FACULTY OF SCIENCE

UNIVERSITY OF SOUTH BOHEMIA IN CESKE BUDEJOVICE

Design and implementation of modules “Phases” and
“External app connectivity” for real enterprise project “Time

Project” using Angular2 and ASP.NET WEB API frameworks

Master thesis

Bc. Michal Kortan
Supervisor: Vaclav Pustéjovsky, Ing

Guarantor: Marta Vohnoutova, Ing

Ceské Budéjovice 2017

Jiho&esk4 univerzita v Ceskych Budé&jovicich
Prirodovédecka fakulta

ZADAVACI PROTOKOL MAGISTERSKE PRACE

Student: Michal Kortan, Be.
Obor — zaméfeni studia: Aplikovand informatika
Katedra/istav, kde bude prace vypracovavana: Ustav aplikované informatiky

Skolitel: Ing. Véclav Pust&jovsky
Baader Computer spol. s r.o0.
Thamova 11-13
186 00 Praha 8 — Karlin
Tel.: +420 226 044 100
Fax.: +420 226 044 199
Email: vaclav.pustejovsky@bcpraha.com

Garant z PFF: Marta Vohnoutova, Ing, Aplikovana informatika
Skolitel — specialista, konzultant: Marian Bengat, Ing. Michal Merta

Téma magisterské prace: Névrh a vyvoj modulu ,,Phases®, , External app connectivity* pro
realny enterprise projekt ,,Time Project* (chytra evidence &asu) pomoci frameworki Angular 2 a
ASP.NET WebAPI

Cile prace :

Systém ,,Time Project (déle jen TP) slouzi jako dochazkovy systém k podrobné evidenci Sasu
zaméstnance. TP je rozdélen do nékolika moduli, které umoZiiuji zaméstnavateli provadét riizné
operace nad dennimi zdznamy (déle jen DN), strukturovat DN do projektii/paketti, provadet
statistiky apod. Pfedmétem této prace je TP rozsifit o niZe uvedené moduly a to konkrétné modul
. Phases* tj. administrace fazi, pfifazeni k jednotlivym projektim, pfifazeni fazi k DN. “External
app connectivity“ tj. napojeni TP na rozhrani externi aplikace a umoznit pfifazeni externi
reference k dennimu zaznamu. V nasem piipadé se jedna o napojeni na issue tracker systém JIRA.
Nicméné prace by méla fesit obecné napojeni na rizné typy podobnych systémii pomoci riiznych
zpusobu.

Ukolem studenta je dale projit celym vyvojem softwaru od névrhu feSeni, definici databazovych
struktur, nakodovani frontendu i backendu a naugit se frontendovy framework Angular 2 popf.
backendovy ASP.NET WebAPI.

Zavérem této prace bude naimplementovany, funkéni a zdokumentovany modul ,,Phases®,

“External app connectivity* v&etn& navrzenych zpisobii komunikace s externimi systémy.

Zikladni doporucena literatura :

* Coury, Felipe, et al. 2015-2016. NG-Book 2. s.l. : Google, 2015-2016.

framework, Entity. 2016. Entity framework tutorial. [Online] 2016. [Cited: 10 19, 2016.]
http://www entityframeworktutorial.net/.

Freeman, Adam. 2013. Pro ASP.NET MVC 5. s.1. : Apress, 2013. ISBN13: 978-1-4302-6529-0.
Google. 2015. Rangle's Angular 2 Training Book. [Online] Google, 2015. [Cited: 10 19, 2016.]
https://angular-2-training-book.rangle.io/.

Uurlu, Ali, Zeitler, Alexander and Kheyrollahi, Ali. 2013. Pro ASP.NET Web API New York :
Apress, 2013. ISBN-13: 978-1430247258.

Financovani prace :

Vedouci prace : Ing. Vaclav Pust&jovsky podpis :

U externich vedoucich fakultni garant prace: Marta Vohnoutova, Ing.......podpis :cccoeueuececrenuenene

Garant oboru mag. studia podpis :
Vedouci katedry: RNDr Libor Dostélek podpis :
Pfipadny souhlas vedouciho tstavu AV podpis :

V Ceskych Bud&jovicich dne «.............coveeveuerneenn. podpis studenta :

Bibliography

Kortan, M., 2017: Design and implementation of modules “Phases” and “External app
connectivity” for real enterprise project “Time Project” using Angular2 and ASP.NET WEB
API frameworks. Mgr, Thesis, in English. — 95 p., Faculty of Science, The University of
South Bohemia, Ceské Budgjovice, Czech Republic.

Annotation:

The thesis deals with module extension in currently developing project called Time
Project 5. Specifically, the Phases, Notification and External Interface module. The thesis is
divided into four major chapters. The first chapter introduces theoretical background
consisting of backend and frontend technology description. The second chapter serves as
determination of customer’s expectations in form of functional and nonfunctional
requirements gathering. The major focus of the third chapter is on application architecture
design of both server and client side together with subcomponents design. Additionally, this
chapter is complemented by the data model and Time Project 5 application design. The last,
and at the same time, major chapter reveals the actual implementation of mentioned

subcomponents including further necessary support features.

DECLARATION

I hereby declare under oath that the submitted Master's degree thesis has been written
solely by me without any third-party assistance, information other than provided sources or
aids have not been used and those used have been fully documented. Sources for literal,
paraphrased and cited quotes have been accurately credited. The submitted document here
present is identical to the electronically submitted text document.

I hereby declare that, in accordance with Article 47b of Act No. 111/1998 in the valid
wording, [agree with the publication of my master thesis, in full form to be kept in the Faculty
of Science archive, in electronic form in publicly accessible part of the STAG database
operated by the University of South Bohemia in Ceské Bud&jovice accessible through its web
pages. Further, I agree to the electronic publication of the comments of my supervisor and
thesis opponents and the record of the proceedings and results of the thesis defense in
accordance with aforementioned Act No. 111/1998. I also agree to the comparison of the text
of my thesis with the Theses.cz thesis database operated by the National Registry of

University Theses and a plagiarism detection system.

V Ceskych Budgjovicich, Dne 10.4.2017

Podpis autora........................

Acknowledgement

It is my pleasure to acknowledge the roles of several individuals who were instrumental
for completion of my Master Thesis.

First of all, I would like to express my gratitude to Vaclav Pustéjovsky, Ing, whose
skillful guidance and ideas helped to shape the thesis. I truly enjoyed working under his
leadership.

Second of all, I would like to acknowledge helpful suggestions and guidance, especially
in implementation phase, from specialists/consultants Michal Merta, Ing and Marian Bencat.

And Finally, my deepest appreciation belongs to my family for their patience and

understanding during my studies at University of South Bohemia in Ceské Budgjovice.

Contents

R [7T L8 T { [o RO PSSO UUO PR PRTRTRPRPN -3-
1.1 ThESIS ODJECHIVESeecveeiieie ettt ere e nre e -4 -
1.2 TIMEPIOJECT 4.3 ... et -4-
IR T 10 0 T o] (o] [S OSSR -6-

FZ I 1 10 Y USSR -8-
2.1 Development @pPrOaCh.........coooiiiiiiiii s -8-

2.1.1 AQile deVelOpMENt.........oooiiicie e -8-
2.2 DAtADASE ..ottt bbb -9-
2.3 ENtity TrameEWOIKooiiiiieec e -11-
2.4 ASP.INET WED APT 2.t -12 -
2.5 ANQUIAT 2. e nre e -13-

3 AANAIYSIS .o bbb -14 -
3.2 PhaseS MOGUIE..........couiiiiiieiece e eneas -15-
3.3 NOtIification MOUIE..........coviiiiiie s -15-
3.4 EXEErnal CONNEBCTIVITYcoviiiiiiiiciierieeie e 17

I LTS T | S PPPS 18
4.1 Data model deSION......cocoiiiiiiee et 18
4.2 Server-side arChitBCUIE.........ccueivii et 21

4.2.1 Architecture introUCTIONcueiiieieierieie e 21

4.2.2 DOMAIN MOTEIScooiiieiiii e 22

4.2.3 Anemic domain MOUEL.........ccueiieieiie e e 25
4.3 Client-Side arChiteCUIEcccveiiiiie e 27

4.3.1 Java SCript frameWOrKSccooieiiiiiieiiece e 27

4.3.2 ANQUIAr 2 architeCIUIEoiviiiiicicee e 27
4.4 APPHCALION AESIGN ...oviiiiiieiiiiee e 31
4.5 SUDCOMPONENES UESION ...eiiiiiiiieiie ettt e e re e sree e 32

451 PRESES HESION ...eeiuiiiiiiiiieite sttt bbb 32

452 NOUFICAION UESIGN...c.iiiiiiiitiiiiiii et 34

4.5.3 TP LOCAHZALION.....ccviiiiiiieie e e 35

5 IMPIEMENTATIONitiiiiiicee e bbb bbbt 39
5.1 Data IMOUEL ..ot 39

5. 1.1 PRESES SCIIPL. ittt bbbt 39

5.1.2 PhaSES MOUEL.....cciiiiiiiiiieie et 41
5.1.3 NOtification MOlcccooiiiiiiiiic e 42
514 External interface model..........cccooviiiiiiiiiie e 44
515 Translations MOUEL.........cccooiiiiiiiiiiice e 45

5.2 Server-side impleMENtationcceoviiiiiieii i 46
521 Generic RepoSItOry Patternccccoeieiiieiiiesiseee e 46
5.2.2 ENLItY FrAaMEWOIKoceiiiee e 46
5.2.3 REPOSIONY JQYEN ..ot 49
5.2.4 SBIVICE LAY ..ot 51
525 ASP.INET WEB API ..ottt 53

5.3 Client-side implementationccccovieiiiiieie i 56
5.3 1 TEMPIALE ..o e 57
5,32 SBIVICES ..etieiiiiie sttt sttt sttt ettt b et re et e reenreeaeaneennes 65
5.3.3 IMOTUIES ...ttt 66

5.4 NOtIFICAioN MOUUIEccvoeviiiieice e e 68
55 Translation MOUUIE..........ccveiieiiie e 71
5.6 External interface — Jira concept implementation............cccccoveviiveiiecicce e, 72
5.6.1 Jiraserver t0 TP databaseccevveirieeieiie e e 72
5.6.2 TP SEIVEI 10 JIFA SEIVET ...eeuviiiieieiee e sieeieseestee e eestee e ssee e e seeeneesseenseaneesneas 74

6 Testing, Deployment and Proposalsccccveveiieieiiie i 78
6.1 Testing and DePlOYMENTcc.oiiiiiiiiiieee e 78
6.2 Proposals for further extensibility ... 78

T CONCIUSION ...t et ettt et e b b et e e beebeeneene e st enee e 80
BIDHOGIAPNY ... 81
ST OF FIGUIES ...t bbbttt e bbbt 84
LiSt OF @DDIEVIALIONS ..o et 85
8 APPENTIX ettt bbbttt 87
8.1 Content structure of attaChed CDcccviieii e 87
8.2 Translation module — ACtiVIty diagramccceviveiiieiiie e 88
8.2 Web layer Class dIagramcccooiiiiiiiiiiiee e 89

Chapter 1

Introduction

In the constantly growing world of modern web technologies it is very difficult to
choose the right system that can help run businesses more efficiently in terms of time
evidence. Among sophisticated and specialized enterprise solutions for project based time
recordings belongs Time Project. This solution can even compete with giants such as ZEP?
or SAP? in this field.

Time Project 5 (hereafter TP) is a re-implementation and improvement of TP 4.3, a
smart client server time effort documentation system based on Borland Delphi Pascal of
2005. The new system is a web application based on the modern Microsoft .NET
programming languages and includes sophisticated application frameworks like Google’s
Angular 2 and the powerful Kendo Ul components.

The thesis deals with necessary theory introduction, design and implementation of
system subcomponents/modules- Phases, Notifications and External connectivity. Phases
module is used to organize the effort in certain phases. This is appropriate for billing
requirements used by architects in Germany, who must document their services in the
context of certain phases in an immobile construction process. The phase module than
allows to assign every item of a daily effort report to a certain phase. The module for
Notifications was implemented to present system messages from different incidents in a
modern way by using Angular 2 user interface integration. The last module deals with
several connections to TP. The major focus is on Jira to TP connection that dulcify filling

in a daily record.

1 Zeiterfassung fiir Projekte- Web solution for project oriented work
2 Systeme, Anwendungen und Produkte in der Datenverarbeitung (Systems, Applications & Products in Data
Processing)- Multinational software corporation

1.1 Thesis objectives

e Introduction of Time Project 5

e Theory description

e Requirements analysis

e Data model, system architecture and subcomponents design

e Implementation part

1.2 Time Project 4.3

Latest version of Time Project (TP) has reached a certain age of 15 years and is already
considered as outdated. TP was designed and implemented as desktop application (client
and server) in Delphi by company Kirchhoff Datensysteme Software. This company was
established in 1986 under the name “ASSDOS” with specialization in house service
systems. The company Baader computer raises at the beginning of the nineties with rapidly
growing area of software development. Later on, in order to meet the various business
priorities, the company transformed into holding in 2003 and German companies have been
renamed "Kirchhoff Datensysteme Service" and "Kirchhoff Datensysteme Software
(Kirchhoff Datensysteme Software , 2014).

TP 4.3 is an application for time evidence of employees in connection to projects,
activities, phases etc. All this information can be provided not only for internal and external
purposes, but also for responsible project managers or administrators. Collecting these
information leads to significant increase of time estimations on specific tasks called Project
management and Corporate controlling. TP is suitable for all companies from various fields
such as marketing, commercial agencies, architects, consultants or software developers
which are using evidence of time to calculate their expenses. Already existing clients prove
the diversity of TP.

e Graffinity Pharmaceuticals AG
e CONTEAM

e Budde Industrie Design GmbH
e CONCENTIS and many others

TP offers a great amount of options for specific business needs from evidence of
attendance to highly specified project management. The most important functions and

features are:
1) Easy handling
2) Flexibility and customization
3) Extensive evaluation possibilities
4) Project budget planning
5) Reliability and security
6) Easy evaluation of working hours for customer

In addition, TP includes the possibility to customize access rights according to
specified needs or early warning system (i.e. warning before budget is exceeded) (KG,
2008).

As it was implied, TP 4.3 was created over a decade ago that is why it is based on
Borland Delphi Turbo Pascal, a programming language that is generally not in use any
more. Also, the design is focused on Windows 95 and has never been improved (Figure 1:
Time Project 4.3). These are the major obstacles for further improvements and additional
feature developments. Therefore, a proposal has been made to develop new version of TP 5

which is based on modern technologies.

