
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

PERSONAL VOICE ACTIVITY DETECTION
ŘEČNÍKEM PODMÍNĚNÁ DETEKCE HLASU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

ŠIMON SEDLÁČEK

Ing. JÁN ŠVEC

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

B a c h e l o r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
23426

Student: Sedláček Šimon
Programme: Information Technology
Title: Personal Voice Activity Detection
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with automatic speech activity detection.
2. Get acquainted with recurrent neural networks.
3. Implement the method using an appropriate toolkit (e.g PyTorch).
4. Train and evaluate on a standard dataset, compare with published results.
5. Evaluate the results and suggest ways to further improve them.

Recommended literature:
• Ding, S., Wang, Q., Chang, S., Wan, L, & Moreno, I. L. (2019). Personal VAD: Speaker-

Conditioned Voice Activity Detection. http://arxiv.Org/abs/1908.04284
• as recommended by the supervisor

Requirements for the first semester:
• Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Švec Ján, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: October 30, 2020

Bachelor's Thesis Specification/23426/2020/xsedla1 h Page 1/1

http://arxiv.Org/abs/1
https://www.fit.vut.cz/study/theses/

Abstract
This work aims to implement, test, and evaluate a speaker-conditioned Voice A c t i v i t y
Detection (V A D) method called "Personal V A D " . The method builds upon an L S T M - b a s e d
approach to V A D and its purpose is to introduce a system that can reliably detect speech
of a target speaker, while retaining the typica l characteristics of a V A D system, mainly in
terms of smal l model size, low latency, and low necessary computat ional resources. The
system is t rained to dist inguish between three classes: non-speech, target speaker speech,
and non-target speaker speech. For this purpose, the method utilizes speaker embeddings
as a part of the input feature vector to represent the target speaker. Some of the more
heavyweight personal V A D variants also make use of speaker verification scores issued to
each frame based on the target embedding, resulting in a more robust system. In addi t ion
to the one scoring method presented in the original article, two other scoring approaches
are introduced, both outperforming the baseline method and improving the performance
even for acoustically challenging conditions.

Abstrakt
Cílem t é t o p r á c e je implementovat, otestovat a vyhodnot i t ř ečn íkem p o d m í n ě n o u metodu
pro detekci hlasu (Voice Activity Detection, V A D) nazvanou "Personal V A D " . P r o detekci
využ ívá tato metoda L S T M n e u r o n o v ý c h sí t í a j e j ím úče lem je vy tvo řen í s y s t é m u schopného
spolehl ivě detekovat řečové s ignály cílového řečn íka př i zachování v l a s tnos t í typ ického V A D
s y s t é m u co se velikosti modelu, odezvy a n ízkých n á r o k ů na zdroje týče . S y s t é m je t r é n o v á n
pro klasifikaci řečových r á m c ů do t ř í t ř íd : neřeč , řeč necí lového a řeč cílového řečn íka . Za
t í m t o úče lem využ ívá metoda speaker embedding vektory pro reprezentaci cílového řečn íka
jako součás t v s t u p n í c h p ř í z n a k ů . N ě k t e r é z náročně jš ích variant s y s t é m u využívaj í skórování
r á m c ů s y s t é m e m pro verifikaci řečn íka , což vede ke zvýšení spolehlivosti klasifikace. Vedle
zák l adn í metody skórování p ř e d s t a v e n é v o r ig iná ln ím č l ánku byly n a v r ž e n y dvě modifikace,
jež z á k l a d n í metodu p řekona ly a zlepšily spolehlivost výs ledného s y s t é m u i v akusticky
n á r o č n ý c h p ros t ř ed ích .

Keywords
voice ac t iv i ty detection, speech detection, recurrent neural networks, long short-term mem­
ory, L S T M , speaker recognition, speaker embeddings, d-vector

Klíčová slova
detekce hlasové aktivi ty, detekce řeči, r e k u r e n t n í neu ronové sí tě , long short-term memory,
L S T M , r o z p o z n á n í mluvč ího , speaker embeddings, d-vector

Reference
S E D L Á Č E K , Simon. Personal Voice Activity Detection. Brno , 2021. Bachelor's thesis.
Brno Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. J á n
Švec

Rozšířený abstrakt
Tato p r á c e se zabývá i m p l e m e n t a c í a evaluací ř ečn íkem p o d m í n ě n é metody detekce hlasu

(Voice Activity Detection, V A D) , p ů v o d n ě n a z v a n é " P e r s o n á l V A D " (P V A D) . Tato metoda
byla p o p r v é p ř e d s t a v e n a v [13] a je j ím cí lem je vy tvo řen í V A D s y s t é m u , k t e r ý je schopen
rozlišit řečové r á m c e jednoho cílového řečn íka od řečových r á m c ů o s t a t n í c h mluvčích .

P ů v o d n í mo t ivac í pro vy tvo řen í t akového s y s t é m u bylo jeho po tenc i á ln í využ i t í pro on-
device r ozpoznáván í řeči u osobních a mobi ln ích zař ízení . P r o tento účel by bylo v ý h o d n é ,
aby si výs ledný s y s t é m zachoval zák l adn í charakterist iky typ ického V A D s y s t é m u , p r i m á r n ě
co se n á r o k ů na zdroje a odezvy týče . z tohoto d ů v o d u je tedy snaha o adaptaci klasick­
ého V A D s y s t é m u na d a n é h o cílového řečn íka po t enc i á lně výhodně j š í než n a p ř í k l a d p ř í m é
využ i t í d ia r izačních s y s t é m ů nebo s y s t é m ů pro verifikaci ř ečn íka pro s te jný účel .

Výs ledný s y s t é m je za ložen na a r c h i t e k t u ř e L S T M n e u r o n o v ý c h sí t ích, k t e r é jsou jed­
nou z p o p u l á r n í c h architektur n e u r o n o v ý c h sí t í pro tvorbu V A D s y s t é m ů [14], a k te ré
umožňu j í e l egan tn í mode lován í t e m p o r á l n í h o kontextu ve v s t u p n í c h datech a posky tu j í
m o ž n o s t p r o u d o v é h o zpracování . Tato architektura je pro všechny P V A D s y s t é m y spo lečná
a výs ledný model m á pak něco m á l o přes 130 t is íc p a r a m e t r ů . P r o adaptaci na cílového
mluvč ího jsou pak využ i ty dva typy v s t u p n í c h p ř í z n a k ů specifických pro d a n é h o řečníka .
J edno t l i vé varianty P V A D s y s t é m ů se pak liší p r á v ě t í m , jakou kombinaci t ě c h t o v s t u p n í c h
p ř í z n a k ů využij í .

P r v n í m z t ěch to p ř í z n a k ů je řečníkova d-vector embedding [48] reprezentace. T a m á
v p rvé ř a d ě sloužit jako j akýs i a b s t r a k t n í vzor pro výs ledný P V A D sys t ém, na zák ladě
k t e r ého m á cílového řečn íka v akus t i ckých př íznac ích identifikovat. Tento embedding vektor
je využ íván p r i m á r n ě architekturou E T , k t e r á p ř e d s t a v u j e ideální řešení p r o b l é m u P V A D ,
p ro tože n e m á ž á d n é speciá ln í n á r o k y na zdroje, na rozdí l od o s t a t n í c h P V A D variant. Dá le
je tato embedding reprezentace využ ívána jako součás t p ř í znakového vektoru architektury
S E T .

Náročně jš í varianty P V A D (co se n á r o k ů na zdroje týče) pak mohou tuto d-vector
reprezentaci m o ž n é využ í t i pro skórování j edno t l i vých akus t i ckých r á m c ů . P r o k a ž d ý jed­
no t l ivý r á m e c je e x t r a h o v á n s e k u n d á r n í d-vector, k t e r ý je kosinovou p o d o b n o s t í p o r o v n á n
s embedding vektorem cílového řečníka . Takto dostaneme ska lá rn í skóre, k t e r é lze využ í t
jako dalš í p ř í znak na vs tupu sys t ému . Toto skóre je využ íváno archi tekturami S C , S T
a S E T . Arch i tek tu ra S E T tedy využ ívá jak embedding vektor cílového řečn íka , tak z m í n ě n á
skóre, a je tedy očekáváno , že bude mí t nejlepší klasifikační výsledky.

Pro n a t r é n o v á n í j edno t l i vých P V A D architektur je t a k é t ř e b a naj í t vhodnou datovou
sadu. Ideá ln í d a t o v á sada by obsahovala s t ř í davé promluvy řečníků , ale t a k é jejich s a m o s t a t n é
promluvy v d o s t a t e č n é kval i tě , k t e r é by bylo m o ž n é využ í t pro extrakci výchozích d-vector
r ep rezen tac í k a ž d é h o řečn íka . P r o t r énován í P V A D architektur, k t e r é využívaj í p r ávě pouze
tuto výchozí reprezentaci, je pak t a k é t ř e b a , aby d a n á d a t o v á sada obsahovala d o s t a t e č n o u
var iabi l i tu řečníků , tedy jejich d o s t a t e č n ý poče t .

P ro tento účel by l využ i t s t a n d a r d n í Libr iSpeech [32] korpus, s p o m o c í k t e r é h o byly
s t ř ídavé promluvy s imulovány k o n k a t e n a c í někol ika promluv někol ika n á h o d n ě zvolených
řečníků . Výs ledné s y s t é m y pak byly t r é n o v á n y na celém t é m ě ř t i s í c i -hodinovém rozsahu
Libr iSpeech korpusu, p ř i čemž byla na vygenerovanou t rénovac í datovou sadu ap l ikována
augmentace, k t e r á dá le zvětš i la její rozsah na č t y ř n á s o b e k .

Výs ledky zák ladn ích e x p e r i m e n t ů se všemi č t y ř m i archi tekturami př ines ly jeden důlež i tý
poznatek: hodnoty skóre pro verifikaci ř ečn íka p ř i ř a z e n á k a ž d é m u r á m c i u architektur S C ,
S T a S E T nebyly co se týče rozl išení cí lových (target speaker speech, t s s) a necí lových
(non-target speaker speech, n t s s) řečových r á m c ů d o s t a t e č n ě d i sk r imina t ivn í . Arch i tek tura

S T , k t e r á pro detekci t s s r á m c ů vedle akus t i ckých p ř í z n a k ů využ ívá p rávě pouze toto
skóre, d o s á h l a pro č is tou va l idační sadu p řesnos t i klasifikace pouze 84.29% (tedy pod í l
ko rek tně klasifikovaných r á m c ů) . Opro t i tomu architektura E T , využívaj ící pouze d-vector
embedding reprezentaci cílového řečn íka dosáh l a pro s te jný úkol d o s á h l a p řesnos t i 88.02%.

Z tohoto d ů v o d u byly n a v r ž e n y dvě modifikace z á k l a d n í metody skórování , k t e r é v p r ů b ě h u
zpracován í v s t u p n í n a h r á v k y ex t r ahu j í embedding vektory s v y u ž i t í m p o s u v n é h o kontex-
t u á l n í h o okna. T í m je za cenu d r o b n é h o zvýšení n á r o k ů na zdroje dosaženo vyšší kval i ty
e x t r a h o v a n ý c h s e k u n d á r n í c h embedding v e k t o r ů a t í m i vyšší d iskr iminat iv i ty výs ledných
hodnot skóre . Arch i tek tu ry S T a S E T n a t r é n o v á n y s takto z í skanými skóre zaznamenaly
v ý r a z n é z lepšení ve schopnosti rozl išování t s s a n t s s r á m c ů (a to i v akusticky n á r o č n ý c h
s i tuacích) a p řekona ly tak výs ledky nej lepšího S E T s y s t é m u p r e z e n t o v a n é h o v [13]. Nejlepší
S E T s y s t é m využívaj ící t ě c h t o modif ikací skórování dosáh l pro č i s tou řeč p řesnos t i 92.23%.

U architektury E T bylo t a k é e x p e r i m e n t o v á n o s j i n ý m i typy v e k t o r ů pro reprezentaci
cílového řečn íka , k o n k r é t n ě i-vector [11] a x-vector [43]. P ř e s t o ž e oba typy rep rezen tac í
dosáh ly obs to jných výs ledků , v p ř í p a d ě x -vec to rů bylo dosaženo výs ledků t é m ě ř srovnatel­
ných s d-vectory, nebyla z a z n a m e n á n a ž á d n á z lepšení oproti E T s y s t é m u využívaj íc ího
d-vector reprezentace.

Pro dalš í z lepšení dosažených výs ledků a zvýšení robustnosti všech P V A D s y s t é m ů by
do budoucna bylo v h o d n é využ í t pro jejich t r énován í k r o m ě s imulovaných t a k é r e á l n á data.
Toto by umožn i lo ř á d n é v y h o d n o c e n í schopnosti adaptace j edno t l i vých s y s t é m ů n a p ř í k l a d
na překrývaj íc í se řeč v klasifikovaných n a h r á v k á c h .

P e r s o n a l V o i c e A c t i v i t y D e t e c t i o n

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. J á n Švec. I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

Š imon Sedláček
M a y 11, 2021

Acknowledgements
I would like to sincerely thank my supervisor Ing. J á n Švec for his support, advice, and
valuable remarks while working on this thesis. Addi t ional ly , i would like to thank Ing. Jan
Brukner for his feedback wi th regard to the experiments conducted in this work.

Computa t iona l resources were supplied by the project "e-Infrastruktura C Z " (e - I N F R A
LM2018140) provided wi th in the program Projects of Large Research, Development and
Innovations Infrastructures.

Contents

1 Introduction 3

2 Artif ic ial Neura l Networks 5
2.1 Feed-forward neural networks 5
2.2 Tra in ing the network 7
2.3 The problem of sequential modeling 7
2.4 Recurrent neural networks 8

2.4.1 Mode l ing long temporal dependencies 8
2.4.2 L o n g short-term memory 9

3 Speaker representations 12
3.1 i-vectors 12
3.2 x-vectors 13
3.3 d-vectors 13
3.4 Embedding s imilar i ty metrics 14

4 Speech detection 16
4.1 Voice act ivi ty detection 16

4.1.1 Voice act ivi ty detection methods 17
4.2 Speaker-conditioned voice act ivi ty detection 18

4.2.1 Personal voice act ivi ty detection approach overview 20
4.2.2 Personal voice act ivi ty detection system architecture 20
4.2.3 Loss functions 24

5 D a t a 25
5.1 Libr iSpeech 25
5.2 Generat ing the dataset 25
5.3 D a t a augmentation 27

6 Implementation 28
6.1 D a t a preparation and feature extraction 28

6.1.1 Speaker embedding extractors 30
6.2 M o d e l implementation and t ra ining 30

6.2.1 Deal ing wi th utterances of variable lengths 31

7 Experiments 33
7.1 Evalua t ion metrics 33
7.2 Tra in ing configuration and conditions 34

1

7.2.1 Last hidden layer activation functions 35
7.3 Compar ing the architectures 35

7.3.1 Weighted pairwise loss 37
7.4 Compar ison of different target speaker embedding types 39
7.5 Al te r ing the frame scoring method 41

7.5.1 Compar ing frame-level and windowdevel d-vector d iscr iminat iv i ty . 41
7.5.2 Proposed scoring methods 43
7.5.3 Scoring alteration performance results 44

7.6 Summary and possible improvements 45

8 Conclusions 47

Bibl iography 49

A Contents of the enclosed storage unit 54

2

Chapter 1

Introduction

Voice Activity Detection (V A D) is the problem of dist inguishing speech signals i n audio
recordings from silence and background noise. It is typical ly used as a part of most speech
processing systems, taking a role of a pre-processing component, responsible for filtering
out irrelevant information from the processed signal. Th is is beneficial for a mult i tude of
reasons.

One, the downstream system might be sensitive to noise, and filtering out such signals
might improve the system's performance.

Two, the likes of speaker verification and automatic speech recognition systems are typ­
ically quite expensive to run i n terms of the required computat ional resources, which is
especially crucial when dealing wi th mobile personal devices. Voice act ivi ty detection can
therefore somewhat l imi t the resource and energy consumption by triggering the down­
stream systems only when necessary.

