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Abstract

Concept of informational completeness of a given measurement setup was investigated from
various points of view in past decades. Presented Diploma Thesis is aimed at the certification
of performance of different informationally complete measurement schemes. We showed, that
symmetric protocols for quantum state estimation, such as symmetric informationally complete
measurement scheme and mutually unbiased bases, which are commonly regarded as the best
measurement schemes, can be easily beaten with only slightly overcomplete random measurement
schemes as square root measurement or random basis measurement. Protocols for tomography
with informationally incomplete measurement setup of low–rank quantum states are also investi-
gated. Such protocols together with employing the positivity constraints are compressed sensing
protocols. We showed that with physically relevant measurement setup one can reconstruct low–
rank quantum state with reasonable precision.
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1 Introduction
Characterization of unknown signal plays a key role in applications of signal processing, from
detections of extrasolar planets that are outside the Solar system, to the improvement of medical
instruments serving to find anomalies in the human body. Scientists in all branches of the modern
science need to make a trustworthy and reliable decisions based on the recovery of a signal that
carries information about parameters describing the interaction with the object of interest. Stan-
dard tool used for this purpose is a tomographic reconstruction, where we leave to interact a large
ensemble of identically prepared probing signals with desired object. With the development of
new technologies we also have to deal with characterization of very complex objects, where stan-
dard tomographic reconstruction can be inefficient compared to accumulated information about
parameters that describe complex object and number of resources to obtain such an information.
Complexity really takes place in describing objects in quantum world. As a number of quantum
systems increases, number of free parameters increases exponentially. Therefore a complete char-
acterization of such a complex quantum systems or processes is nearly impossible.
Understanding the measurement in quantum mechanics is necessary prerequisite for improving
and efficient implementations of quantum protocols of optical signal characterization. Choosing
the measurement setup greatly affects the ability of unique and accurate reconstruction of optical
signal. Uniqueness of inferred quantum state leads to the concept of informationally complete mea-
surement schemes. An experimentalist can choose from many different informationally complete
measurement schemes, but the accuracy in reconstruction may differ. Evaluating the performance
of informationally measurement schemes in the context of tomographic accuracies give us a valu-
able preliminary information. Accurate inference of quantum state from the discrete set of data,
so called quantum–state estimation is desired. Recently, a function which allows us to compare a
different quantum informationally complete measurements based on average tomographic perfor-
mance was introduced [1], so called quantum tomographic transfer function, quantum version of
optical transfer function [2], used to describe the performance of an optical system employing the
details of signal propagation from every single component in given system. Quantum tomographic
transfer function describes measurement setup in the same manner and allows us to judge whether
a given informationally complete quantum measurement performs better in quantum–state esti-
mation relative to other informationally complete measurements.
As dimension of quantum systems increases, building an informationally complete experimental
measurement setup becames almost impossible. Reducing the measurement settings together with
preserving tomographic accuracies for large quantum systems is a vital task. For signals described
by very few parameters, accurate quantum tomography would not require informationally com-
plete measurement schemes in general. But we can aim on a subspace that contains the most
information about incoming signal and extract information with much fewer measurement set-
tings.
Presented Diploma Thesis is aimed on both aspects in quantum state tomography; comparison
of average performance of different informationally complete measurement schemes and accurate
reconstruction of simple quantum states described by few free parameters living in the high di-
mensional Hilbert space. In section 3 we introduce a reliable and powerful numeric algorithm for
comparison of average tomographic accuracies of informationally complete measurement schemes.
In section 4 we compare quantum tomography of low–rank quantum states using standard linear
inversion and more sophisticated reconstruction employing positivity constraints using informa-
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tionally incomplete measurement setup.
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2 Motivation and theoretical background

2.1 Quantum states and general concept of measurement in quantum
mechanics

In classical physics, a state of a system is fully described by a point in the phase space. In contrast,
state of the quantum system is a vector from the complex Hilbert space H [3]. Representation via
complex vectors also give us complete information about given quantum state.
An important class of states in quantum mechanics are so–called pure states. These states are
mathematically described as a normalized complex vectors |ψ⟩ = 1√

⟨ψ̃|ψ̃⟩

∣∣∣ψ̃⟩ where Dirac bra–

ket notation is used and ⟨ψ|ψ⟩ = 1. In experiments, we do not have a complete information
about preparation process of quantum state. Then we need to introduce a generalized way of
describing systems in quantum mechanics, so–called density operator, a statistical ensemble of
several quantum states.
Formal definition reads

ϱ =
∑
j

pj |ψj⟩ ⟨ψj | , (2.1)

where pj are probabilities of detection of states |ψj⟩ and ϱ is a common symbol for density operator.
An operator ϱ describes a density operator if and only if ϱ is positive semi–definite Hermitian
operator with a unit trace. Positive semi–definiteness is defined as

⟨ψ| ϱ |ψ⟩ ≥ 0, (2.2)

for every |ψ⟩ ̸= 0, important global property of quantum states. The Hermicity follows from
positive semi–definiteness and means that

ϱ† = ϱ. (2.3)

Finally the unit trace condition reads as

tr{ϱ} =
∑
j

pj = 1. (2.4)

Meanwhile description of general quantum state is almost trivial, on the other hand, general
concept of measurement is not so straightforward and leads to the fundamental questions in
foundation of quantum mechanics such as the collapse of the wave function.
In experiment, it does not matter what we measure, measurement outcomes are always discrete.
We are always looking at bright spots or pixels on a shade and then we infer how the intensity
function looks like. Measurement process is schematically depicted in fig. 1. For such a described
measurement, quantum mechanics give us very efficient mathematical tool for description discrete
measurement outcomes . Click of a jth detector or a jth pixel is represented by a positive semi–
definite operator Πj . The set of all outcomes {Πj}nj=1, where n is a number of all outcomes, form a
measure called in quantum theory Positive Operator Measure (POM). Quantum mechanics allows
us to calculate probabilities pj of individual outcomes via Born’s rule

pj ≡ tr{ϱΠj}, (2.5)

where ϱ is a density matrix representing input state. Elements of POM are Hermitean positive
semi–definite operators forming a decomposition of an identity operator.

Πj = Π†
j ⇒ pj ≡ tr{ϱΠj} ∈ R (2.6)
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Figure 1: Measurement process known in quantum mechanics. Discrete measurement outcomes
are described via set of positive operators {Πj}. Quantum mechanics also provide us a rule how
to count probabilities {pj} for a state ϱ to light up jth pixel. For more information see the text
below.

Πj ≥ 0 ⇒ pj ≥ 0. (2.7)

∑
j

Πj = 1 ⇒
∑
j

pj = 1. (2.8)

Equations (2.6) to (2.8) form a mathematical definition of POM [4].
For a D–dimensional Hilbert space, the state ϱ is spanned by D2 Hermitian, trace–orthogonal basis
operators Ωj , where one operator is a multiple of identity 1/

√
D and the rest D2 − 1 operators

are traceless

tr{ΩiΩj} = 0 ∀i ̸= j,

Ω1 =
1√
D

1,

tr{Ωj} = 0.

(2.9)

If we now express the state ϱ and POM elements in our basis as follows

ϱ =
1

D
+
∑
j

tjΩj ,

Πk =
∑
j

CjkΩj ,
(2.10)

we can rewrite Born outcome probability rule to the set of linear equations

p′ = CCCt, (2.11)

where t is a column of D2 − 1 coefficients tr{ϱΩj}, p′ is known vector of probabilities with
components pj − tr{Πj}/D, and the M ×D2 − 1 matrix CCC with entries

CCCjk = tr{ΠjΩk} (2.12)

is so–called measurement matrix. Matrix

CCC =


tr{Π1Ω1} · · · tr{Π1ΩD2−1}

... . . . ...
tr{ΠMΩ1} · · · tr{ΠMΩD2−1}


4



provide full information about the apparatus. If M ≥ D2, we are talking about informationally
complete measurement, that is, given POM uniquely characterize state ϱ; for every two density
matrices ϱ1 ̸= ϱ2 difference of vectors of given probabilities has to be nonzero vector, p′

1 −p′
2 ̸= 0.

