
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

INFORMACNI SYSTEM PRO SPRAVU LICENCI
SOFTWARE
INFORMATION S Y S T E M FOR S O F T W A R E L I C E N S E S

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE TOMÁŠ ROHOVSKÝ
A U T H O R

VEDOUCÍ PRÁCE prof. Ing. TOMÁŠ HRUŠKA, CSc.
S U P E R V I S O R

BRNO 2011

Abstrakt
Tato p r á c e se z a b ý v á v y t v o ř e n í m in fo rmačn ího s y s t é m u pro s p r á v u sof twarových licencí.
Tento s y s t é m je v y t v o ř e n v jazyce P H P s p o u ž i t í m Nette Frameworku. Arch i tek tu ra sys­
t é m u je za ložená na n á v r h o v é m vzoru M V P , k t e r ý zajišťuje snadnou modifikaci a rozšiř i tel­
nost současného řešení .

P r á c e t a k é p o j e d n á v á o technologi í l icencování softwaru. K o n k r é t n ě je z a m ě ř e n a na l i ­
cence typu L M - X . Je zde p o p s á n o , jak tyto licence v y p a d a j í a j a k é existuje současné řešení
pro jejich sp rávu . A n a l ý z a tohoto řešení byla z á k l a d e m pro n á v r h tohoto sys t ému .

S y s t é m podporuje uchování a s p r á v u ob j ednávek a licencí, v y t v á ř e n í p ředdef inovaných
šab lon pro v y t v á ř e n í licencí, generován í X M L vstupu pro l icenční g en e rá to r a u k l á d á n í
s a m o t n ý c h l icenčních s o u b o r ů .

Abstract
This project deals w i th the creation of an information system for the managing of soft­
ware licenses. This system is developed i n P H P , using the Nette Framework. The system
architecture is buil t on the M V P design pattern, which ensures easy modification and ex­
tensibil i ty of the current solution.

The paper also deals w i th software licensing technology. Specifically, it focuses on the
L M - X license. It describes these licenses and the solution for their management. Analys is
of this solution was the basis for the design of this system.

The system supports the storage and management of orders and licenses, creation of pre­
defined templates for creating of the licenses, generation of the X M L input for license
generator, and the storage of license files.

Klíčová slova
l icencování software, licence, L M - X , administrace, P H P , Nette Framework, M V P

Keywords
software licensing, license, L M - X , administrat ion, P H P , Nette Framework, M V P

Citace
T o m á š Rohovský : Information System for Software Licenses, b a k a l á ř s k á p ráce , Brno , F I T
V U T v B r n ě , 2011

Information System for Software Licenses

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana prof.
T o m á š e Hrušky .

T o m á š R o h o v s k ý
M a y 25, 2011

Poděkování
C h t ě l bych p o d ě k o v a t m é m u vedouc ímu p r á c e panu prof. Tomášov i Hruškovi . Dá le K a r l o v i
Masař íkovi , Zdeňkovi P ř ik ry lov i a Radkov i Burgetovi za jejich odbornou pomoc. V nepos ledn í
ř a d e t a k é Marcusovi a Rona ldovi za jejich korektury.

© T o m á š Rohovský , 2011.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

1.1 Structure of the Document 3

2 Goals of the project 4

3 Analysis 5

3.1 L M - X 5
3.1.1 License file 6
3.1.2 License template file 7

3.2 X - F o r m a t i o n License Dis t r ibu t ion Service 8
3.2.1 User 8
3.2.2 Product 9
3.2.3 Customer 9
3.2.4 Order 10

3.3 Justif ication for further applicat ion 11
4 Design 12

4.1 Database structure 12
4.2 License history 14

4.2.1 Copy of tree 14
4.2.2 Copy of record 15

4.3 D a t a presentation 16
4.4 System logic 17

4.4.1 Adminis t ra tor 17
4.4.2 Customer 17

5 Implementation 19
5.1 Technologies 19
5.2 Nette Framework 20

5.2.1 M V P 20
5.3 Generally about models 22
5.4 Specific models 24

5.4.1 Order Manager 24
5.4.2 License Manager 24
5.4.3 Managers representing license properties 24

5.5 Views 25
5.6 Presenters 26

5.6.1 Get t ing of models 27

1

5.6.2 Act ions
5.6.3 D a t a l is t ing
5.6.4 Forms
5.6.5 Download of file

Deploying of the application

Conclusion
7.1 Future extensions
7.2 Personal benefit

Chapter 1

Introduction

Nowadays, software is needed to protect against unauthorized use, which i n the case of
commercial applications, could mean financial losses. For this purpose, there are software
licenses, which are legal instruments that allows the use or redistr ibution of the software,
which is protected by law.

