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Abstract

Nonlinear stiffness affects the dynamics of modern machine tools. An important parame-
ter of machine tool productivity is self-excited vibration, which limits the performance of
the machine tool. This work was motivated by an industrial case where the behaviour of
a machine tool cannot be predicted by traditional methods and the machine exhibits a
significant change in dynamic behaviour. This work presents a step-by-step analysis that
was focused on the simulation of self-excited vibrations and the effect of nonlinear stiffness
on the resulting vibration stability. As the complexity of the model increases, a linearisa-
tion approach has been introduced that allows faster analysis of the machining stability.
For better mapping and creation of a stability lobe diagram for a nonlinear structure, an
algorithm for the synthesis of linearised solutions at the working point is presented. The
linearisation approach was combined with nonlinear static simulation considering the non-
linear behaviour model of the linear ball guide and used to predict vibration behaviour.
The nonlinear static model uses a dynamic cosimulation and substructuring method to
incorporate the effects of structural deformation into the analysis. The experimental
machining test made it possible to compare the analysis results and demonstrated good
agreement with the maximum frequency deviations in the 3 Hz band.
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Abstrakt

Nelineárńı tuhost ovlivňuje dynamiku moderńıch obráběćıcho stroj̊u. Důležitým para-
metrem produktivity obráběćıho stroje jsou samobuzené vibrace, které omezuje výkon
obráběćıho stroje. Tato práce byla motivována pr̊umyslovým př́ıpadem, kdy chováńı
obráběćıho stroje nelze předv́ıdat tradičńımi metodami a stroj vykazuje významnou změnou
dynamického chováńı. Tato práce krok za krokem představuje analýzu, která byla zaměřena
na simulaci samobuzených vibraćı a vlivu nelineárńı tuhosti na výslednou stabilitu chvěńı.
Se zvyšuj́ıćı se složitost́ı modelu byl představen linearizačńı př́ıstup, který umožňuje rych-
leǰśı analýzu stability obráběńı. Pro lepš́ı mapováńı a tvorbu stabilitńıho lobe diagramu
pro nelineárńı strukturu je uveden algoritmus syntézy linearizovaných řešeńı v pracovńım
bodě. Linearizačńı př́ıstup byl kombinován s nelineárńı statickou simulaćı s ohledem na
model nelineárńıho chováńı lineárńıho kuličkového vedeńı a použit pro predikci chováńı
chvěńı. Nelineárńı statický model využ́ıvá metodu dynamické kosimulace a substruktu-
rováńı, aby do analýzy začlenil účinky strukturálńı deformace. Experimentálńı zkouška
obráběńı umožňila porovnat výsledky analýzy a prokázala dobrou shodu s maximálńımi
frekvenčńımi odchylkami v pásmu 3 Hz.

Kĺıčová slova

Samobuzené vibrace při obráběńı, Nelineárńı dynamika , Lineárńı kuličkové vedeńı,
Soustruh
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1
Introduction

The machine tool industry is facing productivity saturation and lags behind other fast-
developing industrial fields. The reason is that the investment horizon of new machine
tools is quite long. It is not unusual to see working machines built several decades ago.
Moreover, traditional cam-based machine tools could even exceed the productivity of
modern CNC machines. Therefore, there is not much space for new progressive develop-
ment. Despite this fact, there is a significant obstacle in the machining industry, the lack
of skilled machinists, which brings a new challenge in this century, how to decrease the
number of human labour needs in machining. Industry 4.0 should be an answer to this
issue. Digitalisation and the Internet of Things should optimise the workflow in factories
and enable production with minimal needs for human workers. In contrast to a problem
with a self-driving car, machine tools work in a controlled manner. However, the machine
man still needs long-term experience and good knowledge of the machine for the best
results. One of the signs of mastering machine tools is to use maximal productivity of the
cutting process without vibration. Without a well-defined limit of chatter stability, it is
impossible to achieve high productivity without an experienced operator.

The chatter phenomenon is familiar to anyone who operates machine tools. Most op-
erators can easily recognise an unstable cut by sound during machining and the quality of
the workpiece surface. Although chatter theory has been well known for a long time, many
types of uncertainty complicate its application. Most processes are based on machinist
senses and experience rather than chatter analysis.

Many parameters cause uncertainties: the inconsistency of the workpiece’s material
property, knife wear, changeable behaviour of the machine tool dynamic due to its depen-
dence on tool position, machining parameters dependency of specific cutting force on the
machining conditions, changeable behaviour of the machine’s dynamic which dependence
on tool position, the process damping during machining or nonlinearities of the structure
– all these factors influence the stability of machining. All these factors limit the use of
a simple lobe diagram to a specific case. However, with the decreasing number of highly
skilled workers who could adjust the process based on their experience and the increasing
effort to replace human labour, the importance of reliable stability prediction increases
significantly.

This thesis tries to find an answer to one of these aspects which complicates the re-
liability of the stability diagram, the effect of nonlinear stiffness on the machine tool
stability. The motivation for this work was the author’s experience with stability pre-
diction, which often differs from measured experimental machining. The most suspicious
was the frequency shift of the excited chatter vibration, where a change in stiffness must
be the cause. Therefore, it is necessary to find methods to predict this kind of behaviour.
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2
Aims of PhD. Thesis

Although nonlinearities are a natural part of machines, they are caused by many different:
structural, contact, or otherwise causes; they are often not considered in the design and
operation of machines. This work aims at a description of stability prediction and defines
a methodology for chatter stability prediction, which could enable better machine tool
design and improve the targeting of active chatter suppression.

• Analysis of the influence of nonlinearity of bonds on the stability of the cutting
process

• Methodology for the construction of machine tools in terms of increasing stability
of self-excited vibrations

• Analysis of the possibilities of nonstructural increase of cutting stability of machine
tools
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3
General System Theory

3.1 System

The common situation in research is to work with problems with unknown causes. During
the process, seems to be extremely complicated; however, after the solving seems to be
trivial. The process of understanding and general thinking has a long history that started
with ancient Greek philosophers. which established the boundary of modern science. On
this basis, the whole world of philosophy as a start of the modern history of system theory
could be considered Hegel’ s ‘The Science of logic’ [1] where Hegel defined the nature of
systems by the following statements:

• The whole is more than the sum of parts.

• The whole defines the nature of the parts.

• Parts cannot be understood by studying the whole.

• Parts are dynamically interrelated or interdependent.

Von Bertalanffy studied the connections between nonmaterial and material phenome-
non [2], he observed that the concept of several well-known models from technical fields
could be applied to biological material and nonmaterial phenomenon. Figure 3.1 shows
the feedback detection system model that could describe biological structure and technical
concept.

Figure 3.1: Simple scheme of feedback system [2]

Klir [3] provides simple definition of system The term ’system’ stands, in general,
for a set of some things and a relation among the things. This could be represented by
mathematical formula where S stands for a system, T for set of things and R for relations:

S = (T,R). (3.1)

Figure 3.2 shows a graphical representation of this little bit ‘vague’ description; where it
is obvious that the system is the set of thins connected by relations.

Better definition has been given by Ackoff [5], where system is a set of two or more
elements which satisfy folowing conditions:

11



CHAPTER 3. GENERAL SYSTEM THEORY

Figure 3.2: Klir’s mathematical definition of system and its visualisation [4]

• The behaviour of each element has an effect on the behaviour of the whole.

• The behaviour of the elements and their effects on the whole are interdependent.

• However subgroups of the elements are formed, all have an effect on the behaviour
of the whole but none has an independent effect on it.

The goal of general system theory is to enable the transfer of knowledge from one scientific
field to another to enable the application of the computational method developed in one
single field to apply in whole sets of potential fields. With a little exaggeration, we can
say that general system theory lays the basis for multidiscipline collaboration in science.

3.2 Problem of Complexity

Weaver describes the problem of complexity in the original paper [6], on case of billiard
table with ball on the table, where with the increasing number on the table the complexity
of the problem increases. Figure 3.3 shows the type of problems divided into three regions
where the extremes are represented by organized simplicity representing simple problems
and disorganised complexity, which could be assumed as chaotic region. The important
region, is the organised complexity region which can be described by a combination of
statistical method and advanced computation. There are two axes where on one rove is
randomness and on the other is a complexity, the randomness expressing an unknown re-
lation which is dot easily describe the complexity on the other hand describes the situation
where the problem could be described but the solving demand increases gradually. The
deterministic chaos causes the boundary between organized complexity and disorganized
complexity where even a simple model could be affected by the deterministic chaos.

It is important to realise what type of example is being solved. Because different
cases need a special approach-orientated. Sometimes the problem can be simplified and
transposed to an easier problem-solving area or due to its chaotic behaviour cannot be
solved at all. Therefore, the first analysis of the problem must focus on the character of
the problem.

3.3 Method for General Problem Solving

Janicek proposed system methodology algorithm [7], providing formalised step-by-step
operation for effective systems solving. This methodology is not limited only to technical

12



CHAPTER 3. GENERAL SYSTEM THEORY

Figure 3.3: Classes according to Weaver[6] of systems and associated problems that require
distinct mathematical tools

fields-orientated but could be generalised for any system. This general system-orientated
methodology enables application in any fields and its purpose is to guide analysis in an
optimal way. This methodology uses forms of attributes to sort out the nature of the
systems. The basic and necessary condition is to consider humans as erring creatures,
and even they are following the best formalised methodology, it highly produces fatal
errors simplifying and overlooks the necessary assumptions. Correct analyses are possible
only if we realise our own error.
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4
Chatter – Self-exited Vibration in Machining
Process

4.1 Theory of Chatter Source

In the theory of self-excited oscillations, there are two basic models that describe stability
during machining:

• Mode coupling effect

• Regenerative chatter.

Tlusty describes the principle of positional coupling, which enables to describe some of
the occurrence of vibrations during machining of a material that is not corrugated from
the previous operation (e.g., linear planing) [8]. The model is based on a system with
two different perpendicular stiffness. Therefore, the basis is an oscillation model with two
degrees of freedom and a different natural frequency for each direction. The tool performs
an elliptical movement during machining. If we consider the system from Fig. 4.1 and
the movement in a clockwise direction, when moving from A to B, the width of the depth
of cut decreases, so the force is less than when cutting from B to A. Assuming that the
energy supplied in this way is greater than the energy wasted by damping, the system
increases its oscillation.

Figure 4.1: Mode coupling effect scheme

The regenerative chatter principle is based on the interaction between surfaces that
happen in the previous turn and the actual blade deflection of the knife. Fig. 4.2 shows
a simplified model with an example of the dependence of the stability on the phase shift
between the actual and previous cut. A stable cut occurs when the phase shift is small, the

14



CHAPTER 4. CHATTER – SELF-EXITED VIBRATION IN
MACHINING PROCESS

cutting force is therefore almost constant even during the initial undulation of the surface;
the cut will gradually calm down in this case, as this system will not be supplied with
new energy. The opposite case occurs when the phase changes π and then the minimum
and maximum cuts alternate, which excites the system with a variable cutting force.

Figure 4.2: Regenerative chatter scheme

Both of these models require a range of simplifying assumptions, such as the indepen-
dence of the cutting resistance from the depth of the cut, a constant angle of the cutting
force vector to the surface, etc. All these simplifications are essential in most cases, but
there are cases where neglect of some effects is very significant.

4.2 Chatter Stability Estimation in Turning Process

The key is to define conditions when the system will be stable and unstable; Tlusty defined
it by a chip limit width blim as a fraction where the cutting force Ks and the real negative
part of the transfer function of the system G(u) are in the denominator:

blim =
−1

2KsG(u)
. (4.1)

If we consider a minimum of negative real functionsmin(G(u)), then we obtain the criteria
for the whole spindle speed stability. However, this criterion is too strict, so the next step
in classical analysis is to define the faze shift ϵ, which is the inverse tangent of the fraction
of the real and imaginary part of the transfer function:

ϵ = atan

(
real(G(u))

imagG(u)

)
. (4.2)

The last step before building the lobe diagram is to calculate the reaction frequency fri
for each harmonic lobe.

fri =
fs

i− ϵ
π

; i = 1, 2, 3...n. (4.3)

Combining the reaction frequency width criterion to limit the stable chip width, we get
a stability lobe diagram; this diagram draws the boundary between stable and unusable
conditions, the typical diagram can be seen in Fig. 4.3 [8, 9].
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CHAPTER 4. CHATTER – SELF-EXITED VIBRATION IN
MACHINING PROCESS

Figure 4.3: Lobe diagram divides machining condition on stabile and unstable

4.3 Current Research in Field of Self-Excited
Vibrations

Today’s trend is, above all, a better description of the machining process and the con-
nection of individual influences on the stability of the cutting process. These are the
parameters of the cutting process, where the friction between the tool back and the chip,
the shear stress in the chip and the angle of inclination of the cutting edge affect the
direction of the force result. It should be noted that these properties are also related to
chip temperature.

