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Abstrakt

Hlavnim zaméfenim této prace je hlubsi studium a porovnani dvou oblasti diferencidlnich
rovnic, kde duraz je kladen na necelo¢iselné fady, nebot béhem poslednich desitek let
se tato oblast nejenze stala popularni, ale dokonce bylo zjisténo, Zze standardni pristupy
feSeni nenapliuji ocekévani, tudiz jsou vyzadovany specialni postupy.

Prace také obsahuje piiklady, experimenty a simulaci pro ovéreni, pripadné vyvraceni
teoretickych vysledkii.

Abstract

The main preoccupation of this thesis is an in-depth study and comparison of two fields
of differential equations with a greater focus on a non-integer order which during the last
decades has proven not only to become more popular because of its applications but also
more complex, thus demanding more special approach.

This thesis is also provided with multiple examples, experiments, and simulations in order
to verify or invalidate the theoretical results.
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1 Introduction

Dynamics is a time-evolutionary process. However, time itself does not necessarily have
an impact on all systems. These systems, which are closely related to dynamical ones,
are called autonomous, i.e., they are not explicitly time dependant. Their dynamics may
not be that rich, nonetheless, studies have shown their importance in modelling, e.g.,
prey-predator models, population growth, radioactive decay, electronic circuits, etc.

The history of fractional calculus is as old as the classical calculus itself. Its initiation
was in a correspondence between Leibniz and L’Hospital lasting several months in 1695
where a question “ What does ;i—"n (x) mean for n=1/27" was posed. This issue raised for
a fractional derivative was an ongoing topic for incoming decades and its theoretical field
developed rather quickly which, on the other hand, cannot be said about practical as, at
that time, there was only a handful applications for it. Nevertheless, by the second half of
twentieth century, this field expanded to such extent that in 1974 the first conference was
held solely focusing on theory and applications. Today, it is a still growing and respected
field of mathematics having found its use in real-life modelling thanks to its non-locality,
i.e., having “a memory”. The fields of application contain biology, engineering, studies of
proteins and polymers in chemistry, modelling of viscoelastic and viscoplastic substances
in mechanics and last but not least medicine and finances.

The purpose of this thesis is to provide a research of autonomous systems from both
points of view, to highlight differences between classical calculus and fractional one and
to test the theory on a chosen model, in particular, the epidemiological SIR model with
vital dynamics.

The thesis is organized as follows. The second and Section 3, considering the first
one being the introduction, provides basic theory of, both, integer order and fractional
autonomous systems. The Section 3 also provides necessary fundamental background
in order to introduce two the most popular approaches of fractional derivative, namely,
the Riemann—Liouville and the Caputo derivative. The Section 4 provides an analysis of
the SIR model and the results are discussed in the last Section. The numerical method,
which could be considered as fractional generalisation of predictor-corrector method, is
being described in the Section 5.

12



2 Theory of Integer Order

In order to describe dynamics it can be said that it is a time-evolutionary process governed
by, e.g., either linear or non-linear differential or difference equations, giving us what we
call a dynamical system. We can distinguish between stochastic and deterministic systems,
or continuous and discrete. Apart from differential equations, studies have shown that
behaviour of dynamical system is not always determinable by analytical solutions. This
applies even further for non-linear equations and systems except for certain special cases.

2.1 Classical Autonomous System

Definition 2.1 (Autonomous system). Let f : Q@ — R™ be a vector field. The system of
ODEs

y' = fy), (2.1)

is called an autonomous system.

It is a well-known fact that every non-autonomous system y’ = f(z,y), where y € R",
can be rewritten to an autonomous system (2.1) with y € R™™! by setting 4,1 = = and
Y41 = 1. By relatively weak assumptions on f, existence and uniqueness can be obtained.

Let us consider an initial value problem for , i.e., the pair

¥ =fy),
y(l’o) = Yo
(where f: Q — R™, Q is an open subset of R, f € C'(Q) and y, € Q).

(2.2)

Definition 2.2 (Solution of autonomous system). Let f € C(Q2) and let Q be an open
subset of R™. A solution of the system (2.1)) on an interval [ is every function g : I — R"
so that g is differentiable on I, for every x € I condition y(z) € € is being satisfied, and

y'(z) = f(y(z)), Vxel

Furthermore, if y, € €2, then ¢ is solution of an initial value problem ({2.2)) on interval I
if o € I,y(zo) = yo-

Remark 1. The above notation f € C(Q) is understood component-wise, i.e., f; €
c),i=1,...,n.

Definition 2.3 (Continuous dynamical system). Let ¢ : R x @ — Q be a continuously
differentiable function where 2 C R". Then ¢ is called continuous dynamical system
denoting a pair {2, ¢} if the following two conditions are satisfied:

e p(0,y)=y, VyeQ

e p(t+u,y)=p(t euy)), ViueR
where the function ¢ is often called an evolution operator.

Remark 2. The function ¢ is sometimes called time-t map, or a flow of a vector field f.
It is reasonable to expect that ¢ (¢, y) has ¢(—t,y) as its inverse and, also, this condition
guarantees the existence and uniqueness of ([2.2]).

Theorem 2.4 (Peano existence theorem). Let f : Q& — R™ be a continuous vector field
defined on a neighbourhood of a point (xq,yo) € 2. Then there exists a solution g of
i a neighbourhood of xg.

13



Theorem 2.5 (Picard’s uniqueness theorem). Let f : Q — R™ be defined on Q0 and let
it be a continuous vector field satisfying Lipschitz condition on the neighbourhood of vq.
Then there exists € > 0 such that problem has a unique solution on interval (—e¢, ).

Remark 3 (Lipschitz condition). Function f satisfies the Lipschitz condition on a set
QQ C R™ if a constant L > 0 exists with

1£(91) = F(92)] < Llg — 9o, (2.3)

whenever y,,y, are in {2. L is a Lipschitz constant.

If ([2.3)) is satisfied then two trajectories of a system are either disjoint or identical. If for
solution ¢, on I; and g, on I, is satisfied condition Iy C Iy(I; # I3), while g, (z) = gy(x)
for all = € I, then a solution ¥y, is an extension of y, from the interval I; to I5.

Definition 2.6. Suppose fixed initial point y, and let I =1 (y,), then the mapping
o(,yp) = I — Q defines a trajectory of the system 1) through the point (y, € Q).

Definition 2.7. A phase portrait of (2.2)) is the set of all trajectories in the phase space
R™.

Definition 2.8 (Maximal interval of existence). Consider the initial value problem ([2.2)).
The open interval [ is called a mazimal interval of existence if there exists no further
extension of the solution y.

Definition 2.9 (Equilibrium point). Let us consider a point y* € R™. The point is called
an equilibrium point or a critical point, fized point of system (22.1)) if it satisfies f(y*) = 0.

Generally, there are three main categories of trajectories of the solution y:

e Singular point — a trajectory of constant solution (corresponding to equilibrium
solutions),

e Cycle (closed curve, orbit) — a trajectory of periodical solution,

e Curve without self-intersection (open curve) — other cases of solution.

2.2 Stability

Roughly speaking, stability of solutions to ODEs means that a small perturbation in
initial conditions causes a small change in the output, i.e., the new solution remains close
to the original one forever.

