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Abstract
In this work, we propose a specialization of the inductive incremental coverability al-

gorithm that solves alternating finite automata emptiness problem. We experiment with
various design decisions, analyze them and prove their correctness. Even though the prob-
lem itself is PSpace-complete, we are focusing on making the decision of emptiness com-
putationally feasible for some practical classes of applications. We have obtained interest-
ing comparative results against state-of-the-art algorithms, especially in comparison with
antichain-based algorithms.

Abstrakt
V tejto práci navrhujeme špecializáciu algoritmu inductive incremental coverability,

ktorá rieši problém prázdnosti alternujúcich konečných automatov. Experimentujeme s
rôznymi návrhovými rozhodnutiami, analyzujeme ich a dokazujeme ich korektnosť. Aj
keď je známe, že problém je sám o sebe PSpace-ťažký, zameriavame sa na to, aby bolo
rozhodovanie prázdnosti výpočetne prijateľné v niektorých triedach automatov s prak-
tickým využitím. Dosiahli sme niekoľko zaujímavýcch výsledkov v porovnaní so špičkovými
algoritmami, predovšetkým v porovnaní s algoritmami založenými na protireťazcoch.
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Chapter 1

Introduction

Finite automata are one of the core concepts of computer science. Alternation in automata
theory has already been studied for a long time [5] and many practical classes of problems
(WS1S or LTL formulae satisfiability [4, 10] and many more) can be efficiently reduced in
polynomial time to the problem of alternating automata emptiness. We are particularly
motivated by the applications of alternating automata in software verification, in the field
of string analysis (analysis of programs with string variables).

Alternating finite automaton (AFA) is a deterministic finite automaton that is extended
by the concept of existential and universal branching. Disjunction is implemented in con-
stant time already with non-deterministic finite automata (NFA), using existential branch-
ing. By introducing the universal branching, it is easy to combine automata in constant
time with conjunction. Negation can then be done in linear time too, simply by replac-
ing existential branchings with universal ones and vice versa, and by swapping final and
non-final states. Although these operations are efficient, checking of alternating automata
emptiness (i.e. checking whether a given automaton accepts the empty language) is unfor-
tunately PSpace-complete [14], which is considered computationally infeasible in general.
We however believe that it is possible to design algorithms able to avoid the high worst-case
complexity for practical cases.

When accepting a word by an AFA, if a universal branching transition is performed, all
of the states into which we branched, need to reach a final state by accepting the rest of
the word. Comparing to NFA, a reachability graph of AFA therefore contains cases—sets
of states—instead of single states.

The reachability graphs of alternating finite automata are monotone with respect to a
subsumption relation. The subsumption relation indicates which parts of the reachability
graphs can be discarded during the search for an accepting run. Small cases are more likely
to reach final cases and their supersets are subsumed and can be pruned in a forward search
for an accepting run. Similarly, big cases are more likely to be reachable from initial cases
than their subsets. Therefore the paths via the subsets can be ignored in a backward search
for an accepting run.

Algorithms using antichains have been studied in [9, 1]. These algorithms are basically
simple state space explorations that benefit from the subsumption to reduce the number
of nodes of the reachability graph that are needed to be explored. The antichain-based
algorithms are currently considered as one of the best practical existing methods to check
the AFA emptiness.

Another approach, used in software verification for simplification of the search space, is
abstraction refinement. In this approach, the search space is oversimplified at first. The
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simplification then gets refined, typically by a use of counter-example analysis. The first
algorithm for solving AFA emptiness with a use of abstraction refinement was an antichain-
based approach that works on an abstract domain [11]. Other powerfull methods, based
on abstraction, have recently appeared in the field of model checking, particularly the
algorithms IC3/PDR [2, 12] (property driven reachability). In [13], the AFA have been
translated to transition systems and their emptiness has been solved using IC3/PDR. The
results achieved in [13] were interesting, however, the monotonicity of AFA disappears in
the translation to transition systems, and is not utilised in the search. The IC3/PDR
algorithms were later combined with subsumption pruning in IIC (incremental inductive
coverability) [15], which is an adaptaion of IC3 to well structured transitions systems. The
IIC algorithm has been applied in [15] for solving the coverability of Petri nets.

The main contribution of our work is adaptation of the IIC algoroithm to the problem
of alternating automata emptiness—we show that the alternating finite automata are well
structured transition systems and subsequently we specialize the IIC algorithm to solve
their emptiness. The algorithm starts by over-approximating the space of cases that are
reachable in one step, to set of all cases. Using counter-examples, it refines the space,
by adding blockers to the first step. Blockers abstractly represent the over-approximation
of the reachable cases—blockers are cases that are known to be unreachable in the given
(first) step and subsume1 their subsets. Bigger blockers subsume more of the search space,
therefore, attempts are made to find as big blockers as efficiently possible. When the
over-approximation of the cases reachable in one step is disjoint with the final cases, the
algorithm progresses into the next step, over-approximating and refining it again in a similar
manner (during the process of refinement of each step, also the preceding steps get usually
refined more). The algorithm eventually discovers a valid counter-example (the AFA is
then not empty), or detects a convergence (the AFA is then empty).

In the experimental evaluation, we compare efficiency of the IIC algorithm to backward
and forward state space explorations using antichains. We have found an artificial class of
AFA where IIC significantly outperforms both the forward and backward antichain algo-
rithms. We have compared the three algorithms also on a set of real world benchmarks
converted from the string program verification in [13]. Many of the AFA shared a similar
simple structure that was ideal for the antichain algorithms and IIC could not outperform
them. However, some of the real world benchmarks had more complex structures. They
were problematic for antichains, on the bigger of them, antichain was timing out. Our
implementation of IIC was consistently achieving better results on these benchmarks.

1The subsumption relation is a superset relation for the cases of AFA.
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Chapter 2

Preliminaries

This chapter introduces mathematical structures and properties that will be used in the rest
of the work. It also talks about the relationships between the structurs, e.g. conversions
between various types of alternating automata.

Downward and upward closure Let ⪯ ⊆ 𝑈 ×𝑈 be a preorder. Downward closure 𝑋↓
of a set 𝑋 ⊆ 𝑈 is a set of all elements smaller than elements from 𝑋, formally 𝑋↓ = {𝑦 ∈
𝑈 | ∃𝑥 ∈ 𝑋. 𝑦 ⪯ 𝑥}. Analogously for upward closure, 𝑋↑ = {𝑦 ∈ 𝑈 | ∃𝑥 ∈ 𝑋. 𝑥 ⪯ 𝑦}. For
any two sets 𝑋,𝑌 ⊆ 𝑈 , we say that 𝑋 is a downward-closure or upward-closure generator
of 𝑌 iff 𝑋↓ = 𝑌 , or 𝑋↑ = 𝑌 respectively. We define downward and upward closure on
a single element as 𝑥↓ = {𝑥}↓ and 𝑥↑ = {𝑥}↑. Downward-closed sets are those that equal
their downward closures. Similarly, an upward-closed set equals its upward closures. We
will denote the fact that a set is downward-closed or upward-closed by the corresponding
arrow in the upper index (e.g. we may write 𝑋↑ if we know that 𝑋 = 𝑋↑). It holds
that 𝑋↓ = 𝑋↓↓ and 𝑌 ↑ = 𝑌 ↑↑. It is known that the set of downward-closed sets is closed
under union and intersection, same for the set of upward-closed sets. Furthermore, if we
complement a downward-closed set, we get an upward-closed one, and vice versa. A system
of an universum and a preorder (𝑈,⪯) is downward-finite if every set 𝑋 ⊆ 𝑈 has a finite
downward closure.

Well-quasi-order A preorder ⪯ ⊆ 𝑈 × 𝑈 is a well-quasi-order, if each infinite sequence
of elements 𝑥0, 𝑥1, · · · from 𝑈 contains an increasing pair 𝑥𝑖 ⪯ 𝑥𝑗 for some 𝑖 < 𝑗.

Well-structured transition system (WSTS) Let us fix the notation of a well-structured
transition system to the quadruple 𝑆 = (Σ, 𝐼,→,⪯), where

∙ Σ is a set of states.

∙ 𝐼 ⊆ Σ is a set of initial states.

∙ → ⊆ Σ × Σ is a transition relation, with a reflexive and transitive closure →*. We
say that 𝑠′ is reachable from 𝑠 if 𝑠→* 𝑠′.

∙ ⪯ ⊆ Σ × Σ is a relation. We will call it subsumption relation, and if 𝑎 ⪯ 𝑏, we will
say that 𝑏 subsumes 𝑎.
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A system 𝑆 is a WSTS iff the subsumption relation is a well-quasi-order and the mono-
tonicity property holds:

∀𝑥1, 𝑥2 ∈ Σ. 𝑥1 → 𝑥2 =⇒ ∀𝑥′1 ∈ Σ. (𝑥1 ⪯ 𝑥′1 =⇒ ∃𝑥′2. (𝑥2 ⪯ 𝑥′2 ∧ 𝑥′1 → 𝑥′2)) (2.1)

The predecessor function 𝑝𝑟𝑒 : 2Σ −→ 2Σ is defined the following way:

𝑝𝑟𝑒(𝑋2) = {𝑥1 ∈ Σ | ∃𝑥2 ∈ 𝑋2. 𝑥1 → 𝑥2} (2.2)

Covering We say that a downward-closed set of states 𝑃 ↓ covers a WSTS 𝑆 iff the set
of states that are reachable from initial states of 𝑆 is included in 𝑃 ↓.

Covers(𝑃 ↓, 𝑆)
def⇔ ∀𝑠 ∈ 𝐼. @𝑠′ /∈ 𝑃 ↓. 𝑠→* 𝑠′ (2.3)

We will use the term bad states for the complement Σ ∖ 𝑃 ↓.

Replacement notation For a sequence 𝑋 ∈ X𝑙 of length 𝑙 and a function 𝑓 : N →
X, the notation 𝑋[𝑋𝑘 ← 𝑓(𝑘)]𝑛𝑘=𝑚, where 0 ≤ 𝑚 ≤ 𝑛 ≤ 𝑙, means that the elements
𝑋𝑚𝑋𝑚+1 · · ·𝑋𝑛 are replaced by new elements 𝑓(𝑚)𝑓(𝑚 + 1) · · · 𝑓(𝑛) and the rest of 𝑋
remains unchanged, formally

𝑋[𝑋𝑘 ← 𝑓(𝑘)]𝑛𝑘=𝑚 = 𝑋0 · · ·𝑋𝑚−1𝑓(𝑚) · · · 𝑓(𝑛)𝑋𝑛+1 · · ·𝑋𝑙 (2.4)

2.1 Alternating Finite Automata
In this section we talk about various types of alternating automata, means of automata
visualisation that will be used throughout the work, as well as conversions between the
types of automata.

Alternating finite automaton (AFA, classical AFA) The concept of AFA has been
introduced in [5]. It is formally defined in the following way. Let us fix the notation of an
alternating finite automaton to the quintuple 𝑀 = (𝑄,Σ𝑀 , 𝐼𝑀 , 𝛿𝑀 , 𝐹 ), where

∙ 𝑄 is a finite set of states. A subset of 𝑞 is called case, cases will be denoted as 𝜌 or 𝜚𝜚𝜚.

∙ Σ𝑀 is a finite set of symbols — an input alphabet.

∙ 𝐼𝑀 ⊆ 𝑄 is an initial set of states (also called initial case).

∙ 𝛿𝑀 : 𝑄× Σ𝑀 −→ 22
𝑄 is a transition function. If 𝜌 ∈ 𝛿𝑀 (𝑞, 𝜎), we say that 𝑞 leads to

𝜌 by 𝜎.

∙ 𝐹 : F−
𝑄 is a negative boolean formula determining final cases. A case 𝜌 is final iff

𝜌 |= 𝐹 .

Let 𝑤 = 𝜎1 . . . 𝜎𝑚,𝑚 ≥ 0 be a sequence of symbols 𝜎𝑖 ∈ Σ𝑀 for every 𝑖 ≤ 𝑚. A run of
the AFA 𝑀 over 𝑤 is a sequence 𝜌 = 𝜌0𝜎1𝜌1 . . . 𝜎𝑚𝜌𝑚 where 𝜌𝑖 ⊆ 𝑄 for every 0 ≤ 𝑖 ≤ 𝑚,
and 𝜌𝑖−1→𝜎𝑖

M
𝜌𝑖 for every 0 < 𝑖 ≤ 𝑚, where→𝜎

M ⊆ 2𝑄×2𝑄 is a transition relation by the symbol
𝜎 ∈ Σ𝑀 defined the following way.
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The function SuccsOfStates(𝜌1, 𝜎) returns for every 𝑞 from 𝜌1, the pairs (𝑞, 𝑟2), such
that 𝑞 leads to 𝑟2 by 𝜎. These 𝑟2 are the possible choices of successors for the states 𝑞. The
function SuccsOfCase(𝜌1, 𝜎) then finds such subsets of SuccsOfStates(𝜌1, 𝜎), which contain
one choice of a successor 𝑟2 for each state 𝑞. In the equation (2.5), we pick one of the
subsets from SuccsOfCase(𝜌1, 𝜎), unite the chosen successors 𝑟2 into one case 𝜌2.

𝜌1→𝜎
M
𝜌2

def⇔ ∃𝜉 ∈ SuccsOfCase(𝜌1, 𝜎). 𝜌2 =
⋃︁

(𝑞,𝑟2)∈𝜉

𝑟2 (2.5)

where

SuccsOfCase(𝜌1, 𝜎) = {𝜉 ⊆ SuccsOfStates(𝜌1, 𝜎) | ∀𝑞 ∈ 𝜌1 ∃!𝑟2 ∈ 2𝑄. (𝑞, 𝑟2) ∈ 𝜉} (2.6)

SuccsOfStates(𝜌1, 𝜎) = {(𝑞, 𝑟2) ∈ 𝜌1 × 2𝑄 | 𝑟2 ∈ 𝛿𝑀 (𝑞, 𝜎)}. (2.7)

If 𝜌1→𝜎
M
𝜌2, we say that 𝜌1 is a 𝜎-predecessor of 𝜌2 and 𝜌2 is a 𝜎-successor of 𝜌1. The

AFA transition relation →M ⊆ 2𝑄 × 2𝑄 is a transition relation by an arbitrary symbol:

𝜌1→
M
𝜌2

def⇔ ∃𝜎 ∈ Σ𝑀 . 𝜌1→𝜎
M
𝜌2 (2.8)

If 𝜌1→
M
𝜌2 then we say that 𝜌1 is a predecessor of 𝜌2 and 𝜌2 is a successor of 𝜌1. Similarly

we can say that we can transition forward from 𝜌1 to 𝜌2, or transition backward from 𝜌2 to
𝜌1.

Let us define few properties of a run. A run is

∙ terminating iff 𝜌𝑚 |= 𝐹 ,

∙ commencing iff 𝐼𝑀 ⊆ 𝜌0,

∙ accepting iff it is terminating and commencing.

An AFA 𝑀 is empty if none of the runs over 𝑀 is accepting. This emptiness property
is denoted as Empty(𝑀).

AFA will be visualised as a directed hypergraph 𝐺 = (𝑉,Σ𝑀 , 𝐸). Nodes 𝑉 are the states
𝑄 of the AFA. For each transition 𝑞→𝜎

M
𝜌, there is a hyperedge ({𝑞}, 𝜎, 𝜌). If two hyperedges

({𝑞}, 𝜎1, 𝜌) and ({𝑞}, 𝜎2, 𝜌) differ only in the symbol 𝜎, they are merged into one hyperedge
labelled with 𝜎1, 𝜎2. The initial case is visualized as a hyperedge without label, leading to
𝐼𝑀 : (∅, ∅, 𝐼𝑀 ). The final cases are visualized only if 𝐹 is of form 𝐹 =

⋀︀
𝑞∈𝑄∖𝑄𝐹

¬𝑞, where
𝑄𝐹 ⊆ 𝑄 is a set of final states. Then the nodes in 𝑄𝐹 are demarked with double borders.

As an example, we show a visualization of an automaton in Figure 2.1.

Inductive invariant The problem of proving AFA emptiness can be formulated as a
problem of finding an inductive invariant. It is a set of cases 𝐽 that is disjoint with final
cases, includes all cases that are reachable from the initial case, and all the cases from 𝐽
transition only into cases from 𝐽 . If such an invariant is found, the AFA is empty. On the
other hand, if it cannot be found because the reachable cases intersect final cases, the AFA
is not empty.

In the IIC and antichain algorithms, the invariant is represented in an abstract way. In
the sequel, the size of this abstract representation is called size of inductive invariant, and
is used as a metric for comparison of the algorithms—a good invariant is the one that can
be represented in a simple way, i.e. its size is small.
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𝑄 = {𝑞1, 𝑞2, 𝑞3}
Σ𝑀 = {𝑎, 𝑏}
𝐼𝑀 = {𝑞1}

𝐹 = ¬𝑞1 ∧ ¬𝑞2

𝛿𝑀 (𝑞, 𝜎) =

⎧⎨⎩
{{𝑞2}, {𝑞2, 𝑞3}} for 𝑞 = 𝑞1 ∧ 𝜎 = 𝑎
{{𝑞1}} for 𝑞 = 𝑞3 ∧ 𝜎 = 𝑏
∅ otherwise

𝑞1

𝑞2 𝑞3

𝑎 𝑎 𝑏

Figure 2.1: Visualisation of AFA

Symbolic AFA (sAFA) We base our definition on the concept of symbolic AFA dis-
cussed in [7]. Transitions of a symbolic AFA are tagged with symbolic formulae instead
of bare symbols. Symbolic AFA is defined similarly to the classical AFA. It is a quintuple
𝑀𝑠 = (𝑄,𝑉, 𝐼𝑀 , 𝛿𝑠, 𝐹 ). In contrast to the classical AFA it includes

∙ a finite set of boolean variables 𝑉 .

∙ a symbolic transition function 𝛿𝑠 : 𝑄× F𝑉 −→ 22
𝑄 .

Let 𝑤 = 𝜍1 . . . 𝜍𝑚,𝑚 ≥ 0 be a sequence of variable evaluations 𝜍𝑖 ∈ 𝒫(𝑉 ) for each
𝑖 ≤ 𝑚. A run of the sAFA 𝑀 over 𝑤 is a sequence 𝜌 = 𝜌0𝜍1𝜌1 . . . 𝜍𝑚𝜌𝑚 where 𝜌𝑖 ⊆ 𝑄 for
each 0 ≤ 𝑖 ≤ 𝑚, and 𝜌𝑖−1→𝜍𝑖

M
𝜌𝑖 for each 0 < 𝑖 ≤ 𝑚, where →𝜍

s ⊆ 2𝑄 × 2𝑄 is a transition
relation by the variable evaluation 𝜍 ∈ 𝒫(𝑉 ). In comparison with the classical AFA, the
only thing that has been changed in the definition of run is that symbols have been replaced
by variable evaluations. As only the definition (2.7) depends directly on symbols, the rest
of the definition of 𝜌1→𝜍

s
𝜌2 remains the same as in the definition of →𝜎

M . The definition (2.7)
is replaced by the definition (2.9), which associates states 𝑞 from 𝜌1 with those cases 𝑟2, to
which 𝑞 leads by formulae that are satisfied with the evaluation 𝜍.

SuccsOfStates𝑠(𝜌1, 𝜍) = {(𝑞, 𝑟2) ∈ 𝜌1 × 2𝑄 | ∃𝜑 ∈ F𝑉 . 𝑟2 ∈ 𝛿𝑠(𝑞, 𝜑) ∧ 𝜍 |= 𝜑}. (2.9)

The properties terminating, commencing, accepting, as well as the emptiness property
are defined the same way as for the classical AFA. The transition relation →s ⊆ 2𝑄 × 2𝑄

and visualisation are defined similarly to the classical AFA, only the symbols 𝜎 ∈ Σ𝑀 are
changed to variable evaluations 𝜍 ∈ 𝒫(𝑉 ), or formulae 𝜑 ∈ F𝑉 respectively.

Minterms of formulae Let Φ = {𝜑1, · · ·𝜑𝑛} ⊆ F𝑋 be a finite set of boolean formulae
over variables 𝑋. A minterm is a minimal satisfiable Boolean combination of all formulae
from Φ [8], formally

7



Minterms : 2F𝑋 −→ 2F𝑋

Minterms(Φ) =

⎧⎨⎩𝜓 =
⋀︁

𝑖=1,...,𝑛

𝜓𝑖

⃒⃒⃒⃒
⃒⃒ ∀𝑖 ∈ {1, · · · , 𝑛}(𝜓𝑖 ∈ {𝜑𝑖,¬𝜑𝑖}) ∧ SAT(𝜓)

⎫⎬⎭ (2.10)

Number of minterms is exponential in the worst case [8]. An effective algorithm to
extract the minterms from Φ is presented in [8]. Let ≡Φ ∈ 𝒫(𝑋)2 be an equivalence
relation on evaluations of variables 𝑋.

∀𝜍1, 𝜍2 ∈ 𝒫(𝑋). 𝜍1 ≡Φ 𝜍2
def⇔ {𝜑 ∈ Φ | 𝜍1 |= 𝜑} = {𝜑 ∈ Φ | 𝜍2 |= 𝜑} (2.11)

Theorem 1. For any finite set of boolean formulae Φ ⊆ F𝑋 , the set Minterms(Φ) is iso-
morphic to the set of equivalence classes of ≡Φ.

sketch. A minterm 𝜓 is a conjunction of all formulae 𝜑 ∈ Φ in a positive (𝜑) or a negative
form (¬𝜑). A change of a value of any 𝜑 ∈ Φ for two 𝜍1, 𝜍2 ∈ 𝒫(𝑋) would apparently result
in 𝜍2 ̸|= 𝜓 if 𝜍1 |= 𝜓. Furthermore, no pair of distinct minterms implies the same set of
formulae from Φ. As the set of minterms covers all satisfiable Boolean combinations of the
formulae from Φ, for each evaluation 𝜍 exists such a minterm 𝜓 that 𝜍 |= 𝜓.