For some scenarios, it might be useful to extend the basic V A D problem by introducing
a speaker constraint - detecting speech frames of one target speaker and distinguishing
them from other non-target speakers.

This could generally be addressed by u t i l iz ing a speaker verification or a speaker d i -
arization system, however, it can be argued that a dedicated solution might offer some
advantages.

One such dedicated solution was recently proposed in [13], presenting a method of adapt­
ing a classical L S T M - b a s e d V A D system to the target speaker by u t i l iz ing their d-vector [48]
speaker embedding representation. One of the pr imary goals of this method (originally
called "Personal V A D ") is for the resulting system to mainta in the characteristics of a typ­
ical V A D system. Tha t is mainly i n terms of latency and low resource requirements so
that such a system could be used even for on-device speech recognition scenarios. However,
some more heavyweight approaches to the personal V A D problem are also proposed, as in
some situations, the addi t ional robustness might prove useful even despite the addi t ional
resource requirements.

This thesis aims to implement, evaluate and expand upon this speaker-conditioned V A D
method, as there is currently no working implementat ion of this method (or t raining/eval­
uation data for that matter) available to the public.

The rest of this thesis is organized as follows: Chapter 2 provides a brief in t roduct ion to
the topic of art if icial neural networks, focusing on their use for temporal context modeling.
Special attention is given to recurrent neural networks, as they are at the core of the
V A D systems implemented i n this work. Chapter 3 introduces the concept of speaker
representation vectors, also referred to as speaker embeddings. In Chapter 4, common

3

approaches to voice act ivi ty detection are discussed, as well as the core speaker-conditioned
V A D approach explored i n this work. Chapter 5 describes the data used for t ra ining the
implemented systems. Chapter 6 explains some of the key details regarding the feature
extraction, and personal V A D system implementat ion and t ra ining processes. Last ly, in
Chapter 7, the systems are evaluated and some potential ways of expanding the system
capabilities and improving the obtained results are introduced and discussed.

4

Chapter 2

Artificial Neural Networks

This chapter gives a brief introduct ion to the topic of Artificial Neural Networks (A N N) -
predominantly their types, architectures, use cases, the process of their design, and training.
Special attention is given to recurrent neural networks as they are the core network type
used in this work. The contents of this chapter (both for sections about feed-forward and
recurrent neural networks) were mostly derived from [16] and [3].

2.1 Feed-forward neural networks

Deep feed-forward networks (also referred to as feed-forward neural networks) are a ma­
chine learning model type, which allowed the creation and evolution of the deep learning
discipline, a feed-forward network essentially has one task, which is to approximate some
arbitrary function / * . Th is function represents a mapping of a system's inputs to their cor­
responding outputs - for example, for a classification problem, the target mapping could
be defined as assigning a category label to the classified input . The neural network then
defines a mapp ing 1 :

where x is the input feature vector, y is the network's output vector, /(•) is the mapping
function and 9 represents the network's learned parameters. The network is supposed to
learn 9 i n such a way that results in / becoming the best possible approximat ion of the
target function / * .

Deep feed-forward networks are called deep because they consist of several layers: an
input layer, an output layer, and a number of the so-called hidden layers. These layers are
stacked one behind the other, each taking the output of the previous layer as its input, thus
creating a network.

Each layer consists of a number of artificial neurons, which are called hidden units for
the hidden layers or output units for the output layer. Every art if icial neuron has a vector
of input weights w and a bias 6; parameters, which the neuron uses to transform its input
x :

1 Regarding vector notation: in this section, any variable that is a vector or matrix is depicted as bold to
differentiate them from scalar values. However, in later sections, some equations only contain vectors and
matrices and since it is unnecessary to distinguish them from scalars, they are written in a regular font only
to improve readability.

y = / (x ;0)

a =

5

This single neuron case can be generalized for the whole layer, giving us the following
affine transformation:

a* = W V " 1 + b\ (2.2)

where z * _ 1 is the output vector of the previous hidden layer serving as the input of the
current i - th layer, and W ! is a mat r ix of weights assigned to the inputs. The dimensionality
of the weight mat r ix corresponds to the number of hidden units in the current layer and
the dimensionality of z * _ 1 . F ina l ly , b* is a vector of biases assigned to the hidden units,
and a* is a vector of output activations.

These activations are then transformed using a non-linear, differentiable (with some
exceptions) activation function h(-):

zi = /i(a*), (2.3)

giving us zl, the final output of the layer.
W h i c h act ivation function should be used depends on several factors. Usually, the

activation function used by the hidden units w i l l be different from the one used i n the
output layer. The output layers typical ly use either the logistic sigmoid or the softmax for
classification problems. For regression problems, no activation function is used. For hidden
units, the rectified linear unit (and its variants) has become very popular i n recent years,
although there are many other options - such as the hyperbolic tangent or the previously
mentioned and i n the past widely used logistic sigmoid, bo th of which are often used inside
recurrent neural network cells. A l l of these activation functions are shown i n Figure 2.1.

R e L U S i g m o i d T a n H

Figure 2.1: Visua l iza t ion of the rectified linear unit (R e L U) , logistic sigmoid (Sigmoid) and
the hyperbolic tangent (TanH) act ivation functions.

Above a l l , it is crucial for the activation function to be non-linear. The non-linearity al­
lows the network to perform complex input transformations, not just affine transformations
(rotation, translation, shear). These complex transformations allow the network to fold and
warp the input feature space 2 so that, for example in the case of a complex classification
problem, boundaries between classes can be modeled more easily.

It is apparent that a deep neural network s imply represents a series of non- t r iv ia l func­
t ional transformations. It should be stated that according to the universal approximation
theorem [18], a neural network wi th only one hidden layer w i t h a non-linear activation
function can approximate any Borel-measurable function to any desired degree of accuracy.
This assumes that the hidden layer is given enough hidden units. In practice, a solution

2 A nice visualization of these effects can be found on Christopher Olah's blog: h t t p s : / / c o l a h . g i t h u b
. i o /pos t s /2014-03-NN-Mani fo lds -Topo logy /

G

https://colah.github

of this nature is however often unscalable as the w id th of the hidden layer would become
impract ical ly large for even very simple problems. Moreover, there is v i r tua l ly no guarantee
that the network would be able to learn the desired approximat ion in real-life scenarios.
It is therefore common - and intui t ively makes much sense - to deepen the network by
adding more hidden layers. This allows the network to better approximate more complex
functions using a series of simpler transformations, rather than only one much very complex
transformation.

2.2 Training the network

A s it was established in Section 2.1, the goal for the network is to approximate some
target function / * . Addi t ional ly , it was established that the network represents a series of
differentiable functional transformations, each having its own set of parameters.

The process of t ra ining the network is therefore nothing more than an optimization
problem - one of finding a network parameter set 9 that allows the network to approximate
the target function / * i n the best possible way.

To evaluate the quali ty of this approximation, we choose a differentiable objective func­
tion (often also referred to as loss or error function), which allows us to quantify the
accuracy of the network's predictions. W h i c h part icular loss function should be used is
determined by the nature of the problem that the network is meant to solve - for regres­
sion problems, one can use the mean squared error loss, for classification purposes, the
cross-entropy loss is a common choice.

The process of min imiz ing the value of the chosen loss function then corresponds to
opt imizing the network parameters to achieve better performance. We say that the network
learns the parameter values by min imiz ing the loss. Because the loss function is always
differentiable w i th respect to any weight or bias i n the network, a gradient-based numerical
approach to the parameter opt imizat ion can be used.

To update the network parameters, first, it is necessary to compute the gradients of the
loss function wi th respect to every network parameter. This is done using the backpropaga-
tion algorithm. The computed gradients indicate the direction of the steepest loss function
value increase. Therefore, subtracting the gradient (mult ipl ied by a smal l constant called
learning rate) from the corresponding parameter values is direct ly equal to updat ing the
network parameters i n such a way that the loss function value decreases.

This whole process of obtaining the network prediction for the t ra ining set, computing
the loss function value, computing the gradients, and then updat ing the network parameters
accordingly is referred to as the gradient descent a lgori thm. This a lgori thm also has many
variants, which further optimize and increase the efficiency of the whole learning process,
typical ly based on some stochastic assumptions, e.g. the stochastic gradient descent variant.

2.3 The problem of sequential modeling

The t radi t ional feed-forward neural network topology, al though powerful, is not a universal
solution for a l l deep learning problems. One of the l imitat ions of this architecture is its
impl ic i t abi l i ty to only process each input data point as a singular piece of information wi th
no temporal context. For each input vector, we typical ly obtain one corresponding output
regardless of what other inputs the network has seen up to this point - in other words,
feed-forward networks have no sense of memory.

7

For some deep learning problems and tasks, this temporal context is absolutely crucial ,
if we are to find an effective solution. Domains like speech recognition, speaker verification,
and natural language processing (or in the case of this thesis - voice act ivi ty detection)
present us w i th challenges requiring us to be able to process sequential data.

Some neural network topologies are able to address such problems without introduc­
ing significant changes to the basic model structure, for example, time-delay neural net­
works [47, 35], which have been found quite successful in solving many speech processing-
related problems such as speaker identification [43]. Other approaches s imply combine the
input features at several neighboring t ime steps into one feature vector, bringing in some
sense of the past and future temporal contexts, and use it as an input of a regular deep
feed-forward network [45].

However, there is one neural network topology, whose most basic purpose is to be able
to model these temporal dependencies impl ic i t ly - recurrent neural networks.

2.4 Recurrent neural networks

Recurrent Neural Networks (R N N) are a class of artificial neural networks designed primar­
i ly for sequence modeling. Rather than regular artificial neurons, R N N s consist of units
referred to as recurrent cells. These cells have two special properties the regular neurons
lack:

• a hidden state (sometimes referred to cell state),

• a recurrent connection to the hidden state from the previous t ime step.

The hidden state is the cell 's abstract representation of previous t ime steps, essentially
acting as a memory unit . Th is allows the R N N cell to condit ion its output not only on
its learned parameters and the current input but also on the accumulated value of this
hidden state. Therefore the network can learn to account for temporal dependencies i n the
processed data, thus becoming suitable for sequential modeling.

The basic, simple recurrent neural network layer can be formalized using the following
formulas:

at = b + Wht-i + Uxt,

ht=tanh(at), (2.4)

ot = c + Vht,

where U, V, W are weight matrices, b, c denote the bias vectors, at is the vector of hidden
state activations for t ime step t, ht is the hidden state vector transformed using the hyper­
bolic tangent function, ht-i is the hidden state vector from the previous t ime step, and oj
denotes the output activation of the recurrent layer for t ime step t. The output activation
vector then can be further transformed using another non-linear act ivat ion function.

Recurrent networks can be visualized i n the form of a computat ional graph as shown in
F i g . 2.2. Th is graph can also be depicted as unfolded, meaning we visualize the dependencies
between the ind iv idua l t ime steps, emphasizing the recurrent connections.

2.4.1 M o d e l i n g long t e m p o r a l dependencies

Recurrent neural networks could - in theory - be used for many types of tasks, that are
sequential in nature. However, it turns out that the basic simple R N N architecture car-

8

© © ©
L i t 1
A A A A A A A A

Figure 2.2: Visua l iza t ion of a recurrent neural network, depicted both in the regular and
unfolded variants. The diagram was taken from [31].

ries some crucial l imitat ions, which prevent it from being pract ical ly applicable to most
problems.

The basic problem is that it is rather difficult to reliably t ra in R N N s , as they tend to
suffer from the problems of vanishing and exploding gradients when using t radi t ional simple
gradient-based opt imizat ion methods [1, 2, 33].

Moreover, even i f the network is stable during t ra ining (the gradients do not explode),
and can store memories, it is generally unable to reliably learn and represent long-term de­
pendencies in the input data. This is because the weights assigned to long-term interactions
become exponentially smaller compared to the short-term ones.

Long temporal dependencies are however crucial for some types of problems. Taking
an anecdotal example: long sentences often contain words at the beginning, which are
crucial for a correct understanding of the sentence - they provide long-term context, which
sometimes prevails across mult iple sentences.

These l imitat ions eventually led to the introduct ion of Gated Recurrent Neural Networks
(gated R N N s) . Ga ted R N N s are a special category of recurrent neural networks which
expand upon the basic simple R N N architecture by introducing several internal gating
mechanisms. These gating mechanisms have two pr imary roles:

1. They introduce recurrent pathways, where gradients can flow more freely, as these
pathways are not statically controlled by any weight matrices, but rather dynamical ly
using these gates, whose parameters are learned instead.

2. They allow the network to form its hidden state in a more refined manner, preserv­
ing important contextual information or, on the contrary, intentionally ignoring or
forgetting other pieces of it.

The two main representatives of this class of R N N s are the Long Short-term Memory
(L S T M) and the Gated Recurrent Unit (G R U) . The L S T M - the most widely used gated
R N N variant nowadays - is discussed in the next Section 2.4.2.

2.4.2 L o n g s h o r t - t e r m m e m o r y

The Long Short-term Memory (L S T M) is a gated R N N variant first introduced i n [17]. Its
purpose is to address some of the problems described i n Section 2.4.1, most impor tant ly
the problem of learning and exploi t ing long temporal contexts.

The L S T M splits the original R N N state into two properties, bo th of which are recurrent.
The first property is the L S T M cell state ct, which serves as an information accumulator
and is controlled by the L S T M gating mechanisms. The second property, now called the
hidden state ht, becomes the output of the L S T M cell at each t ime step while also being

9

h.

Xt

Figure 2.3: Diagram of an L S T M cell . The a and tanh symbols denote the logistic sigmoid
and hyperbolic tangent act ivat ion functions, respectively, q , and ct-i denote the cell state
values, ht, and ht-\ denote the hidden state values, and xt denotes the input of the L S T M
cell. The diagram was obtained from [10] and is licensed under the C C - B Y License, by
Gui l laume Chevalier. The legend part of the original image was removed.

recurrent. For each gating mechanism, this hidden state value is used as a secondary input
along wi th the L S T M input xt (see Figure 2.3).

A n L S T M layer (and every cell for that matter) has three separate gating mecha­
nisms [31, 51], the first one being the so-called forget gate:

ft = a(Wfxt + Ufht-1 + bf), (2.5)

where Wf,Uf are weight matrices, 6/ is the bias vector, ft denotes the forget gate value
vector at t ime step t, cr(-) is the logistic sigmoid, and ht-\ is the hidden state vector from
the previous t ime step. The forget gate can restrict the information retained i n the cell
state.

The second gating mechanism is the input gate, which controls the accumulation of the
L S T M cell input to the internal cell state:

it = a(Wixt + Uiht-i + bi). (2.6)

The last gating mechanism is the output gate, which controls the output of the L S T M
cell:

ot = a{W0xt + U0ht-1 + b0). (2.7)

Before updat ing the L S T M state, a vector of candidate values Ct is computed. These
values could potential ly be accumulated to the cell state, that is i f the input gate allows it .
Th is candidate vector is then combined wi th the previous cell state vector Ct-i, controlled
by the forget and input gates, resulting i n a new value of the cell state Ct-

Ct = t&nh(Wcxt + Uch-i + bC) (2.8)

Ct = ft O Ct-i + it 0 Ct,

where 0 denotes element-wise mul t ip l ica t ion (also known as the Hadamard product).

10

The resulting new cell state is then further transformed using the hyperbolic tangent
function and the current value of the output gate, to produce the new hidden state vector
ht:

ht = otOtanh(Ct). (2.9)

Contrary to the fixed-value weight assigned to the recurrent connection of a regular
R N N hidden unit , the gates allow the L S T M cell to manipulate the internal cell state
dynamical ly - information accumulated at one t ime step can be retained for many time
steps, or suddenly discarded or added to if a more crucial piece of information emerges in
the input . O f course, the parameters - the weights and biases - corresponding to these
gates are learned dur ing training.

The L S T M is nowadays by far the most widely and commonly used R N N variant,
achieving state-of-the-art performance for many sequential modeling problems.