Definition 2.10 (Stability and attractiveness). A solution g of (2.1)) is called
e stable if for any = > xy and € > 0 there exists § > 0 such that for every solution g,
we have

lyo —9ll <6 = |ly(z) —y(2)|| <e. (2.4)
e unstable if it is not stable.

e attractive if there exists 6 > 0 such that for every solution g of system (2.1)) following
statement holds true

llyg—9ll <d = |ly(z) —g|| =0 as T — 00.

Remark 4. (i) A solution that is stable and attractive at the same time is called asymp-
totically stable, meaning that it attracts nearby solutions.

14



(ii) The requirement describes that if the initial condition changes less than § at
o, then the solution on the interval I = (x(, 00) changes less than . This property
is also called Lyapunov stability.

(iii) Let us note that stable solutions do not necessarily have to be attractive. On the
other hand, attractive solutions need not be stable.

Remark 5. Jacobi matrix at an equilibrium point y* is an n X n matrix containing partial
derivatives, with respect to all variables, of the right-hand side of (2.1)) evaluated at y*,
ie.,

Of1 (% Of1 (%

o B (T

Sy o Gy

The eigenvalues of a matrix A are obtained as the roots of characteristic polynomial

A=J(y") =

P()\) = det(A — \E)

where E represents the identity matrix. The task of finding the roots of a characteristic
polynomial can become rather challenging even for dimensions n > 3. In particular, for
dimensions n = 3 and 4, complicated formulas can be found, on the other hand, for
even higher dimensions they do not exist. However, if we limit ourselves to investigating
asymptotic stability, the following criterion is useful:

Theorem 2.11 (Routh-Hurwitz stability criterion). Let P,(\) = A" + a; A"t + -+ +

+an_1 A+ a, be a polynomial, a; € R,i = 1,...,n and let us define Hurwitz’s matriz of
P,
ag 1 0 0 O ... O
as ay a; 1 0 ... 0
H,=|a a4 az azx a; ... 0
0O 0 0 0 0 ... a,

Then, all roots of P, have negative real parts if and only if the determinants of principal
submatrices of H, are all positive. If there exits at least one negative determinant of the
sequence, then, the characteristic polynomial has a root with its real part being positive.

Definition 2.12 (Hyperbolic equilibrium). An equilibrium point of a system is called
hyperbolic if the eigenvalues of Jacobi matrix at this point satisfy condition R(\;) #
0, i =1,...,n. Otherwise, if there exists at least one eigenvalue such that R(\;) =
0, 2=1,...,n, it is non-hyperbolic.

Theorem 2.13. Let us consider a system with eigenvalues My, ..., \, of the Jacobi
matrix A and let y* be an equilibrium. Then, y* is
o asymptotically stable if R(\;) <0, for alli=1,...,n;
o unstable if there exists at least one eigenvalue A such that R(\) > 0.
e non-hyperbolic equilibrium point if there exists at least one eigenvalue A such that
R(A) = 0. In this case, its stability cannot be determined.

Unfortunately, many equilibrium points arising in applications are non-hyperbolic, and
as mentioned above, their further investigation requires stronger method.
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Remark 6 (Lyapunov function). Consider the non-linear system ([2.1)) with an equilibrium
point y* € €, let {2 be an open subset of R™. Suppose that there exists a function
V' : Q — R"™ which satisfies V(y*) =0, and V(y) > 0 if y # y*. Then,

(i) if V(y) <0 for Yy € Q, y* is stable,

(i) if V(y) < 0 for Vy € Q\ {y*}, y* is asymptotically stable,

(i) if V(y) > 0 for Yy € Q\ {y*},y* is unstable,
The function V is called the Lyapunov function. The symbol V(y) denotes V(y) =
f(y) - VV(y), where VV(y) = (2£,..., %),

dy1’ > Oyn,

Remark 7. (i) If V(y) = 0 is satisfied for y € Q, then trajectories of system (2.1)) lie
on planes in R™ (curves in R?) defined as V(y) = c.
(ii) Finding such function is often quite difficult as there exists no general method.

2.3 Linearisation

According to Picard and Peano theorems, a solution of an initial value problem exists on
some interval /. Nevertheless, as a contrary to linear systems, we are generally unable to
solve the non-linear ones. If so, then only a few of them are solvable analytically. The
investigation of non-linear systems is in a neighbourhood of their equilibrium points and it
can be shown that their local behaviour near a hyperbolic equilibrium y* is determinable
enough by the behaviour of linearised system.

Consider linearisation of , i.e., the linear system

y' = Ay,
where A is an the Jacobi matrix of f : R” — R" evaluated at an equilibrium point y*.

Theorem 2.14 (The fundamental solution of linear systems). Let A be a real n X n
matriz. Then, for given y, € R", the initial value problem

/
— Ay,
y=a2y (2.5)
y(0) =y,
has a unique solution
Q(I> - eAJCyO’

with the exponential of A defined as

A _ — A
e’ = R
k=0
Let us now focus on the planar systems, i.e., dimension n = 2, and let us introduce

types of equilibria.

Definition 2.15 (Equilibria in the phase plane of integer order autonomous system). Let
us consider linearised system ({2.1)) with eigenvalues Aj, A2. The equilibrium point y* is
called

e stable nodal point if Ay < Ay <0,

e unstable nodal point if 0 < A\; < Ag,

e saddle point if Ay < 0 < Ao,

16



Furthermore, suppose that matrix A has two complex eigenvalues A\; o = p = iv. Then
the equilibrium is called

e stable focus point if A\; 5 = p £ v, for R(A12) > 0 and v # 0,

e unstable focus point if \; 5 = p £ iv, for R(A12) <0 and v # 0,

e centre or a vortex point if \j o = %iv, for R(A12) = 0 and v # 0.

Let us note that in case of centre the equilibrium is stable, the stable nodal point
along with stable focus point are asymptotically stable and unstable nodal point along
with unstable focus point are unstable.

The eigenvalues A1, Ay are obtainable from a characteristic equation of the form

(A—XE) = )2+ a)\+b=A2 —tr(A)\ + det(A) =0

with roots

) —a £ a2 —4b
12 = .
’ 2

Remark 8. The type of equilibria are also determinable by coefficients a and b as follows:
(i) stable nodal point if and only if a > 0, > 0 and a® — 4b > 0,

(ii) unstable nodal point if and only if a < 0,b > 0 and a® — 4b > 0,

(iii) saddle point if and only if a = 0,b < 0,

(iv) stable focus point if and only if a > 0,b > 0 and a® — 4b < 0,

(v) unstable focus point if and only if a < 0,b > 0 and a® — 4b < 0,

(vi) centre (vortex point) if and only if a = 0,5 > 0.

Furthermore, if both eigenvalues are zero, i.e., det(A) = 0, the equilibrium point
is called degenerate. These points appear in non-hyperbolic systems. Rem. [§| can be
visualised by trace-determinant plane in following figure where the matrix with trace tr A
and determinant det A corresponds to the coordinates of a point (tr(A),det(A)). The
geometry of the phase portrait is determined by the location of the point in the plane.

=

degenerate sink

A=o:
0 det A det A=1(Tr A)?

@ | & /(%

spiral sink spiral source

®

center

degenerate source

il

source

motion
<
\A
1 1

line of stable fixed points saddle line of unstable fixed points

Tr A

Figure 1: The regions are bounded by the two lines and parabola corresponding to the
case of the term in square root equals to zero [19)



3 Theory of Non-Integer Order

3.1 Preliminaries

Quite typical and important feature of fractional calculus is its non-local character, i.e.,
dependency on initial value which can be useful in systems that work with memory. This
allows to describe several phenomena with more precision. Let us recall some higher
transcendental functions which play important role in fractional calculus.