An example of minterm generation is provided in Figure 2.2.

𝑋 = {𝑎, 𝑏}

Φ ∈ F𝑋 = {𝑎, 𝑎 ∧ 𝑏, 𝑎 ∨ 𝑎,¬𝑎}

Minterm Minterms(Φ)
Simplified Variable

alias Minterms(Φ) evaluations
𝜓1 𝑎 ∧ (𝑎 ∧ 𝑏) ∧ (𝑎 ∨ 𝑎) ∧ ¬(¬𝑎) 𝑎 ∧ 𝑏 {𝑎, 𝑏}
𝜓2 𝑎 ∧ ¬(𝑎 ∧ 𝑏) ∧ (𝑎 ∨ 𝑎) ∧ ¬(¬𝑎) 𝑎 ∧ ¬𝑏 {𝑎,¬𝑏}
𝜓3 ¬𝑎 ∧ ¬(𝑎 ∧ 𝑏) ∧ ¬(𝑎 ∨ 𝑎) ∧ ¬𝑎 ¬𝑎 {¬𝑎, 𝑏}, {¬𝑎,¬𝑏}

Figure 2.2: Example of Minterms(Φ)

Tagged minterms of formulae Let 𝑇 be a set of tags. We can tag each formula in Φ
with a tag 𝑡 ∈ 𝑇 . The minterm generation algorithm then associates a minterm 𝜓 with the
tags of all formulae that are in the positive form in 𝜓. Let 𝑋 = {(𝜑1, 𝑡1), · · · , (𝜑𝑛, 𝑡𝑛)} ⊆
F𝑉 × 𝑇 .
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TaggedMinterms(𝑋) ⊆ F𝑉 × 2𝑇

TaggedMinterms(𝑋) =

⎧⎨⎩(𝜓, 𝜏) = (
⋀︁

𝑖=1,...,𝑛

𝜑𝑖,
⋃︁

𝑖=1,...,𝑛

𝜏𝑖)

⃒⃒⃒⃒
⃒⃒

∀𝑖 ∈ {1, · · ·𝑛}. ((𝜑𝑖, 𝜏𝑖) ∈ {(𝜑𝑖, {𝑡𝑖}), (¬𝜑𝑖, ∅)})∧

𝑆𝐴𝑇 (𝜓)

⎫⎬⎭

Minterms of sets Formula is just a symbolic representation of a set of variable evalua-
tions. Therefore we can define the concept of minterms also for subsets of a finite universum
𝑈 instead of formulae. Let 𝑊 = {𝑤1, · · · , 𝑤𝑛} ⊆ 2𝑈 . A minterm is a minimal non-empty
Boolean combination of all sets from 𝑊 , formally

Minterms : 2𝑈 −→ 2𝑈

Minterms(𝑊 ) =

⎧⎨⎩𝑢 =
⋂︁

𝑖=1,...,𝑛

𝑢𝑖

⃒⃒⃒⃒
⃒⃒ ∀𝑖 ∈ {1, · · · , 𝑛}(𝑢𝑖 ∈ {𝑤𝑖, 𝑈 ∖ 𝑤𝑖}) ∧ 𝑢 ̸= ∅

⎫⎬⎭ (2.12)

The equivalence relation on the elements of U is defined also in a similar way:

∀𝑥1, 𝑥2 ∈ 𝑈. 𝑥1 ≡𝑊 𝑥2
def⇔ {𝑤 ∈𝑊 | 𝑥1 ∈ 𝑤} = {𝑤 ∈𝑊 | 𝑥2 ∈ 𝑤} (2.13)

The reasoning about the isomorphism of minterms to equivalence classes of ≡𝑊 and
the algorithm for computing minterms of sets is analogous (replacement of conjunction by
intersection, negation by complement, satisfiability by comparison to empty set).

Tagged minterms for sets are defined also analogously. Let𝑋 = {(𝑤1, 𝑡1), · · · , (𝑤𝑛, 𝑡𝑛)} ⊆
2𝑈 × 𝑇 .

TaggedMinterms(𝑋) ⊆ 2𝑈 × 2𝑇

TaggedMinterms(𝑋) =

⎧⎨⎩(𝑢, 𝜏) = (
⋂︁

𝑖=1,...,𝑛

𝑢𝑖,
⋃︁

𝑖=1,...,𝑛

𝜏𝑖)

⃒⃒⃒⃒
⃒⃒

∀𝑖 ∈ {1, · · ·𝑛}. ((𝑢𝑖, 𝜏𝑖) ∈ {(𝑤𝑖, {𝑡𝑖}), (𝑈 ∖ 𝑤𝑖, ∅)})∧

𝑢 ̸= ∅

⎫⎬⎭

Reductions between AFA and sAFA Conversion from a classical to a symbolic AFA
is done by setting 𝑉 = Σ𝑀 and

∀𝑞 ∈ 𝑄 ∀𝜎 ∈ Σ𝑀 . 𝛿𝑠(𝑞, 𝜎 ∧
⋀︁

𝑣∈𝑉 ∖{𝜎}

¬𝑣) := 𝛿𝑀 (𝑞, 𝜎). (2.14)

9



As the formula in the symbolic transition function encodes a singleton set of evaluation
with 𝜎 = 1 and all other variables equaling to zero, it is apparent that this conversion does
not break the emptiness property.

Reduction that preserves emptiness is possible also the other way. Recall the functions
(2.7) and (2.9) that compute successors of states for classical and symbolic AFA, which is
the only part of → (and →𝑠) that depends directly on symbols (variable evaluations):

SuccsOfStates(𝜌1, 𝜎) = {(𝑞,𝜚𝜚𝜚) ∈ 𝜌1 × 2𝑄 | 𝜚𝜚𝜚 ∈ 𝛿𝑀 (𝑞, 𝜎)}.

SuccsOfStates𝑠(𝜌1, 𝜍) = {(𝑞,𝜚𝜚𝜚) ∈ 𝜌1 × 2𝑄 | ∃𝜑 ∈ F𝑉 . 𝜚𝜚𝜚 ∈ 𝛿𝑠(𝑞, 𝜑) ∧ 𝜍 |= 𝜑}.

Let Φ be a set of all formulae that occur on the transitions of an sAFA 𝑀𝑠. Note that
we can replace F𝑉 by Φ because for all other formulae 𝜑 ∈ F𝑉 ∖ Φ, the transition function
𝛿𝑠(𝑞, 𝜑) returns an empty set.

We need to choose such an alphabet Σ𝑀 and such a transition function 𝛿𝑀 , for which
SuccsOfStates(𝜌1, 𝜎) produces same sets of successors as SuccsOfStates𝑠(𝜌1, 𝜍) for fixed 𝜌1:

∀𝜌1 ⊆ 𝑄 ∀𝑠 ∈ 𝑞 × 2𝑄.

∃𝜍 ∈ 𝒫(𝑉 ).(𝑠 = SuccsOfStates𝑠(𝜌1, 𝜍))⇐⇒ ∃𝜎 ∈ Σ𝑀 .(𝑠 = SuccsOfStates(𝜌1, 𝜎))

(2.15)

A simple solution would be to set Σ𝑀 = 𝒫(𝑉 ) and

∀𝑞 ∈ 𝑄. ∀𝜍 ∈ Σ𝑀 .

∃𝜑 ∈ Φ.(𝜚𝜚𝜚 ∈ 𝛿𝑠(𝑞, 𝜑) ∧ 𝜍 |= 𝜑)⇐⇒ 𝜚𝜚𝜚 ∈ 𝛿𝑀 (𝑞, 𝜍)
(2.16)

We however want to make the alphabet Σ𝑀 as small as possible. As we know that
minterms represent equivalence classes (by ≡Φ) of 𝒫(𝑉 ), where none of 𝜑 ∈ Φ changes its
value (theorem 1), we can set Σ𝑀 = Minterms(Φ) and then

∀𝑞 ∈ 𝑄. ∀𝜎 ∈ Σ𝑀 .

∃𝜑 ∈ Φ.(𝜚𝜚𝜚 ∈ 𝛿𝑠(𝑞, 𝜑) ∧ 𝜎 → 𝜑)⇐⇒ 𝜚𝜚𝜚 ∈ 𝛿𝑀 (𝑞, 𝜎)
(2.17)

An example of conversion from sAFA to AFA is shown in Figure 2.3.

𝑞1 𝑞2

𝑞3

𝑎

𝑎 ∧ 𝑏¬𝑎𝑎 ∨ 𝑎 ⇒
𝑞1 𝑞2

𝑞3

𝜓1, 𝜓2

𝜓1𝜓3

𝜓1, 𝜓2

The minterm generation of 𝜓1, 𝜓2, 𝜓3 for
this example is shown in the figure 2.2.

Figure 2.3: Emptiness-preserving conversion from sAFA to AFA.
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Succinct AFA (suAFA) In succinct AFA, successors of a state are defined by a positive
boolean formula over states F+

𝑄 instead of a set of successor cases. Initial states are also
defined by a positive boolean formula. A succinct afa 𝑀su = (𝑄,𝑉, 𝐼su, 𝛿su, 𝐹 ) differs from
classical AFA in the following fields:

∙ 𝐼su ∈ F+
𝑄 is an initial state formula.

∙ 𝛿su : 𝑄× Σ𝑀 −→ F+
𝑄 is a succinct transition function.

𝜌1→𝜎
su
𝜌2

def⇔ 𝜌2 |=
⋀︁
𝑞∈𝜌1

𝛿su(𝑞, 𝜎) (2.18)

A succinct automaton can be visualized as a graph that contains state nodes, as well as
nodes for operators in the succinct transition function, see Figure 2.4.

𝑄 = {𝑞1, 𝑞2, 𝑞3}
Σ𝑀 = {𝑎}
𝐼𝑀 = {𝑞1}
𝐹 = ¬𝑞1 ∧ ¬𝑞2

𝛿su(𝑞, 𝑎) =

{︂
𝑞2 ∧ (𝑞1 ∨ 𝑞3) for 𝑞 = 𝑞1
∅ otherwise

𝑞1

𝑞2

∧
∨ 𝑞3𝑎

Figure 2.4: Visualisation of suAFA

Conversion from suAFA to AFA In the following text we describe a conversion algo-
rithm rather informally and without a proof of preserving emptiness property. The idea of
the conversion is however quite simple — replacing conjunctions by universal branchings
and disjunctions by existential ones, inserting new states where needed while transitions
from these new states consume no symbol of the original alphabet: a new symbol 𝜀 is
created for these transitions and added to the alphabet of the classical AFA.

We may consider any positive boolean formula as a formula in a positive DNF, literals
of which are states or positive boolean formulae. We want the positive DNF to be as big
as possible, so if we have disjunctions deep in the formula but no conjunction is above
them, e.g. 𝑓 = (𝑓1 ∨ 𝑓2) ∨ 𝑓3, we pull the disjunction out to the top level of the formula:
𝑓 =

⋁︀
{𝑓1, 𝑓2, 𝑓3}. We do the same operation also for the conjunctions in the DNF.

Example 1. When converting the positive boolean formula

𝑓 = 𝑞1 ∨ (𝑞2 ∧ (𝑞3 ∧ (𝑞4 ∨ 𝑞5))) ∨ 𝑞6

to the positive DNF, there is a disjunction 𝑞4∨𝑞5 that cannot be pulled out because it is an
argument of a conjunction. We consider 𝑞4 ∨ 𝑞5 as a literal 𝜑 of the converted formula. All
the other operators can be flattened. The following describes the result 𝑓 ′ of the conversion.

𝜑 = 𝑞4 ∨ 𝑞5

𝑓 ′ =
⋁︁{︁⋀︁

{𝑞1},
⋀︁
{𝑞2, 𝑞3, 𝜑},

⋀︁
{𝑞6}

}︁
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For each 𝜎 ∈ Σ𝑀 , 𝑞 ∈ 𝑄, we convert the formula 𝑓 = 𝛿su(𝑞, 𝜎) to the positive DNF in
the way shown in the example. If the literals of the positive DNF 𝑓 ′ are only states, then
the conjunctions in the DNF simply represent cases of 𝛿𝑀 (𝑞, 𝜎). If a conjunction contains a
literal that is a formula 𝜑, we create a new state 𝑞𝜑 and replace 𝜑 by 𝑞𝜑 in the disjunction.
The literals of the positive DNF are now only states and we can compute 𝛿𝑀 (𝑞, 𝜎), by
considering the conjunctions as cases. Then we recursively compute the transitions of all
𝑞𝜑 by the symbol 𝜀: We convert the formula 𝜑 to a positive DNF, replace the literals that
are formulae by new states, etc.

Example 2. This example shows overall conversion from a suAFA transition to AFA tran-
sitions. Let 𝛿su contain the transition

𝑓 = 𝛿su(𝑞1, 𝜎) = 𝑞1 ∨ (𝑞2 ∧ (𝑞3 ∨ 𝑞1) ∧ (𝑞4 ∨ 𝑞3))

First, we convert 𝑓 to a positive DNF form, 𝑓 ′

𝑓 ′ =
⋁︁{︁⋀︁

{𝑞1},
⋀︁
{𝑞2, 𝜑1, 𝜑2}

}︁
where

𝜑1 = 𝑞3 ∨ 𝑞1
𝜑2 = 𝑞4 ∨ 𝑞3

Now we create new states 𝑄 := 𝑄su ∪ {𝑞𝜑1 , 𝑞𝜑2} and replace the subformulae 𝜑1 and 𝜑2
with the new states in 𝑓 ′

𝑓 ′ =
⋁︁{︁⋀︁

{𝑞1},
⋀︁
{𝑞2, 𝑞𝜑1 , 𝑞𝜑2}

}︁
We create a transition for 𝛿𝑀 from the DNF 𝑓 ′:

𝛿𝑀 (𝑞1, 𝜎) := {{𝑞1}, {𝑞2, 𝑞𝜑1 , 𝑞𝜑2}}

Then we recursively continue to compute the transitions 𝛿𝑀 (𝑞𝜑1 , 𝜀) and 𝛿𝑀 (𝑞𝜑2 , 𝜀).

𝜑′1 =
⋁︁{︁⋀︁

{𝑞3},
⋀︁
{𝑞1}

}︁
𝛿𝑀 (𝑞𝜑1 , 𝜀) := {{𝑞3}, {𝑞1}}

𝜑′2 =
⋁︁{︁⋀︁

{𝑞4},
⋀︁
{𝑞3}

}︁
𝛿𝑀 (𝑞𝜑2 , 𝜀) := {{𝑞4}, {𝑞3}}

In Figure 2.5, we have obtained an AFA with the structure and semantics resembling the
original suAFA (for now, ignore the dashed transitions, they will be discussed subsequently):

Now, let us justify the presence of the self-loops by 𝜀 at the original states. From the
case 𝜌1 = {𝑞2, 𝑞𝜑1 , 𝑞𝜑2}}, we should be able to transition forward 𝜌2 = {𝑞2, 𝑞3, 𝑞4}. However,
we cannot because there is no transtion from 𝑏 by 𝜀 and from the other two states there are
only transitions by 𝜀. Generally, from a case that contains original states of suAFA as well
as states generated by the conversion, we must be able to transition forward by 𝜀 only from
the generated states while staying in the original ones. For this reason we make reflexive
transitions by 𝜀 (dashed ones) at each of the original states.
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𝑞1 ∧

𝑞2

∨

𝑞3

∨ 𝑞4
𝜎 ⇒ 𝑞1

𝑞2

𝑞𝜑1

𝑞3

𝑞𝜑2 𝑞4
𝜎

𝜀

𝜀

𝜀

𝜀

𝜀

𝑠

𝜀

𝜀

𝜀

Figure 2.5: Conversion from suAFA to AFA

Succinct symbolic automata ssuAFA As the succinctness of automata defined in 2.1
has generally nothing to do with the input alphabet of the AFA, we can easily define the
succinct symbolic automaton and its conversion to a symbolic automaton. The ssuAFA is
a quintuple 𝑀ssu = (𝑄,𝑉, 𝐼ssu, 𝛿ssu, 𝐹 ), where

∙ 𝛿ssu : 𝑄× F𝑉 −→ F+
𝑄 is a succinct transition function.

The relation of transition by variable evaluation 𝜍 ∈ 𝒫(𝑉 ) is defined the following way:

𝜌1→𝜍
ssu
𝜌2

def⇔ ∃𝜑 ∈ F𝑉 . (𝜎 |= 𝜑) ∧ 𝜌2 |=
⋀︁
𝑞∈𝜌1

𝛿ssu(𝑞, 𝜎) (2.19)

The conversion from ssuAFA to sAFA works the same way as the conversion from suAFA
to AFA, we only use formulae instead of symbols. Instead of creating the new symbol 𝜀, we
create a new variable 𝑣𝜀, assign the formula 𝑣𝜀 to the transitions, where 𝜀 would be present
in the suAFA-AFA conversion. To make the variable evaluations that model the transitions
of the original suAFA exclusive with the evaluations that model the formula 𝑣𝜀, we replace
the formulae 𝜑 by ¬𝑣𝜀 ∧ 𝜑 for each 𝜑 from the original transitions.
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Chapter 3

IIC for AFA Emptiness

In this chapter, we present the main contribution of this thesis, which is an adaptation of
the IIC algorithm to alternating automata. The adaptation was not trivial. Some of the
solutions presented here are inspired by the Petri net coverability adaptation from [15] and
some solutions are our original and specific for the case of alternating automata. We will
explain our reasoning and show experimental results for multiple possible implementations
of some components of IIC.

3.1 Basic AFA Representation and General AFA
Our implementation works with three different representations of AFA, each of which has
some pros and cons. Understanding the details about all the three representations is not
necessary to understand IIC. Now, we introduce only the simplest one of them, per-symbol
AFA. Because the reason of existence of the other two is just optimization of the IIC, we
do not want to introduce them before introducing IIC. The details about all the three
representations are presented later—in the sections 3.6 and 3.7. After introducing the per-
symbol AFA here, we introduce also a general AFA, which is an abstract AFA, which will
hide the differences between the three representations. The IIC will be discussed in terms
of the general AFA.

Per-symbol AFA This is a simple intuitive representation of the classical AFA. For each
symbol 𝜎, for each state 𝑞, for each 𝑟2, such that 𝑟2 ∈ 𝛿𝑀 (𝑞, 𝜎), it contains a triplet (𝑞, 𝜎, 𝑟2):

Repper-sym = {(𝑞, 𝜎, 𝜌) ∈ 𝑄× Σ𝑀 × 2𝑄 | 𝜌 ∈ 𝛿𝑀 (𝑞, 𝜎)}

General AFA This is an abstract representation of AFA, which will hide the differences
between symbolic and classical AFA (and between the two representations of the classical
AFA—the per-symbol one that has been already introduced and a symbol-set one that will
be presented later in the section 3.6). In the following text we present only the relation of
general AFA with the per-symbol AFA. The text is then repeated in a more verbose way in
the section 3.6, where the real reason of talking about the general AFA will be more clear.

The general AFA 𝑀𝐺 = (𝑄,Σ𝐺, 𝐺, 𝐼𝑀 ,→
G
, 𝐹 ). In the same manner as for the classical

and symbolic automata, 𝑄 is a finite set of states, 𝐼𝑀 ⊆ 𝑄 is an initial case, 𝐹 ∈ F−
𝑄 is a

negative boolean formula determining final cases. Set of guardable symbols Σ𝐺 and the set
of guard 𝐺 is defined differently for each of the three representations. Now we naturally
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introduce only the version for per-symbol AFA:

Σ𝐺 := Σ𝑀

A guard 𝛾 from a set of guards 𝐺 represents a set of guardable symbols, by each of
which a transition can be performed. The transitions in the Repper-sym can be performed
only by single symbols:

𝐺 := Σ𝑀

Let ⊣ ⊆ Σ𝐺 × 𝐺 be a guard relation. We will say that a guard 𝛾 guards a guardable
symbol 𝑔 iff 𝑔 ⊣ 𝛾. For per-symbol AFA, the guard relation is the equality:

𝑔 ⊣ 𝛾 ⇔ 𝑔 = 𝛾

Similarly we define a general transition relation by a guardable symbol, denoted by →𝑔
G ,

for a guardable symbol 𝑔 ∈ Σ𝐺. For per-symbol AFA, it is equivalent to the transition
relation by symbol, as defined for the classical AFA:

→𝑔
G

:=→𝑔
M

Transition relation by any guardable symbol is denoted as →G .
The following lemma shows that we can write {𝑞}→𝑔

G
𝜌 instead of 𝜌 ∈ 𝛿𝑀 (𝑞, 𝑔) for per-

symbol AFA. Note that the general AFA does not have any transition function, only the
transition relation (because it is not possible to abstract the function of 𝛿𝑀 and 𝛿𝑠 into one
function 𝛿𝐺). For per-symbol AFA, the lemma does show that the transition function can
be simply substituted with the transition relation. The lemma is a part of the lemma 10,
which in addition discusses symbolic AFA.

Lemma 1. A singleton case is a predecessor of 𝑟2 iff its element leads to 𝑟2.

∀𝜎 ∈ Σ𝑀∀𝑞 ∈ 𝑄. ∀𝜌 ⊆ 𝑄.
{𝑞}→𝜎

M
𝜌⇔ 𝜌 ∈ 𝛿𝑀 (𝑞, 𝜎)

Proof. From the definition of →𝜎
M , SuccsOfStates produces all cases 𝜌 ∈ 𝛿𝑀 (𝑞, 𝑔) associated

with 𝑞, SuccsOfCase produces singletons {(𝑞, 𝜌)} for each such 𝜌. In (2.5), the singleton
{(𝑞, 𝜌)} is obviously converted to 𝜌.

In case of per-symbol AFA, a general representation of AFA corresponds with the per-
symbol representation:

Rep𝐺 ⊆ 𝑄×𝐺× 2𝑄

Rep𝐺 = Repper-sym (for per-symbol AFA)

The last ingredient that will be needed in the description of IIC, is the predicate
SymbolsNotCovered(𝛾𝑞,Γ) where 𝛾𝑞 ∈ 𝐺 and Γ ⊆ 𝐺. The predicate says that some symbol
𝑔, which is guarded by 𝛾𝑞, is not guarded by any 𝛾 ∈ Γ.

