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Abstract 
This work aims to implement, test, and evaluate a speaker-conditioned Voice A c t i v i t y 
Detection ( V A D ) method called "Personal V A D " . The method builds upon an L S T M - b a s e d 
approach to V A D and its purpose is to introduce a system that can reliably detect speech 
of a target speaker, while retaining the typica l characteristics of a V A D system, mainly in 
terms of smal l model size, low latency, and low necessary computat ional resources. The 
system is t rained to dist inguish between three classes: non-speech, target speaker speech, 
and non-target speaker speech. For this purpose, the method utilizes speaker embeddings 
as a part of the input feature vector to represent the target speaker. Some of the more 
heavyweight personal V A D variants also make use of speaker verification scores issued to 
each frame based on the target embedding, resulting in a more robust system. In addi t ion 
to the one scoring method presented in the original article, two other scoring approaches 
are introduced, both outperforming the baseline method and improving the performance 
even for acoustically challenging conditions. 

Abstrakt 
Cílem t é t o p r á c e je implementovat, otestovat a vyhodnot i t ř ečn íkem p o d m í n ě n o u metodu 
pro detekci hlasu (Voice Activity Detection, V A D ) nazvanou "Personal V A D " . P r o detekci 
využ ívá tato metoda L S T M n e u r o n o v ý c h sí t í a j e j ím úče lem je vy tvo řen í s y s t é m u schopného 
spolehl ivě detekovat řečové s ignály cílového řečn íka př i zachování v l a s tnos t í typ ického V A D 
s y s t é m u co se velikosti modelu, odezvy a n ízkých n á r o k ů na zdroje týče . S y s t é m je t r é n o v á n 
pro klasifikaci řečových r á m c ů do t ř í t ř íd : neřeč , řeč necí lového a řeč cílového řečn íka . Za 
t í m t o úče lem využ ívá metoda speaker embedding vektory pro reprezentaci cílového řečn íka 
jako součás t v s t u p n í c h p ř í z n a k ů . N ě k t e r é z náročně jš ích variant s y s t é m u využívaj í skórování 
r á m c ů s y s t é m e m pro verifikaci řečn íka , což vede ke zvýšení spolehlivosti klasifikace. Vedle 
zák l adn í metody skórování p ř e d s t a v e n é v o r ig iná ln ím č l ánku byly n a v r ž e n y dvě modifikace, 
jež z á k l a d n í metodu p řekona ly a zlepšily spolehlivost výs ledného s y s t é m u i v akusticky 
n á r o č n ý c h p ros t ř ed ích . 
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Rozšířený abstrakt 
Tato p r á c e se zabývá i m p l e m e n t a c í a evaluací ř ečn íkem p o d m í n ě n é metody detekce hlasu 

(Voice Activity Detection, V A D ) , p ů v o d n ě n a z v a n é " P e r s o n á l V A D " ( P V A D ) . Tato metoda 
byla p o p r v é p ř e d s t a v e n a v [13] a je j ím cí lem je vy tvo řen í V A D s y s t é m u , k t e r ý je schopen 
rozlišit řečové r á m c e jednoho cílového řečn íka od řečových r á m c ů o s t a t n í c h mluvčích . 

P ů v o d n í mo t ivac í pro vy tvo řen í t akového s y s t é m u bylo jeho po tenc i á ln í využ i t í pro on-
device r ozpoznáván í řeči u osobních a mobi ln ích zař ízení . P r o tento účel by bylo v ý h o d n é , 
aby si výs ledný s y s t é m zachoval zák l adn í charakterist iky typ ického V A D s y s t é m u , p r i m á r n ě 
co se n á r o k ů na zdroje a odezvy týče . z tohoto d ů v o d u je tedy snaha o adaptaci klasick­
ého V A D s y s t é m u na d a n é h o cílového řečn íka po t enc i á lně výhodně j š í než n a p ř í k l a d p ř í m é 
využ i t í d ia r izačních s y s t é m ů nebo s y s t é m ů pro verifikaci ř ečn íka pro s te jný účel . 

Výs ledný s y s t é m je za ložen na a r c h i t e k t u ř e L S T M n e u r o n o v ý c h sí t ích, k t e r é jsou jed­
nou z p o p u l á r n í c h architektur n e u r o n o v ý c h sí t í pro tvorbu V A D s y s t é m ů [14], a k te ré 
umožňu j í e l egan tn í mode lován í t e m p o r á l n í h o kontextu ve v s t u p n í c h datech a posky tu j í 
m o ž n o s t p r o u d o v é h o zpracování . Tato architektura je pro všechny P V A D s y s t é m y spo lečná 
a výs ledný model m á pak něco m á l o přes 130 t is íc p a r a m e t r ů . P r o adaptaci na cílového 
mluvč ího jsou pak využ i ty dva typy v s t u p n í c h p ř í z n a k ů specifických pro d a n é h o řečníka . 
J edno t l i vé varianty P V A D s y s t é m ů se pak liší p r á v ě t í m , jakou kombinaci t ě c h t o v s t u p n í c h 
p ř í z n a k ů využij í . 

P r v n í m z t ěch to p ř í z n a k ů je řečníkova d-vector embedding [48] reprezentace. T a m á 
v p rvé ř a d ě sloužit jako j akýs i a b s t r a k t n í vzor pro výs ledný P V A D sys t ém, na zák ladě 
k t e r ého m á cílového řečn íka v akus t i ckých př íznac ích identifikovat. Tento embedding vektor 
je využ íván p r i m á r n ě architekturou E T , k t e r á p ř e d s t a v u j e ideální řešení p r o b l é m u P V A D , 
p ro tože n e m á ž á d n é speciá ln í n á r o k y na zdroje, na rozdí l od o s t a t n í c h P V A D variant. Dá le 
je tato embedding reprezentace využ ívána jako součás t p ř í znakového vektoru architektury 
S E T . 

Náročně jš í varianty P V A D (co se n á r o k ů na zdroje týče) pak mohou tuto d-vector 
reprezentaci m o ž n é využ í t i pro skórování j edno t l i vých akus t i ckých r á m c ů . P r o k a ž d ý jed­
no t l ivý r á m e c je e x t r a h o v á n s e k u n d á r n í d-vector, k t e r ý je kosinovou p o d o b n o s t í p o r o v n á n 
s embedding vektorem cílového řečníka . Takto dostaneme ska lá rn í skóre, k t e r é lze využ í t 
jako dalš í p ř í znak na vs tupu sys t ému . Toto skóre je využ íváno archi tekturami S C , S T 
a S E T . Arch i tek tu ra S E T tedy využ ívá jak embedding vektor cílového řečn íka , tak z m í n ě n á 
skóre, a je tedy očekáváno , že bude mí t nejlepší klasifikační výsledky. 

Pro n a t r é n o v á n í j edno t l i vých P V A D architektur je t a k é t ř e b a naj í t vhodnou datovou 
sadu. Ideá ln í d a t o v á sada by obsahovala s t ř í davé promluvy řečníků , ale t a k é jejich s a m o s t a t n é 
promluvy v d o s t a t e č n é kval i tě , k t e r é by bylo m o ž n é využ í t pro extrakci výchozích d-vector 
r ep rezen tac í k a ž d é h o řečn íka . P r o t r énován í P V A D architektur, k t e r é využívaj í p r ávě pouze 
tuto výchozí reprezentaci, je pak t a k é t ř e b a , aby d a n á d a t o v á sada obsahovala d o s t a t e č n o u 
var iabi l i tu řečníků , tedy jejich d o s t a t e č n ý poče t . 

P ro tento účel by l využ i t s t a n d a r d n í Libr iSpeech [32] korpus, s p o m o c í k t e r é h o byly 
s t ř ídavé promluvy s imulovány k o n k a t e n a c í někol ika promluv někol ika n á h o d n ě zvolených 
řečníků . Výs ledné s y s t é m y pak byly t r é n o v á n y na celém t é m ě ř t i s í c i -hodinovém rozsahu 
Libr iSpeech korpusu, p ř i čemž byla na vygenerovanou t rénovac í datovou sadu ap l ikována 
augmentace, k t e r á dá le zvětš i la její rozsah na č t y ř n á s o b e k . 

Výs ledky zák ladn ích e x p e r i m e n t ů se všemi č t y ř m i archi tekturami př ines ly jeden důlež i tý 
poznatek: hodnoty skóre pro verifikaci ř ečn íka p ř i ř a z e n á k a ž d é m u r á m c i u architektur S C , 
S T a S E T nebyly co se týče rozl išení cí lových (target speaker speech, t s s ) a necí lových 
(non-target speaker speech, n t s s ) řečových r á m c ů d o s t a t e č n ě d i sk r imina t ivn í . Arch i tek tura 



S T , k t e r á pro detekci t s s r á m c ů vedle akus t i ckých p ř í z n a k ů využ ívá p rávě pouze toto 
skóre, d o s á h l a pro č is tou va l idační sadu p řesnos t i klasifikace pouze 84.29% (tedy pod í l 
ko rek tně klasifikovaných r á m c ů ) . Opro t i tomu architektura E T , využívaj ící pouze d-vector 
embedding reprezentaci cílového řečn íka dosáh l a pro s te jný úkol d o s á h l a p řesnos t i 88.02%. 

Z tohoto d ů v o d u byly n a v r ž e n y dvě modifikace z á k l a d n í metody skórování , k t e r é v p r ů b ě h u 
zpracován í v s t u p n í n a h r á v k y ex t r ahu j í embedding vektory s v y u ž i t í m p o s u v n é h o kontex-
t u á l n í h o okna. T í m je za cenu d r o b n é h o zvýšení n á r o k ů na zdroje dosaženo vyšší kval i ty 
e x t r a h o v a n ý c h s e k u n d á r n í c h embedding v e k t o r ů a t í m i vyšší d iskr iminat iv i ty výs ledných 
hodnot skóre . Arch i tek tu ry S T a S E T n a t r é n o v á n y s takto z í skanými skóre zaznamenaly 
v ý r a z n é z lepšení ve schopnosti rozl išování t s s a n t s s r á m c ů (a to i v akusticky n á r o č n ý c h 
s i tuacích) a p řekona ly tak výs ledky nej lepšího S E T s y s t é m u p r e z e n t o v a n é h o v [13]. Nejlepší 
S E T s y s t é m využívaj ící t ě c h t o modif ikací skórování dosáh l pro č i s tou řeč p řesnos t i 92.23%. 

U architektury E T bylo t a k é e x p e r i m e n t o v á n o s j i n ý m i typy v e k t o r ů pro reprezentaci 
cílového řečn íka , k o n k r é t n ě i-vector [11] a x-vector [43]. P ř e s t o ž e oba typy rep rezen tac í 
dosáh ly obs to jných výs ledků , v p ř í p a d ě x -vec to rů bylo dosaženo výs ledků t é m ě ř srovnatel­
ných s d-vectory, nebyla z a z n a m e n á n a ž á d n á z lepšení oproti E T s y s t é m u využívaj íc ího 
d-vector reprezentace. 

Pro dalš í z lepšení dosažených výs ledků a zvýšení robustnosti všech P V A D s y s t é m ů by 
do budoucna bylo v h o d n é využ í t pro jejich t r énován í k r o m ě s imulovaných t a k é r e á l n á data. 
Toto by umožn i lo ř á d n é v y h o d n o c e n í schopnosti adaptace j edno t l i vých s y s t é m ů n a p ř í k l a d 
na překrývaj íc í se řeč v klasifikovaných n a h r á v k á c h . 
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Chapter 1 

Introduction 

Voice Activity Detection ( V A D ) is the problem of dist inguishing speech signals i n audio 
recordings from silence and background noise. It is typical ly used as a part of most speech 
processing systems, taking a role of a pre-processing component, responsible for filtering 
out irrelevant information from the processed signal. Th is is beneficial for a mult i tude of 
reasons. 

One, the downstream system might be sensitive to noise, and filtering out such signals 
might improve the system's performance. 

Two, the likes of speaker verification and automatic speech recognition systems are typ­
ically quite expensive to run i n terms of the required computat ional resources, which is 
especially crucial when dealing wi th mobile personal devices. Voice act ivi ty detection can 
therefore somewhat l imi t the resource and energy consumption by triggering the down­
stream systems only when necessary. 

For some scenarios, it might be useful to extend the basic V A D problem by introducing 
a speaker constraint - detecting speech frames of one target speaker and distinguishing 
them from other non-target speakers. 

This could generally be addressed by u t i l iz ing a speaker verification or a speaker d i -
arization system, however, it can be argued that a dedicated solution might offer some 
advantages. 

One such dedicated solution was recently proposed in [13], presenting a method of adapt­
ing a classical L S T M - b a s e d V A D system to the target speaker by u t i l iz ing their d-vector [48] 
speaker embedding representation. One of the pr imary goals of this method (originally 
called "Personal V A D " ) is for the resulting system to mainta in the characteristics of a typ­
ical V A D system. Tha t is mainly i n terms of latency and low resource requirements so 
that such a system could be used even for on-device speech recognition scenarios. However, 
some more heavyweight approaches to the personal V A D problem are also proposed, as in 
some situations, the addi t ional robustness might prove useful even despite the addi t ional 
resource requirements. 

This thesis aims to implement, evaluate and expand upon this speaker-conditioned V A D 
method, as there is currently no working implementat ion of this method (or t raining/eval­
uation data for that matter) available to the public. 