Since the legal protection is no longer sufficient, it is necessary to use techniques that
help prevent unauthorized use of our applications. Such a technique is protection by the
license files.

Since applications are commonly used by several users, it is thus necessary to create
mult iple license files. Th is is where our problem arises: the management and storage of the
license files. Th is problem is solved by the output of this project as an information system
that w i l l allow it.

This project is prepared i n collaboration wi th a research group - Lissom, which works
at the Department of Information Systems, Facul ty of Information Technology at B r n o
Univers i ty of Technology. The group is dealing wi th the development of environment for
design of App l i ca t i on Specific Instruction-set Processors (A S I P) or a Mult iprocessor System
on C h i p (M P S o C) []. The software is produced by Lissom, and sold by Codas ip company.
Information system for licensing is determined by the latter.

1.1 Structure of the Document

In Chapter 2 we set the goals of the project. There are described functionalities, which w i l l
be provided to users of this system.

In Chapter 3 performs analyses of licenses that are used for product licensing. A n
available solution is also discussed and analyzed. A t the end of this Chapter , this report
w i l l justify the creation of a new solution.

The knowledge gained by analysis is used to create the system design, as described in
Chapter 4.

In Chapter 5 describes the implementat ion of the created solution. Also mentioned are
technologies used and important parts of implementation.

The output of this project is the information system, namely server applicat ion. It is
elaborated in Chapter 6, of how the applicat ion is to be deployed on the server.

In Chapter 7 are discussed reached results, as well as future extensions of this project.

3

Chapter 2

Goals of the project

Generally the goal is to create an information system for license administrat ion. Specifically,
it w i l l be a module for an existing information system on h t tp : / /www.codas ip .eu / , which
w i l l provide an interface for vendors and, i n the near future, also for customers to negotiate
software licenses.

The system for administrat ion of licenses can be complicated since it can contain many
functionalities. A good example of such a complex system is the X - F o r m a t i o n system
License Dis t r ibu t ion Service 3.2. The a im of this project is not to create a solution of this
type. The a im is to create a solution that w i l l meet the part icular needs of the company
Codasip.

However, it w i l l not meet a l l of Codasip 's requirements; it w i l l instead be the foundation
for an application that w i l l be extended over t ime. It is therefore important that this project
focuses on scalabili ty and reusability.

Functionalit ies that are crucial for the system and thus must be implemented are as
listed:

• storing and managing of orders for licenses,

• storing and managing of licenses,

• creation of licenses from predefined templates,

• generation of license templates for the generation of licenses.

Other functions which should be included and supported by the system are as listed:

• storing of license history,

• customer interface for creating orders and retrieving licenses.

In the best of scenarios the module created should be independent and achieve modu­
larity, such that it can be easily used in another system.

4

http://www.codasip.eu/

Chapter 3

Analysis

3.1 L M - X

There are three ways to license software:

• T r i a l - no license file is required

• Standalone (node-locked) - a license file is installed on, and often locked to, an indi­
v idua l machine

• Network (floating) - a license server is deployed at site and a license file is installed
on that license server

Products of Codasip are licensed by L M - X licenses [9]. L M - X consists of a client library,
which is embedded in the licensed application and a license generator for creating license
files. A license file contains text that defines the license agreement between customer and
vendor. For example, the license defines whether the applicat ion is node-locked or floating,
whether it can run on any computer or only on a specific one, whether the license w i l l
expire on a specific date, and so on.

Figure 3.1 describes how the node-locked license works. Cl ient checks for a license is
stored on the user's machine and thereafter, the user can use the application.