- time project 4.3 - O >

File Work time recording Reports Transfer Tools Help

time project

Clever time keeping

W
Version 4.3 H‘fr’j)‘/ i l

{c) 2008 Kirchhoft Datensysteme
Kartan Michal tp.intranet.bcpraha.com Online

Figure 1: Time Project 4.3

1.3 Time project 5

Decision has been made for new TP 5 to be implemented as a web application. A web
application is a program that is stored on a remote server and delivered through the Internet
using a web browser. The idea of replacing old TP 4.3 occurred when a major customer
(City of Cologne) requested new improvements. It was, in general, not possible to enhance
features of the old TP at all. The new TP 5 covers new modern design based on responsive
template/layout to support all devices with different resolutions. TP 5 targets mainly current

customers like:

e Public service authorities (City of Cologne)

e Public sector companies

e Freelancers like architects

e Small and medium enterprises in the service sector (like Baader Computer)

To be able to develop the best possible solution, the research of competitors has been
made. This research includes functional requirements as well as very detailed product
pricing. TP does not only compete with other software applications (specialized in time
recording or as part of a large enterprise resource planning solution) but also with self-
tinkered substitutions like MS Excel or MS Access. As far as SAP (comes from
abbreviation of “Systeme, Anwendungen, Produkte in der Datenverarbeitung”) solutions
are concerned, TP cannot be compared to build-in solution specifically designed to its
needs. The users of Excel and Access will at some point crash against their boundaries. So,
the real competition would be with existing sophisticated and specialized solutions for
project based on time recordings. Because TP is targeted for German companies, local
market needs to be researched. Among the strongest competitors in German market is ZEP.
Based on collected data, new version of TP had to be differentiated. Other products in the
field of Time recording focus mainly on project which stands in the center of the

application whereas TP focuses on user and his daily duties.

At the beginning of the thesis, some of the used technology was predefined by the
choices Baader computer made before the development of the TP 5 started. Namely,
RDBMS operated by MS SQL Server and ASP.NET Web API as a major framework. To
develop TP 5, the thesis must cover number of other technologies that must be studied and
understood. These include N-Tiered architecture, client and server side frameworks and
techniques, implementation technologies such as not only relational databases and
ASP.NET WEB API, but also Entity Framework and Angular 2.

Chapter 2

Theory

The purpose of this chapter is to briefly describe necessary theory about developed

modules. All this theory is practically used in implementation part of the thesis.

2.1 Development approach

In today’s fast-developing world, the key is to choose the most suitable method for
software development. Among the most used and widespread SDLCs? belong for instance
agile software development, spiral model and waterfall model (Jamsheer, 2017). The whole
process of Phases module, Notification module and External app connectivity can be
divided into two main parts. First part consists of analysis, requirements collection and
design. Second parts’ major focus is on implementation phase. From the above points, it
can be observed that for the first part the most suitable method is waterfall. For the second
part, however, agile methodology with weekly sprints is used mainly because of the ability

to constantly inform customer about new implemented features.

2.1.1 Agile development

This incremental and iterative approach provides opportunities to estimate the direction
of a project throughout the software development lifecycle. The basic idea is that at the end
of the so-called sprints (weekly, monthly) the development team must present potentially
shippable product. Agile paradigm emphasizes on continual revision of all software
development aspects namely analysis, design, implementation and testing (McLaughlin,
2013).

3 Software/System Development Life Cycle

SPRINT 1 SPRINT 2 SPRINT 3

Figure 2: Agile development
2.2 Database

The word database is a compound of two words, data and base. Data can be explained
as known facts which can be reported and have specific meaning. Another definition states
that they are expressions for detail used for phenomenon description or observable property
of object. Base can be described as the set which allows to set the coordinates to specified
space. Based on these definitions, it can be claimed that database is a partly ordered set of
data. In addition to the definition, database represents logically linked set of real aspects of
the world (Daux, et al., 2002).

To be able to operate with databases DBMS* must be present. It is an aggregate of
programs, procedures and methods which allow users to create and maintain databases.

Among the major functions and abilities of DBMS belong:

1) Database definition - data type, structure and integral restriction definition
2) Database construction - data storage process
3) Database administration - access, data manipulation- includes query and search

functions

4 Database Management System

There exist several types of DBMS such as navigational, relational, object-oriented and
so on. Next paragraph focuses on relational database in more detail because it has been
predefined by Baader computer for TP 5. The paragraph, however, serves only as a very
brief introduction to relational database creation.

One of the recommended ways of how to develop RDM? is to create ERM®. It is
basically a model, based on analysis of requirements, for abstract and conceptual data
representation. For that it uses entities, relationships, identifiers, attributes and instances.
Entities represents an object in real work such as (user, car etc.) and is also a set of
instances. Attributes are properties used for closer entity specification. Several types of
relations exists between entities - 1:1, 1:N, M:N. When entity-relational model is finished,
the relational model can be created. The table below describes the transformation between
these two types (Daux, et al., 2002).

ERM RDM
Entity Table
Identifier Primary key
Attribute Column
Instance Row

Table 1: ERM to RDM

Microsoft SQL Server Management Studio 2016 program has been used to maintain
relational database. As the name might suggest it uses SQL’ for querying and maintaining

the database.

% Relational Data Model
6 Entity-Relationship Model
7 Structured Query Language

-10 -

2.3 Entity framework

Entity Framework (hereafter EF) is an ORM® framework that enables working with
relational data using domain-specific objects. It eliminates the need for most of the data-
access code that usually needs to be written. EF allows to create a model by writing code
(Code first approach) or using boxes and lines in the EF Designer (Database first approach
or Model first). Both approaches can be used to target an existing database or create a new
database (Microsoft, 2016). EF is an enhancement to ADO.NET?® that has an automated
build-in mechanism for storing and accessing data. Querying these data is then achieved via
LINQ??, then retrieved and handled as strongly typed objects. One of the biggest
advantages is that ORM allows to keep database design separate from domain class
(maintainability and extensibility). In addition, it automates standard CRUD?! operations. It
also provides services such as lazy loading or change tracking, however, these services are
described in implementation part of the thesis (EntityFrameworkTutorial, 2016). Finally, it

is important to mention that TP 5 is built on 6.1.3 version of EF.

8 Object-Relational Mapping

% Data Access technology- communication between relational and non-relational systems
10 Language Integrated Query

11 Create, Read, Update, Delete

-11 -

2.4 ASP.NET Web API 2

ASP.NET is built on the .NET framework, as a server-side web application framework
designed to produce dynamic web pages. In contrast with WCF*? service, ASP.NET WEB
API 2, that TP 5 uses, just needs a REST®® URL, a set of inbound arguments, and a
response JSON or XML message (Figure 3). The biggest advantage of this framework is
that it is REST (Representational State Transfer) by default which makes it interoperable
across all platforms capable of making HTTP* requests. It can be inferred that every
device capable of making HTTP requests to a URL™® is RESTful. The same applies to
JSON? and straight XML’ data. JSON has become favorite mainly due to its simplistic
format in comparison with the size of XML/SOAP*8 data (Anderson, et al., 2012).

Web API| WCF Services

Database

|

Custom
Operations/
Logic

Database

Custom
Operations/

4 € WCF Services/
WS* Specs

Figure 3: Web API vs WCF Services (Dee, 2014)

2 Windows Communication Foundation- a set of APIs for building connected, service- oriented applications
13 Representational State Transfer- provides interoperability between systems on the internet

14 Hypertext Transfer Protocol- application protocol for transferring files on the World Wide Web

15 Uniform Resource Locator= web address

16 JavaScript Object Notation- open-standard format for transmitting data objects

17 Extensible Markup Language

18 Simple Object Access Protocol- messaging protocol

-12 -

2.5 Angular 2

On September 14th 2016, after two and half years of development, the final version of
Angular 2 was released. It is a framework for building client applications in HTML and
either JavaScript or TypeScript that compiles to JavaScript. Writing Angular applications is
made by composing HTML templates that are managed by component classes. An
application logic is then run by services which are together with mentioned components
boxed in modules (Google, 2016). So far, three of eight main building blocks of the

Angular application have been mentioned. Those and the other blocks are described in
more detail in the Design chapter.

-13-

Chapter 3

Analysis

Analysis is a process of determining customer’s expectations and needs for an

application. This process uses two types of requirements:

1) Functional- functions and behavior

2) Nonfunctional- system specification

Nonfunctional requirements are covered in chapter Design, specifically Architecture
design of server and client side. Functional requirements apply the use case analysis for
better understanding and description (Martin & Martin, 2006). However, since the use case
diagram provides a graphical overview above users and their actions/functionalities they
want to achieve based on gathered requirements, following chapters take into consideration

functional requirements only.

3.1 Core features

As implied in previous chapters, the whole system concept partly follows the former
version of TP 4.3 functionality. Database model has been completely reengineered and
transformed into MS SQL database where all data produced by following modules is
stored: Work time, Employee, Cost, Activities, Projects, Customers, Phases, Notifications
and others. For the purposes of the thesis, module phases and notifications together with
others are the most relevant to focus on. Next chapter describes all modules in more detail.

-14 -

3.2 Phases module

Some TP customers are using the extra Phase module to organize their effort in certain
phases. This is appropriate to billing requirements for architects in Germany, they must
document their services in the context of certain phases in an immobile construction
process. (In German these phases have the certain name “Gewerke”, there are phases for
the foundation of a house or for the timber work to construct the basis of a roof.) The phase
module allows to assign every item of a daily effort report to a certain phase, when this is
applied to an appropriate selected project. Thus, the total effort can be reported in a sorted
way divided by different phases.

3.3 Notification Module

The old TP 4.3 included a basic notification system that generated dialogue based
messages for warnings about budget exceeds. The new TP should include a more useful
and common solution. Thus, the module for Notifications was implemented to present
system messages from different incidents in a modern way. This is fully integrated in the
Angular 2 user interface. As in other enterprise web applications the notification feature
appears as a bell icon in a header menu. This icon indicates the existence of unread
messages by the number of these items. After a click on the bell, icon opens the notification
browse list that allows to select and to open the appropriated notification message that the

user wants to read and react to.

Phase Requirements: Export to excel

Read phase- Phases browse grid Data localization into EN, DE, CZ

Create phase- Phases detail view Last changes logging

Edit phase- Phases detail view Assigned phase to project and otherwise

Delete phase Assigned project in phases browse grid

Filter and sort phase grid

-15-

Set the duration of assigned project in
phase

Autocomplete field for assigned phases
for project

Autocomplete field for phases in the daily
record item form

Possibility to turn usage of Phase module
off

Possibility to record daily item without
phases

Implement a design according to Mockup
Ul localization

*Notify the user when new phase is
created, edited, deleted and exceeded

*Notification requirements:

Indicator of unread notifications

Read notification- notification browse
grid

Notification detail view

Notification must be stored in all
languages

Read notification template- notification
template browse grid

Edit notification template in all
languages- notification template detail
view

Notification generation source

Localizable

More detailed specification of these requirements has been gathered from issue/project

tracking system called Jira'® where the most tasks are listed. In case of further specification,

TP project manager has been contacted. Complete documentation can be found on attached

CD.

19 Software development tool used by agile teams

16

3.4 External connectivity

The thesis deals with several connections with TP. One of them is known as Jira
connection to TP. The idea behind this connection is the possibility to dulcify filling in a
daily record. To successfully create a daily record a project name together with subproject
must be filled in. However, Jira connection to TP enables filling in so called Jira issue key
which causes automatic completion of project and subproject name. To be able to achieve

such behavior the following requirements need to be accomplished.
Requirements:

e Create New custom field in Jira
e Establish a connection between Jira server and TP database
e Establish a connection between TP server and Jira server
o Using Basic authentication
o Prepare for using OAuth
e Create appropriate area in TP system settings to define connection to Jira server

e Jira autocomplete inside daily report item

17

Chapter 4

Design

Design phase is where the application architecture, which defines components, their
interfaces and behavior, is established. This phase starts when all requirements from
analysis phase are gathered and subsequently mapped into an application architecture.
Whilst analysis phase focuses on doing the “right” thing, design phase focuses on doing
“things” right (in other words “how” phase). Thus, design phase determines which
programming languages, application architectures, architecture layering, data structures and

many others to use (Burback, 1998).

Following chapters represent data model design and architecture of both, client and
server side application with detailed description. Further, it details application design

together with color scheme.

4.1 Data model design

Conceptual representation of Phases data structure was designed with the help of
Microsoft Visio 2016 Crow’s foot database notation template. Instead of showing all
conceptual models and their appropriate relations, the thesis displays only one conceptual
model (Figure 4). Other necessary models (presented in Implementation Chapter) are

relational only.

18

DailyReportitem PhaseLocalization

Language

AssignedProjectToPhase Project

Iq HV_'E I
I I_IE I

——————— —H

Figure 4: Conceptual model of Phases module

The next step in data modeling is usually creation of Logical model which helps to
define the detailed structure of entities and their relationships. This step was not applied
since the conceptual model is quite simple. Toad Data Modeler has been used for creating a
relational model, that uses so called Information engineering style notation. The figure

bellow depicts such a phases module model.

19

.1 Phase_DailyReporttem [2.1]
— _ e EhEE T
(DailyReporthem
(J) Int NN (P
Phase Int (FK)
lg= Fras=id nt NN (PH) :” E: s Froed
CresteDate Datetime NN " (7 Tnt RS
k= Activityld Int FK) o
lg= TeriffClassRateld Int (FK) Int (0
Project_DasilyReportitem Int (FK)
Int [FK)
|sDeleted Bt n CreateDate Datetime NN B ot)
IsActive Bit NN - k= Budgetianager Int [FK)
i\ Phase_Phaselocalization
PhaseLocalization))
Phaselocalzationld Int NN {FK] lsActive Bt NN
(o Fhessrese et 0 i IsDeleted Bit N
[@= Languageld .) IsBillable Bit NN st
Title Nvarchar(128) NN lg Phasela = K
ShorTite Mvarchar(22) NN
. Dail oit| Da lyRe portte m
= Phaseld Int {FK} _<L Language_Fhaselocalization WRep yRepe
: 4
.) Language L DailyRe=port CreateDate Datetime NN
Phase_»Aesigned Froje oif oP hase @ Lengusg=ld Int NN (PK] i Int NN (FK)
Mame Mvarchar(200) NN portld Int NN (PK)
4 Code Mvarchar(10) NN
AssignedProjectToPhase B CreateDate Datetime NN IsActive Bit NN
|4 AesigredFrojadToPhazeld nt NN CresteUsar Int (FK) IsDeleted Bit NN
lg= Phaseld Int NN CreateDate Datetime NN
W= Projectld Int NN {
CreateDate Datetime NN IsActive Bit HN CheckBudget Bit NN
IsDeleted Bit NN IsDeleted Bit MM
IsActive Bit HH ; i
Project_AssignedProjectToPhase s 2L =
]
}
IsActive Bit NN
IsDeleted Bit NN
MotifylfExce eded Bit NN

Figure 5: Phases model

The next chapters deal with architectural design of TP divided into concepts- frontend

for client side and backend for server side.

20

4.2 Server-side architecture

4.2.1 Architecture introduction

According to W3Techs.com from 7th January 2017, PHP? is the most widespread
programming language for server-side development immediately followed by ASP.NET. It
can be assumed that Microsoft’s ASP.NET framework, which TP is built on, is very
unlikely to extinct. Since the TP has been marked as an enterprise project an appropriate
software architecture needs to be chosen. Nothing like solid right or wrong answer exists. It
can basically be said that if specifications and requirements for project are fulfilled than it
can be considered as the right approach. According to (Fowler, et al., 2002) design patterns
and principles make project more robust, reliable and maintainable. In addition, it makes
the code highly cohesive and loosely coupled. For enterprise level application, it is
recommended to follow SoC?* which divides an application into several layers where each
layer has its own responsibility => N-tier architecture. Layering of an enterprise ASP.NET
application and SoC of presentation, business logic, and data access is very individual.