Definition 3.1 (The Gamma function). The function defined by
['(z) = / e Tdr, R(z) >0, (3.1)
0

is called Gamma function.

An important property of this function is
I'(z+1) =T(2)z,
which, along with T'(1) = 1, shows a factorial property
I'(n)=(m-1)! YneN.

Definition 3.2 (Mittag-Leffler function). A function defined as

o

ZTL
:E— R
z) nzlf(an—i—ﬁ)’ a>0,0eR, zeC

is a two-parameter Mittag-Leffler function. If § = 1, then we simply write E,(z) =
Ea71(2).

Remark 9. The Mittag-Leffler function is a generalisation of the exponential function e*
which can be written in a form of series

TL

Zf‘n+1 Er(z).

n=1

The core idea of fractional calculus is closely related to classical one where a funda-
mental theorem of calculus is an important outcome which shows us a relation between
derivatives and integrals.

Theorem 3.3 (Fundamental theorem of calculus). Let f : (0,7) — R be a continuous
function and F : (0,T) — R is defined
- [ 1wyir
0

F/

Then F is differentiable on (0,T) and

Il
T

18



One of the objectives of fractional calculus is, in some way, to preserve this feature.
For the sake of clarity let us rewrite derivatives and integrals as operators

Df:=f,

with f being a differentiable function and

If(x):= /Otf(T)dT, O<z<T,

where f is a Riemann-integrable function on (0,7"). For n € N, let us generalise repeated
derivatives and integrals as D" and I", i.e. D' := D, I' := I, D" := DD"! and I" :=
11" ! for n > 2.

By rewriting Thm/[3.3]in the operator form we obtain

DIf =f.
Which for n € N implies
D I"f = f.

Theorem 3.4 (Cauchy’s formula for repeated integration). Let f be a Riemann-integrable
function on (0,T). Then for 0 < x < T, n €N, following statement holds true

I"f(z) = ! I /Om(x—T)"_lf(T)dT.

(n—1

This formula can be further extended even for n ¢ N by replacing n-th power in
(r — 7)""! by arbitrary positive real number and by using (the factorial is now
replaced by the Gamma function).

In this thesis we shall focus on a model with initial point x5 = 0 but generally both
further mentioned operators can be defined for any arbitrary initial point of o = a, where
a € R.

Definition 3.5 (Riemann—Liouville integral). Let & € Rt and 0 < 2 < T. Then

I f(x) = ﬁ /0 (o — 1) () (3.2)

is called the Riemann-Liouville fractional integral of order « at x.

Definition 3.6 (Riemann-Liouville derivative). Let « € Rt and m € N: aw € (m—1,m).
Then operator D defined as

D .= D", 0<ax<T (3.3)
is called the Riemann-Liouville fractional operator of order c.

Remark 10. We shall refer to (3.2]) as RL integral and to (3.3) RL derivative.

It turns out that the RL-derivatives are not quite convenient in real-world modelling
with FDE’s. There are several alternative definitions of fractional derivative, however,
the following one seems to fit better and shall be used in our model in Section 4.
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Let us now preliminarily define the following operator *D® by

fora >0,meN,a € (m—1,m) and D™f € L1({0,T)). For the case a € N, thus m = a,
we obtain

*DafZIODaf:Daf,

which is identical to the classical case of D". The key idea of construction of the desired
operator involves RL derivatives with following identity on one side and the preliminarily
defined operator on the other one.

Theorem 3.7. Let a > 0 and m € N : a € (m — 1,m). Moreover, assume f €
AC™((0,T)).Then,
"Df = D(f = Tma(f;0)) (3.4)

almost everywhere. T,,_1(f;0) denotes the Taylor polynomial of degree m — 1 for the
function f, centered at 0. For the case m = 0 we naturally define T,,,_1(f;0) = 0.

Definition 3.8 (Caputo derivative). Assuming « > 0 and such function f that D*(f —
Trn-1(f;0)) exists, where m € N: « € (m — 1,m). Then the operator D defined as

“D*f = D(f = Tiu-a(£:0))
is called the Caputo differential operator of order a.

For @ € N, thus m = «, we obtain the usual differential operator D" “annihilating”
the Taylor polynomial which is now of degree m—1, and, in particular, D is the identity
operator.

Theorem 3.9. If f is a continuous function and o > 0, then
CDaIaf — f

At this point, we have already introduced all the necessary theoretical background of
fractional calculus for this work. Let us remind, that, from now on, we shall consider
a e (0,1).

3.2 Autonomous System of Non-Integer Order

We shall use the Caputo derivative in this thesis as it is more convenient while stating
the initial conditions which are integer order ones. On the other hand, FDE’s with
RL derivatives demand conditions with non-integer order which, in terms of real world
modelling, are hardly applicable.

Definition 3.10 (Autonomous system of non integer order). As an autonomous system
of non-integer order if is considered a system of fractional differential equations (FDE’s)
as follows

“Dy = f(y), (3.5)
where f: Q) — R" QQ CR™
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Similarly, as in Subsection 2.1, let us consider an initial value problem of autonomous
FDEs

“Dy(x) = f(y(x)),
y(0) = yo. (36)

where y, € R" is an initial value.

Definition 3.11 (Solution of autonomous system of non-integer order). Let a € (0, 1),
feC(), 2 CR™is an open subset and I = (0,7). A solution of (3.5) is every function
y € C(I) which satisfies y(z) €  and

“Dy(x) = f(y(z)) Vrel (3.7)
Furthermore, if y, € €2, then ¢ is a solution of (3.6) on interval I.

We shall now focus on existence and uniqueness of solutions, let us first present
a theorem corresponding to Peano existence theorem for first order ODE’s.

Theorem 3.12 (Existence of solution). Let a € (0,1),y, € R", K > 0 and h > 0. Define
G:=-KyyW+K)x - x{y—K,y°+K) and let function f : G — R™ be continuous.
Moreover, let us define M := sup;cq | f(C)] and

B h for M = 0,
* | min{h, (KT (a + 1)/M)"*}  else.
Then there exists a function y € C({(0,h)) which solves the initial value problem

(5.4).

Remark 11. As Diethelm [7] states in Rem. 6.3, in the Caputo-type case it turns out that
continuity of the function f implies continuity of the solution gy throughout the closed
interval (0, h).

The following lemma states that the differential formulation of initial value problem
is equivalent to integral one.

Lemma 3.13. Supposing assumptions from Thm 3.16, the function y € C((0,h)) is a
solution of initial value problem (@ iof and only if it is a solution of non-linear Volterra
integral equation of the second kind

1 [ -
v = 90+ s / (2 — 1) Fly(r))dr

with o € (0,1).

Theorem 3.14 (Uniqueness of solution). Let o € (0,1),y, € R", K > 0 and h>0. Let
us define set G same as in Thm 3.12 and let the function f : G — R" be continuous
fulfilling Lipschitz condition with respect to the second variable

1F(91) = F(92)] < LIy, — 9

with suitable constant L > 0 and let us define h as in Thm 3.12. Then, the initial value
problem (3.6) has a unique solution y € C((0,h)).
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Following theorem states that, under certain assumptions, the solution exists on the
entire interval (0, co).