Jiang focuses on experimental verification of lathe stability estimation, which assumes
a flexible workpiece and considers nonlinear cutting resistance [10], its proposed model
compares with the results using the method presented by Altintas [11]. Altintas addresses,
among other things, the difference between numerical simulation and analytical solution.
Where Altintas addresses, among other things, the difference between numerical simu-
lation and analytical solution. Furthermore, this work deals with the FEM simulation
of the cutting process. Ayed using FEM compares the properties of cutting parameters
depending on the grain structure of the titanium alloy [12].

Most works assume cutting resistance coefficients obtained from measurements of a
stable machining process. Turkes uses a piezo actuator-driven cutting process to obtain
dynamic cutting forces and, at the same time, focuses on the effect of material damping
on machining stability[13]. Several works deal with process damping. Due to process
damping at a low spindle speed, the machine stability increases significantly. However,
the process damping depends on a large number of parameters, especially on the degree
of cutting edge wear, so its estimation is not a simple task. Due to the complexity of this
problem, many works are devoted to it, e.g. [14, 15, 16].

One part of the research direction of self-excited vibrations focuses on thin-walled
components machining when the rigidity of the workpiece significantly influence the overall
stability of the system. Rubeo deals with this issue and presents time simulations, which
he validates by measurement [17].
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CHAPTER 4. CHATTER – SELF-EXITED VIBRATION IN
MACHINING PROCESS

4.4 Chatter Suppression

As was mentioned before, the structure’s dynamic defines chatter stability. Therefore,
lowering the mode amplitudes leads to chatter stability increasing. There are several ways
which could be called passive, these implement: increasing stiffness, damping, or designing
mass damper, the passive also mean that does not need any systems feedback. On the
other hand, there could be an active strategy that focuses on actively controlling the
process based on data from the cutting process. These could work on cutting parameter
modification or the active force vibration suppression.

Zhu presents the classification in Fig. 4.4, mainly the active division according to
actuator seems too detailed in contrast with putting all possible design modification into
the single category of changing systems behaviour [18]. Yuan, in contrast, classified
adjusting process parameters as a passive strategy [19], this difference is due to different
evaluation criteria also due to different examples; Yuan presents the tuning the machining
condition to a most stable situation as passive. Zhu presents the sinusoidal spindle speed
variation SSV as an example of this category, which could be both passive and active
depending on the criterion because it does not need direct feedback from the cutting
process. However, there is no dilemma from an energetic point of view, and it is active
without any doubt.

Chatter

Suppression

Passive

Suppression

Active

Suppression

Adjusting 

Process 

Parameters

Piezoeletric

Actuator 

Control

Active

Magnetic

Bearing

Other

Actuators

Special

Tool

Structures

Changing

Systems 

Behaviors

Figure 4.4: The diagram of chatter suppression classification

Kamal also presents the category of the semi-active method gives an example mag-
netorheological or electrorheological fluid-controlled damped boring bar [20]. Obviously,
there are many different divisions of approaches, and there is not a single definable taxon-
omy, but ultimately it is a matter of modifying the vibration modes, changing the phase
shift and increasing the damping.

4.4.1 Passive Chatter Suppression

As was mentioned before, the dynamic is the key factor for chatter stability, simply put,
increasing stability is possible by reducing weight or increasing stiffness and damping.
This could be achieved by material choice or by topological optimization. Ashby provides
a comparison of dynamic behaviour, which can be seen in Fig. 4.5 [21], where the Y-axis
represents an inverse value of damping, the X-value represents the ratio between density
and stiffness. The trade-off surface (the shaded band) represents the subset of material
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CHAPTER 4. CHATTER – SELF-EXITED VIBRATION IN
MACHINING PROCESS

with good performances in both metrics. However, the dynamic parameter for a machine
tool is not the only requirement for the machine tool behaviour. Möhring summarises all
the aspects of material choice for machine design structure including both thermal and
mechanical aspects [22].

Figure 4.5: Performance metrics for density-stiffness ratio and damping where the shaded
band shows theoptimum trade-off surface

Increasing the stiffness and eliminating oscillations during oscillations requires a de-
manding analysis of the system. The basic requirement is knowledge of the loading
structure. Knowing how the structure will be loaded makes it possible to use topological
optimization methods to design structures that maximize rigidity and minimize system
weight.

Topological optimization methods are often based on the imitation of natural pro-
cesses, whether it is the reinforcement of bones or tree trunks. An example is the fractal
leaf vein structure, which supports the shell/plane structure. Li tries to imitate this kind
of structure with his topological optimization algorithm[23]. An example of topological
optimization of machine tools is presented by Shen, which uses adaptive growth meth-
ods to design machine reinforcements, and optimize the connector layout, which leads to
increasing of highest mode displacement on 50 % of the original amplitude and shifting
most of the modes to the higher frequencies [24].

The problem of topological optimization is often the restriction to certain constant
input conditions, partly static; this shortcoming tries to eliminate Weule, which extends
the optimization by motion, using multi-body simulation; the structure then compares the
differently formed structures [25]. Shen applied an adaptive growth method for optimizing
the supporting 3D structure of attached tuned mass dampers (tuned mass dampers) under
harmonic excitation [26].

tuned mass dampers are devices used to reduce the resonant amplitude and eliminate
unwanted vibrations. The basic principle of a passive dynamic damper is to tune to
the same natural frequency as the damped system, leading to the decay of the natural
frequency peak into two with a smaller amplitude. tuned mass dampers are often used

18



CHAPTER 4. CHATTER – SELF-EXITED VIBRATION IN
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in high-rise buildings where they stabilize the structure against external influences [27].
By reducing the resonant amplitude, the minimum of the real negative response of the
system is also reduced, thereby increasing the stability of the system against self-excited
vibrations. The option is to place a damper on the machine structure as Yang presents
[28], or to integrate it directly into the tool holder [29, 30]. One of the main disadvantages
is that the weight requirement for mass dampers is too limiting for most systems.

A common problem with self-excited vibrations is the lack of damping, which also
affects the usability of tuned mass damper. This issue could solve an alternative to tuned
mass damper can be a particle tuned damper. The main advantage is the increase in en-
ergy dissipation by the chaotic interaction of particles [31, 32, 33]. However, it depends on
the acceleration, and at small values, the effect does not appear, which significantly limits
the use as a prevention of chatter. Yang introduced another way to improve damping
during machining - eddy current damping, where a movement of a permanent magnet in-
duces eddy current and dissipate the vibration energy. Yang used it for a thin wall milling
where he achieved 40 % improvement of chatter stability [34]. The main disadvantage of
this type of damper is that its effectiveness is frequency-dependent (rising with the fre-
quency). To achieve a reasonable damping effect at low vibration frequency requires a
large magnetic field, which makes it impossible to apply in most cases.

4.4.2 Active Chatter Suppression

An alternative to the tuned mass dampers are active dampers. This type of dynamic
damper extends the dynamic damper by a force that has the opposite phase to that
of the original vibration. The device therefore works on the principle that, based on
the sensed vibration, it evaluates the action and acts against the vibration by means
of a servomechanism. Here it is clear that this is a relatively expensive investment.
The advantage is that this device can operate in a relatively wide area of the frequency
spectrum - the main limitation is the maximum acceleration of the drive and the speed
of processing the measured data. Zuperl presents usage of neural networks for quick
evaluation of action interventions [35].

Figure 4.6: Spectrogram from experimental verification of the use of sinusoidal modulation
of spindle speed SSV in comparison with the constant spindle speed CSS [36]

The basis of most methods is an effort to reduce the regenerative principle. Simply
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put, it tries to compensate for the phase shift between the corrugation from the previous
cut and the current blade deflection so that the chip thickness is as even as possible, and
the pulsations that cause self-excited oscillations do not occur. Several methods based pri-
marily on sinusoidal spindle speed modulation are presented for turning. Insperger deals
with modelling the effect of modulation on a system with one degree of freedom [37]. Ur-
bikain focuses mainly on experimental verification of suitable parameters for modulation
settings [36],the results of the experimental verification are visible on the spectrogram
Fig. 4.6, which shows a significant difference between the application of spindle speed
variation and constant spindle speed machining.A noticeable surface improvement during
machining with SSV is observable in Fig. 4.7.

Figure 4.7: Workpieces surface using sinusoidal modulation of SSV spindle speed in com-
parison with the constant spindle speed CSS

Milling offers more possibilities from the essence of technology, but the principle re-
mains the same. In addition to the ability to control self-excited oscillations at variable
speeds, it is also possible to use a milling cutter with variable cutting edge spacing, this
combination presents [38]. An algorithm for estimating sinus variation parameters, pre-
sented by Yamato [39].Simple sinusoidal, rectangular and triangulation modulations are
not suitable for high-speed machining because they do not include the effect of phase on
milling stability. The solution is provided by multi-harmonic modulation [40].

There is a whole range of methods for adaptive control, but the essential requirement
for their correct functionality is knowledge of the behaviour of the controlled system.
Again, we come to the question of which system we control. The increased instability
may be significant for some applications and hardly observable for others.
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5
Approach Based on Modal Reduction Model

5.1 Machine Tool Vibration Analysis

The problem for the analysis of dynamic properties is the fact that the dynamic properties
of the machine change significantly with the stroke in the individual axes. Theoretically,
there should be a separate analysis for each stroke combination. This procedure is com-
pletely unrealistic, especially if we take into account the fact that the dynamics of the
machine will often be significantly affected by the accessories of a particular customer. in
modelling such systems, an approach based on decomposition into subsystems that are
connected by constraints prevails, such as the model presented by Kšica [41], and extends
this model to estimate the stability of machine tool[42].

The constraints are mainly influenced by the linear lines, the 40 to 60 % stiffness
of the machine and 90 % damping [43] [44], but these numbers need to be taken with
considerable margin, as it depends crucially on the type of system. For multi-spindle
automats (small compact assemblies), the effect of linear guides on the total stiffness is
up to over 80 %. Considering this fact and previous information about the nonlinearity
of linear lines, we come to the problem of modelling systems with nonlinear components.

Wang [45] describes by modelling a table with linear guidance, which is replaced by
nonlinear bonds. Experimental measurements verify this model, and, for example, the
phasor plane is used for the presentation. This model describes a part of the machine tool,
so the question is how it is possible to extend this model to a more complex structure.
Zhang deals with the synthesis of individual parts [46], which uses models of machine parts,
which a nonlinear model of connections interconnects. A similar calculation structure is
offered by the multi-body software approach where the machine is a machine modelled as
a system of interacting systems [47].

5.2 Modal Reduction

FEM models usually have hundreds of thousands, sometimes millions of degrees of DOF
freedom, which is inadequate to address dynamic behaviour. Therefore, it is necessary
to reduce the DOF value to a minimum value that will maintain the behaviour in the
required spectrum and at the same time allow a solution in a reasonable time. There
are several reduction methods; we give the example of two methods used in computer
software – Guyan reduction and Graig-Bampton reduction.

