ; 1
2 , 1, 0,

1
2 ,

1
2 , 1; 0, 12 ,

1
2 , 1,

1
2〉,

F3 . . . 〈0, 0, 12 , 1, 0, 1, 12 , 12 ; 0, 0, 0, 1, 1, 12 ; 0, 0, 1, 0, 12〉.

70 Chapter 4. Decomposition of three-way ordinal data

F1: “ability to go fast”

F2: “being a family car”

F3: “cost-effectiveness”

Figure 4.2: Geometric meaning of factors.

4.5. Illustrative example 71

Table 4.1: Triadic context

A B C D E
h
p

sp ac pr m
c

sa h
p

sp ac pr m
c

sa h
p

sp ac pr m
c

sa h
p

sp ac pr m
c

sa h
p

sp ac pr m
c

sa

a 1 0 1 0 0 1
2

1
2 0 1

2 0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 1 0 1 0 0 1
2

b 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 1

2
1
2 0 1

2 0 0 0
c 1

2 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 1

2
1
2 0 0 0 0 0 0 0 1

2 0 1
2 0 0 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 0 1

2 0 0 0 1
2 0 0 0 1

2
1
2 0

e 1 0 1 0 0 1
2

1
2

1
2

1
2 0 0 1

2 0 1
2 0 0 0 1

2
1
2 1 1

2
1
2

1
2 1 1 1

2 1 0 0 1
2

f 0 0 0 0 0 0 0 1
2 0 0 0 1

2 0 1
2 0 1 1 1

2
1
2 1 0 1

2
1
2 1 0 1

2 0 1
2

1
2

1
2

g 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 1

2 0 0 0 1
2

1
2 0 1

2 0 0 0
h 1 0 1 0 0 1

2
1
2 0 1

2 0 0 0 0 0 0 1
2

1
2 0 1

2
1
2

1
2 0 0 1

2 1 0 1 0 0 1
2

Using F , we obtain the following 8 × 3 object-factor matrix AF , 6 × 3
attribute-factor matrix BF , and 5× 3 conditions-factor matrix CF :

AF =



1 0 0
1
2

1
2 0

1
2 0 1

2

0 1
2 1

1 1 0

0 1 1
1
2

1
2

1
2

1 1
2

1
2


, BF =



1 1
2 0

0 1 0

1 0 0

0 1
2 1

0 1
2 1

1
2 1 1

2


, CF =


1 1 0
1
2 0 1

2

0 1 1
2

1
2 1 1

1 1 1
2

.

One can check that I = ◦(AF , BF , CF), i.e., I decomposes into three
(two-dimensional) matrices using three factors. Note that the meaning of
the factors can be seen from the extents, intents, and modi of the factor
concepts. For instance, F1 can be interpreted as “the ability to go fast”.
Indeed, F1 is manifested by the attributes horse power and speed to the
degree 1, and by safety to the degree 1

2 . The factor F2 is manifested by
space and safety to the degree 1, and by horse power, price, and monthly
cost to the degree 1

2 . This suggests that F2 can be interpreted as “being
a family car”. The high degree manifestations of F3 are price and monthly
cost, leading to a possible interpretation as “cost-effectiveness”. As a result,
by finding the factors set F = {F1, F2, F3}, we have explained the structure
of the input data set I using three factors which describe the attractivity of
cars to customers in terms of their characteristics.

Let us recall that the factor concepts F = {F1, F2, F3} can be seen as
maximal cuboids in I. Indeed, I itself can be depicted as three-dimensional
box where the axes correspond to cars, their characteristics, and customers.
Figure 4.2 shows the three factors depicted as cuboids. White and black
circlets in Figure 4.2 correspond to elements in I. Namely, a white circlet

72 Chapter 4. Decomposition of three-way ordinal data

is present on the intersection of x ∈ X, y ∈ Y , and z ∈ Z in the dia-
gram iff ◦(A i, B i, C i)(x, y, z) = 1

2 . Furthermore, the circlet is black iff
◦(A i, B i, C i) = 1. That is, for a factor Fi, the circle depicts the degree
to which x belongs to the extent of Fi, y belongs to the intent of Fi, and z
belongs to the modus of Fi.