SymbolsNotCovered(𝛾𝑞,Γ)
def⇔ ∃𝑔 ∈ Σ𝐺 ⊣ 𝛾𝑞. ∀𝛾 ∈ Γ. ¬(𝑔 ⊣ 𝛾) (3.1)

The implementation for the per-symbol AFA is again simple, as the guards are actually
the symbols:

SymbolsNotCovered(𝛾𝑞,Γ)⇔ 𝛾𝑞 ̸∈ Γ
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Properties of the transition relation The lemmas introduced in this text define prop-
erties of the transition relation that will be used in the sequel. All the provided proofs are
implied directly from the definition of the transition relation and are close to trivial.

The lemmas presented here already express only the properties of the general AFA. The
proofs of the lemmas are also representation-agnostic. The only concept that is used in the
proofs and is not taken from the definition of general AFA, is the function SuccsOfCase
(2.6). Note that the definition of the function is shared among sAFA and AFA. Later, after
reading the description of the representations in the section 3.6, one can easily check that
it is similarly shared also among the three representations (two of which are just differently
expressed classical and symbolic AFA, and the remaining one is something in between). The
proofs will therefore not be repeated again after introducing all the three representations.

The following lemma will be later used e.g. for finding predecessors of a case (or its
subsets): The predecessor can be composed by union of small singleton predecessors, which
are easier to be found.

Lemma 2. Predecessor can be composed of singleton predecessors: If all states from 𝜌1
lead to a subset of 𝜚𝜚𝜚2 by some fixed guardable symbol, then some subset of 𝜌2 is a successor
of 𝜌1.

∀𝑔 ∈ Σ𝐺. ∀𝜌1, 𝜚𝜚𝜚2 ⊆ 𝑄.
∀𝑞 ∈ 𝜌1.(∃𝑟2 ⊆ 𝜚𝜚𝜚2. {𝑞}→𝑔

G
𝑟2)⇒ ∃𝜌2 ∈ 𝜚𝜚𝜚2. 𝜌1→𝑔

G
𝜌2

(3.2)

Proof. Let 𝜌1 = {𝑞1, · · · , 𝑞𝑛}. We have a 𝑟2,1, · · · , 𝑟2,𝑛 such that {𝑞𝑖}→𝑔
G
𝑟2,𝑖 for 𝑖 = 1, · · · , 𝑛.

By the lemma 1, the 𝑟2,𝑖 are translated to the terms of 𝛿𝑀 . By the definition (2.6), it is
one of the subsets of SuccsOfCase. The 𝜌2 can be constructed as a union of 𝜚𝜚𝜚2,1, · · · , 𝜚𝜚𝜚2,𝑛,
which conforms to the definition (2.5).

The following lemma says that if a case 𝜌1 is a 𝑔-predecessor of 𝜌2, then all of its states
lead to some subset of 𝜌2 by 𝑔.

Lemma 3. Each predecessor can be decomposed to singleton predecessors: If 𝜌1 is a pre-
decessor of 𝜌2 by some guardable symbol, then all states from 𝜌1 lead to a subset of 𝜌2 by
that symbol.

∀𝑔 ∈ Σ𝐺. ∀𝜌1, 𝜌2 ⊆ 𝑄.
𝜌1→𝑔

G
𝜌2 ⇒ ∀𝑞 ∈ 𝜌1.(∃𝑟2 ⊆ 𝜌2. {𝑞}→𝑔

G
𝜌2)

(3.3)

Proof. From the definition (2.5), 𝜌2 is a union of the successors 𝑟2 from 𝜉. The cases 𝑟2
are therefore subsets of 𝜌2. By the definition (2.6) of SuccsOfCase, each of the states in 𝜌1
must have a successor in 𝜉.

The lemma 3, together with the lemma 2 is used in the following lemma, to show that
not only states, but also all subsets of 𝜌1 are 𝑔-predecessors of subsets of 𝜌2.

Lemma 4. For each 𝑔 ∈ Σ𝐺, the relation →𝑔
G is monotone with respect to the superset

relation ⊇.

∀𝑔 ∈ Σ𝐺. ∀𝜚𝜚𝜚1, 𝜚𝜚𝜚2 ⊆ 𝑄.
𝜚𝜚𝜚1→𝑔

G
𝜚𝜚𝜚2 =⇒ ∀𝜌1 ⊆ 𝜚𝜚𝜚1. ∃𝜌2 ⊆ 𝜚𝜚𝜚2. 𝜌1→𝑔

G
𝜌2

(3.4)
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Proof. By the lemma 3, the case 𝜚𝜚𝜚1 can be decomposed to states that all lead to some
subset of 𝜚𝜚𝜚2 by 𝑔. The case 𝜌1 is a subset of those states, and by the lemma 2, a 𝜌2 ⊆ 𝜚𝜚𝜚2
exists.

Note that this trivially implies that the transition relation by any guardable symbol →G

is also monotone with respect to ⊇.

3.2 Backward Transition Function
The backward transition function finds upward-closure generator of all predecessors of a
given case 𝜚𝜚𝜚2. Moreover, it associates the elements (cases) of the generator with the symbols,
by which the subsets of the cases transition to 𝜚𝜚𝜚2. The backward transition function will
be later useful in some of the transition rules of IIC, as well as in the backward antichain
algorithm.

Generators of a bare set of predecessors A bare set of predecessors 𝛿
←
𝜌 : 2𝑄 −→ 22

𝑄

serves to find all predecessors 𝜌1 of a given case 𝜌2, or of any of its subsets.

𝛿
←
𝜌(𝜚𝜚𝜚2) = {𝜌1 ⊆ 𝑄 | ∃𝜌2 ⊆ 𝜚𝜚𝜚2. 𝜌1→

G
𝜌2} (3.5)

Lemma 5. The bare set of predecessors is upward closed with respect to the preorder ⊇.

𝛿
←
𝜌(𝜚𝜚𝜚2) = 𝛿

←
𝜌(𝜚𝜚𝜚2)↑ (3.6)

Proof. If 𝜚𝜚𝜚1→
G
𝜚𝜚𝜚2, then by monotonicity of →G with respect to ⊇, any subset of 𝜚𝜚𝜚1 has a

successor that is a subset of 𝜚𝜚𝜚2.

Corrolary: As the bare set of predecessors 𝛿
←
𝜌(𝜚𝜚𝜚2) is upward closed, we can represent it by

an upward-closure generator 𝛿
←
𝜌(𝜚𝜚𝜚2) = {𝜚𝜚𝜚1,1, · · · , 𝜚𝜚𝜚1,𝑛}↑. We will call the cases 𝜚𝜚𝜚1,1, · · · , 𝜚𝜚𝜚1,𝑛

generator cases.

Pairing of symbols with generator cases In the following discussion about the gen-
erators of 𝛿

←
𝜌(𝜚𝜚𝜚2) (for a fixed 𝜚𝜚𝜚2), we will associate such symbols with each generator case

𝜚𝜚𝜚1, by which only the subsets of the generator case 𝜚𝜚𝜚1 transition to 𝜚𝜚𝜚2.
By the lemma 2, for each guardable symbol 𝑔1, exists a singleton generator {𝜚𝜚𝜚1,𝑔1}

where 𝜚𝜚𝜚1,𝑔1 is a set of all states 𝑞, such that ∃𝑟2 ∈ 𝜚𝜚𝜚2. {𝑞}→𝑔
G
𝑟2. Let us name this case 𝜚𝜚𝜚1,𝑔1

a generator case for 𝑔.
However, other guardable symbols 𝑔2, · · · , 𝑔𝑚 may exist, generator cases for which are

subsets of 𝜚𝜚𝜚1,𝑔1 (we denote these generator cases 𝜚𝜚𝜚1,𝑔2 , · · · , 𝜚𝜚𝜚1,𝑔𝑚). As there is a generator
super-case 𝜚𝜚𝜚1,𝑔1 for them, they can be omitted from the generator of the bare set of pre-
decessors. We want to have as small generator as possible (therefore the generator cases
must be big). As a huge number of guardable symbols may exist, we do not want to create
one generator case for each guardable symbol and associate the symbol to the case1. We

1Actually, for per-symbol AFA, that is just what we do—we create one generator case for each guardable
symbol; but for the other two representations, multiple symbols can be guarded by one guard and we can
benefit from it. Unfortunately, we have still talked only about the per-symbol AFA and the real benefit is
therefore not so obvious.
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therefore need a better approach to find a generator and associate a guard 𝛾 (instead of a
guardable symbol) with each generator case. For the generator case 𝜚𝜚𝜚1,𝑔1 from the reasoning
given above, the guard 𝛾 that is associated with 𝜚𝜚𝜚1,𝑔1 would guard just all the guardable
symbols 𝑔1, · · · , 𝑔𝑚.

Formally, a backward transition function is 𝛿
←

: 2𝑄 −→ 2𝐺×2𝑄 is a function from 𝜌2 ∈ 2𝑄

to a subset of 𝐺× 2𝑄 that satisfies the following properties for any 𝜚𝜚𝜚2 ∈ 2𝑄:

∙ Non-generator exclusion. For all (𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜚𝜚𝜚2), the case 𝜚𝜚𝜚1 is a generator case of
𝛿
←
𝜌(𝜚𝜚𝜚2)—each subset of 𝜚𝜚𝜚1 transitions to a subset of 𝜚𝜚𝜚2:

∀𝜌1 ⊆ 𝜚𝜚𝜚1. ∃𝜌2 ⊆ 𝜚𝜚𝜚2. 𝜌1→
G
𝜌2 (3.7)

By the monotonicity of →G , the sufficient condition to supply this property is that all
the cases 𝜚𝜚𝜚1 from 𝛿

←
(𝜚𝜚𝜚2) are predecessors of some subset of 𝜚𝜚𝜚2.

∙ Guard disjointness. For each guardable symbol 𝑔, a unique (𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜚𝜚𝜚2) exists, such
that 𝑔 ⊣ 𝛾:

∀𝑔 ∈ Σ𝐺. ∃!(𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜚𝜚𝜚2). 𝑔 ⊣ 𝛾 (3.8)

∙ Covering of all possibilities. If 𝜌1→𝑔
G
𝜌2, then 𝑔 with 𝜌1 must be covered in the backward

transition function.

∀𝜌1 ⊆ 𝑄. ∀𝜌2 ⊆ 𝜚𝜚𝜚2. ∀𝑔 ∈ Σ𝐺.

𝜌1→𝑔
G
𝜌2 =⇒ ∃(𝛾,𝜚𝜚𝜚1) ∈ 𝛿

←
(𝜚𝜚𝜚2). 𝑔 ⊣ 𝛾 ∧ 𝜌1 ⊆ 𝜚𝜚𝜚1

(3.9)

In the following text, we introduce the implementation of backward transition function
for the per-symbol AFA representation. We will prove that the implementation is valid—it
holds the three conditions stated above.

Backward transition for per-symbol AFA For the per-symbol AFA, the guards are
only the symbols. We cannot guard multiple symbols, therefore the backward transition
function only simply associates each symbol 𝜎 with the single generator case that is com-
posed of all the states leading by 𝜎 to some subset of 𝜚𝜚𝜚2:

𝛿
←

per-sym(𝜚𝜚𝜚2) =
{︀

(𝜎,𝜚𝜚𝜚1) | 𝜎 ∈ Σ𝑀 ∧ 𝜚𝜚𝜚1 = {𝑞 ∈ 𝑄 | ∃𝑟2 ⊆ 𝜚𝜚𝜚2. (𝑞, 𝜎, 𝑟2) ∈ Repper-sym}
}︀

(3.10)

The proof of the validity of 𝛿
←

per-sym(𝜚𝜚𝜚2) is trivial. By definition, the cases 𝜚𝜚𝜚1 are composed
of the states that lead to some subset of 𝜚𝜚𝜚2, therefore by the lemma 2, the 𝛿

←
per-sym(𝜚𝜚𝜚2)

contains only generator cases and satisfies (3.7). The disjointness of the guards (3.8) is
obviously satisfied. By the lemma 3, all states of each 𝜎-predecessor 𝜌1 must lead by 𝜎 to
some subset of 𝜚𝜚𝜚2. By definition, the generator case 𝜚𝜚𝜚1 is composed of all such states. The
condition (3.9) therefore holds.

Example 3. Given the AFA in Figure 3.1, the per-symbol backward transition function
returns the set

𝛿
←

per-sym(𝜚𝜚𝜚2) = {(𝑎, {𝑞2, 𝑞3}), (𝑏, {𝑞3, 𝑞4}), (𝑐, {𝑞1, 𝑞2, 𝑞3}), (𝑑, {𝑞3, 𝑞4})} (3.11)
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𝑞1 𝑞2 𝑞3 𝑞4

𝑞5 𝑞6 𝑞7

𝑞8

𝑐

𝑎
𝑐 𝑎, 𝑏,

𝑐, 𝑑 𝑏, 𝑑
𝑎

𝑎

𝜚𝜚𝜚2

Figure 3.1: Backward transition function example

3.3 Reduction from AFA Emptiness to WSTS Covering
We convert the emptiness problem of an AFA𝑀𝐺 = (𝑄,Σ𝐺, 𝐺, 𝐼𝑀 ,→

G
, 𝐹 ) to the coverability

problem of a downward-finite WSTS 𝑆 = (Σ, 𝐼,→,⪯) in a way that:

∙ Σ := 𝐶 — states of WSTS are the cases of AFA.

∙ 𝐼 := {𝐼𝑀} — initial states of WSTS are a singleton with the initial case of AFA.

∙ → := →G — transition function is the transition function of AFA.

∙ ⪯ := ⊇ — well-quasi-ordering relation is the superset relation, therefore, downward
closure 𝑋↓ is the set of all supersets of 𝑋 and upward closure 𝑋↑ is the set of all
subsets of 𝑋 respectively.

∙ 𝑃 ↓ := 2𝑄 ∖ {𝜌 ∈ 2𝑄 | 𝜌 |= 𝐹} — bad states are all cases, for which F is true.

Lemma 6. The system created the way stated above is a valid WSTS.

To see that the lemma holds, notice that the ⪯ relation is a preorder on a finite domain.
No infinite sequence that is purely non-increasing can exist. Therefore ⪯ is a well-quasi-
order. The monotonicity of →G is proved in 4.

Lemma 7. The generated WSTS 𝑆 is covered by 𝑃 ↓ iff the AFA M is empty.

Proof. Recall the definition of covering:

Covers(𝑃 ↓, 𝑆)
def⇔ ∀𝜌 ∈ 𝐼. @𝜌′ /∈ 𝑃 ↓. 𝜌→* 𝜌′

As→ =→G , the reflexive and transitive closure 𝜌0 →* 𝜌𝑚 is apparently equivalent to the
existence of a run 𝜌 = 𝜌0𝑔1𝜌1 . . . 𝑔𝑚𝜌𝑚. We have one initial WSTS state 𝐼𝑀 , which is the
initial case of AFA. For each WSTS state 𝜌′, if 𝐼𝑀 →* 𝜌′, then there exists a commencing
run to 𝜌′. If 𝜌′ is a bad state (final AFA case), the run is also terminating (and thus
accepting). As 𝑃 ↓ is a complement of bad states, the 𝜌′ is a bad state iff 𝜌′ ̸∈ 𝑃 ↓.
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3.4 General IIC
The IIC algorithm decides whether a downward-closed set 𝑃 ↓ covers all reachable states of
a well-structured transition system.

State of the IIC algorithm consists of a sequence 𝑅 of downward-closed sets of states
𝑅↓

0𝑅
↓
1 . . . 𝑅

↓
𝑁 and a queue 𝒬 of counter-example candidates. We write 𝑅|𝒬 to represent

the algorithm state. Set 𝑅↓
𝑖 is an over-approximated set of states that are reachable in 𝑖

steps of WSTS. The number 𝑁 is the currently analysed step of the system. It will increase
during the algorithm (via the Unfold rule). Queue 𝒬 is a set of (𝜅, 𝑖) pairs where 𝜅 is an
upward closed set of states from which we are sure that a bad state can be reached, and 𝜅
is reachable in 𝑖 steps. The pairs from 𝒬 will be called counter-example candidates—if 𝜅 is
reachable from an initial state, the set 𝑃 ↓ does not cover the WSTS. We write 𝑚𝑖𝑛 𝒬 to
denote a set of pairs with minimal 𝑖. In addition, there is a special algorithm state Init and
two terminating states: Unsafe means that we proved that a state out of 𝑃 ↓ is reachable,
Safe is a proof that 𝑃 ↓ contains all reachable states. When the algorithm terminates, the
inductive invariant is the sequence of the over-approximated steps 𝑅, and the size of the
invariant is the size of the representation of 𝑅 (we will talk about the representation later).

The state of the algorithm is modified by application of transition rules, until the Safe
or Unsafe state is reached.

Before introducing the particular transition rules, we quote that the algorithm is proved
for soundness [15]. Moreover, if the WSTS is downward-finite, it is guaranteed to terminate
[15]. The WSTS of AFA is downward-finite, because the state space of AFA is finite.

Transition rules The following discussion will be devoted to the transition rules of the
IIC. The rules are presented in Figure 3.2, in the form:

𝐶1 · · ·𝐶𝑘

𝜎 ↦→ 𝜎′
(3.12)

We can apply a rule if the algorithm is in the state 𝜎 and conditions 𝐶1 · · ·𝐶𝑘 are met,
𝜎′ is then a new state. We will introduce the rules, specialize them for our instance of the
IIC and explain their purpose.

We provide a brief description of the functionality of each of the transition rules. To
be closer to the definition of the rules, we talk about them in terms of WSTS (note that in
case of AFA, states of WSTS are cases), unless stated otherwise:

∙ Initialize — The rule initializes the algorithm state. Note that in terms of AFA, the
downward closure (all supersets) of the initial case can be expressed as a complement
of upward closure (all subsets) of all cases that are not supersets of 𝐼𝑀 :

𝐼↓ = {𝐼𝑀}↓ = 2𝑄 ∖ {𝑄 ∖ {𝑞} | 𝑞 ∈ 𝐼𝑀}↑

∙ Valid — The rule detects the convergence of the algorithm.

∙ ModelSem — A counter-example candidate, representing a run from an initial to a
bad state, has been found.

∙ ModelSyn — A counter-example candidate, representing a run from the zero step
(where only initial states are present) to a bad state, has been found.
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∙ Unfold — No bad state can be reached in up to 𝑁 steps. We start to analyze the
step 𝑁 + 1. We begin with an over-approximating assumption that any state can be
reached in the step 𝑁+1. This over-approximation then gets refined by the Conflict
rule.

∙ Candidate — The currently analysed step 𝑁 contains states out of 𝑃 ↓, we add one
of them to the queue of counter-example candidates to check if it is really reachable,
or is present in the step 𝑁 only because of the over-approximation (in this case the
step 𝑁 is refined by the Conflict rule).

∙ Conflict — We have found out that the candidate 𝜅↑ cannot be reached from the
step 𝑖 − 1. We therefore remove the candidate and refine the step 𝑖, by removing
the upward closure of 𝛽 from the step 𝑖. The generalization (more detail in 3.5) is
a state 𝛽 that is subsumed by 𝜅 (in terms of AFA, the case 𝛽 is a superset of 𝜅)
and as well as 𝜅, it cannot be reached from the state 𝑖− 1. The states that subsume
𝛽 are unreachable not only in the step 𝑖, but also in the steps 1, · · · , 𝑖 (see [15] for
explanation and proof). We therefore remove them also from those steps.

∙ Decide — In contrast with the rule Conflict, we have found a predecessor of the
candidate (𝜅, 𝑖) in the step 𝑖 − 1. We add the predecessor (𝜅′, 𝑖 − 1) to the queue of
counter-example candidates.

∙ Induction — We have found out that a state 𝛽𝑖,𝑗 (and its upward closure) that is
unreachable in step 𝑖, is also unreachable in the step 𝑖+ 1. We remove the states also
from the state 𝑖+ 1. Note that here we can apply the generalization too.

Valid
∃𝑖 < 𝑁. 𝑅↓

𝑖 = 𝑅↓
𝑖+1

𝑅|𝒬 ↦→ Safe

ModelSem
(𝜅, 𝑖) ∈ 𝑚𝑖𝑛 𝒬 𝐼 ∩ 𝜅↑ ≠ ∅

𝑅|𝒬 ↦→ Unsafe

Decide
(𝜅, 𝑖) ∈ 𝑚𝑖𝑛 𝒬 𝑖 > 0 𝜅′ ∈ 𝑝𝑟𝑒(𝜅↑) ∩𝑅↓

𝑖−1 ∖ 𝜅↑
𝑅|𝒬 ↦→ 𝑅|𝒬.Push((𝜅′, 𝑖− 1))

Initialize

Init ↦→ 𝐼↓|∅

Unfold
𝑅↓

𝑁 ⊆ 𝑃 ↓

𝑅|∅ ↦→ 𝑅 · Σ|∅

Conflict
(𝜅, 𝑖) ∈ 𝑚𝑖𝑛 𝒬 𝑖 > 0 𝑝𝑟𝑒(𝜅↑) ∩𝑅↓

𝑖−1 ∖ 𝜅↑ = ∅ 𝛽 ∈ 𝐺𝑒𝑛𝑖−1(𝜅)

𝑅|𝒬 ↦→ 𝑅[𝑅↓
𝑘 ← 𝑅↓

𝑘 ∖ 𝛽↑]𝑖𝑘=1|𝒬.PopMin

Candidate
𝜅 ∈ 𝑅↓

𝑁 ∖ 𝑃 ↓

𝑅|∅ ↦→ 𝑅|(𝜅,𝑁)

ModelSyn
(𝜅, 0) ∈ 𝑚𝑖𝑛 𝒬
𝑅|𝒬 ↦→ Unsafe

Induction
𝑅↓

𝑖 = Σ ∖ {𝛽𝑖,1, . . . , 𝛽𝑖,𝑚}↑ 𝛽 ∈ 𝐺𝑒𝑛𝑖(𝛽𝑖,𝑗) for some 1 ≤ 𝑗 ≤ 𝑚
𝑅|∅ ↦→ 𝑅[𝑅↓

𝑘 ← 𝑅↓
𝑘 ∖ 𝛽↑]

𝑖+1
𝑘=1|∅

𝛽 ∈ 𝐺𝑒𝑛𝑖(𝜅)
def⇔ 𝛽 ⪯ 𝜅 ∧ 𝛽↑ ∩ 𝐼 = ∅ ∧ 𝑝𝑟𝑒(𝛽↑) ∩𝑅↓

𝑖 ∖ 𝛽↑ = ∅

Figure 3.2: IIC transition rules

To provide a better overview about how IIC works for AFA, we present an example of
the overall run of IIC on a per-symbol AFA in the tables 3.1 and 3.2.
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The analyzed per-symbol AFA is given by visualization, apparently 𝑃 ↓ = 2𝑄 ∖ {{𝑞4}}↑
Application of rules Visualization Notes
Init =⇒ Initialize
𝑅0 := 2𝑄 ∖ {{𝑞2, 𝑞3, 𝑞4}}↑
𝑄 := ∅ 𝑞1

𝑞2

𝑞3

𝑞4
𝑎

𝑎

𝑏
𝛽0,1

In the first step we cannot
reach any subset of 𝛽0,1 =
{𝑞2, 𝑞3, 𝑞4}. Note that we
use the notation 𝛽0,1, as in
the Induction rule.