The rest of this thesis is organized as follows: Chapter 2 provides a brief in t roduct ion to 
the topic of art if icial neural networks, focusing on their use for temporal context modeling. 
Special attention is given to recurrent neural networks, as they are at the core of the 
V A D systems implemented i n this work. Chapter 3 introduces the concept of speaker 
representation vectors, also referred to as speaker embeddings. In Chapter 4, common 

3 



approaches to voice act ivi ty detection are discussed, as well as the core speaker-conditioned 
V A D approach explored i n this work. Chapter 5 describes the data used for t ra ining the 
implemented systems. Chapter 6 explains some of the key details regarding the feature 
extraction, and personal V A D system implementat ion and t ra ining processes. Last ly, in 
Chapter 7, the systems are evaluated and some potential ways of expanding the system 
capabilities and improving the obtained results are introduced and discussed. 
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Chapter 2 

Artificial Neural Networks 

This chapter gives a brief introduct ion to the topic of Artificial Neural Networks ( A N N ) -
predominantly their types, architectures, use cases, the process of their design, and training. 
Special attention is given to recurrent neural networks as they are the core network type 
used in this work. The contents of this chapter (both for sections about feed-forward and 
recurrent neural networks) were mostly derived from [16] and [3]. 

2.1 Feed-forward neural networks 

Deep feed-forward networks (also referred to as feed-forward neural networks) are a ma­
chine learning model type, which allowed the creation and evolution of the deep learning 
discipline, a feed-forward network essentially has one task, which is to approximate some 
arbitrary function / * . Th is function represents a mapping of a system's inputs to their cor­
responding outputs - for example, for a classification problem, the target mapping could 
be defined as assigning a category label to the classified input . The neural network then 
defines a mapp ing 1 : 

where x is the input feature vector, y is the network's output vector, /(•) is the mapping 
function and 9 represents the network's learned parameters. The network is supposed to 
learn 9 i n such a way that results in / becoming the best possible approximat ion of the 
target function / * . 

Deep feed-forward networks are called deep because they consist of several layers: an 
input layer, an output layer, and a number of the so-called hidden layers. These layers are 
stacked one behind the other, each taking the output of the previous layer as its input, thus 
creating a network. 

Each layer consists of a number of artificial neurons, which are called hidden units for 
the hidden layers or output units for the output layer. Every art if icial neuron has a vector 
of input weights w and a bias 6; parameters, which the neuron uses to transform its input 
x : 

1 Regarding vector notation: in this section, any variable that is a vector or matrix is depicted as bold to 
differentiate them from scalar values. However, in later sections, some equations only contain vectors and 
matrices and since it is unnecessary to distinguish them from scalars, they are written in a regular font only 
to improve readability. 

y = / (x ;0) 

a = 
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This single neuron case can be generalized for the whole layer, giving us the following 
affine transformation: 

a* = W V " 1 + b\ (2.2) 

where z * _ 1 is the output vector of the previous hidden layer serving as the input of the 
current i - th layer, and W ! is a mat r ix of weights assigned to the inputs. The dimensionality 
of the weight mat r ix corresponds to the number of hidden units in the current layer and 
the dimensionality of z * _ 1 . F ina l ly , b* is a vector of biases assigned to the hidden units, 
and a* is a vector of output activations. 

These activations are then transformed using a non-linear, differentiable (with some 
exceptions) activation function h(-): 

zi = /i(a*), (2.3) 

giving us zl, the final output of the layer. 
W h i c h act ivation function should be used depends on several factors. Usually, the 

activation function used by the hidden units w i l l be different from the one used i n the 
output layer. The output layers typical ly use either the logistic sigmoid or the softmax for 
classification problems. For regression problems, no activation function is used. For hidden 
units, the rectified linear unit (and its variants) has become very popular i n recent years, 
although there are many other options - such as the hyperbolic tangent or the previously 
mentioned and i n the past widely used logistic sigmoid, bo th of which are often used inside 
recurrent neural network cells. A l l of these activation functions are shown i n Figure 2.1. 

R e L U S i g m o i d T a n H 

Figure 2.1: Visua l iza t ion of the rectified linear unit ( R e L U ) , logistic sigmoid (Sigmoid) and 
the hyperbolic tangent (TanH) act ivation functions. 

Above a l l , it is crucial for the activation function to be non-linear. The non-linearity al­
lows the network to perform complex input transformations, not just affine transformations 
(rotation, translation, shear). These complex transformations allow the network to fold and 
warp the input feature space 2 so that, for example in the case of a complex classification 
problem, boundaries between classes can be modeled more easily. 

It is apparent that a deep neural network s imply represents a series of non- t r iv ia l func­
t ional transformations. It should be stated that according to the universal approximation 
theorem [18], a neural network wi th only one hidden layer w i t h a non-linear activation 
function can approximate any Borel-measurable function to any desired degree of accuracy. 
This assumes that the hidden layer is given enough hidden units. In practice, a solution 

2 A nice visualization of these effects can be found on Christopher Olah's blog: h t t p s : / / c o l a h . g i t h u b 
. i o /pos t s /2014-03-NN-Mani fo lds -Topo logy / 
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of this nature is however often unscalable as the w id th of the hidden layer would become 
impract ical ly large for even very simple problems. Moreover, there is v i r tua l ly no guarantee 
that the network would be able to learn the desired approximat ion in real-life scenarios. 
It is therefore common - and intui t ively makes much sense - to deepen the network by 
adding more hidden layers. This allows the network to better approximate more complex 
functions using a series of simpler transformations, rather than only one much very complex 
transformation. 

2.2 Training the network 

A s it was established in Section 2.1, the goal for the network is to approximate some 
target function / * . Addi t ional ly , it was established that the network represents a series of 
differentiable functional transformations, each having its own set of parameters. 

The process of t ra ining the network is therefore nothing more than an optimization 
problem - one of finding a network parameter set 9 that allows the network to approximate 
the target function / * i n the best possible way. 

To evaluate the quali ty of this approximation, we choose a differentiable objective func­
tion (often also referred to as loss or error function), which allows us to quantify the 
accuracy of the network's predictions. W h i c h part icular loss function should be used is 
determined by the nature of the problem that the network is meant to solve - for regres­
sion problems, one can use the mean squared error loss, for classification purposes, the 
cross-entropy loss is a common choice. 

The process of min imiz ing the value of the chosen loss function then corresponds to 
opt imizing the network parameters to achieve better performance. We say that the network 
learns the parameter values by min imiz ing the loss. Because the loss function is always 
differentiable w i th respect to any weight or bias i n the network, a gradient-based numerical 
approach to the parameter opt imizat ion can be used. 

To update the network parameters, first, it is necessary to compute the gradients of the 
loss function wi th respect to every network parameter. This is done using the backpropaga-
tion algorithm. The computed gradients indicate the direction of the steepest loss function 
value increase. Therefore, subtracting the gradient (mult ipl ied by a smal l constant called 
learning rate) from the corresponding parameter values is direct ly equal to updat ing the 
network parameters i n such a way that the loss function value decreases. 

This whole process of obtaining the network prediction for the t ra ining set, computing 
the loss function value, computing the gradients, and then updat ing the network parameters 
accordingly is referred to as the gradient descent a lgori thm. This a lgori thm also has many 
variants, which further optimize and increase the efficiency of the whole learning process, 
typical ly based on some stochastic assumptions, e.g. the stochastic gradient descent variant. 

2.3 The problem of sequential modeling 

The t radi t ional feed-forward neural network topology, al though powerful, is not a universal 
solution for a l l deep learning problems. One of the l imitat ions of this architecture is its 
impl ic i t abi l i ty to only process each input data point as a singular piece of information wi th 
no temporal context. For each input vector, we typical ly obtain one corresponding output 
regardless of what other inputs the network has seen up to this point - in other words, 
feed-forward networks have no sense of memory. 
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For some deep learning problems and tasks, this temporal context is absolutely crucial , 
if we are to find an effective solution. Domains like speech recognition, speaker verification, 
and natural language processing (or in the case of this thesis - voice act ivi ty detection) 
present us w i th challenges requiring us to be able to process sequential data. 

Some neural network topologies are able to address such problems without introduc­
ing significant changes to the basic model structure, for example, time-delay neural net­
works [47, 35], which have been found quite successful in solving many speech processing-
related problems such as speaker identification [43]. Other approaches s imply combine the 
input features at several neighboring t ime steps into one feature vector, bringing in some 
sense of the past and future temporal contexts, and use it as an input of a regular deep 
feed-forward network [45]. 

However, there is one neural network topology, whose most basic purpose is to be able 
to model these temporal dependencies impl ic i t ly - recurrent neural networks. 

2.4 Recurrent neural networks 

Recurrent Neural Networks ( R N N ) are a class of artificial neural networks designed primar­
i ly for sequence modeling. Rather than regular artificial neurons, R N N s consist of units 
referred to as recurrent cells. These cells have two special properties the regular neurons 
lack: 

• a hidden state (sometimes referred to cell state), 

• a recurrent connection to the hidden state from the previous t ime step. 

The hidden state is the cell 's abstract representation of previous t ime steps, essentially 
acting as a memory unit . Th is allows the R N N cell to condit ion its output not only on 
its learned parameters and the current input but also on the accumulated value of this 
hidden state. Therefore the network can learn to account for temporal dependencies i n the 
processed data, thus becoming suitable for sequential modeling. 

The basic, simple recurrent neural network layer can be formalized using the following 
formulas: 

at = b + Wht-i + Uxt, 

ht=tanh(at), (2.4) 

ot = c + Vht, 

where U, V, W are weight matrices, b, c denote the bias vectors, at is the vector of hidden 
state activations for t ime step t, ht is the hidden state vector transformed using the hyper­
bolic tangent function, ht-i is the hidden state vector from the previous t ime step, and oj 
denotes the output activation of the recurrent layer for t ime step t. The output activation 
vector then can be further transformed using another non-linear act ivat ion function. 

Recurrent networks can be visualized i n the form of a computat ional graph as shown in 
F i g . 2.2. Th is graph can also be depicted as unfolded, meaning we visualize the dependencies 
between the ind iv idua l t ime steps, emphasizing the recurrent connections. 

2.4.1 M o d e l i n g long t e m p o r a l dependencies 

Recurrent neural networks could - in theory - be used for many types of tasks, that are 
sequential in nature. However, it turns out that the basic simple R N N architecture car-
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Figure 2.2: Visua l iza t ion of a recurrent neural network, depicted both in the regular and 
unfolded variants. The diagram was taken from [31]. 

ries some crucial l imitat ions, which prevent it from being pract ical ly applicable to most 
problems. 

The basic problem is that it is rather difficult to reliably t ra in R N N s , as they tend to 
suffer from the problems of vanishing and exploding gradients when using t radi t ional simple 
gradient-based opt imizat ion methods [1, 2, 33]. 

Moreover, even i f the network is stable during t ra ining (the gradients do not explode), 
and can store memories, it is generally unable to reliably learn and represent long-term de­
pendencies in the input data. This is because the weights assigned to long-term interactions 
become exponentially smaller compared to the short-term ones. 

Long temporal dependencies are however crucial for some types of problems. Taking 
an anecdotal example: long sentences often contain words at the beginning, which are 
crucial for a correct understanding of the sentence - they provide long-term context, which 
sometimes prevails across mult iple sentences. 

These l imitat ions eventually led to the introduct ion of Gated Recurrent Neural Networks 
(gated R N N s ) . Ga ted R N N s are a special category of recurrent neural networks which 
expand upon the basic simple R N N architecture by introducing several internal gating 
mechanisms. These gating mechanisms have two pr imary roles: 

1. They introduce recurrent pathways, where gradients can flow more freely, as these 
pathways are not statically controlled by any weight matrices, but rather dynamical ly 
using these gates, whose parameters are learned instead. 

2. They allow the network to form its hidden state in a more refined manner, preserv­
ing important contextual information or, on the contrary, intentionally ignoring or 
forgetting other pieces of it. 

The two main representatives of this class of R N N s are the Long Short-term Memory 
( L S T M ) and the Gated Recurrent Unit ( G R U ) . The L S T M - the most widely used gated 
R N N variant nowadays - is discussed in the next Section 2.4.2. 

2.4.2 L o n g s h o r t - t e r m m e m o r y 

The Long Short-term Memory ( L S T M ) is a gated R N N variant first introduced i n [17]. Its 
purpose is to address some of the problems described i n Section 2.4.1, most impor tant ly 
the problem of learning and exploi t ing long temporal contexts. 

The L S T M splits the original R N N state into two properties, bo th of which are recurrent. 
The first property is the L S T M cell state ct, which serves as an information accumulator 
and is controlled by the L S T M gating mechanisms. The second property, now called the 
hidden state ht, becomes the output of the L S T M cell at each t ime step while also being 
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Figure 2.3: Diagram of an L S T M cell . The a and tanh symbols denote the logistic sigmoid 
and hyperbolic tangent act ivat ion functions, respectively, q , and ct-i denote the cell state 
values, ht, and ht-\ denote the hidden state values, and xt denotes the input of the L S T M 
cell. The diagram was obtained from [10] and is licensed under the C C - B Y License, by 
Gui l laume Chevalier. The legend part of the original image was removed. 

recurrent. For each gating mechanism, this hidden state value is used as a secondary input 
along wi th the L S T M input xt (see Figure 2.3). 

A n L S T M layer (and every cell for that matter) has three separate gating mecha­
nisms [31, 51], the first one being the so-called forget gate: 

ft = a(Wfxt + Ufht-1 + bf), (2.5) 

where Wf,Uf are weight matrices, 6/ is the bias vector, ft denotes the forget gate value 
vector at t ime step t, cr(-) is the logistic sigmoid, and ht-\ is the hidden state vector from 
the previous t ime step. The forget gate can restrict the information retained i n the cell 
state. 