Theorem 3.15. Let a € (0,1),y, € R", G :=R" and let function f be a continuous on
G. Then, there exists a uniquely defined function y € C'({0,00)) solving the initial value

problem ((3.6)).

Theorem 3.16 (Global existence of solution). Assuming the hypotheses from Thm 3.1},
except for set G being now defined as G := R™. Moreover, f is a continuous function on
G and there exist such constants ¢y > 0,¢0 > 0 and 0 < u < 1 that

f@)] <a+ely Vyged.
Then, there exists a function g € C((0,00) which solves the initial value problem (3.6]).

As already mentioned in Section 2, two trajectories of integer order equations do not
intersect. If so, they are identical. This property is, in general, not true unless we consider
special cases of FDEs. This holds true for one-dimensional FDE and triangular system of
FDEs in the form

CDayl(ﬂf) = f1(z,y,(2)),

“Dyy(z) = foz,y, (), yy(2)), (3.8)

CDayQ(x) = fo(,y1(2), Yo (), ..., Y, (7).

This triangular system can be solved coordinate-wise, meaning that we consecutively solve
just a one-dimensional equation. Therefore, the triangular system inherits many features
of the one-dimensional FDEs. Another feature that these systems show is, that in both
cases, they generate non-local dynamical systems but not in the sense of Def. [2.3]

It is possible to show that there exists a map

0rz(-) : R" = R", Ve, 7 el

called two-parameter flow in R™ satisfying following three properties
(1) ¢.z is continuous as a function of three variables z,z € I and y € R",

(ii) the function ¢, z(-) is a homeomorphism of R" for any fixed z,7 € I,

(iii) the flow property ¢,z 0 vz, = pzz for all ,7, z € I.E]
With these properties, in particular cases, it is possible to define fractional dynamical
system. These cases are the same, as mentioned above, either one-dimensional or trian-
gular and therefore the two-parameter flow generated by them or is a non-local
dynamical system.

In other cases, for n > 2, the FDE does not, in general, generate a two-parameter

flow in R™. Therefore, it does not, in general, generate non-local dynamical system. More
details can be found in [3].

3.3 Stability of Fractional Order Systems

Let us now focus on stability of FDEs. We shall not redefine notions such as the stability
itself and the equilibrium point as they do not change irregardless of the order of the
system. If so, we shall modify them.

Isymbol o denotes composition of maps
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Definition 3.17 (Hyperbolic point of equilibrium in fractional system). An equilibrium
point y* of system (3.5)) is called hyperbolic if all of the eigenvalues \; (i = 1,...,n), of
the matrix A at the point of equilibrium y* are non-zero and |Arg(\)| # am/2.

Similarly, as in integer order case, we can linearise (3.5)) as follows
“Dy = Ay (3.9)

with A = Df(y*). Again, as in classical case both systems have the same qualitative
behaviour in the neighbourhood of the hyperbolic point of equilibrium. The following
theorem specifies the form of solution (3.9):

Theorem 3.18 (Solution of homogeneous linear fractional system). Let A € R™ ™ with
eigenvalues i, ..., N\, and eigenvectors vy, ..., v,, where, the eigenvalues have equal al-
gebraic and geometric multiplicity. Then, the general solution of can be written

as
n

y(r) =Y v Ea(Nit?)

=1

with constants ¢; € C.

As shown in [4], similarly as in the classical integer-order case, there is a close rela-
tionship between the stability of the original non-linear system and its linearisation. More
precisely, assume that has an equilibrium y*. Then the problem of stability of this
equilibrium can be converted to the problem of stability of zero solution to the following
system:

n =An+g(n),

where A = Df(y*), g(0) = ()]
Indeed, the substitution y = n + y* yields

y =17,
thus
n'=fm+y)=Ffn+y")+An— An.
Therefore,
n' = An+g(n),
where

gm) =gn+y") - fy") — An.
Following holds true

g(0) = f(y") —A0=0
gm)=Df,n+y") - A

In order to g’(0) = 0, A = Df(y*), i.e., A is equal to Jacobi matrix of vector field f in
the equilibrium y*.

Remark 12. Analogously, by substituting ¢’ by the Caputo derivative ¢ D%y.

2g € C! in the neighbourhood of origin
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This allows us to state following theorem.

Theorem 3.19 (Linearised asymptotic stability for FDEs). Let A € R™" and let
Ai(i = 1,...,n) be its eigenvalues. Then, the trivial solution, with f(0) = 0 and
DF(0) = 0, is
(i) is asymptotically stable if and only if all eigenvalues \; satisfy |Arg(N\;)| > am/2.
(ii) Unstable if at least one of the eigenvalues X\; of the Jacobi matriz satisfies
|Arg(\;)| < am/2.

With respect to the above note we immediately have:

Corollary 3.20. Let y* be an equiltbrium of and let f be a Cl-vector field with
Df(y*) having the eigenvalues satisfying |Arg(\;)| > am /2. Then the y* is asymptotically
stable. If there is at least one eigenvalue such that |Arg(\;)| < am/2, then it is unstable.

Remark 13. If |Arg()\;)| > am/2 and the equality shall occur for at least one eigenvalue
i, then we are unable to determine - the equilibrium point is non-hyperbolic.

To classify equilibria for the planar system we can use Def[2.15] considering that the
stability is again determined by eigenvalues A;, A with following differences:

(i) There is no singular point which would correspond to centre which is a consequence
of FDEs not being able to have periodic solutions.

(ii) The stability domain, in case of stable focus points, widens. ILe., as stable focus
points are even considered those with (A1) > 0 despite satisfying |Arg(Ai2)| >
am /2. This means that the border between stability and instability is no longer an
imaginary axis as we can see on following figure [2]

3(4)

[an (A

Figure 2: Stability region of ODEa« is also referred to as Matignon sector [1]

Remark 14. Equilibria, for n = 2, can be classified with a use of trace and determinant of
a matrix. Using the same notation as in Rem. [§, we show that the equilibrium point y*
is asymptotically stable if and only if b > 0 and a +2v/bcos(ar/2) > 0. These inequalities
can be obtained by considering the fact that

_ 18 (Ap)

[R(Ar2)]

As [1] states, and as already mentioned, if the eigenvalues of linear system (3.9)) are
at the boundary of stable region, they shall not generate a periodic solution in fractional

order systems, however following theorem shows that the solutions of this system converge
asymptotically to a closed orbit shown in Fig. 3.

|Arg(A12)]
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Theorem 3.21. The trajectory of the system

“Dy(z) = Ay(x),

y(0) = (K, Ka), (3.10)

where o € (0,1) and n = 2 with eigenvalues A\ 2 = re* % and Ky, Ky € R converges to a

closed orbit, yi(x) + y3(z) = Ktk ina phase plane.

a?

However, we note that this is not a solution. On the other hand, some recent studies
discuss existence of asymptotically periodic solutions, see, e.g., [10].

Figure 3: A = ¢'%" and y(0) = (1,1) (a) a = 0.01, (b) a = 0.7 [1]
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Another important and unique phenomenon of planar fractional autonomous systems
is that if the eigenvalue is close to the borderline of stable region it may generate a self-
intersecting trajectory, i.e., an occurrence of equilibria in solution trajectories happens if
the trajectory y(x) is not smooth in the neighbourhood of point y(0). Examples of such
equilibria are either cusps or multiple points as can be seen on following figures.