A POM is minimally complete if it contains M = D2 outcomes that are all linearly independent.
Equation (2.11) can be solved using the Moore–Penrose pseudoinverse of CCC such that CCC−CCC = 1,
solution therefore reads

t = CCC−p′. (2.13)

Is well-known that eq. (2.13) is the solution to the least–squares problem of minimization of the
squared error S = |p′ −CCCt|2

2.2 Informationally complete measurement schemes
In quantum mechanics, we have many ways how to perform measurement on a quantum state. In
this subsection, we aim on measurement schemes that are commonly used in experiments though all
branches of quantum mechanics, where measurement takes place. One of the important property
of given measurement setup, is its informational completeness; our measurement apparatus is able
to distinguish between every two quantum states. Mathematically speaking,

∀ϱ1, ϱ2, ϱ1 ̸= ϱ2 ⇒ p1 = tr{Πϱ1} ̸= p2 = tr{Πϱ2}, (2.14)

where Π is a POM representing measurements outcomes.

2.2.1 Covariant measurement

Covariant measurement is known to be an optimal measurement in pure quantum–state tomog-
raphy, where POM consist of rank–one operators distributed according to Haar measure [5]. For-
mally, the POM outcomes over dimension D are the continuous rank–one operators

Πψ = D |ψ⟩ ⟨ψ| , (2.15)

such that ∫
Πψ (dψ) = D

∫
(dψ) |ψ⟩ ⟨ψ| = 1 (2.16)

with respect to the unitarily-invariant Haar measure (dψ).

2.2.2 Mutually unbiased bases

Mutually unbiased bases (MUB) measurement scheme is used by many experimentalists in quan-
tum information experiments with qubits. Lets have complex D–dimensional Hilbert space HD.
We said, that two bases |di⟩ , |ei⟩ are mutually orthogonal, if vectors from a given basis are or-
thogonal and the overlap between vectors from different basis sets is reciprocal value of dimension
D. We can rewrite this conditions into equations

| ⟨di|dj⟩ |2 = 0, i ̸= j, (2.17)

identically for |ei⟩ and
| ⟨di|ej⟩ |2 =

1

D
, (2.18)

eq. (2.18) must hold independently of indexes i, j. Tricky part is how to construct MUB for a
given dimension D. It has been shown, that we can construct MUB on Hilbert spaces, where its
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Figure 2: Schematically depicted MUB measurement outcomes in two dimensional complex Hilbert
space H2. MUB measurement has six measurement outcomes that correspond to vertices of an
octahedron and can be related to the projection onto polarization basis vectors; |H⟩ horizontal
polarization, |V ⟩ vertical polarization, |D⟩ diagonal polarization, |A⟩ anti–diagonal polarization,
|R⟩ and |L⟩ for right–handed and left–handed circularly polarized light.

dimension is a power of a prime number. In a special and well–known case of dimension equal
to 2, we can represent complex Hilbert space H2 with a unit sphere, so called Bloch sphere.
Vectors living in the border of Bloch sphere are called qubits. MUB outcomes are projectors onto
polarization basis vectors, schematically depicted in Fig. 2. For a dimension equal of power on
any prime number, we can construct MUB as follows [6]. For example, existence of MUB is still
not known for D = 6. We define unitary operators X̂ and Ẑ as follows

X̂ =

D−1∑
k=0

|k⟩ ⟨k + 1| ,

Ẑ =

D−1∑
k=0

ωk |k⟩ ⟨k| ,

(2.19)

where ω = ei
2π
D is a appropriate phase and {|k⟩}D−1

0 form a standard basis. Then eigenvectors of
the following D + 1 operators

X̂, Ẑ, X̂Ẑ, X̂Ẑ2, X̂Ẑ3, · · · , X̂ẐD−1 (2.20)

are mutually unbiased.
MUB measurement found applications in quantum key distributions protocols or quantum error
correction [7], since the measurement outcomes are unbiased if we perform measurement in a basis
unbiased to the basis in which quantum state was prepared.
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2.2.3 Symmetric informationally complete measurement

Another example of informationally complete measurement is a so called symmetric information-
ally complete (SIC) POM consisting of D2 linearly independent rank–one outcomes Πj , such that

tr{Πj} =
1

D
,

tr{ΠiΠj} =
Dδij + 1

D + 1
,

(2.21)

where δij = 1 for i = j and 0 elsewhere. Construction of SIC POM in arbitrary dimension is still
an open question, numerical solutions have been found for all integers up to d = 151 [8]. Despite
this fact, generalized SIC POM, where POM elements are not necessarily rank–one operators, can
be explicitly constructed in arbitrary dimension d [9].

Figure 3: Schematically depicted SIC measurement outcomes in two dimensional complex Hilbert
space H2. SIC POM has six measurement outcomes that correspond to vertices of an tetrahedron.

2.2.4 Square root measurement

Another informationally complete measurement mentioned here is so–called square root measure-
ment (SRM). This kind of measurement is based on generating complex auxiliary kets |aj⟩, with
their column entries i.i.d according to the standard Gaussian distribution. This set of pure states
are uniformly distributed with respect to Haar measure [10]. Using the auxiliary kets |aj⟩, we are
able to construct a random POM consisting of M random kets defined by M rank-one auxiliary
|aj⟩s,

Πj = S−1/2 |aj⟩ ⟨aj |
⟨aj |aj⟩

S−1/2 (2.22)

with

S =

M∑
j=1

|aj⟩ ⟨aj |
⟨aj |aj⟩

, (2.23)
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automatically fulfilling the condition
M∑
j=1

Πj = 1 (2.24)

SRM has been investigated in the study of state discrimination and the theory of quantum detec-
tion [11].

2.2.5 Randon measurement bases

The last kind of random POMs mentioned here are those comprising overcomplete random mea-
surement bases, where each bases is defined by the unitary operator

UHaar =̂UUUHaar, (2.25)

whose columns in matrix representation are again uniformly distributed according to Haar mea-
sure. Of course, any MUB is then zero–measure special case of minimally complete set of random
bases generated this way. Random bases found applications in momentarily static experimental
configurations, that is, wave–plane settings, local–oscillator amplitude and phase etc.
Generation of randomly distributed matrices according to Haar measure is very interesting itself
[12, 13, 14]. First, one generate N complex matrices AAA whose entries are i.i.d. standard Gaussian
random variables (RVs). Then the QR decomposition performed for each AAA to obtain N pairs of
matrices (QQQ,RRR), where QQQ is a unitary matrix and RRR is an upper triangular matrix. The N kets
that form the set of Haar-distributed pure states are therefore defined by the action of N unitary
matrices

UUUHaar =QQQdiag (RRR⊘ |RRR|) (2.26)

on some reference ket, where ⊘ denotes the matrix Hadamard (entry-wise) division and | · | here
denotes the entry-wise matrix absolute value.