4.6 Summary and topics of future research

We presented a method for decomposition of three-way ordinal matrices.
The method utilizes triadic fuzzy concepts of the input data as factors. As
demonstrated by an small example, a clear interpretation of triadic fuzzy
concepts provides to the factor model transparent meaning. We proved that
a decompositions using triadic concepts are optimal. We provided natural
transformations between descriptions of objects in attribute-condition space
and the space of factors. We showed by a reduction to Set Cover problem
that the problem of finding an optimal decomposition is NP-hard. We uti-
lized a greedy approach to solving Set Cover problem in an approximation
algorithm for finding a decomposition.

The topics left for future work include:

- Design of more efficient algorithm that overcome the necessity of com-
putation of all triadic concepts. Such an algorithm can be based on
the idea utilized in decomposition of dyadic matrices [19].

- Further study of algorithms. This includes their computational com-
plexity, approximation factors and performance evaluation.

- Approximate decompositions. The study of a problem of finding a set
of factors such that their product equals the original matrix to a given
degree.

Acknowledgement The work summarized in this chapter was supported
by Grant No. P202/10/0262 of the Czech Science Foundation and by re-
search plan MSM 6198959214.

References

[1] R. Belohlavek. Algorithms for fuzzy concept lattices. Proc. Fourth
Int. Conf. on Recent Advances in Soft Computing, RASC 2002, Not-
tingham, United Kingdom, 12-13 December, 2002, pp. 200-205.

[2] R. Belohlavek, B. De Baets, J. Outrata, V. Vychodil. Com-
puting the lattice of all fixpoints of a fuzzy closure operator. IEEE
Transactions on Fuzzy Systems 18(3)(2010), 546-557.

[3] R. Belohlavek. Fuzzy concepts and conceptual structures: induced
similarities. Joint Conf. Inf. Sci.’98 Proceedings, Vol. I, pp. 179-182,
Durham, NC, 1998. [Assoc. Intel. Machinery, ISBN 0-9643456-7-6]

[4] R. Belohlavek. Lattices generated by binary fuzzy relations. Tatra
Mt. Math. Publ. 16 (1999), pp. 11-19 (Special issue, Fuzzy Set Theory
and Appl.). [Slovak Acad. Sci.]

[5] R. Belohlavek. Fuzzy Galois connections. Math. Logic Quarterly 45,
5 (1999), 497-504

[6] R. Belohlavek., Similarity relations in concept lattices. J. Logic and
Computation 10 (6) (2000) No. 6, pp. 823–845.

[7] R. Belohlavek. Reduction and a simple proof of characterization of
fuzzy concept lattices. Fundamenta Informaticae 46(4), 2001, pp. 177-
285.

[8] R. Belohlavek. Fuzzy Relational Systems: Foundations and Princi-
ples. Kluwer, Academic/Plenum Publishers, New York. 2002.

[9] R. Belohlavek. R. Concept lattices and order in fuzzy logic. Annals
of Pure and Applied Logic 128(1–3) (2004), 277–298.

[10] R. Belohlavek R., V .Vychodil. What is a fuzzy concept lattice?
In: Proc. CLA 2005, 3rd Int. Conference on Concept Lattices and
Their Applications September 7–9, 2005, Olomouc, Czech Republic,
pp. 34–45, URL: http://ceur-ws.org/Vol-162/.

74 REFERENCES

[11] R. Belohlavek, M. Kostak, P. Osicka. Reconstruction of belem-
nite evolution using formal concept analysis. Proc. of the 20th European
Meeting on Cybernetics and Systems Research. 2010 Vienna, Austria.
(ed: R. Trappl), pp 32-38, [ISBN 3-85206-178-8.]

[12] R. Belohlavek, V. Vychodil. Discovery of optimal factors in binary
data via a novel method of matrix decomposition. J. Comput. System
Sci 76(1)(2010), 3-20.

[13] R. Belohlavek, P. Osicka. Triadic concept analysis of data with
fuzzy attributes Proc. of The 2010 IEEE International Conference on
Granular Computing (GrC 2010). 2010, San José, USA

[14] R. Belohlavek, P. Osicka. Triadic concept lattices of data with
graded attributes International Journal of General Systems, 41 (2)
(2012), 93-108.