Fortunately, domain logic patterns encompass three methods for organizing business logic.

1) Transaction script (Anemic Domain Model) — this method concentrates mainly on
organization of business logic in a procedural fashion rather than object-oriented
approach

2) Active record — this pattern is very useful when database model matches business
model => one-to-one mapping, unfortunately it is primarily specification for simple

applications and to build application with data first approach

3) Domain model (Rich Domain Model) — an abstraction of real domain objects where

both data and behavior is modeled

20 Hypertext Preprocessor- platform independent server-side scripting language
21 Separation of Concerns

21

Domain model typically uses repository pattern to solve persistence between business
object and domain model. In other words, when employing the Domain model pattern, it is
the responsibility of the Repository object and data mapper to map business entity
(POCO?) to data model (Millett, 2010). After figuring out that the Domain model is correct
business organizational pattern for TP purposes, it is time to distinguish between different
types such as anemic domain model (hereafter ADM) and rich domain model (hereafter
RDM). Next paragraphs focus on description and comparison of these patterns and

conclusion which one fits better for TP needs.

4.2.2 Domain models

Very similar to the classic domain model is ADM due to the fact that domain objects
represent the business domain as well. Major difference between these models is that any
behavior (domain logic) is not contained within the domain objects therefore they become
simple data transfer classes (getters and setters). For the domain logic than serves set of
service objects which are on the top of domain model. Unfortunately, this pattern by its
behavior interferes with the basic idea of OOP? => combine data and process together.
RDM, on the other hand, encapsulates all business logic and data so there is no violation of
OOP which is the major advantage against ADM approach. Both approaches use a
collection of principles and patterns called DDD?*. Following data shows advantages and
disadvantages when using these approaches which has been collected from many sources
for instance: (Evans, 2003), (Fowler, et al., 2002), (Kumar, 2015), (Samolysov, 2016).

22 plain Old CLR Object
23 Object-oriented programming
24 Domain-Driven Design

22

CONS

ADM RDM
Does not follow OOP principles — that is Cannot be generated by code generators
why it is called “anti-pattern” without resorting to complex inheritance
models

More complicated approach

Less reusable than ADM — business logic

is hard coded in the domain object classes

PROS
ADM RDM
Easier to implement than RDM Follows OOP principles
Can ensure that its state is always correct

Better for more complex business logic

Among the biggest doubters of ADM approach belongs (Fowler, et al., 2002) who said
“The fundamental horror of this anti-pattern is that it's so contrary to the basic idea of
object-oriented design; which is to combine data and process together. The anemic domain
model is really just a procedural style design, exactly the kind of thing that object bigots
like me and (Evans, 2003) have been fighting since our early days in Smalltalk. What's
worse, many people think that anemic objects are real objects, and thus completely miss the
point of what object-oriented design is all about.”. However, having said that, he also says
this: “It's also worth emphasizing that putting behavior into the domain objects should not
contradict the solid approach of using layering to separate domain logic from such things

23

as persistence and presentation responsibilities. The logic that should be in a domain
object is domain logic — validations, calculations, business rules — whatever you like to call
it.”. This can be argued by View Models, they contain all required data to execute a view
and any logic required to render the view. Considering using ORM framework and 10C%

which saves a great amount of effort, the ADM than becomes the best solution.

The whole backend concept of TP was inspired by the best practices gathered from
Microsoft’s official websites msdn.microsoft.com and from MVP’s (Microsoft’s most

valuable professional)

2 Inversion of Control

24

4.2.3 Anemic domain model

The main intension is to keep architecture clean and create a highly loosely coupled
solution. Several patterns (listed below) had to be followed to define the right manner of
Data access, Business and Presentation layers.

e ORM - EF Code First development

e (Generic repository pattern
e Dependency injection using Unity
e And many others described in more detail in Implementation chapter

Picture below shows chosen architecture diagram of TP based on ADM.

Controllers & ViewModels et
> o

Repositories & Configurations > DAL

o

Figure 6: ADM layers

WEB

25

Database — used database is described in more detail in identically named chapter.

Shared — in the chapter Theory different approaches were outlined in its EF section. Since
DDD patterns are followed, the Code First approach is the best choice. This approach
requires creation of domain objects (Entities) in order to build the database. For
configuration of these Entities, two approaches exist: DataAnnotation attributes and Fluent

API. Considering configuration options and flexibility, the Fluent API is a better choice.

DAL?® —is the only responsible layer for direct communication with the database. This is
the place where configuration files are stored. These files use DbContext which is
responsible for access to the database. DAL also includes repository layer which is the
only layer available for “higher” layers (in this case Service layer) which eventually wants

to access the database.

Core — a layer where business logic is implemented is called Service layer. It is responsible

for validations and exposing operations to API controllers.

WEB — API controllers for handling incoming requests (sent for further processing to
service layer) from client and viewmodels which represent used data. More about
ASP.NET WEB API in identically named chapter.

2 Data Access Layer

26

4.3 Client-side architecture

4.3.1 Java script frameworks

In today’s world of endless possibilities, it is almost impossible to choose the right
frontend JavaScript framework. To help determine which one is the most widespread, the
google trends graph (collected data from github, stackoverflow etc.) and indeed.com were
used as a source. After a small research of available JavaScript frameworks in 2016, the
research ends up with ten possible candidates. They were added one by one into google
trends graph to determine popularity. To sum the research up, there are three best solutions
(Figure 7).

Jan 15 - Jan 21 2017

AngularJS 23

Mw react 1 C -‘v‘.
L

~0

e jquery
—

Figure 7: jQuery vs AngularJS vs React

The graph shows the popularity of jQuery, AngularJS and React worldwide from
December 21, 2014 to January 15, 2017. It can be implied that jQuery is slowly decreasing
whereas AngularJS and React are slowly increasing. Portal indeed.com finds approximately
13,5K jobs positions including jQuery keyword, followed by 6,5K for Angular and 4,5K
for React. Because this research was done in early 2017, including angular 2 into

comparison would not be relevant.

Considering the recent drop of jQuery, AngularJS is the best option. However, as it
was mentioned previously, TP is built on modern technologies, that is why Angular 2 was

chosen.

27

4.3.2 Angular 2 architecture

The purpose of this chapter is to describe the Angular 2 architecture in more detail.

Angular 2 uses eight main building blocks, namely: modules, components, templates,

metadata, data binding, directives, services, dependency injection (Figure 8)

Metadata
Module Module
Component Service

Directive

{1

Template
Module Module >
Value Fn
Property Event
Binding Metadata Binding

Injector

Component

{}

Service

{1

Service | Service
{1 {1

Modules

Figure 8: Angular 2- architecture (Google, 2016)

Angular modules exist to organize an application (components, directives and pipes
consolidation) into cohesive blocks of functionality, each focused on a feature area,

application business domain, workflow, or common collection of utilities.

Components

Angular components control a patch of screen called views. Application logic to
support the view is placed right there inside a class which interacts with the view through
an API of properties and methods. As well as in MVVM?', the component represents the

ViewModel part and the template represents the view.

27 Model-View-ViewModel

28

Templates
Templates are a form of HTML that tells Angular how to render the component. The
difference between regular HTML template and Angular template is in template syntax.
Among the basic elements belong build-in directives, expressions, statements and many
others.
Metadata

When for instance a component is created it is nothing but a class. To tell Angular how

to process a class, metadata must be attached => usage of TypeScript decorators.

Data binding

To be able to push and pull data between DOM?® and component, data binding
mechanism offers four ways of doing that — interpolation, property binding, event binding
and two-way data binding

{{value}}

[property] = "value"

(event) ="handler"

—
Z
w
=
O
o
=
O
O

[(ng-model)] = "Property"

Figure 9: Angular 2- data binding

28 Document Object Model

29

Directives

Because Angular templates are dynamic, directives provide instruction for
transformation of the DOM structure when they are rendered. Directives of this type which
alter layout by adding, removing, and replacing elements in DOM are called structural (for
instance *ngFor and *nglf). Attribute directives, on the other hand, alter the appearance or

behavior of an existing element (for instance [(ng-model)]).

Services
A service is designed for specific and well-defined purpose, typically for handling the
server communication. In contrast with components which should be lean — properties and

methods for data binding, services should handle everything else.

Dependency injection
DI serves as a provider of services needed by components. This is maintained by using

a container of service instances called Injector.

Now, when the use of Angular 2 framework is established, one of the last things that
must be resolved is to choose the right UI?® library to fulfill requirements such as Filter and
Sort phase grid and Export to excel. Since Kendo Ul supports this behavior from default, it

is a perfect solution for this situation.

2 User Interface

30

4.4 Application design

As well as TP’s former version, the new version follows the same color scheme

(yellow, black, grey and white) by default. After many graphical proposals, the final design

was approved (Figure 10).

ﬁ TIME
PROJECT
Die clevers zeitbuchhaltung

Figure 10: TP final design

31

4.5 Subcomponents design

4.5.1 Phases design

Several mockups are listed in implementation chapter for sententiousness of the
specific situation. Therefore, the following text shows function description together with a
few mockups. Phases module is designed in a way to accomplish all requirements

mentioned in Analysis chapter. These requirements are mapped on following sections:

1. Phase list grid (in Implementation chapter in more detail)
2. Detail view of Phase Basic Data
3. Assigned Project to Phase detail view
This connection also stores:
o Planned hours of the phase within the project

o When planned hours are filled, checkbox NotifylfExceed is enabled

Sollstunden setzen

Projekt TimeProject 5.6 *Flufty Falcon®

Phaose Initial reguesat

Sollstunden der Phase :

Figure 11: Assigned Project to Phase detail

32

4. Project in Phase list grid

Stammdaten Projekte

Time I © Hinzufiigen]
TimeProject 55
Ansprech- Budget- Projekt-
TimeProject in PHP = Ip“ oot ‘m:ﬂ' 3 ijek ¥ |Kunge ¥ |Solistunden -
Change to Times font in PSA GWB Bernd Bordstein Reiner Hohn Intern Harry Hirsch AG 200 f
Rows
* Number
- Title
- Short title
1

Figure 12: Project in Phase list grid

5. Phase tab in Project module
o Assigned Phases to Project grid
o Assigned Project to Phase detail data

6. Autocomplete field for phases in the daily record item form
There are three possible scenarios:

1. Sub project entered, phase not entered
2. Sub project and phase entered

3. Sub project not entered, phase entered

First scenario is possible when sub projects are part of the project and the user has
selected one of them. It can be that there were no phases assigned to the project, then the
field for phases is not visible. Or the entering of phases is set as optional in the system
settings, then the autocomplete field can be left empty.

Second scenario is possible when subprojects and phases are assigned to the project

and the user has selected both in the appropriate autocomplete fields.

Third scenario is possible when no subproject is assigned to the project or the selection
of subprojects is optional. The user then has not selected one. The phase of Implementation
was assigned to the project and selected by the user for this daily report item.

33

Karl-Heinz Mustermann

M <« (< Mittwoch, 15. Januar 2017 > > @
Ansicht IM'—_I* - ﬁ 08:15 0) 17:.00 O Soll. 8:45 Erfosst 2:15 Rest 6:30 0
& Ar gemaf Soll 8:00 Erfosst 2:15 Rest 5:45 Q
Q@ ozts & KDS-TP531| TimeProject 5.3 Implementation &8 Project management
4 berechenbar I8 User management @ Specificaton and Lorem ipsum dolor sit o -
consetetur sadipscing elitr, sed diam nor
@8 Single user settings tempor invidunt ut labore et dolore mogn & 9ub proiiars
erat, sed diam voluptua. [] Phases
c B 9, KOELNTP-66
(]
=
s g : 3 =
o e 02:15 & KDS-TP5311 TimeProject 5.3 Implementation & Project management
>
uo_ [berechenbar @8 User management ® Specificaton and Lorem ipsum dolor sit a -
. consetetur sadipscing elitr, sed diom nor o Sub ‘
@8 Single user settings tempor invidunt ut labore et dolore magn s
erat, sed diom voluptua. o Phases
= Implementation
el ml] % KOELNTP-66
@ 02:15 & KDS-TP5311 TimeProject 5.3 Implementation & Project management
[berechenbar 2 Implementation @ Specificaton and Lorem ipsum dolor sit o -
consetetur sadipscing elitr, sed diam nor
tempor invidunt ut labore et dolore magn [J Sub projects
erat, sed diam voluptua. M Phases
S ml) Q, KOELNTP-66

Figure 13: Autocomplete field for phases in the daily record item

Paragraphs above indicate the last important functionality which is the possibility to set
Phases for daily reports as optional in system settings. Additionally, to either set the whole

module Phases as optional.

4.5.2 Notification design

Significant part of requirements defined in Analysis chapter is about being able to
notify the user about changes made in TP application. Therefore, this chapter reveals
several following steps which need to be introduced and briefly described.

1. Indicator of unread messages

User can see an indicator at the bell icon that shows the number of unread messages.
When a user clicks on the bell icon, a short menu appears that shows two links for
important and regular notification list grid

2. Notification list grid
Displayed mockup has unfortunately been changed in terms of column “text” addition

and “eye” icon was replaced for typical “detail” icon. Additionally, all notifications are by

34

default “MarkAsRead = false”. This state can be changed by deleting or opening a detail

view of notification.

Datum = |Von % |Betraff s
01.04.2017 | Administrator Lesen Sie bitte diese Mail! @ W
01.04.2017 |Projekt: Time Project 5.3 Zeit-Budget hat kritische Grenze erreicht ¥ W

Figure 14: Notification list grid

3. Detail view of notifications

4. Notification templates list grid

As an Administrator or Administrator tenant a grid in the system settings can be
opened to see all notification templates and select one of them for a detail view.

5. Detail view of notification templates

As an Administrator or Administrator tenant a detail view of a notification template
can be opened and the content of the “title” and the “texts” for all languages changed.
Additionally, the detail view stores noneditable “original text” value (if an error in text

value editing occurs) and “status” radio buttons (editable severity of notification)

4.5.3 TP Localization

As phase requirement “UI localization” might suggest, the whole module must be
localizable. At the beginning of design phase, the thesis proposed an extensible solution
which allowed to translate not only phases module, but also all others. It is important to
realize that this solution consists of two approaches.

1. Kendo Ul component localization

Localization of Kendo Ul components is handled by minified javascript localization
files (such as kendo.messages.cs-CZ.min.js) offered directly from Telerik.

2. General TP localization — Translation module

TP localization was originally designed to use JSON localization files for each
language that consisted of KEY (unique) and VALUE combination. This solution was later

redesigned to a form of using database table instead. The final solution for general text

35

localization within TP application is described in activity diagram below (for bigger

resolution, please visit Appendix).