2.3 Measurement as a statistics of independent outcomes and Fisher
information

Certification of performance of a different informationally complete measurements for quantum
state tomography is based on a statistical theory of the large number of independent detections
and Fisher information, as will be discussed in section 3. As a typical situation, when detection of
N copies of the quantum state ϱ happen independently, the resulting data statistics is multinomial
with probabilities pj , 0 ≤ j ≤M . The probability mass function up to norm is given by

f({pj};N) ∝
∏
k

pnk

k , (2.27)

where
∑
k nk = N . Reciprocal Fisher information is known to be a Cramér–Rao lower bound on

variance of an unbiased estimator and it is a way of measuring an amount of information that an
observable random variable X carries about random parameter θ upon which the probability X

depends. One can compute the Fisher information F (·) from

F (θ) = E

[(
∂

∂θ
logL(X, θ)

)2 ∣∣∣∣θ
]
, (2.28)

8



where E stands for mean value; E(X) =
∑
iXip(Xi) and L(X, θ) is a likelihood function. For a

fixed sequence of data, the likelihood for multinomial statistics is given by

L({nj}; ϱ) =
∏
k

pnk

k . (2.29)

In terms of the column t of coefficients tj introduced via eqs. (2.10) and (2.11) for the state
ϱ = 1/D +

∑
j tjΩj we can evaluate term

∂

∂t logL({nj}; ϱ) =
∑
k

nk
∂

∂t log(pk) =
∑
k

nk
pk

∂pk
∂t , (2.30)

where

pk = tr{ϱΠk} =
tr{Πj}
D

+
∑
j

tjtr{ΩjΠk}

∂pk
∂t = tr{�Πk},

Then the scaled Fisher information matrix for ϱ can be found to be

FFF (ϱ) =
1

N

(∑
k

nk
pk

∂pk
∂t

)(∑
l

nl
pl

∂pl
∂t

)

=
1

N

∑
k,l

nknl
pkpl

∂pk
∂t

∂pl
∂t

=
N2 −N

N

∑
k,l

∂pk
∂t

∂pl
∂t︸ ︷︷ ︸

=0

+
∑
l

1

pl

∂pl
∂t

∂pl
∂t

=
∑
l

1

pl

∂pl
∂t

∂pl
∂t

(2.31)

we conclude that

FFF (ϱ) =
∑
l

tr{�Πl}
1

pl
tr{�Πl}

= CCC tPPP−1CCC,
(2.32)

with PPP = diag(p1, p2, . . . , pM ). Equation (2.32) is an important result. In further text, namely
in section 3, we will deal with determining which quantum measurement performs better for
state estimation and our argumentation is based on eq. (2.32), respectively trace of the inverse
of the scaled Fisher information, an appropriate quantity to consider for tomographic–accuracy
estimation.

2.4 Quantum Tomographic Transfer Function
For successful quantum state tomography, before carrying out any quantum protocol, we have to
perform at least preliminary resource optimization, for example, minimization of reconstruction
errors. For a given quantum measurement, we can rely on state estimation scheme which provides
us the most accurate estimators. One can use standard estimation schemes such as maximum–
likelihood schemes [15, 16] and the Bayesian–mean scheme [17, 18]. For strategies to improving
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tomographic accuracies of state estimators for ill–calibrated and noisy measurements we can refer
to [19, 20, 21, 22, 23, 24].
On the other hand, the choice of suitable measurement apparatus is also an important task.
Usually we insist that the quantum state have to be uniquely characterized with given quantum
measurement, that is, given quantum measurement have to be informationally complete, described
in section 2.2. For such a quantum measurements the errors differ for a given estimation scheme.
Recently, quantum tomographic transfer function (qTTF) [1] , that allows us to classify all quan-
tum measurements schemes according to the average performance in quantum–state estimation
was investigated. This function contains all information about given measurement and its output
is average accuracy of reconstructed unbiased estimator over pure states together with employing
the condition that measurement is informationally complete. Average over pure states is not a
strict condition, since useful quantum–information protocols requires states designed close to pure
states to work adequately. To sum up, qTTF is a good approximation to the average performance
of realistic measurement setup. Also there are different techniques to evaluate the tomographic
performance of quantum measurement based on linear–algebraic stability of corresponding mea-
surement matrices that fully characterize given measurement. It have been shown that this way
of characterizing tomographic accuracy led to contradictory predictions to well–known results.
The exact evaluation of the qTTF is very complicated. In [1] we can find approximations in terms
of series expansion of the qTTF. In section 3 we will introduce a reliable numerical scheme to
evaluate the qTTF almost exactly up to certain specified significance level. Our scheme is based
on Monte Carlo averaging over pure states and a statistical concentration inequality that applies
to bounded random matrices in the quantum state space. It turns out that commonly regarded
optimal measurements such as SIC measurements and MUB measurements can be easily beaten
with randomly generated SRM which are slightly more overcomplete then supposedly optimal SIC
and MUB measurements. We also illustrate the well–known convergence to optimal pure–state
tomography by evaluation the qTTF for measurements with various number of outcomes.

2.5 Gerchberg–Saxton algorithm
Even though informationally complete measurement schemes are desired in general, on the other
hand, for simple systems, accurate reconstruction can be achieved with much fewer measurement
settings. In classical optics, the Gerchberg–Saxton (GS) algorithm [2] is a well–known and a com-
mon tool used for wavefront reconstruction. GS algorithm is a very simple algorithm, based on
scanning intensities and propagating of light in free space. To be more precise, GS algorithm works
with two intensity scans, one taken close to the beam source and in a far field, in spectrum. Such a
measurement setup is informationally incomplete. Information obtained from two intensity scans
never characterize general input field with desired accuracy. But in the case of reconstruction of
wavefront of a simple coherent field, GS algorithm works well. GS algorithm is sketched in fig. 4.

GS algorithm is a standard tool for experimentalists in classical optics because of the reason-
able precision of the reconstructed wavefront together with reasonable measurement setup. Even
with measurement that is informationally incomplete, accurate estimation of simple signal can be
achieved.
In a section 4 we would like to convince you that in the middle of great success of GS algorithm lies
an automatically fulfilled positivity constraints. As a brief outline, quantum mechanical analog

10
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Figure 4: Schematically depicted Gerchberg–Saxton algorithm. First, an intensity scan I of
incoming wave is taken. Together with our initial phase guess x we let the beam to propagate.
Mathematically one take a Fourier transform of

√
Ieix, which gives us a new wavefront in spectrum

|U |eiψ. An important step, we replace the amplitude |U | with an exactly known amplitude
√
G

where G is given as Fourier transform of our intensity scan I. After inverse Fourier transform and
amplitude replacement we end up with a phase ϕ, our first estimation of true phase of incoming
wave. One can iterate this procedure and reconstruct a desired wavefront with reasonable precision.

of a wavefront is a pure state, complex vector in state space. Density matrix corresponding to a
given pure state is always positive operator, since outer product of complex vector with itself is
from the definition positive matrix. We further generalize our scheme to reconstruction of density
matrices of rank greater than one, i.e. partially coherent fields, where positivity constraints is not
fulfilled automatically and we have to adopt it.
These thoughts which are also based on work of [25, 26, 27] led us to clarify the role of positivity
constraints in compress sensing, reconstruction of very simple incoming signal using physically
relevant measurement setup.

2.6 Compressed sensing
Determining an unknown signal from a set of measurements is a core problem in physics and
engineering. This task is definitely not easy as the number of free parameters defining the signal
increases and signal becomes complex. A breakthrough in signal processing was the Nyquist–
Shannon sampling theorem, derived in 1928. It states that if the signals highest frequency is less
than half of the sampling rate, then the signal can be reconstructed perfectly. Around 2006 it
was proven that signals, that are sparse in some basis, can be reconstructed with much fewer
samplings than it is stated in the famous Nyquist–Shannon sampling theorem [26, 27]. Sparsity of
a coherent signal represented by a column vector v is understood such that vector v has only few
nonzero elements in some domain. The function that can tell us how sparse given vector is is the
L0 norm, defined as a sum of zeroth powers of elements of given vector ||v||L0 =