The second gating mechanism is the input gate, which controls the accumulation of the 
L S T M cell input to the internal cell state: 

it = a(Wixt + Uiht-i + bi). (2.6) 

The last gating mechanism is the output gate, which controls the output of the L S T M 
cell: 

ot = a{W0xt + U0ht-1 + b0). (2.7) 

Before updat ing the L S T M state, a vector of candidate values Ct is computed. These 
values could potential ly be accumulated to the cell state, that is i f the input gate allows it . 
Th is candidate vector is then combined wi th the previous cell state vector Ct-i, controlled 
by the forget and input gates, resulting i n a new value of the cell state Ct-

Ct = t&nh(Wcxt + Uch-i + bC) (2.8) 

Ct = ft O Ct-i + it 0 Ct, 

where 0 denotes element-wise mul t ip l ica t ion (also known as the Hadamard product). 
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The resulting new cell state is then further transformed using the hyperbolic tangent 
function and the current value of the output gate, to produce the new hidden state vector 
ht: 

ht = otOtanh(Ct). (2.9) 

Contrary to the fixed-value weight assigned to the recurrent connection of a regular 
R N N hidden unit , the gates allow the L S T M cell to manipulate the internal cell state 
dynamical ly - information accumulated at one t ime step can be retained for many time 
steps, or suddenly discarded or added to if a more crucial piece of information emerges in 
the input . O f course, the parameters - the weights and biases - corresponding to these 
gates are learned dur ing training. 

The L S T M is nowadays by far the most widely and commonly used R N N variant, 
achieving state-of-the-art performance for many sequential modeling problems. 
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Chapter 3 

Speaker representations 

This chapter briefly introduces the concept of speaker embeddings - low-dimensional vectors 
of fixed length, used as a means for representing a part icular speaker. 

These speaker representations are a crucial concept in the speaker identification/verifi­
cation domain since they allow to compactly store information about an utterance's acoustic 
characteristics. W h e n used for speech, these vectors contain information about a part icular 
speaker's voice characteristics, essentially creating a voice print of the encoded speaker. 

The encoded information can be extracted i n a number of ways, depending on the em­
bedding type. Some types of speaker representations are based on a statist ical approach to 
speaker modeling (i.e. i-vectors [11]), other types are extracted using deep neural networks 
that are generally trained for the task of speaker identification/verification (x-vectors [43], 
d-vectors [45, 48]). E a c h speaker embedding type, therefore, has different properties, dif­
ferent interpretations, and can be suitable for different applications. 

Apar t from speaker recognition-related tasks, speaker embeddings can also be used to 
perform speaker adaptation, i f one is to bu i ld a system that requires such techniques for 
opt imal performance - this is further discussed in Chapter 4. 

The following Sections 3.1, 3.2, and 3.3 introduce three of the nowadays most widely 
used types of speaker representations. Special attention is given to the d-vector, as this 
embedding type is integral to the target speaker voice act ivi ty detection method explored 
in this work. 

3.1 i-vectors 

The first speaker vector type to discuss is the i-vector [11]. I-vectors (also referred as in­
termediate or identity vectors) are speaker representation vectors based on a statistical, 
unsupervised approach to speaker modeling. The method was first introduced as an evolu­
t ion of the Joint Factor Analysis ( J F A ) [22] approach to speaker representation. 

The J F A approach was based on the notion of modeling the channel and speaker vari­
abi l i ty as independent subspaces. However, later experiments showed that the resulting 
estimated channel factors also contain information about the speakers, despite being sup­
posed to only model channel effects. A s a consequence, these two subspaces are for the 
purpose of i-vector estimation considered as one total variability space. 

1 E v e n though the term embedding is generally used for speaker representations obtained from a deep 
neural network, to avoid confusion, please note that in this thesis this term is sometimes used even for 
i-vectors, as they in a sense fit the definition of an embedding vector too. 
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I-vector extract ion is the process of mapping a sequence of feature vectors ( typically 
Mel-frequency cepstral coefficients), to a fixed-length vector. F i r s t , a k-component Gaussian 
M i x t u r e M o d e l ( G M M ) referred to as the Universal Background Model ( U B M ) has to be 
computed using high amounts of t ra ining data. The encoded speaker utterance is then 
represented by a speaker and channel-dependent supervector M , which is obtained by 
appending together first-order Baum-Welch statistics extracted from the utterance using 
the U B M . That is for each G M M component of the U B M . The obtained supervector is then 
assumed to obey a factor analysis model: 

M = m + Tw (3.1) 

where m is a speaker and channel-independent mean supervector, obtained from the U B M , 
T is the so-called to ta l variabi l i ty matr ix , rectangular and of low-rank. This mat r ix contains 
the eigenvectors w i th the largest eigenvalues of the to ta l variabi l i ty covariance matr ix , 
essentially modeling the directions of the largest variabi l i ty i n the t ra ining data. F ina l ly , 
w is a latent vector w i th a standard-normal prior, which represents the to ta l variabil i ty 
factors. 

Given an utterance u, the i-vector is then obtained as a M A P point estimate of w for 
this utterance [15]. 

3.2 x-vectors 

I-vectors were for a long t ime the industry standard for bo th text-dependent and text-
independent speaker recognition tasks for many years. However, given the success of deep 
neural networks i n v i r tua l ly any other machine learning domain, a lot of research had been 
dedicated to deep neural network-based speaker modeling, resulting in the introduct ion of 
new embedding types such as x-vectors and d-vectors. 

X-vectors [42, 43] are a speaker embedding type extracted using a time-delay neural 
network [47, 35], which is t rained to identify the speakers from the t raining set based on 
the supplied utterance (see Figure 3.1). 

The network processes the utterance frame by frame as a whole, passing the output 
to a statistics pooling layer. Th is layer aggregates over the input segment and computes 
its mean and standard deviation. These statistics are then concatenated and passed to an 
addi t ional hidden layer, from which the resulting embedding vectors can be extracted. 

X-vectors are nowadays a widely used speaker embedding type and are a popular speaker 
embedding choice e.g. for speaker diar izat ion purposes [25]. 

3.3 d-vectors 

The th i rd and in the context of this work the most important speaker embedding type is the 
d-vector. The d-vector is a te rm that can generally be used for a speaker embedding, which 
is extracted from a deep neural network trained for the speaker verification/identification 
task (one of the key differences from x-vectors being the absence of the statistics pooling 
layer i n d-vector systems). 

The d-vector concept was first introduced as a deep neural network speaker embedding 
in [45]. Th is approach was designed for text-dependent speaker verification tasks, though it 
was suggested to be extendable to text-independent problems. The method ut i l ized a deep 
feed-forward network architecture, to process the input filterbank features on frame-level. 
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Figure 3.1: Simplified visual izat ion of the D N N used to extract x-vectors. The frame-level 
segment depicts the time-delay neural network part of the whole system, passing its output 
to the segment-level part of the network, which ul t imately produces probabilit ies for each 
speaker i n the t ra ining set. The x-vectors are then extracted at the embedding layer a. 
The diagram was obtained from [42]. 

The filterbank features from several neighboring frames are combined into one feature 
vector, br inging in some sense of the present and future temporal contexts, and passed 
through the network. A t each t ime step, the activations from the last hidden layer are 
extracted, L2-normalized, and averaged over the whole utterance, resulting i n an utterance-
level embedding vector, the d-vector. 

Consequently, a lot of effort has been dedicated to researching D N N - b a s e d speaker 
verification systems, which rely on an end-to-end t ra ining approach [9, 26, 52]. 

One of the more prominent end-to-end approaches was recently introduced i n [48]. In 
this approach, an L S T M - b a s e d speaker verification system was trained using a custom 
loss function, referred to as the generalized end-to-end loss, designed to always maximize 
the discr iminat iv i ty between the most similar speaker pairs. The d-vector embeddings 
are extracted i n a sl iding-window manner, L 2 normalized, and averaged over the whole 
utterance (as shown i n Figure 3.2). 

This system achieved state-of-the-art performance for both text-dependent and text-
independent speaker verification tasks, being successfully used (among other areas) for 
speaker diar izat ion [49], source separation [50], or target-speaker voice act ivi ty detec­
t ion [13]. 
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Figure 3.2: Visua l iza t ion of the sl iding window d-vector embedding inference from [48]. 
The diagram was obtained from the same source. 

3.4 Embedding similarity metrics 

For some scenarios - typical ly for the purpose of speaker verification - it is useful to be 
able to quantify the s imilar i ty of two embedding vectors, w i th the result ideally i n the 
form of a scalar s imilar i ty score. The method used for computing the speaker verification 
score for the two vectors is then usually dependent on the type of the embedding vectors, 
assumptions about their spatial dis tr ibut ion, etc. 

Speaker verification systems based on i-vectors often use a Probabi l i s t ic Linear Disc r im­
inant Analys is ( P L D A ) [19] backend to compare the speaker representations and enable the 
speaker verification decisions. However, P L D A - b a s e d classifiers are not l imi ted to i-vectors 
only, as they are often used for other embedding types, such as x-vectors [43]. 

Another (rather simpler) s imilar i ty measure that can be used is the cosine similarity. 
The cosine s imilar i ty score of two vectors is computed using the following formula: 

similarity 
A B 

IBI 
(3.2) 

where A and B are the two embedding vectors respectively. 
The value of the score is direct ly dependent on the angle between the vectors - vectors 

that form a smaller angle w i l l also have a higher cosine s imilar i ty score. Intuitively, this 
angle, especially i n the case of the high-dimensional, sparse embedding space, can be a good 
indicat ion as to whether the two embedding vectors are similar or not. 

The speaker verification decision can then be made by s imply choosing a score threshold 
- i f the cosine s imilar i ty value is higher than the chosen threshold, it can be ruled that the 
embeddings come from the same speaker. 
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Chapter 4 

Speech detection 

In this chapter, the core topic explored in this work is covered - target speaker speech 
detection. 

Section 4.1 starts w i th presenting the general problem of voice act ivi ty detection, dis­
cussing some of the typical ly used techniques to implement voice act ivi ty detection systems. 

Section 4.2 then expands upon the basic problem by focusing on a part icular target 
speaker when t ry ing to detect speech signals. Section 4.2.1 then covers the speaker-
conditioned voice act ivi ty detection method proposed in [13], which is the core target 
speaker speech detection approach investigated i n this thesis. 

4.1 Voice activity detection 

Voice Activity Detection ( V A D ) represents the problem of detecting speech i n audio signals. 
In its purest form, it can be thought of as a binary classification problem. Every frame of 
the source audio is evaluated against two hypotheses [37]: 

where the first hypothesis HQ indicates that the classified frame only consists of non-speech 
signals n such as noise, and the second hypothesis Hi expresses that the current frame 
consists of a speech signal s and potential background noise signals. 

To classify the frame, one can s imply choose the hypothesis w i th the higher posterior 
condit ional probabi l i ty of the two wi th respect to the current frame x̂ , effectively enforcing 
the m a x i m u m a posteriori classification approach: 

Voice act ivi ty detection is typical ly used as a pre-processing component of larger speech 
processing systems [37]. This is because the presence of irrelevant information and noise 
in the processed speech signal can hinder the performance of systems such as Automat ic 
Speech Recognit ion systems ( A S R ) or Speaker Verification systems ( S V ) . Moreover, A S R 
and S V systems are typical ly quite demanding in terms of computat ional resources, espe­
cial ly when compared to a typical ly very smal l and lightweight V A D model . Therefore it 
might be desirable to s imply discard a l l source audio frames that do not contain any speech 

HQ: x 4 = n 

Hi : x 4 = n + s 

(4.1) 

(4.2) 
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information, as doing so can both improve the downstream system performance and save 
some computat ional power. 

O n the other hand, it is undesirable for any V A D system to false-reject any speech 
frames as then important information might be lost. This is especially a challenge i f the 
V A D is to operate i n acoustically challenging conditions, including environments w i th high 
levels of background noise or reverb. It is therefore both useful and necessary to account 
for these conditions when designing the system, for example by applying augmentation 
strategies to the t ra ining data. 

Voice act ivi ty detection usually consists of three main stages: 

1. Feature extraction, 

2. V A D decision, 

3. and V A D decision smoothing. 

The feature extraction stage is highly dependent on the approach taken to V A D mod­
eling, as different methods might require different features. However, since most modern 
machine learning-based V A D methods pr imar i ly use acoustic features only, it can be useful 
to bu i ld the V A D system around the same acoustic feature type used by the downstream 
components. Th is can lead to further resource savings, as the acoustic features are in this 
case computed only once. 

The task of the V A D model itself is then to classify the input features as either speech 
or non-speech. The possible approaches to implementing such a model are discussed in 
Section 4.1.1. 

F e a t u r e 
x(/) 

D e c i s i o n 
V A D 0 ( / ) 

D e c i s i o n 
ex t rac t i on m o d u l e s m o o t h i n g 

— • V A D ( / ) 

Figure 4.1: Example of a typ ica l V A D system architecture. Diagram taken from [37]. 

Lastly, the decision smoothing stage is used to combat V A D decision errors, most often 
caused due to high levels of background noise. In such conditions, the V A D decision might 
become "ji t tery" and unreliable, increasing the amount of false negative/positive decisions. 

The heuristics used for V A D decision post-processing are generally quite simple, w i th 
one of the most widely used ones being hangover [4]. 

4.1.1 V o i c e ac t iv i ty detect ion m e t hods 

Depending on the use case, available resources, or system accuracy/performance require­
ments, one can choose one of many methods to implement voice ac t iv i ty detection. Gener­
ally, there are two main ways to categorize the different approaches: 

• Feature and heuristics-driven methods, which make use of different features and statis­
tics extracted from the source audio. 
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• Machine learning-based methods, which rely on statist ical or neural network-based 
approaches to infer the decision policies from the t ra ining data. 

Feature and heuristics-driven methods typical ly extract a number of different features 
from the processed signal and t ry to make an informed decision, often wi th the help of 
a heuristic or a specialized algori thm [44]. The extracted features often include energy 
information, spectral information, zero-crossing rate, long-term spectral divergence [38], 
etc. 

The heuristics-driven methods were, however, slowly driven out by machine learning-
based V A D approaches, which nowadays offer state-of-the-art performance, accuracy, and 
noise robustness. O n the other hand, some applications might s t i l l find benefit even in 
naive V A D methods such as simple spectral energy thresholding - used for example i n [42] 
- i f excellent noise robustness is not required. 