N = 0
𝑅↓

0 ⊆ 𝑃 ↓ =⇒ Unfold
𝑅1 := 2𝑄

We start to analyze the
first step.

N = 1
𝑅↓

1 ∖ 𝑃 ↓ = {{𝑞4}}↑
=⇒ Candidate, 𝜅 = {𝑞4}
𝑄 := ({𝑞4}, 1)

𝑞1

𝑞2

𝑞3

𝑞4

𝜅

𝑎
𝑎

𝑏

In the first step, a final
case 𝜅 is reachable. We set
up a new counter-example
candidate.

(𝜅, 𝑖) = ({𝑞4}, 1) ∈ 𝑚𝑖𝑛 𝒬
𝑝𝑟𝑒(𝜅↑) = {{𝑞2}, {𝑞3}}↑
𝑅0 = 2𝑄 ∖ {{𝑞2, 𝑞3, 𝑞4}}↑
𝑝𝑟𝑒(𝜅↑) ∩𝑅0 = ∅ =⇒ Conflict
𝛽 := {𝑞2, 𝑞4}
𝛽 ⪯ 𝜅 : {𝑞2, 𝑞4} ⊇ {𝑞4}
𝛽↑ ∩ 𝐼 = ∅ :
{{𝑞2, 𝑞4}}↑ ∩ {{𝑞1}} = ∅

𝑝𝑟𝑒(𝛽↑) = {{𝑞2}, {𝑞3}}↑
𝑝𝑟𝑒(𝛽↑) ∩𝑅↓

0 = ∅
=⇒ 𝛽 ∈ 𝐺𝑒𝑛0(𝜅)

𝑅1 := 2𝑄 ∖ {{𝑞2, 𝑞4}}↑
𝒬.PopMin (𝒬 = ∅)

𝑞1

𝑞2

𝑞3

𝑞4 𝜅
𝑎

𝑎

𝑏

𝛽0,1

𝑝𝑟𝑒(𝜅↑)1

𝑝𝑟𝑒(𝜅↑)2

𝑞1

𝑞2

𝑞3

𝑞4 𝜅
𝑎

𝑎

𝑏

𝛽0,1

𝑝𝑟𝑒(𝛽↑)1

𝑝𝑟𝑒(𝛽↑)2

𝛽=𝛽1,1

We can see that no pre-
decessor of the candidate
𝜅↑ is reachable in the zero
step. We apply the Con-
flict rule to refine the step
𝑅1. By generalization, we
find a superset of 𝜅 that is
also unreachable, and re-
move its upward closure
from 𝑅1. Note that we
could have picked also 𝛽 =
{𝑞3, 𝑞4} or 𝛽 = {𝑞4}.

𝑅↓
1 ⊆ 𝑃 ↓ =⇒ Unfold

𝑅2 := 2𝑄
We start to analyze the
second step.

N = 2
𝑅↓

2 ∖ 𝑃 ↓ = {{𝑞4}}↑
=⇒ Candidate, 𝜅 = {𝑞4}
𝑄 := ({𝑞4}, 2)

𝑞1

𝑞2

𝑞3

𝑞4

𝜅

𝑎
𝑎

𝑏

In the second step, a final
case 𝜅 is reachable. We set
up a new counter-example
candidate.

(𝜅, 𝑖) = ({𝑞4}, 2) ∈ 𝑚𝑖𝑛 𝒬
𝑝𝑟𝑒(𝜅↑) = {{𝑞2}, {𝑞3}}↑
𝑅1 = 2𝑄 ∖ {{𝑞2, 𝑞4}}↑
𝑝𝑟𝑒(𝜅↑) ∩𝑅1 ∖ 𝜅↑ = {𝑞3}↑
=⇒ Decide, 𝜅′ = {𝑞3}
𝒬.Push(({𝑞3}, 1))
(𝒬 = {({𝑞3}, 1), ({𝑞4}, 2)})

𝑞1

𝑞2

𝑞3𝜅′

𝑞4 𝜅
𝑎

𝑎

𝑏

𝑝𝑟𝑒(𝛽↑)1

𝑝𝑟𝑒(𝛽↑)2

𝛽1,1
We have found a predeces-
sor of the counter-example
candidate 𝜅↑ in the first
step. The predecessor is a
new candidate (𝜅′, 1).

Table 3.1: Example of IIC, part 1
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Application of rules Visualization Notes
(𝜅, 𝑖) = ({𝑞3}, 1) ∈ 𝑚𝑖𝑛 𝒬
𝑝𝑟𝑒(𝜅↑) = {∅}↑
𝑅0 = 2𝑄 ∖ {{𝑞2, 𝑞3, 𝑞4}}↑
𝑝𝑟𝑒(𝜅↑) ∩𝑅0 = ∅ =⇒ Conflict
𝛽 := {𝑞3, 𝑞4}
𝛽 ⪯ 𝜅 : {𝑞3, 𝑞4} ⊇ {𝑞3}
𝛽↑ ∩ 𝐼 = ∅ :
{{𝑞3, 𝑞4}}↑ ∩ {{𝑞1}} = ∅

𝑝𝑟𝑒(𝛽↑) = {{𝑞2}, {𝑞3}}↑
𝑝𝑟𝑒(𝛽↑) ∩𝑅↓

0 = ∅
=⇒ 𝛽 ∈ 𝐺𝑒𝑛0(𝜅)

𝑅1 := 2𝑄 ∖ {{𝑞2, 𝑞4}, {𝑞3, 𝑞4}}↑
𝒬.PopMin (𝒬 = {({𝑞4}, 2)})

𝑞1

𝑞2

𝑞3

𝜅

𝑞4
𝑎

𝑎

𝑏

𝛽0,1

𝑞1

𝑞2

𝑞3

𝜅

𝑞4
𝑎

𝑎

𝑏

𝛽0,1 𝑝𝑟𝑒(𝛽↑)1

𝑝𝑟𝑒(𝛽↑)2𝛽=𝛽1,2

We can see that no pre-
decessor of the candidate
𝜅↑ is reachable in the zero
step. We apply the Con-
flict rule to refine the step
𝑅1. By generalization, we
find a superset of 𝜅 that is
also unreachable, and re-
move its upward closure
from 𝑅1. Note that we
could have picked also 𝛽 =
{𝑞3}.

(𝜅, 𝑖) = ({𝑞4}, 2) ∈ 𝑚𝑖𝑛 𝒬
𝑝𝑟𝑒(𝜅↑) = {{𝑞2, 𝑞3}}↑
𝑅1 = 2𝑄 ∖ {{𝑞2, 𝑞4}, {𝑞3, 𝑞4}}↑
𝑝𝑟𝑒(𝜅↑) ∩𝑅1 = ∅ =⇒ Conflict
𝛽 := {𝑞2, 𝑞4}
𝛽 ⪯ 𝜅 : {𝑞2, 𝑞4} ⊇ {𝑞4}
𝛽↑ ∩ 𝐼 = ∅ :
{{𝑞2, 𝑞4}}↑ ∩ {{𝑞1}} = ∅

𝑝𝑟𝑒(𝛽↑) = {{𝑞2}, {𝑞3}}↑
𝑝𝑟𝑒(𝛽↑) ∩𝑅↓

1 = ∅
=⇒ 𝛽 ∈ 𝐺𝑒𝑛1(𝜅)

𝑅2 := 2𝑄 ∖ {{𝑞2, 𝑞4}}↑
𝒬.PopMin (𝒬 = ∅)

𝑞1

𝑞2

𝑞3

𝑞4 𝜅
𝑎

𝑎

𝑏

𝑝𝑟𝑒(𝜅↑)1

𝑝𝑟𝑒(𝜅↑)2

𝛽1,1

𝛽1,2

𝑞1

𝑞2

𝑞3

𝑞4 𝜅
𝑎

𝑎

𝑏

𝑝𝑟𝑒(𝛽↑)1

𝑝𝑟𝑒(𝛽↑)2

𝛽=𝛽2,1=𝛽1,1

𝛽1,2

We can see that no pre-
decessor of the candidate
𝜅↑ is reachable in the first
step. We apply the Con-
flict rule to refine the step
𝑅2. By generalization, we
find a superset of 𝜅 that is
also unreachable, and re-
move its upward closure
from 𝑅2. Note that we
could have picked also 𝛽 =
{𝑞3, 𝑞4} or 𝛽 = {𝑞4}.

𝑖 := 1
𝑅1 = 2𝑄 ∖ {{𝑞2, 𝑞4}, {𝑞3, 𝑞4}}↑
𝑗 := 2, 𝛽𝑖,𝑗 = {𝑞3, 𝑞4}
𝛽 := {𝑞3, 𝑞4}
𝛽 ⪯ 𝛽𝑖,𝑗 : {𝑞3, 𝑞4} ⊇ {𝑞3, 𝑞4}
𝛽↑ ∩ 𝐼 = ∅ :

{{𝑞3, 𝑞4}}↑ ∩ {{𝑞1}} = ∅
𝑝𝑟𝑒(𝛽↑) = {{𝑞2}, {𝑞3}}↑
𝑝𝑟𝑒(𝛽↑) ∩𝑅↓

1 = ∅
=⇒ 𝛽 ∈ 𝐺𝑒𝑛1(𝜅)
=⇒ Induction
𝑅2 := 2𝑄 ∖ {{𝑞2, 𝑞4}, {𝑞3, 𝑞4}}↑

𝑞1

𝑞2

𝑞3

𝑞4
𝑎

𝑎

𝑏

𝑝𝑟𝑒(𝛽1,2↑)1

𝑝𝑟𝑒(𝛽1,2↑)2

𝛽1,1

𝛽1,2

𝑞1

𝑞2

𝑞3

𝑞4
𝑎

𝑎

𝑏

𝛽=𝛽2,2

We have found out that
none of the predecessors
of 𝛽1,2↑ is reachable in the
first step, so 𝛽1,2↑ is un-
reachable also in the sec-
ond step. We can refine
the second step. No big-
ger generalization of 𝛽1,2
exists in this case. Note
that the formal definition
of this rule conveniently
uses the existence of gen-
eralization to find out that
𝛽1,2 is unreachable.

𝑅1 = 𝑅2 =⇒ Valid IIC has converged.

Table 3.2: Example of IIC, part 2
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3.5 IIC Implementation
Similarly to the Petri net coverability instance of IIC described in [15], we represent the
steps 𝑅↓

1, · · · , 𝑅
↓
𝑁 as so-called stages 𝐵1, · · · , 𝐵𝑁 , which are themselves sets of blockers 𝛽.

Blocker 𝛽 is a case about which we are sure that its upward closure is unreachable in the
step 𝑅↓

𝑖 (and also in the steps 𝑅↓
0 · · ·𝑅

↓
𝑖−1, as explained subsequently).

As proved in [15], the algorithm holds the invariant 𝑅↓
𝑖 ⊆ 𝑅

↓
𝑖+1, so if a blocker exists in

the stage 𝑖, its upward closure (subsets) is unreachable also in the steps 0, · · · , 𝑖 − 1. We
therefore do not need to have any of the blockers from 𝐵𝑖↑ present in the stages 𝐵0, · · · , 𝐵𝑖−1.
On the contrary, we assure in our implementation that such blockers are not present in the
stages 𝐵0, · · · , 𝐵𝑖−1: if 𝑗 < 𝑖, then @𝛽𝑗 ∈ 𝐵𝑗 .∃𝛽𝑖 ∈ 𝐵𝑖. 𝛽𝑖 ⪯. Similarly, if a blocker 𝛽1 exists
in 𝐵𝑖, all the other blockers 𝛽2 ∈ 𝐵𝑖, such that 𝛽1 ⪯ 𝛽2, would be redundant (𝛽1 already
represents its upward closure), and we assure that they do not exist. Equivalence of any
two successive steps 𝑅↓

𝑘 and 𝑅↓
𝑘+1 is then easily checked by 𝐵𝑘 = ∅. The blockers in stages

represent the inductive invariant and number of blockers is its size.
At any point of the IIC algorithm, stages 𝐵𝑖∪· · ·∪𝐵𝑁 represent an under-approximation

of cases that are not reachable in 𝑖 or less steps of the AFA. Set 𝑅↓
𝑖 = Σ ∖ 𝐵𝑖↑ ∪ · · · ∪ 𝐵𝑁↑

is then an over-approximation of the reachable cases.
As for the implementation of the queue 𝒬, the new counter-example candidates are

added by transition rules Candidate and Decide. Before applying the former rule, the
queue 𝒬 is empty. The latter rule adds a candidate with a step index 𝑖 − 1. It is smaller
than the actual minimal step index 𝑖, so in both cases the added candidate will be the
new 𝑚𝑖𝑛 𝒬. The rule Conflict is the only rule that removes candidates. It removes only
the candidates 𝑚𝑖𝑛 𝒬. The queue of counter-example candidates 𝒬 can be apparently
conveniently implemented as a stack, where 𝑚𝑖𝑛 𝒬 is always at the root of the stack.

The following paragraphs talk about the actual implementation of each of the IIC tran-
sition rules, which are summarized in Figure 3.2. For the reader’s convenience, we present
the formal definition of the general transition rules again with each discussion about the
rule. In the description of each rule, the text above the formal definition is a note only
about the general version of the rule (more verbose than the note in the introductory section
3.4) while the text below the formal definition is a description of the implementation.

Initialize The rule initializes the state of the algorithm. We start with an empty queue
𝒬 and the zero step is initialized with downward closure of the initial states of WSTS.

Init ↦→ 𝐼↓|∅
(3.13)

In the WSTS of AFA, we have one initial state, which is the initial case 𝐼𝑀 . We want
to represent 𝐼𝑀↓ as a set of blockers 𝐵0, such that

𝐼𝑀↓ = Σ ∖𝐵0↑ = 2𝑄 ∖𝐵0↑

In terms of AFA, the upward closure 𝐵0↑ contains all cases, that do not include 𝐼𝑀 — all
cases, from which any state from 𝐼𝑀 is missing. The generator of those cases is apparently

𝐵0 = {𝑄 ∖ {𝑞} | 𝑞 ∈ 𝐼𝑀} (3.14)

The index of the actually analyzed step is set to 𝑁 := 0.
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Valid This rule checks for convergence of IIC. By [15], if any two consecutive steps are
equal (the first of any two consecutive stages has no blockers), the algorithm converges and
the emptiness of AFA is proved.

∃𝑖 < 𝑁. 𝑅↓
𝑖 = 𝑅↓

𝑖+1

𝑅|𝒬 ↦→ Safe (3.15)

As noted in the introduction to the section 3.5, equivalence of any two successive steps
𝑅↓

𝑖 and 𝑅↓
𝑖+1 is easily checked by 𝐵𝑘 = ∅. As advised in [15], we call this rule any time it

is applicable—after every change to the stages (after application of the rules Conflict and
Induction).

Unfold If the candidate queue is empty, it means that we have proved that no previously
queued counter-example candidate is reachable from any initial case. As 𝑅↓

𝑁 ⊆ 𝑃 ↓, we
cannot apply the rule Candidate to add a new one — we have proved so far that no
bad state is reachable in 𝑁 steps. We start to explore a new step. We begin with an
over-approximating assumption that in the new step, all WSTS states are reachable.

𝑅↓
𝑁 ⊆ 𝑃 ↓

𝑅|∅ ↦→ 𝑅 · Σ|∅
(3.16)

We adjust the problem of inclusion to an equivalent one

𝑅↓
𝑁 ⊆ 𝑃

↓ ⇔ @𝜌 ∈ 𝑅↓
𝑁 ∩ Σ ∖ 𝑃 ↓ (3.17)

The set 𝑃 ↓ is defined by means of the negative formula 𝐹 that determines final cases of
AFA, and its complement is:

Σ ∖ 𝑃 ↓ := {𝜌 ∈ 2𝑄 | 𝜌 |= 𝐹}

As the cardinality of this complement could be exponential to the size of the formula
𝐹 , we avoid evaluating it. Instead, by the following adjustments, we construct a positive
formula 𝐻 ⊆ F+

𝑄 that determines presence of a case 𝜌 in 𝑅↓
𝑁 , to be able to check the

inclusion by a SAT solver.
The actually analyzed step 𝑅↓

𝑁 is represented by a stage 𝐵𝑁 ⊆ 2𝑄 as

𝑅↓
𝑁 = 2𝑄 ∖𝐵𝑁↑ = {𝑥 ∈ Σ | @𝛽 ∈ 𝐵𝑁 . 𝛽 ⪯ 𝑥} = {𝜌 ∈ 2𝑄 | @𝛽 ∈ 𝐵𝑁 . 𝜌 ⊆ 𝛽}

By words, 𝑅↓
𝑁 contains all those cases that are not subsets of any 𝛽 ∈ 𝐵𝑁 . For given

𝛽 ∈ 2𝑄, the cases that are not included in 𝛽 are those that contain a state out of 𝛽:

𝑅↓
𝑁 =

⎧⎨⎩𝜌 ∈ 2𝑄

⃒⃒⃒⃒
⃒⃒ ∀𝛽 ∈ 𝐵𝑁 .

⋁︁
𝑞 ̸∈𝛽

𝑞 ∈ 𝜌

⎫⎬⎭ =

⎧⎨⎩𝜌 ∈ 2𝑄

⃒⃒⃒⃒
⃒⃒ 𝜌 |= ⋀︁

𝛽∈𝐵𝑁

⋁︁
𝑞 ̸∈𝛽

𝑞

⎫⎬⎭
By this adjustment, we have obtained the formula 𝐻 =

⋀︀
𝛽∈𝐵𝑁

⋁︀
𝑞 ̸∈𝛽 𝑞 and we can finally

rewrite the inclusion (3.17) as

𝑅↓
𝑁 ⊆ 𝑃

↓ ⇔ @𝜌 ∈ 2𝑄. 𝜌 |= 𝐹 ∧𝐻 ⇔ ¬𝑆𝐴𝑇

⎛⎝𝐹 ∧ ⋀︁
𝛽∈𝐵𝑁

⋁︁
𝑞 ̸∈𝛽

𝑞

⎞⎠ (3.18)

By use of a SAT solver, we find out whether 𝑅↓
𝑁 ⊆ 𝑃 ↓. If so, a new stage 𝐵𝑁+1 = ∅ is

added. It is empty because of the over-approximation — no unreachable states are assumed
to exist. The index of the actually analyzed step 𝑁 is then increased to 𝑁 := 𝑁 + 1.
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Candidate The candidate queue is empty, it means that we have proved that no previ-
ously queued counter-example candidate is reachable from any initial state. If the currently
analyzed step 𝑅↓

𝑁 still contains bad states, we have to add one of those bad states as a
candidate into the queue. Note that this rule is applied if the condition 𝑅↓

𝑁 ⊆ 𝑃 ↓ of the
Unfold rule is not satisfied.

𝜅 ∈ 𝑅↓
𝑁 ∖ 𝑃 ↓

𝑅|∅ ↦→ 𝑅|(𝜅,𝑁)
(3.19)

We obtain the candidate 𝜅 as a witness of the SAT, solved in the Unfold rule. Then
we push it to the empty stack 𝒬.

Observing the behaviour of existing SAT solvers, we have found out that the solvers
mostly return witnesses 𝜅 that are small in cardinality. This is not very convenient for IIC
because from small candidates, smaller blockers are created by the Conflict rule, and the
refinement is thus slower. We overcome this problem by negating the literals in 𝐹 and 𝐻.
Then the witness is a complement of 𝜅 that is small in cardinality, and 𝜅 is therefore big.

ModelSem A counter-example (𝜅, 𝑖) witnesses the existence of a path to a bad state—
from all states that subsume 𝜅, a bad state can be reached. If an initial state exists that
subsumes 𝜅 (the state is in the 𝜅↑), a bad state can be reached from the initial state. The
counter-example therefore witnesses the non-emptiness of AFA.

(𝜅, 𝑖) ∈ 𝑚𝑖𝑛 𝒬 𝐼 ∩ 𝜅↑ ≠ ∅
𝑅|𝒬 ↦→ Unsafe (3.20)

As we have only one initial state—the case 𝐼𝑀 , the condition can be checked as (𝜅, 𝑖) ∈
𝑚𝑖𝑛 𝒬 𝐼𝑀 ⊆ 𝜅.

This rule is checked after adding a candidate into the queue 𝒬. This happens in the
Conflict and Candidate rules. For the Candidate rule, it is sufficient to check 𝐼𝑀 ̸|= 𝐹
only once, at the beginning.

For the case of 𝑖 = 0, we can apply a simpler ModelSyn rule instead.