5.2.1 Guyan Reduction

Guyan method, also known as a static condensation [48], sorts the DOF on master – m
and slave – s, where the number of master DOF is lower than slave m << s. The slave
can not be loaded, analyzed or describe as dominant mass. The method is based on a
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simple static equation:
Ku = f . (5.1)

The stiffness matrix K is than transform into form there the the elements are sorted out:[
Kmm Kms

Ksm Kss

]{
um

us

}
=

{
fm
0

}
. (5.2)

Using the second equation and assuming the regularity of the matrix Kss, we can express
us:

Ksmum +Kssus = 0. (5.3)

us = K−1
ss Ksmum. (5.4)

This relationship allows the connection of reduced and original coordinates and defines
TG the Guyan reduction transformation matrix:

TG =

[
I

−KssKsm

]
. (5.5)

Reduced system X̃ would be given using transfer matrix TG to the original structure,
where X could represent the original mass, stiffness or damping matrix:

X̃ = TT
GXTG,X = M,B,K. (5.6)

In the case of stiffness, the reduction leads to simplest therm:

K̃ = Kmm −K−1
ss Ksm. (5.7)

5.2.2 Craig-Bampton Component Mode Synthesis

A frequently used method for dynamic substructuring the Component Mode Synthesis
CMS. Craig and Bampton developed the method to enable solving large scale numeric
models with time dependent force [49].

Gordon introduces the method as follows [50], unlike Guyan reduction, Craig-Bampton
synthesis reduces mass and stiffness at the same time using standard dynamic equation:

[MAA] {üA}+ [KAA] {uA} = {F(t)} . (5.8)

Where the method sorts original nodes uA into boundary ub and internal (leftover) uL,
which could be represented by rigid body vector ϕR and fixed boundary normal modes
ϕL asamled in transform matrix ϕcb:

{uA} =

{
ub

uL

}
=

[
I 0
ϕR ϕL

]{
ub

q

}
, (5.9)

ϕcb =

[
I 0
ϕR ϕL

]
. (5.10)

Applying the transform matrix in the first matrix we will get the following equation:

ϕT
cb [MAA]ϕcb

{
üb

q̈

}
+ ϕT

cb [KAA]ϕcb

{
ub

q

}
= ϕT

cb

{
Fb

FL

}
. (5.11)

The transformed mass Mcb and stiffness Kcb matrices will be defined as follows:
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[Mcb] = ϕT
cb[MAA]ϕcb =

[
Mbb Mbq

Mqb Mqq

]
, (5.12)

[Kcb] = ϕT
cb[KAA]ϕcb =

[
Kbb 0
0 Kqq

]
. (5.13)

In the next step the matrices Mcb and Kcb are substituted in equation 5.11, the
method assumes that load is applied to the boundary nodes so the force vector FL could
be neglected: [

Mbb Mbq

Mqb Mqq

]{
üb

q̈

}
+

[
Kbb 0
0 Kqq

]{
ub

q

}
=

{
Fb

0

}
. (5.14)

Where the dynamic equation is extended by modal damping 2ξω:

[
Mbb Mbq

Mqb I

]{
üb

q̈

}
+

[
0 0
0 2ξω

]{
u̇b

q̇

}
+

[
Kbb 0
0 ω2

]{
ub

q

}
=

{
Fb

0

}
. (5.15)

This method is used in many software tools, such as ANSYS, which allows exporting
a reduced substructure. This possibility was used for creating the nonlinear model in
Chapter 11.
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6
Problem of Unpredictable Vibration
During Machining Process

6.1 Problem Analysis

Unexpected vibrations occur with the newly developed multi-spindle lathe support (see
Fig. 6.1). In the part of the speed spectrum, the machine behaves following the theory of
regenerative self-excited vibrations during machining.

Figure 6.1: Measured dynamic compliance of the new slide

Fig. 6.2 measured dynamic compliance in three directions XYZ as a response to ham-
mer hit in these directions. It shows that the highest amplitudes are in the first mode
approximately on 48 Hz; this mode is dominant in the plane Y-Z. The second mode (71
Hz) is dominant in the X direction with the second-highest amplitudes, with the increasing
frequency amplitudes hights decrease rapidly.

Using standard chatter theory (described in the previous chapter) could be easily
created lobe diagram and chatter frequency diagram Fig. 6.4. These two figures show
an apparent match between frequency measurement and the prediction for spindle speed
3000 and 3300 rpm; despite stable cut prediction, the measurement follows the predicted
trend where higher spindle speed increase stability. The inaccurate position of the lobe
can be explained by the change of the specific cutting force.

In contrast, at 3600 rpm accurses unpredicted behaviour, which has no basis in the
chatter theory, in the theoretically stable condition, destructive chatter accrues, with the
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Figure 6.2: Measured dynamic compliance of the new slide

Figure 6.3: Knife destructed by chatter vibration and off-center groove

lower frequency that is for the chatter dominant second mode. As can be seen in the
reconstructed knife phasor – Fig. 6.5 , the growth of vibration is exponential and stopped
by knife destruction. The slowness of the onset of vibrations indicates a small frequency
shift and thus the proximity of its own frequency, which is the cause. However, the excited
frequency of 58 Hz is near the local minimum of the systems frequency response.

The Poincaré map – Fig. 6.6 only confirms the instability of the system – logarithmic
spiral indicates increasing vibrations of the system without significant discontinuities in
the cut, so it is a continuous section with grading vibrations.

Based on the frequency shift between the spindle speed and the excited chatter fre-
quency, it can be concluded that the frequency of the natural frequency, which is the cause
of the vibration, should be in the band around 54 Hz, which, however, has no support in
the measurement.This fact leads to the hypothesis that the system’s frequency response
has to change. To rule out that the cause is the first mode of vibration that is closest.
Therefore, the effect of the first mode must be ruled out. One way to achieve this is to
design a tuned mass damper.
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Figure 6.4: Predicted lobe diagram compared with measured machining conditions
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Figure 6.5: Phasor image of machining at 3600 rpm showing the gradual oscillation of the
support until the destruction of the knife
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Figure 6.6: Poincaré map for machining at 3600 rpm resembling a logarithmic spiral shows
high instability of the system
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6.2 Effect of Tuned Mass Damper

The tuned mass damper was designed to minimise the amplitude of the first mode. Ac-
cording to the analysis, the first mode should not have an impact on machine tool sta-
bility; this is due to a low reaction in the X direction, however, during the machining
measurement, where the frequency is observed corresponding to the first mode vibration
– probably the reaction of secondary excited vibration by noncontinuous cut.

Figure 6.7: Mass damper placement on the structure

Figure 6.7 shows the damper design placed in the area with high amplitudes on the
end of the central beam, the opposite side of the cut. The main parts are beams with a
slider that enables tuning the structure’s frequencies by changing the active length of the
beam. On this slider are connected rubber isolators with steal mass provides the main
compliance and the mass – see Fig. 6.8.

Figure 6.8: Photo of mass damper during testing

The tuned mass damper was tuned to minimise the amplitude of the first mode.
According to the analysis, the first mode should not have an impact on machine tool
stability; it is due to a low reaction in the X direction, however, during the machining
measurement, where the frequency is observed corresponding to the first mode vibration
– probably the reaction of secondary excited vibration by noncontinuous cut. Fig. 6.9
compares the dynamic compliance of the original structure and the one with the damper;
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Figure 6.9: Predicted lobe diagram compared with measured machining conditions

both absolute and real spectrum peak of the first mode decreases for the structure with
the damper to less than 40 % of the original structure.

Fig. 6.10 shows a comparison of structure with and without mass damper for the same
machining conditions – 2.5mm grooving for 3000 rpm. The tuned mass damper suppresses
excitation of vibration peak at 44 Hz; also, its harmonics at 88 Hz disappear and the higher
frequency compounds. However, the structure with the mass damper keeps the chatter
frequency at 77.5 Hz with its harmonics. The qualitative change is noticeable in knife
trajectory reconstruction – Fig. 6.12 where the secondarily excited vibration disappears,
but for both signals there is a significant chatter frequency, which matches the predicted
frequency.

Despite the removal of the first mode, there is no significant change at 3600 rpm; the
knife breaks again without any frequency change. The only difference is the slowing down
of the instability, which could be caused by increasing the total weight of the original
structure. It follows that, regardless of the change in the first shape of the oscillation, the
cause of the instability has not changed, and it is necessary to focus attention on another
cause.
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Figure 6.10: Comparison of frequency spectra during machining without and with the use
of a dynamic damper reaction in Y-direction during 3000 rpm turning

Figure 6.11: Reconstructed phasors of structure with and without the tuned mass damper
tuned on the first mode during grooving with spindle speed 3600 rpm
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Figure 6.12: Comparison of knife trajectory for structure with and without mass damper
during 3000 rpm turning
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7
Time-domain Regenerative Chatter
Analysis of Non-linear Stiffness System

7.1 Time-domain Simulation for Chatter Analysis

Figure 7.1: Scheme of machining with chatter vibrations

Figure 7.1 depicts a simple scheme of chatter vibration model, which is the base
for time-domain simulation. The time-domain simulation is a possible way to analyse
nonlinear systems. However, it is also quite time-consuming. Fig. 7.2 shows the main

Figure 7.2: Scheme of regenerative chatter simulation model

parts of the simulation: the key part is the dynamic model of the nonlinear structure
with force inputs and deflection outputs, the deflection output flows into the block, which
sums actual knife deflection required deep cut and previous turns deflection. The result
is an actual deep of the cut that flows into a force calculator that calculates chips cross-
section and according to a specific cutting force that calculates cutting force. The specific
cutting force could be a constant or function of machining conditions – the significant
role has the chip depth dependency. Then is force according to the knife geometry split
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into the direction, which is then inputs for the dynamic model of the structure. The
final analysis is done on the deflection signals which compound the information about the
stability and maximal deflection and about the chatter vibration frequency.

7.2 Simplified Nonlinear Stiffness Model

The static deflection measurement shows the nonlinear trend. Therefore the measurement
points on the force-deflection diagram were fitted by three models using regression. The
simplest model is a linear model, which is used as a control model; its equation is:

F = k1 · x (7.1)

Nonlinear models are cubic and quadratic equations; to keep a negative value in the
quadratic model, was used absolute value. The equations for cubic and quadratic are,
respectively:

F = k1 · x3 + k2 · x (7.2)

F = k1 · x · |x|+ k2 · x (7.3)

Fig. 7.3 and Table 7.1 show the results. All models represent the data according to the
results of P-value; the best match has the quadratic model, which fits the data the most
smoothly and has the lowest mean square error MSE. The quadratic model is slightly
worse but still fits the data trend, although the hypothesis that the linear model does not
depreciate cannot be rejected. Based on the trend of the measured data, it is obvious that
the system is nonlinear and that the number of measure points influences the P-value.

Figure 7.3: The comparison between measured values and regression models

7.3 Lobe Diagram Time-Domain Simulation
and Simulated Impact Hammer Response

The impact hammer modal testing is the standard method for measuring dynamic be-
haviour; therefore, the simulation of this system enables us to compare the response of
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Table 7.1: Regression results for three models

k1 k2 P-value R-square MSE

Linear 5.98e+06 - 3.31e-05 0.989 67.6
Quadratic 3.79e+09 4.95e+06 1.26 e-04 0.999 21.8
Cubic 7.58e+12 5.39e+06 2.47 e-04 0.999 30.5

models from the previous section and tune the systems to have similar frequency and
damping to match the real measurement of the system parameter. For all three models,
the second mode is linear and is identified from the measurement. The simulation is
time-domain, so there is no problem with the nonlinearity.

Figure 7.4: Modal hammer simulation impulse – force and reaction

Figure 7.4 shows the results in the time domain, the force impulse, and the system
deflection response, the linear and cubic model has an almost identical response, the
quadratic model has a lower stiffness, which is also noticeable from dynamic compliance –
Fig. 7.5. In all three systems, the negative real part minimum is tuned to a similar value,
therefore applying chatter theory, the minimal chip width should be similar. Figure 7.6
shows the estimated lobe diagrams; naturally, the lobe diagram follows the trend of the
negative real part, so the cubic and linear models are in good agreement with the slight
spindle speed change and slightly lower stability of the cubic model. The stability decrease
mainly for higher chip width is more significant for the quadratic model. However, the
central positions of the lobes are similar, in contrast to the results of time-domain simula-
tions – Fig. 7.7: where the quadratic model has a significant lobe shift to a higher spindle
speed. All models have the same minimum chip width boundary, which is in accordance
with the estimation. The linear model reached the highest amplitudes during the simu-
lation, which is not unexpected due to the character of the nonlinear system vibration.
The area of maximal amplitudes (highly unstable regions) differs in position, in the linear
systems, are located in the front side of the lobe – the steep left side, which corresponds to
the system area between -90° to -180°, but in nonlinear systems, the maximal instability
regions move to the right, wherein cubic systems are located in the middle of the lobe, and
in the quadratic model are shift further to the right side. This behaviour corresponds to
a type of nonlinearity – where both systems have hardening characteristics. All of these

34



CHAPTER 7. TIME-DOMAIN REGENERATIVE CHATTER
ANALYSIS OF NON-LINEAR STIFFNESS SYSTEM

findings highlight the main problem of estimation lobe diagrams based on the response
to the impulse hammer.