∑
i v

0
i , what is

clearly equal to the number of nonzero elements. In compressed sensing protocols, we are dealing
with undetermined systems. Matrix CCC defined in eq. (2.12) representing our measurement setup
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is informationally incomplete. Solution of the undetermined system of linear equations p′ = CCCx
where CCC is rectangle matrix and p′ is a vector of measured frequencies, is known to be a solution
to the least square problem |p′ − CCCx|2, where we minimize L2 norm, that is, amount of energy
in the system. Since L2 do not tell us something about sparsity we need to enforce it. One can
minimize the number of nonzero components of the solution. The function counting the number of
non-zero components of a vector is desired L0 norm. On the other hand, L0 norm is not a convex
norm, therefore finding global minimum is very hard and requires nontrivial nonlinear techniques
in non–convex optimization problems. Luckily enough, it was proved [26] that L1 norm, sum
of absolute values of vector elements, has very similar properties and is usable for optimization
protocols in compressed sensing.
Generalization of compressed sensing protocols via L1 norm minimization from coherent signals
described by vectors to application in reconstruction of density matrices with rank greater than
one, quantum–mechanical analog of partially coherent fields, can be performed through induced
L1 norm acting on matrices. Such an induced norm works with singular values, easily accessible
from singular value decomposition of any rectangular matrix AAAm×n = UUUm×mSSSm×nVVV t

n×n, where
UUU and VVV are unitary matrices and SSS is a diagonal matrix with real non–negative entries known as
singular values of AAA. Applications of compressed sensing protocols for quantum state tomography
can bring advantages in the form of reducing the number of measurement outcomes without
sacrificing information. Employing quantum mechanics with continuous variables, where the state
of the system living in Hilbert space of infinite dimension is in general described by infinite number
of free parameters. With preliminary knowledge about purity of our state, where quantum state
is close to the border of pure quantum states given by saturated uncertainty relations

∆x ·∆p ≥ ℏ
2
, (2.33)

for almost complete description of such a set of states we need only few parameters, first and second
moments in position and momentum, satisfying canonical commutation relation [x, p] = iℏ. Class
of quantum states saturating inequality in eq. (2.33) are gaussian states.
It has been shown [25] that positivity constraint ϱ ≥ 0 plays an important role in compressed
sensing protocols for estimation of low–rank quantum states. Positivity constraints leads to unique
and robust reconstruction of an unknown quantum state.
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3 Fast universal certification of measurement schemes for
quantum tomography

Fisher information matrix FFF (ρ) = CCC tPPP−1CCC derived in section 2.3 in eq. (2.32), where measurement
matrix CCC is defined via eq. (2.12) is intimately related to the accuracy of quantum tomography. If
the quantum source is described by a full–rank density matrix ϱ then all statistically consistent
state estimators ϱ̃ became unbiased in the limit of many independent measurement detections
N [28]. In this limit, the scaled mean squared-error (MSE) N E

[
tr
{
(ϱ̂− ϱ)2

}]
approaches the

Cramér-Rao bound
f(ϱ) = Sp

{
FFF (ϱ)−1

}
(3.1)

under the matrix trace Sp{ · }. The Fisher matrix has one very important physical invariance
property, FFF (ϱ) it is invariant under channel duplication. Duplicating the POM outcome channels
will not give us any more additional information. The qTTF is defined as the average

qTTF({Πj}) = E|ψ⟩⟨ψ|[f(|ψ⟩ ⟨ψ|)] (3.2)

of the Cramér-Rao bound over all pure states |ψ⟩ ⟨ψ| distributed with the Haar measure that
is uniform and unitarily invariant [29]. As we describe in section 2.4, this function serves as a
performance certifier for a given POM {Πj}. The smaller value of qTTF implies smaller average
reconstruction error. For minimally complete measurements, where number of outcomes M is D2

and minimal bases measurements, where M = D(D + 1), analytical expressions for qTTF has
been computed [1], together with expressions for POMs possessing certain kinds of symmetry. For
SIC POMs, described in section 2.2.3 it is

qTTF({Πj}sic) = D2 +D − 2. (3.3)

For a MUB measurement described in section 2.2.2, we have

qTTF({Πj}mub) = D2 − 1. (3.4)

For the covariant measurement described in section 2.2.1, the qTTF is given by

qTTF({Πj}cov) = 2(D − 1), (3.5)

which defines the limit for pure-state tomography.
In what follows, we propose a numerical scheme that evaluates the qTTF almost exactly up to a
pre–chosen significance level.

3.1 Numerical scheme for evaluating the qTTF
3.1.1 Properties of qTTF estimator

With the help of eq. (3.2) we can define an estimator

q̂TTF({Πj}) =
1

L

L∑
l=1

f(ϱl) (3.6)

for the qTTF as the discrete average sum over L randomly generated pure states ϱl distributed
randomly according to Haar measure. The qTTF estimator is both unbiased and consistent, reads

E|ψ⟩⟨ψ|

[
q̂TTF({Πj})

]
= qTTF({Πj}) (3.7)
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and
q̂TTF({Πj}) −→ qTTF({Πj}) (3.8)

in the limit of sufficiently large L.
Generation of pure states randomly distributed according to Haar measure is described in sec-
tion 2.2.4 via generating complex auxiliary kets |aj⟩ with i.i.d entries according to standard Gaus-
sian distribution.

3.1.2 A conservative concentration inequality–the Hoeffding inequality

To proceed further, we need to treat the convergence of estimator q̂TTF({Πj}) to the actual value
of qTTF({Πj}). Of course, we know from the consistency eq. (3.8) that as L increases, the two
quantities approach each other. But if we want to put things more rigorously, let us recall that
f(ϱ) is a bounded random variable in state space for any informationally complete tomography
scheme since the MSE E

[
tr
{
(ϱ̂− ϱ)2

}]
is always finite for any ϱ. For such a random variable,

there exists the following concentration inequality

Prob
(∣∣∣q̂TTF({Πj})− qTTF({Πj})

∣∣∣ ≥ δ
)

≤ ϵ ≡ 2 exp
(
− 2Lδ2

(fmax − fmin)2

)
, (3.9)

where δ quantifies the reliability of q̂TTF({Πj}) relative to qTTF({Πj}) for a given L, which is

characterized by the optimum values fmax = max
|ψ⟩⟨ψ|

{
f(|ψ⟩ ⟨ψ|)

}
and fmin = min

|ψ⟩⟨ψ|

{
f(|ψ⟩ ⟨ψ|)

}
.

This inequality was first established by Hoeffding [30].
Right–hand side of eq. (3.9) (ϵ) is a measure of the significance level in using numerical estimator
q̂TTF({Πj}) as a performance certifier in place of qTTF({Πj}) because of the difficulties with
analytical evaluation of qTTF. Equation (3.9) gives us a general recipe for determining the critical
value of L (Lcrit) beyond which the probability that

∣∣∣q̂TTF({Πj})− qTTF({Πj})
∣∣∣ is larger than

a certain specified difference δ is assured to be less than the significance level ϵ. In further work,
we set ϵ = 0.05. Critical value of L that ensure that the difference between qTTF estimator and
true value of the qTTF will not fluctuate beyond significance level ϵ can be obtained from the
formula [31]

Lcrit =

⌈
log
(
2

ϵ

)
(fmax − fmin)

2

2 δ2

⌉
. (3.10)

For a POMs that posses a high symmetry such as SIC POMs and MUB, the Cramér–Rao bound
f(ϱ) with a fixed purity tr

{
ρ2
}

is exactly the same. Thus we have that fmax − fmin and there-
fore Lcrit = 0. This result tells us that for such a highly specialized POMs, it is enough
to evaluate

∣∣∣q̂TTF({Πj})− qTTF({Πj})
∣∣∣ with just one quantum state of this purity, because

f(ρ) = f
(
tr
{
ρ2
})

is unitarily invariant. As one can expect, for heavily overcomplete general
POMs (M ≫ D2), the absolute value of the difference fmax − fmin will be smaller then for near–
minimaly–complete POMs with outcomes M close to D2, therefore overcomplete POMs should
give us a better precision in quantum–state tomography. Also the value of Lcrit is expected to be
smaller for highly overcomplete measurements than for measurements with number of outcomes
only slightly over D2. Due to the fact that small difference δ frequently leads to much greater
value of Lcrit than is necessary to have an accurate q̂TTF({Πj}). This led us to a new definition
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of δ, to be a relative difference–δ =
∣∣∣q̂TTF({Πj})− qTTF({Πj})