-5k
(a)

Figure 4: (a) Example of cusp and double points, a = 0.1, = 1 [1]
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Figure 5: (b) Example of double cusp and multiple points, a« = 0.3, = 0.5, (c) Example
of single cusp o = 0.6, =1 [1]

The authors of [I] propose a conjecture along with possible proof that there exist
equilibria in the trajectory of planar system (3.9) if and only if the eigenvalues A = re*"

of A satisfy
ar ar
7 -0 < ]Arg()\)] < 7 + (52,

with d; > 0 and d5 > 0 are sufficient small real numbers.
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4 Model analysis

Infectious maladies can be divided into two groups based on their causation. We can
distinguish between diseases caused by micro-parasites (viruses or bacteria) and macro-
parasites (insects and maggots in some particular phase of their development). In this
thesis we shall closely look upon infections with viral or bacterial origin.

When a susceptible individual is infected either directly or indirectly from someone
who is already infected — a source of infection, at first, he or she shows no symptoms of
illness development, this is called a latent phase, which is then followed by an infectious
phase when the individual can infect others who are now susceptible. The individual now
shows symptoms of illness which is usually then being followed by isolation until he or she
recovers or dies. This time interval from being infected to showing first symptoms can be
referred to as incubation phase.

In case of recovery, the individual can gain immunity towards the disease either per-
manently or temporarily.

In this Section we shall describe and analyse the model from classical and fractional
point of view.

4.1 Integer Order SIR Model

This model, introduced in 1927 by William Ogilvy Kermack and Anderson Gray McK-
endrick, is one of the simplest disease models used to explain spread of the contagious
disease through a closed population over time. It was proposed for an explanation of the
rapid rise and fall in the number of infected in epidemics such as plague in London (1665
1666) or cholera (1865). The assumptions of the model are that the population is fixed
(meaning, no births, no deaths due to disease nor due to natural causes) and completely
homogeneous with no age or social structure, duration of infectivity is same as length of
the disease.

Let S be the number of susceptible individuals, I the number of infected and infectious,
R the number of recovered (usually) with lifelong immunity. Then, the model consists of
three non-linear ODEs:

S = —pSI,
I'=pBSI —~I, (4.1)
R =~I.

Let us note that S, I, R are time dependant and the parameters 8 > 0 and v > 0 of the
system represent the contact rate (of ill and healthy) and the recovery rate per capita,
respectively.

Remark 15. An average individual meets with SN individuals per time unit, where g €
(0,1). These are enough for disease transmission. Whereas probability of random contact
of an individual with a susceptible member is S/N. Since the amount of infected is I, the
amount of newly infected individuals per time unit is

S
BN -5 1=pSI.

Therefore SST individuals leave the susceptible compartment and thus S' = —3S51.
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Remark 16. The amount of individuals leaving the infected compartment per time unit
is vI. Therefore, SST individuals shall become infected and /I individuals shall recover,
leaving the compartment and thus I’ = ST —~I. Finally, amount of v/ individuals shall
move to the recovered compartment, i.e., R’ = ~I.

We assume non-negativity of the three “compartments” and, as mentioned in the
introductory part, total number of population N = S + I + R to be fixed, thus N’ =
S+ I' + R' = 0. The system can be translated into a simple scheme as follows:

s P R

Figure 6: Scheme of the Kermack—McKendrick model. Boxes represent “compartments”
and arrows indicate flux between them.

It can be quite easily seen that the value of R is unambiguously determinable by S
and [ allowing us to omit the third equation leaving us with two-dimensional system

S’ = —BSI, (4.2a)
I'=(8S —7)I (4.2b)

with initial conditions S(0) = Sy > 0,1(0) = Iy > 0.
At first let us choose
S(0) =S5y >0, I(0)=0.

In this case we have set of equilibrium points for every Sy lying on half-line 7 = 0,5 > 0.

The system has constant solution (5, 1) = (Sy,0). This means that amount of individuals

who are susceptible is Sy and there are no infected or infectious ones. I.e., there is no

possibility for the healthy ones to get infected and move to the other “compartment”.
Now let us choose

S(0) =0, I(0)=1I > 0.

In this case there is no set of equilibrium points and as we can see the (4.2a)) satisfies
S(t) =0 and (4.2b) has following form

I'=—~I. (4.3)
Along with the initial condition we have a solution
I = Iyexp(—nt), t>0. (4.4)

Since v > 0, then for every Iy > 0 the trajectory curve starts at this point and decreases
by S = 0 axis to the (0,0) point. This solution represents a situation of no susceptible
individuals, meaning, that everyone is infected. These individuals have no other option
but to move to the recovered “compartment”, i.e., the amount of infected individuals
decreases while the susceptible remain at zero. The last remaining option is

S(O):So>0, ](O)ZI()>0
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As stated in Section 2, no trajectories can neither intersect or touch and, moreover, they
have to start and remain in the first quadrant for all £ > 0. We shall now analyse the
behaviour of a functions S and I. As we already know 3 > 0, therefore we can see that
S’ < 0 for all £, i.e., the function S decreases for all t. Also, I’ > 0 if and only if S > %

We shall now prove existence of limits lim; ,,, S(t) = S@OEL limy oo I(t) = ]wﬁ and
following statements are true

O<Soo<1, I, =0.

B
At first, we determine the maximal interval of existence of ({5, I) according to Def[2.§

J = (a,b).

Since we are dealing with real world modelling, we are interested in a development for
t > 0, thus it is sufficient to determine only the b value and use the interval [0, b). Also,
we know that all trajectories must lie in the first quadrant and S is decreasing, therefore

lim S(t) = So € [0, 00)

t—o0
exists.
By adding equations (|4.2al),(4.2b)) together we have

(S+ 1) =—4I (4.5)
therefore (S + I)' is positive decreasing function with existing limit

tliglo(S—i- I)(t) € [0, 00).
This implies existence of limit
lim I(t) = I >0,

t—o0
ie., b= o0.
By analysis of both equations (4.2al),(4.2b)) for ¢ — oo we obtain

lim S'(t) = =S Ioo,
t—00
tlim I'(t) = (BSec — 7)Ino-

As both limits S” and I’ exist, they must be equal to zero. (In the opposite case, functions
S and I would not have finite limit for ¢ — co). Therefore

(/BSOO - /7)100 =0,

meaning that (S, ) is equilibrium point for (4.2a)),(4.2b), therefore, I, = 0 and S, >
0.
We shall now prove that So, > 0. We exclude the ¢ variable from system (4.2al),(4.2b)

by dividing as follows
dl v
— =—-14+—.
ds BS

3amount of individuals remaining uninfected
4amount of individuals remaining uncured
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By integrating we obtain

1(S) = —S+%1n5+c0, (4.6)
where
Cop = I() + S(] - %ln SO (47)

and for ¢ — oo

- —sm+%1nsoo+c0.

We already know that I, = 0, therefore, the right-hand side must be equal to zero,
meaning that S, must not be equal to zero, because in this case In.S,, would be equal
to —o0.

The last thing remaining to be proved is S, < 1. We already know that I increases
while S > %, t>0. IfS > %, then S > % for ¢ > implying that I increases for ¢t > 0
which is a contradiction for I, = 0. We can now consider two situations by using the
fact that [ is at its maximum value for S = % and also S is decreasing function for any t.