No
Set appropriate flags to Ha, anged
dropdownlist lany Yes
Change all text within
Get all Languagelds, Is, Idin Get default value "1" Use Languageld from TP application +set Change Languageld No
. Names and Codes It e? No for English language Local Storage requested kendo in Local Storage >
localization files
Get custom dictionary
Process request
from database by id @

Get and retrieve data Get and retrieve data

Figure 15: TP localization activity diagram

' ' ' <
3

4.5.4 External interface — Jira concept

As it can be implied from requirements (in Analysis chapter), the connections between
Jira server to TP database and TP server to Jira server must be established. For the first
mentioned connection, it is necessary to follow Kepler add-ons documentation (the whole
procedure is described in detail in Implementation chapter). The second connection is a
little bit more complex. The trickiest part was to implement authentication. Three types of
authentication are offered by Jira developer documentation — basic, cookie-based and
OAuth authentication. Since Jira connection functionality is available only for Baader
computer intranet, the basic authentication can be used. However, TP must later be ready

for OAuth usage.

36

Authentication Jira issue Authentication + Get

A L N
Get Jiraissue T el data for custom fields

Project custom field
Projectld custom field
Subproject custom field
Subprojectld custom field

Tables

Jira AP1 Project- Projectld

Basic authentication/ Number

Qauth
au Subproject - Subprojectld

Number

Figure 16: TP to Jira connection
Basic authentication
Because of the fact, that both user name and password are transferred as unencrypted
base64 encoded text, the HTTPS® protocol must be used. Otherwise these credentials can
be easily captured and reused (Franks, et al., 1999). For example, encoded text
“michalkortan:secret” decoded to base64 looks like this:

“bWIjaGFsa29ydGFuOnNI1Y3JIdA==".

OAuth

This chapter serves for brief mechanism description of OAuth 1.0 that Jira supports.
The OAuth protocol enables Customers to access Protected Resources from a Service
Provider via an API, without requiring users to acknowledge their Service Provider
credentials to Customers. So, it is obvious that OAuth does not require user interface or
interaction pattern (Atwood, et al., 2007). A couple of definitions need to be clarified to

understand the OAuth mechanism:

e Customer — application or website; to access the Service Provider
e Service Provider — Web application
e User— An individual

e Protected Resources — Service Provider controlled data

30 HTTP over SSL/TLS and HTTP Secure- protocol for secure communication

37

e Consumer Key — Consumers value to identify itself

e Consumer Secret — To establish ownership of the Consumer Key

e Request Token — Consumers value for obtaining authorization from User and

exchange for an Access Token

e Access Token — Consumers value to get access to the protected resources

e Token Secret — Customers secret for establishing ownership of a given Token

The authentication mechanism than consists of three steps:

1. The Consumer obtains an unauthorized Request token

2. The Request Token is authorized by the user

3. Request Token is exchanged for an Access Token by Consumer

Consumer

Request Token

Direct User to
Service Provider

Consumer requests

Request

oken

—»

Servise Provider
Grants Request Token

Service Provider

Request Token

A

Consumer Directs User
to Service PRovider

Access Token

L

Service Provider Directs
User to Consumer

Obtain User
Authorization

v

Direct User
to Consumer

Consumer Requests
Access Token

Access
Protected Resources

[
»

Service Provider

Grants A

cess Token

Access Token

A

Consumer Accesses
Protected Resources

P
-

Figure 17: OAuth mechanism (Atwood, et al., 2007)

Following chapters detail the implementation of all data models followed by server and

client implementation demonstrated on Phases module. Other modules similarly follow this

implementation process, hence the thesis in further sections describes only selected parts.

Further they describe used patterns and methods. In addition to that, they follow best

coding practices such as naming conventions, commenting and so on.

38

Chapter 5

Implementation

This is the longest phase of software development cycle where the process of writing a
source code begins. The objective is to transform the gathered information from analysis
and design into code (Burback, 1998).

5.1 Data Model

A model using Toad data modeler was created in design phase. This application is also
capable of scripts generation or even connecting to database and executing them. Following

section shows and briefly describes generated script of phase module.

5.1.1 Phases script

It is important to realize that SQL scripts are not the only way to create relational
database tables and relations. Microsoft SQL server management studio GUI®!, can be used
instead. It consists of pretty straightforward process of creation (basically just click on

create table and include relations in database diagram).

As a result of using Toad modeler with its script generation capability, the approach of
SQL script tables and relations was chosen. First, what needs to be specified are tables
creation which includes column name, data type(size) and if necessary constraint syntax.
Secondly, appropriate primary and foreign keys. The example bellow shows only Phase
table together with appropriate keys. The rest of the script for phase module can be found in

Appendix section. All other scripts are stored on attached CD.

31 Graphical User Interface

39

CREATE TABLE [dbo].[Phase]
(
[PhaseId] Int IDENTITY(1,1) NOT NULL,
[CreateDate] Datetime NOT NULL,
[CreateUser] Int NULL,
[ChangeDate] Datetime NULL,
[ChangeUser] Int NULL,
[IsDeleted] Bit DEFAULT @ NOT NULL,
[IsActive] Bit DEFAULT 1 NOT NULL,
[Number] Nvarchar(20) NULL
)
GO
ALTER TABLE [dbo].[Phase] ADD CONSTRAINT [PK_ProjectPhaseId] PRIMARY KEY
([PhaseId])
GO
ALTER TABLE [dbo].[SideCost] ADD CONSTRAINT [Phase_SideCost] FOREIGN KEY
([PhaseId]) REFERENCES [dbo].[Phase] ([Phaseld])
GO

40

5.1.2 Phases model

When this script is executed on TP database using MS SQL Management studio, the

following database structure is created. Figure is complemented by brief description that is

mapped to requirements.

DailyReportltem
¥ DaityReportltemnld

DailyReportld
Projectld
SubProjectld
Activityld
TaniffClazzRateld
Description
Time
CreateDate
ChangeDate
Createlser
ChangeUser
FavouritesUserld
IsDeleted
IsActive
‘Ordering
IsBillable
Phaseld

Phase

? Phaseld
CreateDate
CreateUser
ChangeDate
Changellzer
IzDeleted
IsActive
Number

AssignedProjectToPhase

T AssignedProjectToPhaseld
Phaseld
Projectld
CrezteDate
CreatelUser
ChangeDate
Changelzer
IzActive
IsDeleted
Hours

NotifylfExceeded

Project

¥ Languageld

Name

Code
CrezteDate
Creztellzer
ChangeDate
Changelzer
|sDeleted

P}

Phaselocalizationld
Languageld

Title

ShortTitle
Description

Phaseld

¥ Projectld
ProjectGroupld
Customerld
Projectlesd
BudgetManager
StartDate
EndDate
Evaluable
RecordTimeStart
RecordTimeEnd
DeactivateStart
ArchiveStart
EditTimeStart
EditTimeEnd
FutureDaysLimit
PastDaysLimit
CreateDate
Creztellzer
ChangeDate
Changelser
IsDeleted
IsActive
MNumber
CostCenterld
CheckBudget
PricrityPosition
Interval
PlznnedFizcalBudget
RemainingFiscalBudget
PlznnedHourBudget

Figure 18: Phases physical model

41

TicketNr
‘Opticns
CostUnit

ContactPerson

There are several tables designed in a way to accomplish phases requirements. To be

able to:
1) Localize phases into three different languages — PhaseLocalization
2) Assigned phase to project — M:N entity AssignedProjectToPhase

Phase, PhaseLocalization and AssignedProjectToPhase columns has been specifically

designed to fulfill these requirements:
1) CreateDate, CreateUser, ChangeDate, ChangeUser — Logging/ Last changes logging
2) Number — Phase must include a string identifier for users
3) Title, ShortTitle, Desciption — Data localization into EN, DE, CZ
4) Hours — Set the duration of assigned project in phase
5) NotifylfExceeded — Notify the user when set project hours in phase exceeded

In addition, IsDeleted and IsActive signifies whether specific row is deleted or active.
The only requirement which is, so far, unfulfilled is the ability to notify the user that phase

has been created, edited, deleted or exceeded.

5.1.3 Notification model

In order to fulfill the requirement for notification when new phase is created, edited,
deleted and exceeded, the notification model has to be designed. Since scalability is one of
the major focuses of TP 5 development, the model is designed to be applicable not only for
phases module, but also for others. The final version of DB model can be found bellow
(Figure 19).

42

User

? Usend
Tenanthd
UszrName
LaztMame
FirstMame
Description
Emailtddress
PasswordHash
FailedPassword AttemptCount
LaztloginDate
LastlockDutDiate
CreateDate
Crestellzer
Changelate
Changellzer
SecurityStamp
lzDaleted
IzActive
Telefon
hobil
Selectedlanguageld
RoundUpTimes
ShowPhoto
ThemeSkin
‘CompactReportForm
Startlrl
TimeDiffer
TimeDifferChecked
AutoEndTime
UselndProj
AutoStartDaiyRepord
Number
IzEvaluzble
Izintern
PhotofileMame
StatisticsDashboardTilesSortOrder

AssignedNMotificationToUser
¥ AssignedNotificationTolserid

Userld
Motificationkd
MarkAzfiead
CresteDats
Crestellzer
ChangeDats
Changelzer
=Deleted
Active

@

Notification

¥ Metificationid
MotificationTemplateld
Userld
CresteDats
Crestellzer
ChangeDats
Changelzer

ma————=c= NotificationLocalization

Notificationl ocalizationkd
Text
Languageld
Notificationd

T MotificationTemplateld

NotificationTemplate

NotificationTypeld
CresteDate
Createllser
" T - Cha Dat:
AssignedNotificationToUserRole rasuEE
? AssignedNotificationTollserRoleld Changellser
CreateDats lzDieleted
Userfioleld lzhctive
Motificationid Status
UserRole NotificationTemplatelLocalization
7 Userfoleld 7 NotificationTemplatelocalizationkd
CreateDate Title
Createlzer Text
ChargeDate NotificationTemgplateld
Changslzer Languageld
Mame ‘OriginalText
IsDeleted
IsActive

N cationType
7 NotificationTypeld

Crestelate
Crastellzer
ChangeDats
Changelzer
izDigleted
ZActive

Figure 19: Notification physical model

43

NotificationTypelocalization

7 MotificationTypelocslizationld
MNzme
Langusgeld
MotificationTypeld

Since many users can have many notifications as well as user roles can have many

notification, two M:N tables — AssignedNotificationToUser and

AssignedNotificationToUserRole exist. These tables include standard attributes mentioned

in chapter above, however, there is one very important attribute called MarkAsRead, which

is a self-explanatory bool value. The idea behind design of the other tables comes from

several requirements:

1) Notification and NotificationLocalization — Notification must be stored in all

languages

a.

Text — localized text of notification

2) NotificationTemplate and NotificationTemplateLocalization — Edit notification

template in all languages

a.
b.
C.
d.

Status — bool; important and regular notifications
Title — read only notification subject

Text — editable template text

Original text — read only original template text

3) NotificationType and NotificationTypeLocalization — notification generation source

a.

Name — notification generation source name

5.1.4 External interface model

All attributes covered in Externallnterface table are designed in such way to store all

necessary data for establishing a connection among TP and other systems.

1) Name — user defined connection name
2) Host — server URL or IP address
3) Port and Protocol

4) UserName and PasswordHash as credentials

Since all this data is obviously not localizable, table ExternalinterfaceLocalization is

there just for storing so called hints (whisperers) for user interface. ExternallnterfaceType

than defines connection name for instance “Jira connection”.

44

Externalinterface ExternalinterfaceLocalization
7 Externalinterfaceld # Externalinterfacelocalizationld
ExternallnterfaceTypeld Languageld
Mame Title
Host ShertTitle
Part . Description
Protocol i Externalinterfaceld
Username
PasswordHash
CreateDate ExternalinterfaceType
Createlser # ExternalinterfaceTypeld
ChangeDate 4 on MName
ChangeUser CreateDate
IsActive Createlser
IsDeleted ChangeDate
Changelser
IsActive
IsDeleted

Figure 20: External Interface physical model

5.1.5 Translations model

The last substantial model to achieve requirements accomplishment is to create
translations model. The ApplicationTranslation table has only one (relevant) relationship
with ubiquitous Language table via Languageld foreign key. This table further provides

following attributes:

1) [Key] attribute stores unique string value

2) CurrentText attribute is a language specific string value

3) OriginalText exists due to translation administration (possibility to change
CurrentText)

ApplicationTranslation Language
G Id lom=—=cm ¥ Languageld
Languageld Mame
[Key] Code
OriginalText CreateDate
CurrentTesxt Createlser
ChangeDate
Changellser
IsDeleted
IsActive

Figure 21: ApplicationTranslation physical model

45

5.2 Server-side implementation

It is important to mention that all code examples listed here are omitted for brevity in
terms of not showing references, namespaces etc. Complete codes can be found on attached
CD.

5.2.1 Generic Repository pattern

Necessity for creating repository pattern comes from the need for abstraction layer
which separates data access layer and business logic. This pattern can be implemented with
or without Unit of Work class which is used as a wrapper around repository and
DbContext. Its responsibility is to ensure that all repositories use the same DbContext. This
very handy class is very good practice, however, since a predominant part of requests has
exactly one transaction, this class does not need to be implemented in this case. In addition,

in cases where multiple transactions are necessary, transaction scope can be used.

Repository classes are typically implemented in ratio 1:1 for each entity type (such as
Phase and Notification). Next chapter shows parts of EF implementations through

repositories and configurations to services.

5.2.2 Entity framework

First, a context class (code below) needs to be implemented, which can be easily
recognized by the fact that it derives from DbContext (in this case it derives from
EfContext which derives from DbContext). This class establishes a “bridge” between

database and domain/entity classes.

public partial class TimeProjectContext : EfContext

{
public TimeProjectContext() : base("DefaultConnection")
{
this.Configuration.LazyloadingEnabled = false;
InitializePartial();
}

partial void InitializePartial();
partial void OnModelCreatingPartial(DbModelBuilder modelBuilder);

46

//Entity set
public DbSet<AssignedNotificationToUser> AssignedNotificationToUsers { get; set;

}

/*The rest DbSets for AssignedNotificationToUserRole, AssignedProjectToPhase,
Notification, NotificationLocalization, NotificationTemplate,
NotificationTemplatelLocalization, NotificationType,
NotificationTypelocalization,

Phase, Phaselocalization, ExtenalInterface, ExtenalInterfaceType,
ExtenalInterfacelLocalization*/

//Fluent API
protected override void OnModelCreating(DbModelBuilder modelBuilder)

{

//Configuration of domain classes
base.OnModelCreating(modelBuilder);
modelBuilder.Properties<string>().Configure(c => c.IsMaxLength());
modelBuilder.Configurations.Add(new
AssignedNotificationToUserConfiguration());

//The rest of configurations for all entities
OnModelCreatingPartial(modelBuilder);

Parameter passed in base constructor signalizes Code-First API that connection string
exists (in web.config) thus it checks if database exists and then uses existing one or creates

a new one.