Some of the newer V A D methods rely on a statist ical approach to the problem [6]. How­
ever, even the statist ical approaches are being pushed aside by V A D methods that util ize 
artificial neural networks, typical ly operating on acoustic features only, a mult i tude of neu­
ral network architectures have been tr ied and evaluated for this task [53, 8], w i th one of the 
more popular being the L S T M [14, 7], showing state-of-the-art performance. Addi t ional ly , 
L S T M - b a s e d approaches are especially interesting in the context of this part icular work, 
because L S T M networks can be used as streaming models, making them easily adaptable 
for online inference scenarios. 

4.2 Speaker-conditioned voice activity detection 

Speaker-conditioned Voice Activity Detection ( S C V A D ) is essentially an evolution of the 
standard V A D task, as now the system is also required to dist inguish between speech frames 
coming from one part icular target speaker and everyone else. We can therefore modify the 
the hypotheses defined i n Equa t ion 4.1 to accommodate for the new classification classes: 

H0: x 4 = n (4.3) 

H\ : x 4 = n + sn 

H2 : x 4 = n + st, 

where st and sn denote target speaker and non-target speaker speech signals, respectively. 
Simi lar ly to the previous binary V A D classification case, we can again choose the hy­

pothesis w i th the highest posterior probabil i ty: 

S C V A D ( x t ) = a r g m a x P ( # w | x t ) , w G {0 ,1 ,2} . (4.4) 

The first th ing that comes to m i n d when designing a S C V A D system is that there are 
already two important speech processing disciplines, which focus pr imar i ly on being able 
to distinguish between different speakers: speaker recognition and speaker diarizat ion. 

Therefore naturally, the first possible way to approach implementing a S C V A D system 
would be to combine a speaker recognition system wi th a classical V A D system. The 
speaker recognition system would then s imply classify the audio frames that the V A D had 
labeled as speech. The problem wi th such an approach is that speaker verification systems 
are generally implemented using models that are quite big, typical ly in terms of mill ions of 
parameters. Us ing such a system therefore inherently leads to higher resource consumption, 
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l imi t ing its usefulness in scenarios, where the resources are expensive. Th is is especially 
apparent in contrast to the generally very lightweight basic V A D models. 

Addi t ional ly , one of the challenges this V A D and S V system combination would have to 
overcome is the final decision granularity. V A D systems are generally capable of framedevel 
streaming inference, producing a speech/non-speech probabil i ty for every ind iv idua l frame. 
O n the other hand, S V systems often operate i n a windowdevel or a segmentdevel manner, 
which could result in higher overall decision latency. W h a t is more, adapting a speaker 
verification system to framedevel inference can pose quite a challenge in terms of retaining 
the speaker verification decision quality. 

The second option would be to direct ly use a speaker diar izat ion system. Speaker d i -
arization is the problem of establishing boundaries between ind iv idua l speakers i n a record­
ing - which brings us to the first drawback. 

A conventional diar izat ion system [25, 49] is designed to establish boundaries between 
all present speakers. Therefore, a lot of effort has to go towards determining the number 
of speakers i n the recording. That includes extracting embedding representations for the 
whole utterance in a sl iding window manner, clustering, and then segmenting the original 
recording based on the calculated boundaries (see Figure 4.2). 

_j Aggregate 

Cluster 

d-vectors 

segments 

I diarization 
I results 

Figure 4.2: Example of a clustering-based speaker diar izat ion method ut i l iz ing d-vector 
embeddings. Flowchart obtained from [49]. 

For one target speaker, a l l this is unnecessary, as it is only the target speaker that the 
system is required to find reliably. Therefore, again, such a solution is needlessly expensive 
in terms of computat ional resources, though it would most l ikely provide the desired results 
accuracy-wise. 

The th i rd option for implementing a S C V A D system would be to adopt a conventional 
V A D system for target speaker speech detection. Th is could potential ly result i n a S C V A D 
system, that retains the typica l V A D system characteristics i n terms of model size, resource 
demand, and latency, while s t i l l being able to detect a target speaker's speech signals. 

To perform such adaptation, the system could be trained to draw its attention to­
wards the target speaker by providing their abstract representation along wi th the acoustic 
features, most often i n the form of a speaker embedding (i-vectors, d-vectors) obtained 
previously during an enrollment phase. These representations are often obtained from sys­
tems much more complex than a typica l V A D , so effectively, the a im would be to teach 
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the V A D to "d i s t i l l " some knowledge from these abstract representations and identify the 
target speaker based on their acoustic "profile". 

Similar speaker adaptat ion approaches have previously been adopted also in the do­
mains of speech recognition [21], speech extract ion [50, 12], and quite successfully also in 
diar izat ion [30]. Some of these approaches use secondary auxi l iary systems trained to ex­
tract the speaker representation i n a way that is specific for that part icular system, other 
approaches use speaker embedding vectors directly. 

4.2.1 P e r s o n a l voice ac t iv i ty detect ion a p p r o a c h overview 

One method, which utilizes embedding-based speaker adaptation, is the rather novel ap­
proach to speaker-conditioned V A D recently introduced i n [13]. 

This method, originally called Personal VAD ( P V A D ) , aims to address the S C V A D 
problem by expanding the classification capabilities of an L S T M - b a s e d classical V A D model. 
The whole system is trained to distinguish not only between speech and non-speech audio 
frames but also to detect and identify speech frames belonging to a part icular target speaker. 

The original motivat ion for this S C V A D method was its potential use for on-device 
speech recognition scenarios. That is, the goal was to create a system capable of detecting 
speech signals of a target speaker i n real-time, ideally while also retaining some of the 
characteristics of a typica l V A D system. The end result would ideally be: 

• A small , lightweight model w i th min ima l latency and min ima l computat ional resource 
requirements. 

• A model that is able to operate accurately i n acoustically challenging environments, 
including noisy and reverberant conditions. 

A s we are dealing wi th an online classification scenario (and to minimize latency), it 
would be best i f the resulting system could operate as a streaming model . T h i s is why 
using a V A D architecture based on an L S T M network might be desirable. L S T M - b a s e d 
V A D architectures have become increasingly popular for sequential modeling of the V A D 
task, a l l that while showing state-of-the-art performance even i n acoustically challenging 
conditions [14]. 

Now, not a l l methods presented i n this work do actually meet the lightweight criteria 
for the system. Some of the personal V A D architecture variants presented i n section 4.2.2 
require a speaker verification system at runtime, essentially creating a fusion of S V , diariza­
t ion, and V A D systems. Tha t being said, the more heavy-weight solutions generally offer 
better performance i n terms of predict ion accuracy. Therefore, it can be argued that it is 
s t i l l worth exploring those part icular approaches, as they might prove useful i n situations, 
where resource l imits are not a concern. 

The following Section 4.2.2 describes the four main personal V A D architectures as pre­
sented i n [13]. 

4.2.2 P e r s o n a l voice ac t iv i ty detect ion sys tem archi tec ture 

A personal V A D system consists of two main components. 

Speaker verification system The first component is a speaker verification system used 
to extract speaker embeddings from the processed audio. For this purpose, the text-
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independent d-vector system introduced i n [48] was used. This system has two pr imary 
uses: 

1. To extract an enrollment speaker embedding for the target speaker. The embedding 
w i l l be used to either provide the system wi th a representation of the target speaker's 
voice characteristics or to obtain speaker verification scores for each ind iv idua l frame. 

2. To extract frame-level embedding vectors over the whole processed utterance. These 
secondary embedding vectors are used to issue speaker verification scores to each 
indiv idual frame. 

To satisfy the latter of these two requirements for the S V system, it was necessary to modify 
the actually used implementat ion of the system. 

The d-vector system used for embedding extraction operates in a sl iding window man­
ner, always returning one 256-dimensional embedding vector for a window of 160 frames. 
However, as the system's architecture is L S T M - b a s e d , the system can be modified to op­
erate in a streaming manner, returning an embedding vector for every single input frame. 
Each d-vector is then compared wi th the target speaker enrollment embedding using cosine 
similarity, giving us the speaker verification scores for each frame. 

Obviously, such modification can raise questions about the quali ty of the extracted d-
vectors, as the system is forced to process sequences of arbi trary lengths, without resetting 
the L S T M state. These concerns are addressed i n Section 7.5, where this baseline scoring 
method is evaluated against two other methods that I propose as potential alternatives. 

V A D system The second and pr imary component is the actual V A D system, which w i l l 
be t rained for the personal V A D task. This system was proposed to consist of a 2-layer 
L S T M network of 64 cells, followed by one addi t ional fully connected layer of 64 neurons. 
This network architecture is the same for a l l personal V A D system variants described in 
the following sections. 

The inputs of the personal V A D are then a combination of the following: 

• Acoust ic features xj, 

• the speaker verification scores St issued to each ind iv idua l frame, 

• the target speaker embedding e t a r g e t obtained dur ing the enrollment process. 

The acoustic features used in this work were 40-dimensional log Mel-fil terbank energies 
wi th 25 ms wid th and 10 ms overlap. The same acoustic features are used by the d-vector 
extractor system, therefore they can be extracted only once and used for both the S V and 
the V A D systems. This is especially helpful when performing frame scoring, as every frame 
has to be processed by the S V system to obtain a speaker verification score, and afterward, 
both the obtained score and the audio frame are passed to the P V A D system. 

The resulting combined feature vector is then used as the input of the personal V A D 
system, which produces class probabilit ies zt for target speaker speech (tss), non-target 
speaker speech (ntss) and non-speech (ns): 

P V A D ( x t ) = zt = [zT,zfss, z?*}. (4.5) 

The following sections further describe the four personal V A D architecture variants, as 
they were introduced i n [13]. The main differences between the systems stemming from the 
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input feature combination used by each part icular architecture. Three of the architectures 
- S C , S T , and S E T - make use of a speaker verification system to support the personal 
V A D decision. Diagrams for architectures are depicted i n Figure 4.3. 

Score combination Scored condrtioned training Embedding condrtioned training Scone and embedding conditioned training 

(a) (b) (c) (d) 

Figure 4.3: Personal V A D architecture diagrams, (a) depicts the baseline S C architecture, 
(b) depicts the S T architecture, which utilizes a combination of acoustic features and frame 
scoring, (c) depicts the embedding conditioned E T architecture, and (d) is the S E T system, 
which combines the acoustic features, the scores and the target speaker embedding vector. 
The diagrams were taken from [13] 

System 1: Score combination (SC) 

The baseline architecture for the personal V A D task consists of a classical V A D model, 
which takes the acoustic features features as input and produces speech probabil i ty pf for 
each incoming frame at each t ime step t: 

p$ = V A D ( x t ) . 

Each ind iv idua l frame is also passed through the speaker verification mode l 1 and a d-vector 
embedding ê  is obtained for that frame. This d-vector is then compared w i t h the target 
speaker embedding e t a r g e t using cosine similarity, thus obtaining a speaker verification score 
for each frame: 

st = cos(e t ,e t a r g e t ) . 

The obtained score is then combined w i t h the speech probabil i ty pf to produce unnor-
malized personal V A D probabi l i ty value z\ for every class k, using the following formula: 

zT = I - P ! 

z f s s = (l-st)-ps

t (4.6) 

ztss = Sfps

t 

It is obvious, that this baseline system represents quite a naive approach to the personal 
V A D task. The biggest issue wi th this approach is that there is no explicit threshold selected 
for the speaker verification scores - it would at least be sensible to statist ically derive 
this threshold using the t ra ining score values. Th is was tr ied in the final experiments in 
Section 7.3, however, w i t h not much success. The next architecture addresses this problem 
by treating the score value as an addi t ional feature. 

1 W h i c h is, as previously mentioned, modified to support frame-level streaming d-vector inference. 
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System 2: Score conditioned training (ST) 

The S T architecture expands on the baseline by combining the acoustic features w i th 
the speaker verification score st into one 41-dimensional feature vector: 

xt = [x t,s t]. 

The system is then trained using these features to directly produce Personal V A D class 
probabilities - non-speech, non-target speaker speech and target-speaker speech: 

This system is expected to perform better than the baseline, as it learns to infer the 
output probabilit ies from the input acoustic features and scores directly, rather than using 
a set-in-stone transformation function as the S C architecture. 

However, the ma in drawback of this architecture - which is shared between the S T and 
the S C systems - s t i l l prevails. It is the fact that the quali ty and accuracy of the system's 
final decision are directly dependent on the ut i l ized speaker verification score values. In 
order for this system to perform well, the discr iminat iv i ty of the embedding vectors used 
for frame scoring has to be as high as possible. Otherwise, the system's output w i l l contain 
more false positives and false negatives for both target and non-target speaker speech. This 
problem is further addressed and discussed i n Section 7.5. 

System 3: Embedd ing conditioned training ( E T ) 

The E T architecture represents the ideal desired solution to the personal voice ac t iv i ty 
detection problem, as it does not require a speaker verification system at runtime for frame 
scoring, making it a very lightweight solution. 

This architecture combines the enrollment embedding e t a r g e t for the target speaker w i th 
the acoustic features, resulting i n a 296-dimensional feature vector: 

X£ — [^t; t̂arget] • 

This system is expected to learn to infer the relationship between the input features 
and the target embedding, dis t i l l ing this knowledge for classification purposes, and adapting 
to the target speaker. However, as the d-vector embedding space can potential ly be quite 
sparse due to the dimensionality of the embeddings, it is expected that this system w i l l only 
perform and generalize well when trained on a dataset w i t h a large number of speakers. 

System 4: Score and embedding conditioned training ( S E T ) 

The last personal V A D architecture combines the characteristics of the previous two sys­
tems. The system input consists of the acoustic features, the target speaker embedding, as 
well as the speaker verification score for the current frame. This gives us a 297-dimensional 
input feature vector: 

x* = [x 4 ,s t ,e t a r g e t ]. 