Figure 7.5: The absolute and real frequency response for simulated impulse

Figure 7.6: Estimated lobe diagram based on simulated impact hammer reaction
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Figure 7.7: The maximum deflection of time-domain simulations of grooving operation
for three models of stiffness projected into spindle speed, chip width dependency
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8
Simplified 2D Analysis and Linearisation
at Operating Point Synthesis Algorithm

The simulation model is inspired by an engineering problem – tool damage caused by
regenerative chatter in a theoretically stable area. The stability was estimated by an FEM
(finite element model), a modal hammer measurement, and the experimental machining
validated estimation. The result shows a good match in unstable regions; the chatter
frequencies match the predicted ones. However, the chatter arised in the theoretically
stable region and its frequency do not correspond to the chatter frequency with a higher
chip width. This behaviour leads to the hypothesis that it is the consequence of contact
nonlinearity.

Figure 8.1: Grooving scheme

The analysis was done on the example of a grooving operation. Fig. 8.1 shows a
scheme of the grooving process with the cutting force orientation; the cutting force lies in
the plain XY where also lies the feed direction, which is oriented in the X direction. Due
to this operation, the structure could be simplified as a two-dimensional problem, a beam
with a two-spring support. This model describes mainly the first mode responsible for
the chatter. However, the model has freedom in the Y direction; we consider movement
only in the X direction and rotation in the Z axis. The scheme of the model could be seen
in Fig. 8.2. The model is a rigid body represented by its mass and momentum of inertia
in the center of gravity. This part connects the basis by two springs and dampers. In
this case, the influence of the machine part stiffness is marginal, comparing the contact
stiffness, so it is neglected.
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Figure 8.2: Scheme of parallel spring system

8.1 Linear Model

Regarding the previous assumptions, the model is represented by its momentum of inertia
by two differential equations. The first represents the centre of gravity’s displacement in
the X-direction, and the second describes its rotation displacement.

mẍ,= k1(x− l1θ)− k2(x− l2θ)− b1(ẋ+ l1θ̇)− b2(ẋ+ l2θ̇) + F (8.1)

Jθ̈,= k1(x− l1θ)l1 − k2(x− l2θ)l2 − b1(ẋ+ l1θ̇)l1 − b2(ẋ+ l2θ̇)l2 + Fl3 (8.2)

By transforming equations 8.1 and 8.2 to the matrix form, we get metrics M, K, B, and
force vector F:

M =

[
m 0
0 J

]
(8.3)

K =

[
k1 − k2 −k1l1 + k2l2

−k1l1 + k2l2 −k1l
2
1 + k2l

2
2

]
(8.4)

B =

[
b1 − b2 −b1l1 + b2l2

−b1l1 + b2l2 −b1l
2
1 + b2l

2
2

]
(8.5)

F =

(
1
l3

)
(8.6)

Equation 8.7 provides the solution to the deflection and rotation in centre of gravity xCG,
which depends on the angular speed of the harmonic force vector:

xCG(ω) = (K− ω2M+ iωB)−1F (8.7)

For a stability analysis, it is necessary to get a solution under the force. The total
deflection is a combination of rotation and translation of the centre of gravity:

xF (ω) = (1, l3)xCG(ω) (8.8)

Damping values b1, b2 are represented by a simple linear model. The value of the damping
coefficient was chosen to reach approximately 3 % of the critical damping for both modes
for the linear structure. However, due to the nonlinear stiffness, the proportion of damping
is changing. The damping coefficient and the rest of the parameters except stiffness are
in Tab. 8.1 The stiffness of the springs is defined by the nonlinear model described below.
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Table 8.1: Parameters of parallel spring system

Mass m 85 kg
Moment of inertia J 6 kgm2

l1 20mm
Dimensions l2 38mm

l5 293mm
Damping Coefficient b1, b2 6 · 103Nm−1s

8.2 Nonlinear Stiffness Model of Linear Ball Guideway
with Preload

Due to the combination of preload and nonlinear stiffness, the whole linear ball guide-
way system’s nonlinearity is relatively high and causes changes in chatter stability. The
behavior can be easily described by the Hertzian contact between a ball and a groove
contact. The simplest model is usually represented by a two-ball groove contact with a
preload. Sun and Kong present this kind of model and use experimental validation to
prove its behavior [51], [52]. In the following work, Kong extends and presents a polyno-
mial approximation of linear ball guideway stiffness [53]. These more advanced models
also consider the angular relations in the linear ball guideway. However, these models are
too complicated, and the primary behavior matches the simple Hertzian contact model.
The equation describes the basic Hertz’s contact model of the linear ball guideway stiff-
ness:

F (x) =


k · ((x0 + x)3/2 − (x0 − x)3/2) | x |< x0

k · (x0 + x)3/2 x > x0

−k · (x− x0)
3/2 x < −x0.

(8.9)

Where F is the reaction force of the contact, x0 the displacement caused by preload, k
is the stiffness coefficient, and x is a deflection from the guideway’s equilibrium position.
The stiffness dramatically changes around the boundary of the preload loss. If we consider
that the loss of preload happens when one row of the ball-groove contact has a double
preload deflection and the other is without any deflection, then we can define the contact
loss load Fl as the proportion of preload force Fp:

Fp = k · x3/2
0 , (8.10)

Fl = Fp ·
(2x0)

3/2

x
3/2
0

= Fp · 23/2. (8.11)

Manufacturers usually declare a load of lost preload to be 2.8 ·Fp. The parameters are
preload force Fp = 140N and nonlinear stiffness coefficient k = 7.55e9N/m3/2. For these
conditions, we get the resulting dependence of stiffness on deflection in Fig: 8.3, where
there is a noticeable region with stiffness decreasing by 30 %.
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Figure 8.3: Stiffness dependency of models on the deflection

8.3 Static Equilibrium of Structure

In the future, for the chatter estimation it is necessary to analyze a static solution first.
It is because we assume that the chatter starts from the smooth surface. The presented
system is statically definite, so we can use momentum and force equilibrium equations to
define the force in each boundary and depend on the load.

F1 = F · l3 − l2
l1 + l2

.
= 0.522 · F (8.12)

F2 = −F ·
(
1 +

l3 − l2
l1 + l2

)
.
= −1.522 · F (8.13)

From the values above, it is evident that the force in the second spring k2 is almost
three times higher than in the first spring k1. This fact means that the reaction of k2
has a crucial role in chatter stability. With the assumption of small angles, the total
deformation of the system under a load can be defined by the equation:

x =

(
fk1(F1) + fk2(F2)

l1 + l2

)
· (l3 − l2) + fk3(F2) (8.14)

8.4 Dynamic Response of Simulated Modal Hammer
Impulse

As we showed in the motivation part, some irregularities could occur during the modal
hammer measurement - different hit peaks cause changes in the system response. Struc-
tural nonlinearities could cause this behaviour. Therefore, the time-domain simulation
of the modal hammer measurement was applied to the presented nonlinear structure to
verify this behaviour. The input signals that follow the force signals in Fig. 7.42 were
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applied to the analysed structure. The resulting deflection was then transformed by the
Fast Fourier transform (FFT) to frequency domain dynamic compliance in Fig. 8.4. The
results show that the system response depends on the modal hammer hit property, the
maximal peak frequency, and the changes in shape. Hence, the model presented could
represent the frequency shift and the change in the peak shape.

Figure 8.4: Simulated impact response

8.5 Proposed Synthesis of Linearisation in Operating
Points Algorithm for Chatter Analysis of Structure
With Nonlinear Stiffness

The main idea of the synthesis of linearisation in operating points algorithm (SLOP) is
that the nonlinear structure under different loads has a unique set of linearised stiffness.
Hence, it would also have a different stability lobe diagram (stability lobe diagram).

Figure 8.5 shows the case of three different loads corresponding to different chip widths
(each stability lobe diagram is valid only for a specific chip width) the figure shows
these areas as blue-stable and gray-unstable stripes. The final stability lobe diagram is
composed of many of these local solutions; the total number depends on the required
accuracy and the stability lobe diagram range. The assumption for the local linearization
synthesis is that the chatter starts from a smooth surface with no other interruptions.
According to this, the start of instability depends on the local behavior of the system.
This is the reason why we can split the task of the lobe diagram into several subanalyses,
and then the results of the local stability prediction are combined into one lobe diagram.

This algorithm aims at a fast detection of possible instability in the structure with
height structural stiffness nonlinearity. The principle is to decompose the stability as-
sumption problem into several subproblems. The diagram see Fig 8.6 describes the algo-
rithm; the first step is to define a range of stability analysis and evaluate the cutting force
applied during the stable machining process according equations: 4.1 – 4.3. After that,
the nonlinear static analyses are applied to each of these loads. This analysis’s required
outputs are the stiffnesses of each connector, which is a linearization of each of these
solutions.
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Figure 8.5: An example of the operation of an SLOP: three linearised stability lobe dia-
grams for different load segments corresponding to the chip width form the final stability
lobe diagram

Figure 8.6: Scheme of the proposed SLOP algorithm
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Before evaluating the system’s general stability, the unstable solutions are excluded due
to their transient behavior. Then, the unique sets of linearized stiffness combinations are
used to create matrix K (equation 8.4) and compute a linear solution following equations
8.7 and 8.9.

This solution is used for a classical chatter analysis. The algorithm assumes that
bifurcations can exist in the structure, so there could be more than one stable solution
for some loading conditions, and all these unique solutions must be analyzed. In the final
step is the synthesis of all these solutions, all possible solutions are compounded into a
general lobe diagram.

8.6 Comparison of SLOP Lobe Diagram with
Time-domain Simulation

Figure 8.7 shows the results of time-domain simulation 3D graph of the maximal knife
amplitude. The results resemble a steep cliff from the front edge of the instability (lobe
edge which is defined by the system’s range from natural frequency to min real part
range) and sloping down to the back edge of instability (lobe edge which is defined by the
spectrum above min real part range). Below the 2 mm chip width, the highest amplitude

Figure 8.7: Time-domain simulation detection of maximal deflection depending on the
chip width and spindle speed

ridge follows the edge of the stable system; above it bends towards lower speeds where
at its minimum point it changes the trend, and with higher chip width it grows towards
higher speeds.

The projection of the stable and unstable region and comparison with the SLOP results
is in Fig. 8.8. The results of both SLOP and time-domain simulations show that even
the system based on the Hertzian contact theory causes noticeable changes in the chatter
stability. In both results, we can notice the front side’s deformation approximately in the
lobes, mainly in the area from 3 mm to 4 mm chip width where the stability drops to the
lower spindle speed; above this area, the trend changes, and the lobe’s edge is deformed
following the higher speed. However, the SLOP solution provides a more conservative
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Figure 8.8: Time-domain simulation detection of maximal deflection depending on the
chip width and spindle speed

stability estimation. The backside of the lobe provides different results, wherein the
results above 2.5 mm chip width time-domain simulation offer better results.

The chatter frequency maps in Fig. 8.9 show that frequencies match well only on the
edge of stability. Due to high instability inside the lobe body, the linearization does not
match the simulation. The main reason is that these regions do not satisfy the quasi-
static deflection assumption; hence their instantaneous stiffness value cannot be generally
linearized. This fact is the reason for the resulting deviation in the predicted frequency
map.