Moving on to tables creation. The usual way to create tables in Code-first approach is
to write domain classes and let the EF Code-first API do the rest. In addition, when using
code-first conventions, it can eventually estimate which property is PK, FK and even data
type. Itis certainly one of the best ways for creating conceptual model. For TP, however,
a reverse approach has been chosen since substantial part of the database has already been
created. This approach employs EF reverse POCO generator, which reverse engineers an
existing database and generates POCO classes, configuration mappings, even DbContext.
A following class PhaseLocalizationConfiguration has been chosen to represent

configuration file.

47

public partial class PhaselLocalizationConfiguration :
System.Data.Entity.ModelConfiguration.EntityTypeConfiguration<Phaselocalization>
{

public PhaselLocalizationConfiguration() : this("dbo")

{

}

public PhaselLocalizationConfiguration(string schema)

{

ToTable(schema + ".PhaselLocalization");
HasKey(x => x.PhaselocalizationId);

1

Property(x => x.PhaselLocalizationId).HasColumnName(@"PhaselLocalizationId")
.IsRequired().HasColumnType("int")
.HasDatabaseGeneratedOption(System.ComponentModel.DataAnnotations.Schema
.DatabaseGeneratedOption.Identity);

Property(x => x.Languageld).HasColumnName(@"LanguageId")
.IsOptional().HasColumnType("int");

Property(x => x.Title).HasColumnName(@"Title")
.IsRequired().HasColumnType("nvarchar").HasMaxLength(128);

Property(x => x.ShortTitle).HasColumnName(@"ShortTitle")
.IsRequired().HasColumnType("nvarchar").HasMaxLength(32);

Property(x => x.Description).HasColumnName(@"Description™)
.IsOptional().HasColumnType("nvarchar").HasMaxLength(512);

Property(x => x.PhaseId).HasColumnName(@"PhaseId")
.IsOptional().HasColumnType("int");

// Foreign keys

HasOptional(a => a.Language).WithMany(b => b.PhaselLocalizations)
.HasForeignKey(c => c.Languageld);

HasOptional(a => a.Phase).WithMany(b => b.Localizations)
.HasForeignKey(c => c.Phaseld);

InitializePartial();

}

partial void InitializePartial();

}

EntityTypeConfiguration is the class which allows to configure entities and its
properties. To do that, it applies several essential methods, among major belong:

e ToTable: table name configuration

e HasKey<TKey>: primary key configuration

e Property<T>: struct property configuration

e IsRequired, IsOptional: required and optional relationship configuration

e Andsoon

48

5.2.3 Repository layer

As it has already been said, this is the only layer responsible for preserving CRUD
operations above entities. To handle such behavior, EF manages so called entity lifecycle.
Its purpose is to incorporate entity state based on operations executed in it via DbContext.
Among the DbContext functionalities belongs a feature known as Change Tracking, that

can store all entity states: Added, Modified, Detached, Unchanged and Deleted (Figure 22)

Shared DAL
layer

Entities
Save changes Insert command

-
"]
-
[1%]
=

L2E Query Select query
Existing
. DbContext
& Edit Save changes Update command
Modified
Save changes Delete command

Figure 22: EF Entity Lifecycle (EntityFrameworkTutorial, 2016)

The only change handled by DbContext itself is from unchanged to modified state. The
rest of the figure speaks for itself, new entity is in Added state, until insert command is

executed and so on.

EDM® handles several query types when querying database. On the first hand, there is
strongly typed code with query comprehension syntax — LINQ®? to Entities. On the other
hand, traditional string based query — Entity SQL. In today development, there is no reason
for string being used as queries because of the fact it increases the chance of making a typo.
LINQ to Entities offers two ways how to access data: LINQ Method syntax and LINQ
Query syntax. Each of these are better in different scenarios. However, the thesis applies

mostly LINQ Method syntax. Important is to realize that each repository such as

32 Entity Data Model
33 Language Integrated Query

49

PhaseRepository or NotificationRepository, should handle just Get requests and operations,
above entities are then handled be EfRepository. The following code displays method for
Get operation for Phases. Complete source codes can be found on attached CD. In case of
interest, in CD (section LINQ method syntax vs LINQ Query syntax) the same query for

retrieve notification templates written in both syntaxes can be found.

public DataSourceResult GetPhasesForGrid(DataSourceRequest request, int
languageId)

var query = Set.Where(w => w.IsActive).Select(p => new
{
Id = p.Phaseld,
Title = p.localizations
.Where(l => l.Languageld == languageld).Select(l =>
1.Title).FirstOrDefault(),
ShortTitle = p.Localizations
.Where(1l => 1l.LanguageId == languageId).Select(l =>
1.ShortTitle).FirstOrDefault(),
Description = p.Localizations
.Where(l => l.Languageld == languageld).Select(l =>
1.Description).FirstOrDefault(),
CreateDate = DbFunctions.TruncateTime(p.CreateDate),
ChangeDate = p.ChangeDate != null ?
DbFunctions.TruncateTime((DateTime)p.ChangeDate) :
null,
p.CreateUser != null ? p.CreateUser.FirstName +
p.CreateUser.LastName : "",
p.ChangeUser != null ? p.ChangeUser.FirstName +
p.ChangeUser.LastName : "",
IsDeleted = p.IsDeleted,
IsActive = p.IsActive,
Number = p.Number
1

return query.ToDataSourceResult(request);

CreateUser

+
ChangeUser =
+

}

LINQ method syntax structure consists of extension method (standard query operator
for instance Where or Select) and lambda expression. Lambda expression is used quiet a lot
during TP development, thus it is important to mention that it is just a shorter way of
representing anonymous method instead of using delegate repeatedly. What is worth to
mention is FirstOrDefault method which returns an element from the zeroth index from the

collection.

50

5.2.4 Service layer

Major responsibilities of this business logic layer are validations and operation
exposure to API controllers. Especially all Get requests should just pass the data to the next

layer as displayed in this method:

public DataSourceResult GetPhasesQueryable(DataSourceRequest request, int
languageId)
{

return phaseRepository.GetPhasesForGrid(request, languageld);

For the rest Create, Update and Delete operations it is necessary to implement business

logic. Necessary data is provided by higher layer (Web layer) in form of Model.

public int CreatePhaseBasicData(PostPhaseBasicModel toModel)

{
var phase = new Phase
{
Number = toModel.Number,
Localizations = toModel.lLocalizations
¥
phaseRepository.Add(phase);
phaseRepository.SaveChanges();
return phase.Phaseld;
}
public void UpdatePhaseBasicData(PostPhaseBasicModel toModel, int id)
{

var oldPhase= phaseRepository.FindById(activityl =>
activityl.Phaseld== id,
activityl => activityl.Localizations);

if (oldPhase == null) throw new
NotFoundException("Phase doesn't exist");
oldPhase.Number = toModel.Number;

// Remove localizations
foreach (var localization in oldPhase.lLocalizations.ToList())

{
if (toModel.Localizations.All(c => c.Languageld !=

localization.Languageld))

51

oldPhase.lLocalizations.Remove(localization);

}

// Add or update localizations
foreach (var localization in toModel.lLocalizations)

{
var existingChild = oldPhase.lLocalizations
.SingleOrDefault(
c => c.lLanguageld == localization.LlLanguageld);
if (existingChild != null)
{
existingChild.Description = localization.Description;
existingChild.ShortTitle = localization.ShortTitle;
existingChild.Title = localization.Title;
existingChild.LanguageIld = localization.languageld;
}
else
{
oldPhase.Localizations.Add(localization);
}
}
phaseRepository.SaveChanges();
}
public void DeletePhase(int id)
{
var old = phaseRepository.FindById(p => p.Phaseld== id);
if (old == null) throw new NotFoundException("Phase doesn't exist");
phaseRepository.DeactivateById(id);
phaseRepository.SaveChanges();
}

In these examples, it can be seen how EfRepository handles entity lifecycle. Add
accepts TEntity and lets DbSet handle the rest. Delete methods default behavior has been
modified — it serves as so called “fake delete” which sets IsDeleted property to “true” value.
Update method accepts TEntity as well, however, this method is handled directly by EF
change tracking functionality. Next there are a couple of very specific methods such as
DeactivateByld which is designed to set property IsActive to false. This method is used
everywhere where it is not desirable to remove entity. Get request on repository layer must
then by customized in terms of filtering data where IsActive property is set to True. Finally,
EF wrapper method for CUD operations SaveChanges is executed.

52

5.2.5 ASP.NET WEB API

The basic way of communication between controller and service (even between service
and repository) would include controller class which creates the instance of service class.

Nonetheless, the idea of hardcoded dependency is not optimal for several reasons:

e Hard to unit test
e In case of replacing service implementation, controller modification is
necessary

e And others

To eliminate these tight coupled classes, the Dependency injection pattern is used.
More specifically constructor injection realized by 1oC Unity container which performs
managing dependencies. The code below demonstrates DI in PhasesController.

private readonly PhaseService _phaseService;
public PhasesController(PhaseService phaseService)

{
}

this._phaseService = phaseService;

Now, when the loosely coupled concept is described, let us have a look at
implementation part of ASP.NET WEB API. It is built at the top of server side
implementation for exposing HTTP services and data. It accepts XML and JSON formats
by default and paste/retrieve serialized data into the body of HTTP response/request
message. Before client performs any HTTP request the URL of requested APl and HTTP

method must be specified.

e WEB API 2 provides attribute routing to define routes — PhasesController class uses
[RoutePrefix("api/phases™)] because all methods inside this class start with it and

then [Route("queryable™)] which concatenates with RoutePrefix.

53

e HTTP methods — also attribute based [HttpGet], [HttpPost], [HttpPut], [HttpDelete]
and others

o GET — Read operation
o POST — Create operation
o PUT — Update operation
o DELETE - Delete operation

[Route("queryable")]

[Authorize]

public DataSourceResult GetPhasesQueryable(

[ModelBinder (typeof (WebApiDataSourceRequestModelBinder))]
DataSourceRequest request)

{
var languageID = GetCurrentLanguageId();
var p = _phaseService.GetPhasesQueryable(request, languagelD);
return p;

}

Interesting fact about this method is the absence of [HttpGet] attribute. When
ASP.NET WEB API convention is followed — HTTP method begins with Get, Post..., the
attribute is not essential (Class diagram for a Web layer can be found in Appendix). Then
there are Kendo.MVC.UI specific classes DataSourceResult (as a return type) and
WebApiDataSourceRequestModelBinder especially designed for Kendo grid GET requests.
Notice Authorize attribute which allows only signed user to request this method. In the

code below, what can be seen, is that the specification of rights for user roles is also
possible.

[Route("")]

[HttpPost]

[ValidateModel]

[Authorize(Roles = "Admin, Admintenant, Support, Supervisor")]

public HttpResponseMessage CreatePhase(PostPhaseBasicViewModel
basicPhaseViewModel)

{
int id =
_phaseService.CreatePhaseBasicData(basicPhaseViewModel.ToModel());
var uri = Url.Link("GetPhaseById", new { id });

var response = new HttpResponseMessage(HttpStatusCode.Created);
response.Headers.Location = new Uri(uri);
return response;

54

The code above represents Post method marked with ValidateModel attribute. It is a
more convenient way of writing “if (ModelState.IsValid){}” inside all methods require
validation. Received model is validated according to ViewModel. Following code
represents PostPhaseBasicViewModel which has attributes such as Required and

MaxLenght(20) according to which validation occurs.

public class PostPhaseBasicViewModel

{
[Required]
public List<PhaselocalizationViewModel> Localizations { get; set; }
[Required, MaxLength(20)]
public string Number { get; set; }
}

Finally, when server-side implementation is complete, it is time to test its functionality.
To do that, Postman which allows to make all necessary requests, has been used. Firstly,
make a POST request with filled credentials to gain access token. Secondly, add this token
inside the header of required request. Lastly, fill the HTTP method and URL. For instance,
in case of using GET method with URL.: http://localhost:65181/api/phases/queryable, the
response in JSON format would look like this:

{
"data": [
{
"id": 1,
"title": "Phase 1",
"shortTitle": "P1",
"description”: "Phase 1 description",
"createDate": "1994-01-01T00:00:00",
"changeDate": "2017-03-07T00:00:00",
"createUser": "Testovaci Uzivatel",
"changeUser": "Testovaci Uzivatel”,
"isDeleted": false,
"isActive": true,
"number": "PH-01"
¥
// omitted for brevity
1,
"total": 8,
"aggregateResults": null,
"errors": null
}

55

5.3 Client-side implementation

At the time of Phases implementation, necessary environment has already been
created. Therefore, the configuration process of development environment is not the subject
of this Thesis. However, a few things need to be clarified before specific implementation

arises.

The reason behind determining why to use TypeScript instead of ES5(regular
Javascript) is collaboration of two greatest companies Microsoft and Google. As a result of
choosing TypeScript as a primary language for developing TP 5, the Node.js with npm3*
tool and Visual Studio Code as an editor need to be installed. In addition to use utility to
automate tasks like creating projects and so on, Angular-CLI*® must be installed too.
TypeScript is a superset of ES6% as well as ES6 is superset of ES5. However very few
browsers support ES6 so far, for that reason so called transpilers (transcompilers) exist
which take TypeScript code as an input and outputs ES3 or ES6 that is supported nearly by
all browsers. There are another several essential tools to build required modules in TP 5.

Among them belong:

e Webpack — module bundler; decrease the number of requests and overall size;
managing tree-shaking = remove unused part of JS code etc.

e RxJS — Observables, BehaviorSubjects, Subject; especially used for Ul based
applications- functional-reactive programming

e Ngrx — build on Redux and RxJs powered state management which internally uses
BehaviorSubjects

e Gulp - task runner which includes gulp-sass plugin as a connector on node-sass

e And others...

34 Node Package Manager for JavaScript
3 Angular Command-Line Interface
3 ECMASCript 6

56

The last issue that needs to be mentioned is which Ul library to use. Since the selection
was predefined by Baader computer because of purchased license together with great
experience, the Kendo Ul was the best choice. Following chapters describe Phase
implementation of each building blocks.