ModelSyn A counter-example (𝜅, 𝑖) witnesses the existence of a path to a bad state—
from all states that subsume 𝜅, a bad state can be reached. The zero step contains upward
closure of 𝐼↑. If 𝜅 is reachable in the zero step, it means that some initial state subsumes
𝜅 and a bad state can be reached from the initial state. The counter-example 𝜅 therefore
witnesses the non-emptiness of AFA.

(𝑎, 0) ∈ 𝑚𝑖𝑛 𝒬
𝑅|𝒬 ↦→ Unsafe (3.21)

Checking 𝑖 = 0 is much less computationally expensive than checking the condition of
the ModelSem rule. That is probably the purpose of this rule in IIC.

Decide This transition rule serves as an induction step to prove the reachability of bad
states. We have a counter-example candidate (𝜅, 𝑖). Induction hypothesis: We know that
from all states that subsume 𝜅, a bad state is reachable. We also know that no initial
state subsumes 𝜅. Induction step: The candidate 𝜅 is over-approximatingly assumed to be
reachable from an initial state in 𝑖 steps. We want to prove (or contradict; see the Conflict
rule) this assumption.
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Apparently, to be reachable from an initial state, some state of 𝜅′ ∈ 𝑝𝑟𝑒(𝜅↑) must exist
in the over-approximation 𝑅↓

𝑖−1 of states reachable in 𝑖 − 1 steps. Moreover, as justified
by the subsequent reasoning, we are not interested in states 𝜅′ that subsume 𝜅. By the
lemma 8 it holds that if only states that subsume 𝜅 would be predecessors of 𝜅, then their
predecessors would subsume 𝜅 too, etc. No state in the chain of predecessors would be
therefore subsumed by initial states 𝐼. By monotonicity, 𝜅 is then not reachable. Note that
to keep the description simple, this is more of intuition than formal proof. For more precise
explanation (with use of relative inductivity), please refer to [15].

Lemma 8. ∀𝑋 ⊆ Σ. 𝑝𝑟𝑒(𝑋) ⊆ 𝑋 =⇒ 𝑝𝑟𝑒(𝑝𝑟𝑒(· · · 𝑝𝑟𝑒(𝑋))) ⊆ 𝑋

sketch. By definition,

𝑝𝑟𝑒(𝑋) = {𝑥1 ∈ Σ | ∃𝑥2 ∈ 𝑋. 𝑥1 → 𝑥2}

By substition,

𝑝𝑟𝑒(𝑝𝑟𝑒(𝑋)) = {𝑥1 ∈ Σ | ∃𝑥2 ∈ 𝑝𝑟𝑒(𝑋) ⊆ 𝑋. 𝑥1 → 𝑥2}

etc.
Apparently, 𝑝𝑟𝑒(𝑝𝑟𝑒(𝑋)) ⊆ 𝑝𝑟𝑒(𝑋) ⊆ 𝑋.

If find a 𝜅′ that conforms the conditions stated above, we perform the induction step
by adding a new candidate (𝜅′, 𝑖 − 1) into the queue 𝒬. Reachability of (𝜅′, 𝑖 − 1) will be
thus decided afterwards: If 𝜅′ is reachable (ModelSem), then a bad state is reachable.
Otherwise, the step 𝑅↓

𝑖−1 will have been refined by the Conflict rule, before the candidate
(𝜅, 𝑖) will be checked again with the rules Decide/Conflict.

We recall the transition rule here:

(𝜅, 𝑖) ∈ 𝑚𝑖𝑛 𝒬 𝑖 > 0 𝜅′ ∈ 𝑝𝑟𝑒(𝜅↑) ∩𝑅↓
𝑖−1 ∖ 𝜅↑

𝑅|𝒬 ↦→ 𝑅|𝒬.Push((𝜅′, 𝑖− 1))
(3.22)

In terms of AFA, the function 𝑝𝑟𝑒 finds all predecessors of subsets of the case 𝜅. This
problem has been already expressed in (3.5) by the function 𝛿

←
𝜌. And we have shown in

the lemma 5 that the function 𝛿
←
𝜌 returns an upward-closed set of cases. We have described

in 3.2 the approaches we use to find a generator of the upward closed set 𝑝𝑟𝑒(𝜅↑)↑ by the
function 𝛿

←
(𝜅). By the condition (3.7), the function 𝛿

←
(𝜅) finds only the predecessors of 𝜅

and by the condition (3.9), it finds all of the predecessors.
From the definition of the rule, the case 𝜅′ ∈ 𝑝𝑟𝑒(𝜅↑) must not be a subset of 𝜅, and

it must be contained in 𝑅↓
𝑖−1. As 𝑅↓

𝑖−1 = 2𝑄 ∖ 𝐵𝑖−1↑ ∪ · · · ∪ 𝐵𝑁↑, this can be reformulated
in a way that the case 𝜅′ must be neither a subset of 𝜅, nor a subset of any blocker
𝛽 ∈ 𝐵𝑖−1 ∪ · · · ∪ 𝐵𝑁↑. By the property (3.9), such a 𝜅′ has some superset 𝜚𝜚𝜚1 in 𝛿

←
(𝜅). As

the generator case 𝜚𝜚𝜚1 is a superset of 𝜅′, it is as well as 𝜅′, neither a subset of 𝜅, nor of any
blocker. By (3.7), 𝜚𝜚𝜚1 ∈ 𝑝𝑟𝑒(𝜅↑).

We can therefore pick the new candidate 𝜅′ only from generator cases returned by 𝛿
←

(𝜅):

(𝛾, 𝜅′) ∈ {(𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜅) | 𝜚𝜚𝜚1 ̸⊆ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪ {𝜅}} (3.23)

If such a 𝜅′ exists, we push it to the stack 𝒬.
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Conflict In contrast with the Decide rule, we have found out that the over-approxima-
tion of the step 𝑅↓

𝑖−1 does not contain any predecessor of 𝜅↑, or all the predecessors of 𝜅↑
subsume 𝜅. We thus know that 𝜅↑ is not reachable in 𝑖 steps — it did represent a spurious
counter-example. We therefore remove it from the candidate queue and refine the step 𝑅↓

𝑖 ,
so that it would not contain 𝜅↑. Rather than removing 𝜅↑ from the step 𝑅↓

𝑖 , we remove
its generalization — upward closure of a state 𝛽 that is subsumed by 𝜅 and, as well as
𝜅, it is unreachable in 𝑖 steps. The 𝛽 is unreachable not only in the step 𝑅↓

𝑖 , but in all
steps 𝑅↓

1 · · ·𝑅
↓
𝑖 , so we remove it from all those steps, so that the algorithm would hold the

invariant 𝑅↓
𝑘 ⊆ 𝑅

↓
𝑘+1 for all 𝑘 < 𝑁 (for more details, see [15]).

Conflict:
(𝜅, 𝑖) ∈ 𝑚𝑖𝑛 𝒬 𝑖 > 0 𝑝𝑟𝑒(𝜅↑) ∩𝑅↓

𝑖−1 ∖ 𝜅↑ = ∅ 𝛽 ∈ 𝐺𝑒𝑛𝑖−1(𝜅)

𝑅|𝒬 ↦→ 𝑅[𝑅↓
𝑘 ← 𝑅↓

𝑘 ∖ 𝛽↑]𝑖𝑘=1|𝒬.PopMin
(3.24)

This rule is applied if no 𝜅′ is found in the rule Conflict, such that would satisfy the
equation (3.23). It means that we could find blockers 𝑏 ∈ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 that subsume all
the predecessors of 𝜅. By use of those blockers, we compute a generalization 𝛽 (described
subsequently) of the candidate 𝜅. The generalization 𝛽 will be a new blocker for the
stage 𝐵𝑖. Before adding 𝛽 to 𝐵𝑖, as noted in the beginning of the section 3.5, we must
assure that no redundant blocker exists. Since each step 𝑘 is represented by stages as
𝑅↓

𝑘 = 2𝑄 ∖𝐵𝑘↑ · · · · · ·𝐵𝑁↑, the new blocker 𝛽 applies to all steps 𝑘 = 1, · · · , 𝑖. We therefore
remove all the blockers that are subsets of 𝛽 from the stages 𝑗 = 1, · · · , 𝑖, because they are
redundant. Then we add 𝛽 to the stage 𝐵𝑖.

Generalization Generalization is an important component of the rules Conflict and
Induction. It is the most vaguely defined part of the IIC and a big part of our contribution
is the specialization of generalization for AFA.

We apply generalization 𝐺𝑒𝑛𝑖−1(𝜅) to cheaply create a blocker 𝛽 that is subsumed by
𝜅. The blocker 𝛽 is then going to be added to the stage 𝑖. The new blocker 𝛽 should hold
some properties (that are known to be held by 𝜅): It should not subsume any initial state
and it should not be reachable in 𝑖− 1 steps.

𝛽 ∈ 𝐺𝑒𝑛𝑖−1(𝜅)
def⇔ 𝛽 ⪯ 𝜅 ∧ 𝛽↑ ∩ 𝐼 = ∅ ∧ 𝑝𝑟𝑒(𝛽↑) ∩𝑅↓

𝑖−1 ∖ 𝛽↑ = ∅ (3.25)

We break the condition for valid generalizations into these three restrictions (the first
and the second one are conveniently translated into terms of AFA):

𝛽 ⊇ 𝜅 (3.26a)
𝛽 ̸⊇ 𝐼𝑀 (3.26b)

𝑝𝑟𝑒(𝛽↑) ∩𝑅↓
𝑖−1 ∖ 𝛽↑ = ∅ (3.26c)

We know that 𝜅↑ does not have predecessors in the step 𝑅↓
𝑖−1. It means that we have

found a blocker 𝑏 for each pair (𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜅), such that 𝜚𝜚𝜚1 ⊆ 𝑏—this fact is formulated in
the lemma 9. We associate the corresponding guards 𝛾 with the blockers 𝑏, one blocker for
each pair (𝛾,𝜚𝜚𝜚1):
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Б ⊆ {(𝑏, 𝛾) | 𝑏 ∈ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪ {𝜅} ∧ (𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜅) ∧ 𝜚𝜚𝜚1 ⊆ 𝑏}
∀(𝛾,𝜚𝜚𝜚1) ∈ 𝛿

←
(𝜅). ∃!(𝑏, 𝛾′) ∈ Б. 𝛾 = 𝛾′

(3.27)

Lemma 9. If the precondition for Conflict is satisfied, then for each pair (𝛾,𝜚𝜚𝜚1) ∈ 𝛿
←

(𝜅),
exists a pair (𝑏, 𝛾) ∈ Б such that 𝜚𝜚𝜚1 ⊆ 𝑏.

The generalization is computed by a use of Б in the following way:

𝛽 := 𝑄 ∖ (MinimumHittingSet ∘AssureKappaDisjoint ∘ ForbiddenCases)(Б) (3.28)

Overview: First of all, we create a set of forbidden cases that are not allowed to subsume
the blocker 𝛽 (to be included in it), otherwise, the condition (3.26b) or (3.26c) would be
violated. Then, to satisfy the condition (3.26a), we assure that the forbidden cases do not
intersect 𝜅. If some forbidden case intersected 𝜅, the approximative minimum hitting set
(that is created afterwards) could contain a state 𝑞 ∈ 𝜅, and after complementation, 𝛽 ̸⊇ 𝜅.
In the end, we try to find a blocker 𝛽 that subsumes (includes) many cases, but does not
subsume (include) any of the forbidden ones—we prefer blockers 𝛽 with bigger cardinality.
We apply an approximative greedy algorithm for solving minimum hitting set problem [6]
(which is dual to the set cover problem), to find a case that intersects each forbidden case.
The generalization 𝛽 is then obtained by complementation of this case. We provide a visual
example in Figure 3.3.

The function AssureKappaDisjoint : 22
𝑄 −→ 22

𝑄 assures in a simple way that the
forbidden cases do not intersect 𝜅:

AssureKappaDisjoint(𝑃 ) = {𝜌 ∖ 𝜅 | 𝜌 ∈ 𝑃} (3.29)

The most complex is the function ForbiddenCases : 22
𝑄×𝐺 −→ 22

𝑄 . The following text
describes the intuition behind its construction, afterwards, it is defined in (3.30) and proved
for correctness in the theorems 2 and 3. By (3.26b), the generalization should not include
the initial case, 𝐼𝑀 is therefore one of the forbidden cases. Now, let us assure the condition
(3.26c). When talking about blockers, we will use the term to block, that means “to be
subsumed by” or, in terms of AFA, “to include”. By each symbol 𝑔 ∈ Σ𝐺, all predecessors
of 𝛽↑ should be blocked by some 𝑏 ∈ 𝐵𝑖−1↑ ∪ · · · ∪ 𝐵𝑁↑ ∪ 𝛽↑. To simplify the explanation,
let us temporarily assume that only one symbol 𝑔 ∈ Σ𝐺 exists. For the given 𝑔, let us
choose a single arbitrary blocker 𝑏 ∈ 𝐵𝑖−1↑ ∪ · · · ∪ 𝐵𝑁↑ ∪ 𝜅↑ that blocks all 𝑔-predecessors
of 𝜅↑—we pick such a blocker that (𝑏, 𝛾) ∈ Б ∧ 𝑔 ⊣ 𝛾. Then, only the 𝑔-successors of states
𝑞 ̸∈ 𝑏 are forbidden cases, because 𝑔-predecessors of the 𝑔-succesors of the states in 𝑏 are
blocked by 𝑏, and therefore they are not reachable in 𝑖− 1 steps. Moreover, we know that
the forbidden cases are not subsets of 𝜅, because states out of 𝑏 do not lead to subsets of 𝜅,
as all 𝑔-predecessors of 𝜅↑ are blocked by 𝑏. Therefore, the resulting generalization 𝛽 will
be able include 𝜅 and none of the forbidden cases.

Now let us forget the simplification that Σ𝐺 is singleton. The transitions of AFA are
represented as (𝑞, 𝛾𝑞, 𝑟2) ∈ Rep𝐺. The successor 𝑟2 is a forbidden case, if the guard 𝛾𝑞
guards a symbol, which is not guarded by any guard associated with a blocker that blocks
𝑞.
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The forbidden cases are then computed in the following way

ForbiddenCases(Б) = {𝐼𝑀} ∪ {𝑟2 ⊆ 𝑄 |
(𝑞, 𝛾𝑞, 𝑟2) ∈ Rep𝐺 ∧
SymbolsNotCovered(𝛾𝑞, {𝛾 | (𝑏, 𝛾) ∈ Б ∧ 𝑞 ∈ 𝑏})}

(3.30)

Finally, let us prove that the function ForbiddenCases is correct: By proving the theorem
2, we will show that the generalization can be computed. The subsequent theorem 3 shows
that the generalization satisfies also the condition (3.26c).

Theorem 2. A hitting set for AssureKappaDisjoint(ForbiddenCases(Б)) exists.

Proof. A hitting set exists, if AssureKappaDisjoint(ForbiddenCases(Б)) does not contain
empty set. The empty set could obviously appear iff a forbidden case was a subset of
𝜅 (by the set difference in AssureKappaDisjoint). We can therefore prove that @𝑟2 ∈
ForbiddenCases(Б). 𝑟2 ⊆ 𝜅.

One of the forbidden cases is 𝐼𝑀 . As 𝜅 is checked by the ModelSem rule, the initial
case 𝐼𝑀 cannot be its subset.

For the other forbidden cases 𝑟2, we show by contradiction that 𝑟2 ̸⊆ 𝜅. Let us assume
that exists such a 𝑟2 ∈ ForbiddenCases(Б) that is a subset of 𝜅. The case 𝑟2 is included in
the representation Rep𝐺 as (𝑞, 𝛾𝑞, 𝑟2). By the definition of the AFA representation and by
the definition of SymbolsNotCovered (3.39),

∃𝑔 ⊣ 𝛾𝑞. {𝑞}→𝑔
G
𝑟2 ∧ ∀(𝑏, 𝛾) ∈ Б. 𝑞 ̸∈ 𝑏 ∨ ¬(𝑔 ⊣ 𝛾)

We show that exists a pair (𝑏, 𝛾) ∈ Б, such that 𝑞 ∈ 𝑏 ∧ 𝑔 ⊣ 𝛾, by which we contradict the
proof assumption.

As {𝑞}→𝑔
G
𝑟2 and 𝑟2 ⊆ 𝜅, from the condition (3.9), exists a pair (𝜚1, 𝛾) ∈ 𝛿

←
(𝜅), such that

𝑔 ⊣ 𝛾 and {𝑞1} ⊆ 𝜚𝜚𝜚1. From the lemma 9, exists a (𝑏, 𝛾) ∈ Б, such that 𝜌1 ⊆ 𝑏. Therefore,
𝑞 ∈ 𝑏.

The following theorem shows that the forbidden cases are complete—each case 𝛽 ⊇ 𝜅,
that does not include any of the forbidden cases, has all its predecessors (and the predeces-
sors of its subsets) blocked in the step 𝑅𝑖−1. The condition (3.26c) is thence satisfied.

Theorem 3. The forbidden cases are complete.

∀𝛽 ⊇ 𝜅. ForbiddenCases(Б) ∩ 𝛽↑ = ∅ =⇒ 𝑝𝑟𝑒(𝛽) ∩𝑅↓
𝑖−1 ∖ 𝛽 = ∅ (3.31)

Proof. First we rewrite the condition (3.31) to a more verbose form. For all 𝛽 ⊇ 𝜅,

(@𝑟𝑓 ∈ ForbiddenCases(Б). 𝑟𝑓 ⊆ 𝛽) =⇒
∀𝜌1 ∈ 𝑝𝑟𝑒(𝛽↑). ∃𝑏 ∈ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪ {𝛽}. 𝜌1 ⊆ 𝑏

We will prove by contradiction that the condition is satisfied. Let us assume that the
negation holds: Exists a 𝛽 ⊇ 𝜅, such that

(@𝑟𝑓 ∈ ForbiddenCases(Б). 𝑟𝑓 ⊆ 𝛽) ∧
∃𝜌1 ∈ 𝑝𝑟𝑒(𝛽↑). @𝑏 ∈ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪ {𝛽}. 𝜌1 ⊆ 𝑏
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𝑞8
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𝑞6
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𝑞11
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𝑏
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𝑎

𝑏

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

𝑎

Б
({𝑞1, 𝑞2}, 𝑏)

Б
({𝑞2, 𝑞3}, 𝑎)

Case forbidden by
(𝑞1, 𝑎, {𝑞6})

𝜅

Case forbidden by
(𝑞4, 𝑏, {𝑞10, 𝑞11})

Case forbidden by
𝐼𝑀 = {𝑞11, 𝑞12}

Case forbidden by
(𝑞5, 𝑎, {𝑞12})

The figure visualizes a part
of a per-symbol AFA that
is interesting for generaliza-
tion in the step 𝑖 − 1. In
the relevant stages 𝐵𝑖−1 ∪
· · ·∪𝐵𝑁 , the relevant block-
ers are {{𝑞1, 𝑞2}, {𝑞2, 𝑞3}}.
The states 𝑞0, · · · , 𝑞5 are all
in singleton forbidden cases
(not visualized). Other for-
bidden cases, as well as
blockers and the general-
ized candidate 𝜅 are visible.
States in the minimum hit-
ting set are white. States
in the resulting generaliza-
tion 𝛽 are grey. Note that
the case {𝑞9} is not forbid-
den, because the state 𝑞3 is
in the blocker with 𝛾 = 𝑎.
The case {𝑞6} is forbidden,
because the blocker of state
𝑞1 lacks the symbol 𝑎.

Figure 3.3: Example of Generalization

The condition 𝜌1 ∈ 𝑝𝑟𝑒(𝛽↑) can be unwound to

∃𝑔 ∈ Σ𝐺. ∀𝑞 ∈ 𝜌1. ∃𝑟2 ⊆ 𝛽. {𝑞}→𝑔
G
𝑟2 (3.32)

As the guards in 𝛿
←

(𝜅) are disjoint (3.8), the guards in Б are disjoint too (by the restriction
in (3.27)). For the 𝑔 from (3.32) therefore exists a unique (𝑏𝑔, 𝛾𝑔) ∈ Б, such that 𝑔 ⊣ 𝛾𝑔.
We know that 𝜌1 is not blocked by any 𝑏 ∈ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪ {𝛽}. As 𝛽 ⊇ 𝜅, the case 𝜌1 is
nor blocked by any 𝑏 ∈ 𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪ {𝜅} and therefore it is not blocked by 𝑏𝑔.

It means that exists a 𝑞 ∈ 𝜌1 such that 𝑞 ̸∈ 𝑏𝑔. Obviously, exists also (𝑞, 𝛾𝑞, 𝑟2) ∈ Rep𝐺,
such that 𝑞 ̸∈ 𝑏𝑔, 𝑔 ⊣ 𝛾𝑞 and 𝑟2 ⊆ 𝛽. The symbols of 𝛾𝑞 are not covered by the guards
{𝛾 | (𝑏, 𝛾) ∈ Б ∧ 𝑞 ∈ 𝑏}, because for the symbol 𝑔, the 𝛾𝑔 is the only guard from Б that
guards 𝑔 and the guard 𝛾𝑔 is not present in the set of guards, because 𝑞 ̸∈ 𝑏. The case
𝑟𝑓 = 𝑟2 ⊆ 𝛽 is therefore present in the ForbiddenCases.

Induction The rule serves for pushing blockers forward from steps 𝑖 to 𝑖+ 1. If there is a
blocker 𝛽 ∈ 𝐵𝑖 such that its generalization 𝛽′ exists from the step 𝑖, we can push it to the
step 𝑖 + 1. It maybe needs some more explanation — generalization of 𝛽 from the step 𝑖
exists iff all of its predecessors are unreachable in 𝑖 steps and therefore it is a valid blocker
for 𝑖+ 1.