(i) So < 3. Then, S decreases to value Sw and I decreases immediately to zero,
meaning, that there is no epidemic.

(i) Sp > % In this case the S decreases to S, as well but, on the other hand, the
I increases to its maximum value and then decreases to I,, which is equal to zero
meaning the epidemic occurrence.

The key value that governs evolution is so-called basic reproduction ratio or epidemsi-
ological threshold

Ro =220,
g
which, roughly speaking, is derived as the expected number of new infections from a single
infection in a population where all subjects are susceptible. Let us note that the choice of
the notation Ry is quite unfortunate and has nothing to do with R and with alternative
SIR models has different formulation.

If Ry < 1, then each individual who contracted the disease infected less than one
person before dying or recovering, meaning the disease shall perish, i.e., I’ < 0.

If Ry > 1, then each individual who already had the disease infected more than one
person resulting in epidemic spread, i.e., I’ > 0, and the disease shall permanently remain
endemic in the population.

We can consider two ways of starting an epidemics:

(i) An epidemic outbreak caused by an individual — patient zero travelling to a desti-
nation and carrying the disease back to his or hers residual place. Meaning that
Ip>0,S +1Iy=N and Ry = %.

(ii) A disease being brought by an individual from different “group”. In this case Sy ~
N, Iy = 0 and Ry is defined as ﬁTN

By integration from 0 to oo we obtain

—/ (S—l—])'(t)dt:S()—l—Io—Soo:1—50027/ I(t)dt. (4.8)
0 0
From (4.2a) we get

%:—BI, t €[0,00)
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By integration of this equation we get

00 S B SO - 00

With a use of the result of (4.8)) and adjustment of previous equation we get

So JN=S<] o[, Sx

Remark 17. For N =1, f {%} = Ro[l — Sl

Equation gives us a relation between the reproductive ratio and the extent of
epidemics. Let us note that the final extent of epidemics, i.e., the amount of individuals
infected during the epidemics, is N — So. The number (1 — ST”) is often being referred
to as affection ratio.

It is easy to prove that there exists a unique solution S, of . Let us mark r = S

and define a function

S() T
T N

flz)=In— — Ry 1——], x> 0. (4.10)

Evaluating the function f at points 0 and N

f(04) = lim f(z) = 00 — Ry = o0,

x—0

f(N) = ln%.

Since % < 1, then In S—]\? < 0 and therefore

f(0+>>07 f(N)<0

We shall now analyse for which values of x the function decreases, i.e., values of x where
f'(x) < 0. Because

1 Ry
/ e —
fl(z) = x+N’ x>0
we get
f,(o-i‘) = =00,

N
f/(SE)IO@x:EO,

thus f'(0) < 0 if and only if

N
O<oe < —.
x e

If Ry <1, then f is monotonically decreasing from f(0,) = oo to the negative value

at x = N. Le., there exists a unique point Sy, of function f(z) and following condition
Ss < N is satisfied.
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If Ry > 1, then f monotonically decreases from f(0,) = co to the minimum value of
r = R% and then increases to the negative value at the point x = N. l.e., there exists
such a unique point Sy, of function f(z) that

Soo < —.
< A

Also

S, S
g(Z2) =InRy— Ro+ =2 <InRy— Ry+1, for Sy<N.
Ry N

Since In Ry < Ry — 1 for Ry > 1, then we obtain

g(—) <0, for Ry > 1.

Therefore following condition is true for Ry > 1

Generally speaking, it is quite challenging to determine the value of contact rate as it
depends on a specific type of the outbreak and social factors. The values of Sy and S
are determinable, both, before and after the outbreak. By using these data we are able
to estimate Ry value retrospectively, i.e., after the outbreak.

The maximum value of infected individuals at a certain time ¢ is for S(¢) = 2 when

8
I'(t) = 0. Then the maximum value

]mam250+]0—%1n50—%+%1n%

is obtained by substitution S = % and [ = I,,,,, from equations 1”}
However, in real world modelling rather complicated versions of the SIR model re-

flecting the actual biology of a given disease are often being used. Following model could
resemble a disease lasting several weeks, even months, which means that during that time
many people either die or are being born. In that case, the demographic movement needs
to be included as well.

We shall now introduce so-called SIR model with vital dynamics and constant popula-
tion suggested by Herbert W. Hethcote in 1976 as follows

S’ — uN — uS — BSI,
I'=BSI —~I —pul, (4.11)
R =~I — uR.

Remark 18. As stated in the introductory part of this Subsection, N stands for fixed
population. Therefore, from now on N = 1.

We consider same assumptions as in Kermack—McKendrick model. In order to fulfil the
constant population requirement, we let death rate be equal to birth rate, i.e., u =v > 0.
It can be easily seen that first two equations, again, do not depend on R. Therefore, the
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Figure 7: Scheme of the SIR model with vital dynamics.

third equation is omitable, thus obtaining following two-dimensional system of non-linear
autonomous equations:

S =pu—puS—pSI,

I'=BSI— (y+pl, (4.12)

with R(t) = 1 — S(¢t) — I(t). At first, we shall find the equilibrium points by solving
following set of equations

p—pS—pSI=0,

BST— (74 1) =0 (4.13)

we get

B = (1,0), l%:(7+MMW—v—u»

B Bly+u)
It is evident, that our system is valid only in the first quadrant. Let us now analyse
conditions for this requirement.

(i) Equilibrium point £} lies in the first quadrant by default means.

(ii) However, the second equilibrium point requires following condition to be satisfied

p=y—p=0
while .
1>1T8
p
However, in case F; = FEs a strict inequality is required

B

The first equilibrium, also referred to as disease free equilibrium (DFE), represents a
situation of no outbreak (or “pre-outbreak”) and exists every time, whereas the second
point, endemic equilibrium (EE) exists only if Ry > 1.

Remark 19. For “Hethcote’s model” the basic reproduction ratio is Ry = % and similarly,
as in SIR model, is derived from susceptible compartment.

The Jacobi matrix of the system has following form:

—B1 — —pS )

BI  BS—(v+n)
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The Jacobi matrix for the system evaluated in the disease free equilibrium E; becomes

J<El> = Df<170) = (_OHJ B_(_,f_i_u)) )
with
a=—tr(J(E)) = —2u—~v+p
and

b=det(J(EL)) = p(p+~ —B).

We are able to determine the eigenvalues A o

M=0—y =
/\2:—,u

and analyse the phase portraits by the eigenvalues of the system
(i) Let § —~ — > 0. The singular point in this case is saddle.
(ii) Let 8 —~ — p < 0. The singular point in this case is stable focus.
(iii) Let f —~ — p = 0. In this case the phase portrait is a stable line completely built
up by fixed equilibrium points.
The stability can be also easily verified with the help of characteristic polynomial

P(\) = det(J — AE) = A\? — tr(J)\ + det(J) = 0,

and for E; we get
N—(B=y =2+ (=B +7v+mn) =0

By using Routh—Hurwitz criterion from Thm we are able to determine whether or not
the system is asymptotically stable. For a system to be asymptotically stable, following
statements must hold true

a=—tr(J(E))=2u+~v—8>0 and b=det(J(E})) =pulp+~v—p3)>0.

Let us also remind that «, 8 and 7 are always positive and it can be verified that for
Ry < 1 the singular point is indeed asymptotically stable. However, we cannot tell for
Ry =1 by this method.