[15] R. Belohlavek. Optimal decompositions of matrices with entries
from residuated lattices. J. Logic and Computation, 2011, (to appear,
10.1093/logcom/exr023).

[16] R. Belohlavek, C. Glodeanu, V .Vychodil. Optimal factoriza-
tion of three-way binary data using triadic concepts. Order (to appear,
doi:10.1007/s11083-012-9254-4).

[17] R. Belohlavek. Sup-t-norm and inf-residuum are one type of rela-
tional product: unifying framework and consequences. Fuzzy Sets and
Systems. 2011 (to appear, doi 10.1016/j.fss.2011.07.015).

[18] R. Belohlavek, P. Osicka, V. Vychodil. Factorizing Three-
way ordinal data using triadic formal concepts. Ninth International
conference on Flexible Query Answering System, Ghent, Lecture
Notes in Computer Science, 2011, Volume 7022/2011, 400-411, DOI:
10.1007/978-3-642-24764-4 35

[19] R. Belohlavek, V. Vychodil. Discovery of optimal factors in binary
data via a novel method of matrix decomposition. Journal of Computer
and System Sciences 76(1)(2010), 3-20. DOI 10.1016/j.jcss.2009.05.002

[20] K. Biedermann. How triadic diagrams represent conceptual struc-
tures. Conceptual structures: Fulfilling Peirce’s Dream, Lecture Notes
in Artificial Inteligence 1257 Springer-Verlag, Berlin-Heidelberg-New
York, 1997

[21] K. Biedermann. Triadic Galois connections. In K. Denecke & O.
Lüders (Eds.): General algebra and applications in discrete mathemat-
ics. Shaker Verlag, Aachen, 1997. pp. 23-33.

REFERENCES 75

[22] K. Biedermann. An equational theory for trilattices Algebra Univer-
salis 42, Birkhäuser Verlag, Basel, 1999

[23] J. D. Carrol, J. J. Chang. Analysis of individual differences in mul-
tidimensional via an N-way generalization of ‘Eckart-Young’ decompo-
sition. Psychometrika 35, 1970, pp. 283-319.

[24] A. Cichocki, R. Zdunek, A. H. Phan, S.I. Amari. Nonnegative
Matrix and Tensor Factorizations: Applications to Exploratory Multi-
way Data Analysis and Blind Source Separation. J. Wiley. 2009.

[25] R. Cole, P. Eklund. Scalability in formal context analysis: a case
study using medical texts. Computational Intelligence 15 (1999), 11–27.

[26] T. H. Cormen et al. Introduction to Algorithms, 2nd Ed. MIT Press,
2001.

[27] F. Dau, R. Wille On the modal understanding of triadic contexts.
Classification and information processing at the turn of the millennium:
proceedings of the 23rd annual conference of the Gesellschaft für Klas-
sifikation e.V., University of Bielefeld, March 10-12, 1999

[28] P. Eklund, T. Wray. Social Tagging for Digital Libraries using For-
mal Concept Analysis In: Kryszkiewicz M., Obiedkov S. (Eds.): Proc.
CLA 2010. 2010

[29] A. A. Frolov, D. Húsek, I. P. Muraviev, P.A. Polyakov.
Boolean factor analysis by Hopfield-like autoassociative memory, IEEE
Trans. Neural Netw. 18 (3) (2007), 698-707.

[30] B. Ganter, R. Wille. Formal Concept Analysis. Mathematical Foun-
dations. Springer, Berlin. 1999.

[31] B. Ganter, S. Obiedkov. Implications in triadic formal contexts.
ICCS 2004, LNAI 3127, pp. 186-195.

[32] F. Geerts, B. Goethals, T. Mielikänen. Tiling databases. In:
Proc. DS 2004, in: Lecture Notes in Computer Science. vol. 3245, 2004,
pp. 278-289

[33] J. A. Goguen. The logic of inexact concepts. Synthese 18 (1968–69),
325–373.

[34] G. A. Golub, C.F. Van Loan. Matrix Computations, 3rd ed, The
John Hopkins University Press, 1995.

[35] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht. 1998.