∣∣∣ /qTTF({Πj}). Because we do
not know exact value of qTTF({Πj}), we instead take advantage of the simple fact that∣∣∣q̂TTF({Πj})− qTTF({Πj})

∣∣∣
qTTF({Πj})

≤

∣∣∣q̂TTF({Πj})− qTTF({Πj})
∣∣∣

fmin
, (3.11)

and therefore new δ is defined as the right–hand side of the above inequality. We also have to
redefine value Lcrit to

Lcrit =

⌈
1

2 δ2
log
(
2

ϵ

)(
fmax
fmin

− 1

)2
⌉
. (3.12)

These new more operational definition of δ is almost insensitive to D and M , especially for POMs
with f(ϱ)s that are unitarily–invariant functions of ϱ. The pair (δ = 0.01, ϵ = 0.05) gives us values
of Lcrit that are sufficiently conservative for accurate estimators in all simulations tested so far.
Numerical evaluation of q̂TTF({Πj}) is not computationally expensive. What it requires is the
inversion of a Hermitian matrix for every randomly–generated pure state, which is for reasonably–
large dimensions efficient. On the other hand, finding optimal values fmin and fmax is in general
a non–convex problem and we need help from more sophisticated nonlinear optimization routines.
By experience, at least up to D = 10 and M of the order of 103D2, global optimization is not time
consuming problem. In the case of computationally expensive optimization, we can vary the ϵ or δ
value sacrificing the precision of the computed optimum values. In this scenario conservativeness
of eq. (3.9) and eq. (3.10) plays an even more important role in maintaining the reliability of the
reported values.

3.2 Covariant measurement: optimal pure–state tomography
It can be shown that in the limit of large measurement outcomes M SRM described in section 2.2.4
approaches the covariant measurement. We notice that in this limit, the sum

S =

M∑
j=1

|aj⟩ ⟨aj |
⟨aj |aj⟩

=M

M∑
j=1

1

M

|aj⟩ ⟨aj |
⟨aj |aj⟩

→M

∫
|ψ⟩ ⟨ψ| (dψ) = M

D
(3.13)

approaches a multiple of the identity, and the POM outcomes

Πj = S−1/2 |aj⟩ ⟨aj |
⟨aj |aj⟩

S−1/2 → D

M
|ψ⟩ ⟨ψ| (3.14)

also turn into the corresponding multiples of the continuous Haar-distributed elements over which
all sums again become integrals with respect to the Haar measure.
Now we would like to demonstrate the convergence of pure state tomography by evaluating their
qTTFs for increasing number of outcomes M with the numerical algorithm described in section 3.1.
In Fig. 5 we plotted results obtained for qutrit, three–dimensional quantum system. We can
see that the qTTF decreases with increasing M , which is clearly consistent with the fact that
overcomplete measurements are more accurate in quantum–state reconstruction as compared with
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measurements that are only nearly–minimally complete. We can also see that Lcrit drops gradually
on average with increasingM . In the the limit of covariant measurement, whereM tends to infinity,
fmax and fmin became almost the same and Lcrit will therefore also tends to 0 as it should be for
covariant POMs of all dimensions D. We set (δ = 0.01, ϵ = 0.05) in all plots in the figure.
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Figure 5: The convergence to optimal pure-state tomography for a qutrit (D = 3). We generated
random POM with number of outcome M equals to[(a) M = 9, (b) 10, (c) 12 and (d) 10000,
the graph shows the variation of q̂TTF ≡ q̂TTF({Πj}) with the number of randomly generated
states L. The red vertical line represents Lcrit computed with the parameters (δ = 0.01, ϵ = 0.05).
As we can see, Lcrit is sufficiently large for a stable and reliable evaluation. In Fig. 1(a) we can
immediately see the conservativeness of Lcrit. Its value is conservatively large that the fluctuation
in q̂TTF can barely be seen. The convergence to a qTTF value of 2(3 − 1) = 4 as follows from
eq. (3.5) is clear from this figure.

3.3 Overcomplete random measurements
Now we show that popular symmetric POMs such as SIC POMs and MUB, which have enjoyed
a longstanding reputation of being optimal measurements is some way, are actually suboptimal.
A performance measure for quantum–state estimation strongly depends on the considered figure
of merit when we are talking about tomographic accuracy of state estimation. A qTTF is related
to the MSE which is a proper measure of distance of quantum states and optimal estimator to
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Figure 6: Comparison of the qTTF of random SRMs where we averaged over 50 POMs with
SIC POMs (#), MUB (∗) and the covariant measurement (□). Because the number of outcomes
in random POMS are scaling of D2, to facilitate the comparison, we define M = KD2 for the
random POMs, where K ≥ 1 is a positive integer. In panel (a), the qTTFs for random SRMs
of K = 2 (+) and K = 3 (♢) are investigated, whereas in panel (b), the qTTFs for K = 5 (+)
and K = 10 (♢) are plotted. The values of Lcrit pure states [see Eq. (3.10)] that are used to to
average the qTTFs are obtained with (δ = 0.02, ϵ = 0.05), which yield sufficiently smooth plots.
Random SRMs of K ≥ 5 give superior reconstruction over SIC POMs and MUB for any D. For
D ≥ 5, random SRMs of K = 3 is already better than these standard symmetric measurements,
as highlighted in panel (a). The convergence of the SRMs to the covariant measurement for large
K (M) is clear from figure.

be adopted for state reconstruction ϱ should be the one that minimizes the figure of merit of
interest–MSE. Such an estimator that minimize MSE for overcomplete measurements was explic-
itly worked out for example in [28].
As a showcase of the versatility and efficiency of our numerical algorithm based on Monte–Carlo

generation of random pure states to compute qTTFs, let us compare the well–known results of
the qTTF for SIC POMs eq. (3.3) and MUB eq. (3.4) with overcomplete random POMs. The
dependence of qTTF on the Hilbert–space dimension D is quadratic, whereas the qTTF of the
covariant measurement is linear in D. This in general give us a free space where we can find
POMs that give us better accuracy in quantum–state reconstruction. With the help of numerical
simulations we really prove that one can be more sufficient in reconstruction of a given quantum
state in average than using symmetric POMs. In practice, physical realization of sophisticated
randomly–generated POM can be done with the help of spatial light modulators to carry out
nontrivial light modulation [32, 33, 34].
As is mentioned in section 2.2.4 and section 2.2.5, there are two types of randomly generated
POMs, namely SRM defined in eqs. (2.22) and (2.23) and overcomplete random measurement
bases, where each basis is defined by the unitary operator UHaar =̂UUUHaar. Columns in matrix
representation are uniformly distributed according to Haar measure. First, we consider the SRM
in our numerical simulations. The SIC POMs with M = D2 are clearly zero–measure special
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Figure 7: (Comparison of the qTTFs between random POM bases represented by empty markers
and random SRMs represented by solid markers. As in Fig. 6, we take M = KD2 with positive
integers K ≥ 1 and investigate the functional dependence of the qTTF on K in logarithmic scale.
Graphs are plotted for various dimensions; (a) D = 2 (#, ), (b) D = 3 (△,▲), (c) D = 4 (□,■)
and (d) D = 5 (♢,♦). As K increases, all markers approach the asymptotic optimal limit for pure-
state tomography depicted by dashed line. For K ≳ 7 the difference in tomographic performance
between SRMs and random bases become negligible.

cases of the SRM with S = D being multiple of identity so its MUB with M = D(D+ 1) are also
zero–measure special cases of the SRM with S = D+1. The existence of random POMs that give
lower reconstruction errors that SIC POMs and MUB is ensured by the fact that SRM approaches
the covariant measurement and the fact that qTTF is a smooth function of the POM, D, M .