Similarly, as in E, we shall now analyse stability of the endemic equilibrium FEs. The
Jacobi matrix evaluated in F5 is

(1 tn u(ﬁ—v—u))_ e —a-p
J(EQ)_Df( B Bly+m) _<—5";1“M‘“2 0o )

with 5
_ ___Pp
0 = —u(I(m) =

and
det((J(E2)) = p(B — v — p).

Since we know that

1>m

p
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the determinant is always greater than zero. The eigenvalues are determined by

—ﬁ—“ui\/(a—%)télu(ﬂ—v—u)

Al = 5
By using the substitution
Gog 1tr G, HMBzy=)
B Bly+w)

the equilibrium point Es shall shift its position to the origin 0 = (0,0). The associated

linear equation has form
~ _BH A
S’ o —y+p\ (S
~ | = ~1. 4.15
( p) <ﬁli_—’y’luﬁﬁ 0 7 (4.15)

We are not able to determine whether the eigenvalues are positive or negative, therefore,
we shall analyse the determinant and trace. It can be easily seen that based on default non-
negative conditions of 3, and u the trace shall always be negative, thus the determinant
shall always be positive. The type of a phase portrait is determined with the help of Rem.
8l
(i) The condition det(J) > (tr(‘]) is satisfied if and only if 4(y+pu)?(8—~y—pn)—B%u < 0,
hence, Fj is stable focus.
2
(ii) The condition det(J) = % is satisfied if and only if 4(y+u)?(8—y—p)—B3%u = 0,
hence, FEj is stable degenerate focus with one eigenvector.
(iii) The condition det(J) < (tr(J) is satisfied if and only if 4(y+pu)?(B—y—u)—3%u > 0,
hence, Fj is stable focus Wlth two eigenvectors.
Since all of the equilibria are stable and attractive, based on Rem. [d] we can state their
asymptotic stability.
In conclusion, the singular point Ej is locally asymptotically stable whenever % > 1,
i.e., the velocity of spreading the disease has to be greater than the recovery rate and
“demographic movement” and, as stated in the introduction of this section, does not exist

for =2 +u < 1.

4.2 Fractional SIR Model

Similarly, as in Subsection 4.1, we shall analyse the SIR mode. However, this time we
shall assume a non-integer model with characteristics of fractional derivatives which bring
solely new parameter — order of the differential operator o and classical derivatives are
now substituted by Caputo ones. We shall limit ourselves to the case with identical order
of o for both equations.

Remark 20. We shall refer to fractional SIR model as “FSIR” in order to easily to distin-
guish among them.

In order to have both sides of the same dimension, which is (time)~®, the Hethcote’s
model has following form for the fractional case

“DasS = v — S — BeSI,
DI = ST — ~°T — I, (4.16)
“D*R =~"I — u*R.
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All considered parameters have same meaning as in Subsection 4.1 and the third equation
is redundant as well allowing us to similarly modify to

CDoaS:Iua_luas_ﬂaSI’

4.17
CDaIZBQSI—(’}/a—}—ILLa)[, ( )

with R(t) = 1 — S(t) — I(t). It can easily be seen that for  — 1~ the model becomes
the classical, already analysed, integer order model (for further details see [§]). By letting
the right-hand side equal to zero we obtain the same equilibrium points as in the classical
case

pe T By + )

After evaluation of these points by Jacobi matrix and then using same substitution as in
Subsection 4.1 for E; we have

C’Da§ _(_ﬂa _5@ ) §
°per) \ 0 pr—n—p*)\T)"

For F5 analogically

ad —Bpe A @ ral
CD § == o a'yatzz 2a 7 +M § (4 18)
cpef) T\ gm0 J\F) -

For both points, the eigenvalues are real, thus we analyse, as in classical case, their
non-negativity, see Rem. [I4 And according to Thm and Corr. the asymptotic
stability of the linearised system implies the asymptotic stability of the trivial solution

B0).

4.3 Influenza Epidemic in an English Boarding School

For our testing purposes we chose the data of influenza epidemic in an English boarding
school in 1978 [20] with artificially declared mortality coefficient p = 0.05 and above men-
tioned parameters with fixed values of 5 = 0.00218,v = 0.44 with the initial conditions
IC = [762,1] which yields % ~ —2 individuals per day i.e., the epidemic commenced
with one sick individual, with two more getting infected one day later. For our purposes

the observation is on time interval of three hundred sixty days.

Following figures show the S,I and R compartments depending on order «
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Figure 8: Susceptible and infected compartment, respectively.
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Both, susceptible and infected, “compartments” show that with decreasing order «
decreases curvature and “creaseness” of the function for both cases until it smooths out.
The recovered compartment does not change irregardless of order «, thus confirming
its redundancy. On our plots of the SI phase plane we can observe a transition from
stable focus equilibrium point to a stable node like one. Moreover, on the interval
a €< 0.99;0.92 > we observe self-intersecting trajectories which occur no longer from
the order o = 0.92 and less.
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5 Numerical Solution

In this Section we shall introduce a method applicable on wide range of equations due
to quite general assumptions. We shall focus on initial value problems with one Caputo
derivative not limiting ourselves to only autonomous equations, however, we shall consider
dimension n =1 and « € (0, 1), i.e.,

“Dy(x) = f(z, y(v)),

¥(0) = 4o 5:1)

on finite interval [0, 7], where T is an adequate positive number.

5.1 The Predictor-Corrector Method

With help of Lem3.13| we can state that solution of (5.1)) is equivalent to the Volterra
integral equation

1 r o1
mm=m+ﬁ@4u~ﬂ f(r,y(r))dr (5.2)

with a € (0, 1), meaning, that a continuous function is a solution of if and only if it
is a solution of (5.2).

Let us now recall the classical one-step Adams—Bashforth—Moulton for the first—order
equations. Assume an initial-value problem for the first—order differential equation

y(0) = v (5:3)

with such function f that a unique solution exists on some time interval [0,7"]. We shall
also assume a uniform grid {7, = nh:n =0,1,..., N} where N is an arbitrary integer and
h = % The core idea is, assuming having already calculated approximations y, ~ y(7;)
for (¢ = 1,2,...,n), obtaining the approximation y,(7,.1) by means of the following
equation

ymHﬂzme+/mHﬂmmwMu (5.4)

by integrating on the interval [7,,, T,41]. Since we know none of the expressions on
the right—hand side of precisely, we shall substitute y(7,,) by known approximation
yn(7,) instead. The integral is then replaced by trapezoidal quadrature formula thus
giving us the equation for the desired approximation as follows

() = () + o (g (7)) + s, (7)), 55
where y(7,) and y(7,.1 are replaced by their approximations y,(7,) and y,(7,11), re-
spectively. This provides us with with the implicit one-step Adams—Moulton method.
However, the unknown y,(7,,4+1) appears on both sides and due to nonlinear characteris-
tics of function f, we are, in general, unable to solve for y,(7,41) directly. Nevertheless,
we may use in iterative process by inputting an estimate approximation for y,(7,11)
in the right-hand side for determination of better approximation which could be used.