11

Chapter 3

Speaker representations

This chapter briefly introduces the concept of speaker embeddings - low-dimensional vectors
of fixed length, used as a means for representing a part icular speaker.

These speaker representations are a crucial concept in the speaker identification/verifi­
cation domain since they allow to compactly store information about an utterance's acoustic
characteristics. W h e n used for speech, these vectors contain information about a part icular
speaker's voice characteristics, essentially creating a voice print of the encoded speaker.

The encoded information can be extracted i n a number of ways, depending on the em­
bedding type. Some types of speaker representations are based on a statist ical approach to
speaker modeling (i.e. i-vectors [11]), other types are extracted using deep neural networks
that are generally trained for the task of speaker identification/verification (x-vectors [43],
d-vectors [45, 48]). E a c h speaker embedding type, therefore, has different properties, dif­
ferent interpretations, and can be suitable for different applications.

Apar t from speaker recognition-related tasks, speaker embeddings can also be used to
perform speaker adaptation, i f one is to bu i ld a system that requires such techniques for
opt imal performance - this is further discussed in Chapter 4.

The following Sections 3.1, 3.2, and 3.3 introduce three of the nowadays most widely
used types of speaker representations. Special attention is given to the d-vector, as this
embedding type is integral to the target speaker voice act ivi ty detection method explored
in this work.

3.1 i-vectors

The first speaker vector type to discuss is the i-vector [11]. I-vectors (also referred as in­
termediate or identity vectors) are speaker representation vectors based on a statistical,
unsupervised approach to speaker modeling. The method was first introduced as an evolu­
t ion of the Joint Factor Analysis (J F A) [22] approach to speaker representation.

The J F A approach was based on the notion of modeling the channel and speaker vari­
abi l i ty as independent subspaces. However, later experiments showed that the resulting
estimated channel factors also contain information about the speakers, despite being sup­
posed to only model channel effects. A s a consequence, these two subspaces are for the
purpose of i-vector estimation considered as one total variability space.

1 E v e n though the term embedding is generally used for speaker representations obtained from a deep
neural network, to avoid confusion, please note that in this thesis this term is sometimes used even for
i-vectors, as they in a sense fit the definition of an embedding vector too.

12

I-vector extract ion is the process of mapping a sequence of feature vectors (typically
Mel-frequency cepstral coefficients), to a fixed-length vector. F i r s t , a k-component Gaussian
M i x t u r e M o d e l (G M M) referred to as the Universal Background Model (U B M) has to be
computed using high amounts of t ra ining data. The encoded speaker utterance is then
represented by a speaker and channel-dependent supervector M , which is obtained by
appending together first-order Baum-Welch statistics extracted from the utterance using
the U B M . That is for each G M M component of the U B M . The obtained supervector is then
assumed to obey a factor analysis model:

M = m + Tw (3.1)

where m is a speaker and channel-independent mean supervector, obtained from the U B M ,
T is the so-called to ta l variabi l i ty matr ix , rectangular and of low-rank. This mat r ix contains
the eigenvectors w i th the largest eigenvalues of the to ta l variabi l i ty covariance matr ix ,
essentially modeling the directions of the largest variabi l i ty i n the t ra ining data. F ina l ly ,
w is a latent vector w i th a standard-normal prior, which represents the to ta l variabil i ty
factors.

Given an utterance u, the i-vector is then obtained as a M A P point estimate of w for
this utterance [15].

3.2 x-vectors

I-vectors were for a long t ime the industry standard for bo th text-dependent and text-
independent speaker recognition tasks for many years. However, given the success of deep
neural networks i n v i r tua l ly any other machine learning domain, a lot of research had been
dedicated to deep neural network-based speaker modeling, resulting in the introduct ion of
new embedding types such as x-vectors and d-vectors.

X-vectors [42, 43] are a speaker embedding type extracted using a time-delay neural
network [47, 35], which is t rained to identify the speakers from the t raining set based on
the supplied utterance (see Figure 3.1).

The network processes the utterance frame by frame as a whole, passing the output
to a statistics pooling layer. Th is layer aggregates over the input segment and computes
its mean and standard deviation. These statistics are then concatenated and passed to an
addi t ional hidden layer, from which the resulting embedding vectors can be extracted.

X-vectors are nowadays a widely used speaker embedding type and are a popular speaker
embedding choice e.g. for speaker diar izat ion purposes [25].

3.3 d-vectors

The th i rd and in the context of this work the most important speaker embedding type is the
d-vector. The d-vector is a te rm that can generally be used for a speaker embedding, which
is extracted from a deep neural network trained for the speaker verification/identification
task (one of the key differences from x-vectors being the absence of the statistics pooling
layer i n d-vector systems).

The d-vector concept was first introduced as a deep neural network speaker embedding
in [45]. Th is approach was designed for text-dependent speaker verification tasks, though it
was suggested to be extendable to text-independent problems. The method ut i l ized a deep
feed-forward network architecture, to process the input filterbank features on frame-level.

13

P(spkri I x i ,x 2) . . . ,xT)

1

O O O O O - O

embedding b <- o o o - o

embedding a < O O O " O

Statistics Pooling

o o o - o
- l :

O O O - O

X i , X 2 , . . . , x T

segment-
level

- frame-level

Figure 3.1: Simplified visual izat ion of the D N N used to extract x-vectors. The frame-level
segment depicts the time-delay neural network part of the whole system, passing its output
to the segment-level part of the network, which ul t imately produces probabilit ies for each
speaker i n the t ra ining set. The x-vectors are then extracted at the embedding layer a.
The diagram was obtained from [42].

The filterbank features from several neighboring frames are combined into one feature
vector, br inging in some sense of the present and future temporal contexts, and passed
through the network. A t each t ime step, the activations from the last hidden layer are
extracted, L2-normalized, and averaged over the whole utterance, resulting i n an utterance-
level embedding vector, the d-vector.

Consequently, a lot of effort has been dedicated to researching D N N - b a s e d speaker
verification systems, which rely on an end-to-end t ra ining approach [9, 26, 52].

One of the more prominent end-to-end approaches was recently introduced i n [48]. In
this approach, an L S T M - b a s e d speaker verification system was trained using a custom
loss function, referred to as the generalized end-to-end loss, designed to always maximize
the discr iminat iv i ty between the most similar speaker pairs. The d-vector embeddings
are extracted i n a sl iding-window manner, L 2 normalized, and averaged over the whole
utterance (as shown i n Figure 3.2).

This system achieved state-of-the-art performance for both text-dependent and text-
independent speaker verification tasks, being successfully used (among other areas) for
speaker diar izat ion [49], source separation [50], or target-speaker voice act ivi ty detec­
t ion [13].

14

Sl id ing w indow
length

R u n L S T M on e a c h of
these sl id ing windows

d-vectors

L2 normal ize, then ave rage to get
embedd ing

Figure 3.2: Visua l iza t ion of the sl iding window d-vector embedding inference from [48].
The diagram was obtained from the same source.

3.4 Embedding similarity metrics

For some scenarios - typical ly for the purpose of speaker verification - it is useful to be
able to quantify the s imilar i ty of two embedding vectors, w i th the result ideally i n the
form of a scalar s imilar i ty score. The method used for computing the speaker verification
score for the two vectors is then usually dependent on the type of the embedding vectors,
assumptions about their spatial dis tr ibut ion, etc.

Speaker verification systems based on i-vectors often use a Probabi l i s t ic Linear Disc r im­
inant Analys is (P L D A) [19] backend to compare the speaker representations and enable the
speaker verification decisions. However, P L D A - b a s e d classifiers are not l imi ted to i-vectors
only, as they are often used for other embedding types, such as x-vectors [43].

Another (rather simpler) s imilar i ty measure that can be used is the cosine similarity.
The cosine s imilar i ty score of two vectors is computed using the following formula:

similarity
A B

IBI
(3.2)

where A and B are the two embedding vectors respectively.
The value of the score is direct ly dependent on the angle between the vectors - vectors

that form a smaller angle w i l l also have a higher cosine s imilar i ty score. Intuitively, this
angle, especially i n the case of the high-dimensional, sparse embedding space, can be a good
indicat ion as to whether the two embedding vectors are similar or not.

The speaker verification decision can then be made by s imply choosing a score threshold
- i f the cosine s imilar i ty value is higher than the chosen threshold, it can be ruled that the
embeddings come from the same speaker.

15

Chapter 4

Speech detection

In this chapter, the core topic explored in this work is covered - target speaker speech
detection.

Section 4.1 starts w i th presenting the general problem of voice act ivi ty detection, dis­
cussing some of the typical ly used techniques to implement voice act ivi ty detection systems.

Section 4.2 then expands upon the basic problem by focusing on a part icular target
speaker when t ry ing to detect speech signals. Section 4.2.1 then covers the speaker-
conditioned voice act ivi ty detection method proposed in [13], which is the core target
speaker speech detection approach investigated i n this thesis.

4.1 Voice activity detection

Voice Activity Detection (V A D) represents the problem of detecting speech i n audio signals.
In its purest form, it can be thought of as a binary classification problem. Every frame of
the source audio is evaluated against two hypotheses [37]:

where the first hypothesis HQ indicates that the classified frame only consists of non-speech
signals n such as noise, and the second hypothesis Hi expresses that the current frame
consists of a speech signal s and potential background noise signals.

To classify the frame, one can s imply choose the hypothesis w i th the higher posterior
condit ional probabi l i ty of the two wi th respect to the current frame x̂ , effectively enforcing
the m a x i m u m a posteriori classification approach:

Voice act ivi ty detection is typical ly used as a pre-processing component of larger speech
processing systems [37]. This is because the presence of irrelevant information and noise
in the processed speech signal can hinder the performance of systems such as Automat ic
Speech Recognit ion systems (A S R) or Speaker Verification systems (S V) . Moreover, A S R
and S V systems are typical ly quite demanding in terms of computat ional resources, espe­
cial ly when compared to a typical ly very smal l and lightweight V A D model . Therefore it
might be desirable to s imply discard a l l source audio frames that do not contain any speech

HQ: x 4 = n

Hi : x 4 = n + s

(4.1)

(4.2)

16

information, as doing so can both improve the downstream system performance and save
some computat ional power.

O n the other hand, it is undesirable for any V A D system to false-reject any speech
frames as then important information might be lost. This is especially a challenge i f the
V A D is to operate i n acoustically challenging conditions, including environments w i th high
levels of background noise or reverb. It is therefore both useful and necessary to account
for these conditions when designing the system, for example by applying augmentation
strategies to the t ra ining data.

Voice act ivi ty detection usually consists of three main stages:

1. Feature extraction,

2. V A D decision,

3. and V A D decision smoothing.

The feature extraction stage is highly dependent on the approach taken to V A D mod­
eling, as different methods might require different features. However, since most modern
machine learning-based V A D methods pr imar i ly use acoustic features only, it can be useful
to bu i ld the V A D system around the same acoustic feature type used by the downstream
components. Th is can lead to further resource savings, as the acoustic features are in this
case computed only once.

The task of the V A D model itself is then to classify the input features as either speech
or non-speech. The possible approaches to implementing such a model are discussed in
Section 4.1.1.

F e a t u r e
x(/)

D e c i s i o n
V A D 0 (/)

D e c i s i o n
ex t rac t i on m o d u l e s m o o t h i n g

— • V A D (/)

Figure 4.1: Example of a typ ica l V A D system architecture. Diagram taken from [37].

Lastly, the decision smoothing stage is used to combat V A D decision errors, most often
caused due to high levels of background noise. In such conditions, the V A D decision might
become "ji t tery" and unreliable, increasing the amount of false negative/positive decisions.

The heuristics used for V A D decision post-processing are generally quite simple, w i th
one of the most widely used ones being hangover [4].

4.1.1 V o i c e ac t iv i ty detect ion m e t hods

Depending on the use case, available resources, or system accuracy/performance require­
ments, one can choose one of many methods to implement voice ac t iv i ty detection. Gener­
ally, there are two main ways to categorize the different approaches:

• Feature and heuristics-driven methods, which make use of different features and statis­
tics extracted from the source audio.

17

• Machine learning-based methods, which rely on statist ical or neural network-based
approaches to infer the decision policies from the t ra ining data.

Feature and heuristics-driven methods typical ly extract a number of different features
from the processed signal and t ry to make an informed decision, often wi th the help of
a heuristic or a specialized algori thm [44]. The extracted features often include energy
information, spectral information, zero-crossing rate, long-term spectral divergence [38],
etc.

The heuristics-driven methods were, however, slowly driven out by machine learning-
based V A D approaches, which nowadays offer state-of-the-art performance, accuracy, and
noise robustness. O n the other hand, some applications might s t i l l find benefit even in
naive V A D methods such as simple spectral energy thresholding - used for example i n [42]
- i f excellent noise robustness is not required.

Some of the newer V A D methods rely on a statist ical approach to the problem [6]. How­
ever, even the statist ical approaches are being pushed aside by V A D methods that util ize
artificial neural networks, typical ly operating on acoustic features only, a mult i tude of neu­
ral network architectures have been tr ied and evaluated for this task [53, 8], w i th one of the
more popular being the L S T M [14, 7], showing state-of-the-art performance. Addi t ional ly ,
L S T M - b a s e d approaches are especially interesting in the context of this part icular work,
because L S T M networks can be used as streaming models, making them easily adaptable
for online inference scenarios.

4.2 Speaker-conditioned voice activity detection

Speaker-conditioned Voice Activity Detection (S C V A D) is essentially an evolution of the
standard V A D task, as now the system is also required to dist inguish between speech frames
coming from one part icular target speaker and everyone else. We can therefore modify the
the hypotheses defined i n Equa t ion 4.1 to accommodate for the new classification classes:

H0: x 4 = n (4.3)

H\ : x 4 = n + sn

H2 : x 4 = n + st,

where st and sn denote target speaker and non-target speaker speech signals, respectively.
Simi lar ly to the previous binary V A D classification case, we can again choose the hy­

pothesis w i th the highest posterior probabil i ty:

S C V A D (x t) = a r g m a x P (# w | x t) , w G {0 ,1 ,2} . (4.4)

The first th ing that comes to m i n d when designing a S C V A D system is that there are
already two important speech processing disciplines, which focus pr imar i ly on being able
to distinguish between different speakers: speaker recognition and speaker diarizat ion.

Therefore naturally, the first possible way to approach implementing a S C V A D system
would be to combine a speaker recognition system wi th a classical V A D system. The
speaker recognition system would then s imply classify the audio frames that the V A D had
labeled as speech. The problem wi th such an approach is that speaker verification systems
are generally implemented using models that are quite big, typical ly in terms of mill ions of
parameters. Us ing such a system therefore inherently leads to higher resource consumption,

18

l imi t ing its usefulness in scenarios, where the resources are expensive. Th is is especially
apparent in contrast to the generally very lightweight basic V A D models.

Addi t ional ly , one of the challenges this V A D and S V system combination would have to
overcome is the final decision granularity. V A D systems are generally capable of framedevel
streaming inference, producing a speech/non-speech probabil i ty for every ind iv idua l frame.
O n the other hand, S V systems often operate i n a windowdevel or a segmentdevel manner,
which could result in higher overall decision latency. W h a t is more, adapting a speaker
verification system to framedevel inference can pose quite a challenge in terms of retaining
the speaker verification decision quality.

The second option would be to direct ly use a speaker diar izat ion system. Speaker d i -
arization is the problem of establishing boundaries between ind iv idua l speakers i n a record­
ing - which brings us to the first drawback.

A conventional diar izat ion system [25, 49] is designed to establish boundaries between
all present speakers. Therefore, a lot of effort has to go towards determining the number
of speakers i n the recording. That includes extracting embedding representations for the
whole utterance in a sl iding window manner, clustering, and then segmenting the original
recording based on the calculated boundaries (see Figure 4.2).

_j Aggregate

Cluster

d-vectors

segments

I diarization
I results

Figure 4.2: Example of a clustering-based speaker diar izat ion method ut i l iz ing d-vector
embeddings. Flowchart obtained from [49].