Even though it is expected that this architecture w i l l provide the best results of the 
four, it s t i l l requires a running speaker verification model at runtime, so that frame scoring 
can be performed. 
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4.2.3 Loss funct ions 

Because personal V A D represents a multiclass classification problem, it is possible to t ra in 
the model by min imiz ing the categorical cross-entropy loss (also known as the softmax loss): 

i \ i exp(zy) ,A 

LCE(V, z = - log - F V / (4.7) 
2^ f c exp(z f e ) 

where z is the vector of pre-softmax network outputs for each class, y denotes the target 
class label, zy denotes the system's output for the target class and zk denotes the system's 
output for the A:-th class. 

Addi t ional ly , [13] also proposes the use of a new loss function, the Weighted Pairwise 
Loss ( W P L ) , which allows to issue different weights to each class pair: 

, exp(zv) 
(4.8) 

exp(zy) + exp(zk 

where w^^y is the weight between the classes k and y. In doing so, confusion errors 
between certain classes can have lesser impact on the system's performance. B y setting the 
weight of (ns.ntss) to a smaller value than (tss.ntss) or (ns.tss), the system should focus 
more on dist inguishing the target speaker's speech from the other two classes, more so than 
preoccupying itself w i th (ns.ntss) confusion errors. 
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Chapter 5 

Data 

To t ra in the proposed systems, it is necessary to find a suitable speech dataset, ideally one 
wi th the following properties: 

• The dataset should contain speaker turns so that the system can learn to dist inguish 
the target speaker from the other speakers present in the recording. 

• For each ind iv idua l speaker, enrollment utterances should be present so that it is 
possible to extract their embedding representations. 

For this purpose, the openly available Libr iSpeech [32] corpus was used to generate 
a dataset that would match the cri teria above. The process of generating the resulting 
dataset is further described i n Section 5.2. 

5.1 LibriSpeech 

The Libr iSpeech [32] corpus is a standard, freely available 1 dataset of read Engl i sh speech, 
total ing at almost 1000 hours of speech data. 

Libr iSpeech consists of seven separate subsets, each having one of two suffixes: clean 
or other. These suffixes were assigned to the part icular speakers in the sets based on 
word error rate scores achieved i n one of the in i t i a l Libr iSpeech evaluations. There are 
four smaller subsets: two dev sets, and two test sets, p r imar i ly meant for development 
and testing, respectively. Then , the three pr imary Libr iSpeech subsets are the 100-hour, 
360-hour, and 500-hour t r a i n sets. The parameters of the ind iv idua l subsets are shown in 
Table 5.1. 

The whole Libr iSpeech corpus was sampled at 16 k H z and the audio is stored i n the 
f lac format. Addi t ional ly , word transcripts are provided for a l l utterances. 

Lastly, to create V A D ground t ru th annotations for the data, it was necessary to get 
hold of transcript alignments for each ind iv idua l utterance i n the Libr iSpeech dataset. The 
alignments used in this work were obtained from [27] and originally generated using the 
Mont rea l Forced Al igner [29]. 

5.2 Generating the dataset 

To simulate speaker turns i n the t ra ining data, I adopted the approach presented i n [13]. 
The approach suggests to always retrieve n randomly chosen utterances from the original 

xhttps://www.openslr.org/12 
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subset hours 
per-speaker 

minutes 
female 

speakers 
male 

speakers 
total 

speakers 

dev-clean 5.4 8 20 20 40 
test-clean 5.4 8 20 20 40 
dev-other 5.3 10 16 17 33 
test-other 5.1 10 17 16 33 

train-clean-100 100.6 25 125 126 251 
train-clean-360 363.6 25 439 482 921 
train-other-500 496.7 30 564 602 1166 

Table 5.1: Libr iSpeech corpus subsets and their respective parameters. Table taken 
from [32]. 

dataset, each coming from a different speaker. The parameter n coming from a uniform 
distr ibution: 

n ~ Uniform(a, 6), 

where a = 1 and 6 = 3. These utterances are then concatenated, as are their ground 
t ru th annotations. After the selected utterances are used, they are erased from the pool of 
available utterances, so that no utterance is used more than once. 

Addi t ional ly , at the time of feature extraction, a speaker present i n the resulting utter­
ance is chosen randomly as the target speaker and the ground t ru th labels are also altered 
accordingly. It should also be noted that since augmentation is performed on the generated 
data, the chosen target speaker may differ across the augmented variants of the original 
utterance, providing a l i t t le more variety. 

A method that one could ca l l speaker dropout, inspired by [30], was also experimented 
wi th . Th is approach alters the way a target speaker is chosen for utterances consisting 
of only one speaker's speech, randomly selecting a different speaker as the target w i th 
a probabil i ty of 0.3. Th is approach was, however, not used i n the final generated datasets, 
as no improvements in the trained system performances were observed. 

Using this approach, two separate datasets were generated for model t ra ining and eval­
uation, respectively. Because the system is expected to separate the target speakers from 
the non-targets, it was - for the purposes of cross-validation - important to make the vali­
dation set to be completely separate from the t ra ining set. Tha t way, a l l the speakers i n the 
validat ion set would represent novelty encounters for the system and the obtained results 
would better indicate the system's abi l i ty to generalize. 

Training set The t ra ining set was generated using the three ma in Libr iSpeech subsets. 
The three t r a i n sets together - the 100-hour, the 360-hour, and the 500-hour - end up 
total ing at around 960 hours of recorded speech and 2338 different speakers. Us ing the 
method described i n Section 5.2, approximately 140 thousand unique concatenated utter­
ances were generated, w i th no source utterance being used more than once, a histogram of 
the resulting concatenated utterance lengths is shown in Figure 5.1. 

Validation set The validat ion set was generated using the remaining Libr iSpeech subsets, 
concretely the two dev 2 and two test subsets. These four subsets are completely separate 

2 T h e dev subsets were used in addition to the test sets to provide some additional speaker variability 
to the validation set. 
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Figure 5.1: His togram of utterance length dis t r ibut ion in the generated t ra ining set of 140 
thousand concatenated utterances. 

from the three main ones and though they are much smaller - total ing at around 20 hours 
of speech when combined only - they contain recordings of 146 more unique speakers that 
are not present i n the three main parti t ions. The resulting generated validat ion set consists 
of approximately 5500 concatenated utterances. 

5.3 Data augmentation 

A very important aspect of creating a robust and accurate V A D system is to ensure its 
abi l i ty to perform well even i n acoustically challenging conditions. These conditions can 
include the effects of reverberant rooms and spaces, and often also high levels of background 
noise. It is therefore desirable to augment the t ra ining data to match these potential 
conditions so that the model can learn to account for them. 

To augment the t ra ining and testing data, the M U S A N [41] corpus was used in con­
junct ion wi th a set of room both real and simulated room impulse responses from [24]. The 
resulting augmentation strategy used in this work is similar to [43]. E a c h concatenated 
utterances is augmented and thus replicated three times using: 

1. Reverb - an impulse response is randomly chosen from the RIRS_N0ISES corpus and 
applied to the clean utterance v ia convolution. 

2. Noise - randomly chosen background noises are added to the clean track at one-
second intervals, at levels ranging from 0 to 15 d B S N R . 

3. Mus ic - an instrumental music piece is randomly chosen from M U S A N and added 
to the clean utterance at levels ranging from 5 to 15 d B S N R . 

The same augmentation strategy was applied to both the t ra ining and validat ion sets, 
resulting i n both sets becoming four times their original size after augmentation. 
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Chapter 6 

Implementation 

This chapter discusses some of the interesting implementat ion aspects of creating the data 
preparation, feature extraction, and model t ra ining pipelines. 

6.1 Data preparation and feature extraction 

The implementat ion of the data preparation and feature extraction pipelines was one of 
the more challenging aspects of this work and has gone through mult iple iterations. The 
pipelines were implemented using the P y t h o n 3 language i n combinat ion w i t h some oc­
casional shell scripting. Shell scripts were pr imar i ly used for manipula t ing the generated 
dataset and features and also to interface w i t h the K a l d i Speech Recognit ion Toolki t [36], 
which was used for data augmentation. 

The in i t i a l notion for the pipeline was to first generate the concatenated utterances and 
then use the K a l d i toolki t for augmentation and feature extraction. However, this turned 
out to be unscalable due to the incompat ibi l i ty between the K a l d i filterbank implementat ion 
and the features required by the speaker verification system used to extract frame-level d-
vectors. It was necessary to only extract the acoustic features once and use them both 
as P V A D input features as well as input to the d-vector extractor, otherwise, too much 
computat ion t ime would be consumed. Therefore, this approach was abandoned and K a l d i 
was used for quick and efficient augmentation only. 

That being said, what turned out to be quite useful, was K a l d i ' s system for describing 
and storing data and features. 

K a l d i utilizes pairs of . scp and . ark files to efficiently store and describe data. The . scp 
files usually hold information about how to obtain a part icular resource, which is identified 
by a key (for example the utterance id) . E a c h key is then associated wi th a recipe, which 
describes how the resource can be obtained. Th is could for example be the path to the 
source file, a shell command describing the augmentation process of an utterance, or an 
address referring to a specific posit ion i n an . ark file. 

The .ark files are essentially archive files designed for efficient data storing, typical ly 
used to store extracted features. Initially, N u m P y ' s serialization interface was used for 
feature storing, however, using the . scp/. ark framework proved to be a much more sensible 
approach, both in terms of accessing the resources and especially i n terms of disc space 
savings. 
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The k a l d i i o 1 P y t h o n l ibrary was used for interfacing the K a l d i file formats, bo th in 
terms of reading and wr i t ing resources from and to the . scp/ . ark files. 

Acoustic features 

Generated 
dataset 

Concatenated 
utterances 

Transcript 
alignments 

Augmentation 

G P U 
worker: 

Frame-level 
d-vector extraction 

V ' 

Target speaker 
d-vector 

Conversion to PVAD 
ground truth, 

target speaker selection 
V J 

Feature 
storage 

d-vectors 

SV scores 
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fbanks.scp 
fbanks.ark 

scores.scp 
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labels.scp 
labels.ark 

targets.scp 

Figure 6.1: I l lustrat ion of the implemented feature extraction pipeline. The gray areas on 
the left and on the right denote the source dataset, and the generated t raining features and 
labels, respectively. The purple area denotes the G P U worker, responsible for frame-level 
d-vector extraction. 

The final i teration of the process of preparing the t ra ining data and extracting the 
features can be summarized into the following stages: 

1. Utterance concatenation. Generate the concatenated utterances, combine their 
respective transcripts. Describe the generated dataset using Kaldi-specific description 
files: wav.scp, utt2spk, spk2utt. Ex t rac t enrollment d-vector 2 embeddings for each 
speaker i n the dataset. 

2. Augmentat ion. Perform data augmentation v ia K a l d i . Combine the augmented 
wav.scp files into one that describes the whole dataset. 

3. Feature extraction. For each utterance i n the augmented wav.scp, load the wave­
form, extract the acoustic features, choose the target speaker and generate ground 
t ru th labels for the whole utterance. Then , perform frame scoring using the target 
speaker's enrollment embedding. Save the extracted features and ground t ru th labels 
into separate .scp and .ark files. 

The feature extraction stage was par t icular ly heavy on both resources and t ime required 
for processing the whole dataset. To at least somewhat mitigate this, multiprocessing was 
used. A n arbi t rary number of C P U worker processes load the augmented waveform and 
extract acoustic features. Then these features are passed to a secondary G P U worker 

xhttps://github.com/nttcslab-sp/kaldiio 
2 F o r later experiments i-vectors and x-vectors were also extracted, however, they are not necessary for 

the feature extraction stage. 
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process, which is responsible for extracting the d-vector embedding for each frame i n the 
utterance. The d-vectors are then returned to the original C P U worker so that S V scores 
can be computed. 

6.1.1 Speaker e m b e d d i n g extractors 

Aside from feature extraction, mult iple types of speaker embedding vectors were also used 
for t ra ining. Fol lowing are the systems, which were used for extracting these speaker 
representations. 

d-vectors The d-vector extractor implementat ion used i n this work is called Resem-
blyzer3. It is a freely available community implementat ion of the text-independent speaker 
verification method proposed i n [48]. For the purpose of this work, the actual model class 
had to be modified to support frame-level embedding extraction i n addi t ion to the default 
method, which extracts one d-vector for a sl iding window of 160 frames. The extracted 
d-vectors have a dimensionality of 256. 

x-vectors The x-vector implementat ion used in the conducted experiments is available 
v i a the SpeechBrain [39] toolki t . T h i s system was trained on the VoxCeleb dataset and 
is based on the original x-vector approach proposed i n [43]. The extracted x-vectors have 
a dimensionality of 512. 

i-vectors Last ly, the i-vector system used i n the experiments was k ind ly provided by the 
Speech@FIT research group v ia my supervisor, Ing. J á n Švec. The extracted i-vectors have 
a dimensionality of 400. 

W h e n extracting the enrollment embedding vectors, three utterances were randomly 
selected for each speaker and concatenated to provide the systems wi th enough information 
about the speaker's voice characteristics. 

6.2 Model implementation and training 

Similar to the feature extraction pipeline, the t ra ining pipeline was also implemented using 
the P y t h o n 3 language. 

Specifically, the popular P y T o r c h [34] deep learning toolkit was used for implementing 
the models described in Section 4.2.2, and also for t raining. The crucial part being the 
abil i ty to use G P U acceleration to speed up the t ra ining process. 

For t ra ining, each model has a dedicated dataset class, which is used for loading features 
and labels from .scp and .ark files and bui ld ing the final feature vector from the acoustic 
features, scores, and target speaker embedding vector, depending on the P V A D architecture. 

The loading itself is managed by a data loader class, which is addi t ional ly responsible 
for batching the loaded data. The data loader class also utilizes multiprocessing to avoid 
C P U / G P U data transfer bottlenecks. There are two instances of this class for each training 
session: one used for the t ra ining data, and one used for the val idat ion data. 