License file

Figure 3.1: Node-locked licensing

5

The principle behind floating licensing is shown on figure 3.2. It is a client-server
architecture based on T C P / I P protocol. The client w i l l check for a val id license file stored
on the license server before granting permission to run the application. Per iodic heartbeats
occur between the license server and protected applications.

License file

Figure 3.2: F loa t ing licensing

3.1.1 L icense file

The license file is a simple text file, usually w i th extension l i e . It contains features described
in section 3.1.2. Each feature i n a license has its own key, where a l l security information is
encrypted.

The license is generated by the license generator, as is shown on figure 3.3. The license
generator program is called xmll icgen. The input of the generator is the license template.

License File

Figure 3.3: License generation

The features' keys are generated along wi th the license file. The key contains, for
example, hostids that are feature locked and cannot be shown to the user.

W i t h regards to this project it is especially important to understand how license tem­
plates look like, since its creation and its storing are some of the functionalities of the
system.

6

3.1.2 L icense t empla te file

The license template is an XML file. It consists of a LICENSEFILE tag which can optional ly
contain attributes CONFIGFILE, OUTPUTFILE and COMMENT. The first is for the configuration
of the license generator, the second for the name of the output file and the th i rd for a
comment.

The LICENSEFILE tag encloses one or more FEATURE tags. The features can correspond
to specific modules or features of the licensed product. E a c h F E A T U R E tag consists of
a number of SETTING tags that specify the ind iv idua l attributes for the feature. Settings
are different for node-locked and for floating licenses, but some of them are common, such
as END specifying of expirat ion date, MAJOR-VERSION and MINOR-VERSION for restriction of
the feature version and so on. For example, setting COUNT is only for floating licenses. It
specifies the number of licenses that can be issued simultaneously for the part icular feature
floating on the network. A complete list of the features is in [10].

The FEATURE tag can also contain one or more CLIENT_H0STID or SERVER_H0STID tags,
which lock the license to either a client machine or a license server host, respectively. For
each machine, you can lock the feature to mult iple items (ethernet hostid, IP address, etc.).
The license template can, for example, look like following:

<LICENSEFILE CONFIGFILE="myconfig.lmx" 0UTPUTFILE="license.lic">
<LICENSEFILE C0MMENT="comment of license template"/>

<FEATURE NAME= "f2">
<SETTING START="2011-05-08"/>
<SETTING END="2012-05-08"/>
<CLIENT_H0STID>

<SETTING ETHERNET="CAFEBABEO1ABC9E5"/>
</CLIENT_H0STID>
<CLIENT_H0STID>

<SETTING CUST0M="CAFEBABEO1ABC9E5"/>
</CLIENT_H0STID>

</FEATURE>
<FEATURE NAME= "fl">

<SETTING END="2020-01-01"/>
<SETTING MAJ0R_VERSI0N="l"/>
<SETTING MIN0R_VERSI0N="5"/>
<SERVER_H0STID>

<SETTING ETHERNET="C8A414C201A666DD"/>
<SETTING CUST0M="C8A414C201A666DD"/>

</SERVER_H0STID>
</FEATURE>

</LICENSEFILE>

7

3.2 X-Formation License Distribution Service

License Dis t r ibu t ion Service, or L D S , is a system for license fulfillment. It is a S O A P
(Simple Object Access Protocol) web service [8]. It provides many functions, as follow:

• e l iminat ing of wait ing for receiving customer's host id for licenses,

• enabling bulk license activations,

• interaction wi th resellers throughout the world,

• allowing users to reclaim lost licenses,

• reducing the t ime required to obtain license keys,

• and many more.

License Dis t r ibu t ion Service can be run only i n Windows-based systems and requires M i ­
crosoft S Q L Server 2005 or 2008 and Microsoft S Q L Server Management Studio Express.
The L D S can be implemented to company information systems, or be run on the server,
where it w i l l manage everything by G U I application X - F o r m a t i o n License Service A d m i n ­
istration. In this chapter we w i l l discuss L D S on G U I application shown i n figure 3.4.

The structure of the License Dis t r ibu t ion Service is based on a tree hierarchy of Enti t ies .
Enti t ies can represent countries, regions, companies, departments, etc. The semantics can
be decided by the user. A t the top of the tree is the root Ent i ty . E a c h E n t i t y can contain
other Enti t ies . Users in the tree have access to objects in their sub-tree. The exception is
the products, which can be situated just under the root Ent i ty . A l l Users have access to
them.