For one target speaker, a l l this is unnecessary, as it is only the target speaker that the
system is required to find reliably. Therefore, again, such a solution is needlessly expensive
in terms of computat ional resources, though it would most l ikely provide the desired results
accuracy-wise.

The th i rd option for implementing a S C V A D system would be to adopt a conventional
V A D system for target speaker speech detection. Th is could potential ly result i n a S C V A D
system, that retains the typica l V A D system characteristics i n terms of model size, resource
demand, and latency, while s t i l l being able to detect a target speaker's speech signals.

To perform such adaptation, the system could be trained to draw its attention to­
wards the target speaker by providing their abstract representation along wi th the acoustic
features, most often i n the form of a speaker embedding (i-vectors, d-vectors) obtained
previously during an enrollment phase. These representations are often obtained from sys­
tems much more complex than a typica l V A D , so effectively, the a im would be to teach

19

the V A D to "d i s t i l l " some knowledge from these abstract representations and identify the
target speaker based on their acoustic "profile".

Similar speaker adaptat ion approaches have previously been adopted also in the do­
mains of speech recognition [21], speech extract ion [50, 12], and quite successfully also in
diar izat ion [30]. Some of these approaches use secondary auxi l iary systems trained to ex­
tract the speaker representation i n a way that is specific for that part icular system, other
approaches use speaker embedding vectors directly.

4.2.1 P e r s o n a l voice ac t iv i ty detect ion a p p r o a c h overview

One method, which utilizes embedding-based speaker adaptation, is the rather novel ap­
proach to speaker-conditioned V A D recently introduced i n [13].

This method, originally called Personal VAD (P V A D) , aims to address the S C V A D
problem by expanding the classification capabilities of an L S T M - b a s e d classical V A D model.
The whole system is trained to distinguish not only between speech and non-speech audio
frames but also to detect and identify speech frames belonging to a part icular target speaker.

The original motivat ion for this S C V A D method was its potential use for on-device
speech recognition scenarios. That is, the goal was to create a system capable of detecting
speech signals of a target speaker i n real-time, ideally while also retaining some of the
characteristics of a typica l V A D system. The end result would ideally be:

• A small , lightweight model w i th min ima l latency and min ima l computat ional resource
requirements.

• A model that is able to operate accurately i n acoustically challenging environments,
including noisy and reverberant conditions.

A s we are dealing wi th an online classification scenario (and to minimize latency), it
would be best i f the resulting system could operate as a streaming model . T h i s is why
using a V A D architecture based on an L S T M network might be desirable. L S T M - b a s e d
V A D architectures have become increasingly popular for sequential modeling of the V A D
task, a l l that while showing state-of-the-art performance even i n acoustically challenging
conditions [14].

Now, not a l l methods presented i n this work do actually meet the lightweight criteria
for the system. Some of the personal V A D architecture variants presented i n section 4.2.2
require a speaker verification system at runtime, essentially creating a fusion of S V , diariza­
t ion, and V A D systems. Tha t being said, the more heavy-weight solutions generally offer
better performance i n terms of predict ion accuracy. Therefore, it can be argued that it is
s t i l l worth exploring those part icular approaches, as they might prove useful i n situations,
where resource l imits are not a concern.

The following Section 4.2.2 describes the four main personal V A D architectures as pre­
sented i n [13].

4.2.2 P e r s o n a l voice ac t iv i ty detect ion sys tem archi tec ture

A personal V A D system consists of two main components.

Speaker verification system The first component is a speaker verification system used
to extract speaker embeddings from the processed audio. For this purpose, the text-

20

independent d-vector system introduced i n [48] was used. This system has two pr imary
uses:

1. To extract an enrollment speaker embedding for the target speaker. The embedding
w i l l be used to either provide the system wi th a representation of the target speaker's
voice characteristics or to obtain speaker verification scores for each ind iv idua l frame.

2. To extract frame-level embedding vectors over the whole processed utterance. These
secondary embedding vectors are used to issue speaker verification scores to each
indiv idual frame.

To satisfy the latter of these two requirements for the S V system, it was necessary to modify
the actually used implementat ion of the system.

The d-vector system used for embedding extraction operates in a sl iding window man­
ner, always returning one 256-dimensional embedding vector for a window of 160 frames.
However, as the system's architecture is L S T M - b a s e d , the system can be modified to op­
erate in a streaming manner, returning an embedding vector for every single input frame.
Each d-vector is then compared wi th the target speaker enrollment embedding using cosine
similarity, giving us the speaker verification scores for each frame.

Obviously, such modification can raise questions about the quali ty of the extracted d-
vectors, as the system is forced to process sequences of arbi trary lengths, without resetting
the L S T M state. These concerns are addressed i n Section 7.5, where this baseline scoring
method is evaluated against two other methods that I propose as potential alternatives.

V A D system The second and pr imary component is the actual V A D system, which w i l l
be t rained for the personal V A D task. This system was proposed to consist of a 2-layer
L S T M network of 64 cells, followed by one addi t ional fully connected layer of 64 neurons.
This network architecture is the same for a l l personal V A D system variants described in
the following sections.

The inputs of the personal V A D are then a combination of the following:

• Acoust ic features xj,

• the speaker verification scores St issued to each ind iv idua l frame,

• the target speaker embedding e t a r g e t obtained dur ing the enrollment process.

The acoustic features used in this work were 40-dimensional log Mel-fil terbank energies
wi th 25 ms wid th and 10 ms overlap. The same acoustic features are used by the d-vector
extractor system, therefore they can be extracted only once and used for both the S V and
the V A D systems. This is especially helpful when performing frame scoring, as every frame
has to be processed by the S V system to obtain a speaker verification score, and afterward,
both the obtained score and the audio frame are passed to the P V A D system.

The resulting combined feature vector is then used as the input of the personal V A D
system, which produces class probabilit ies zt for target speaker speech (tss), non-target
speaker speech (ntss) and non-speech (ns):

P V A D (x t) = zt = [zT,zfss, z?*}. (4.5)

The following sections further describe the four personal V A D architecture variants, as
they were introduced i n [13]. The main differences between the systems stemming from the

21

input feature combination used by each part icular architecture. Three of the architectures
- S C , S T , and S E T - make use of a speaker verification system to support the personal
V A D decision. Diagrams for architectures are depicted i n Figure 4.3.

Score combination Scored condrtioned training Embedding condrtioned training Scone and embedding conditioned training

(a) (b) (c) (d)

Figure 4.3: Personal V A D architecture diagrams, (a) depicts the baseline S C architecture,
(b) depicts the S T architecture, which utilizes a combination of acoustic features and frame
scoring, (c) depicts the embedding conditioned E T architecture, and (d) is the S E T system,
which combines the acoustic features, the scores and the target speaker embedding vector.
The diagrams were taken from [13]

System 1: Score combination (SC)

The baseline architecture for the personal V A D task consists of a classical V A D model,
which takes the acoustic features features as input and produces speech probabil i ty pf for
each incoming frame at each t ime step t:

p$ = V A D (x t) .

Each ind iv idua l frame is also passed through the speaker verification mode l 1 and a d-vector
embedding ê is obtained for that frame. This d-vector is then compared w i t h the target
speaker embedding e t a r g e t using cosine similarity, thus obtaining a speaker verification score
for each frame:

st = cos(e t ,e t a r g e t) .

The obtained score is then combined w i t h the speech probabil i ty pf to produce unnor-
malized personal V A D probabi l i ty value z\ for every class k, using the following formula:

zT = I - P !

z f s s = (l-st)-ps

t (4.6)

ztss = Sfps

t

It is obvious, that this baseline system represents quite a naive approach to the personal
V A D task. The biggest issue wi th this approach is that there is no explicit threshold selected
for the speaker verification scores - it would at least be sensible to statist ically derive
this threshold using the t ra ining score values. Th is was tr ied in the final experiments in
Section 7.3, however, w i t h not much success. The next architecture addresses this problem
by treating the score value as an addi t ional feature.

1 W h i c h is, as previously mentioned, modified to support frame-level streaming d-vector inference.

22

System 2: Score conditioned training (ST)

The S T architecture expands on the baseline by combining the acoustic features w i th
the speaker verification score st into one 41-dimensional feature vector:

xt = [x t,s t].

The system is then trained using these features to directly produce Personal V A D class
probabilities - non-speech, non-target speaker speech and target-speaker speech:

This system is expected to perform better than the baseline, as it learns to infer the
output probabilit ies from the input acoustic features and scores directly, rather than using
a set-in-stone transformation function as the S C architecture.

However, the ma in drawback of this architecture - which is shared between the S T and
the S C systems - s t i l l prevails. It is the fact that the quali ty and accuracy of the system's
final decision are directly dependent on the ut i l ized speaker verification score values. In
order for this system to perform well, the discr iminat iv i ty of the embedding vectors used
for frame scoring has to be as high as possible. Otherwise, the system's output w i l l contain
more false positives and false negatives for both target and non-target speaker speech. This
problem is further addressed and discussed i n Section 7.5.

System 3: Embedd ing conditioned training (E T)

The E T architecture represents the ideal desired solution to the personal voice ac t iv i ty
detection problem, as it does not require a speaker verification system at runtime for frame
scoring, making it a very lightweight solution.

This architecture combines the enrollment embedding e t a r g e t for the target speaker w i th
the acoustic features, resulting i n a 296-dimensional feature vector:

X£ — [^t; t̂arget] •

This system is expected to learn to infer the relationship between the input features
and the target embedding, dis t i l l ing this knowledge for classification purposes, and adapting
to the target speaker. However, as the d-vector embedding space can potential ly be quite
sparse due to the dimensionality of the embeddings, it is expected that this system w i l l only
perform and generalize well when trained on a dataset w i t h a large number of speakers.

System 4: Score and embedding conditioned training (S E T)

The last personal V A D architecture combines the characteristics of the previous two sys­
tems. The system input consists of the acoustic features, the target speaker embedding, as
well as the speaker verification score for the current frame. This gives us a 297-dimensional
input feature vector:

x* = [x 4 ,s t ,e t a r g e t].

Even though it is expected that this architecture w i l l provide the best results of the
four, it s t i l l requires a running speaker verification model at runtime, so that frame scoring
can be performed.

23

4.2.3 Loss funct ions

Because personal V A D represents a multiclass classification problem, it is possible to t ra in
the model by min imiz ing the categorical cross-entropy loss (also known as the softmax loss):

i \ i exp(zy) ,A

LCE(V, z = - log - F V / (4.7)
2^ f c exp(z f e)

where z is the vector of pre-softmax network outputs for each class, y denotes the target
class label, zy denotes the system's output for the target class and zk denotes the system's
output for the A:-th class.

Addi t ional ly , [13] also proposes the use of a new loss function, the Weighted Pairwise
Loss (W P L) , which allows to issue different weights to each class pair:

, exp(zv)
(4.8)

exp(zy) + exp(zk

where w^^y is the weight between the classes k and y. In doing so, confusion errors
between certain classes can have lesser impact on the system's performance. B y setting the
weight of (ns.ntss) to a smaller value than (tss.ntss) or (ns.tss), the system should focus
more on dist inguishing the target speaker's speech from the other two classes, more so than
preoccupying itself w i th (ns.ntss) confusion errors.

24

Chapter 5

Data

To t ra in the proposed systems, it is necessary to find a suitable speech dataset, ideally one
wi th the following properties:

• The dataset should contain speaker turns so that the system can learn to dist inguish
the target speaker from the other speakers present in the recording.

• For each ind iv idua l speaker, enrollment utterances should be present so that it is
possible to extract their embedding representations.

For this purpose, the openly available Libr iSpeech [32] corpus was used to generate
a dataset that would match the cri teria above. The process of generating the resulting
dataset is further described i n Section 5.2.

5.1 LibriSpeech

The Libr iSpeech [32] corpus is a standard, freely available 1 dataset of read Engl i sh speech,
total ing at almost 1000 hours of speech data.

Libr iSpeech consists of seven separate subsets, each having one of two suffixes: clean
or other. These suffixes were assigned to the part icular speakers in the sets based on
word error rate scores achieved i n one of the in i t i a l Libr iSpeech evaluations. There are
four smaller subsets: two dev sets, and two test sets, p r imar i ly meant for development
and testing, respectively. Then , the three pr imary Libr iSpeech subsets are the 100-hour,
360-hour, and 500-hour t r a i n sets. The parameters of the ind iv idua l subsets are shown in
Table 5.1.

The whole Libr iSpeech corpus was sampled at 16 k H z and the audio is stored i n the
f lac format. Addi t ional ly , word transcripts are provided for a l l utterances.

Lastly, to create V A D ground t ru th annotations for the data, it was necessary to get
hold of transcript alignments for each ind iv idua l utterance i n the Libr iSpeech dataset. The
alignments used in this work were obtained from [27] and originally generated using the
Mont rea l Forced Al igner [29].

5.2 Generating the dataset

To simulate speaker turns i n the t ra ining data, I adopted the approach presented i n [13].
The approach suggests to always retrieve n randomly chosen utterances from the original

xhttps://www.openslr.org/12

25

https://www.openslr.org/12

subset hours
per-speaker

minutes
female

speakers
male

speakers
total

speakers

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 5.1: Libr iSpeech corpus subsets and their respective parameters. Table taken
from [32].

dataset, each coming from a different speaker. The parameter n coming from a uniform
distr ibution:

n ~ Uniform(a, 6),

where a = 1 and 6 = 3. These utterances are then concatenated, as are their ground
t ru th annotations. After the selected utterances are used, they are erased from the pool of
available utterances, so that no utterance is used more than once.

Addi t ional ly , at the time of feature extraction, a speaker present i n the resulting utter­
ance is chosen randomly as the target speaker and the ground t ru th labels are also altered
accordingly. It should also be noted that since augmentation is performed on the generated
data, the chosen target speaker may differ across the augmented variants of the original
utterance, providing a l i t t le more variety.

A method that one could ca l l speaker dropout, inspired by [30], was also experimented
wi th . Th is approach alters the way a target speaker is chosen for utterances consisting
of only one speaker's speech, randomly selecting a different speaker as the target w i th
a probabil i ty of 0.3. Th is approach was, however, not used i n the final generated datasets,
as no improvements in the trained system performances were observed.

Using this approach, two separate datasets were generated for model t ra ining and eval­
uation, respectively. Because the system is expected to separate the target speakers from
the non-targets, it was - for the purposes of cross-validation - important to make the vali­
dation set to be completely separate from the t ra ining set. Tha t way, a l l the speakers i n the
validat ion set would represent novelty encounters for the system and the obtained results
would better indicate the system's abi l i ty to generalize.

Training set The t ra ining set was generated using the three ma in Libr iSpeech subsets.
The three t r a i n sets together - the 100-hour, the 360-hour, and the 500-hour - end up
total ing at around 960 hours of recorded speech and 2338 different speakers. Us ing the
method described i n Section 5.2, approximately 140 thousand unique concatenated utter­
ances were generated, w i th no source utterance being used more than once, a histogram of
the resulting concatenated utterance lengths is shown in Figure 5.1.

Validation set The validat ion set was generated using the remaining Libr iSpeech subsets,
concretely the two dev 2 and two test subsets. These four subsets are completely separate

2 T h e dev subsets were used in addition to the test sets to provide some additional speaker variability
to the validation set.

26

T r a i n i n g s e t c o n c a t e n a t e d u t t e r a n c e l e n g t h s

20000

17500

15000

4-. 12500 c
5 IOOOO

7500

5000

2500

0
10 15 20 25 30 35

Utterance duration [seconds]
40 45 50

Figure 5.1: His togram of utterance length dis t r ibut ion in the generated t ra ining set of 140
thousand concatenated utterances.

from the three main ones and though they are much smaller - total ing at around 20 hours
of speech when combined only - they contain recordings of 146 more unique speakers that
are not present i n the three main parti t ions. The resulting generated validat ion set consists
of approximately 5500 concatenated utterances.