76 REFERENCES

[36] R. Jäschke, A. Hotho, C. Schmitz, B. Ganter, G. Stumme.
TRIAS – An Algorithm for Mining Iceberg Tri-Lattices. Proc. ICDM
2006, pp. 907–911. 2006.

[37] T. G. Kolda, B. W. Bader. Tensor decompositions and applications.
SIAM Review 51(3)(2009), 455–500.

[38] P. M. Kroonenberg. Applied Multiway Data Analysis. J. Wiley.
2008.

[39] P. Krajca, J. Outrata, V. Vychodil. Parallel Recursive Algorithm
for FCA. In: Bělohlávek R., Kuznetsov S. O. (Eds.): Proc. CLA 2008,
2008, 71–82 (CEUR WS, Vol. 433)

[40] P. Krajca, J. Outrata, V. Vychodil. Parallel algorithm for
computing fixpoints of Galois connections. Ann. Math. Artif. Intell.
59(2)(2010), 257–272

[41] P. Krajca, J. Outrata, V. Vychodil. Advances in algorithms
based on CbO. In: Kryszkiewicz M., Obiedkov S. (Eds.): Proc. CLA
2010, 325-337.

[42] S. Kuznetsov, S. Obiedkov. Comparing performance of algorithms
for generating concept lattices. J. Experimental and Theoretical Articial
Intelligence 14(2–3)(2002), 189–216.

[43] F. Lehmann, R. Wille. A triadic approach to formal concept analy-
sis. Lecture Notes in Computer Science 954, 32–43, 1995.

[44] R. P. McDonald. Factor analysis and related methods. Lawrence Erl-
baum Associates, Inc. 1985.

[45] P. Miettinen, T. Mielikainen, A. Gionis, G. Das, H. Mannila.
The Discrete Basis Problem. PKDD 2006, Lecture Notes in Artificial
Intelligence 4213, 335–346.

[46] N. Tatti, T. Mielikänen, A. Gionis, H. Mannila. What is the
dimension of your binary data? The 2006 IEEE Conference on Data
Mining, ICDM 2006, IEEE Computer Society, 2006, 603-612.

[47] J. Outrata. Preprocessing Input Data for Machine Learning by FCA.
In: Kryszkiewicz M., Obiedkov S. (Eds.): Proc. CLA 2010. 187-198.

[48] J. Outrata. Boolean factor analysis for data preprocessing in ma-
chine learning. In: Draghici S., Khoshgoftaar T. M., Palade V., Pedrycz
V., Wani M. A., Zhu X. (Eds.): Proceedings of The Ninth Int. Conf.
on Machine Learning and Applications (ICMLA 2010), 2010, 899–902,
Washington, D.C., USA, December 2010.

REFERENCES 77

[49] S. Pollandt. Fuzzy Begriffe. Springer-Verlag, Berlin/Heidelberg.
1997.

[50] A. Smilde, R. Bro, P. Geladi. Multi-way Analysis: Applications in
the Chemical Sciences. J. Wiley. 2004.

[51] M. Ward, R. P. Dilworth. Residuated lattices. Trans. Amer. Math.
Soc. 45 (1939), 335–354.

[52] R. Wille Restructuring lattice theory: an approach based on hierar-
chies of concepts. In: I. Rival (Ed.): Ordered Sets, 445–470, Reidel,
Dordrecht-Boston, 1982.

[53] R. Wille. The basic theorem of triadic concept analysis. Order 12
(1995), 149–158.

[54] L. A. Zadeh. Fuzzy sets. Inf. Control 8 (1965), 338–353.

Petr Osička, ∗ May 25, 1981, Valtice, Czech Republic
petr.osicka@acm.org

Petr Osička graduated at Faculty of Science, Palacký University in Olomouc
(Czech Republic) with a MSc. (Mgr.) degree in Computer Science in 2007.
He works at Department of Computer Science, Faculty of Science, Palacký
University (http://www.upol.cz) since 2007.

He is the author or coauthor of several papers on fuzzy systems, formal
concept analysis, and triadic concept analysis, and has been a participant
in several projects and grants in the areas of data mining and uncertainty.
His interests are concept analysis and fuzzy logic.