Our expectations that, for a given D, the average qTTF over sufficiently many randomly gen-
erated SRMs is subquadratic in D were confirmed with statistical rigor as we can see in Fig. 6
using numerical machinery developed in section 3.1. We defined M = KD2 for positive integers
K, numerical calculations show that SRMs of K ≥ 5 is sufficient to overcome the reconstruction
accuracies of SIC POMs and MUB for any D on average. For D ≥ 5, random SRMs of K = 3

are enough to beat these symmetric measurements in tomographic performance. Random SRMs
of K = 4 starts to outperform the MUB for D ≥ 3.
Speaking differently, we can get in average better tomographic performance on average for more
complex quantum degrees of freedom using a random SRM of three or four times as many out-
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comes then SIC POMs. We can guarantee that accuracies is state–estimation will be better for
any D if we increase number of outcomes K = 5.
The second class mentioned above of random POMs are overcomplete random bases. Once again,
any MUB is then a zero–measure special case of a minimally complete set of random measurement
bases generated this way. Analytical expressions of the qTTF for such POM bases are unknown,
just as those for the SRMs. Due to the fact that outcomes of a random SRM are mutually
nonorthonormal compared to those in a normalized basis form a set of mutually orthogonal com-
plex vectors, we can expect that the convergence to covariant measurement is faster for random
SRMs relative to random POM basis. This observation and the numerical simulations shown in
Fig. 7 led us to conjecture that for a given D and M protortional to D corresponding to overcom-
plete measurement, the average qTTF for random SRMs defined via eq. (2.22) and eq. (2.23) is
lower that the average aTTF for random POM bases defined by UHaar =̂UUUHaar

This conjecture is indeed supported with the help of our numerical scheme developed in section 3.1
by numerical analysis showed in Fig. 7, where we take once again M = KD2. We can see that for
small number of bases, small K, on average, employing SRMs for state reconstruction over random
POM bases can ensure much higher accuracies in quantum–state reconstruction. For sufficiently
large K, both classes of POMs become comparable in tomographic performance, as its expected.

19



4 Quantum Gerchberg–Saxton algorithm
In the previous section, we were investigating the performance of different informationally com-
plete measurement schemes. Even though such schemes are desired in protocols of optical signal
characterization, as number of free parameters describing quantum system increases, building
informationally complete measurement setup is nearly impossible, on the other hand, density
matrices with only few nonzero singular values can be reconstructed with high accuracy using
informationally incomplete measurement. We already discussed in section 2.5 the significance of
the classical Gerchberg–Saxton (GS) algorithm in classical optics. Using this simple procedure
based on scanning intensities and free propagating of light represented by the Fourier transform
one can obtain with reasonable precision reconstructed wave front. Indeed, this algorithm works
well but on the other hand, wave front is a simple physical quantity. In many scenarios, our input
state do not have to be such a simple state that we can not describe it only using one complex
vector but we have to deal with partially coherent fields, classical analog of density operators,
well–known concept in quantum mechanics described in eq. (2.1). In a classical GS algorithm,
positivity constraints are not taken into consideration, which is good so far, because wave front is
represented by rank one density operator, which is always a positive operator. Much work in past
decade have been done [27, 26, 35, 36, 25] to understand the role of positivity constraints in quan-
tum protocols of optical signal characterization. It turns out that positivity can help to reduce
measurement outcomes so that we can perform measurement on a signal with less measurements
setting required for informationally complete measurement and still gets very accurate estimate
of a given signal, as we described in section 2.6.
Positivity constraints for low–rank quantum states leads to a robust precise estimation of a quan-
tum state even though we use measurement which is not informationally complete [25]. Authors
were aimed on random POM measurement such as square root measurement section 2.2.4 and
random bases section 2.2.5. Together with positivity they showed that one can consider much
less random measurement outcomes for reconstruction of physical state ϱ living in the Hilbert
space with dimension D than number of outcomes required for minimally informationally com-
plete measurement, that is, D2. What we would like to bring new to this field of interests, is to
probe the role of positivity constraints for a more relevant physical measurement known well in
both classical and quantum optics – measurement in a basis of Laguerre–Gauss modes of light.

4.1 Laguerre–Gauss modes of light
It is well–known [37] that beam propagation along the z direction of a monochromatic scalar field
of frequency ω, reads

E(r, t) = E(r)exp [−i(ωt− kz)] , (4.1)

where k is a wave vector related to the wave length λ is governed by the paraxial wave equation

∂E
∂z

= − λ

4π

(
∂2

∂x2
+

∂2

∂y2

)
E . (4.2)

Any optical beam can be therefore expressed as a superposition of a fundamental solutions of
eq. (4.2). Especially, for a cylindrical symmetry, its useful to use the set of Laguerre–Gauss (LG)
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modes, they read

LGmn(r, ϕ, z) =

√
2

πm!n!
min(m,n)!(−1)min(m,n)

× (
√
2r)|m−n|L

|m−n|
min(m,n)(2r

2)exp
(
r2
)

× exp[i(m− n)ϕ] exp(iψ(z)) , (4.3)

where we set beam waist w(z) = 1 and L|l|
p are the generalized Laguerre polynomials. For further

purposes we made a chance of variables; we define l = m − n to be an azimuthal index that is
responsible for topological charge giving the number of 2π–phase cycles around the mode circum-
ference, can be both positive and negative and p = min(m,n) is a radial mode index. Phase ψ(z)
is so called Gouy’s phase defined as

ψ(z) = (|l|+ 2p+ 1) arctan(z). (4.4)

In literature one can find that Gouy’s phase is without physical meaning but Gouy’s phase will
play an crucial role in analysis of informational completeness of measurement made of projections
into Laguerre–Gauss modes described above via eqs. (4.3) and (4.4).

4.2 Derivation of probability density function for Laguerre–Gauss modes
Laguerre–Gauss modes are widely used in experiments in classical singular optics and quantum
optics. We can associate Laguerre–Gauss wave packet defined in eq. (4.3) with the wave function,
well known concept in quantum mechanics [3], reads

⟨r, ϕ, z|l, p⟩ = LGlp(r, ϕ, z). (4.5)

In further work, we will omit the radial mode index p, because it will not bring any more informa-
tion to our analysis, as we will see later. With this knowledge, our wave function will be described
only by azimuthal index l and therefore wave function for our purposes will take form

⟨r, ϕ, z|l, 0⟩ = LGp=0,l(r, ϕ, z) ≡ LGl(r, ϕ, z). (4.6)

Using Born rule eq. (2.5) we can obtain

p(r, ϕ, z) =tr{Π(r, ϕ, z)ϱ}

=
∑
l′

⟨l′|Π(r, ϕ, z)ϱ |l′⟩

=
∑
l′

∑
l′′

⟨l′|Π(r, ϕ, z) |l′′⟩ ⟨l′′| ϱ |l′⟩

=
∑
l′

∑
l′′

Π(r, ϕ, z)l′,l′′ϱl′′,l′ , (4.7)

where we defined

Π(r, ϕ, z)l′,l′′ = ⟨l′|Π(r, ϕ, z) |l′′⟩

ϱl′,l′′ = ⟨l′| ϱ |l′′⟩ . (4.8)

Together with the identity
Π(r, ϕ, z) = |r, ϕ, z⟩ ⟨r, ϕ, z| , (4.9)
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we can express the POM element Π(r, ϕ, z)l′l′′ from eq. (4.8) as

Π(r, ϕ, z)l′,l′′ = ⟨l′|Π(r, ϕ, z) |l′′⟩

= ⟨l′|r, ϕ, z⟩ ⟨r, ϕ, z|l′′⟩

= LG∗
l′(r, ϕ, z)LGl′′(r, ϕ, z), (4.10)

where ∗ stands for the complex conjugate and

⟨r, ϕ, z|l′⟩ ∝ LG0
l′(2r

2)r|l
′|eil

′ϕei(|l
′|−1) arctan(z)e−r

2

. (4.11)

In textbooks on special function we can find that Laguerre polynomial with zero radial index is
just 1. Putting eqs. (4.7), (4.10) and (4.11) together we obtain expression for probability density
up to normalization

p(r, ϕ, z) ∝
∑
l′l′′

ϱl′l′′r
|l′|+|l′′|

× ei(l
′−l′′)ϕei(|l

′|−|l′′|) arctan(z)e−2r2 . (4.12)

4.3 Analysis of probability density function
In eq. (4.12) is quantity what we measure with our experimental apparatus. From data p(r, ϕ, z)
we have to infer input quantum state with the best accuracy with all the knowledge that we have
about our measurement apparatus. The task now is how many matrix elements ϱl′l′′ can our
measurement consisting of just one intensity scan (z is a fixed value) distinguish. Since azimuthal
index l can be both positive and negative, in our analysis we should distinguish these two cases.