𝑅↓
𝑖 = Σ ∖ {𝛽𝑖,1, . . . , 𝛽𝑖,𝑚}↑ 𝛽 ∈ 𝐺𝑒𝑛𝑖(𝛽𝑖,𝑗) for some 1 ≤ 𝑗 ≤ 𝑚

𝑅|∅ ↦→ 𝑅[𝑅↓
𝑘 ← 𝑅↓

𝑘 ∖ 𝛽↑]
𝑖+1
𝑘=1|∅

(3.33)
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Induction is implemented the following way: for each step 𝑖, we iterate through all 𝛽 ∈ 𝐵𝑖

and check using the backward transition function 𝛿
←

, similarly to the Decide/Conflict rules,
whether the blocker 𝛽 has a predecessor reachable in 𝑖 steps. If such a predecessor does
not exist, Generalization is applied. The result of the generalization is added into the stage
𝐵𝑖+1, after removing redundant blockers the same way as in the Conflict rule.

Future Induction. In the Induction rule, we use an optimization noted in [15]. The
induction can be used also for the step 𝑅↓

𝑁 , but no step 𝑅𝑁+1 (nor stage 𝐵𝑁+1) then exists
where the new blocker 𝛽 could be added. We therefore create a temporary stage 𝐵′

𝑁+1

and add the blocker 𝛽 there. Right after applying the next Unfold rule, we set all the
blockers in 𝐵′

𝑁+1 as the blockers of the newly created step. Until then, we consider the
blockers in the temporary stage as if they applied to all the stages 𝑖 = 1, · · · , 𝑁 : In the
equations (3.23) and (3.27), the sets of blockers for the step 𝑖 − 1 will be computed as
𝐵𝑖−1 ∪ · · · ∪𝐵𝑁 ∪𝐵′

𝑁+1 ∪ {𝜅}.

3.6 AFA Representations
To get closer to the real-world applications, we take a succinct symbolic automaton as the
input for our implementation. We however never solve it directly. We convert it to an sAFA,
which we solve per-se, or convert it further to a classical AFA. The second conversion uses
minterm generation, which may create many minterms for each formula from a transition
of sAFA. One transition of sAFA may therefore produce many AFA transitions that differ
only in their symbol. We may represent each such class of transitions {𝜌1→𝜎1

M
𝜌2, · · · , 𝜌1→𝜎𝑛

M
𝜌2}

as a single transition with the set of symbols 𝜌1→𝑆
M
𝜌2 where 𝑆 = {𝜎1, · · · , 𝜎𝑛}.

To sum up, we work with three different representations of AFA, each of which has its
pros and cons. The following list is a preliminary comparison of the three representations, as
for memory efficiency of the representation and time efficiency of computing backward and
forward transitions. A detailed description of computing the backward transition will be
described in the section 3.2. The computation of forward transition in the Generalization
component of IIC is different from the one in the forward antichain algorithm from the
chapter 4, and the detailed description can be found in the referenced text.

Per-symbol AFA A representation of classical AFA. For each symbol 𝜎 ∈ Σ𝑀 , for each
state 𝑞 ∈ 𝑄, we have a set of all 𝜌 ⊆ 𝑄, such that 𝑞 leads to 𝜌 by 𝜎. Formally, the
representation can be defined as

Repper-sym = {(𝑞, 𝜎, 𝜌) ∈ 𝑄× Σ𝑀 × 2𝑄 | 𝜌 ∈ 𝛿𝑀 (𝑞, 𝜎)} (3.34)

The above mentioned set of 𝜌 is hidden in the formal definition. For given 𝑞 and 𝜎, we can
extract it as {𝜌 ∈ 2𝑄 | (𝑞, 𝜎, 𝜌) ∈ Repper-sym}.

Its advantage is that it is very simple and no minterm generation is needed to perform
forward and backward transitions. Its disadvantage is that if there is a lot of symbols
in the alphabet, we just have to iterate through all of them to compute the successors
or predecessors of a case, even if there are big equivalence classes of symbols that would
produce the same successors, or predecessors respectively. Another disadvantage is memory
inefficiency in comparison to the other two representations.

Symbol-set AFA It is another representation of classical AFA. Symbol-set AFA is similar
to per-symbol AFA, but for the same (𝑞, 𝜌) ∈ 𝑄 × 2𝑄, symbols by which 𝑞 leads to 𝜌 are
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grouped together into one set. Formally,

Repsym-set =
{︀

(𝑞, 𝑆, 𝜌) ∈ 𝑄× 2Σ𝑀 × 2𝑄 | 𝑆 ̸= ∅ ∧ 𝑆 = {𝜎 ∈ Σ𝑀 | 𝜌 ∈ 𝛿𝑀 (𝑞, 𝜎)}
}︀

(3.35)

In comparison with the per-symbol AFA, the representation is apparently smaller in size.
In addition, we can easily (by minterm generation) find the equivalence classes of symbols
that would produce the same successors or predecessors for the forward and backward
transitions. Minterm generation is however an expensive operation, exponential to the
number of transitions.

Symbolic AFA For each state 𝑞 ∈ 𝑄, we have all combinations 𝜑 × 𝜌 ∈ F𝑉 × 2𝑄, such
that 𝜌 ∈ 𝛿𝑠(𝑞, 𝜑). Formally

Repsymbolic = {(𝑞, 𝜑, 𝜌) ∈ 𝑄× F𝑉 × 2𝑄 | 𝜌 ∈ 𝛿𝑠(𝑞, 𝜑)} (3.36)

This representation is the most brief one, as for size. Obtaining predecessors and successors
of a case is similar to the symbol-set AFA, but instead of the set operations in the minterm
generation, we combine formulae and call SAT, which makes it much more expensive in
terms of time. Despite of this big disadvantage, it has an advantage that no conversion
from sAFA to AFA is needed.

The necessity of a conversion from sAFA to AFA is a big disadvantage for the per-
symbol and symbol-set representations. During the conversion, we generate minterms of
all formulae that are present on the transitions of sAFA. As the blow-up of minterms can
be up to exponential, it is sometimes computationally infeasible to handle the conversion,
or to load the converted AFA to the computer’s memory. The algorithms working with
symbolic AFA on the other hand need to perform a lot of SAT solving, which makes them
slow (the minterm generation in the backward transition function 3.2, SAT solving in the
equations (3.39) and (4.3)).

General AFA To be able to talk about the three representations of AFA at once, we
define an abstract, general automaton 𝑀𝐺 = (𝑄,Σ𝐺, 𝐺, 𝐼𝑀 ,→

G
, 𝐹 ), that will stand for any

of the three representations. In the same manner as for the classical and symbolic automata,
𝑄 is a finite set of states, 𝐼𝑀 ⊆ 𝑄 is an initial case, 𝐹 ∈ F−

𝑄 is a negative boolean formula
determining final cases. Set of guardable symbols Σ𝐺 is defined as:

∙ Σ𝐺 := Σ𝑀 for per-symbol AFA,

∙ Σ𝐺 := Σ𝑀 for symbol-set AFA,

∙ Σ𝐺 := 𝒫(𝑉 ) for symbolic AFA.

A guard 𝛾 from a set of guards 𝐺 represents a set of guardable symbols, by each of
which a transition can be performed.

∙ 𝐺 := Σ𝑀 for per-symbol AFA (it represents a singleton set),

∙ 𝐺 := 2Σ𝑀 for symbol-set AFA,

∙ 𝐺 := F𝑉 for symbolic AFA.

Let ⊣ ⊆ Σ𝐺 × 𝐺 be a guard relation. We will say that a guard 𝛾 guards a guardable
symbol 𝑔 iff 𝑔 ⊣ 𝛾.
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∙ 𝑔 ⊣ 𝛾 ⇔ 𝑔 = 𝛾 for per-symbol AFA,

∙ 𝑔 ⊣ 𝛾 ⇔ 𝑔 ∈ 𝛾 for symbol-set AFA,

∙ 𝑔 ⊣ 𝛾 ⇔ 𝑔 |= 𝛾 for symbolic AFA.

Similarly we define a general transition relation by a guardable symbol, denoted by →𝑔
G ,

for a guardable symbol 𝑔 ∈ Σ𝐺. The relation refers to the corresponding transition relation
depending on the representation of automaton, we are talking about:

∙ →𝑔
G

:=→𝑔
M for per-symbol AFA,

∙ 𝜌1→𝑔
G

:=→𝑔
M for symbol-set AFA,

∙ →𝑔
G

:=→𝑔
s for symbolic AFA,

Transition relation by any guardable symbol is denoted as →G .
The following lemma shows that we can write {𝑞}→𝑔

G
𝜌 instead of 𝜌 ∈ 𝛿𝑀 (𝑞, 𝑔) for per-

symbol and symbol-set automata, and instead of ∃𝜑. 𝑔 |= 𝜑 ∧ 𝜌 ∈ 𝛿𝑠(𝑞, 𝜑) for symbolic
automata.

Lemma 10. A singleton case is a predecessor of 𝑟2 iff its element leads to 𝑟2.

∀𝜎 ∈ Σ𝑀∀𝑞 ∈ 𝑄. ∀𝜌 ⊆ 𝑄. {𝑞}→𝜎
M
𝜌⇔ 𝜌 ∈ 𝛿𝑀 (𝑞, 𝜎) (3.37)

∀𝜍 ∈ 𝒫(𝑉 )∀𝑞 ∈ 𝑄. ∀𝜌 ⊆ 𝑄. {𝑞}→𝜍
s
𝜌⇔ ∃𝜑 ∈ F𝑉 . (𝜍 |= 𝜑) ∧ 𝜌 ∈ 𝛿𝑠(𝑞, 𝜑) (3.38)

Proof. From the definition of →𝜎
M , SuccsOfStates produces all cases 𝜌 ∈ 𝛿𝑀 (𝑞, 𝑔) associated

with 𝑞, SuccsOfCase produces singletons {(𝑞, 𝜌)} for each such 𝜌. In (2.5), the singleton
{(𝑞, 𝜌)} is obviously converted to 𝜌. Analogously for symbolic AFA.

A general representation of AFA corresponds with the particular representations of
per-symbol, symbol-set and symbolic AFA.

Rep𝐺 ⊆ 𝑄×𝐺× 2𝑄

∙ Rep𝐺 := Repper-sym for per-symbol AFA,

∙ Rep𝐺 := Repsym-set for symbol-set AFA,

∙ Rep𝐺 := Repsymbolic for symbolic AFA,

The last ingredient that will be needed in the description of IIC, is the predicate
SymbolsNotCovered(𝛾𝑞,Γ) where 𝛾𝑞 ∈ 𝐺 and Γ ⊆ 𝐺. The predicate says that some symbol
𝑔, which is guarded by 𝛾𝑞, is not guarded by any 𝛾 ∈ Γ.

SymbolsNotCovered(𝛾𝑞,Γ)
def⇔ ∃𝑔 ∈ Σ𝐺 ⊣ 𝛾𝑞. ∀𝛾 ∈ Γ. ¬(𝑔 ⊣ 𝛾) (3.39)

The predicate SymbolsNotCovered is implemented differently for each AFA representa-
tion. The following definitions obviously satisfy the property (3.39).

∙ SymbolsNotCovered(𝛾𝑞,Γ)⇔ 𝛾𝑞 ̸∈ Γ for per-symbol AFA,

∙ SymbolsNotCovered(𝛾𝑞,Γ)⇔ ∅ ≠ 𝛾 ∖
⋃︀

Γ for symbol-set AFA,

∙ SymbolsNotCovered(𝛾𝑞,Γ)⇔ ¬𝑆𝐴𝑇 (𝛾 ∧ ¬
⋁︀

Γ) for symbolic AFA.
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3.7 Backward Transition Function, Finalized
In the following text, we introduce the implementations of backward transition functions
for the symbol-set and symbolic AFA. We will prove that each of the implementations is
valid—it holds the three conditions for the backward transition functions: non-generator
exclusion (3.7), guard disjointness (3.8) and covering all possibilities (3.9).

Backward transition for symbol-set AFA – naive implementation Each state 𝑞
leads to a subset of 𝜚𝜚𝜚2 by the set of symbols

SymbolsTo𝑞(𝜚𝜚𝜚2) =
⋃︁
{𝑆 ⊆ Σ𝑀 | ∃𝑟2 ⊆ 𝜚𝜚𝜚2. (𝑞, 𝑆, 𝑟2) ∈ Repsym-set} (3.40)

In the naive implementation we find all cases of 𝜌1 that are predecessors of some subset
of 𝜚𝜚𝜚2. We naturally look for equivalence classes of symbols where the same set of states
leads to some subset of 𝜚𝜚𝜚2 by all symbols in the class. We therefore associate all states 𝑞
which lead to a subset of 𝜚𝜚𝜚2 with the respective SymbolsTo𝑞(𝜚𝜚𝜚2), and compute the tagged
minterms.

PredecessorStates(𝜚𝜚𝜚2) = {(𝑠, 𝑞) ∈ 2Σ𝑀 ×𝑄 | 𝑠 = SymbolsTo𝑞(𝜚𝜚𝜚2) ∧ 𝑠 ̸= ∅} (3.41)

𝛿sym-set(𝜚𝜚𝜚2) = TaggedMinterms(PredecessorStates(𝜚𝜚𝜚2)) (3.42)
Recall the TaggedMinterms that are defined in (2.1). For a set of tagged sets 𝑋 =

{(𝑠1, 𝑞1), · · · , (𝑠𝑛, 𝑞𝑛)} ⊆ 2Σ𝑀 ×𝑄, the tagged minterms are defined as

TaggedMinterms(𝑋) ⊆ 2Σ𝑀 × 2𝑄

TaggedMinterms(𝑋) =

⎧⎨⎩(𝛾, 𝜌1) = (
⋂︁

𝑖=1,...,𝑛

𝛾𝑖,
⋃︁

𝑖=1,...,𝑛

𝑟𝑖)

⃒⃒⃒⃒
⃒⃒

∀𝑖 ∈ {1, · · ·𝑛}. ((𝛾𝑖, 𝑟𝑖) ∈ {(𝑠𝑖, {𝑞𝑖}), (Σ𝑀 ∖ 𝑠𝑖, ∅)})∧

𝛾 ̸= ∅

⎫⎬⎭
This paragraph shows that the function 𝛿sym-set is a valid backward transition function.

The tagged minterms are all Boolean combinations 𝛾 of the sets of symbols 𝑠𝑖. Moreover,
each combination 𝛾 is associated with a set 𝜌1 of those 𝑞𝑖, for which 𝛾 ⊆ 𝑠𝑖 (as 𝑠𝑖 is one of
the operands of the intersection 𝛾 =

⋂︀
𝛾𝑖 iff 𝑞𝑖 ∈ 𝜌1). Since 𝑠𝑖 is a set of symbols by which

𝑞𝑖 leads to subsets of 𝜚𝜚𝜚2, the case 𝜌1 contains just the states that lead to subsets of 𝜚𝜚𝜚2 by all
symbols from 𝛾, and by the composition lemma 2, all 𝜌1 are predecessors of some subsets
of 𝜚𝜚𝜚2. The condition (3.7) therefore holds. By the decomposition lemma 3, all states of
all 𝑔-predecessors of 𝜚𝜚𝜚2 lead by 𝑔 to subsets of 𝜚𝜚𝜚2. As the minterms represent equivalence
classes of symbols, they are disjoint and (3.8) is thus satisfied. The condition (3.9) also
holds, since the minterms contain all the Boolean combinations.
Example 4. Given the AFA in Figure 3.1, the naive symbol-set backward transition would
be computed the following way

PredecessorStates = {({𝑐}, 𝑞1), ({𝑎, 𝑐}, 𝑞2), ({𝑎, 𝑏, 𝑐, 𝑑}, 𝑞3), ({𝑏, 𝑑}, 𝑞4)}

𝛿sym-set(𝜚𝜚𝜚2) = {({𝑐}, {𝑞1, 𝑞2, 𝑞3}), ({𝑎}, {𝑞2, 𝑞3}), ({𝑏, 𝑑}, {𝑞3, 𝑞4})}
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We can see in the above example that two generator cases {𝑞1, 𝑞2, 𝑞3} and {𝑞2, 𝑞3} can
be merged because the latter one is a subset of the former one. In the following paragraph,
an effective subset detection, based on minterm tree analysis, will be included into the
minterm generation algorithm.

Backward transition for symbol-set AFA – improved implementation In the
following text, we present an improved backward transition function that effectively detects
existence of subsets among the generator cases. Introducing this subset detection into the
backward transition function of symbol-set (and symbolic) AFA has brought a significant
speedup of the IIC algorithm.

For the sets of symbols 𝑊 = {𝑠1, · · · , 𝑠𝑛}. The algorithm for minterm generation
proposed in [8] builds a binary tree of depth 𝑛 where the root node contains the universum
Σ𝑀 and nodes at level 𝑖 contain all minterms of {𝑠1, · · · , 𝑠𝑖}, for 1 ≤ 𝑖 ≤ 𝑛. A node 𝜇𝑙 at
level 𝑖 is a left child of node 𝜇 at level 𝑖− 1 iff SymbolsOf (𝜇𝑙) = SymbolsOf (𝜇)∩ 𝑠𝑖. A node
𝜇𝑟 at level 𝑖 is a right child of node 𝜇 at level 𝑖− 1 iff SymbolsOf (𝜇𝑟) = SymbolsOf (𝜇) ∖ 𝑠𝑖.

Example 5. Continuing from the example 4, let 𝑊 = {{𝑐}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑}, {𝑏, 𝑑}}. The
tree in Figure 3.4 is the tree generated from 𝑊 . The minterms (denoted as SymbolsOf (𝜇)
are in the first row of the nodes, the rest of the data in the nodes can be ignored for
now—it concerns the algorithm for subset detection (we will talk about it subsequently).
Note that e.g. the node 𝜇3 is the right child of the node 𝜇1, so it contains the symbol
SymbolsOf (𝜇3) = SymbolsOf (𝜇1) ∖ 𝑠1 = {𝑎, 𝑏, 𝑐, 𝑑} ∖ {𝑐} = {𝑎, 𝑏, 𝑑}, which is one of the
minterms in Minterms({𝑠1}).

Our algorithm for subset detection processes the tree from leaves to the root and ac-
cumulates some additional data at each node. The additional data at node 𝜇, which is
at level 𝑖, is a set AdData(𝜇) ⊆ 2Σ𝑀 × 2𝑄. The additional data AdData(𝜇) will be con-
structed in a way that it would hold modified conditions (3.7), (3.8) and (3.9). The first
condition restricts the transitions that must exist from subsets of 𝜌1 to any subset of 𝜌2 to
the transitions by symbols from SymbolsOf (𝜇). The second condition expresses that the
guards on the same level of the minterm tree are disjoint. The third condition is relaxed in
a way that it must hold only for the alphabet SymbolsOf (𝜇) instead of Σ𝑀 , and only for
the predecessors 𝜌1 that are subsets of {𝑞𝑖+1, · · · , 𝑞𝑛}.

∙ Non-generator exclusion (restricted). For all (𝛾,𝜚𝜚𝜚1) ∈ AdData(𝜇), the case 𝜚𝜚𝜚1 is a
generator case of 𝛿

←
𝜌(𝜚𝜚𝜚2):

∀𝜌1 ⊆ 𝜚𝜚𝜚1. ∃𝜌2 ⊆ 𝜚𝜚𝜚2. ∃𝜎 ∈ SymbolsOf (𝜇). 𝜌1→𝜎
G
𝜌2 (3.43)

∙ Guard disjointness (on the same level of the minterm tree). For each level 𝑖 = 1, · · · , 𝑛,
let 𝜇𝜇𝜇𝑖 be a set of nodes on the level 𝑖 of the minterm tree.

∀𝑔 ∈ Σ𝐺. ∃!𝜇 ∈ 𝜇𝜇𝜇𝑖. ∃!(𝛾,𝜚𝜚𝜚1) ∈ AdData(𝜇). 𝑔 ⊣ 𝛾 (3.44)

∙ Covering of all possibilities (relaxed). If 𝜌1→𝑔
G
𝜌2, then 𝑔 with 𝜌1 must be covered in

the backward transition function.

∀𝜌1 ⊆ {𝑞𝑖+1, · · · 𝑞𝑛}. ∀𝜌2 ⊆ 𝜚𝜚𝜚2. ∀𝜎 ∈ SymbolsOf (𝜇).

𝜌1→𝜎
M
𝜌2 =⇒ ∃(𝛾,𝜚𝜚𝜚1) ∈ AdData(𝜇). 𝜎 ∈ 𝛾 ∧ 𝜌1 ⊆ 𝜚𝜚𝜚1

(3.45)
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If 𝜇 is the root node (𝑖 = 0), then we can set 𝛿sym-set(𝜚𝜚𝜚2) = AdData(𝜇) (predecessors are
then subsets of {𝑞1, · · · , 𝑞𝑛} and SymbolsOf (𝜇) is the universum Σ𝑀 ).

For the leaf nodes 𝜇, the additional data contain the only element, which is AdData(𝜇) =
{(𝑚𝑖𝑛𝑡𝑒𝑟𝑚(𝜇), ∅)}. As there are no generator cases, the condition (3.43) is trivially satis-
fied. The minterms form equivalence classes, the condition (3.44) therefore holds. Finally,
as 𝜌1 in (3.45) is empty and the reduced alphabet contains only the symbols SymbolsOf (𝜇),
the additional data AdData(𝜇) satisfies also the relaxed condition (3.45).

At each level 𝑖 of the tree, the algorithm processes the nodes 𝜇 from left to right and
performs the following operation where 𝜇𝑙 is a left child of 𝜇 and 𝜇𝑟 is its right child (if
the child does not exist, its AdData is empty). To satisfy the guard disjointness (3.44)
condition, each guard of a child node must be merged just once to the guards of the parent
node. For this purpose we first define a unique assignment: If for an AdData element of
the right child, an AdData element of the left child exists with a bigger 𝜚𝜚𝜚1, then just one
such element of the left child is assigned to the element of the right child.