There are four types of objects that can be stored for each Ent i ty , as described in
following table:

Object Description
Products
Customers
Orders
Users

Products offered to Customers
Customers for which licenses are generated
Orders of licenses for products
Users of license dis t r ibut ion system

Table 3.1: Table of L D S objects

The system provides adding of Enti t ies , Users, Products , Customers and Orders. W i t h
the exception of the root Ent i ty , it is possible to remove al l objects and Enti t ies . However,
this has to be done wi th regard to dependence. Moreover the G U I applicat ion provides
searching in fields of Enti t ies or objects, and filtering by object type.

For a clearer picture, the database schema of system is shown i n figure 3.5. In Customers,
Orders and Products you can see attributes called Da ta . Those are X M L attributes, because
they are used i n S O A P messages during communicat ion wi th the server.

3.2.1 U s e r

User properties include name, entity, user type and permissions. It is possible to enable or
disable User. User has access to objects i n his sub tree.

8

Product - X-Formation License Service Administration H U H
Show All

B if". Default
admin

j f l EU Rreseller
Ů-iíi u s Reseller

Cansas
^ US admin

d j Cansas City
Cansas Customer

No orders
é - f l John Smith

3 9GCG4-89NJV-AC3XE-LXW5
^ 9YUUB-46UJV-VT9T4-FJCAB

Kg E9HDL-4X932-7TLBG-WN3YH
Q Mike Offield

••g 8UCK8-L3SBH-3N99L-1H7CG
_ Í X A C T D E H S R 9-KR D E S -R G P3J

•C^ FLEX product

Custom
Properties

Name Value

ABC EFG

Import... Export..

- Upload License Generator-

License Generator Path

Browse...

LM-X Security Configuration File

Browse...

Upload

- Order Templates-

Flagship license
Some template

A d d . Delete Edit..

Fetched 5 entities, 3 customers, 2 products and 2 users

Figure 3.4: License Service Admin i s t r a t ion

3.2.2 P r o d u c t

The following items can be set: name, description, comment, custom properties, license
generator type, license generator and Order template. W h a t is interesting on Product is
the setting of the license generator, which w i l l be used for the generation of license file.
Th is setting contains the definition of the generator path. It is possible for one to choose
between L M - X , F l e x and custom generator. In the case of the L M - X generator, it contains
also the definition of the configuration file path.

To expedite the operation, the user can create an Order template. Us ing templates,
one can set up Orders associated wi th part icular Customers and Products to automatical ly
include certain features. These features include: activation start time, activation end time,
number of licenses that can be generated for order, name, description, custom properties,
list of hostid lists and feature list.

3.2.3 C u s t o m e r

The properties of Customer include name, company, department, email , job tit le, entity,
custom properties and comment. A l t h o u g h only the name is required, it is very useful to

9

Entities
9 Entityld

Name

Parentld

Customers
^ Customerld

Entityld

Data

^3=

Users
Userld

Username

Password

Entityld

LSRights

Orders
9 Orderld

CustomerOrderld

Entityld

Customerld

Productld

Data

LicenseList

Prüducts
9 Productld

Data

Entityld

Figure 3.5: License Dis t r ibu t ion Service database schema

provide one's email , because it can be used for sending Order by email .

3.2.4 O r d e r

Y o u can create empty Order or Order from a pre-defined template. The parameters are
Order Id (automatically generated), entity, customer, product, act ivat ion start t ime, acti­
vat ion end time, license count, description, custom properties and features. A n Order can
be i n the default inactivated state, i.e. without an attached license. It can also be i n an
activated state, where one or more licenses have been attached.

If the customer's email is specified, an Order can be sent v ia email message. One can
also manage licenses. Th is means one can generate new licenses, provided that one has
already defined the generator i n Product . One can also view license hostids, view license
text and delete or clear license.

Clear ing a license removes only the license text and clears the act ivat ion date instead
of deleting the entire license. Hostids remain the same.