Table 8.2: Comparison of SLOP time dependence and time simulations with different
solvers

SLOP Time Domain Simulations
Ode14x Ode8 Ode5

5857 s 2.432 · 106 s 1.1578 · 106 s 5.4923 · 105 s

An important parameter is the time required for the analysis. Tab. 8.2 presents the
time spent on SLOP and the simulation in the time domain with three different solvers.
The resolution (speed step 12 RPM, chip width 0.05 mm) and the space analysed are the
same, which corresponds to Fig. 8.8.

The time domain simulation without the ode14x, ode8, and ode5 solvers takes, respec-
tively, one month, two weeks, and one week. In contrast to this, SLOP takes 90 minutes,
which means that SLOP is significantly more time-effective, mainly for large-scale eval-
uation. The possible way to speed up a TDS is to stop the simulation after the chatter
is detected, which reduces the time spent by 60 %. Another possible way to decrease
the time spent is to use a heuristic algorithm orientated to the detection of edges of in-
stability. However, this reduces the information in the system. The highest SLOP time

44



CHAPTER 8. SIMPLIFIED 2D ANALYSIS AND LINEARISATION
AT OPERATING POINT SYNTHESIS ALGORITHM

Figure 8.9: Comparison of frequency maps estimated by SLOP algorithm (a) and TDS
(b)

spent (above 95 %) is the final step of the algorithm, processing of the lobe boundaries:
resampling and identifying stability and instability.

8.7 Feed Dependent Stability Lobe Diagram

The feed is usually a neglected parameter in the chatter stability analysis. However, if the
stiffness depends on the load, the feed becomes an important parameter with a significant
influence on the stability lobe diagram. Figure 8.11 shows the stability lobe diagram on
the cutting force. Two waves caused by the drop in stiffness in each spring, which bends
the maximal stability to the w shape, are significant. This diagram is the basis of the
SLOP where three individual sections are presented in Fig. 8.5.

The advantage of SLOP is that one linearised data set can be used for another stability
lobe diagram with different feed parameters; this makes the whole process quite effective.
The set of linearisation space has to be only extended if the required load exceeds the
current maximum of the linearised set. Four different feed stability lobe diagrams created
by SLOP are presented in Fig. 8.11. It is noticeable that the edge of the lobe follows the
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Figure 8.10: Comparison of stability lobe diagram estimated by SLOP algorithm and
linear system stability lobe diagram in the wider speed range

trend from Fig. 8.12; in the highest load feed of 0.16 mm / rev, we could see a complete
deformed W-shaped on the edge. The trend is obvious – higher feed causes instability
lobe diagram W-deformation to the lower chip width, in contrast to the low load, which
moves it to the higher chip width. The 0.02 mm / rev feed looks almost like a linear
stability lobe diagram; however, it is caused by the shift of the deformed area above the
observed area. Broadening the view of the matter will provide us with Fig. 8.10 which
shows a comparison of the SLOP stability lobe diagram (for 0.04 mm/rev) with a linear
alternative (red line). It shows a good match in the low-speed area where the neighbouring
lobes meet before significant deformation occurs. Therefore, the spindle speed range and
the stiffness drop should be considered before analysis.

The presented results of SLOP match well with the time-domain simulation. How-
ever, this example is simplified and many parameters were neglected. Often, the values
of coefficients vary depending on the unknown parameters. Due to this fact, it is neces-
sary to approach the chatter stability problem as a stochastic system. Furthermore, the
application of the SLOP to actual machine tool systems with experimental measurements
is highly required for future development.
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Figure 8.11: Comparison of stability lobe diagram estimated by SLOP algorithm for
different feed

Figure 8.12: Surface created by individual linearised stability lobe diagrams dependent
on spindle speed and cutting force
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9
Linear Ball Guideway Model Based on Hertz
Contact Theory

9.1 Ball Groove Contact

The basis for the behaviour of linear lines is the contact ball groove; From this elemen-
tary element we derive the overall rigidity of the line as well as the resulting nonlinear
behaviour, and therefore it is necessary to pay attention to it. According to the Hertzian
contact theory [54], we can estimate the contact behaviour.

The basic contact force of the ball is defined by the equivalent radius and the equivalent
Young modulus. These two parameters define the nonlinear stiffness coefficient. The
circular contact area can be described by the following equation:

F =
4

3

√
RE∗ · x3/2 (9.1)

Meanwhile, the equivalent elastic modulus, E*, can be expressed in terms of the elastic
modulus, E, and Poisson ratio, ν , of each contact body as

1

E∗ =
1− ν2

1

E1

+
1− ν2

2

E2

(9.2)

Load F

Ball

Groove

Contact area

2a 2b

Figure 9.1: Ball – groove contact model

However, for the LBG problem considered in the present study, the ball-groove contact
has an elliptical rather than circular geometry, as shown in Fig. 9.1. Hence, Eq. (9.1)
should be rewritten as

F =
4

3

√
ReE

∗

µ(e)3/2
· x3/2, (9.3)
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where µ varies as a function of the eccentricity of the contact ellipse, e, which is defined
in terms of two constants, A and B, as follows:

e =

(
B

A

)1/2

(9.4)

These elliptical constants are also used to define the relative radius Re:

Re =
1

2
(AB)−1/2 (9.5)

All parameters of equations 9.2 independent of deformation can be rewritten as the non-
linear stiffness parameter kn; this form resembles Hook’s well-known law:

F = kn · x3/2 (9.6)

This analysis considers only a single point of contact between the groove and the
ball (see Fig. 9.1). However, in practise, the rail and carriage in the LBG are connected
through two contact points at the top and bottom of each ball, respectively. For the case
of an LBG with two rows of balls on either side of the carriage (see Fig. 9.2), the stiffness
of each row should therefore be expressed as

kA =
1

2
· kn · nb. (9.7)

where kn is the stiffness of contact between each ball and the groove and nb is the number
of balls in contact in the row. For simplicity, it is assumed that individual rows have
identical stiffness behaviour, that is, kA = kB = kC = kD. Each row (A, B, C, D) can
then be described by the reaction force FA which depends on the local reaction xA, four
of these equations then describe the behaviour of LGB as:

FA = kA · x3/2
A . (9.8)

kA

D C

BA

Y Y

X XkD kC

kB

Fx
Fx

Figure 9.2: Schematic of linear rolling guideway with two rows of balls (left) and replace-
ment of balls by individual row stiffness (right).
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Table 9.1: Parameters of the Commercial Linear Ball Guideway

Size 25
The number of balls in each contact row nb 15
Ball diameter 4.71 mm
Groove radius 2.45 mm
Dynamic load capacity C 36200 N
Preloading force Fpr 580 N
Young’s modulus E 205 GPa
Poission ratio ν 0.3

9.2 Static Model of Preloaded Linear Guideway

As shown in Fig. 9.2, the individual contacts in the LBG are assumed to form a perfect
square. Substituting the parameters given in Table 9.1 for a commercial R1671-212-20
LBG in the equations. (9.1)–(9.7) yields the nonlinear stiffness of row kA in Fig. 9.2 as
1.51e11, N / m2/3. Meanwhile, the preload force, Fp, acting on each row of balls in the
LBG can be calculated from the total preload, Fpr, declared by the manufacturer as

Fp =

√
2

2
· Fpr (9.9)

The initial contact deformation, xp, of each ball in row kA can then be determined as

xp =

(
Fp

kA

)2/3

(9.10)
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Figure 9.3: Variation of reaction force with contact deflection for single row of preloaded
balls in LBG

Substituting the total preload force of 580 N in Table 1 into Eq. 9.9, the preload force
acting on row kA is found to be 410.1 N. The contact deformation, xp, is then obtained
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as 1.95 µm. Figure 9.3 shows the force-deflection characteristic of each row of balls in
the considered LBG. A clear nonlinearity in the stiffness is observed, where the border
between the two stiffness regimes corresponds to the value of the preload deformation
(xp). At deflection values lower than xp, contact between the balls and grooves is lost,
and hence the load is not transferred between them.

9.3 Single Direction Loading Model

The nonlinear behaviour of LBGs is usually evaluated for the case of single-direction
loading [55]. Such an approach has the advantage of simplicity and enables the loading
characteristics provided by the manufacturer to be employed directly. However, the model
is unable to reflect the typical loading conditions encountered in real-world machining
operations, in which the guideway is subjected to a combination of directional loads and
torques.

The static model described in Section9.2 considers the case where the guideway is
subject to combined two-directional loading and torque. For the case of single-directional
loading, the model can be simplified as follows:

F (x) =


kA · ((x0 + x)3/2 − (x0 − x)3/2) | x |≤ x0

kA · (x0 + x)3/2 x > x0

−kA · (x− x0)
3/2 x < −x0.

(9.11)

The LBG has geometric symmetry, and therefore the nonlinear stiffness can be arbitrarily
represented by kA. Furthermore, x0 is the initial deflection of the guideway in the x-axis
direction under the effects of the preload force and x is the deflection of the guideway in
the x-axis direction during the subsequent machining process. The preload force, Fpr, can
be defined as

Fpr = kA · x3/2
0 . (9.12)

The preload effect is lost when the deflection is equal to twice the value of that produced
under the initial preload force. The lost preload force, Fl, the loading force at which the
preload effect is lost, can then be defined simply as

Fl = Fpr
(2x0)

3/2

x
3/2
0

= Fpr · 23/2 (9.13)

Figure 9.4 shows that the relationship between LGB’s deflection and loading force,
the preload area, and the area with loss of contact is not very distinguishable. It does not
seem that this nonlinearity has a crucial role; however, it does. Figure 9.5 shows that the
total stiffness of the system is reduced by around 20% when the loading force reaches the
point where the preload effect is lost. Furthermore, a distinct difference in the stiffness
behaviours of the different rows of balls is observed. In particular, the stiffness of rows A
and D is reduced, whereas that of rows B and C increases. As shown in Table 9.1, the
R1671-212-20 guideway considered has a preload force, Fp, of 580 N. The preload lost
force is thus calculated from Eq. (9.13) to be 1641 N, as shown in Fig. 9.5.
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Figure 9.4: Total deflection of the system under directional load
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52



10
Nonlinear Analysis Based on
Simplify Static Model

Figure 10.1 shows the machine tool slide structure considered in the present study con-
sisting of a central rectangular beam and two wide LBGs (see Table 9.1) for the related
parameters). To facilitate the analysis, the structure is simplified to a single axis in order
to reduce the number of unknown parameters and highlight the behaviour of the LBG. In
particular, the analysis considers the central beam to have a fixed position in the z-axis
direction (i.e., the servo brake is activated).

Linear

ball 

guideway

kD2
kC2

Tool

kB2

l1

Fg

l2

l3

l4

l5

l6

Fc

kbeam

kA2

kD1

kC1

kB1
kA1

Y

Z

X

Figure 10.1: Experimental structure and simplified scheme for static analysis

10.1 Structure Under Static Cutting Load

In developing the simplified static solution for the considered problem, it is first necessary
to define the boundary conditions and external loads. For simplicity, the radial reaction
in the ball screw mechanism of the guideway and the deflection of the guideway in the
z-axis direction are both ignored. Furthermore, all of the guideway components (with the
exception of the central beam) are assumed to be perfectly rigid. Two loading forces are
considered, namely the weight, Fg, and the cutting force, Fc

According to the static scheme shown in Fig. 10.1, the force reactions in each LBG
can be described by Eqs. (10.1)-(10.5), while the torque reaction between the two LBGs
is given by Eq. (10.6). These equations define the load of both LBGs, using the model
in Fig.9.2, the force reactions LBG’s rows are numerically solved. Note that the model
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parameters for the static analysis are listed in Table 10.1.