UniqueAssignment ⊆ AdData(𝜇𝑙)×AdData(𝜇𝑟)

∀(𝛾𝑟, 𝜚𝜚𝜚1,𝑟) ∈ AdData(𝜇𝑟).((∃(𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙). 𝜚𝜚𝜚𝑟 ⊆ 𝜚𝜚𝜚𝑙) =⇒
∃!(𝑝, (𝛾𝑙, 𝜚𝜚𝜚1,𝑙)) ∈ UniqueAssignment. 𝑝 = (𝛾𝑟, 𝜚𝜚𝜚1,𝑟) ∧ 𝜚𝜚𝜚1,𝑟 ⊆ 𝜚𝜚𝜚1,𝑙)

Now we can continue with the contstruction of AdData:

AdData(𝜇) = {(𝛾,𝜚𝜚𝜚1) ∈ 2Σ𝑀 × 2𝑄 |
(𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙) ∧
𝜚𝜚𝜚1 = {𝑞𝑖+1} ∪ 𝜚𝜚𝜚1,𝑙 ∧

𝛾 = 𝛾𝑙 ∪
⋃︁
{𝛾𝑟 | (𝛾𝑟, 𝜚𝜚𝜚1,𝑟) ∈ AdData(𝜇𝑟) ∧ 𝜚𝜚𝜚1,𝑟 ⊆ 𝜚𝜚𝜚1,𝑙 ∧

((𝛾𝑙, 𝜚𝜚𝜚1,𝑙), (𝛾𝑟, 𝜚𝜚𝜚1,𝑟)) ∈ UniqueAssignment}}
∪
{(𝛾,𝜚𝜚𝜚1) ∈ 2Σ𝑀 × 2𝑄 |

(𝛾𝑟, 𝜚𝜚𝜚1,𝑟) ∈ AdData(𝜇𝑟) ∧
𝜚𝜚𝜚1 = 𝜚𝜚𝜚1,𝑟 ∧ 𝛾 = 𝛾𝑟 ∧
@(𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙). 𝜚𝜚𝜚1,𝑟 ⊆ 𝜚𝜚𝜚1,𝑙}

(3.46)

The definition of AdData is a union of two sets. In the following text, the sets will be
denoted as the components of the definition of AdData.

We will prove the induction step: If the additional data of 𝜇𝑙 and 𝜇𝑟 satisfy the conditions
(3.43), (3.44) and (3.45), their parent node 𝜇 satisfies the three conditions as well.

Theorem 4. Let 𝜚𝜚𝜚2 be a case, 𝜇 be a non-leaf node of the minterm tree of tagged sets

{(𝑠1, 𝑞1), · · · , (𝑠𝑛, 𝑞𝑛)} = PredecessorStates(𝜚𝜚𝜚2)

and 0 ≤ 𝑖 < 𝑛 be the level at which 𝜇 resides in the tree. Let 𝜇𝑙 and 𝜇𝑟 be left and right
child nodes of 𝜇, the AdData of which satisfy (3.43). Then for each (𝛾, 𝜌1) ∈ AdData(𝜇),
the condition (3.43) is satisfied.

Proof. The AdData(𝜇) is a union of two sets. The latter one contains only the generators
from the right child 𝜚𝜚𝜚1,𝑟, which satisfy (3.7) by the induction hypothesis. From the definition
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of minterm tree, SymbolsOf (𝜇𝑙) = SymbolsOf (𝜇)∩𝑠𝑖+1 and from the definition of minterms,
SymbolsOf (𝜇𝑙) ̸= ∅. The additional data of the left child AdData(𝜇𝑙) contains only generator
cases 𝜚𝜚𝜚1,𝑙 composed of states that lead to 𝜚𝜚𝜚2 by symbols from SymbolsOf (𝜇𝑙). The state
𝑞𝑖+1 leads to subsets of 𝜚𝜚𝜚2 by symbols from 𝑠𝑖+1. The set of symbols of the left child node,
SymbolsOf (𝜇𝑙) = SymbolsOf (𝜇) ∩ 𝑠𝑖+1, contains no other symbols. Then by composition,
the new cases {𝑞𝑖+1}∪𝜚𝜚𝜚1,𝑙 are predecessors of subsets of 𝜚𝜚𝜚2 by symbols from SymbolsOf (𝜇𝑙) ⊆
SymbolsOf (𝜇).

Now let us prove the induction step for (3.44) as well.

Theorem 5. Let 𝜚𝜚𝜚2 be a case. For a tree of tagged sets

{(𝑠1, 𝑞1), · · · , (𝑠𝑛, 𝑞𝑛)} = PredecessorStates(𝜚𝜚𝜚2),

let 𝑖 be a level of the tree, 0 ≤ 𝑖 < 𝑛. Let 𝜇𝜇𝜇𝑖 be all nodes at the level 𝑖 and 𝜇𝜇𝜇𝑖+1 be the nodes
at the level 𝑖 + 1. If the condition (3.44) is satisfied for the level 𝑖 + 1 (the guards of all
nodes in the level 𝑖+ 1 are disjoint), then it holds also for the level 𝑖.

Proof. If a node 𝜇𝑙 ∈ 𝜇𝜇𝜇𝑖+1 is a left child of a node 𝜇 ∈ 𝜇𝜇𝜇𝑖, all of its guards 𝛾𝑙 are obviously
merged with just one 𝛾 of 𝜇 (in the first component of the AdData definition). If a node
𝜇𝑟 ∈ 𝜇𝜇𝜇𝑖+1 is a right child of a node 𝜇 ∈ 𝜇𝜇𝜇𝑖, then its guard 𝛾𝑟 appers just once even in
the second component of the AdData definition, or, if a left child 𝜇𝑙 exists and ∃(𝛾𝑙, 𝜚𝜚𝜚𝑙) ∈
AdData(𝜇𝑙). 𝜚𝜚𝜚𝑟 ⊆ 𝜚𝜚𝜚𝑙, it appears in the first component in the union with the 𝛾𝑙, which
is uniquely assigned to the 𝛾𝑟. Just one such assignment exists, therefore symbols of 𝛾𝑟
appear also just once in the AdData of the parent.

Each node in 𝜇𝜇𝜇𝑖+1 has just one parent in the tree, each guard from the nodes of 𝜇𝜇𝜇𝑖+1

is merged with just one guard of the parent node. As each guardable symbol was guarded
just by one guard in the level 𝑖+ 1, it is therefore guarded just once in the level 𝑖.

The following theorem proves the induction step for (3.45).

Theorem 6. Let 𝜚𝜚𝜚2 be a case, 𝜇 be a non-leaf node of the minterm tree of tagged sets

{(𝑠1, 𝑞1), · · · , (𝑠𝑛, 𝑞𝑛)} = PredecessorStates(𝜚𝜚𝜚2)

and 0 ≤ 𝑖 < 𝑛 be the level at which 𝜇 resides in the tree. Let 𝜇𝑙 and 𝜇𝑟 be left and right
child nodes of 𝜇, the AdData of which satisfy (3.45). Then the condition (3.45) is satisfied.

Proof. We divide the proof in two parts. At first, we prove the condition (3.45) for 𝜌1 ⊆
{𝑞𝑖+2, · · · , 𝑞𝑛}. Then we prove by contradiction that for 𝜌1 ⊆ {𝑞𝑖+1, · · · , 𝑞𝑛}, such that
𝑞𝑖+1 ∈ 𝜌1, the condition is still satisfied.

In comparision with the condition for AdData(𝜇𝑙), the alphabet SymbolsOf (𝜇) is en-
larged by SymbolsOf (𝜇) ∖ 𝑠𝑖+1. Those 𝜌1,𝑟 that transition to 𝜚𝜚𝜚2 via SymbolsOf (𝜇) ∖ 𝑠𝑖+1 are
covered by some (𝛾𝑟, 𝜚𝜚𝜚1,𝑟) ∈ AdData(𝜇𝑟). The pair (𝛾𝑟, 𝜚𝜚𝜚1,𝑟) is added to AdData(𝜇) in the
second part of (3.46), or if ∃(𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙). 𝜚𝜚𝜚1,𝑟 ⊆ 𝜚𝜚𝜚1,𝑙, then the first component of
(3.46) contains {𝑞𝑖+1} ∪ 𝜚𝜚𝜚1,𝑙 ⊇ 𝜌1,𝑟 with a 𝛾 that includes 𝛾𝑟.

In comparison with the condition for AdData(𝜇𝑟), the alphabet SymbolsOf (𝜇) is en-
larged by SymbolsOf (𝜇) ∩ 𝑠𝑖+1. Those 𝜌1,𝑙 that transition to 𝜚𝜚𝜚2 via SymbolsOf (𝜇) ∩ 𝑠𝑖+1

are covered by some (𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙). The first part of (3.46) contains for each such
pair (𝛾𝑙, 𝜚𝜚𝜚1,𝑙), a pair (𝛾,𝜚𝜚𝜚1) where 𝜚𝜚𝜚1 ⊇ 𝜚𝜚𝜚1,𝑙 ⊇ 𝜌1,𝑙 and 𝛾 ⊇ 𝛾𝑙.
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To save space, the set {𝑥1, 𝑥2, · · · , 𝑥𝑛} is denoted as 𝑥1𝑥2 · · ·𝑥𝑛.

Figure 3.4: Minterm tree with AdData

By definition (3.46), for all (𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙), the AdData(𝜇) contains a pair (𝛾,𝜚𝜚𝜚1),
such that 𝜚𝜚𝜚1 = {𝑞𝑖+1} ∪ 𝜚𝜚𝜚1,𝑙 and 𝛾 ⊇ 𝛾𝑙. We will show by contradiction that for each 𝜌1
that contains 𝑞𝑖+1, the guard 𝛾𝑙 covers all symbols by which 𝜌1 leads to 𝜚𝜚𝜚2, and {𝑞𝑖+1}∪𝜚𝜚𝜚1,𝑙
includes 𝜌1. Let us suppose that

∃𝜎 ∈ SymbolsOf (𝜇). ∃𝜌1 ⊆ {𝑞𝑖+1, · · · , 𝑞𝑛}. ∃𝜌2 ⊆ 𝜚𝜚𝜚2.
𝑞𝑖+1 ∈ 𝜌1 ∧ 𝜌1→𝜎

M
𝜌2 ∧ ∀(𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙). 𝜌1 ̸⊆ {𝑞𝑖+1} ∪ 𝜚𝜚𝜚1,𝑙 ∨ 𝜎 ̸∈ 𝛾𝑙

The state 𝑞𝑖+1 leads to subsets of 𝜚𝜚𝜚2 only by symbols from 𝑠𝑖+1. Then by decomposition,
𝜎 ∈ SymbolsOf (𝜇) ∩ 𝑠𝑖+1 = SymbolsOf (𝜇𝑙). Let 𝜌1,𝑙 = 𝜌1 ∖ {𝑞𝑖+1}. By monotonicity of →𝜎

M ,
the case 𝜌1,𝑙 is a 𝜎-predecessor of some subset of 𝜚𝜚𝜚2. As 𝜌1,𝑙 ⊆ {𝑞𝑖+2, · · · , 𝑞𝑛}, we can say
that

∃𝜎 ∈ SymbolsOf (𝜇𝑙). ∃𝜌1 ⊆ {𝑞𝑖+2, · · · , 𝑞𝑛}. ∃𝜌2 ⊆ 𝜚𝜚𝜚2.
𝜌1→𝜎

M
𝜌2 ∧ ∀(𝛾𝑙, 𝜚𝜚𝜚1,𝑙) ∈ AdData(𝜇𝑙). 𝜌1,𝑙 ̸⊆ 𝜚𝜚𝜚1,𝑙 ∨ 𝜎 ̸∈ 𝛾𝑙

which is a contradiction with the induction hypothesis, particularly with the condition
(3.45) for 𝜇𝑙.

Corrolary: The algorithm for computing the backward transition function with subset
detection is valid.

Backward transition for symbolic AFA Analogous as for the symbol-set AFA, only
the minterm generation for formulae is used, and union of 𝛾 in the improved implementation
is replaced by disjunction.
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Chapter 4

Antichain-based Algorithms

Forward and backward algorithms for deciding AFA emptiness, based on a computation of
the least fixpoint of a monotone function have been introduced in [9]. In this chapter we
describe our implementation of the algorithms. The description is much more brief, because
for this work, antichain is only a comparison reference algorithm.

The following are the definitions from [9]. A chain 𝐾 over 𝑄 is such a set of cases
𝐾 = {𝜌1, · · · , 𝜌𝑛} ⊆ 2𝑄, for which 𝜌1 ⊂ · · · ⊂ 𝜌𝑛 and 𝑛 > 1. An antichain over 𝑄 is a set
𝐴 ⊆ 2𝑄 that does not include chains, i.e. ∀𝜚𝜚𝜚,𝜚𝜚𝜚′ ∈ 𝐴. 𝜚𝜚𝜚 ̸⊂ 𝜚𝜚𝜚′. Set of antichains over 𝑄 will be
denoted A. For two antichains 𝐴,𝐴′ ∈ A, we say that 𝐴 ⊑ 𝐴′, iff all cases of 𝐴 are included
in cases of 𝐴′, formally ∀𝜚𝜚𝜚 ∈ 𝐴. ∃𝜚𝜚𝜚′ ∈ 𝐴′. 𝜚𝜚𝜚 ⊆ 𝜚𝜚𝜚′. For two antichains 𝐴,𝐴′ ∈ A, we say
that 𝐴 ̃︀⊑𝐴′ if all cases from 𝐴′ have a subset in 𝐴, formally ∀𝜚𝜚𝜚 ∈ 𝐴′. ∃𝜚𝜚𝜚′ ∈ 𝐴. 𝜚𝜚𝜚 ⊆ 𝜚𝜚𝜚′1. For
an arbitrary set of cases 𝑋, a case 𝜌 ∈ 𝑋 is maximal, iff no other 𝜌′ ∈ 𝑋 exists, such that
𝜌 ⊂ 𝜌′. Similarly 𝜌 ∈ 𝑋 is minimal, iff @𝜌′ ∈ 𝑋. 𝜌′ ⊂ 𝜌. The set of maximal cases of 𝑋 is
denoted as ⌈𝑋⌉ and the set of minimal cases of 𝑋 is denoted as ⌊𝑋⌋. Given two antichains
𝐴,𝐴′ ∈ A, the ⊑-lub (least upper bound) of 𝐴 and 𝐴′ is the antichain 𝐴 ⊔ 𝐴′ = ⌈𝐴 ∪ 𝐴′⌉
and the ̃︀⊑-glb (greatest lower bound) of 𝐴 and 𝐴′ is the antichain 𝐴 ̃︀⊓𝐴′ = ⌊𝐴 ∪𝐴′⌋.

Let Models(𝐹 ) be a set of cases that satisfy 𝐹 , formally Models(𝐹 ) = {𝜌 ⊆ 𝑄 | 𝜌 |= 𝐹}.
Let Pre(𝑋) be a set of predecessors of all cases from 𝑋. Then ⌈Pre(𝑋)⌉ can be apparently
computed by the backward transition function, introduced in the section 3.2, as

⌈Pre(𝑋)⌉ = ⌈{𝜌1 | 𝜌2 ∈ 𝑋 ∧ (𝛾, 𝜌1) ∈ 𝛿
←

(𝜌2)}⌉

Let Post(𝑋) be a set of successors of all cases from 𝑋. Similarly as Pre, it can be
computed by unifying the successors of all cases from 𝑋. A set of successors of a case 𝜌1
is denoted as post(𝜌1). By the decomposition lemma 3, for some symbol 𝑔 ∈ Σ𝐺, minimal
𝑔-successors of a case 𝜌1 are the combinations of minimal 𝑔-successors 𝑟 of states 𝑞 ∈ 𝑋.
For a given 𝜌1 = {𝑞1, · · · , 𝑞𝑛}, we compute post(𝜌1) in the following way

1The tuples ⟨A,⊒⟩ and ⟨A, ̃︀⊒⟩ are complete lattices
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∙ For per-symbol AFA

post(𝜌1) =

{︃ ⋃︁
𝑖=1...𝑛

𝑟𝑖

⃒⃒⃒⃒
⃒ 𝜎 ∈ Σ𝑀 ∧ ∀𝑖 ∈ {1, · · · , 𝑛}. (𝑞𝑖, 𝜎, 𝑟𝑖) ∈ Repper-sym

}︃
(4.1)

∙ For symbol-set AFA

post(𝜌1) =

{︃ ⋃︁
𝑖=1...𝑛

𝑟𝑖

⃒⃒⃒⃒
⃒ ∀𝑖 ∈ {1, · · · , 𝑛}. (𝑞𝑖, 𝑆𝑖, 𝑟𝑖) ∈ Repper-sym ∧

⋂︁
𝑖=1...𝑛

𝑆𝑖 ̸= ∅

}︃
(4.2)

∙ For symbolic AFA

post(𝜌1) =

{︃ ⋃︁
𝑖=1...𝑛

𝑟𝑖

⃒⃒⃒⃒
⃒ ∀𝑖 ∈ {1, · · · , 𝑛}. (𝑞𝑖, 𝜑𝑖, 𝑟𝑖) ∈ Repper-sym ∧ SAT(

⋀︁
𝑖=1...𝑛

𝜑𝑖)

}︃
(4.3)

Then the minimum cases of Post(𝑋) are computed as

⌊Post(𝑋)⌋ =

⎢⎢⎢⎣ ⋃︁
𝜌1∈𝑋

post(𝜌1)

⎥⎥⎥⎦
Now, we present the forward and backward antichain-based algorithms from [9], using

minimum fixed point search 𝜇. The following three statements are equivalent:

∙ The AFA is not empty

∙ {𝐼𝑀} ⊑ (𝜇𝑋. ⌈Pre(𝑋)⌉ ⊔ ⌈Models(𝐹 )⌉) (backward antichain)

∙ (𝜇𝑋. ⌊Post(𝑋)⌋ ̃︀⊓ {𝐼𝑀}) ∩Models(𝐹 ) ̸= ∅ (forward antichain).

The following is the pseudocode for the basic antichain, derived from the pseudocode
from [9].

Algorithm 1 Backward antichain algorithm for solving AFA emptiness

1: procedure AntB(𝑀𝐺 = (𝑄,Σ𝐺, 𝐺, 𝐼𝑀 ,→
G
, 𝐹 ))

2: Start← {𝐼𝑀};
3: Frontier← Done← ⌈Models(𝐹 )⌉;
4: while Frontier ̸= ∅ ∧ Start ̸⊑ Frontier do
5: Frontier← {𝜌 ∈ Pre(Frontier) | 𝜌 ̸⊑ Done};
6: Done← Done ⊔ Frontier;
7: return (Start ̸⊑ Frontier);

After convergence, the antichain Done represents the cases that are not reachable from
the initial case and can reach final cases. Its complement is the inductive invariant. Its
cardinality is the size of the inductive invariant.

In our case, this implementation has a drawback: the size of Models(𝐹 ) can be expo-
nential to the input size. We want to minimize the consequences of this exponential boom,
and therefore we do a semi-depth-first search instead of the breadth-first search: In the
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beginning, we add just one model of 𝐹 into the Frontier (the witness returned by the SAT
solver), then we resolve whole Frontier as in 1. When the Frontier is empty, if we still did
not find an accepting run, we check if some 𝜌 ⊆ 𝑄 exists, such that 𝜌 ∈ Models(𝐹 ) ∩ Done
(we find such 𝜌 in a similar manner as we find 𝜅 in the Candidate rule of IIC). If we find
such a 𝜌, we add it to the Frontier, otherwise, we have converged and the AFA is empty.
We have also experimented with a complete depth-first search. In this case, the Frontier is
actually a stack. In the line 5 of the algorithm, we only pop one 𝜌 from the stack (such
that 𝜌 ̸⊑ Done, compute its predecessors, and push them to the stack. In the line 6, we
extend the antichain Done only with 𝜌 instead of whole Frontier.

The forward antichain has been implemented in a manner analoguous to 1. The an-
tichain Done represents the inductive invariant directly, its cardinality is the size of the
inductive invariant. As we start with {𝐼𝑀}, there is no problem with the exponential
boom, the only problem is that we need to solve SAT after each addition of a case to Done.
Complete depth-first search could however be beneficial for some AFA.

The experiments in the chapter 5 have been done with depth-first search for both forward
and backward antichains. On the benchmarks where the antichains had some problems (the
non-flagellar ones), we have tried also the semi-depth-first search and the original breadth-
first search versions, their efficiencies were worse. On the flagellar benchmarks, the efficiency
was more or less indepent of the type of the search.
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Chapter 5

Experimental Evaluation

The experiments were performed on a machine with Intel Core i7 processor with two cores
and 16GB of RAM. The choice of the language—Python—has also big impact on the
measured times, but it should have no impact on the comparison of antichain and IIC,
which are both implemented in Python. We expect that a similar implementation in C++
would be about 60 times faster (for more details, see the appendix A).

5.1 The Artificial Class of AFA: 𝑃𝑟𝑖𝑚𝑒𝑠(𝑛)

First, we demonstrate on an artificial class of AFA that IIC has a potential to converge
faster if a simple inductive invariant exists. Let us introduce a class of AFA 𝐵𝑟𝑎𝑛𝑐ℎ(𝑚) by
the diagram in Figure 5.1. The guards on the transitions are omitted from the diagram—all
of them are equal1.

We define the 𝑃𝑟𝑖𝑚𝑒𝑠(𝑛) class of AFA in the following way. For a given 𝑛, let 𝜋 =
2, 3, 5, 7, 11, · · · be a sequence of the first 𝑛 prime numbers. The AFA 𝑃𝑟𝑖𝑚𝑒𝑠(𝑛) is then
conjunction of automata 𝐵𝑟𝑎𝑛𝑐ℎ(𝜋1), · · · , 𝐵𝑟𝑎𝑛𝑐ℎ(𝜋𝑛) where 𝑞4 of the 𝑘th branch (we can
choose 𝑘 randomly) branches is not a final state. A simple inductive invariant can be found
in the AFA—no case that contains states from the 𝑘th branch is final and each reachable
case contains a state from the 𝑘th branch. The antichain algorithms are unable to benefit
from this simple invariant. They need to explore all the 2 · 3 · 5 · 7 · 11 · · ·𝜋𝑛 variations
of states in the cycles of each branch, to prove that the AFA is empty. On the contrary,
the comparison in Figure 5.2 shows that IIC does benefit from the existence of a simple
invariant and converges much faster.