5.3 Data augmentation

A very important aspect of creating a robust and accurate V A D system is to ensure its
abi l i ty to perform well even i n acoustically challenging conditions. These conditions can
include the effects of reverberant rooms and spaces, and often also high levels of background
noise. It is therefore desirable to augment the t ra ining data to match these potential
conditions so that the model can learn to account for them.

To augment the t ra ining and testing data, the M U S A N [41] corpus was used in con­
junct ion wi th a set of room both real and simulated room impulse responses from [24]. The
resulting augmentation strategy used in this work is similar to [43]. E a c h concatenated
utterances is augmented and thus replicated three times using:

1. Reverb - an impulse response is randomly chosen from the RIRS_N0ISES corpus and
applied to the clean utterance v ia convolution.

2. Noise - randomly chosen background noises are added to the clean track at one-
second intervals, at levels ranging from 0 to 15 d B S N R .

3. Mus ic - an instrumental music piece is randomly chosen from M U S A N and added
to the clean utterance at levels ranging from 5 to 15 d B S N R .

The same augmentation strategy was applied to both the t ra ining and validat ion sets,
resulting i n both sets becoming four times their original size after augmentation.

27

Chapter 6

Implementation

This chapter discusses some of the interesting implementat ion aspects of creating the data
preparation, feature extraction, and model t ra ining pipelines.

6.1 Data preparation and feature extraction

The implementat ion of the data preparation and feature extraction pipelines was one of
the more challenging aspects of this work and has gone through mult iple iterations. The
pipelines were implemented using the P y t h o n 3 language i n combinat ion w i t h some oc­
casional shell scripting. Shell scripts were pr imar i ly used for manipula t ing the generated
dataset and features and also to interface w i t h the K a l d i Speech Recognit ion Toolki t [36],
which was used for data augmentation.

The in i t i a l notion for the pipeline was to first generate the concatenated utterances and
then use the K a l d i toolki t for augmentation and feature extraction. However, this turned
out to be unscalable due to the incompat ibi l i ty between the K a l d i filterbank implementat ion
and the features required by the speaker verification system used to extract frame-level d-
vectors. It was necessary to only extract the acoustic features once and use them both
as P V A D input features as well as input to the d-vector extractor, otherwise, too much
computat ion t ime would be consumed. Therefore, this approach was abandoned and K a l d i
was used for quick and efficient augmentation only.

That being said, what turned out to be quite useful, was K a l d i ' s system for describing
and storing data and features.

K a l d i utilizes pairs of . scp and . ark files to efficiently store and describe data. The . scp
files usually hold information about how to obtain a part icular resource, which is identified
by a key (for example the utterance id) . E a c h key is then associated wi th a recipe, which
describes how the resource can be obtained. Th is could for example be the path to the
source file, a shell command describing the augmentation process of an utterance, or an
address referring to a specific posit ion i n an . ark file.

The .ark files are essentially archive files designed for efficient data storing, typical ly
used to store extracted features. Initially, N u m P y ' s serialization interface was used for
feature storing, however, using the . scp/. ark framework proved to be a much more sensible
approach, both in terms of accessing the resources and especially i n terms of disc space
savings.

28

The k a l d i i o 1 P y t h o n l ibrary was used for interfacing the K a l d i file formats, bo th in
terms of reading and wr i t ing resources from and to the . scp/ . ark files.

Acoustic features

Generated
dataset

Concatenated
utterances

Transcript
alignments

Augmentation

G P U
worker:

Frame-level
d-vector extraction

V '

Target speaker
d-vector

Conversion to PVAD
ground truth,

target speaker selection
V J

Feature
storage

d-vectors

SV scores

• • • • • •

fbanks.scp
fbanks.ark

scores.scp
scores.ark

labels.scp
labels.ark

targets.scp

Figure 6.1: I l lustrat ion of the implemented feature extraction pipeline. The gray areas on
the left and on the right denote the source dataset, and the generated t raining features and
labels, respectively. The purple area denotes the G P U worker, responsible for frame-level
d-vector extraction.

The final i teration of the process of preparing the t ra ining data and extracting the
features can be summarized into the following stages:

1. Utterance concatenation. Generate the concatenated utterances, combine their
respective transcripts. Describe the generated dataset using Kaldi-specific description
files: wav.scp, utt2spk, spk2utt. Ex t rac t enrollment d-vector 2 embeddings for each
speaker i n the dataset.

2. Augmentat ion. Perform data augmentation v ia K a l d i . Combine the augmented
wav.scp files into one that describes the whole dataset.

3. Feature extraction. For each utterance i n the augmented wav.scp, load the wave­
form, extract the acoustic features, choose the target speaker and generate ground
t ru th labels for the whole utterance. Then , perform frame scoring using the target
speaker's enrollment embedding. Save the extracted features and ground t ru th labels
into separate .scp and .ark files.

The feature extraction stage was par t icular ly heavy on both resources and t ime required
for processing the whole dataset. To at least somewhat mitigate this, multiprocessing was
used. A n arbi t rary number of C P U worker processes load the augmented waveform and
extract acoustic features. Then these features are passed to a secondary G P U worker

xhttps://github.com/nttcslab-sp/kaldiio
2 F o r later experiments i-vectors and x-vectors were also extracted, however, they are not necessary for

the feature extraction stage.

29

https://github.com/nttcslab-sp/kaldiio

process, which is responsible for extracting the d-vector embedding for each frame i n the
utterance. The d-vectors are then returned to the original C P U worker so that S V scores
can be computed.

6.1.1 Speaker e m b e d d i n g extractors

Aside from feature extraction, mult iple types of speaker embedding vectors were also used
for t ra ining. Fol lowing are the systems, which were used for extracting these speaker
representations.

d-vectors The d-vector extractor implementat ion used i n this work is called Resem-
blyzer3. It is a freely available community implementat ion of the text-independent speaker
verification method proposed i n [48]. For the purpose of this work, the actual model class
had to be modified to support frame-level embedding extraction i n addi t ion to the default
method, which extracts one d-vector for a sl iding window of 160 frames. The extracted
d-vectors have a dimensionality of 256.

x-vectors The x-vector implementat ion used in the conducted experiments is available
v i a the SpeechBrain [39] toolki t . T h i s system was trained on the VoxCeleb dataset and
is based on the original x-vector approach proposed i n [43]. The extracted x-vectors have
a dimensionality of 512.

i-vectors Last ly, the i-vector system used i n the experiments was k ind ly provided by the
Speech@FIT research group v ia my supervisor, Ing. J á n Švec. The extracted i-vectors have
a dimensionality of 400.

W h e n extracting the enrollment embedding vectors, three utterances were randomly
selected for each speaker and concatenated to provide the systems wi th enough information
about the speaker's voice characteristics.

6.2 Model implementation and training

Similar to the feature extraction pipeline, the t ra ining pipeline was also implemented using
the P y t h o n 3 language.

Specifically, the popular P y T o r c h [34] deep learning toolkit was used for implementing
the models described in Section 4.2.2, and also for t raining. The crucial part being the
abil i ty to use G P U acceleration to speed up the t ra ining process.

For t ra ining, each model has a dedicated dataset class, which is used for loading features
and labels from .scp and .ark files and bui ld ing the final feature vector from the acoustic
features, scores, and target speaker embedding vector, depending on the P V A D architecture.

The loading itself is managed by a data loader class, which is addi t ional ly responsible
for batching the loaded data. The data loader class also utilizes multiprocessing to avoid
C P U / G P U data transfer bottlenecks. There are two instances of this class for each training
session: one used for the t ra ining data, and one used for the val idat ion data.

3https://github.com/resemble-ai/Resemblyzer
4https://www.robots.ox.ac.uk/-vgg/data/voxceleb/

30

https://github.com/resemble-ai/Resemblyzer
https://www.robots.ox.ac.uk/-vgg/data/voxceleb/

6.2.1 D e a l i n g w i t h utterances of var iable lengths

One of the challenges of t ra ining R N N models i n P y T o r c h (and generally) for speech pro­
cessing tasks is that the t ra ining data often consists of utterances of variable lengths. W h e n
used for training, the extracted features then form mini-batches of variable sizes. This pre­
vents us from converting the mini-batches into P y T o r c h tensors and stacking them together
to form the t ra ining batch tensor, as the tensors would have to be of the same dimensions.

There are two main ways to generally address this problem. One is to s imply split
the t ra ining utterances into par t ia l utterances, which would a l l have the same length. The
resulting t ra ining batch is then created from these par t ia l utterances. The par t ia l utterances
may or may not vary i n lengths across batches. A n example of this technique can be found
in [48].

However, there are two problems w i t h this approach in the case of this work. The
dataset that was generated (see Section 5.2) for personal V A D t ra ining varies quite heavily
in terms of utterance lengths and it is undesirable to split the longer utterances into multiple
shorter ones. T h i s is because personal V A D is supposed to operate as a streaming model
w i th frame-level inference. Thus it is crucial not to constrain its t raining to l imi ted context
windows. The longest utterances in the dataset also contain three different speakers. In
order to reliably detect the speech frames of the target speaker, the model has to learn to
adapt to the speaker context changes present i n these longer utterances.

The second method of addressing the problem of variable-length utterances is u t i l iz ing
padding [46], for which P y T o r c h has dedicated functions. A l l feature vectors i n the batch
are padded to the length of the longest sequence in the batch. The lengths of the original
sequences before applying padding are stored and w i l l be used later when calculat ing the
loss. The padded batch is then passed to the model to perform the forward pass.

Padded sequences sorted by decreasing lengths

pads

batch size 6

pads

pods

h Daten size j

pads

pads botch size 4

Packed sequences
pack_padded_sequence() flattens sorted sequences bytimestep,

keeping track of the effective batch size at each timestep

batch size 3

batch size 2

batch size 1

Figure 6.2: Visua l iza t ion of a batch of six padded sequences and its packed sequence coun­
terpart. D iagram taken from [46].

31

Before processing the batch v i a the R N N , the padded sequences are flattened v i a the
pack_padded_sequence function, the resulting packed sequence format being suitable for
R N N processing (see Figure 6.2 for a visualized example of a packed sequence structure).
After the R N N pass, the sequences are padded once again, using the pad_packed_sequence
function. Regular hidden layers can process the padded sequences without any modification.

W h e n calculat ing the loss, the original sequence lengths are used to mask out the
padding, so that it does not affect gradient calculations.

32

Chapter 7

Experiments

In this chapter, the systems presented i n Chapter 4 are evaluated. Section 7.1 introduces
the ma in metrics used for performance evaluation,

Section 7.3 then evaluates the baseline versions of the four personal V A D systems as
presented in Section 4.2.2.

Section 7.4 then explores the possibilities of using i-vectors and x-vectors as the target
speaker embedding vectors w i th the E T architecture.

Lastly, in Section 7.5 I also investigate the performance of the baseline streaming frame-
level scoring method introduced i n Section 4.2.2, address some concerns about its perfor­
mance, and propose two alterations to this frame scoring method.

For a l l experiments, evaluation is performed twice. F i rs t , each system is evaluated
using the clean utterances from the val idat ion set only to establish the system's baseline
performance level for clean speech. Then the whole augmented scope of the validat ion set is
used to determine the system performance for clean and noisy speech combined, s imulat ing
the ever-changing real-life acoustic conditions.

7.1 Evaluation metrics

The information presented i n this section was derived from [40].
The ma in metrics used for model evaluation were the Average Precision (A P) and

Mean Average Precision (m A P) . In order to properly understand these two metrics, it is
first necessary to define precision an recall.

Intuitively, precision is a measure classifier's abi l i ty not to label negative samples as
positive for a part icular decision threshold (often referred to as the operating point of the
classifier). It is defined using the following formula:

T P
Precision = —————, (7.1)

T P + F P ' v '

where T P denotes the number of true positives and F P denotes the number of false positives.
Recal l on the other hand represents the abi l i ty of the classifier to find a l l the positive

samples in the set, again for a part icular decision threshold:

T P
Reca l l = — — — , (7.2)

T P + F N ' v '

where T P denotes the number of true positives and F N denotes the number of false nega­
tives.

33

Average precision then summarizes the relationship between precision and recall across
different classifier operating points:

A P = Y,(Rn ~ Rn-l) • Pn, (7.3)
n

where Pn and Rn denote precision and recall at an operating point n , respectively, w i th the
difference in the recall at thresholds n and n — 1 being used as a weight to the precision
value at n. Th is effectively corresponds to computing the area under the precision-recall
curve constructed for the different decision thresholds. It should however be noted, that this
is the sklearn ' s 1 uninterpolated A P implementation, as A P computed from the linearly
interpolated precision-recall curve might at times be too optimist ic.

In the conducted experiments, A P was always computed for every class to quantify how
precise the model is w i th respect to that part icular class.

To quantify the overall model performance, mean average precision was then computed
across a l l classes, adopting the micro-mean approach, which calculates the A P metric across
al l predicted samples.

In addi t ion to m A P , raw classification accuracy (as in the percentage of correctly clas­
sified samples i n the val idat ion set) for each model is also reported to provide an easily
interpretable, general indicator of the model performance:

TP + TN
a C ™ y = TP + TN + FP + FN- (7 - 4)

Lastly, confusion matrices were used to better understand the model performance in
terms of dist inguishing between different class pairs. O n one axis, the confusion mat r ix is
indexed by the true class of the sample, on the other axis by the actually predicted class.
Therefore, given two indexes, i and j, the confusion mat r ix entry at these indices is the
count of how many times class i was predicted given that the true class was j2.

7.2 Training configuration and conditions

A l l systems were trained and evaluated using the same tra ining and validat ion datasets.
The final augmented t ra ining set consisted of approximately 562 thousand utterances and
the augmented val idat ion set of approximately 22 thousand utterances. More on the process
of creating the t ra ining and val idat ion sets can be found in Sections 5.2, and 6.1.

The final model consisted of a 2-layer L S T M network of 64 cells each, followed by
one hidden layer of 64 neurons. The activation function assigned to this hidden layer
depends on the performed experiment, more about this is explained i n Section 7.2.1. In
this configuration, the model only has 130 thousand parameters.

Dur ing training, the A d a m optimizer [23] was used wi th a variable learning rate set to
1 x 1 0 - 3 for the first epoch, progressing down to 1 x 1 0 - 5 using learning rate scheduling.
The models, which ut i l ized the target embedding vectors as one of the features, were trained
for 10 epochs m a x i m u m to avoid overfitting. The models without the target embedding
among the input features were trained for 8 epochs max imum.

xhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_sco
re.html

2 T h i s , of course, depends on the orientation of the confusion matrix, as different implementations might
have the axes swapped.

34

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_sco

The computat ional resources required for feature extraction and t ra ining were k indly
provided by M e t a C e n t r u m 3 .

7.2.1 L a s t h i d d e n layer ac t iva t ion funct ions

A n important aspect of the conducted experiments was to determine which activation
function works the best for the one hidden layer after the L S T M . The compared activation
functions were the hyperbolic tangent (tank), the leaky rectified linear unit {leaky relu). O n
top of that, the activation function was removed altogether, leaving us wi th just a linear
activation.

A s the fully connected layer is only really supposed to further transform the L S T M
output, it is expected that the potential differences in the results should not be too dramatic.
The 2-layer L S T M should be powerful enough to suffice for the personal V A D task by itself
and the fully-connected layer should therefore play the role of a "stabilizer", refining the
L S T M output.

However, it was quickly determined that using the leaky relu is not ideal for any of the
model variants as the obtained results were albeit marginal ly but consistently worse than
any of the results obtained wi th the tanh and linear activations.

It seems that the abi l i ty of these two latter act ivat ion functions to better preserve
negative values has a positive effect on the accuracy of the system, as the leaky relu discards
most of the negative value information. Therefore, i n the further comparisons, only the
results for the tanh and linear activations are reported 1 , as the leaky relu model variants
provided no useful results.

7.3 Comparing the architectures

In this set of experiments, a l l four personal V A D architectures as presented in Section 4.2.2
were trained and compared. This is to establish a performance baseline for other ex­
periments and also to compare the implemented system performances against the results
published in [13]. The experiment results are shown i n Table 7.2.