4.3.1 Positive azimuthal index

Considering input state representing by a density matrix living in the Hilbert space with dimension
D, azimuthal index lp can therefore have values

lp ∈ {0, 1, · · · , D − 1}. (4.13)

so upper limit in the sum in eq. (4.12) is D − 1,reads

p(r, ϕ, z) ∝
D−1∑
l′l′′

ϱl′l′′r
|l′|+|l′′|

× ei(l
′−l′′)ϕei(|l

′|−|l′′|) arctan(z)e−2r2 . (4.14)

In general, we have to find out how many terms in a double–sum in eq. (4.12) we can distinguish.
Using similar argumentation as in [38], we consider all matrix elements in eq. (4.12) to be nonzero,
then p(r, ϕ, z) is made of superposition of all matrix elements. We need to figure out how many
independent linear combination of density matrix we can generate varying r and ϕ and considering
that distance from source on input state z is fixed. Since probability density is made of polynomial
term r|l

′|+|l′′| and two phase terms ei(l′−l′′)ϕ and ei(|l
′|−|l′′|) arctan(z), generation of independent

linear superpositions will be provided with non–identical exponents in exponentials in eq. (4.14).
We can omit the Gouy’s phase for now since z is constant and therefore Gouy’s phase will not
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bring us any new piece of information to our analysis. Considering eq. (4.13) |l′| = l′ and setting
polynomial exponential l′ + l′′ = N and phase term l′ − l′′ =M , set of equations

l′ + l′′ =N

l′ − l′′ =M (4.15)

have unique solutions for all l′ and l′′ ∈ {0, 1, · · · , D − 1}. Equation (4.15) therefore generate
(D×D) of independent pairs (N,M). This means, that we can distinguish D2 elements. Talking
differently, we can distinguish all matrix elements only after one intensity scan. Considering only
positive azimuthal index then leads to informationally complete measurement just after taking
one intensity scan.

|l′|+ |l′′| l′ − l′′ |l′|+ |l′′|
0 H0H0 0 0 •

H0H1 -1 -1 •
1 H0H−1 1 -1 •

H1H0 1 1 •
H−1H0 -1 1 •
H1H1 0 0 •
H0H2 -2 -2 •
H2H0 2 2 •

2 H−1H−1 0 0 ◦
H0H−2 2 -2 •
H−2H0 -2 2 •
H−1H1 -2 0 •
H1H−1 2 0 •
H1H2 -1 -1 •
H2H1 1 1 •
H−1H−2 1 -1 •

3 H−1H2 -3 -1 •
H−2H1 -3 1 •
H−2H−1 -1 1 •
H1H−2 3 -1 •
H2H−1 3 1 •
H2H2 0 0 ◦

4 H2H−2 4 0 •
H−2H−2 0 0 •
H−2H2 -4 0 •

Table 1: Special case for D = 5 and l defined via eq. (4.16). We set |l′| + |l′′| = N and showed
how many pairs we can generate for a given N showed in first column. Third column is a final
phase and last column is a Gouy’s phase. We defined Hn = r|n|. Fulfilled circles • are representing
distinguishable matrix elements employing both phase factors described in eq. (4.17) and empty
markers (◦) representing indistinguishable matrix elements.
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4.3.2 General azimuthal index

Next step is considering that azimuthal index can be both negative or positive, since we have no
restriction on the sign of azimuthal index from theory. Therefore

lnp ∈ {−D − 1

2
, · · · , 0, · · · , D − 1

2
}, (4.16)

and probability density reads

p(r, ϕ, z) ∝

D−1
2∑

l′,l′′=−D−1
2

ϱl′l′′r
|l′|+|l′′|

× ei(l
′−l′′)ϕei(|l

′|−|l′′|) arctan(z)e−2r2 . (4.17)

Argumentation is very similar as we introduced in section 4.3.1. But we can no more simplify our
problem since |l′| is no more equal to l′. Because first look can be confusing, let us consider a special
situation, for D = 5 and (l′, l′′) ∈ {−2,−1, 0, 1, 2}. We have 5 different values of N = |l′| + |l′′|,
namely 0, 1, 2, 3, 4. As we can see from table 1, all number of pairs is equal to 1+4+8+8+4 = 25

as it should be. In second column of table 1 we can find a exponent in ei(l
′−l′′)ϕ. From all 25

pairs we can distinguish between 1 + 2 + 3 + 4 + 3 = 13 pairs. Considering Gouy’s phase, we
can distinguish 1 + 4 + 7 + 8 + 3 = 23 elements. Two elements remain indistinguishable with our
measurement apparatus. To put things in more rigorous way, lets look on how many pairs one can
generate for a given N = |l′|+ |l′′|. We get Then the total number of pairs for a fixed N is given

4 pairs ±|l′|,±|l′′| l′, l′′ ̸= 0

2 pairs ±|l′|, 0 l’̸= 0

2 pairs 0, ±|l′′| l′′ ̸= 0

1 pairs 0, 0

by summing through l′, l′′ with the condition that if we choose l′ then l′′ can not be arbitrary, but
have to fulfill the relation |l′|+ |l′′| = N . Mathematically, we end up with a double sum

min(k,N)∑
l′=max(0,N−k)

k∑
l′′=0

(4− 2δl′0 − 2δl′′0 + δl′0δl′′0) δl′′,N−l′ , (4.18)

the term δl′′,N−l′ to ensure that sum of l′ and l′′ remains fixed and k = max(l′). To evaluate this
sum, we have to consider two scenarios. First, when N ≤ k, then from eq. (4.18) we get

N∑
l′=0

k∑
l′′=0

(4− 2δl′0 − 2δl′′0 + δl′0δl′′0) δl′′,N−l′

=

N∑
l′=0

(4− 2δl′0 − δN−l′′,0 + δl′0δN − l′, 0)

= 4(N + 1)− 2− 2 + δN0

= 4N + δN0, (4.19)
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where we used the definition of Kronecker delta. The second scenario in when N > k, then

k∑
l′=N−k

k∑
l′′=0

(4− 2δl′0 − 2δl′′0 + δl′0δl′′0) δl′′,N−l′

=

k∑
l′=N−k

(4− 2δl′0 − 2δN−l′,0)

= 4(k −N + k + 1)

= 4(2k −N + 1). (4.20)

The term δl′0 in each sum in eq. (4.20) will be evaluated only once so it is equal to 1 so as δN−k.
This result is indeed in conformity with first observation for special case, when D = 5 and thus
k = 2. Using formulas derived in eqs. (4.19) and (4.20) we get sequence of number of pairs for
given N same as we conclude before for special case, {1, 4, 8, 8, 4}.
Considering again similar equations as eq. (4.15)

|l′|+ |l′′| =N

l′ − l′′ =M, (4.21)

we want to find how many independent numbers M,N we can get. We can consider only cases
when l′ and l′′ has the same sign, since case with different sign will use up only two cases, when
l′ = 0 or l′′ = 0, as it follows from

l′ − l′′ = l′ + (−l′′) = N. (4.22)