5.3.1 Template

Templates operate with Angular specific template syntax (almost all HTML syntax is
supported) to display data and handle user events using data binding. Since all developed
modules (Phases, Notifications and so on) must follow the same design as in the rest of the
application, the next section focuses only on Angular template syntaxes complemented with

code examples and mockup with brief structure description.

a Q x Q 'm:g//nuwlmha.mmnc!s
T e e — 8 A & 2?2 ® TimeProject

Home > Projekte > Phasenliste » Initial request | [t> Breadcrumb- mentioned in chapter Component

Stommdoten Projekte

® == o
@ Abeitszen Tiat [Frotrocet contomar st le

e This area is called tp-content.
& . e It renders according to *nglf
@ Koskastallen Beschraung | [Lorem paum dokor st omet, consetetur sopecng et sed dom nonumy ermod (8] @ whether phaseBasicData !=
& Tatgkeiten o rameemibetdci i gt o el null or in this case when

At vers 408 e accusom et Keto 0o dokres et e3 rebum Stet cia kaed s
Guberren, N0 sad LokMaa §0nCtus et Lore BeuM Gokor s amaet Lorem S8 phaseld != null

. Projekie Golor Bt Omet, Conseletur SOSPICING SUtr, sed SOM NONUMY ermod lempor
VIOt Ut Iobore et Gokore MOGNG GAGUYGM @0t sed Gam VoDV
& Promkate At varo 008 ot accusom et juato duo dokores et e rebum Stet cita kosd
Gubergren, o sea LORIMGAS S0NCHUS @8t Lereen Hausm dokor it amet

— Localizable text using interpolation

& Systemenstelungen

Event binding for storno button

(c) 20%
Krchhoft
Softwore GmbH & Co KO

Figure 23: Phase detail view

57

Build-in directives
e Structural directives
o *nglf, *ngFor, *ngSwitch
o Starts with asterisk prefix (*)
o Responsible for shape or reshape DOM (Document Object Model) structure

o Example:

= <div *ngIf="projectPhaseDetail == null"
class="tp-form"> </div>

o Description: when the condition is satisfied the <div> element is rendered
e Attribute directives

o ngModel, ngStyle, ngClass

o Applied to elements as HTML attributes

o Listening and modification of HTML elements, components etc.

o Example:

= <input type="text" readonly="true"
[(ngModel)]="projectPhaseDetail.projectTitle"
formControlName="projectTitle" />

o Description: two-way data binding to form elements
Binding syntax
e One-way data binding — data source to view
o Interpolation

= {{expression}}
o Property binding
= [target]= "expression”

o Attribute, style and class binding

58

e One-way data binding — view to data source
o Event binding
= (event)= "statement”
= Example:

e <toolbutton alignRight="true"
(clickButton)="storno()"
iconClass="glyphicon glyphicon-ban-circle">
{{ 'STORNO_BUTTON' | translate }}
</toolbutton>

e Two-way data binding
o [(target)] = “expression”
o Display and update property when changes are made
Binding syntaxes example:
<select [(ngModel)]="projectPhaseDetail.hours" formControlName="hours">
<option *ngFor="let item of timeOptions" [value]="item.value">

{{item.text}}</option>
</select>

Finally, template tells Angular how to render the component. To do that, specific tag
placed inside a template must be implemented and defined inside selector of components
metadata. In other words, when bootstrapping, a class Angular looks for a specified selector
for instance <tp-phases-list> (see section Component), finds it, instantiates an instance of

the class and renders it inside the <tp-phases-list> tag.

5.3.2 Component

All applications written in Angular 2 are nothing but a tree of components which have
a top-level component called AppComponent (application itself) and the rest of them are
children. The application is a component that recursively renders other/child components

which are composable (possibility of building large components from smaller).

59

AppComponent
LayoutComponent

PhasesContainerComponent

PhasesListComponent PhasesDetailComponent
PhasesBasicDataComponent PhasesProjectComponent

Figure 24: Phases tree diagram

Component class
As it has already been mentioned, component composes of the combination of HTML

template and component class. The minimal component would look like this:

import { Component } from "@angular/core";
@Component ({

selector: "tp-phases-list",

templateUrl: './phases-1list.component.html'’

1)

export class PhasesListComponent {
constructor() {}

}

The import rules of ES6 follow the convention: import {Something} from
‘./some/path’; Then there is a typescript decorator function @Component which employs
metadata objects:

e selector — display component inside “tp-phases-list”

e templateUrl — separate HTML template definition (see section above).

Now, let us have a look at body implementation of this class. To achieve user interface
navigation in application, breadcrumb component has been developed.

60

breadcrumb: IBreadcrumbSettings = {

items: [
{
display: "MENU_HOME", localized: true, 1link: ["/"]
bs
{
display: "MENU_PHASES", localized: true, link:
["/phases™]
¥
{
display: "MENU_PHASES LIST", localized: true, link:
["/phases-1list"]
}

}s

This component implements interface with couple of properties. In this case, it uses
items property which is a type of IBreadcrumbltem interface. Display property is a string in
breadcrumb chain where if Localized property is true then Display string is used as a Key
for translation pipe (more about translation pipes and others in section Translations). And

finally link property is used to navigate user to desired destination.

The next very important Angular 2 building block is Dependency Injection (hereafter
DI). When module X needs to communicate with other module Y it means that Y is a
dependency of X. This is solved by simple import of a file like this: import {Y} form ‘Y,
and then use it in code like this: Y.someMethod(). This approach is undoubtedly sufficient,
however, it leads to testing difficulties and impossibility of implementing some patterns. DI
on the other hand works on IoC (Inversion of Control) principle also known as “do not call
us, we will call you”. It is obvious from this that DI is a step in achieving loosely coupled
architecture (Google, 2016). The following figure represents the way DI is handled and

code below shows the actual implementation.

61

2. Declares dependency of PhasesService

1. Gets registered
PhasesService DI framework PhasesListComponent

3. Injects PhasesService

Figure 25: DI framework

import { PhasesService } from '../../../shared/services/phases.service’;
//omitted for brevity
constructor(private phasesService: PhasesService) {}

Since the required behavior is to render grid with data in time whenever the component
is instantiated, the implementation must be placed inside the body of constructor. First two
JavaScript functions are bound to click commands (detail and delete obtained in Kendo Ul
grid) and then referenced. Then there is phasesListOptions which is a type of
Kendo.ui.GridOptions interface. Kendo Ul provides TypeScript definition file which
enables strongly-typed access to all widgets and their configuration. Among the TypeScript

typing configuration belong:

e Filename specification in case of grid data to excel export
e DataSource specification
o url —corresponds to actual WEB API route (see ASP.NET WEB API
chapter)
o setRequestedHeader — token and languagelD

e Columns specification
o field — name of Key from received request
o title —displayed name (more about localizations in TP localization chapter)
o command — click event handled by mentioned functions

To better imagine and understand the specification for Kendo Ul grid, mockup together

with code is presented.

62

TimeProject §

o ¢ x Q |httgHmtrane\.koeh.de-’umeomlecls J @

Karl-Heinz Mustermann (Administrator) —_— ‘_' &4 7?2 = TimeProject

Home » Projekte » Phasenliste

localizable columns title

(@ ewehoee] (% _ceoriien][xport] @ showDetail function

M4 2 4 5 7 8 ’ P M m1m|‘aemm|nsm1 o
@R Home No 7 |Tite = |sport vl ~ [Description ":';""' =|fEe= v |Chane -':Bmm v‘
0 Arbeitszeit 001 |Kundenanfroge Anfrage Erste Anfrage durch einen Kunden 0104.2017 Admin 04.04.2017 bernd bordstein ‘ ‘IHEI‘
& Mitarbaiter ﬁ ﬁ
@ eI data from deleteitem|function
== Tatighsiten /api/phases/queryable

dataSource
8 roee
& Projektiste

Figure 26: Phase grid

let self = this;
let showDetail = function (event: any) {
self.showDetailsInternal(this, event);
}

let deleteItem = function (event: any) {
self.deleteItemInternal(this, event);
}

this.phasesListOptions = {
excel: {
fileName: "phase-list.xlsx"

¥

dataSource: {
type: "aspnetmvc-ajax",
transport: {
read: {
type: 'GET',
url: URL.SERVER_URL + "/api/phases/queryable",
beforeSend: function (req) {
req.setRequestHeader("Authorization”,
"Bearer " + localStorage.getItem("token"));
req.setRequestHeader("languagelID",
localStorage.getItem("TPLang"));

63

}
¥
//omitted for brevity
columns: [
{
field: "number",
title: this.translate.instant(
"PHASES LIST_GRID_NR_COLUMN"),
filterable: {
cell: {
suggestionOperator: "contains",
minLength: 2
}
}
}
//omitted for brevity -> Other columns: shortTitle...
{

//omitted for brevity

command: [
{ name: "Detail", text: "", click: showDetail, className:

"glyphicon glyphicon-pencil transparent-button"” },
{ name: "Delete", text: "", click: deleteItem,className:
"glyphicon glyphicon-trash transparent-button” }],
width: "9@px"
}
1,

//omitted for brevity
}s5

As mentioned above, click methods are handled by JavaScript function which calls
appropriate functions. One of this functions is showDetailsInternal that redirects user to

'phases/phases-detail ?id=" + phase identifier. This identifier is later used to fetch phase

basic data using service layer.

64

5.3.2 Services

Service is basically nothing but a class with few differences. First of all, it must be
provided with @Injectable decorator. And second of all, it must be registered with an
Angular injector. One of the major tasks of this layer is to fetch data from server for
instance to perform typical CRUD operations. So, it is obvious that this layer should
contain all application logic and make services accessible for components through
dependency injection. In addition, component does not talk directly to the Angular Http

client in order to perform requests — also a responsibility of Service layer.

The data flow between component and service is pretty straightforward for GET and
DELETE methods. They just accept ID (except queryable GET requests) as a parameter in
appropriate request and put it in URL. Code below represents a fetchPhaseBasicData which

is triggered by click event on grid detail.

public fetchPhaseBasicData(phaseId: number) {
this.http.get<PhasesBasicDataModel>(

URL.SERVER_URL + '/api/phases/' + phaseld + '/basic',

(basicDataHttp) => this.mapBasicData(basicDataHttp),
this. busy)

.subscribe((basicData) => {

this.store.dispatch(new actions.ShowPhaseBasicData(
basicData));

1

}

Get is a generic method, which returns an Observable of HTTP responses
(Observable<T>). In all other HTTP responses return Observable<Response> from the
RxJS library®’. Observable is basically a stream of events published by a source. In order to
listen to this stream, subscribe is used. Subscribe specifies the action to take when request
delivers success or fail event (data in payload or error). To be able to specify the action to

take, ngrx/store is used (described in chapter below).

37 Reactive Extensions library for composing asynchronous and event-based programs

65

The last thing to mention about code above is mapBasicData method. Its responsibility
is to map data from incoming GetPhaseBasicHttpModel to PhasesBasicDataModel to be
able to use them for PUT and POST requests.
export class PhasesBasicDataModel {

phaseIld: number;

number: string;

title: string;

shortTitle: string;
description: string;

All incoming responses including attached ViewModel from WEB API must have its
own HttpModel. To make creating HttpModels easier, the Typewriter tool for Visual Studio
has been used. Once the server side for, let us say, updating a phase is implemented, all that
needs to be done is to build solution and Typewriter handles HttpModels generation.
Ngrx/store

Is a RxJS powered state management for Angular applications inspired by Redux. It is

composed of three main blocks: store, actions and reducers.

e Store — client side “single source of truth” which represents relevant application
state
o Can be thought of as a client database
e Reducers — pure function that takes the previous state and an action, and returns the
next state
o Can be thought of either as a database table or event store

e Actions — state update: Dispatch -- Reducers -- New state -- Store

5.3.3 Modules

Every application has at least one Angular module — root module that is bootstrapped
to launch the application. All modules must include @ngModule decorator with metadata

objects:

66

e Import — array consists of NgModule classes; consolidating features into discrete
unit

e Declaration — array of declarables; components, directives and pipes

e Bootstrap — array of components supplied for bootstrapping process (inserting to
DOM)

TP is designed to use app.module as a root module that imports several other modules
(such as shared.module or portal.module.). These modules import others etc. etc. => tree

structure. A short version of phases.module with a structure can be seen described above.

import { SharedModule } from '../shared/shared.module’;
import { PhasesContainerComponent } from './components/phases-container/phases-
container.component’;
import { PhasesBasicDataComponent } from '../phases/components/phases-
detail/phases-basic-data.component’;
@NgModule ({
imports: [
SharedModule
1,
declarations: [
PhasesContainerComponent,
PhasesBasicDataComponent
1,
bootstrap: [1,
exports: [PhasesContainerComponent]

1)

export class PhasesModule {}

67

5.4 Notification module

As it was emphasized at the beginning of Implementation chapter, the thesis introduces
only selected implemented parts from now on. Thus, it is important to realize that whenever

any functionality needs data from the database, it is necessary to implement:

e Entities, Configuration files, Repositories, Services and API Controllers on

Server side
e Templates, Components and Services on Client side

In case of Phase module, the notification generation must be called whenever a
CreatePhaseBasicData, UpdatePhaseBasicData, DeletePhase and DeleteProjectinPhase
methods are executed. However, notification generation is scalable enough to be applicable
to all methods across TP server implementation. The implementation itself uses
TransactionScope which major responsibility is to support transactions from a code block.
This code block usually contains two transactions. TransactionScope assures that whenever
one of the transactions fails, no other transaction is executed. The thesis already presented

the code below, however this code is now no longer omitted for brevity.

public int CreatePhaseBasicData(PostPhaseBasicModel toModel, string userName,
int userId)

{
var phase = new Phase
{
Number = toModel.Number,
Localizations = toModel.localizations
¥
using (TransactionScope scope = new TransactionScope())
{
_phaseRepository.Add(phase);
_phaseRepository.SaveChanges();
_notificationRepository.GenerateNotification(
NotificationTemplateEnum.createPhaseTemplate,
new { userName, phaseTitle = toModel.lLocalizations.Select(
s => s.Title).FirstOrDefault() }, userRoles, userId);
_notificationRepository.SaveChanges();
scope.Complete();
}

68

return phase.Phaseld;

}
The GenerateNotification method which takes four parameters is applied.

1. Enumerator which stores the right identifier for NotificationTemplate — more
programmer friendly approach than passing the identifier right away

2. Object which stores replacement parameters — NotificationTemplate text contains
“tags” that are in generation notification process replaced by these parameters

3. List of user roles for which the notification is assigned

4. ldentifier of user who created notification (by method execution)

public void GenerateNotification(NotificationTemplateEnum templateld, object
replacementParams, List<UserRoleEnum> userRoles = null, int userId = 0)
{
// Assigned replacementParams to Dictionary - Later used for Replacer method
Dictionary<String, String> replacements =

replacementParams.GetType().GetProperties().ToDictionary(x => x.Name,
x => (string)x.GetValue(replacementParams));

// new Notification Entity creation

var notification = new Shared.Entities.Notification

{ /% ¥/ };
if (userRoles != null)
{

// method for get all user Ids in specified role
foreach (var item in GetUserIdsByRole(userRoles).Distinct())

{
// new AssignedNotificationToUser entity creation
var assignmentToUser = new AssignedNotificationToUser
{ /7% ... %/ };
}
}
if (userRoles != null)
{

// new AssignedNotificationToUserRole entity creation
(entity just for logging purposes)

foreach (var item in userRoles)
{
var assignmentToUserRole = new AssignedNotificationToUserRole

{/* */ };
// three records in NotificationlLocalization table are
created for each Notification
// new NotificationlLocalization entity creation for English
language
var notificationLocalizationEN = new NotificationlLocalization

{

69

Text = Replacer(_context.NotificationTemplatelLocalizations
.Where(l => l.Languageld == (int)LanguageEnum.English &&
1.NotificationTemplateId == (int)templateld).Select(s =>
s.Text).FirstOrDefault(), replacements),

LanguageIld = (int)LanguageEnum.English,
NotificationId = notificationld,
¥
// new NotificationLocalization entity creation for German
language
var notificationlLocalizationDE = new NotificationlLocalization
{ /% %/ };
// new NotificationLocalization entity creation for Czech
language
var notificationlLocalizationCS = new NotificationlLocalization
{ /% */ };
SaveChanges();
}

As always, the code was as omitted for brevity as possible. In the code above, the
noteworthy method can be seen — Replacer. It accepts template text (text with “tag” or
“tags” — for instance “Phase <phaseTitle> has been created by <userName>") extracted
from NotificationTemplateLocalizations table and previously mentioned replacement

parameters. Replacer than uses Regex.Replace() to do the rest.

public string Replacer(string templateText, Dictionary<String, String>
replacements)
{
string pattern = @"(<)(.*?)(>)";
var replaced = Regex.Replace(templateText, pattern, (match) =>
replacements[match.Groups[2].Value]);
return replaced;
}

70

5.5 Translation module

First what needs to be implemented is dropdown list located on a login page with

corresponding flags.