1Choice of the AFA representations is therefore of no importance—we choose per-symbol AFA (with
singleton alphabet).

𝑞1

𝑞2

𝑞3

𝑞4

𝑝1

𝑝2

𝑝𝑚

Figure 5.1: The 𝐵𝑟𝑎𝑛𝑐ℎ(𝑚) AFA
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Figure 5.2: Times of convergence for the 𝑃𝑟𝑖𝑚𝑒𝑠(𝑛) instances of AFA

The biggest instance of 𝑃𝑟𝑖𝑚𝑒𝑠(𝑛) where forward antichain solves this problem in a
reasonable time (43 seconds) is for 𝑛 = 4. Backward antichain is better: the maximal 𝑛
where it reliably does not time out (with a four minute timeout) is 𝑛 = 6, with the times
varying in up to 16 seconds. Dominance of IIC on this class of AFA is evident.

5.2 Real World Benchmarks
We have also experimented with real world benchmarks. The authors of the Sloth string
solver [13] provided for us a set of succinct AFA used in their experiments2. We have con-
verted a random selection of 874 benchmarks to all the three representations and measured

Figure 5.3: Structure of a flagellar AFA
(The symbols are not visualized.)

the efficiency of IIC and antichain algo-
rithms on deciding their emptiness. We
cannot fairly compare our current imple-
mentations of IIC and antichains with
Sloth, because our implementations are
still just unoptimized prototypes, written
in Python and not well optimized. We
will however provide some interesting re-
sults also from this comparison.

We set a two minute timeout for the
conversion, as well as for the solving. The
conversion to classical AFA (per-symbol
and symbol-set representations) performs
minterm generation, which can take up to
exponential amount of time comparing to
the number of transitions in the suAFA. In
238 out of the 874 benchmarks, the minterm

2The AFA extracted from the Stranger project [17], using the replace operation
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generation timed out. The only possibility would thus be to solve these cases with the sym-
bolic AFA representation. Unfortunately, each of these 238 benchmarks was timing out
also when solving using the symbolic AFA (we will see later in the measurements that the
performance of solving symbolic AFA is very poor in comparison with symbol-set and per-
symbol equivalents). From the remaining 636 cases, the antichain algorithms performed
very well in 601 of the benchmarks—all the four versions (forward/backward antichain on
per-symbol/symbol-set AFA) terminated in less than 2 seconds. An overwhelming majority
of these cases shared a similar structure, outlined in Figure 5.3. In the sequel, let us call
them flagellar AFA, due to their visual resemblance to flagellata (the microorganisms). It
can be seen that the initial case has two states that are parts of two disjoint branches—a
long one, with no cycles, and a short, more complex one, but small. The language of all
flagellar AFA from the benchmarks we have is empty.

The structure of flagellar AFA is very convenient for the antichain algorithms and IIC
thus cannot win there. We have even found four instances of flagellar AFA where Sloth
timed out while antichains did solve them smoothly. As for IIC, the efficiency depends on
the result of the first generalization. There is some randomization3 in our minimum hitting
set greedy algorithm. Sometimes the first generalization leads the algorithm to a “good
way”—the first added blocker is 𝑄 ∖ {𝑞} where 𝑞 is the first state from the long branch.
Other time, the first blocker lacks the first state from the short branch and the IIC then
progresses in a non-optimal way (the whole short branch needs to be solved before each
proceeding one state further in the long branch). A simple heuristic could be implemented to
force the IIC to pick the good way, but actually, flagellar automata were not so interesting
for us because they can be already efficiently solved by antichain algorithms, hence we
rather concentrate on other classes of examples. We can observe on the bigger benchmarks
in Figure 5.4 that some of the IIC times are much higher than the others—this is caused
by the random pick of the first blocker.

Figure 5.4 shows the measured times for antichains (forward, AntF, and backward,
AntB) and IIC, on a random selection of 35 of the flagellar benchmarks. Each row of the
graph represents one benchmark. The gray bar indicates one of the metrics of AFA that can
be considered to represent the AFA “size”—the number of transitions (cardinality) in the
symbol-set (or smybolic, it is the same) AFA representation. Other metrics are presented
by numbers to the right of the table: number of AFA states |𝑄|, number of minterms
obtained in the conversion to classical AFA (the alphabet size |Σ𝑀 |), number of variables
in the formulae of the symbolic AFA |𝑉 |, and again the cardinality of the symbolic (or
symbol-set) representation |Rep| (it is the same value as is visualized by the gray bar). The
data points show the measured times for individual algorithms and AFA representations.

Figure 5.5 shows the numbers of additions of a case into the antichain, or for IIC,
the number of blocker additions—it shows the number of changes of the main part of the
algorithm state. Figure 5.6 shows the size of the antichain (or the number of blockers,
respectively) in the end of the algorithm—the size of the discovered inductive invariant. In
all the charts, the antichain-based algorithms consistently outperform IIC. Note that we
have omitted symbolic representations of AFA from the measurements—the algorithms ran
many times slower than the ones for the classical AFA because of the expensive multiple
calls of the SAT solver at each minterm generation in the computation of 𝑝𝑟𝑒.

3At each stage, if more than one state hits the maximal number of cases, a random one of them is added
to the minimum hitting set.
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Repsym-set [-]

𝑡 [𝑠]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
375 48 10 779
225 47 10 479
130 45 10 289
126 46 10 281
86 46 10 201
74 39 10 177
67 37 10 163
65 37 10 159
54 36 10 137
42 35 10 113
38 32 10 105
42 32 10 101
41 30 10 99
35 32 10 99
31 29 10 91
31 30 10 91
31 29 10 91
36 26 10 89
36 28 10 89
29 29 10 87
31 24 10 79
22 28 10 73
27 22 10 71
25 20 10 67
23 22 10 63
23 22 10 63
23 19 10 63
20 19 10 57
20 21 10 57
20 19 10 57
13 19 10 55
16 20 10 49
14 16 10 45
8 13 10 33
6 12 10 30

∞60 120

779

AntB, sym-set
AntF, sym-set
AntB, per-sym
AntF, per-sym
IIC, sym-set
IIC, per-sym
sAFA → AFA

Figure 5.4: Time efficiency of the algorithms for flagellar AFA
Repsym-set [-]

Elements added [-]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
375 48 10 779
225 47 10 479
130 45 10 289
126 46 10 281
86 46 10 201
74 39 10 177
67 37 10 163
65 37 10 159
54 36 10 137
42 35 10 113
38 32 10 105
42 32 10 101
41 30 10 99
35 32 10 99
31 29 10 91
31 30 10 91
31 29 10 91
36 26 10 89
36 28 10 89
29 29 10 87
31 24 10 79
22 28 10 73
27 22 10 71
25 20 10 67
23 22 10 63
23 22 10 63
23 19 10 63
20 19 10 57
20 21 10 57
20 19 10 57
13 19 10 55
16 20 10 49
14 16 10 45
8 13 10 33
6 12 10 30

∞1898

871

AntB, sym-set
AntF, sym-set
AntB, per-sym
AntF, per-sym
IIC, sym-set
IIC, per-sym
sAFA → AFA

Figure 5.5: Number of blockers (or antichain cases) added, for flagellar AFA
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Repsym-set [-]

Inductive invariant size [-]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
375 48 10 779
225 47 10 479
130 45 10 289
126 46 10 281
86 46 10 201
74 39 10 177
67 37 10 163
65 37 10 159
54 36 10 137
42 35 10 113
38 32 10 105
42 32 10 101
41 30 10 99
35 32 10 99
31 29 10 91
31 30 10 91
31 29 10 91
36 26 10 89
36 28 10 89
29 29 10 87
31 24 10 79
22 28 10 73
27 22 10 71
25 20 10 67
23 22 10 63
23 22 10 63
23 19 10 63
20 19 10 57
20 21 10 57
20 19 10 57
13 19 10 55
16 20 10 49
14 16 10 45
8 13 10 33
6 12 10 30

∞369

871

AntB, sym-set
AntF, sym-set
AntB, per-sym
AntF, per-sym
AntB, symbolic
IIC, sym-set
IIC, per-sym
IIC, symbolic
sAFA → AFA

Figure 5.6: Size of the inductive invariant, for flagellar AFA

In addition to the 601 benchmarks that were trivial for antichains, we have found a set
of 35 benchmarks, where the global minterm generation did not time out, but antichains
did not solve them in 2 seconds. Three of these automata were actually flagellar (the

Figure 5.7: Non-flagellar AFA

measurements of the tree can be seen on the
top of Figure 5.8), they only were too big to
be solved by antichains in less than 2 sec-
onds. The rest had more varying and inter-
esting structures, e.g. see Figure 5.7. All
of the non-flagellar AFA were non-empty,
therefore we could not measure times of
convergence of the algorithms. It can be
observed in Figure 5.8, that the symbol-set
IIC wins on a majority of these examples,
and if it does not win, it is not far behind
the winner. This is an interesting result
that shows the practical potential of IIC in
the problem of deciding the AFA emptiness.

The overall numbers of algorithm state
modifications (blocker additions for IIC,
case additions for antichain) is visible in
Figure 5.9. The size of the discovered in-
ductive invariant (number of blockers/an-
tichain cases in the end of the algorithms)
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is shown in Figure 5.10. The gap between the symbol-set IIC and antichains is even more
apparent on these two metrics.

Note that the implementations working with symbolic AFA are much slower than the
symbol-set implementations. When using the per-symbol AFA representation, due to its
simplicity, the efficiency is sometimes better than for the symbol-set one, usually if analyzing
small AFA.

Repsym-set [-]

𝑡 [𝑠]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
216 817 28 871
153 868 19 481
147 579 19 463
103 6878 28 348
103 6878 28 348
98 5617 28 335
104 341 19 328
93 4993 28 315
89 4369 28 289
87 3953 28 283
86 3953 28 281
83 3758 28 271
75 2705 28 243
75 2705 28 243
70 392 19 232
67 409 19 223
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
63 375 19 211
62 358 19 208
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
59 287 19 187
35 951 37 177
54 274 19 172
49 261 19 157
46 222 19 148
40 196 19 130

∞60 120 200

871

AntB, sym-set
AntF, sym-set
AntB, per-sym
AntF, per-sym
AntB, symbolic
IIC, sym-set
IIC, per-sym
IIC, symbolic
sAFA → AFA

Figure 5.8: Time efficiency of the algorithms for non-flagellar AFA
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Repsym-set [-]

Elements added [-]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
216 817 28 871
153 868 19 481
147 579 19 463
103 6878 28 348
103 6878 28 348
98 5617 28 335
104 341 19 328
93 4993 28 315
89 4369 28 289
87 3953 28 283
86 3953 28 281
83 3758 28 271
75 2705 28 243
75 2705 28 243
70 392 19 232
67 409 19 223
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
63 375 19 211
62 358 19 208
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
59 287 19 187
35 951 37 177
54 274 19 172
49 261 19 157
46 222 19 148
40 196 19 130

∞21366

871

AntB, sym-set
AntF, sym-set
AntB, per-sym
AntF, per-sym
AntB, symbolic
IIC, sym-set
IIC, per-sym
IIC, symbolic
sAFA → AFA

Figure 5.9: Number of blockers (or antichain cases) added, for non-flagellar AFA

Repsym-set [-]

Inductive invariant size [-]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
216 817 28 871
153 868 19 481
147 579 19 463
103 6878 28 348
103 6878 28 348
98 5617 28 335
104 341 19 328
93 4993 28 315
89 4369 28 289
87 3953 28 283
86 3953 28 281
83 3758 28 271
75 2705 28 243
75 2705 28 243
70 392 19 232
67 409 19 223
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
63 375 19 211
62 358 19 208
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
59 287 19 187
35 951 37 177
54 274 19 172
49 261 19 157
46 222 19 148
40 196 19 130

∞7734

871

AntB, sym-set
AntF, sym-set
AntB, per-sym
AntF, per-sym
AntB, symbolic
IIC, sym-set
IIC, per-sym
IIC, symbolic
sAFA → AFA

Figure 5.10: Size of the inductive invariant, for non-flagellar AFA
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Finally, we present the comparison with the times from the Sloth project. The com-
parison could not be done in a fair way because our implementation of IIC is still an
unoptimized prototype written in Python while Sloth is built over a fine tuned industrial
strength tool ABC [3] written in C. Based on the measurement discussed in the appendix
A, we expect that a similar implementation in C++ would be about 60 times faster. The
comparison therefore includes also times for Sloth, multiplied by 60. These times will be
denoted as artificially slowed-down. Obviously, this is not fair too, but it gives us a more
realistic image about the comparison. In Figure 5.11, we can see that antichain-based algo-
rithms are sometimes better than Sloth in case of flagellar AFA, even if implemented in
Python. The IIC is mostly better than the artificially slowed-down Sloth on the flagellar
AFA.

Repsym-set [-]

𝑡 [𝑠]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
375 48 10 779
126 46 10 281
74 39 10 177
54 36 10 137
42 35 10 113
38 32 10 105
35 32 10 99
31 29 10 91
31 30 10 91
31 29 10 91
29 29 10 87
31 24 10 79
22 28 10 73
23 22 10 63
23 22 10 63
23 19 10 63
20 19 10 57
20 21 10 57
20 19 10 57
8 13 10 33

∞120

779

AntB, sym-set
IIC, sym-set
Sloth (nuXmv backend)
Sloth (ABC backend)
60 · Sloth (nuXmv backend)
60 · Sloth (ABC backend)
sAFA → AFA

Figure 5.11: Time comparison of antichain and IIC with Sloth for flagellar AFA

Figure 5.12 is more interesting for us. Unfortunately, the measured instances of non-
flagellar AFA appear to be quite easily solved by Sloth. As for the bigger instances of
the non-flagellar benchmarks (which were the most interesting ones in comparison with the
antichain), our implementation of IIC loses even with the artificially slowed-down Sloth.
Again, this may or may not be a fair result. We believe that it is possible to work more
effectively with symbolic AFA by a use of caching of SAT results and by reusing similar
minterm trees from older minterm generations, instead of computing minterms from scratch
in each backward transition function. If we achieved similar efficiency as for symbol-set
AFA, the conversion from sAFA to AFA could be avoided. We therefore present also the
times without the conversion, which are already comparable with the artificially slowed-
down Sloth. Anyway, the most interesting comparison would be on benchmarks that are
challenging for both antichain and Sloth. Such instances are unfortunately not present in
our set of benchmarks so far.
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Repsym-set [-]

𝑡 [𝑠]

|𝑄| |Σ𝑀 | |𝑉 | |Rep|
153 868 19 481
147 579 19 463
103 6878 28 348
103 6878 28 348
104 341 19 328
93 4993 28 315
87 3953 28 283
86 3953 28 281
83 3758 28 271
75 2705 28 243
75 2705 28 243
70 392 19 232
67 409 19 223
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
66 358 19 220
63 375 19 211
62 358 19 208
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
58 307 19 196
59 287 19 187
49 261 19 157
46 222 19 148
40 196 19 130

∞200

779

AntB, sym-set
IIC, sym-set
IIC− (sAFA → AFA)

Sloth (nuXmv backend)
Sloth (ABC backend)
60 · Sloth (nuXmv backend)
60 · Sloth (ABC backend)
sAFA → AFA

Figure 5.12: Time efficiency of antichain and IIC with Sloth for non-flagellar AFA
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Chapter 6

Conclusions and Future Work

We have successfully specialized the IIC algorithm for AFA emptiness problem and created
a working implementation of the specialized algorithm. We have observed the impact of
various design decisions and optimization on the performance of the algorithm, namely sym-
bolic representation of the symbols on the transitions (symbolic AFA), set representation
of the symbols on the transitions (symbol-set AFA, in contrast with the simple per-symbol
AFA, which has one symbol at each transition), generalization, future induction, various
implementations of the backward transition function. For the practical cases, the most
performing version of IIC was the version with the set representation of the symbols on
transitions (symbol-set AFA) that used generalization, future induction and the improved
implementation of the backward transition function (proposed in the section 3.7).

The real-world benchmarks were provided to us in the form of succinct AFA, which we
were translating to symbolic AFA (the translation algorithm is our contribution as well).
We could work with the symbolic AFA directly, or translate them further to classical AFA
for a faster analysis with minimal number of calls of a SAT solver (it is called only for
discerning final cases). The versions of IIC implementation which worked with the classical
AFA (symbol-set and per-symbol AFA) performed much better than the version working
with the symbolic AFA. On the other hand, the translation from symbolic AFA was a
big performance bottleneck, which disallowed these versions to even start for a significant
number of the benchmarks.

One of our main goals was to compare efficiency of our specialization of the IIC al-
gorithm with the antichain-based algorithms [9]. We have implemented the forward and
backward antichain algorithms and found a class of AFA with a simple inductive invariant
where IIC performed much better than the two antichain algorithms. From the results
of measurements on the real-world benchmarks, it is apparent that IIC often outperforms
antichains if the structure of the AFA is complex.

However our implementations of the algorithms are still unoptimized prototypes, we
have made an efficiency comparison with the Sloth implementation, which is described in
[13]. The results of the comparison itself were not very favourable to IIC. However, after
some hypothetical adjustments of the results, based on simple measurements of how well
could an optimized version of our IIC implementation perform if written in C++, we have
obtained results that are comparable with Sloth. We know that no real conclusions can
be based on these optimistic adjustments, but it gives some light into the research, and
primarily, it gives us some indications about which way to continue the work. For example,
we can see that we should concentrate on the symbolic AFA analysis because the translation
from sAFA to AFA is too expensive.
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We have some ideas for the nearest future goals. First of all, it would be favourable
to gather more benchmarks from various application domains. The real-world benchmarks
on which we have performed our comparison were all extracted from the same class of
the problem and were very easy even for the antichains or for Sloth. The IIC thus did
not have chance to significantly win over the other algorithms. The improvement of the
symbolic AFA analysis would be also beneficial for this reason because more benchmarks
could be analyzed—it would be not necessary to rely on the feasibility of the conversion
from sAFA to AFA. Various heuristics can be invented and added, which could help in some
practical cases. For example, we have implemented a heuristic that leads the generalization
in a way that causes faster convergence of the IIC for flagellar automata. It was however
not worth mentioning in the description of the experimental evaluation as the IIC was still
much slower than antichain. Symbolic representation of the state space could be also an
interesting topic for research. Finally, to be able to fairly compare the IIC with other
algorithms, it is necessary to optimize the implementation and primarily, reimplement it in
a language that is designed to compile to a high-performance machine code.
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Appendix A

Implementation details

This appendix talks about implementation details of the IIC and antichain algorithms,
choice of SAT solver, and input format of the implementation.

A.1 Programming language choice
The implementation language of the IIC and antichain algorithms was Python, due to
its flexibility and easiness of fast development. To increase performance, we have rewrit-
ten an early version of the implementation to C++. We have measured that the C++
implementation was about 60 times faster than the corresponding version of the Python
implementation. It was using per-symbol representation of AFA and it supported the de-
scription of final cases only by a purely conjunctive formula. Therefore, no SAT solving
had to be performed. There were many other differences with the implementation described
in this work, but we do not consider them relevant for the proportion between C++ and
Python performances. From that time, we have abandoned the C++ implementation, as
it was hard to maintain. However, we can roughly expect that the performance of the
current version could be 60 times better, after reimplementing to C++. Obviously, since
the main performance bottleneck of the symbolic AFA is SAT solving, we can expect this
acceleration only for the symbol-set and per-symbol AFA.

A.2 Input format
The input for the algorithm is given directly as a Python code. We represent cases as bit-
vectors (we have also tried using the Python’s built-in set, but the difference in performance
was negligible, so we did not continue to maintain this representation). The format is
dependent on the representation of AFA. To give an image, we provide a simple example of
the input for symbol-set AFA. As explained in the end of the description of the Candidate
transition rule, the literals in the formula 𝐹 are negated. The following code represents the
AFA from the example 3.1.
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from z3 import And, Bool

N = 6 # Number of states.
I = 0b0001 # Initial case.
N_MTS = 2 # Size of the alphabet.

qs = tuple(Bool(f’q{i}’) for i in range(N)) # Comprehension of all states.

# Definition of final states, with negated literals - this one represents
# F = ¬q0 ∧ ¬q1 ∧ ¬q2
F = And(qs[0], qs[1], qs[2])

# For each state q, we have tuples of symbol set S and cases rho, such that
# (q, S, rho) in Rep.
POST = [

[ ({0}, [0b0110]) ],
[ ({0}, [0b1000]) ],
[ ({1}, [0b1000]) ],
[],

]

A.3 Translation of real world benchmarks
The authors of Sloth [13] has provided us benchmarks they used for the comparison with
CVC4 and S3P tools. We have used the Haskell language to implement the parser of these
benchmarks, as well as translators to the three of our representations of AFA (including
the suAFA to sAFA/AFA conversion). The performance bottleneck of this translation is
again in the SAT solving, which is used for the translation to per-symbol and symbol-set
AFA. Minterms for bigger benchmarks could not be generated in time (2 minutes), so they
were analysed only as symbolic AFA. None of them could be solved in time neither by the
algorithms using symbolic AFA.

A.4 SAT solving
We use the Z3 as a SAT solver [16], which appeared to be the best choice after some
recherche and experimentation. Its application in our implementation takes place in trans-
lation (section A.3), final case detection (the Unfold/Candidate transition rules) and
minterm generation in 3.7.
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A.5 Visualization of algorithm state
To help us analyze IIC and antichains, we have implemented a simple GUI that shows the
AFA and displays the various types of cases in the algorithm state (blockers, candidates,
𝑝𝑟𝑒, forbidden cases, antichain elements . . . ) in various colors. We have used GTK and the
igraph library to display the AFA. The GUI helped us find out that many of the benchmarks
share very similar structure. For example, the figure A.1 shows the GUI with the 𝑃𝑟𝑖𝑚𝑒𝑠(5)
AFA displayed in a certain state of the IIC. At some point of the run of the IIC, it shows
a check that a predecessor (green) of a candidate (orange) is blocked by a blocker (pink).

Figure A.1: Visualisation GUI (𝑃𝑟𝑖𝑚𝑒𝑠(5))
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