For the S C system, only the linear baseline V A D system variant was used, since it
showed slightly better performance as shown in Table 7.1. For a l l other systems, results for
both the linear and tanh system variants are reported.

System
Clean Augmented

System
ns s m A P acc [%] ns s m A P acc [%]

V A D (linear) 0.949 0.998 0.995 96.48 0.915 0.996 0.991 94.93
V A D (tanh) 0.947 0.998 0.995 96.34 0.913 0.996 0.990 94.85

Table 7.1: Baseline pure V A D system evaluation results. The ns and s labels denote non-
speech and speech A P scores, respectively.

A s expected, the S C baseline system performed rather poorly i n this comparison, reach­
ing A P scores of only 0.846 and 0.864 for clean tss and ntss, respectively.

The S T architectures ended up providing much better results than the baseline S C , wi th
the tanh S T variant reaching A P score of 0.920/0.864 for clean/augmented tss. However,

3https://metavo.metacentrum.cz
4 T o differentiate between the used activations in the text, the particular model is always referred to as

a "variant", for example, the tanh E T system variant.

35

https://metavo.metacentrum.cz

i n comparison to the S T architecture from [13], this result is s t i l l quite poor. The reason
for this is most l ikely stems from the d-vector extractor system used i n this work and its
poor adaptat ion to streaming frame-level d-vector inference. Therefore, it seems that the
frame-level speaker verification scores used by the S C , S T , and S E T architectures are not
discriminative enough for the systems to perform optimally.

The E T architectures ended up reaching quali ty results, even surpassing the original
work's results for clean tss and ntss A P scores. However, that is for the systems trained
using cross-entropy. The best E T model presented i n the original work was trained using
the W P L and scored an A P score for clean tss of 0.955. This is further discussed in
Section 7.3.1.

Even though the E T architecture results seem decent, it looks like this architecture is
s t i l l quite sensitive to noise. A s shown i n F i g . 7.1, it is apparent that the presence of noise
affects the system's abi l i ty to distinguish tss frames from ntss. W h i l e this architecture
offers decent performance for clean speech, for it to be effective and reliable i n acoustically
challenging environments, the amount of tss frames misclassified as ntss would have to
be reduced. O f course, this is not an easy problem to solve, mostly due to the self-imposed
resource demand l imitat ions for this architecture. The S E T architecture represents a par t ia l
solution to this problem, especially when paired wi th a modified version of the baseline
scoring method. This is further discussed i n Section 7.5.

ET (linear) confusion matrices for clean and augmented speech
ET (linear) clean ET (linear) augmented

tss

0.92 0.034 0.033 ns • 0.872 0.044 0.042

"aj

0.038 0.851 0.075 (O
a> ntss -
1—

0.063 0.819 0.094

0.042 0.116 0.893 t s s - 0.065 0.137 0.865

ns ntss
Predicted label

tss ns ntss
Predicted label

tss

Figure 7.1: Compar ison of confusion matrices for the E T (linear) system, obtained for the
clean (left) and the augmented (right) val idat ion sets.

The S E T systems were the best performing models in this comparison, both for clean
and augmented speech. However, due to the apparent poor quali ty of the used speaker
verification scores, the S E T systems were unable to surpass the original paper's results. In
Section 7.5, this problem is addressed by introducing two alterations to the baseline scoring
method, resulting i n S T and S E T systems capable of outperforming the original results.

Lastly, to address the rather naive approach of the S C system to the personal V A D task,
a modified version of the S C architecture was also experimented wi th . The modification
involved treating the S C architecture as a twofold classification problem. F i rs t , the V A D
would determine, whether the current frame is a speech frame. Then, the speaker verifica-

36

Clean Augmented
ns ntss tss m A P acc [%] ns ntss tss m A P acc [%]

SC (linear) 0.948 0.846 0.864 0.825 73.44 0.915 0.775 0.811 0.796 72.09
ST (linear) 0.932 0.914 0.918 0.916 84.19 0.893 0.860 0.864 0.863 78.20
ST (tank) 0.933 0.919 0.920 0.921 84.29 0.893 0.865 0.867 0.868 78.25

E T (linear) 0.936 0.951 0.945 0.948 88.02 0.897 0.931 0.924 0.924 84.73
E T (tank) 0.936 0.946 0.938 0.942 87.10 0.897 0.925 0.916 0.918 83.84

S E T (linear) 0.933 0.962 0.962 0.958 89.14 0.894 0.938 0.937 0.930 85.31
S E T (tan/i) 0.929 0.961 0.960 0.957 89.10 0.889 0.937 0.934 0.929 85.26

SC (orig. paper) 0.970 0.872 0.886 0.900 - - - - - -
ST (orig. paper) 0.968 0.956 0.956 0.957 - - - - - -
E T (orig. paper) 0.962 0.946 0.932 0.946 - - - - - -

S E T (orig. paper) 0.969 0.972 0.970 0.969 - - - - - -

Table 7.2: Average precision score comparison of different personal V A D architectures for
clean and augmented speech. Class labels: ns for non-speech, n t s s for non-target speaker
speech and t s s for target speaker speech. The bot tom part of the table shows the architec­
ture results for clean speech obtained i n [13]. The augmented results are not shown here,
as different augmentation strategies were used.

t ion score would be thresholded using its t s s / n t s s classification E E R threshold value (see
Section 7.5 for more information).

This way, the probabil ist ic nature of the classifier is lost, however, the raw classification
accuracy was improved to 77 .57% (clean) and 74 .46% (augmented). The improvement in
classification accuracy is rather noticeable, however, the S T architectures s t i l l outperform
this modified S C system by a significant margin. T h i s might indicate the L S T M ' s abi l i ty
to not only learn the opt imal decision threshold from the score values but also its abi l i ty to
dynamical ly adjust this threshold based on the current temporal context i n the processed
score value stream. For this reason, the S C approach was not pursued anymore i n the
following experiments.

7.3.1 W e i g h t e d pairwise loss

To evaluate the effects of the weighted pairwise loss (W P L) (for further details see Sec­
t ion 4 .2 .3) , the E T architecture was retrained several times, always using different <ns, ntss>
values.

In [13], it is suggested that i f < n S j ntss> values between 0.1 and 0.5 should help increase
the A P score for t s s . Weight values above and below these should generally lead to perfor­
mance degradation as either not enough or needlessly much attention is given to <ns, ntss>
confusion errors.

Therefore, bo th the tank and linear E T variants were evaluated using the following set
of w<ns> ntss> values: { 0 . 1 , 0.3, 0.5, 0 .7} . The best results are compared against the baseline
systems trained wi th cross-entropy (see Table 7.3).

The tank E T variant d id , i n fact, benefit from using the W P L . However, it turns out
that even though the value of w<nSy n t S s > = 0.1 was supposed to give the best performance,
that was actually not the case for this experiment. For the tanh variant, the value of 0.1
lead to t s s A P degradation, performing worse than the cross-entropy baseline.

For values of 0.3 and 0.5 however, the performance of the system improved over the
baseline. For the value of 0.5, it reached the best A P score of 0 . 9 4 6 / 0 . 9 2 4 for clean/aug­
mented t s s , outperforming even the best linear E T variant from the previous experiment

37

in this aspect. Unfortunately, not even this system was able to outperform the best WPre­
trained E T system from [13]. The effects of different <ns, ntss> weight values on tss A P
score for the tanh E T system are shown in F i g . 7.2.

System Loss w Clean Augmented System Loss w ns ntss tss mAP acc [%] ns ntss tss mAP acc [%]
ET (linear)
E T (tank) C E ; 0.936 0.951 0.945 0.948 88.02

0.936 0.946 0.938 0.942 87.10
0.897 0.931 0.924 0.924 84.73
0.897 0.925 0.916 0.918 83.84

ET (linear)
E T (tanh) W P L 0.5

0.5
0.932 0.950 0.943 0.946 87.74
0.931 0.952 0.946 0.947 87.89

0.893 0.928 0.921 0.921 84.38
0.893 0.931 0.924 0.923 84.59

ET (orig. paper) W P L 0.1 0.965 0.961 0.955 0.959

Table 7.3: Compar ison of the two best E T systems trained using the cross-entropy loss
(C E) , and their best weighted pairwise loss (W P L) counterparts. The w column denotes the
<ns, ntss> weight value used for W P L training. B o t h W P L models gave best performance
when trained using w<nSy n t S s > = 0.5. The last row shows the best W P L - t r a i n e d E T system
from [13].

W P L e f f ec t s o n t s s A P f o r t h e E T a r c h i t e c t u r e (t anh v a r i an t)

Ö ! l 03. 0 3 OA ÖÜ Ö!<5 0J
Weight between ns and ntss

Figure 7.2: Effects of the weighted pairwise loss on tss A P score for the tanh E T system.
The gray lines denote the tss A P scores of the baseline E T tanh system trained using
cross-entropy for easy comparison wi th the W P L results.

For the linear E T variant, unfortunately, no performance improvements were observed,
though the weight value effect on tss was similar to that of the tanh variant. The weight
value of 0.5 s t i l l gave the best results (as shown in Table 7.3) but was unable to outperform
the baseline linear E T system trained using cross-entropy. This experiment was conducted
mult iple times to rule out the possibil i ty of the W P L model not converging properly, how­
ever, w i th no success.

The reason for this apparent ineffectiveness of the W P L might stem from multiple
aspects of the t ra ining process. It is possible that the ground t ru th labels generated from
the used Libr iSpeech alignments d id not allow the W P L to fully exploit the importance of
<ns, ntss> errors, as generally, the trained models have a worse ns A P scores than in [13].
It is also possible that the best linear E T system variant from Section 7.3 was s imply lucky
enough to converge better than any other system during t ra ining and because of that,

38

the W P L was unable to surpass this result. It is, therefore, possible that further tuning
and opt imizat ion of the model and t ra ining hyperparameters would i n the end br ing the
desired improvements even for the linear E T variant, potential ly even surpassing the results
published in the original paper.

7.4 Comparison of different target speaker embedding types

Since i n [13], only d-vectors are used as target speaker embeddings, I experiment w i th using
two other speaker embedding types as targets i n addi t ion to the d-vector - the x-vector and
the i-vector. I-vectors were successfully used i n [30] for a task very similar to that explored
in this work. O n the other hand, the same paper was unable to successfully use x-vectors
for the same task, suggesting that the system may have had an overfitting issue due to
the sparse nature of the x-vector embedding space. The experiments were once again done
using the E T architecture, bo th for the linear and tank variants.

W h e n training the first x-vector system, the same issue as i n [30] was encountered -
the system was unable to learn anything at a l l , reaching only 52.4% i n raw accuracy. That
was, however, not the case for the i-vector system, which was able to learn and perform
reasonably well (see Table 7.4 for results), though definitely not on par w i th the baseline
d-vector system.

The reason for the x-vector system performing so poorly was most l ikely that the value
distributions for the ind iv idua l x-vector dimensions generally had too large of a variance
and it was impossible for the network to make use of the values.

O n the other hand, i-vectors are by definition subjects of a standard normal dis t r ibut ion.
Therefore the i-vector values are nicely centered around zero wi th a variance of one.

Addi t ional ly , the d-vectors computed using the method from [48] ctre; cts it was previ­
ously established, L2-normal ized after extraction, restricting them to the surface of a unit
hypersphere. Tha t is, most likely, why the system was able to generalize for i-vectors and
d-vectors but not for x-vectors.

It is a common practice to apply length normalizat ion to speaker vectors before backend
modeling, restricting them to a smaller area in the embedding space. This can help l imi t
the intra-speaker variabi l i ty of the embedding vectors, while s t i l l retaining the inter-speaker
variabi l i ty [43, 5, 20]. Therefore, to address the sparsity problem of the x-vector and i-vector
spaces, L 2 normalizat ion was applied to both i-vectors and x-vectors.

In the case that the L 2 normalizat ion was to cause (though very unlikely) a significant
degradation to the inter-speaker variabil i ty of the speaker vector space, even a simple visual
analysis such as t - S N E [28] could potential ly show the loss of some or a l l discriminative
properties of the embedding vectors.

To test this, 40 speakers were chosen from the Libr iSpeech dataset. For each speaker, 40
i-vectors and 40 x-vectors were computed, each speaker vector from a different enrollment
utterance. This way, 1600 i-vectors, and 1600 x-vectors were obtained i n total . B o t h of
these speaker vector sets were then L2-normal ized and compared against the original ones
using t - S N E . The results are shown i n F i g . 7.3.

The results indicate the expected: there is indeed no visible significant degradation in
the quali ty of the speaker vectors after applying L 2 normalizat ion. O n the contrary, it seems
that the L 2 normalizat ion could have potential ly even benefited the i-vectors. Th is could
be because the L 2 normalizat ion also has the effect of essentially spreading out vectors that
lie close to the origin, pushing them away to a unit distance from it .

39

i-vectors (regular) i-vectors (L2 normalized)

* " * «

x-vectors (regular) x-vectors (L2 normalized)

• *' * *«." * é * • » ,<s

4« « « *

Figure 7.3: t - S N E visual izat ion of both raw and L 2 normalized i-vectors (top) and x-vectors
(bottom). Each plot contains 1600 embedding vectors (40 from 40 different speakers). The
speakers are the same i n a l l four plots and each is represented by a single color.

Activation Embedding
type

Clean Augmented Activation Embedding
type ns ntss tss m A P acc [%] ns ntss tss mAP acc [%]

linear
tanh''

d-vector 0.936 0.951 0.945 0.948 88.02
0.931 0.952 0.946 0.947 87.89

0.897 0.931 0.924 0.924 84.73
0.893 0.931 0.924 0.923 84.59

linear
tanh i-vector 0.930 0.860 0.854 0.830 78.16

0.931 0.863 0.854 0.833 78.43
0.892 0.834 0.831 0.810 75.97
0.892 0.839 0.833 0.816 76.37

linear
tanh i-vector (L2) 0.939 0.927 0.918 0.918 85.00

0.940 0.926 0.923 0.921 85.39
0.901 0.904 0.895 0.895 82.18
0.904 0.905 0.900 0.898 82.62

linear
tanh x-vector (L2) 0.938 0.939 0.928 0.935 86.30

0.940 0.945 0.936 0.942 87.12
0.901 0.920 0.907 0.912 83.21
0.904 0.925 0.914 0.919 83.93

Table 7.4: E T architecture performance comparison for different speaker embedding types.
The best t s s A P and raw accuracy scores for each embedding type are highlighted in bold.

After t ra ining the system wi th L2-normal ized i-vectors and x-vectors, it is apparent
that applying L 2 normalizat ion to the speaker vectors - restricting them to the surface of
a unit hypersphere - does indeed help the model to generalize (see Table 7.4 for results).
So much so that the tanh model variant trained wi th x-vectors performs almost on par wi th
the models trained wi th d-vectors.

The i-vector system accuracy was greatly improved in comparison to the pre-L2 i -
vectors, though not reaching the same performance level as x-vectors or d-vectors. This

5 T h i s is the tanh E T system that was trained using the W P L and scored the best result among the E T
tanh model variants.

40

is possibly due to some residual channel information encoded i n the i-vectors, which the
model was unable to account for.

This experiment shows that for the personal V A D task it is possible to use also other
speaker embedding types i n addi t ion to the d-vector. The only restriction being that
for the network to generalize properly, it is important to length normalize the speaker
vectors, restricting them to constrained space. This can be achieved for example v i a L 2
normalizat ion.

7.5 Alter ing the frame scoring method

So far, the speaker verification frame scoring method used i n the experiments i n Section 7.3
has been the one proposed by [13], described more i n detai l i n Section 4.2.2. However, given
the rather non-optimal performance of both the baseline S C and the S T architectures, in
this section, I further analyze this scoring method and propose two modified alternatives
to the original one.