Fx : Fk1x + Fk2x = Fc · sin(β) (10.1)

Fy : Fk1y + Fk2y = Fc · cos(β)− Fg (10.2)

Mx : −Fk1x · l1 = Fc · sin(β) · l2 (10.3)

My : Fk1y · l1 = Fc · cos(β) · l2 − Fg · l3 (10.4)

Mz : Tk1z + Tk2z = Fc · sin(β) · l6 − Fc · cos(β) · l5 + Fg · l4 (10.5)

Tk1z = (φk1z − φk2z) · kbeam (10.6)

Table 10.1: Parameters of simplified static model

l1 228mm
l2 230mm

Dimensions l3 20mm
l4 38mm
l5 293mm
l6 161mm

Cutting angle β 30 deg
Torsional stiffness kbeam 2.2e9Nm/rad

Weight Fg 804.4N
Cutting force Fc 0 – 2000N
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Figure 10.2: Linearised stiffness of all rows in the structure under gravity and cutting
load

The results obtained for each eight ball grove contact reaction (A1-D2) are then trans-
formed into a linearised stiffness model. Figure 10.2 shows the linearised stiffness results
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obtained for each row of balls as a function of the cutting force, Fc. The front LBG
contacts have suffixes 1 and the rear 2. Note that under a force of Fc = 0 N, the structure
is loaded only by the weight, Fg. For the rows subject to a tensile load (D1, B2), the
stiffness reduces as the cutting force increases due to the loss of contact between the balls
and grooves. On the contrary, for rows under compressive stress (A1, B1, C1, A2, C2,
D2), the contact area between the balls and grooves increases, and hence the stiffness also
increases. The minimal stiffness of the system coincides with the point at which contact
is lost between the balls and grooves, i.e., Fc = 380 N.

10.2 Modal Analysis and Frequency Response

Having defined the boundary conditions and external loads, the model for modal analysis
then assumes all the structural components to be flexible and replaces the ball rows with
linear springs. Note that the spring stiffness parameters are taken as the linearised stiffness
parameters (A1-D2) obtained from the previous nonlinear static model. A modal analysis
is then performed to determine the linearised natural frequencies of the experimental
structure (see Fig. 10.1).
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Figure 10.3: Dependence of first free natural frequencies on cutting force Fc

Finally, the modal shapes are determined under different static loads. Figure 10.4
shows the variation of the first three natural frequencies of the experimental structure
with the cutting force, Fc. The results show that the second mode experiences a high
frequency drop of around 10 Hz under a load of 350 N. The first mode also exhibits a
frequency drop at around the same value of the loading force. However, in this case,
the frequency drop is relatively small (∼ 2 Hz). The frequency of the third mode, by
contrast, shows no obvious drop and increases progressively by around 2 Hz as the cutting
force increases. Overall, the results suggest that the chatter stability of the guideway is
dominated by the second natural frequency of the guideway structure.

Figure 10.4 shows the first three modes of the linearised guideway structures under the
effects of the gravity load and the combined gravity and cutting load, respectively. The
first and third modes show no obvious change in shape under the effects of the cutting
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Figure 10.4: Comparison of first three mode shapes of guideway structure under gravity
load only (upper) and combined gravity load and static load of Fc 0 and 375N (lower)
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Figure 10.5: Dynamic compliance of tool tip under gravity force and combined gravity
force and cutting load

load, although a slight change in frequency is observed. However, the second mode shows
a more significant change in shape as a result of the loss of contact between the balls and
grooves, and hence a greater reduction in the frequency occurs.

In performing the harmonic analysis, a unit force was applied to the tool tip of the
experimental structure in the x-direction and the corresponding tool deflection was eval-
uated. Figure 10.5 shows the results obtained for the dynamic compliance of the tool tip
in the x-axis direction given a gravity loading force only and a combined gravity force and
the cutting force of Fc = 375 N, respectively. The results show that the natural frequency
reduces, while the amplitude increases, under the effects of the cutting force.
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Nonlinear Analysis Using
Substructuring Approach

The analysis in Section 10.1 ignores the flexibility of the guideway structure components
on the contact stiffness. To obtain a more accurate prediction of the stiffness behaviour of
the guideway, it is necessary to integrate an FEM model with the nonlinear model of the
LBG. However, most FEM packages support nonlinear elements only without preload,
and hence it is impossible to apply such models directly to the considered problem, in
which the LBG is subject to a preload force before the machining process commences.

Accordingly, in the second model proposed in this study, the guideway system is
divided into a linear part and a nonlinear part, respectively. For the linear part, modal
reduction is applied, which reduces the number of modes of the linear structure, whilst
preserving the static behaviour of the defined contact nodes. Meanwhile, in the nonlinear
part, is represented by eight nonlinear equations for each contact row (see Eq 9.8). The
nonlinear and linear are then joined in the Simulink environment using force - deflection
relations in contact nodes.

The base of this nonlinear analysis is to substitute the mesh with linear behaviour by
reducing the transfer function which interacts with nonlinear connections. The analysis
is done in MSC Adams and MATLAB Simulink. The combination of these tools enables
a width range of analysis based on time-domain simulations.

CAD FEM

FMB SimulinkMesh

Linear

Transfer

Function

Simlified

geometry

Nonlinear

Co-simulation

Figure 11.1: Scheme of Multi-body based nonlinear analysis

The base of this nonlinear analysis is to substitute the mesh with linear behaviour by
reducing the transfer function, which interacts with nonlinear connections. The analysis
is done in MSC Adams and MATLAB Simulink. The combination of these tools enables
a wide range of analysis based on time-domain simulations.

The first step is to the simplified CAD model and the creation of reducing the modal
structure of all linear parts of the structure at the same time is necessary to define the
connection points on the mesh, which will be future inputs and outputs, in this case,
force and deflection outputs, which will represent nonlinear connections and force input.
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Figure 11.2: Adams model with boundary conditions and defined input and output con-
nections

A modal neutral file is used to import the reduced modal body into MSC Adams, a modal
neutral file is used, which defines the body, the topology of the mesh, stiffness, mass, the
moment of inertia of elements, and defines the connection points.

This file can then be opened in MSC Adams, where the connections between bodies
and the surrounding space can be extended and defined as input and output. In the case
of a linear structure, it is easy to add connections between bodies. Although MSC Adams
and most FEM tools enable nonlinear spring connection definition, it also has limitations
and is ineffective in linear ball bearing cases. Figure 11.2 shows the flexible model with
defined force inputs and observed reaction points.

The possible way is to transfer this model to MATLAB Simulink, where the nonlinear
connections could be easily represented. Simulink also enables the simulation of regener-
ative chatter during the cutting process. To transfer the model into Simulink, there are
two possibilities of exporting from Adams a linear state-space representation of the model
or exporting a nonlinear model, which works as a bridge between Adams and Simulink;
however, it requires the cooperation of both programmes at the same time. During the
model exporting, algebraic loops should be considered, which could happen due to the
direct flow of the feedback loop into the state-space model. It is advantageous to use
variables of higher order of derivation, velocity, or acceleration, rather than position, to
avoid this problem. If we consider that a linear behaviour can represent our model’s main
structure, it is better to export a linear state-space model and simulate it simulated with-
out MSC Adams. This set of transfer functions usually has high-frequency compounds
that interact with the numeric solver, leading to many problems, for instance, numeric
instability or the requirement of minimal computational step size. The reduction of the
model could be applied to suppress the high-frequency modes of the system to avoid these
problems. Reduced values also increase the computation speed. Due to the modal re-
duction in previous steps, these responses are not valid and accurate; secondly, they are
irrelevant for cutting stability or nonlinear connection analysis. In Simulink, the reduced
state-space model can be easily connected to the model of a linear ball guideway. This
model could be used to simulate forced vibration, hammer impact, or stability during
machining.
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11.1 Reaction in LBG Analysed by Multibody Static
Load Reaction Analysis

The key advantage of this cosimulation model is that it enables the substitution of different
types of analysis using the same model. Static load analysis represents a two-step load,
where the first represents the gravity load and the second the cutting force. Due to the
dynamic character of the model, it is necessary to simulate the model until the steady
condition.
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Figure 11.3: Variation of stiffness with loading force for individual ball rows in LBG
structure.

The static load simulated follows the trends from the previous analysis with minor
differences. Fig. 11.3 shows how the rows depend on the force of the knife’s load during the
grooving operation. The difference between this analysis and the results of the previous
model is a significant change in the decrease in the stiffness of B2. The leading cause
is the flexibility of the structure under the front bound (A1-D1) that limits the torque
loading capacity. Due to this behaviour, the rear contact has a higher reaction force and
a decrease in stiffness.

The analysis of stiffness behaviour in contact is essential for future dynamic research.
The stiffness values could be used in the modal analysis to estimate linearised mode
shapes. However, the most important role is to identify regions with a significant change
of behaviour. In the presented case, the area is 200 – 500 N, where a slight change in the
loading force significantly changes the dynamic behaviour of the system.
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11.2 Frequency Responses and Impact Simulation

As shown in Fig. 11.4, the first two frequency modes of the guideway, both show a two-
step drop in frequency as the loading force increases as a result of the compliance of
the structure below LBG. Compared to results of the simplified static analysis 4.1 the
minimum frequency drop moves to the higher frequency to 73 Hz this is caused by that
the minimal stiffness of both LBG do not meet in the same load. The third frequency
mode changes to the higher frequency – 160 Hz; however, it does not have a significant
trend in load dependency; therefore, Fig. 11.4 shows only the first two modes, which differ
from Figure 10.3. It is noted that the minimum frequency occurs at the same load as in
the simplified system ( 350 N).
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Figure 11.4: Dependence of first two natural frequencies of guideway on cutting force Fc.

Even a simplified solution can define the most problematic load in this case. However,
the main benefits of the cosimulation model are the more reliable prediction of dynamic
compliance. The substructuring results of dynamic compliance are presented in Fig. 11.5.
The compliance for zero cutting load differs from the simplified model (see Fig. 10.5)
mainly by the third mode position. Significant changes are for loads of 240 N and 380 N;
the compliance of the first mode increases dramatically and becomes more significant for
the behaviour. Unlike in the simplified model, the second mode decreases its compliance.
Above 380 N load, the trends change, and the first mode decreases and the second mode
increases. Since static substructuring analysis considers the guideway structure to provide
a more reliable load distribution, it will be used for the following prediction of chatter.
However, the simplified model provides only a rough estimation; it identifies the most
problematic load and the main trend.

Even a simplified solution can define the most problematic load in this case. How-
ever, the main benefits of the cosimulation model are the more reliable prediction of
dynamic compliance. The results of dynamic substructuring are presented in Fig. 11.5.
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Figure 11.5: Dynamic compliance of tool tip under gravity force and combined gravity
force and three cutting loads Fc.

The compliance for zero cutting load differs from the simplified model (see Fig. 10.5)
mainly by the third mode position. Significant changes are for loads of 240 N and 380 N;
the compliance of the first mode increases dramatically and becomes more significant for
the behaviour. Unlike the simplified model, the second mode decreases its compliance.
Above the load of 380 N, the trends change and the first mode decreases and the second
mode increases. Since static substructuring analysis considers the guideway structure to
provide a more reliable load distribution, it will be used for the following prediction of
the chatter. However, the simplified model provides only a rough estimation; it identifies
the most problematic load and the main trend.

Due to the nonlinear nature of the system, the response of the system is crucially
dependent on the nature of the excitation. Fig.11.6 shows three different reactions to
harmonic unit force excitation, red and green with different frequency change rates and
blue with different directions of frequency change. Both the maximal amplitudes and
their frequency position differ.

The key method for dynamic structure response analysis is modal hammer measure-
ment. The cosimulation model enables time-domain analysis, so it is possible to use the
signal from the measurement, apply it in the same place on the simulated structure and
analyse the response. This applied pulse simulated the 125 g hammer impulse. Figure 11.7
compares the simulated modal hammer with linearised at the same point and linearised
at the tool edge. The linearised and simulated signals are identical; different positions
of the simulated measurement point cause the difference between the measurement point
and a knife tip. The reason for another location is purely practical to enable comparison
with real measurements.
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Figure 11.6: Dependence of the system response on different directions and speeds of
harmonic excitation
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Figure 11.7: Comparison of simulated modal hammer impulse response with linearised
dynamic response at the measurement point and with linearisation at the knife tip
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12
Chatter Stability and Frequency
Estimation Application of SLOP Algorithm

As mentioned above, chatter stability is an essential property of machine tools. However,
it is difficult to predict the chatter behaviour of structures with nonlinear joint stiffness
since the dynamic compliance of the overall system is load dependent. To solve this
problem, the SLOP algorithm was proposed. Using the SLOP algorithm, it is possible to
estimate the bode stability diagram for a nonlinear system. The following chapter presents
an application of the SLOP algorithm to the cosimulation static model and estimates the
response of the chatter frequency. This step enables future experimental validation.