Welcome to TIME PROJECT, Project based time
recording - made easyl

rii

Figure 27: TP Login page language drop-down list

For better understanding of following text, it is recommended to list Appendix chapter
(Translation module — Activity diagram). The change of the language is handled by a login
component which requests language service to contact API (translation controller).
According to languageld, the repository layer than query the database in order to retrieve
requested custom dictionary. Among the major attributes in this dictionary belongs a
Languageld, Key (unique value) and Current text. Languageld determines which Key and
Current text are included in dictionary. The data contained in Key attribute is characterized
by upper case notation for instance “STORNO_BUTTON?”. CurrentText attribute stores

following values for this Key:

e For [Key] = “STORNO_BUTTON” is English CurrentText = “Cancel”
e For [Key] =“STORNO_BUTTON” is German CurrentText = “Abbrechen”
e For [Key] =“STORNO BUTTON” is Czech CurrentText = “Zrusit”

The actual translation is than handled by interpolation or using instant method.

Interpolation has already been introduced in Angulars binding syntax section as a one-way

71

data binding. Additionally, it uses translate pipes: {{ ‘STORNO BUTTON’ | translate }}.
The value inside is nothing else but a Key, which is replaced by CurrentText value in the

moment of making language choice.

Finally, the minified files (kendo.messages.cs-CZ.min.js and so on) directly from

Telerik must have been imported to be able to localize all Kendo Ul components.
5.6 External interface —Jira concept implementation

5.6.1 lira server to TP database

First, what needs to be implemented are necessary custom fields provided by Kepler
add-ons documentation. These fields allow to import a field value from external database.
The value is selected by the user from the set of results (as a select list or autocomplete)
retrieved be executing a query on the database. To be able to modify Jira server in such
way, the administrator rights must be gained. It would be very unwise to test the connection
in full version, that is why the local version of Jira server has been used. After successful
connection and testing it was implemented in full version under a control of an

administrator.
The whole process consists of:

e Databasecf add-on installation
e Configuration:
o Database information and Database information custom fields

o JNDI® datasource configuration

Database information and Database information custom fields
After a successful databasecf installation must be checked whether database custom

field are enabled. Then it is necessary to create requested custom fields: Database

3 Java Naming and Directory Interface

72

information for Project and Subproject number; Database child information for Projectld

and Subprojectld. The following figure shows how these custom fields are configured.

Parameters for the Database Custom Field plugin

Configuration values for plugin : DatabaseCustomField

General parameters (for all users)

Configuration Timeout: |300 seconds

Custom Field |TP Projects (customfield_10202) ‘ Name and unique identifier

Type of Custom Field | SelectList ~ | Select or autocomplete option
Multiple Values

Add None Opticn

Connection name (see in configuring Child Custom Field TP Projectld v Remove child
Database(JNDI name)| TimeProjectDB datasource) Column Projectld
SELECT Number, ProjectId FROM Project WHERE IsActive = 1 AND Read Only Ci
IsDeleted = @ -
Sql Query Add child

Column Displayed value

Custom Field TP Subprojects (customfield_10403)
Type of Custom Field |SelectList
Multiple Values

Add None Option Child Custom Field | TP Subproject Id v

Remoave child
Database(JNDI name) TimeProjectDB Column SubProjectld
SELECT Number, SubProjectId FROM SubProject WHERE ProjectId= Read Only +]
{customfield 182@3} AND IsActive = 1 AND IsDeleted = @
Add child
Sql Query

Dynamic SQL query enables to take a value from specified custom
field id- in this case TP Project Id

£
Column Number

Save configuration

Figure 28: Database custom fields configuration
JNDI datasource configuration

This configuration requires to have a proper driver in JIRA_HOME!/lib directory and
editing a context.xml file in JIRA_HOME/conf directory. The resulting part of context.xml
file looks like this:

<Resource name="TimeProjectDB"
auth="Container" type="javax.sql.DataSource"
username="xxx"
password="xxx"
driverClassName="net.sourceforge.jtds.jdbc.Driver"
url="jdbc:jtds:sqlserver://IP address:Port/databasename”
/>

73

5.6.2 TP server to Jira server

Basic authentication

As it was requested, the first version of connection to Jira has been made by using a
basic authentication. After a research of existing solutions which can be used for interacting
with Atlassian Jira in .NET, the Atlassian.NET SDK3® has been found. This SDK can be
easily used for creating a REST client and then requesting required data. The code below
represents a method used to fulfill “Jira autocomplete inside daily report item” requirement

from Analysis chapter.

public List<GetJiraProjectViewModel> GetJliraProjectByKey(string name)
{

// Get credentials from Externallnterface table

var credentials = _externallnterfaceService.GetCredentials();

var jira = Atlassian.Jira.Jira.CreateRestClient(credentials.Host,
credentials.UserName, credentials.PasswordHash);

jira.MaxIssuesPerRequest = 500;

//Get request for all Issues

var issues = jira.Issues.Queryable.Where(x => x.Project ==
"KOELNTP").OrderByDescending(o => o.Created);

List<Issue> list = new List<Issue>();

foreach (var item in issues)

{

if (item.Key.Value.Contains(name))

{

list.Add(item);

}
}
return list.Select(GetJiraProjectViewModel.ToModel).ToList();
}

In accordance with the law of cyber security, the password is encrypted in an

appropriate way. The thesis, however, do not describe this part from obvious reasons.

39 Software Development Kit

74

OAuth
In this section the thesis introduces the very first version of second connection to Jira.
This type of connection requires more preparation on both Jira server and TP server side

before the actual implementation happens. The preparation consists of following steps:

1. RSA® keypair generation

2. Jira application link creation

A Unix-like command-line interface called Cygwin was used to generate 2048-bit RSA

key pair using this command:

openssl genrsa -out PrivateKey.key 2048 && openssl rsa -pubout -in PrivateKey.key -out
PublicKey.pub

It is important to realize that Jira server has first been installed locally for testing
purposes. Therefore, all the filled in data used in following configuration process
corresponds to it. To be able to create Jira application link it is necessary to have
administration rights and after that visit Administration/Add-ons/Application Links. First
the URL of application to create a new link must be entered. The rest of the configuration

can be seen in figure below.

40 Rivest-Shamir-Adleman cryptosystem

75

Link applications 1. Step Configure AuthO 2, Step

You are creating a link from: Consumer Key’ auth0-jira

X Application URL: hitp-/localhost8060 The key supplied by the consumer application. The format of this key is

Name: JIRA determined by the consumer
Application: JIRA Consumer Name™ | Auth0
A short name for the consumer site, to help users identify the consumer
To this application: when granting it access to data.
Application URL: http//localhost: 16917 Description

For example, the consumer application name and URL, such as "JIRA

Application Name” | Auth0 at hitp:/fjira mycompany.com’

.
Application Typ-e‘ Generic Application v Public Key
Generated public

Create incoming link key using Cygwin

The public key, or seli-signed certificate, supplied by the consumer
application.

Consumer Callback | http:/localhost:16917JHome/Callback/

URL b B
The URL supplied by the consumer application (optional). This is the

default address in the consumer application that we will go to after the
user has approved the OAuth request

Figure 29: Jira — Application link

At this moment, everything from Jira server side is configured and ready to use. The
next step is TP server implementation part. This part of the thesis depicts only the key parts

of code together with brief explanation (the rest of the code can be found on attached CD).

JiraApplicationCredentials = new ApplicationCredentials

{

ConsumerKey = "auth@-jira",

ConsumerSecret = @"<RSAKeyPair>
<Modulus>..</Modulus>
<Exponent>..</Exponent>
<P>.</P> <Q>..</Q> <DP>.. </DP> <DQ>..</DQ>
<InverseQ>..</InverseQ> <D>..</D>

</RSAKeyPair> ",

}s

JiraOAuthlAProvider = new JIRAOAuthlaProvider("http://localhost:8080");

OAuthl@AStateManager = new OAuthl@aStateManager((k, v) =>

Session[k] = v, k => (string)Session[k]);

76

ConsumerKey — the same value as in Step 2 in Jira configuration
ConsumerSecret — to get this W3C [XKMS] 2.0 format*, the private key

(PrivateKey.key) needs to be first converted into a valid JSON string and then
convert it from pem to W3C [XKMS] 2.0 format

JiraOAuthAProvider — application URL from Step 1

OAuthl0aStateManager — temporary save and load Token Secret

These values together with callback URL definition are necessary to gain authorization
URI*

Var authorizationUri = OAuthlaProcess.GetAuthorizationUri(
JiraOAuthlAProvider, JiraApplicationCredentials, callback,
OAuthl@AStateManager);

The last step is to request Jira API for specific data. For instance, Get issue with

issueld “DFO-28”.

public string GetIssue()

{

// Credentials

var provider = JiraOAuthlAProvider;

var jiraCredentials = JiraApplicationCredentials;

var accessToken = Session["access_token"] as string;

var accessTokenSecret = Session["accessTokenSecret"] as string;

// Issueld definition, JIRA API URL for Get Issue

const string issueld = "DF0-28";

var http = new Http { Url = new

Uri("http://localhost:8080/rest/api/2/issue/" + issueld) };
http.ApplyAccessTokenToHeader(provider, jiraCredentials,

accessToken, accessTokenSecret, "GET");

var response = http.Get();

// Parsing returned content- customfields ids can be seen on figure

Database custom fields configuration

JObject jObject = JObject.Parse(response.Content);

string project = jObject["fields"]["customfield 10202"].ToString();

string subproject = jObject["fields"]["customfield 10403"]

.ToString();

return project;

4 XML Key Management Specification
42 Uniform Resource ldentifier

77

Chapter 6

Testing, Deployment and Proposals

6.1 Testing and Deployment

Initial testing of each functionality and behavior within implemented subcomponent
has been executed by developer himself. Further sequential testing has been accomplished
by TP project manager together with testers from parental branch situated in Prague. The
test results have been than reflected into previously mentioned system called Jira and

assigned to the responsible developer.

Deployment of TP 5 itself is estimated to be approximately the middle of the year
2017. However, since TP 5 follows agile software development, the system is continuously
deployed to an internal test environment every time a cycle ends. To be able to do that the

powerful continuous integration tool called TeamCity has been used.

6.2 Proposals for further extensibility

This paragraph briefly introduces some proposals for additional functionalities
regarding implemented subcomponents. Firstly, since the OAuth implementation has
introduced the first version of this authentication system, it is obvious that it is necessary to

reimplement existing solution in following terms:

e All information related to authorization such as Consumer Key, Consumer Secret
and so on should be stored in TP database

e Code refactoring in general

e Getlssue method should provide string parameter (the same one as in Basic
Authentication — GetJiraProjectByKey method) for autocomplete field in daily

reports

78

Secondly, as far as notification improvements are concerned, the following issues are

proposed:

e Instead of requesting server every 30 seconds to get new notification count, use
signalR

e Possibility to switch on and off each notification template directly in the system
settings grid

e Multi select function — the possibility to delete several notifications at once

e Identify unread notifications by bold font style and read by normal font style instead
of using detail view

e Change pencil icon to eye icon for mark messages as read or unread

e Possibility to share a notification by email (envelope icon)
Lastly, in the external connectivity — add other options of connections:

e Web service
e File (containing value and text for combo box/autocomplete)
e DB table from different Databases

e And many others...

79

Chapter 7

Conclusion

The thesis objectives were to analyze, design and implement subcomponents of TP 5.
The reason behind subcomponents design was to extend currently developed solution to

cover even more potential customers from different industrial fields.

Within the Theory chapter, a brief description of used technologies such as Entity
Framework, ASP.NET WEB API 2 and so forth were introduced. The Analysis chapter
shed light on TP core features together with initial description of mentioned
subcomponents. Additionally, this chapter presents gathered requirements based on not
only customer’s expectations but also the needs for an application whether from customer
or Baader computer point of view. The following Design chapter reflects these
requirements into cohesive blocks consisting of data model, server and client side
application architecture, subcomponent design and finally the application design. The last
thesis objective was fulfilled via Implementation chapter which essentially follows the
same structure as previous chapter. The last chapter shortly depicts how the testing and

deployment of TP was made.

By the time the thesis is written, the first version of TP was successfully deployed.
According to customer feedback, this solution met with success in all aspects. Thus, it can
be presumed that implemented solution suits all defined requirements. However, despite of
the solution success, the thesis introduces the very last chapter called Proposals for further
extensibility, which according to thesis Author and key members of development team,

should be implemented in the next TP version.

On the basis of previous information it can be claimed that all thesis objectives are

considered as successfully accomplished.

80

Bibliography

EntityFrameworkTutorial, 2016. Entity Framework Tutorial. [Online]

Available at: http://www.entityframeworktutorial.net/EntityFramework5/entity-

framework5-introduction.aspx
[Accessed 22 12 2016].

Anderson, R., Pasic, A. & Dykstra, T., 2012. ASP.NET Web API. [Online]
Available at: https://docs.microsoft.com/en-us/aspnet/web-api/index
[Accessed 2 1 2017].

Atwood, M. et al., 2007. OAuth Core 1.0. [Online]
Available at: https://oauth.net/core/1.0/
[Accessed 24 3 2017].

Burback, R. L., 1998. The Design Phase. [Online]
Available at: http://infolab.stanford.edu/~burback/watersluice/nodel1.html
[Accessed 20 1 2017].

Daux, P., Gallus, J. & Speelpenning, J., 2002. Data Modeling and Relational, s.l.: Christine
Markusic.

Dee, J., 2014. WCF or ASP.NET Web API: Which one to choose?. [Online]
Available at: http://blog.andolasoft.com/2014/10/wcf-or-asp-net-web-api-which-one-to-

choose.html
[Accessed 19 1 2017].

Evans, E., 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. 1st
ed. s.l.:Addison Wesley.

Fowler, M. et al., 2002. Patterns of Enterprise Application Architecture. s.l.:Addison
Wesley.

81

Franks, J. et al., 1999. HTTP Authentication: Basic and Digest Access Authentication.
[Online]

Available at: https://tools.ietf.org/html/rfc2617

[Accessed 24 3 2017].

Google, 2016. Angular- Architecture overview. [Online]
Available at: https://anqular.io/docs/ts/latest/quide/architecture.html
[Accessed 26 1 2017].