3https://github.com/resemble-ai/Resemblyzer  
4https://www.robots.ox.ac.uk/-vgg/data/voxceleb/ 
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6.2.1 D e a l i n g w i t h utterances of var iable lengths 

One of the challenges of t ra ining R N N models i n P y T o r c h (and generally) for speech pro­
cessing tasks is that the t ra ining data often consists of utterances of variable lengths. W h e n 
used for training, the extracted features then form mini-batches of variable sizes. This pre­
vents us from converting the mini-batches into P y T o r c h tensors and stacking them together 
to form the t ra ining batch tensor, as the tensors would have to be of the same dimensions. 

There are two main ways to generally address this problem. One is to s imply split 
the t ra ining utterances into par t ia l utterances, which would a l l have the same length. The 
resulting t ra ining batch is then created from these par t ia l utterances. The par t ia l utterances 
may or may not vary i n lengths across batches. A n example of this technique can be found 
in [48]. 

However, there are two problems w i t h this approach in the case of this work. The 
dataset that was generated (see Section 5.2) for personal V A D t ra ining varies quite heavily 
in terms of utterance lengths and it is undesirable to split the longer utterances into multiple 
shorter ones. T h i s is because personal V A D is supposed to operate as a streaming model 
w i th frame-level inference. Thus it is crucial not to constrain its t raining to l imi ted context 
windows. The longest utterances in the dataset also contain three different speakers. In 
order to reliably detect the speech frames of the target speaker, the model has to learn to 
adapt to the speaker context changes present i n these longer utterances. 

The second method of addressing the problem of variable-length utterances is u t i l iz ing 
padding [46], for which P y T o r c h has dedicated functions. A l l feature vectors i n the batch 
are padded to the length of the longest sequence in the batch. The lengths of the original 
sequences before applying padding are stored and w i l l be used later when calculat ing the 
loss. The padded batch is then passed to the model to perform the forward pass. 

Padded sequences sorted by decreasing lengths 

pads 

batch size 6 

pads 

pods 

h Daten size j 

pads 

pads botch size 4 

Packed sequences 
pack_padded_sequence() flattens sorted sequences bytimestep, 

keeping track of the effective batch size at each timestep 

batch size 3 

batch size 2 

batch size 1 

Figure 6.2: Visua l iza t ion of a batch of six padded sequences and its packed sequence coun­
terpart. D iagram taken from [46]. 
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Before processing the batch v i a the R N N , the padded sequences are flattened v i a the 
pack_padded_sequence function, the resulting packed sequence format being suitable for 
R N N processing (see Figure 6.2 for a visualized example of a packed sequence structure). 
After the R N N pass, the sequences are padded once again, using the pad_packed_sequence 
function. Regular hidden layers can process the padded sequences without any modification. 

W h e n calculat ing the loss, the original sequence lengths are used to mask out the 
padding, so that it does not affect gradient calculations. 
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Chapter 7 

Experiments 

In this chapter, the systems presented i n Chapter 4 are evaluated. Section 7.1 introduces 
the ma in metrics used for performance evaluation, 

Section 7.3 then evaluates the baseline versions of the four personal V A D systems as 
presented in Section 4.2.2. 

Section 7.4 then explores the possibilities of using i-vectors and x-vectors as the target 
speaker embedding vectors w i th the E T architecture. 

Lastly, in Section 7.5 I also investigate the performance of the baseline streaming frame-
level scoring method introduced i n Section 4.2.2, address some concerns about its perfor­
mance, and propose two alterations to this frame scoring method. 

For a l l experiments, evaluation is performed twice. F i rs t , each system is evaluated 
using the clean utterances from the val idat ion set only to establish the system's baseline 
performance level for clean speech. Then the whole augmented scope of the validat ion set is 
used to determine the system performance for clean and noisy speech combined, s imulat ing 
the ever-changing real-life acoustic conditions. 

7.1 Evaluation metrics 

The information presented i n this section was derived from [40]. 
The ma in metrics used for model evaluation were the Average Precision ( A P ) and 

Mean Average Precision ( m A P ) . In order to properly understand these two metrics, it is 
first necessary to define precision an recall. 

Intuitively, precision is a measure classifier's abi l i ty not to label negative samples as 
positive for a part icular decision threshold (often referred to as the operating point of the 
classifier). It is defined using the following formula: 

T P 
Precision = —————, (7.1) 

T P + F P ' v ' 

where T P denotes the number of true positives and F P denotes the number of false positives. 
Recal l on the other hand represents the abi l i ty of the classifier to find a l l the positive 

samples in the set, again for a part icular decision threshold: 

T P 
Reca l l = — — — , (7.2) 

T P + F N ' v ' 

where T P denotes the number of true positives and F N denotes the number of false nega­
tives. 
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Average precision then summarizes the relationship between precision and recall across 
different classifier operating points: 

A P = Y,(Rn ~ Rn-l) • Pn, (7.3) 
n 

where Pn and Rn denote precision and recall at an operating point n , respectively, w i th the 
difference in the recall at thresholds n and n — 1 being used as a weight to the precision 
value at n. Th is effectively corresponds to computing the area under the precision-recall 
curve constructed for the different decision thresholds. It should however be noted, that this 
is the sklearn ' s 1 uninterpolated A P implementation, as A P computed from the linearly 
interpolated precision-recall curve might at times be too optimist ic. 

In the conducted experiments, A P was always computed for every class to quantify how 
precise the model is w i th respect to that part icular class. 

To quantify the overall model performance, mean average precision was then computed 
across a l l classes, adopting the micro-mean approach, which calculates the A P metric across 
al l predicted samples. 

In addi t ion to m A P , raw classification accuracy (as in the percentage of correctly clas­
sified samples i n the val idat ion set) for each model is also reported to provide an easily 
interpretable, general indicator of the model performance: 

TP + TN 
a C ™ y = TP + TN + FP + FN- ( 7 - 4 ) 

Lastly, confusion matrices were used to better understand the model performance in 
terms of dist inguishing between different class pairs. O n one axis, the confusion mat r ix is 
indexed by the true class of the sample, on the other axis by the actually predicted class. 
Therefore, given two indexes, i and j, the confusion mat r ix entry at these indices is the 
count of how many times class i was predicted given that the true class was j2. 

7.2 Training configuration and conditions 

A l l systems were trained and evaluated using the same tra ining and validat ion datasets. 
The final augmented t ra ining set consisted of approximately 562 thousand utterances and 
the augmented val idat ion set of approximately 22 thousand utterances. More on the process 
of creating the t ra ining and val idat ion sets can be found in Sections 5.2, and 6.1. 

The final model consisted of a 2-layer L S T M network of 64 cells each, followed by 
one hidden layer of 64 neurons. The activation function assigned to this hidden layer 
depends on the performed experiment, more about this is explained i n Section 7.2.1. In 
this configuration, the model only has 130 thousand parameters. 

Dur ing training, the A d a m optimizer [23] was used wi th a variable learning rate set to 
1 x 1 0 - 3 for the first epoch, progressing down to 1 x 1 0 - 5 using learning rate scheduling. 
The models, which ut i l ized the target embedding vectors as one of the features, were trained 
for 10 epochs m a x i m u m to avoid overfitting. The models without the target embedding 
among the input features were trained for 8 epochs max imum. 

xhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_sco 
re.html 

2 T h i s , of course, depends on the orientation of the confusion matrix, as different implementations might 
have the axes swapped. 
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The computat ional resources required for feature extraction and t ra ining were k indly 
provided by M e t a C e n t r u m 3 . 

7.2.1 L a s t h i d d e n layer ac t iva t ion funct ions 

A n important aspect of the conducted experiments was to determine which activation 
function works the best for the one hidden layer after the L S T M . The compared activation 
functions were the hyperbolic tangent (tank), the leaky rectified linear unit {leaky relu). O n 
top of that, the activation function was removed altogether, leaving us wi th just a linear 
activation. 

A s the fully connected layer is only really supposed to further transform the L S T M 
output, it is expected that the potential differences in the results should not be too dramatic. 
The 2-layer L S T M should be powerful enough to suffice for the personal V A D task by itself 
and the fully-connected layer should therefore play the role of a "stabilizer", refining the 
L S T M output. 

However, it was quickly determined that using the leaky relu is not ideal for any of the 
model variants as the obtained results were albeit marginal ly but consistently worse than 
any of the results obtained wi th the tanh and linear activations. 

It seems that the abi l i ty of these two latter act ivat ion functions to better preserve 
negative values has a positive effect on the accuracy of the system, as the leaky relu discards 
most of the negative value information. Therefore, i n the further comparisons, only the 
results for the tanh and linear activations are reported 1 , as the leaky relu model variants 
provided no useful results. 

7.3 Comparing the architectures 

In this set of experiments, a l l four personal V A D architectures as presented in Section 4.2.2 
were trained and compared. This is to establish a performance baseline for other ex­
periments and also to compare the implemented system performances against the results 
published in [13]. The experiment results are shown i n Table 7.2. 

For the S C system, only the linear baseline V A D system variant was used, since it 
showed slightly better performance as shown in Table 7.1. For a l l other systems, results for 
both the linear and tanh system variants are reported. 

System 
Clean Augmented 

System 
ns s m A P acc [%] ns s m A P acc [%] 

V A D (linear) 0.949 0.998 0.995 96.48 0.915 0.996 0.991 94.93 
V A D (tanh) 0.947 0.998 0.995 96.34 0.913 0.996 0.990 94.85 

Table 7.1: Baseline pure V A D system evaluation results. The ns and s labels denote non-
speech and speech A P scores, respectively. 

A s expected, the S C baseline system performed rather poorly i n this comparison, reach­
ing A P scores of only 0.846 and 0.864 for clean tss and ntss, respectively. 

The S T architectures ended up providing much better results than the baseline S C , wi th 
the tanh S T variant reaching A P score of 0.920/0.864 for clean/augmented tss. However, 

3https://metavo.metacentrum.cz 
4 T o differentiate between the used activations in the text, the particular model is always referred to as 

a "variant", for example, the tanh E T system variant. 
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i n comparison to the S T architecture from [13], this result is s t i l l quite poor. The reason 
for this is most l ikely stems from the d-vector extractor system used i n this work and its 
poor adaptat ion to streaming frame-level d-vector inference. Therefore, it seems that the 
frame-level speaker verification scores used by the S C , S T , and S E T architectures are not 
discriminative enough for the systems to perform optimally. 

The E T architectures ended up reaching quali ty results, even surpassing the original 
work's results for clean tss and ntss A P scores. However, that is for the systems trained 
using cross-entropy. The best E T model presented i n the original work was trained using 
the W P L and scored an A P score for clean tss of 0.955. This is further discussed in 
Section 7.3.1. 

Even though the E T architecture results seem decent, it looks like this architecture is 
s t i l l quite sensitive to noise. A s shown i n F i g . 7.1, it is apparent that the presence of noise 
affects the system's abi l i ty to distinguish tss frames from ntss. W h i l e this architecture 
offers decent performance for clean speech, for it to be effective and reliable i n acoustically 
challenging environments, the amount of tss frames misclassified as ntss would have to 
be reduced. O f course, this is not an easy problem to solve, mostly due to the self-imposed 
resource demand l imitat ions for this architecture. The S E T architecture represents a par t ia l 
solution to this problem, especially when paired wi th a modified version of the baseline 
scoring method. This is further discussed i n Section 7.5. 

ET (linear) confusion matrices for clean and augmented speech 
ET (linear) clean ET (linear) augmented 

tss 

0.92 0.034 0.033 ns • 0.872 0.044 0.042 

"aj 

0.038 0.851 0.075 (O 
a> ntss -
1— 

0.063 0.819 0.094 

0.042 0.116 0.893 t s s - 0.065 0.137 0.865 

ns ntss 
Predicted label 

tss ns ntss 
Predicted label 

tss 

Figure 7.1: Compar ison of confusion matrices for the E T (linear) system, obtained for the 
clean (left) and the augmented (right) val idat ion sets. 

The S E T systems were the best performing models in this comparison, both for clean 
and augmented speech. However, due to the apparent poor quali ty of the used speaker 
verification scores, the S E T systems were unable to surpass the original paper's results. In 
Section 7.5, this problem is addressed by introducing two alterations to the baseline scoring 
method, resulting i n S T and S E T systems capable of outperforming the original results. 

Lastly, to address the rather naive approach of the S C system to the personal V A D task, 
a modified version of the S C architecture was also experimented wi th . The modification 
involved treating the S C architecture as a twofold classification problem. F i rs t , the V A D 
would determine, whether the current frame is a speech frame. Then, the speaker verifica-
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Clean Augmented 
ns ntss tss m A P acc [%] ns ntss tss m A P acc [%] 

SC (linear) 0.948 0.846 0.864 0.825 73.44 0.915 0.775 0.811 0.796 72.09 
ST (linear) 0.932 0.914 0.918 0.916 84.19 0.893 0.860 0.864 0.863 78.20 
ST (tank) 0.933 0.919 0.920 0.921 84.29 0.893 0.865 0.867 0.868 78.25 

E T (linear) 0.936 0.951 0.945 0.948 88.02 0.897 0.931 0.924 0.924 84.73 
E T (tank) 0.936 0.946 0.938 0.942 87.10 0.897 0.925 0.916 0.918 83.84 

S E T (linear) 0.933 0.962 0.962 0.958 89.14 0.894 0.938 0.937 0.930 85.31 
S E T (tan/i) 0.929 0.961 0.960 0.957 89.10 0.889 0.937 0.934 0.929 85.26 

SC (orig. paper) 0.970 0.872 0.886 0.900 - - - - - -
ST (orig. paper) 0.968 0.956 0.956 0.957 - - - - - -
E T (orig. paper) 0.962 0.946 0.932 0.946 - - - - - -

S E T (orig. paper) 0.969 0.972 0.970 0.969 - - - - - -

Table 7.2: Average precision score comparison of different personal V A D architectures for 
clean and augmented speech. Class labels: ns for non-speech, n t s s for non-target speaker 
speech and t s s for target speaker speech. The bot tom part of the table shows the architec­
ture results for clean speech obtained i n [13]. The augmented results are not shown here, 
as different augmentation strategies were used. 

t ion score would be thresholded using its t s s / n t s s classification E E R threshold value (see 
Section 7.5 for more information). 