41



The estimate approximation is so-called predictor and is obtained similarly with only dif-
ference being replacing trapezoidal rule by rectangle one giving us the explicit or forward
Euler, or even one-step Adams—Bashforth method

Ui (Tn1) = Yn(7) + 1f (T, Y (7)) (5.6)

This process and

Yn(Tr1) = Yn(ma) + g[f(Tna (7)) + (T, U, (Tag1))], (5.7)

known as the one-step Adams—Bashforth-Moulton method is convergent of order 2, i.e.,

n:rlr,lze}.}f,N [9(70) = yn(70)| = O(R?).
This method is said to be of the PECE (Predict, Evaluate, Correct, Evaluate) kind
because, in our case we would, at first, calculate the predictor in equation ({5.6)), then
evaluate f(T,41, Yt (Tay1)), using this for corrector calculation in equation and at
last evaluating f (7,41, Yn(Tni1))-

At this point we have introduced the essentials of the classical method. Now, our
attempt shall be to carry over these ideas to the fractional problems. Our main focus
is to obtain an equation similar to . Such equation indeed exists, namely the ([5.2)),
however, with one difference being the lower bound of integration starting at zero, not
at 7, which is a consequence of non-local structure of the Caputo differential operator.
Nevertheless, this does not cause any serious problems in our generalisation of this method.
We shall simply approximate the integral [["*" (7,11 —u)* 'g(u)du by substitution of the
function g with linear interpolant with knots chosen at 7; (j = 0,1,...,n + 1) and we
shall use the product trapezoidal quadrature formula. In other words,

Tn+1 he n+l
o —w)* g(u)du . —— Gin ),
/o (Tnt1 ) g(u) ala+1) jz:; in19(75)

where
n®tt —(n —a)(n+1)%, if j=0,
Ajni1 =4 (M—7+2)*T +(n—5)" —2m—j7+1)*" if1<j<n, (5.8)
1, if j=n+1.

Now, we obtain the fractional variant of the one-step Adams-Moulton method, i.e.,
the corrector formula, which is

h® o n
F(n + 2)f(Tn+17 ylf(TnJrl)) + m JZ:; aj7n+1f<7'j, yh(Tj)), (59)

Yn(Tos1) = Yo +
where identity I'(ow + 1) = ol'(«) was used and the fact that a,41,41 = 1.

The remaining problem is to determine the predictor formula in order to evaluate
y? (T11). The idea of generalisation of the one-step Adams-Bashforth method is identical
to one described above for the Adams—Moulton one, we replace the integral on the right—
hand side of the equation by the product rectangle rule, where now

«

i = (01— )7 = (1= )%) (5.10)
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and, therefore, the final formula for the predictor is
1 n
Yp, (Tnt1) :yo+m;bj,n+1f(%yh(ﬂ))- (5.11)

The fractional Adams—Bashforth-Moulton method is now fully described by equations

(5.11) and (5.9) with weights a;,+1 and b;,+1 defined by (5.8) and (5.10]), respectively.

The error of this method is expected to behave as

A N\ = O(h?
max |y(7;) = yn(73)] = O(h"),
where
p=min{2, 1+ a}.

The reason for this specific form of the exponent p is that it may be proved that p must
be the minimum of the order of the corrector (2 in our case) and the predictor method
(1 in our case) plus the order of the differential operator. For the case a = 1, the p = 2
which is equivalent to the integer order method mentioned earlier.

Our description of the method can be easily expanded to the higher dimensions, i.e.,
n > 2, by replacing y € R by the vector y € R" and instead of functions the vector
functions are considered.
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6 Summary

In this thesis we studied properties of autonomous systems, which are specific class of
dynamical ones. Our goal was to point out several differences between the classical, i.e.,
first order systems and systems of fractional order between zero and one.

At the beginning we recalled some necessary definitions and theorems from the field
of classical calculus. Here, we also mentioned techniques used for stability analysis of
non-linear systems such as Routh—Hurwitz criterion, linearisation theorem and Lyapunov
theorem.

Then, in Section 3, we preliminarily recalled some higher functions and techniques
from classical calculus in order to introduce some standard approaches to the definition
of fractional derivatives and integrals, namely, the Riemann—Liouville and the Caputo
approach. This introduction was then followed by similar description of fractional au-
tonomous systems and their stability. First of all, it is important to point out that in case
of fractional system no situation as periodic solution can occur, however, there are studies
of existence of asymptotic periodic solutions. Lastly, such phenomenon as self-intersecting
trajectories, namely, cusps and multiple points, may occur.

For verification of our theoretical results, the epidemiological SIR model with vital
dynamics, also referred to as Hethcote’s model, was chosen. In this thesis we focused on
its local stability which was determined with help of linearisation theorem, Routh—Hurwitz
criterion, eigenvalues of characteristic equation of the system and, for the fractional case,
the key factor of order «.

The analysis confirmed our expectation for fractional case that the stability remained.
However, it turns out that a type transition of endemic equilibrium occurs, from stable fo-
cus to stable node, to be precise, and even a self-intersecting phenomenon can be observed
on the interval a €< 0.99;0.93 >.

This work could be considered as rudimentary for further studies of epidemiological
models, e.g., global stability of the SIR model and fractional dynamical systems, not
necessarily autonomous ones.
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Appendix

'THETHCOTE'S'' FRACTIONAL SIR MODEL
input (parameters of the system)
ATA: Influenza Epidemic in an English Boarding School

oe o

o° o° oP° oe

= O

, 1978
INK: https://www.math.unm.edu/—sulsky/mathcamp/ApplyData.pdf

N=763; % number of individuals in a population
beta=0.00218; % proportionality for the disease transmission rate
gam=0.44; % rate of recovery from the disease

mu=0.05; % mortality coeffcient

alpha=1; % order of Caputo derivative

o\

output (SIR vector of the state variables)
(t) - number of susceptibles at the time t
(t) - number of infectives at the time t
(t

o° o° o oe

) — number of recovered individuals at the time t

%% numerical solution data

t0=0; % initial time

T=360; % final time

h=0.001; % time step

IC=[762;1]; % initial conditions vector

fde = @ (t,y) [-beta*xy (1) *y (2)+mu* (N-y (1)) ; betaxy(l)*y(2)-(gam+tmu) xy (2)];

%% Fractional PECE method by R. Garrappa (fdel2)
[t,SI]=fdel2 (alpha, fde,t0,T, IC,h);

% plotting results

PHASE PORTRAIT

.

o
o
o
°

plot(SI(l,:),SI(2,:), '-'", 'color', 'black")

legend('alpha=1"', 'alpha=0.99"', 'alpha=0.9"', '"alpha=0.7"', 'alpha=0.5", "alpha=0.3")
hold on

grid on

set (gca, 'FontName', 'Times New Roman')
xlabel ('S', '"FontName', 'Times New

Roman', 'FontAngle', '"italic', '"fontsize',12);
yvlabel ('I', 'FontName', 'Times New

Roman', 'FontAngle', 'italic', "fontsize',12);
set (get (gca, 'ylabel'"), 'rotation', 0)
hold off

m=size (SI,2);
NN=N=*ones (1,m);
R=NN-SI (1, :)-SI(2,:);
% SIR figure
plot(t,SI(1,:),t,SI(2,:),t,R)
legend('S','I','R', 'Location', 'northeast', 'Orientation’
grid on
set (gca, 'FontName', 'Times New Roman')
xlabel ('t', '"FontName', 'Times New

Roman', 'FontAngle', '"italic', 'fontsize',12);
ylabel ('SIR', 'FontAngle', 'italic','fontsize',12)
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