Figure 12.1: Estimated linearised chatter stability lobe diagram of LBG structure as
function of static load.

Linearised systems are applied to equations 4.1-4.3; the solution of these equations
gives the stability limits for the LBG under different cutting loads (see Fig. 12.1). In
other words, for each static load that acts on the tool, there exists a particular linearised
dynamic characteristic of the system and a unique stability diagram exists for the load
of each static system. Figure 12.1 shows a significant discontinuity in stability in the
minimum system of Fc = 375 N. However, a more minor discontinuity is also observed at
Fc = 218 N, corresponding to the loss of contact at B2.

The cross sections of the surface in Fig. 12.1 represent the stability lobes for different
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Figure 12.2: Illustrative stability lobe diagrams for structures linearised under different
loads.

cutting forces. Figure 12.2 shows four illustrative cross sections corresponding to loads
of 0, 200, 400, and 900 N, respectively. Note that the force of 0 N corresponds to the
case where the structure is loaded only by gravity and is an important value, since the
boundary thus corresponds to that obtained in impulse hammer measurements when the
structure is unloaded.

It is noted that in this condition, the stability prediction based on the measurement of
the impulse hammer is likely to be highly unreliable for the higher load; with increasing
load, the stable area between the two lobes is filled with new instability and the stable
area for the unloaded system becomes highly unstable after loading. Paradoxically, the
highest criterion of the unconditional stability band has a load in the case of minimum
rigidity, and with the lower system compliance the lobe shifts to a lower spindle speed.
As the load increases, the area between the two lobes decreases slightly and the lobes
move toward higher spindle speeds (as evidenced by the curves for 400 N and 900 N,
respectively).

In the lathe machining process, the cutting load depends on the width of the chip, the
feed, etc. Therefore, for each loaf variable would be a different stability diagram which
could be compiled using linearisation synthesis. The method used to create such a synthe-
sis is described in Chapter 8. The algorithm arranges a stability diagram corresponding
to the load. For illustration, stability diagrams were created for feeds of 0.1 and 0.05
mm/rev. However, it is possible to create any feed corresponding to a linearised range.
The resulting diagram is then unique for every feed and cutting force.

Figure 12.3 shows an illustrative stability chatter diagram for feeds of 0.1 mm/rev and
0.05 mm/rev, respectively, given a specific cutting force of Ks = 2500 MPa. For a feed of
0.1 mm/rev, the lobe diagram has noticeable regions corresponding to a loss of contact at
B2 and D1 are observed, resulting in notches in the range of 10000-12000 RPM at loads of
218 N and 375 N. The loss of contact in B2 also affects the speed range of 3500-5000 RPM
causes; with increasing load, the first mode becomes significant and reduces the stable
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Figure 12.3: Stability chatter diagram compiled by synthesis of linearisation in operating
points

area. For a lower feed of 0.05 mm/rev, the system behaves more like a linear system. In
particular, the changes in the lobe diagram shape are less significant since due to lower
load the more considerable changes shift to a higher chip width. In fact, the only change
observed is a slight deformation of the connection of the lobes at 4500 RPM.

The stepped effect in the chatter stability diagram is given by the linearisation interval
used for the nonlinear static analysis of the contacts in the bonds. Overall, the results
presented in Fig. 12.3 show that the required fineness of linearisation increases with a re-
ducing feed. Thus, when using consistent linearisation, this effect of linearisation intervals
is more pronounced in the case of slower feeds. Part of the chatter stability prediction is
also the frequency response analysis. Applying the linearised solution to Eq. (4.3) yields
the predicted chatter frequency for specific cutting conditions. By monitoring the fre-
quency response, the influence of both structural damping and process damping can be
eliminated, thereby allowing the effects of stiffness nonlinearities to be reduced.
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13
Experimental Setup

13.1 Comparison of Simulated Impulse with Impulse
Hammer Measurements

The cosimulation model enables time-domain simulation. It is thus feasible to simulate the
structure response for a particular impact and compare the results with the corresponding
experimental observations and linearised solutions. In the present study, the simulation
input was taken as the force signals acquired in real-world impulse hammer tests. The
hammer impact points and sensor locations used in the experimental and simulation
processes are shown in Fig. 13.1.

Figure 13.1: Positions of impact points and accelerometers in experimental and simulation
processes.

Figure 13.2 shows dynamic compliance at the measurement points; the result of the
measurement proves the previous findings, the dominant first two-mode shapes, the first
bending mode dominant at the YZ plane on 60 Hz, and the second one rotational dominant
in the XZ plane on 81 Hz. This corresponds to the modal analysis results on Fig. 10.4
for the unloaded analysis as well as for the following unloaded analysis. The higher
modes have lower amplitudes, so their contribution to chatter vibration stability is a
neglectable; however, it also contains information about the structure behaviour. The
second significant antiresonance frequency as well as the third natural mode peak drifts
to lower frequency in comparison with X and Y signals; this could be a sign of nonlinear
behaviour, that the dominant mode changes its frequency according to the force input
orientation. The interesting thing is that the X and Y responses follow a similar pattern
in contrast to the Z signal.

Figure 13.3 compares the experimental and simulation results for the dynamic com-
pliance of the test structure under the effects of a 160 g impulse. It is observed that the
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Figure 13.2: Dynamic compliance at measuring points

measurement results correspond to the modelled values. In general, the results show that
the second mode has the lowest dynamic stiffness in the x-direction. In addition, the
simulation results for the third mode frequency are around 30 Hz higher than the mea-
sured data. The higher modes in comparison then approximately correspond in frequency
position but differ in peak size.
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Figure 13.3: Comparison of simulated and measured dynamic compliance of test structure
in x-axis direction given impulse force of 160 g

The model assumes a constant damping parameter, and higher frequencies are thus
attenuated compared to the experimental results. However, the stability of the consid-
ered system depends mainly on the frequency shifts which occur at low frequencies (i.e.,
the first two modes), and hence discrepancies between the measurement and model are
insignificant. In addition, its significance is enhanced by the logarithmic scale of Fig. 13.3.
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Figure 13.4 presents a comparison between the measured signal and the simulation
of (a) real and (b) imaginary components on the linear scale. The dominance of 80 Hz
mode is evident, also, that the role of higher frequency components on chatter frequency
are negligible. The negative real part of the measured signals is more disproportional
than the simulated one. The imaginary measured part has a lower peak which leads to
lower damping. Despite these deviations, this model can be considered an acceptable
representation of the system, mainly because the model’s goal is not to accurately copy
reality, but to capture major trends.
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Figure 13.4: Comparison of simulated and measured dynamic compliance of test structure
in x-axis direction given impulse force of 160 g
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13.2 Strain Gauge Layout and Force Estimation

The FEM analysis was used to estimate the force and its component in different axes.
Based on the strain measured on two stain gauges applied to the tool holder. The reason
is that the direction has a mainly non-trivial character of direction with no simple relation
between strain and force. Figure 13.5 shows the tool holder with the strain gauges. FEM

(a) FEM model main layout (b) Applied sensors on the structure

Figure 13.5: Position of the strain gauges on the structure

analysis of the behaviour of the structure was used to choose the place of the strain gauges
at the location and reconstruct the force from the measured strain. The main parameter
of the FEM analysis was loading the structure by force with different combinations of X
and Y compounds, then the strain in the places where the strain gauge is observed. The
static analysis for different combinations of input forces in the X and Y directions create
detection data in both paces of the model.

(a) Strain gauge 1 (b) Strain gauge 2

Figure 13.6: Results of FEM analysis of strain dependency on force components

Figure 13.6 shows that the strain gauge 2 deformation characteristic creates a plane,
the strain gauge 1 surface is mostly plane too, but it bands for cases where the force in the
X direction is higher than in Y. However, this situation would not occur in the grooving
process and would mean a cutting disorder. Therefore, these data could be neglected.
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Neglecting these system data can be represented by two linear equations:

Fx = Cx1 · εSG1 + Cx2 · εSG2 (13.1)

Fy = Cy1 · εSG1 + Cy2 · εSG2. (13.2)

The coefficients of the models are obtained using linear regression (see Table 13.1).

Table 13.1: Parameters of linear regression for force estimation

Fx Fy

Cx1 Cx2 Cy1 Cy2

-1.125e+07 4.951e+06 -4.797e+06 -7.212e+06

R-square:
0.9994 0.9999

RMSE:
8.653 6.254

Questionable could be the usage of static dependency for measuring the dynamic pro-
cess. The assumption is that the dominant frequencies are below 500 Hz; the first natural
frequency of the holder is on 3970 Hz, so far higher than these dominant frequencies.
Thus, even for the range 0–500 Hz the behaviour of the holder would be quasi-static.
According to this assumption, we can compile a function that transforms the measured
stress into a force. Linear regression can be used to approximate the dependence because,
as we have already mentioned, the relationship between force and deformation is linear
in an important area.

13.3 Experimental Machining Trials for Chatter
Behaviour Verification

In practise, experimental verification of the chatter behaviour faces several key challenges,
including the low stability of the system itself and the fact that there is no stable area
between the lobes in the stability diagram at lower speeds, the area practically filled with
harmonic lobes without any windows of higher chip width stability.

Due to the dimensions of the tested structure and the requirements for independent
movement, the verification trials were performed on a large horizontal milling machine
(TOS WHN 13 A), which allowed both the spindle function and table movement to
change the chip width and ensure feed in the cut. The milling machine provided several
advantages for the verification process, including most notably its large dimensions and
sliding guide mounting, which allowed its dynamics to be isolated from those of the tested
LBG system. However, the machine offered only a very limited choice of spindle speeds
for the cutting process (i.e., 430, 465, 600, and 765 RPM). Consequently, the acquisition
of an experimental lobe diagram was almost impossible, and hence the only feasible option
for evaluating the chatter behaviour of the guideway was to verify the frequency response
under unstable machining conditions.

Figure 13.3 presents a photograph of the experimental setup. As shown, the guideway
was mounted on a milling machine table. Strain gauges were attached to the tool holder
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Figure 13.7: Photograph of experimental setup used to verify chatter behaviour of LBG.

to reconstruct the force load, and accelerometers were applied to the body of the system
to measure vibration in different directions during the machining (Fig. 13.1). The signals
generated by the strain gauges and accelerometers were collected by a DAQ module
and interfaced to a PC for subsequent processing. The workpiece was a steel cylinder
(C45) with a diameter of 70 mm, it was mounted on the spindle of the horizontal milling
machine. In the machining trials, grooves were cut into the end face of the workpiece with
a grooving width in the range of 1 to 4.5 mm with increments of 0.5 mm (see Fig. 13.8).
As the width was increased, the depth was gradually reduced from 3 mm to 1.4 mm in

Figure 13.8: Scheme of the workpiece after the machining test with stepped grooves

steps of 0.2 mm. For each machining condition (i.e., groove width and depth), two trials
were performed in order to ensure the reliability of the measurement results. The signals
acquired from the strain gauges and accelerometers were used to construct a corresponding
power spectral density (PSD) diagram from which the frequency response of the system
was then determined.
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14
Results and Discussion

The example of two measurement power spectral density PSD Fig. 14.1a and 14.1b show
the spectrum of each channel. The difference is obvious the 1 mm chip data have more
significant frequency peaks in accelerometer data and the first mode peak on 60 Hz in the
Y and Z data and 80 Hz of the second mode responsible for the chatter vibration; This is
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(b) Chip width 4.5 mm

Figure 14.1: Power spectral density of all measured channels for spindle speed 430 rpm

also noticeable from the deflection data, where this peak is noticeable. In contrast, during
the 4.5 mm chip width machining, the main peaks are compounds of several subpeaks
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that are most noticeable in chatter frequency where the dominant 80 Hz frequency is
replaced by four dominant frequencies 73, 80, 89, and 96 Hz – which are also projected
through their harmonics to higher frequency spectra.