This way, the probabil ist ic nature of the classifier is lost, however, the raw classification 
accuracy was improved to 77 .57% (clean) and 74 .46% (augmented). The improvement in 
classification accuracy is rather noticeable, however, the S T architectures s t i l l outperform 
this modified S C system by a significant margin. T h i s might indicate the L S T M ' s abi l i ty 
to not only learn the opt imal decision threshold from the score values but also its abi l i ty to 
dynamical ly adjust this threshold based on the current temporal context i n the processed 
score value stream. For this reason, the S C approach was not pursued anymore i n the 
following experiments. 

7.3.1 W e i g h t e d pairwise loss 

To evaluate the effects of the weighted pairwise loss ( W P L ) (for further details see Sec­
t ion 4 .2 .3) , the E T architecture was retrained several times, always using different <ns, ntss> 
values. 

In [13], it is suggested that i f < n S j ntss> values between 0.1 and 0.5 should help increase 
the A P score for t s s . Weight values above and below these should generally lead to perfor­
mance degradation as either not enough or needlessly much attention is given to <ns, ntss> 
confusion errors. 

Therefore, bo th the tank and linear E T variants were evaluated using the following set 
of w<ns> ntss> values: { 0 . 1 , 0.3, 0.5, 0 .7} . The best results are compared against the baseline 
systems trained wi th cross-entropy (see Table 7.3). 

The tank E T variant d id , i n fact, benefit from using the W P L . However, it turns out 
that even though the value of w<nSy n t S s > = 0.1 was supposed to give the best performance, 
that was actually not the case for this experiment. For the tanh variant, the value of 0.1 
lead to t s s A P degradation, performing worse than the cross-entropy baseline. 

For values of 0.3 and 0.5 however, the performance of the system improved over the 
baseline. For the value of 0.5, it reached the best A P score of 0 . 9 4 6 / 0 . 9 2 4 for clean/aug­
mented t s s , outperforming even the best linear E T variant from the previous experiment 
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in this aspect. Unfortunately, not even this system was able to outperform the best WPre­
trained E T system from [13]. The effects of different <ns, ntss> weight values on tss A P 
score for the tanh E T system are shown in F i g . 7.2. 

System Loss w Clean Augmented System Loss w ns ntss tss mAP acc [%] ns ntss tss mAP acc [%] 
ET (linear) 
E T (tank) C E ; 0.936 0.951 0.945 0.948 88.02 

0.936 0.946 0.938 0.942 87.10 
0.897 0.931 0.924 0.924 84.73 
0.897 0.925 0.916 0.918 83.84 

ET (linear) 
E T (tanh) W P L 0.5 

0.5 
0.932 0.950 0.943 0.946 87.74 
0.931 0.952 0.946 0.947 87.89 

0.893 0.928 0.921 0.921 84.38 
0.893 0.931 0.924 0.923 84.59 

ET (orig. paper) W P L 0.1 0.965 0.961 0.955 0.959 

Table 7.3: Compar ison of the two best E T systems trained using the cross-entropy loss 
( C E ) , and their best weighted pairwise loss ( W P L ) counterparts. The w column denotes the 
<ns, ntss> weight value used for W P L training. B o t h W P L models gave best performance 
when trained using w<nSy n t S s > = 0.5. The last row shows the best W P L - t r a i n e d E T system 
from [13]. 

W P L e f f ec t s o n t s s A P f o r t h e E T a r c h i t e c t u r e ( t anh v a r i an t ) 

Ö ! l 03. 0 3 OA ÖÜ Ö!<5 0J 
Weight between ns and ntss 

Figure 7.2: Effects of the weighted pairwise loss on tss A P score for the tanh E T system. 
The gray lines denote the tss A P scores of the baseline E T tanh system trained using 
cross-entropy for easy comparison wi th the W P L results. 

For the linear E T variant, unfortunately, no performance improvements were observed, 
though the weight value effect on tss was similar to that of the tanh variant. The weight 
value of 0.5 s t i l l gave the best results (as shown in Table 7.3) but was unable to outperform 
the baseline linear E T system trained using cross-entropy. This experiment was conducted 
mult iple times to rule out the possibil i ty of the W P L model not converging properly, how­
ever, w i th no success. 

The reason for this apparent ineffectiveness of the W P L might stem from multiple 
aspects of the t ra ining process. It is possible that the ground t ru th labels generated from 
the used Libr iSpeech alignments d id not allow the W P L to fully exploit the importance of 
<ns, ntss> errors, as generally, the trained models have a worse ns A P scores than in [13]. 
It is also possible that the best linear E T system variant from Section 7.3 was s imply lucky 
enough to converge better than any other system during t ra ining and because of that, 
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the W P L was unable to surpass this result. It is, therefore, possible that further tuning 
and opt imizat ion of the model and t ra ining hyperparameters would i n the end br ing the 
desired improvements even for the linear E T variant, potential ly even surpassing the results 
published in the original paper. 

7.4 Comparison of different target speaker embedding types 

Since i n [13], only d-vectors are used as target speaker embeddings, I experiment w i th using 
two other speaker embedding types as targets i n addi t ion to the d-vector - the x-vector and 
the i-vector. I-vectors were successfully used i n [30] for a task very similar to that explored 
in this work. O n the other hand, the same paper was unable to successfully use x-vectors 
for the same task, suggesting that the system may have had an overfitting issue due to 
the sparse nature of the x-vector embedding space. The experiments were once again done 
using the E T architecture, bo th for the linear and tank variants. 

W h e n training the first x-vector system, the same issue as i n [30] was encountered -
the system was unable to learn anything at a l l , reaching only 52.4% i n raw accuracy. That 
was, however, not the case for the i-vector system, which was able to learn and perform 
reasonably well (see Table 7.4 for results), though definitely not on par w i th the baseline 
d-vector system. 

The reason for the x-vector system performing so poorly was most l ikely that the value 
distributions for the ind iv idua l x-vector dimensions generally had too large of a variance 
and it was impossible for the network to make use of the values. 

O n the other hand, i-vectors are by definition subjects of a standard normal dis t r ibut ion. 
Therefore the i-vector values are nicely centered around zero wi th a variance of one. 

Addi t ional ly , the d-vectors computed using the method from [48] ctre; cts it was previ­
ously established, L2-normal ized after extraction, restricting them to the surface of a unit 
hypersphere. Tha t is, most likely, why the system was able to generalize for i-vectors and 
d-vectors but not for x-vectors. 

It is a common practice to apply length normalizat ion to speaker vectors before backend 
modeling, restricting them to a smaller area in the embedding space. This can help l imi t 
the intra-speaker variabi l i ty of the embedding vectors, while s t i l l retaining the inter-speaker 
variabi l i ty [43, 5, 20]. Therefore, to address the sparsity problem of the x-vector and i-vector 
spaces, L 2 normalizat ion was applied to both i-vectors and x-vectors. 

In the case that the L 2 normalizat ion was to cause (though very unlikely) a significant 
degradation to the inter-speaker variabil i ty of the speaker vector space, even a simple visual 
analysis such as t - S N E [28] could potential ly show the loss of some or a l l discriminative 
properties of the embedding vectors. 

To test this, 40 speakers were chosen from the Libr iSpeech dataset. For each speaker, 40 
i-vectors and 40 x-vectors were computed, each speaker vector from a different enrollment 
utterance. This way, 1600 i-vectors, and 1600 x-vectors were obtained i n total . B o t h of 
these speaker vector sets were then L2-normal ized and compared against the original ones 
using t - S N E . The results are shown i n F i g . 7.3. 

The results indicate the expected: there is indeed no visible significant degradation in 
the quali ty of the speaker vectors after applying L 2 normalizat ion. O n the contrary, it seems 
that the L 2 normalizat ion could have potential ly even benefited the i-vectors. Th is could 
be because the L 2 normalizat ion also has the effect of essentially spreading out vectors that 
lie close to the origin, pushing them away to a unit distance from it . 
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Figure 7.3: t - S N E visual izat ion of both raw and L 2 normalized i-vectors (top) and x-vectors 
(bottom). Each plot contains 1600 embedding vectors (40 from 40 different speakers). The 
speakers are the same i n a l l four plots and each is represented by a single color. 

Activation Embedding 
type 

Clean Augmented Activation Embedding 
type ns ntss tss m A P acc [%] ns ntss tss mAP acc [%] 

linear 
tanh'' 

d-vector 0.936 0.951 0.945 0.948 88.02 
0.931 0.952 0.946 0.947 87.89 

0.897 0.931 0.924 0.924 84.73 
0.893 0.931 0.924 0.923 84.59 

linear 
tanh i-vector 0.930 0.860 0.854 0.830 78.16 

0.931 0.863 0.854 0.833 78.43 
0.892 0.834 0.831 0.810 75.97 
0.892 0.839 0.833 0.816 76.37 

linear 
tanh i-vector (L2) 0.939 0.927 0.918 0.918 85.00 

0.940 0.926 0.923 0.921 85.39 
0.901 0.904 0.895 0.895 82.18 
0.904 0.905 0.900 0.898 82.62 

linear 
tanh x-vector (L2) 0.938 0.939 0.928 0.935 86.30 

0.940 0.945 0.936 0.942 87.12 
0.901 0.920 0.907 0.912 83.21 
0.904 0.925 0.914 0.919 83.93 

Table 7.4: E T architecture performance comparison for different speaker embedding types. 
The best t s s A P and raw accuracy scores for each embedding type are highlighted in bold. 

After t ra ining the system wi th L2-normal ized i-vectors and x-vectors, it is apparent 
that applying L 2 normalizat ion to the speaker vectors - restricting them to the surface of 
a unit hypersphere - does indeed help the model to generalize (see Table 7.4 for results). 
So much so that the tanh model variant trained wi th x-vectors performs almost on par wi th 
the models trained wi th d-vectors. 

The i-vector system accuracy was greatly improved in comparison to the pre-L2 i -
vectors, though not reaching the same performance level as x-vectors or d-vectors. This 

5 T h i s is the tanh E T system that was trained using the W P L and scored the best result among the E T 
tanh model variants. 
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is possibly due to some residual channel information encoded i n the i-vectors, which the 
model was unable to account for. 

This experiment shows that for the personal V A D task it is possible to use also other 
speaker embedding types i n addi t ion to the d-vector. The only restriction being that 
for the network to generalize properly, it is important to length normalize the speaker 
vectors, restricting them to constrained space. This can be achieved for example v i a L 2 
normalizat ion. 

7.5 Alter ing the frame scoring method 

So far, the speaker verification frame scoring method used i n the experiments i n Section 7.3 
has been the one proposed by [13], described more i n detai l i n Section 4.2.2. However, given 
the rather non-optimal performance of both the baseline S C and the S T architectures, in 
this section, I further analyze this scoring method and propose two modified alternatives 
to the original one. 

In [13], some concern was expressed regarding the performance of the speaker verification 
system used to extract frame-level d-vectors. Th i s is because the system's architecture is 
based on an L S T M network, and though L S T M networks can generally process sequences 
of variable lengths, the system proposed i n [48] was trained on context windows of 1 4 0 -
180 frames (as was the Resemblyzer d-vector system implementat ion used i n this work). 
Therefore, intuitively, op t imal performance is guaranteed for these l imi ted context windows 
only. In other words, the system may suffer from performance degradation when having to 
deal w i t h long temporal contexts, as would be the case i n a streaming frame-level inference 
scenario, which is used in the context of the baseline scoring method. 

Addi t ional ly , due to an implementat ion decision specific for the Resemblyzer speaker 
encoder, the resulting d-vectors always have only positive values i n a l l dimensions. Though 
this may not at first glance affect the discriminative properties of the d-vectors, it certainly 
l imits the cosine s imilar i ty score value domain, concretely to the interval of < 0,1 >. 

For these reasons, I propose two alterations to the original scoring method, taking 
inspirat ion from conventional speaker diar izat ion approaches [49]. B o t h new methods re­
frain from the streaming frame-level embedding extraction approach and instead util ize 
the d-vector extractor i n the manner it was trained to - window-level d-vector inference, 
a diagram depicting the window-level d-vector inference can be found in Section 3.3. 

B o t h scoring method alterations process the input utterance i n a sl iding window manner, 
extracting one d-vector for a window of 160 frames, w i th a 40 frame step in between the 
ind iv idua l windows. These d-vectors are obtained at each t ime step t: 

t = 160 + k -40; As = 0 , 1 , 2 , . . . , (7.5) 

each representing the past 40 frames, w i th the first d-vector representing the first 160 frames 
of the utterance. Then , the d-vectors at these t ime steps are compared against the target 
speaker embedding, once again using cosine similarity. Th is way, speaker verification scores 
are obtained for each t ime step t. 

7.5.1 C o m p a r i n g frame-level a n d window- leve l d-vector d i s c r i m i n a t i v i t y 

Before proceeding, it has to be determined, whether these window-level d-vectors have 
better discriminative properties than the ones extracted at frame-level using the original 
approach. W h a t is especially crucial , is how discriminative the d-vectors are for utterances 
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containing speaker turns, as it is uncertain if the streaming frame-level d-vector extraction 
approach can properly "react" to these speaker context changes. For this, the following 
simple test was conducted. 

For each utterance i n the whole t raining set, the original frame-level scores were sub-
sampled at the same t ime steps described i n Equa t ion 7.5. That is to obtain frame-level 
score values at t ime steps corresponding to the window-level scores. 