Google, 2016. ANGULAR DOCS. [Online]
Available at: https://anqular.io/docs/ts/latest/
[Accessed 5 12 2016].

Jamsheer, K., 2017. 12 Best Software Development Methodologies with Pros and Cons.
[Online]

Available at: http://acodez.in/12-best-software-development-methodologies-pros-cons/
[Accessed 4 3 2017].

KG, K. D. S. G. &. C., 2008. Time project. [Online]
Available at: http://www.time-project.de/funktionen.html
[Accessed 14 12 2016].

Kirchhoff Datensysteme Software , 2014. Kirchhoff Datensysteme Software. [Online]
Available at: http://software.kds-kg.de/daten-und-fakten.html
[Accessed 14 12 2016].

Kumar, S., 2015. The Anaemic Domain Model is no Anti-Pattern, it’s a SOLID design.
[Online]
Available at: https://blog.inf.ed.ac.uk/sapm/2014/02/04/the-anaemic-domain-model-is-no-

anti-pattern-its-a-solid-design/
[Accessed 8 1 2017].

82

Martin, R. C., 2000. ObjectMentor. [Online]
Available at: http://mil-oss.org/resources/objectmentor design-principles-and-design-

patterns.pdf
[Accessed 8 1 2017].

Martin, R. C. & Martin, M., 2006. Agile principles, Patterns, and Practices in C#.

s.l.:Prentice Hall.

McLaughlin, M., 2013. What Is Agile Methodology?. [Online]
Available at: https://www.versionone.com/agile-101/agile-methodologies/
[Accessed 4 3 2017].

Microsoft, 2016. Introduction to Entity Framework. [Online]
Available at: https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx
[Accessed 22 12 2016].

Millett, S., 2010. Professional ASP.NET Design Patterns. 1st ed. Indianapolis, IN 46256:
Wiley Publishing, Inc..

Samolysov, P., 2016. Why the Anemic Domain Model pattern?. [Online]
Available at: http://psamolysov.blogspot.cz/2016/02/why-anemic-domain-model-

pattern.html
[Accessed 8 1 2017].

83

List of figures

FIGURE 1: TIME PROJECT 4.3ttt ittt ettt ettt sttt st e e st e e et e e s ba e e e s ma e e e e s b et e s esneeesnbeeessnraeesaans -6-
FIGURE 2: AGILE DEVELOPMENT w..euteutiutetteteesteueestensensesueesesseessensensabesbeshesaeeneensensebesaeshesaeentensenteabesaeeseeneensenseneenses -9-
FIGURE 3: WEB API VS WCF SERVICES (DEE, 2004) ..ecneeieieeieeeecieeeeetteeeeeteeeestteeeesataeeseasaeeesnssaeesnnssesssnssnsssnssenean -12-
FIGURE 4: CONCEPTUAL MODEL OF PHASES MODULE.vevtteetteuteneessestessessesaeensensessansessessesseensensessessessessesneensensensessenns 19
FIGURE 51 PHASES IMODEL ..uvttiieiiiiiiiitiiet ettt e s sibas e e sbaa st e e e s sbaa st e e e s s s bab e s e s e e s s e aabaseseessesssraassesssesannres 20
FIGURE 6: ADM LAYERScuvttteuteutetetenteetessteuteutensetesuestesueeseesse st ensesatebeestestesseseabeseeebeeaeenbensenbebesbeebeeneentensensenbenes 25
FIGURE 7: JQUERY VS ANGULARIS VS REACTteutieuteeiesiiesitesteenteesteeatesttesttesbeenbeeatesatesatesaeesaeanseensesntesssesseenseensesnsesanas 27
FIGURE 8: ANGULAR 2- ARCHITECTURE (GOOGLE, 2016)....c.ueeruieiieiieiieiientienieeieetestesaeesaeesaeesestesatesesesseesseensesnsesanas 28
FIGURE 9: ANGULAR 2= DATA BINDING .uteuvtteruteuteutetentesuessesseeutensessensessessesaeeseessensensesaessesseensensensanseseesbesneensensensensenes 29
FIGURE 102 TP FINAL DESIGNututeutentesteetesuteuteusensentesuessesseestensensesesseesesaeestensensenbesaeabesseensensensenbesbeebeeneensensensensenee 31
FIGURE 11: ASSIGNED PROJECT TO PHASE DETAIL ...uveeuteruterueerueeeeeteentesseesseanseensesnsesnsesusesseesseensesnsesssesssesseessesssesnsesnnes 32
FIGURE 12: PROJECT IN PHASE LIST GRID .uvvetteuteutensentesuestesueestensessensesseasesueeseensensensessessesseensensensensessessesneensensensensenne 33
FIGURE 13: AUTOCOMPLETE FIELD FOR PHASES IN THE DAILY RECORD ITEMcuvtuteuteutententessestesseensenseseesseseesuesneensensensensenee 34
FIGURE 14: NOTIFICATION LIST GRID ..veuteveetesseeneensessesessessessesssensessessessessesseessensessensessessessesssensensensessessessessensensessenes 35
FIGURE 15: TP LOCALIZATION ACTIVITY DIAGRAMuveutiuteueeterseeneensessensessessesseessensessensessessesseessensessessessessessesnsensensensenes 36
FIGURE 16: TP TO JIRA CONNECTIONcuteuttetesuteuteutententesuestesueeutensestensesaeesesaeentessensenbesbesbesbeentensensenbeshesbeeneensensensesenes 37
FIGURE 17: OAUTH MECHANISM (ATWOOD, ET AL., 2007)utiieeeiiiieeeitieeecciteeeeeite e e eette e e stveeeeataeeeeataaeeetreseenssseeenasnns 38
FIGURE 18: PHASES PHYSICAL MODELteuviteeteuteutententesteesesseeseessessensesseesesseeseessensesesaeenessteseensensensesaeebeeneensennensensenes 41
FIGURE 19: NOTIFICATION PHYSICAL IMODEL ...uvvteiiurriteiiurteeiirieessiiretesinseessbasessssesesnsaeessanatesssnnasesennaeessnasessnnssesannnas 43
FIGURE 20: EXTERNAL INTERFACE PHYSICAL IMODEL....cceiiuvreeiiriieiiiireeesiireesimetessisnesesnnsesssrasesssnnasesssnaeessnasesssnnssesannnes 45
FIGURE 21: APPLICATIONTRANSLATION PHYSICAL MODEL.....cuveetuteutetenrenseesesseeseessensensessessesseeseensensessessessesneensensensensenne 45
FIGURE 22: EF ENTITY LIFECYCLE (ENTITYFRAMEWORKTUTORIAL, 2016) «.eeeiiivvieeeireeeceeeeeeeieee et eeneeeeeetveeeeenneeeeennnes 49
FIGURE 23: PHASE DETAIL VIEW uuutiiiiiitieiiiieesiite et et ibe e siaa e e saba e s smae s smba e e s sabasessmbe s e sabaeessabaeessnnasesannns 57
FIGURE 24 PHASES TREE DIAGRAMceteuiatersteueeutensetesueesesseeseessessensesseesesseeseessensesesstebesseeseeasensensesaeebeeneensennensennenes 60
FIGURE 25: DI FRAMEWORK ..c..cvteuteutenterteetestteseeutesetesaesbesseeseesse st e besaeebesstese et e s enesheebesbees e e s e st e besaeebeeseentenneneennenne 62
FIGURE 26: PHASE GRID....ciiiuttteiiitiieiiitee it e sttt sit st e et siba e e s s b et e s e bb e s e smb e e e s sab bt e s s mb e s e s aaba e e s sabaeessnbaeesnnnes 63
FIGURE 27: TP LOGIN PAGE LANGUAGE DROP-DOWN LIST ..veiiiuruieiiiurireiiireesirttessiinesessnsesssnasessnneeesennaeessnaeesssnnnsesnnnes 71
FIGURE 28: DATABASE CUSTOM FIELDS CONFIGURATION ..c.veuvtueeuteuseteresseesesseeneessensensessessesseeneensensensessessesseensensensensenne 73
FIGURE 29: JIRA — APPLICATION LINK uuvrieiiurieeiiireeeiitteesinttesesitesesisseessbaeessmne s e smsaeessabasessnbaeesnaaeessanaeesssnnasesannnes 76
FIGURE 30: TP LOCALIZATION ACTIVITY DIAGRAM 2 ...ciiiurieiiiriieiiititenitieessnttessisre s sste e srasesssnaseseanaeessnaeesssanasesnnnes 88
FIGURE 31: WEB LAYER CLASS DIAGRAMuvtttueeutentetesiessesseeseessessessesseesesateseessensebeseessesseeneensensenbeseeabeeseensennensennenes 89

file:///D:/OneDrive/Thesis/DP%20versions/DP_Final_Version_1.docx%23_Toc480225055
file:///D:/OneDrive/Thesis/DP%20versions/DP_Final_Version_1.docx%23_Toc480225069
file:///D:/OneDrive/Thesis/DP%20versions/DP_Final_Version_1.docx%23_Toc480225073

List of abbreviations

TP Time Project

SAP Systems, Applications & Products in Data Processing
ZEP Zeiterfassung fiir Projekte- web solution for project oriented work
RDBMS Relational Database Management System
API Application Programming Interface
SDLC Software/System Development Life Cycle
DBMS Database Management System

RDM Relational Data Model

ERM Entity-Relationship Model

SQL Structured Query Language

ORM Object-Relational Mapping

ADO.NET ActiveX Data Objects .NET

LINQ Language Integrated Query

CRUD Create, Read, Update, Delete

WCF Windows Communication Foundation
REST Representational State Transfer

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

JSON JavaScript Object Notation

XML Extensible Markup Language

SOAP Simple Object Access Protocol

PHP Hypertext Preprocessor

SoC Separation of Concerns

POCO Plain Old CLR Object

OOP Obiject-oriented programming

EDM Entity Data Model

85

DAL Data Access Layer

DDD Domain-Driven Design

1oC Inversion of Control

MVVM Model-View-ViewModel

DOM Document Object Model

Ul User Interface

GUI Graphical User Interface

HTTPS HTTP over SSL/TLS and HTTP Secure
EF Entity Framework

CD Compact Disk

MVC Model View Controller

NPM Node Package Manager

CLI Command-Line Interface

ES ECMAScript

DI Dependency Injection

RxJS Reactive Extensions library for Java Script
JNDI Java Naming and Directory Interface
SDK Software Development Kit

RSA Rivest-Shamir-Adleman cryptosystem
XKMS XML Key Management Specification
URI Uniform Resource Identifier

86

Chapter 8

Appendix

8.1 Content structure of attached CD

Class diagrams- Server side class diagrams

Data models- All models of subcomponents form Toad Data Modeler

Diagrams- Deployment and Sequence diagram

Method vs Query syntax- Code difference illustration

Moclkups- All mockups provided by Jira system

Print screens- Actual print screens from Time Project 5

Scripts and alter scripts- All scripts and alter scripts used during implementation phase
Source codes- All server and client codes

Thesis- The thesis in pdf format

87

8.2 Translation module — Activity diagram

Yes

Get all Languagelds,
Names and Codes

Get default value "1"

Use Languageld from
Local Storage

Change all text within
TP application + set
requested kendo
|ocalization files

Change Languageld
in Local Storage

No

Process request

Get custom dictionary
from database by id

Get and retrieve data

tivity diagram 2

ion ac

izat

: TP locali

Figure 30

88

8.2 Web layer class diagram

l
BaseApiController ¥
Chss

 ApiConroller

P e—

PhasesController »
Chass
-+ BassApContrcler
= Fields
< _phaseSeniice
E Mathods
@ CreawPhase
@ DeletePnase
@ DeleteProjectPhase
@ GetPhaseBasicViawhiodelByld
@ GetPhaseByid
@ GerPhaseskyName
@ GetPhasesForProjeciQuarabls
@ GerPhasesCueryable
@ PhasesController
@ PourojectPhase
@ UpdatePhace
@ UpdateProjectPhase
jectPhase. %) A
Class Class Class
= Proparses = Propertiss = Properties
Hours # ChangeDate F Loaalzations
& NotifylfExceeded & Changeliser £ Mumber
= Methods & CreateDare F Phaseld
@ ToModel & Craatelser = Meathods
[" © FromGetPhase...
L —
P
PostPhaseBasic... * L
= Math —
ke e PhaseLocalizan. &
@ FromPhaseChil, e
= Proparses —
¥ Localizations = Properties
J—
& Number GetPhaselocaliz.. # & Description
= Methads RS & Language!
@ ToModsl - ¥ Phasalsc:
~——— 4 | Fropentes K ShortTide
¢ Descrioton BT
[P
PutPhaseProject... # # Languageid = Methods
Class £ Phaseid
@ ToPhaselocal
Phaselocalizai. \ erhasetecls
= Properties & ShonTitle
F Hours &
J Notifyifucsedan | | = Mathods
= Metheds @ FromPhaseluca..
—
@ ToModsl

NotificationController #

= Fiells
@, _notificationService

= Methods

DeleteNotification

DeleeNotificationTemplate

GetNotificationCountModel

GethlotifeationsQueryasle

GethotificationTemplate

UpdateNodfication

UpdateNotificationTemplate
——

ee000e009

NatificationTem... A
Class

MNotificatianTem... #
Class

= Propersies.
& lshcive
& Localizations
& NotficationTe
& status

= Methods

@ FromModel

@ ToModel

Languageld
NotificationTe

ExtemallnterfaceController A JiraControlier A TranslationsController
Chss Class Class
-+ BaseAponticler + BaseapiCon ¥ BaseapContioller
Fields = Fietds = Fietds
@, _externallnterfazeService @, _ecernalinterfaceService @, _systemSettingsService
= Msthods = Methods = Methods
@ CreamBrtemalinterace © GetliraProjectByKey @ GethustextiQuaryablzFarlserid
@ Deletspnase © JiraContraller @ TransatonsContollar
@ EdernalinterfaceContraller E E
@
@ GetExtemallnterfacedyld
@ GetbtemalinterfaceTypeQuenabie
e TR
@ UpdateExtemalinterface - TranslationUpda...
Class
= Properses
Getbxtemallnte... # Extermallnterfac... # o srakey o cumentTent
o R & ProjaciHasChild & ltemld
¥ Projectid ¥ OriginalText
= proparsas = proparses % progaane \
Etemalinterfac. & Externalintertac. # SubProjectias,
& name F Eemalintertac # Subrojectid
= Methads & Host £ SubProjectName.
@ FremExtemalint n N & Methods
asswordHash
—_— @ ToMadel
& Port
J—
Putkxternalinter... ~ # Protacol
clss F Useriame —
e JiraHomeContr... %
= Metods s
= Proparss: @ FramModel -+ Camroller
3 L
& Host
BN S
% PostExtemallnte... 4
Password B
& port
M Uasy”v_ = Properses
e # Extemalintertac
= Mathods 5 Host
& ToModel ¥ Name
S —
& Password
& Port
Protocol
¥ Useiiame
athods
@ ToMadel
—

iagram

Web layer class d

Figure 31

89