It must be considered that the signals of all measurements are processed; the important
pieces of information are mainly in the frequency spectrum. The accelerometer signals
are stronger than the deflection signal; this is caused by the low values of deflection on
the workpiece. However, after transforming the deflection signal into force, the force data
will have a higher value. All data have a significant amount of frequency noise; this is an
effect of the production facility where the experiment takes place; the nose is caused by
other machine tools, crane and another production rush. In the deflection data there is a
noticeable 50 Hz frequency noise peak caused by the electric voltage frequency.

PSD maps in Figs. 14.2 (a) (d) show the dependence of the response frequency of the
experimental structure in the x-axis direction on the width of the chip at spindle speeds
of 430, 465, 600, and 765 RPM, respectively. The most significant spectral changes are
observed at a spindle speed of 765 RPM, for which a frequency component of 74 Hz,
which is not predicted by linear theory, is detected at machining depths greater than
4 mm. (A similar phenomenon also occurred at the other spindle speeds; however, the
signal strength was much weaker and thus is not easily seen in the corresponding PSDs.
For spindle speeds of 430 RPM and 465 RPM, the PSD changes in the area above 3 mm,
multiple new spectra occur, and the original peaks are expanding. The least noticeable is
the spectral change in PSD at 600 RPM where these changes in PSD are the weakest and
when there are small changes for data above 4 mm. These changes can also be observed
at higher harmonic frequencies.

The spectral changes observed in the PSDs can be attributed most feasibly to the
nonlinearity of the system. The nonlinear model presented in Section 4.2 accurately de-
picts the behaviour of the system and the aforementioned spectra, whereas a simple linear
approach cannot. Figures 14.3 (a) and (b) compare the chatter frequencies predicted by
the nonlinear model and a linear model for chip widths of 1 mm and 4.5 mm, respectively.
It will be recalled that the linear model does not consider the change in system stiffness
caused by the load and represents the results obtained in impulse hammer measurements.
For reference purposes, the estimated spectra are compared with the experimental data
acquired by the strain gauges, which more accurately describe the self-excited frequency
responses and eliminate the surrounding influences of random excitation. The size of the
plotted points corresponds to the signal strength of the corresponding PSD and hence
provides an indication of the measured instability. In other words, the points indicate the
most dominant chatter frequencies.

It should be noted that the results correspond to unstable cutting conditions. Although
the chatter has an impulse character, during its initialisation, the static component of the
cutting force is dominant, and the force oscillates around the value of the static force.
Therefore, the static force component is expected to load the LBGs, resulting in initialising
the corresponding chatter frequency. Consequently, the linearised estimates for frequency
prediction are not as accurate as those for the machining process performed at the edge of
stability, since, during unstable cutting, the tool passes through many different stiffness
states.

Nevertheless, despite this limitation, the estimates obtained using the cosimulation
model are in good qualitative agreement with the measurements results for the self-excited
vibrations. In most cases, the estimates deviate from the measured frequencies by no more
than 2 Hz. However, more significant deviations are observed for the largest chip width
of 4.5 mm and lower spindle speeds (430 465 RPM). For example, an estimation error of
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(a) Spindle speed 430 rpm (b) Spindle speed 465 rpm

(c) Spindle speed 600 rpm (d) Spindle speed 765 rpm

Figure 14.2: Experimental results obtained for frequency response of experimental struc-
ture in x-axis direction given different chip widths and spindle speeds (430, 465, 600, and
765 rpm).

5 Hz occurs at 465 RPM, while an error of 3 Hz occurs at 430 RPM. In particular, these
findings confirm the nonlinear behaviour of the system, since, according to linear theory
and impulse hammer measurements, no vibration should occur in the spectrum band of
70 80 Hz.

Overall, the results confirm that the nonlinearity of the LBG structure must be taken
into account, especially when the external load causes preload loss. Furthermore, the
measurements obtained by a modal hammer for such structures provide only limited
information about the structure response. In future work, the linearisation method applied
in the present study for stability estimation will be integrated with a process damping
model to better describe the system response in the low-speed region. Furthermore,
the estimation performance will be enhanced by applying the stochastic approach to the
dispersion of the specific cutting force and the definition of the probability band of the
stability lobe diagram.
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(a) Chip width 1 mm
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(b) Chip width 4.5 mm

Figure 14.3: Comparison of estimated frequencies of chatter vibration and scaled measured
response obtained in experimental trials for chip widths of: (a) 1 mm and (b) 4.5 mm.
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15
Proposed Methodology of Machine-Tool
Design

Like many natural processes, a logistical function can also describe technical development.
In many cases, it seems that the current types have reached the top and therefore that
further efforts to improve will not lead to a better product, especially in terms of the
layout of the machine structure. As was evident in the previous chapters, the influence
of nonlinear bounds on the overall machine behaviour is underestimated during the ma-
chine’s design and operation. Therefore, it is necessary to reconsider the methodology of
structural design. The design should focus on the whole system and the optimisation of
the partial structures considering the load flow in the structure, leading to an iterative
process, where the first part focusses on the appropriate distribution of links. The cre-
ation of dynamic substructures decomposes the overall assembly into substructures, so
it is possible to solve separate tasks in parallel; then it is necessary to verify the overall
machine behaviour.

It is often very difficult to apply loads from the cutting process, as they are very
variable and depend on the type of technology, and even different batches of the same
material can fundamentally change the behaviour of the cutting process. Therefore, it
is necessary to approach the problem stochastically and not just choose deterministic
conditions. Here, it is necessary to emphasise the effect of nonlinearities when even a
small change in conditions results in a significant deviation of the change in result; as
shown in the example presented, the load was able to reduce the natural frequencies
of the system by ten percent and thus seemingly reduce system’s stiffness 100 times.
Knowledge of the behaviour of nonlinear bonds enables the improvement of the machine
tool structure. For instance, the property of a linear ball guideway enables the use of
both hardening and softening regions with the right design. Based on these assumptions,
we can propose a development methodology. The scheme of the proposed methodology
is shown in Fig. 15.1. Each machine design should begin by defining a basic machine
concept and analysis of the expected load. In the first step, that is necessary to define the
layout of the bonds between each piece of the structure. Optimizing layout and number
and position is crucial for the whole structure-property.

In the first step, it is necessary to define the layout of the bonds between each piece
of the structure. Optimising layout and number and position is crucial for the whole
structure-property. In this, a very vague first draught of the structure is necessary to
estimate the load of each bond and optimise the layout using knowledge of the nonlinear
behaviour of the bonds. The next step is to use substructuring and split the whole machine
into single structures, which could be optimised independently, knowing the load in the
connections between them. All the parts should be of more detailed design. Furthermore,
the structure should be simulated again as a whole, and if the load distribution changes
significantly, the process should return to the point of individual substructures and re-
optimise them based on new knowledge. As soon as the input and output simulations
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Figure 15.1: Scheme of development of new machine tools

differ minimally, it is possible to proceed to the production of a prototype. The prototype
test verifies the behaviour of the machine tool behaviour and verifies the simulation model.
If the prototype test satisfies the entering requirements, then serial production could start.
However, if the requirements are not satisfied, then it is necessary to analyse the problem,
namely redesigning the structure. The test data are also valuable for the verification of
the simulation model and for its improvement.
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16
Summary of Work Benefits

This work deals with the case of nonlinear behaviour due to nonlinear stiffness, the non-
linearities are commonly underestimated in machine design and regularly presented as
unsolvable problems which over complicated the analysis and does not provide enough
additional benefits to deal with them.

This work not only proves the importance of considering nonlinearities that can have a
crucial effect on machine tool performance but also provides the effective way to deal with
these cases. As the experimental data prove, the method enables providing more valid
information than the simple linearisation in the unloaded stage, which is usually the only
method used for evaluating the behaviour of the machine tool. This work also highlights
that linear ball guideway deformation and stiffness cannot be considered as directionally
independent and gravity must be considered as the important parameter influencing the
system dynamic behaviour.

The better understanding of the nonlinear behaviour of the components and proper
analysis improve the prediction of dynamic behaviour and, therefore, enable better ma-
chine tool design. Following the provided methodology, better chatter stability should
be achieved. Better knowledge of machine tool dynamics enables better productivity by
using a larger area of stability.

The scientific benefits of this work are as follows:

• Time domain cosimulation of nonlinear stiffnes model with modal reduced submod-
els,

• Proposal of an effective method for estimation stability lobe diagram based on syn-
thesis of local linearisation – SLOP algorithm,

• Concept of machine tool design methodology using nonlinear bond analysis and
substructure optimisation.

The application benefits of this work are:

• The presented methods enables design bounds layouts design and analyse force
distribution in the structure in early stages of machine tool development,

• Improvement of machine tool chatter stability simulation and optimisation of ma-
chining process.
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17
Conclusion

Machine tool analysis without considering nonlinearities could lead to wrong chatter sta-
bility assumptions. Therefore, nonlinear operation of a real machine cannot be simply
estimated and analysed by a linear system. Neglecting nonlinearities could lead to an
incorrect estimation of vibration stability. It may seem clear that linear analysis cannot
simply represent nonlinear systems; still, nonlinear analysis is rarely used for machine
tool analysis and estimation of chatter stability prediction. Primarily for its simplicity,
linear chatter estimation represents most of all analyses, regardless of the nonlinearity of
the contact bonds.

This work presents an example of a machine tool with nonlinear stiffness that has a
critical influence on its chatter behaviour. Step-by-step analysis uncovers the cause of this
behaviour of nonlinearities and describes the phenomenon of linear ball guideways in the
early stages; the analysis focusses on the time-domain simulation of the machining process,
which in later stages become too computationally demanding. To effectively predict the
system chatter stability lobe, the linearisation method was presented. This method was
compared with the simulation of the simplified structures; because of promising results,
the method was applied to the experimental structure. Two methods of nonlinear static
analysis were applied in the experimental structure, the first was the simplified analysis
based on contact reactions, and the second used dynamic substrusturing and cosimulation
to estimate contact load in the nonlinear bounds. The first method represents the basic
analysis, which could be used as the first draught of the behaviour; however, more precise
results were obtained by the cosimulation method. Using the linearisation scheme and
cosimulation mode, the chatter frequencies and the stability lobe diagram were estimated.
Experimental machining trials were compared with prediction and show good match, the
biggest deviation was within the 3 Hz range.

The ‘mystery’ of the shifted chatter frequency problem was revealed. The nonlinear-
ity plays a key role in machine tool systems and could cause a large change of dynamic
behaviour. Therefore, this phenomenon is necessary during the design and operation.
The experimental data prove that propose analysis could provide valid chatter prediction.
Information about the behaviour of the boundaries should be considered during the first
draught of the linear ball guideway layout to prevent the with minimal stiffness from
operating machine in the limits. For this, the simplified static analysis provides enough
information. The more complex cosimulation is more suitable for analysing structure dur-
ing more advanced development stages and for analysing operating condition of machine
tools. The analysis scheme could be applied to other types of nonlinear bounds which are
crucial components defining the main machine tool property. Due to the non-intuitive
character of the non-linear bound, ‘weird’ situations could occur where a lower number
of linear ball guideways could provide a better dynamic property. Therefore, the layout
considering bounds nonlinearity provides a better design of machine tools.
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Nomenclature

β Cuting force angle

µ Contact shape function

ν Poission ratio

Ω Spindle speed frequency

φk Angular deflection

A Contact radius

B Contact radius

Blim Limit chip width

e Eccentricity of contact ellipse

E∗ Equivalent elastic modulus

En Young’s elastic modulus

F Force

Fc Cutting force

fc Chatter frequency

Fg Weight

Fl Force of preload lost

Fk Force reaction

Fpr Total preload force of lineat ball guideway

Fp Preload force in single row

Im[FRF ] Imaginar part of frequency response

kn Nonlinear stiffness parameter

kA...D Nonlinear stiffness parameter of ball row

kbeam Torsional stiffness

Ks Specific cutting force

l1,2...6 Lenght dimention

nb Number of balls under contact
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NOMENCLATURE

R Contact radius

Re Relative radius

Re[FRF ] Real part of frequency response

Tk Torsional reaction

x Deflection

xp Deflection caused by preload
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