We end up again with the sum

min(k,N)∑
l′=max(0,N−k)

k∑
l′′=0

δl′′,N−l′ . (4.23)

Evaluation of this sum will again split into two cases, first, lets take N ≤ k, thus

N∑
l′=0

k∑
l′′=0

δl′′,N−l′

=

N∑
l′=0

1

= N + 1. (4.24)

In a second case we have N > k and

2 +

k∑
l′=N−k

k∑
l′′=0

δl′′,N−l′

= 2 +

k∑
l′=N−k

1

= 2 + k −N + k + 1

= 2k −N + 3. (4.25)
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This results are again in a conformity with special case when D = 5 and k = 2, we get the
sequence of distinguishable pairs {1, 2, 3, 4, 3}. Maximum number of linearly independent pairs is
then equal to D+1. Considering Gouy’s phase, with the help of numerical simulations, we found
that there will be always D−1

2 indistinguishable matrix elements and we will reach the maximum
for D+1

2 different values of distance z.

1 2 3 4 5 6 7 8 9 10

50

100

150

200

225

Figure 8: Dependence of the rank of measurement matrix rank(C) on the number of intensity
scans taken in experiment for a special case when density matrix describing input state lives on
a Hiblert space with dimension 15. Numerics is in conformity with theoretical predictions, where
we can see that upper bound on rank of C is indeed D2 − D−1

2 = 218 for a D = 15 and maximum
is reached after taking D+1

2 = 8 intensity scans.

In Fig. 8 we depicted the dependence of the rank of the measurement matrix C for D = 15 on
the number of intensity scan taken. As we can see, with new intensity scan we get new piece
of information but less then with previous intensity scan. Maximum affordable information is
obtained for 8 intensity scans and we will end up with 7 indistinguishable matrix elements. To
sup up, measurement performance in a basis of Laguerre–Gauss modes with both negative and
positive azimuthal indexes will never be complete. It does not matter how many intensity scans
we take, for a given dimension D there will be always D−1

2 indistinguishable matrix elements.

4.4 Numerical scheme and discussion
In this subsection, we would like to investigate how good our measurement is if we include positivity
constraints to reconstruction or not. We opted to investigate the accuracy for quantum states
action on a fifteen–dimensional Hilbert space. For reconstruction with a positivity constraints, we
use a CVX package [39, 40] for Matlab, where positivity constraints can be easily included. Our
goal is then constraint optimization, where the task is in the form

min
∑
j

[tr{ϱΠj} − pj ]
2

ϱ ≥ 0

tr{ϱ} = 1, (4.26)

where ϱ is a quantum–mechanical state we want to reconstruct by minimizing mean–square error,
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Figure 9: Numerical analysis how positivity constraints can affect quantum–state reconstruction
for a dimension 15. On the horizontal axis we depicted a rank of quantum states using for
averaging both constrained and unconstrained optimization. On the vertical axis we plotted the
average of Hilbert–Schmidt norm (ϵ̂ = E

[
tr
{
(ϱtrue − ϱest)

2
}]

), an appropriate measure of distance
between any two quantum states. Markers not joined with a line stands for reconstruction via
linear inversion of measurement matrix C and joined markers represents average accuracies after
reconstruction win positivity constraints. Triangles (▲) stand for a reconstruction performed after
one intensity scan, square markes (■) stand for a measurement made of two intensity scans and
finally circles ( ) stand for measurement made of three intensity scans. For more information see
text.

Πj is a POM element and vector p is a vector of output probabilities. In our numerical analysis,
we perform 19× 19 detections for each slices, thus POM is made of 19× 19 outcomes distributed
equidistantly on a vertical and horizontal lines across square in the centre of xy plane with edge
length equal to 4 for each values of z. For reconstruction without positivity constraints we just
solve the eq. (2.11) using Moore–Penrose pseudoinverse of the measurement matrix C. To be sure
that our numerical scheme works well, we average across 200 randomly generated quantum states
with respect to Haar measure with a given rank. Results are shown in Fig. 9. We plotted the mean
squared–error E

[
tr
{
(ϱtrue − ϱrec)

2
}]

averaged over 200 quantum states with rank r ∈ {1, · · · , 15}.
As we can see from Fig. 9, without positivity constraints our reconstruction will never be precise.
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On the other hand, employing the positivity constraints, for more than two intensity scan our
reconstruction will be accurate till r = 4. The average accuracy is of course getting lower for as
we increased r, but without positivity constraints, the positivity constraints plays less and less
important role in reconstruction since the rank of measurement matrix C is getting higher.
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5 Conclusion
An ability to distinguish between any accessible physical quantum states is a desired property
of the measurement setup. Such a measurement scheme is informationally complete. An exper-
imentalist can choose from many realizations of different informationally complete measurement
schemes. But the average accuracy in quantum state reconstruction differ using different infor-
mationally complete measurement schemes. On the other hand, dealing with systems of large
dimensions, number of free parameters to be estimated grows exponentially. Employing positiv-
ity constraints to the reconstruction process, one can still estimate low–rank quantum state with
reasonable precision.
With respect to quantum–state reconstruction accuracy, we developed an efficient numerical
Monte–Carlo scheme (Section 3) to evaluate a well–founded universal measurement certification
quantity known from classical optics, the quantum tomographic transfer function, that works
for any quantum measurement. Developed numerical scheme is based on statistical reasoning,
enabling us to report the measurement tomographic quality and its reliability parameters accom-
panying this quality number. To demonstrate the power of this scheme, we used it to numeri-
cally verify the convergence of so–called square–root measurement to the covariant measurement
(Section 3.2), ideal measurement for quantum state tomography in terms of accuracy. With pro-
posed numerical scheme, we also studied the tomographic performances of random square–root
measurement and random measurement bases relative to the popular symmetric measurement
schemes such as symmetric informationally complete measurement and mutually unbiased bases.
We showed that random measurements that are slightly more overcomplete than the symmetric
ones give state estimators with lower reconstruction errors on average (section 3.3). In this section
we also compared both interesting random schemes. In practise, random measurements may be
implemented with the help of spatial light modulators.
In section 4 we dealt with how positivity constraints can affect accuracy of reconstruction of a
given low–rank quantum state. Motivated with classical iterative algorithm for reconstruction of
wave front, Gerchberg–Saxton algorithm described in section 2.5, which is very successful despite
the fact that measurement when taking intensities closely behind the source and in a far field is
informationally incomplete measurement. We further extend this idea on reconstruction of par-
tially coherent fields, classical analog of density matrices with rank greater than one. In section 2.5
we showed that with two intensity scans and measurement provided via projections into basis of
Laguerre–Gauss modes of light, frequently used in the field of singular optics, we can reconstruct
a quantum state living in the Hilbert space with dimension 15 with high precision, till the rank
of measurement does not exceed 4. This result is based on Monte–Carlo method of generating
random quantum states with given rank. Counting with positivity constraints in reconstruction
schemes indeed provides a powerful tool that can make reconstruction unique and accurate (as we
can see in Fig. 9) even with informationally incomplete set of positive operator valued measure,
whose elements describe measurement outcomes.
An overly critical reader may contest to this numerical finding in both sections by insisting that
search over a finite range of dimension D is never rigorous enough for such a concrete assertions.
We would like to mention that there is no physical basis for the quantum tomographic transfer
function and so for mean–squared error to possess irregular kinks or discontinuities.
Results given in a section 3 are already published in impact physical journal Physical Review A
[41]. Results obtained in section 4 are being prepared for publication. An experiment is
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under preparation that will bring the opportunity to verify our results with polarization encoded
quantum states.
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