For bo th speech classes (considering tss and ntss only, assuming that the V A D correctly 
discards ns frames) and d-vector extraction methods, the resulting cosine s imilar i ty score 
values were plotted in a histogram, which can is shown i n Figure 7.4. 

Figure 7.4: Compar ison of the speaker verification score value distributions for the two 
d-vector extraction methods. Compar ison for tss is in the upper part of the figure, ntss 
comparison is situated i n the lower part. 

The histogram clearly shows that while both d-vector extraction methods perform sim­
i lar ly well for ntss, the window-level d-vectors generally produce a higher cosine s imilar i ty 
score for tss. This intui t ively corresponds to higher window-level d-vector discriminat ivi ty, 
as the system is much more confident i n the resulting embedding representation, clearly 
benefiting from the l imi ted context windows. The reason, why the frame-level approach 
falls behind is apparently due to the long temporal contexts the system has to process while 
at the same time dealing wi th speaker turns. 

Addi t ional ly , using the same set of sub-sampled scores which was used for plot t ing the 
histograms, Receiver Operat ing Characterist ic ( R O C ) and E q u a l E r ro r Rate ( E E R ) were 
computed for both methods, concretely for the task of classifying the corresponding speech 
frames as either tss and ntss based solely on the score values. For the baseline frame-level 
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Scoring method ROC comparison 

False Posi t ive Rate 

Figure 7.5: Receiver Opera t ing Characterist ic ( R O C ) comparison for the two embedding 
extraction methods, evaluated for tss/ntss classification based on the obtained speaker 
verification scores. 

method, the E E R was 0.238, whereas the window-level method scored an E E R score of 
0.132, clearly outperforming the baseline. The R O C comparison is shown i n F i g . 7.5. 

7.5.2 P r o p o s e d scor ing m e t h o d s 

Now that it was established that the window-level d-vectors provide superior discriminat iv-
ity and classification accuracy, it is necessary to distribute the speaker verification scores 
across the 40 frames they are supposed to represent (the 40 frames representing the step 
between the adjacent score values). Th is is where the two scoring alterations differ from 
each other. 

T h e Partial ly Constant ( P C ) method The P C method s imply assigns the same score 
value for the whole 40 frame segment. In other words, the speaker verification score value 
is now constant for each par t ia l segment of 40 frames represented by the original d-vector. 

T h e Linearly Interpolated (LI) method Rather than assigning the same score value 
for the whole 40 frame segment, the L I method linearly interpolates every two adjacent 
score values, resulting i n a linear score change wi th in the 40 frame segment. Th is method 
aims to simulate the more gradual score value change of the baseline frame-level scoring 
method. 

A visualized example of a l l three scoring methods (the baseline frame-level, P C , LI) can 
be seen i n F i g . 7.6, w i th the cosine s imilar i ty scores being plotted against the ground t ruth . 
The figure also shows the tendency of the baseline method scores to decline over t ime, 
whereas the altered methods roughly mainta in the cosine s imilar i ty score values around 
a constant value for each ground t ru th segment. 
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Figure 7.6: Exempla ry comparison of the three frame scoring methods. Blue and orange 
denote tss and ntss segments, respectively. 

7.5.3 S c o r i n g a l t era t ion pe r for man c e results 

To evaluate the proposed scoring alterations, the S T and S E T (and both the tanh and 
the linear act ivat ion variants) architectures were retrained using the newly obtained score 
values. 

System Scoring 
method 

Clean Augmented System Scoring 
method ns ntss tss mAP acc [%] ns ntss tss mAP acc [%] 

ST (tanh) 
SET (linear) baseline 0.933 0.919 0.920 0.921 84.29 

0.933 0.962 0.962 0.958 89.14 
0.893 0.865 0.867 0.868 78.25 
0.894 0.938 0.937 0.930 85.31 

ST (linear) 
ST (tanh) 

SET (linear) 
SET (tanh) 

P C 

0.933 0.978 0.979 0.973 91.42 
0.936 0.980 0.981 0.975 91.95 
0.933 0.980 0.982 0.976 92.10 
0.934 0.981 0.983 0.976 92.23 

0.894 0.952 0.954 0.944 86.85 
0.896 0.955 0.957 0.948 87.33 
0.894 0.961 0.963 0.954 88.35 
0.895 0.962 0.964 0.954 88.46 

ST (linear) 
ST (tanh) 

SET (linear) 
SET (tanh) 

LI 

0.927 0.974 0.972 0.967 90.89 
0.935 0.974 0.976 0.970 90.86 
0.935 0.978 0.980 0.974 91.69 
0.932 0.977 0.979 0.972 91.47 

0.887 0.946 0.944 0.937 86.25 
0.895 0.947 0.950 0.940 86.39 
0.897 0.959 0.960 0.952 88.08 
0.893 0.957 0.958 0.949 87.64 

ST (orig. paper) 
SET (orig. paper) baseline 

0.968 0.956 0.956 0.957 
0.969 0.972 0.970 0.972 ; ; ; ; ; 

Table 7.5: Performance comparison of different frame scoring methods. The newly trained 
systems are compared against the best performing systems ut i l iz ing the baseline frame-
level scoring method. The best tss A P , ntss A P , and accuracy results for both S T and 
S E T are highlighted in bold . The last two rows show the performance of the S T and S E T 
systems from [13], for which only the clean speech results are shown since the used data 
augmentation strategy is different i n this work. 

The results, which are shown in Table 7.5, are clear. B o t h the P C and the LI scoring 
methods outperform the baseline by a significant margin wi th the P C method performing 
the best for both S T and S E T . For the P C method, the tanh system variants seem to have 
a slight edge on the linear in terms of overall model accuracy and tss A P scores i n this 
comparison. For the LI method, the opposite is true. 

Overal l , the P C scoring improved the raw model accuracy by more than 7.23/8.56% 
absolute (clean/augmented) for the S T architectures and at least 2.96/3.04% absolute 
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(clean/augmented) for the S E T architectures. Th is experiment, therefore, resulted in the 
best performing system created i n this work, as the S E T tanh variant u t i l iz ing the P C scor­
ing method achieved 92.23% and 88.46% raw accuracy for clean and augmented evaluation 
sets, respectively, addi t ional ly scoring a t s s A P score of 0.983/0.964 (clean/augmented). 
Moreover, bo th the P C and L I outperform even the best S E T system presented i n [13] in 
terms of t s s and n t s s A P scores. 

ntss 

tss -i 

SET (tanh) confusion matrices for augmented speech 
F r a m e - l e v e l s c o r i n g m e t h o d P a r t i a l l y - c o n s t a n t s c o r i n g m e t h o d 

0.071 0.135 

ntss 
Predicted label 

ntss 

tss 

0.865 0.044 0.039 

0.065 0.866 0.05 

0.07 0.09 0.911 

ntss 
Predicted label 

tss 

Figure 7.7: Confusion mat r ix comparison for the S E T tanh systems trained using the 
baseline scoring method (left) and the P C scoring method (right). The model performance 
was evaluated for the augmented val idat ion set. 

Generally, the scoring modifications also improve the system's robustness against back­
ground noise. A n example of this is shown in Figure 7.7, where the <tss, ntss> confusion 
error rates of the S E T tanh system for augmented speech were vis ibly reduced by ut i l iz ing 
the P C scoring method. 

It should be noted that even though the proposed scoring methods both br ing significant 
classification improvements, they also require more computat ional power due to the window-
level d-vector extraction. W i t h the sl iding window step set to 40 frames, most frames w i l l 
be processed up to four times. The size of the sl iding window step can, however, be 
experimented wi th and possibly lowered to save resources. Overal l , it can be argued that 
these scoring method alterations might prove useful in scenarios, where the resource l imits 
are not a concern, as they both provide results that are superior to a l l other presented 
systems. 

7.6 Summary and possible improvements 

The target E T architecture (the linear variant presented i n Section 7.3) ended up providing 
solid results for clean speech classification. However, for augmented speech, the performance 
for t s s / n t s s classification seems to decline. Th is is most l ikely caused by the background 
noise essentially masking out the target speaker's voice characteristics, resulting i n the 
system classifying those part icular frames as n t s s . 
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In order for the E T architecture to perform opt imal ly under most conditions, it would 
probably be necessary to implement some model decision post-processing techniques to both 
smoothen out the system decision and perhaps to favor the tss class if the model becomes 
unsure. This could be done since the pr imary goal for the model is not to perform robust 
speaker verification but rather to filter out most of the irrelevant information. Therefore, 
occasionally classifying some ntss frames as tss would not ha rm the system's purpose in 
a significant way. 

Obviously, if the si tuat ion and use-case allow it, the best overall solution would be 
to uti l ize one of the S E T architectures along w i t h the modified scoring methods. These 
architectures provided the best results for bo th clean and augmented speech and if one was 
to apply post-processing to the model decision, the systems provide good, usable results. 

O n the other hand, it can be ruled out that the baseline S C and the S T architectures 
are in the end not too relevant, especially in comparison to the S E T architecture. The S E T 
architecture offers a slight edge on the performance of any S T system s imply due to the 
ut i l iza t ion of the target speaker embedding vector. In most situations, there would be li t t le 
reason not to use this embedding representation i n one can already perform frame scoring. 

W h e n contemplating how to further improve the obtained results, a few general points 
immediately come to mind . 

Firs t , while the generated concatenated utterance dataset might serve well as a base­
line, a dataset consisting of real-life conversations would be incredibly beneficial for per­
sonal V A D development. Tha t is mainly to fully test the capabilities and l imits of the 
implemented systems, while also better preparing them for real-life scenarios. Ideally, such 
a real-life dataset would also contain overlapping speech, as it is unclear, how well would 
the current personal V A D implementations handle such situations. 

Addi t ional ly , apart from real-life conversation data, t ra ining the systems using actual 
voice command recordings from actual mobile device users (essentially t ra ining the systems 
on in-domain data) may potential ly br ing some improvements, as this would allow for the 
models to be trained for the actual end goal use case scenario. 

Second, the architecture of the model itself could be experimented wi th . A p a r t from ex­
perimenting wi th neural network topologies such as bidirect ional L S T M networks, some ba­
sic speech enhancement methods could potential ly increase the system's robustness against 
noise and thus reduce the number of tss frames classified as ntss. Implementing such 
architectural changes is, however, not completely straightforward w i t h the original frame-
level streaming model inference i n m i n d and would therefore have to be considered wi th 
regard to a specific use case. 

Lastly, in order to obtain the best results, it would be beneficial to further optimize 
the t ra ining process in terms of batch sizes and model parameter regularization, as most 
models show some improvement potential even at the very end of the t raining. This could 
also lead to the W P L providing better results, which would allow the models to further 
improve their precision regarding tss and ntss frame detection. 
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Chapter 8 

Conclusions 

This work aimed to implement, evaluate and expand upon a speaker-conditioned voice 
act ivi ty detection method proposed by [13], referred to as personal V A D . This method 
was based on adapting a conventional L S T M - b a s e d V A D model to the speech signals of 
a part icular speaker. To do this, the method utilizes speaker embedding representations 
(namely d-vectors [48]) of the target speaker, either as a part of the input feature vector or 
to issue speaker verification scores to each ind iv idua l acoustic feature frame. 

To t ra in the models, suitable t ra ining and evaluation datasets had to be created first. 
For this purpose, the standard Libr iSpeech dataset was used to simulate speaker turns 
i n recordings by concatenating mult iple utterances from different speakers into one. The 
resulting t ra ining dataset ut i l ized the full 1000-hour scale of the Libr iSpeech dataset, con­
sisting of approximately 140 thousand concatenated utterances. The generated datasets 
were also augmented using noise, music, and reverb to account for acoustically challenging 
conditions. 

Four different personal V A D architectures were implemented and trained, each ut i l iz ing 
a different set of input features to identify the target speaker's speech frames. One of the 
more interesting architectures of the four was the E T system, mainly due to its lightweight 
properties, as this system utilizes the target speaker embedding only and does not require 
a speaker verification system at runtime. The best E T architecture reached an accuracy 
score of 88.02/84.73% for clean and augmented speech, respectively. 

In addi t ion to the d-vector, also i-vectors and x-vectors were experimented wi th as the 
target speaker embeddings i n conjunction wi th the E T architecture, showing decent results 
w i th the x-vectors reaching a performance level s imilar to that of the d-vector-trained 
systems. 

Architectures, which uti l ize also the frame-level speaker verification scores as a part 
of the input feature vector, d id not br ing great results at first. Th is was due to how the 
d-vector system was altered to operate in a streaming manner, producing one d-vector for 
each ind iv idua l acoustic frame, as the original inference model of the d-vector extractor 
was sliding-window based. The obtained score values, therefore, d id not have good enough 
discriminative properties for distinguishing t s s frames from n t s s . 

To address the poor performance of the baseline frame scoring method, I propose two 
alterations to this method, which uti l ize s l iding window d-vector inference. These alter­
ations significantly improved the discr iminat iv i ty of the obtained score values, resulting in 
the best performing S E T system presented i n this work. This system reached an accuracy 
score of 92.23/88.46% for clean and augmented speech, respectively, while also outperform-
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ing the best S E T system presented in the original work i n terms of both tss and ntss 
average precision scores. 

The next step in the development of personal V A D systems would be to t ra in and evalu­
ate them using real-life conversation data, as it is unclear, how well can the current models 
handle factors such as overlapping speech. Tra in ing on real data could also better prepare 
the systems for real-life use-case scenarios and increase the robustness of the models. 
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Appendix A 

Contents of the enclosed storage 
unit 

• xsedlalh_thesis.pdf - The final .pdf file version of this thesis. 

• xsedlalh_thesis.zip - A .zip file containing the DTfjiX source code files for this 
thesis. 

• src/ - A folder containing the source code files. 

• data/ - A folder containing a sample evaluation dataset, trained model files, and 
a Libr iSpeech sample for data preparation and feature extraction demonstration. 

• README.md - A file documenting the rest of the codebase and containing further 
instructions for using the software. 
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