In [13], some concern was expressed regarding the performance of the speaker verification
system used to extract frame-level d-vectors. Th i s is because the system's architecture is
based on an L S T M network, and though L S T M networks can generally process sequences
of variable lengths, the system proposed i n [48] was trained on context windows of 1 4 0 -
180 frames (as was the Resemblyzer d-vector system implementat ion used i n this work).
Therefore, intuitively, op t imal performance is guaranteed for these l imi ted context windows
only. In other words, the system may suffer from performance degradation when having to
deal w i t h long temporal contexts, as would be the case i n a streaming frame-level inference
scenario, which is used in the context of the baseline scoring method.

Addi t ional ly , due to an implementat ion decision specific for the Resemblyzer speaker
encoder, the resulting d-vectors always have only positive values i n a l l dimensions. Though
this may not at first glance affect the discriminative properties of the d-vectors, it certainly
l imits the cosine s imilar i ty score value domain, concretely to the interval of < 0,1 >.

For these reasons, I propose two alterations to the original scoring method, taking
inspirat ion from conventional speaker diar izat ion approaches [49]. B o t h new methods re­
frain from the streaming frame-level embedding extraction approach and instead util ize
the d-vector extractor i n the manner it was trained to - window-level d-vector inference,
a diagram depicting the window-level d-vector inference can be found in Section 3.3.

B o t h scoring method alterations process the input utterance i n a sl iding window manner,
extracting one d-vector for a window of 160 frames, w i th a 40 frame step in between the
ind iv idua l windows. These d-vectors are obtained at each t ime step t:

t = 160 + k -40; As = 0 , 1 , 2 , . . . , (7.5)

each representing the past 40 frames, w i th the first d-vector representing the first 160 frames
of the utterance. Then , the d-vectors at these t ime steps are compared against the target
speaker embedding, once again using cosine similarity. Th is way, speaker verification scores
are obtained for each t ime step t.

7.5.1 C o m p a r i n g frame-level a n d window- leve l d-vector d i s c r i m i n a t i v i t y

Before proceeding, it has to be determined, whether these window-level d-vectors have
better discriminative properties than the ones extracted at frame-level using the original
approach. W h a t is especially crucial , is how discriminative the d-vectors are for utterances

41

containing speaker turns, as it is uncertain if the streaming frame-level d-vector extraction
approach can properly "react" to these speaker context changes. For this, the following
simple test was conducted.

For each utterance i n the whole t raining set, the original frame-level scores were sub-
sampled at the same t ime steps described i n Equa t ion 7.5. That is to obtain frame-level
score values at t ime steps corresponding to the window-level scores.

For bo th speech classes (considering tss and ntss only, assuming that the V A D correctly
discards ns frames) and d-vector extraction methods, the resulting cosine s imilar i ty score
values were plotted in a histogram, which can is shown i n Figure 7.4.

Figure 7.4: Compar ison of the speaker verification score value distributions for the two
d-vector extraction methods. Compar ison for tss is in the upper part of the figure, ntss
comparison is situated i n the lower part.

The histogram clearly shows that while both d-vector extraction methods perform sim­
i lar ly well for ntss, the window-level d-vectors generally produce a higher cosine s imilar i ty
score for tss. This intui t ively corresponds to higher window-level d-vector discriminat ivi ty,
as the system is much more confident i n the resulting embedding representation, clearly
benefiting from the l imi ted context windows. The reason, why the frame-level approach
falls behind is apparently due to the long temporal contexts the system has to process while
at the same time dealing wi th speaker turns.

Addi t ional ly , using the same set of sub-sampled scores which was used for plot t ing the
histograms, Receiver Operat ing Characterist ic (R O C) and E q u a l E r ro r Rate (E E R) were
computed for both methods, concretely for the task of classifying the corresponding speech
frames as either tss and ntss based solely on the score values. For the baseline frame-level

42

Scoring method ROC comparison

False Posi t ive Rate

Figure 7.5: Receiver Opera t ing Characterist ic (R O C) comparison for the two embedding
extraction methods, evaluated for tss/ntss classification based on the obtained speaker
verification scores.

method, the E E R was 0.238, whereas the window-level method scored an E E R score of
0.132, clearly outperforming the baseline. The R O C comparison is shown i n F i g . 7.5.

7.5.2 P r o p o s e d scor ing m e t h o d s

Now that it was established that the window-level d-vectors provide superior discriminat iv-
ity and classification accuracy, it is necessary to distribute the speaker verification scores
across the 40 frames they are supposed to represent (the 40 frames representing the step
between the adjacent score values). Th is is where the two scoring alterations differ from
each other.

T h e Partial ly Constant (P C) method The P C method s imply assigns the same score
value for the whole 40 frame segment. In other words, the speaker verification score value
is now constant for each par t ia l segment of 40 frames represented by the original d-vector.

T h e Linearly Interpolated (LI) method Rather than assigning the same score value
for the whole 40 frame segment, the L I method linearly interpolates every two adjacent
score values, resulting i n a linear score change wi th in the 40 frame segment. Th is method
aims to simulate the more gradual score value change of the baseline frame-level scoring
method.

A visualized example of a l l three scoring methods (the baseline frame-level, P C , LI) can
be seen i n F i g . 7.6, w i th the cosine s imilar i ty scores being plotted against the ground t ruth .
The figure also shows the tendency of the baseline method scores to decline over t ime,
whereas the altered methods roughly mainta in the cosine s imilar i ty score values around
a constant value for each ground t ru th segment.

43

0 250 500 750 1000 1250 1500 1750 2000
Frame number

Figure 7.6: Exempla ry comparison of the three frame scoring methods. Blue and orange
denote tss and ntss segments, respectively.

7.5.3 S c o r i n g a l t era t ion pe r for man c e results

To evaluate the proposed scoring alterations, the S T and S E T (and both the tanh and
the linear act ivat ion variants) architectures were retrained using the newly obtained score
values.

System Scoring
method

Clean Augmented System Scoring
method ns ntss tss mAP acc [%] ns ntss tss mAP acc [%]

ST (tanh)
SET (linear) baseline 0.933 0.919 0.920 0.921 84.29

0.933 0.962 0.962 0.958 89.14
0.893 0.865 0.867 0.868 78.25
0.894 0.938 0.937 0.930 85.31

ST (linear)
ST (tanh)

SET (linear)
SET (tanh)

P C

0.933 0.978 0.979 0.973 91.42
0.936 0.980 0.981 0.975 91.95
0.933 0.980 0.982 0.976 92.10
0.934 0.981 0.983 0.976 92.23

0.894 0.952 0.954 0.944 86.85
0.896 0.955 0.957 0.948 87.33
0.894 0.961 0.963 0.954 88.35
0.895 0.962 0.964 0.954 88.46

ST (linear)
ST (tanh)

SET (linear)
SET (tanh)

LI

0.927 0.974 0.972 0.967 90.89
0.935 0.974 0.976 0.970 90.86
0.935 0.978 0.980 0.974 91.69
0.932 0.977 0.979 0.972 91.47

0.887 0.946 0.944 0.937 86.25
0.895 0.947 0.950 0.940 86.39
0.897 0.959 0.960 0.952 88.08
0.893 0.957 0.958 0.949 87.64

ST (orig. paper)
SET (orig. paper) baseline

0.968 0.956 0.956 0.957
0.969 0.972 0.970 0.972 ; ; ; ; ;

Table 7.5: Performance comparison of different frame scoring methods. The newly trained
systems are compared against the best performing systems ut i l iz ing the baseline frame-
level scoring method. The best tss A P , ntss A P , and accuracy results for both S T and
S E T are highlighted in bold . The last two rows show the performance of the S T and S E T
systems from [13], for which only the clean speech results are shown since the used data
augmentation strategy is different i n this work.

The results, which are shown in Table 7.5, are clear. B o t h the P C and the LI scoring
methods outperform the baseline by a significant margin wi th the P C method performing
the best for both S T and S E T . For the P C method, the tanh system variants seem to have
a slight edge on the linear in terms of overall model accuracy and tss A P scores i n this
comparison. For the LI method, the opposite is true.

Overal l , the P C scoring improved the raw model accuracy by more than 7.23/8.56%
absolute (clean/augmented) for the S T architectures and at least 2.96/3.04% absolute

44

(clean/augmented) for the S E T architectures. Th is experiment, therefore, resulted in the
best performing system created i n this work, as the S E T tanh variant u t i l iz ing the P C scor­
ing method achieved 92.23% and 88.46% raw accuracy for clean and augmented evaluation
sets, respectively, addi t ional ly scoring a t s s A P score of 0.983/0.964 (clean/augmented).
Moreover, bo th the P C and L I outperform even the best S E T system presented i n [13] in
terms of t s s and n t s s A P scores.

ntss

tss -i

SET (tanh) confusion matrices for augmented speech
F r a m e - l e v e l s c o r i n g m e t h o d P a r t i a l l y - c o n s t a n t s c o r i n g m e t h o d

0.071 0.135

ntss
Predicted label

ntss

tss

0.865 0.044 0.039

0.065 0.866 0.05

0.07 0.09 0.911

ntss
Predicted label

tss

Figure 7.7: Confusion mat r ix comparison for the S E T tanh systems trained using the
baseline scoring method (left) and the P C scoring method (right). The model performance
was evaluated for the augmented val idat ion set.

Generally, the scoring modifications also improve the system's robustness against back­
ground noise. A n example of this is shown in Figure 7.7, where the <tss, ntss> confusion
error rates of the S E T tanh system for augmented speech were vis ibly reduced by ut i l iz ing
the P C scoring method.

It should be noted that even though the proposed scoring methods both br ing significant
classification improvements, they also require more computat ional power due to the window-
level d-vector extraction. W i t h the sl iding window step set to 40 frames, most frames w i l l
be processed up to four times. The size of the sl iding window step can, however, be
experimented wi th and possibly lowered to save resources. Overal l , it can be argued that
these scoring method alterations might prove useful in scenarios, where the resource l imits
are not a concern, as they both provide results that are superior to a l l other presented
systems.

7.6 Summary and possible improvements

The target E T architecture (the linear variant presented i n Section 7.3) ended up providing
solid results for clean speech classification. However, for augmented speech, the performance
for t s s / n t s s classification seems to decline. Th is is most l ikely caused by the background
noise essentially masking out the target speaker's voice characteristics, resulting i n the
system classifying those part icular frames as n t s s .

45

In order for the E T architecture to perform opt imal ly under most conditions, it would
probably be necessary to implement some model decision post-processing techniques to both
smoothen out the system decision and perhaps to favor the tss class if the model becomes
unsure. This could be done since the pr imary goal for the model is not to perform robust
speaker verification but rather to filter out most of the irrelevant information. Therefore,
occasionally classifying some ntss frames as tss would not ha rm the system's purpose in
a significant way.

Obviously, if the si tuat ion and use-case allow it, the best overall solution would be
to uti l ize one of the S E T architectures along w i t h the modified scoring methods. These
architectures provided the best results for bo th clean and augmented speech and if one was
to apply post-processing to the model decision, the systems provide good, usable results.

O n the other hand, it can be ruled out that the baseline S C and the S T architectures
are in the end not too relevant, especially in comparison to the S E T architecture. The S E T
architecture offers a slight edge on the performance of any S T system s imply due to the
ut i l iza t ion of the target speaker embedding vector. In most situations, there would be li t t le
reason not to use this embedding representation i n one can already perform frame scoring.

W h e n contemplating how to further improve the obtained results, a few general points
immediately come to mind .

Firs t , while the generated concatenated utterance dataset might serve well as a base­
line, a dataset consisting of real-life conversations would be incredibly beneficial for per­
sonal V A D development. Tha t is mainly to fully test the capabilities and l imits of the
implemented systems, while also better preparing them for real-life scenarios. Ideally, such
a real-life dataset would also contain overlapping speech, as it is unclear, how well would
the current personal V A D implementations handle such situations.

Addi t ional ly , apart from real-life conversation data, t ra ining the systems using actual
voice command recordings from actual mobile device users (essentially t ra ining the systems
on in-domain data) may potential ly br ing some improvements, as this would allow for the
models to be trained for the actual end goal use case scenario.

Second, the architecture of the model itself could be experimented wi th . A p a r t from ex­
perimenting wi th neural network topologies such as bidirect ional L S T M networks, some ba­
sic speech enhancement methods could potential ly increase the system's robustness against
noise and thus reduce the number of tss frames classified as ntss. Implementing such
architectural changes is, however, not completely straightforward w i t h the original frame-
level streaming model inference i n m i n d and would therefore have to be considered wi th
regard to a specific use case.

Lastly, in order to obtain the best results, it would be beneficial to further optimize
the t ra ining process in terms of batch sizes and model parameter regularization, as most
models show some improvement potential even at the very end of the t raining. This could
also lead to the W P L providing better results, which would allow the models to further
improve their precision regarding tss and ntss frame detection.

46

Chapter 8

Conclusions

This work aimed to implement, evaluate and expand upon a speaker-conditioned voice
act ivi ty detection method proposed by [13], referred to as personal V A D . This method
was based on adapting a conventional L S T M - b a s e d V A D model to the speech signals of
a part icular speaker. To do this, the method utilizes speaker embedding representations
(namely d-vectors [48]) of the target speaker, either as a part of the input feature vector or
to issue speaker verification scores to each ind iv idua l acoustic feature frame.

To t ra in the models, suitable t ra ining and evaluation datasets had to be created first.
For this purpose, the standard Libr iSpeech dataset was used to simulate speaker turns
i n recordings by concatenating mult iple utterances from different speakers into one. The
resulting t ra ining dataset ut i l ized the full 1000-hour scale of the Libr iSpeech dataset, con­
sisting of approximately 140 thousand concatenated utterances. The generated datasets
were also augmented using noise, music, and reverb to account for acoustically challenging
conditions.

Four different personal V A D architectures were implemented and trained, each ut i l iz ing
a different set of input features to identify the target speaker's speech frames. One of the
more interesting architectures of the four was the E T system, mainly due to its lightweight
properties, as this system utilizes the target speaker embedding only and does not require
a speaker verification system at runtime. The best E T architecture reached an accuracy
score of 88.02/84.73% for clean and augmented speech, respectively.

In addi t ion to the d-vector, also i-vectors and x-vectors were experimented wi th as the
target speaker embeddings i n conjunction wi th the E T architecture, showing decent results
w i th the x-vectors reaching a performance level s imilar to that of the d-vector-trained
systems.

Architectures, which uti l ize also the frame-level speaker verification scores as a part
of the input feature vector, d id not br ing great results at first. Th is was due to how the
d-vector system was altered to operate in a streaming manner, producing one d-vector for
each ind iv idua l acoustic frame, as the original inference model of the d-vector extractor
was sliding-window based. The obtained score values, therefore, d id not have good enough
discriminative properties for distinguishing t s s frames from n t s s .

To address the poor performance of the baseline frame scoring method, I propose two
alterations to this method, which uti l ize s l iding window d-vector inference. These alter­
ations significantly improved the discr iminat iv i ty of the obtained score values, resulting in
the best performing S E T system presented i n this work. This system reached an accuracy
score of 92.23/88.46% for clean and augmented speech, respectively, while also outperform-

47

ing the best S E T system presented in the original work i n terms of both tss and ntss
average precision scores.

The next step in the development of personal V A D systems would be to t ra in and evalu­
ate them using real-life conversation data, as it is unclear, how well can the current models
handle factors such as overlapping speech. Tra in ing on real data could also better prepare
the systems for real-life use-case scenarios and increase the robustness of the models.

18

Bibliography

[1] B E N G I O , Y . , F R A S C O N I , P . and S I M A R D , P . The problem of learning long-term
dependencies in recurrent networks. In: IEEE International Conference on Neural
Networks. February 1993, vol . 3, p. 1183-1188. D O I : 10.1109/ICNN.1993.298725.

[2] B E N G I O , Y . , S I M A R D , P . and F R A S C O N I , P . Learning long-term dependencies w i th
gradient descent is difficult. IEEE Transactions on Neural Networks. 1994, vol . 5,
no. 2, p. 157-166. D O I : 10.1109/72.279181.

[3] B I S H O P , C . M . Pattern Recognition and Machine Learning (Information Science and
Statistics). Ber l in , Heidelberg: Springer-Verlag, 2006. I S B N 0387310738.

[4] B A C K S T R O M , T . Voice activity detection (VAD) [online], 17. M a y 2019. Revised
2020-8-12 [cit. 2021-4-22]. Available at:
h t t p s : / / w i k i . a a l t o . f i/pages/viewpage.action?pageld=151500905.

[5] C A I , W . , C H E N , J . and L i , M . Analys is of Length Normal iza t ion in End- to -End
Speaker Verification System. In: Proc. Interspeech 2018. 2018, p. 3618-3622. D O I :
10.21437/Interspeech.2018-92.

[6] C H A N G , J . - H . , K I M , N . S. and M I T R A , S. Voice act ivi ty detection based on multiple
statist ical models. IEEE Transactions on Signal Processing. 2006, vol . 54, no. 6,
p. 1965-1976. D O I : 10.1109/TSP.2006.874403.

[7] C H A N G , S. yhn , L i , B . , S A I N A T H , T . , S I M K O , G . and P A R A D A , C . Endpoin t detection
using grid long short-term memory networks for streaming speech recognition.
In: Proc. Interspeech 2017. 2017.

[8] C H A N G , S . -Y . , L I , B . , S I M K O , C , S A I N A T H , T . N . , T R I P A T H I , A . et a l . Temporal
Mode l ing Using Di la ted Convolut ion and Ga t ing for Voice-Act iv i ty-Detect ion .
In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2018, p. 5549-5553. D O I : 10.1109/ICASSP.2018.8461921.

[9] C H E N , Y . , L O P E Z - M O R E N O , I., S A I N A T H , T . N . , V I S O N T A I , M . , A L V A R E Z , R . et a l .

Locally-connected and convolutional neural networks for smal l footprint speaker
recognition. In: Proc. Interspeech 2015. I S C A , 2015, p. 1136-1140.

[10] C H E V A L I E R , G . L A R N N : Linear At ten t ion Recurrent Neura l Network. CoRR. 2018,
abs/1808.05578.

[11] D E H A K , N . , K E N N Y , P . J . , D E H A K , R . , D U M O U C H E L , P . and O U E L L E T , P . F ron t -End
Factor Analys is for Speaker Verification. IEEE Transactions on Audio, Speech, and
Language Processing. 2011, vol . 19, no. 4, p. 788-798. D O I :
10.1109/TASL.2010.2064307.

49

https://wiki.aalto.f

[12] D E L C R O I X , M . , Z M O L I K O V A , K . , K I N O S H I T A , K . , O G A W A , A . and N A K A T A N I , T .

Single Channe l Target Speaker Ex t rac t ion and Recognit ion wi th Speaker Beam.
In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2018, p. 5554-5558. D O I : 10.1109/ICASSP.2018.8462661.

[13] D I N G , S., W A N G , Q . , C H A N G , S . -Y . , W A N , L . and L O P E Z M O R E N O , I. Personal
V A D : Speaker-Condit ioned Voice A c t i v i t y Detection. In: Proc. Odyssey 2020 The
Speaker and Language Recognition Workshop. 2020, p. 433-439. D O I :
10.21437/Odyssey.2020-62.

[14] E Y B E N , F . , W E N I N G E R , F . , S Q U A R T I N I , S. and S C H U L L E R , B . Real-life voice act ivi ty
detection wi th L S T M Recurrent Neura l Networks and an applicat ion to Hol lywood
movies. In: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. 2013, p. 483-487. D O I : 10.1109/ICASSP.2013.6637694.

[15] G A R C I A R O M E R O , D . and E S P Y W I L S O N , C . Analys is of i-vector Length
Normal iza t ion i n Speaker Recognit ion Systems. In: Proc. Interspeech 2011. 2011,
p. 249-252.

[16] G O O D F E L L O W , I., B E N G I O , Y . and C O U R V I L L E , A . Deep Learning. M I T Press, 2016.
Available at: ht tp: / /www.deeplearningbook.org.

[17] H O C H R E I T E R , S. and S C H M I D H U B E R , J . L o n g Short-term Memory. Neural
computation. M I T Press. December 1997, vol . 9, no. 8, p. 1735-1780. D O I :
10.1162/neco.l997.9.8.1735.

[18] H O R N I K , K . , S T I N C H C O M B E , M . and W H I T E , H . Mul t i l ayer feedforward networks are
universal approximators. Neural Networks. 1989, vol . 2, no. 5, p. 359-366. D O I :
10.1016/0893-6080(89)90020-8. I S S N 0893-6080.

[19] I O F F E , S. Probabi l is t ic Linear Discr iminant Analys is . In: L E O N A R D I S , A . , B I S C H O F ,

H . and P I N Z , A . , ed. Computer Vision - ECCV 2006. Ber l in , Heidelberg: Springer
Be r l i n Heidelberg, 2006, p. 531-542. I S B N 978-3-540-33839-0.

[20] J i , X . , Y u , M . , Z H A N G , C , S U , D . , Y U , T . et a l . Speaker-Aware Target Speaker
Enhancement by Join t ly Learning wi th Speaker Embedd ing Ext rac t ion . In: ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). M a y 2020, p. 7294-7298. D O I :
10.1109/ICASSP40776.2020.9054311.

[21] K A N D A , N . , H O R I G U C H I , S., T A K A S H I M A , R . , F U J I T A , Y . , N A G A M A T S U , K . et al .

A u x i l i a r y Interference Speaker Loss for Target-Speaker Speech Recognit ion. CoRR.
2019, abs/1906.10876.

[22] K E N N Y , P. , B O U L I A N N E , C , O U E L L E T , P . and D U M O U C H E L , P . Speaker and Session
Var iab i l i ty i n G M M - B a s e d Speaker Verification. IEEE Transactions on Audio,
Speech, and Language Processing. 2007, vol . 15, no. 4, p. 1448-1460. D O I :
10.1109/TASL.2007.894527.

[23] K I N G M A , D . P . and B A , J . A d a m : A M e t h o d for Stochastic Opt imiza t ion . CoRR.
2015, abs/1412.6980.

50

http://www.deeplearningbook.org

[24] K o , T . , P E D D I N T I , V . , P O V E Y , D . , S E L T Z E R , M . L . and K H U D A N P U R , S. A study on
data augmentation of reverberant speech for robust speech recognition. In: 2017
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). I E E E , 2017, p. 5220-5224. D O I : 10.1109/ICASSP.2017.7953152.

[25] L A N D I N I , F . , W A N G , S., D I E Z , M . , B Ü R G E T , L . , M A T E J K A , P . et a l . B u t System for
the Second D i h a r d Speech Diar iza t ion Challenge. In: ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, p. 6529-6533. D O I : 10.1109/ICASSP40776.2020.9054251.

[26] L i , C , M A , X . , J I A N G , B . , L I , X . , Z H A N G , X . et a l . Deep Speaker: an E n d - t o - E n d
Neura l Speaker Embedding System. CoRR. 2017, abs/1705.02304.

[27] LuGOSCH, L . , R A V A N E L L I , M . , I G N O T O , P. , T O M A R , V . S. and B E N G I O , Y . Speech
M o d e l Pre-Tra in ing for E n d - t o - E n d Spoken Language Understanding. In: Proc.
Interspeech 2019. 2019, p. 814-818. D O I : 10.21437/Interspeech.2019-2396.

[28] M A A T E N , L . V a n der and H I N T O N , G . Visua l iz ing data using t - S N E . Journal of
machine learning research. 2008, vol . 9, no. 11.

[29] M C A U L I F F E , M . , S O C O L O F , M . , MlHUC, S., W A G N E R , M . and S O N D E R E G G E R , M .
Mont rea l Forced Al igner : Trainable Text-Speech Al ignment Us ing K a l d i . In: Proc.
Interspeech 2011. 2017, p. 498-502. D O I : 10.21437/Interspeech.2017-1386.

[30] M E D E N N I K O V , I., K O R E N E V S K Y , M . , P R I S Y A C H , T. , K H O K H L O V , Y . Y . ,

K O R E N E V S K A Y A , M . et a l . Target-Speaker Voice A c t i v i t y Detection: A Novel
Approach for Mul t i -Speaker Diar iza t ion i n a Dinner Pa r ty Scenario. In: M E N G , H . ,
X u , B . and Z H E N G , T . F . , ed. Proc. Interspeech 2020. I S C A , 2020, p. 274-278. D O I :
10.21437/Interspeech.2020-1602.

[31] O L A H , C . Understanding LSTM Networks [online]. August 2015 [cit. 2021-4-21].
Available at: ht tps: / /co lah.g i thub. io /posts /2015-08-Understanding-LSTMs.

[32] P A N A Y O T O V , V . , C H E N , C , P O V E Y , D . and K H U D A N P U R , S. Librispeech: A n A S R
corpus based on public domain audio books. In: 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). A p r i l 2015, p. 5206-5210.
D O I : 10.1109/ICASSP.2015.7178964.

[33] P A S C A N U , R . , M I K O L O V , T . and B E N G I O , Y . O n the difficulty of t raining recurrent
neural networks. In: D A S G U P T A , S. and M C A L L E S T E R , D . , ed. Proceedings of the
30th International Conference on Machine Learning. A t l an ta , Georgia, U S A : P M L R ,
17-19 June 2013, vol . 28, no. 3, p. 1310-1318. Proceedings of Machine Learning
Research.

[34] P A S Z K E , A . , G R O S S , S., M A S S A , F . , L E R E R , A . , B R A D B U R Y , J . et a l . PyTorch : A n
Imperative Style, High-Performance Deep Learning Library . In: W A L L A C H , H . ,
L A R O C H E L L E , H . , B E Y G E L Z I M E R , A . , A L C H E B U C , F . d ' , F o x , E . et a l . ,

ed. Advances in Neural Information Processing Systems 32. Cu r r an Associates, Inc.,
2019, p. 8024-8035.

[35] P E D D I N T I , V . , P O V E Y , D . and K H U D A N P U R , S. A time delay neural network
architecture for efficient modeling of long temporal contexts. In: Proc. Interspeech
2015. I S C A , 2015, p. 3214-3218.

51

https://colah.github.io/posts/2015-08-Understanding-LSTMs

[36] P O V E Y , D . , G H O S H A L , A . , B O U L I A N N E , G . , B Ü R G E T , L . , G L E M B E K , O . et a l . The

K a l d i Speech Recognit ion Toolki t . In: IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. I E E E Signal Processing Society, December 2011.
I E E E Cata log No. : C F P 1 1 S R W - U S B .

[37] R A M I R E Z , J . , G Ö R R I Z , J . M . and S E G U R A , J . C . Voice act ivi ty detection.
fundamentals and speech recognition system robustness. Robust speech recognition
and understanding. 2007, vol . 6, no. 9, p. 1-22.

[38] R A M I R E Z , J . , S E G U R A , J . C , B E N I T E Z , C , D E L A T O R R E , A . and R U B I O , A .

Efficient voice act ivi ty detection algorithms using long-term speech information.
Speech communication. Elsevier. 2004, vol . 42, 3-4, p. 271-287.

[39] R A V A N E L L I , M . , P A R C O L L E T , T. , R O U H E , A . , P L A N T I N G A , P. , R A S T O R G U E V A , E .

et a l . SpeechBrain [online]. G i t H u b , 2021 [cit. 2021-5-1]. Available at:
https: / /g i thub.com/speechbrain/speechbrain.

[40] S C I K I T - L E A R N D E V E L O P E R S . Metrics and scoring: quantifying the quality of
predictions [online]. 2020 [cit. 2021-5-3]. Available at:
ht tps : / / s c ik i t - l earn .org / s tab le /modules /mode l_eva luat ion .h tml .

[41] S N Y D E R , D . , C H E N , G . and P O V E Y , D . M U S A N : A Mus ic , Speech, and Noise
Corpus. CoRR. 2015, abs/1510.08484.

[42] S N Y D E R , D . , G A R C I A - R O M E R O , D . , P O V E Y , D . and K H U D A N P U R , S. Deep Neura l
Network Embeddings for Text-Independent Speaker Verification. In: L A C E R D A , F . ,
ed. Proc. Interspeech 2017. I S C A , 2017, p. 999-1003.

[43] S N Y D E R , D . , G A R C I A - R O M E R O , D . , S E L L , G . , P O V E Y , D . and K H U D A N P U R , S.

X-Vec to r s : Robust D N N Embeddings for Speaker Recognit ion. In: 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
I E E E , 2018, p. 5329-5333. D O I : 10.1109/ICASSP.2018.8461375.

[44] T A N Y E R , S. G . and O Z E R , H . Voice act ivi ty detection in nonstationary noise. IEEE
Transactions on Speech and Audio Processing. 2000, vol . 8, no. 4, p. 478-482. D O I :
10.1109/89.848229.

[45] V A R I A N I , E . , L E I , X . , M C D E R M O T T , E . , M O R E N O , I. L . and G O N Z A L E Z

D O M I N G U E Z , J . Deep neural networks for smal l footprint text-dependent speaker
verification. In: 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2014, p. 4052-4056. D O I : 10.1109/ICASSP.2014.6854363.

[46] V I N O D A B A B U , S. A PyTorch Tutorial to Sequence Labeling [online]. 2018 [cit.
2021-4-25]. Available at:
ht tps : / /g i thub .com/sgrv inod/a-PyTorch-Tutor ia l - to -Sequence-Labe l ing .

[47] W A I B E L , A . , H A N A Z A W A , T . , H I N T O N , G . , S H I K A N O , K . and L A N G , K . J . Phoneme
recognition using time-delay neural networks. IEEE Transactions on Acoustics,
Speech, and Signal Processing. 1989, vol . 37, no. 3, p. 328-339. D O I :
10.1109/29.21701.

52

https://github.com/speechbrain/speechbrain
https://scikit-learn.org/stable/modules/model_evaluation.html
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Sequence-Labeling

[48] W A N , L . , W A N G , Q . , P A P I R , A . and M O R E N O , I. L . Generalized end-to-end loss for
speaker verification. In: I E E E . 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2018, p. 4879-4883. D O I :
10.1109/ICASSP.2018.8462665.

[49] W A N G , Q. , D O W N E Y , C , W A N , L . , M A N S F I E L D , P . A . and M O R E N O , I. L . Speaker
diarizat ion wi th ls tm. In: I E E E . 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2018, p. 5239-5243.

[50] W A N G , Q. , M U C K E N H I R N , H . , W I L S O N , K . , S R I D H A R , P. , W u , Z . et a l . VoiceFi l ter :
Targeted Voice Separation by Speaker-Conditioned Spectrogram Mask ing . In: Proc.
Interspeech 2019. 2019, p. 2728-2732. D O I : 10.21437/Interspeech.2019-1101.

[51] W I K I P E D I A C O N T R I B U T O R S . Long short-term memory — Wikipedia, The Free
Encyclopedia [online]. 2021 [cit. 2021-5-1]. Available at: ht tps:
//en.wikipedia.org/w/index.php?title=Long_short-term_memory&oldid=1014085982.

[52] Z H A N G , S., C H E N , Z . , Z H A O , Y . , L I , J . and G O N G , Y . E n d - t o - E n d attention based
text-dependent speaker verification. In: 2016 IEEE Spoken Language Technology
Workshop (SLT). I E E E , 2016, p. 171-178. D O I : 10.1109/SLT.2016.7846261.

[53] Z H A N G , X . - L . and W u , J . Deep Belief Networks Based Voice A c t i v i t y Detection.
IEEE Transactions on Audio, Speech, and Language Processing. 2013, vol . 21, no. 4,
p. 697-710. D O I : 10.1109/TASL.2012.2229986.

53

Appendix A

Contents of the enclosed storage
unit

• xsedlalh_thesis.pdf - The final .pdf file version of this thesis.

• xsedlalh_thesis.zip - A .zip file containing the DTfjiX source code files for this
thesis.

• src/ - A folder containing the source code files.

• data/ - A folder containing a sample evaluation dataset, trained model files, and
a Libr iSpeech sample for data preparation and feature extraction demonstration.

• README.md - A file documenting the rest of the codebase and containing further
instructions for using the software.

54