If i n the Order it is defined that the license is locked to some hostids, these hostids have
to be filled before the license is generated. Typ ica l ly the Order has a l l host id values set to
empty. It is interesting to note that hostids are not locked to the feature, but are locked
directly to the license. Accord ing to the L M - X specification, the hostids are related to each
feature [9].

10

3.3 Justification for further application

A s wri t ten i n section 3.2 there are existing solutions. Here a question arises: why do we
not use this existing solution? It provides almost a l l functionalities which we require, and
also much more than that.

A t first glance the followingt appears to be the simplest solution. Deploy a web service
to the server and manage everything wi th G U I . A l though this sounds simple, the G U I
application is not completely suitable. For example, it lacks the showing of a l l licenses and
filtering according to some criteria. It is also not possible to store license history and other
required functionalities. In short, the G U I is unsatisfactory.

Other solution, something more complicated, w i l l be the implementat ion of License
Dis t r ibu t ion Service A P I to our system which thereafter allows us to adapt everything to
our needs. This option seems like the solution to our problems. However, this is not true.

The main reasons for not doing so, and also why this project exists, are that this software
requires payment, and that the t ime for use is l imi ted . Moreover, w i th respect to our case,
the l imi t of the number of managed licenses stands at only 100. Another important reason
for not using the X - F o r m a t i o n solution is that it requires Microsoft products, and that it
is expensive. Nonetheless, the analysis of the X - F o r m a t i o n solution was useful, because its
architecture and principles w i l l be the inspirat ion for the design of our new solution.

11

Chapter 4

Design

4.1 Database structure

The database schema was designed based on the analysis of the template license format
carried out i n section 3.1 and the analysis of L D S carried out i n section 3.2. The database
schema can be seen i n figure 4.1.

The hierarchy concept of users and customers through the use of entities, which is used
in the L D S , is very convenient. There is v is ib i l i ty of objects located i n the subtree of user,
and a logical segmentation of objects i n the system. Therefore, this concept is used in our
module.

The table users from the existing system was used i n the new module. The only
difference is that it is a subordinate table to the table entities. In our system, unlike the
L D S , there is no separate table containing the customers. Customers and users are kept
together i n the table users. They are distinguished by the roles. User roles are already in
the system database structure and therefore are not shown i n the diagram.

The table product is also a subordinate table to the table entities. Since the products
are always subordinated only to the root entity, this relationship may seem unnecessary. It
was included to prepare the system for the event that products be offered, i n the future,
only i n the part icular subtree (for example, region). Another reason was that it is possible
to s imply display the tree w i t h the hierarchy of objects in the system.

One of the requirements for the system was to provide for the creation of licenses by
the predefined templates. Therefore the table templates were created. It is a subordinate
table to the table product, because templates are related to products.

Next is the most crucial por t ion of the project. In the database schema are tables orders
and licenses. Except for a few differences, these tables are the same. Table orders represent
the orders. E a c h order can contain mult iple licenses, which are items in the table licenses.
Table licenses contains, among other things, columns xml_f i l e and license_f i l e . The
first is for the content of the generated license template file, while the second is for the
content of the license file. Besides that, the license template is stored as text in X M L
format, and is also stored in the database. It is like that because it is easily editable since
there is no need to access the X M L file.

Another solution, other than storing license template files and license files i n the database,
is storing it on the server's disk. Th is is useful when we want to store large files. These
files are usually not too large. It was therefore decided that they be saved to the database.
Moreover, we achieved by that centralization of storage.

In the database schema there are also tables features, ho s t i d _ l i s t s and hostid.

12

n a m e V A R C H A R [6 4)

./ e n t i t y j d I N T

i d l N T (l l)

e m a i l V A R C H A R (6 4)

n a m e V A R C H A R (6 4)

-> a f f i l i a t i on TEXT

ii p a s s w o r d V A R C H A R (6 4)

s t a t u s V A R C M A R (8)

u p d a t e s T T N Y I N T [4)

h a s h V A R C H A R (4 0)

r e g i s t e r e d T I M E S T A M P

v e r i f i e d T I M E S T A M P

e u l a T I M E S T A M P

j e n t i t y J d I N T

» •

products •
i d I N T

n a m e V A R C H A R (6 4)

v e r s i o n F L O A T

d e s c r i p t i o n T E X T

^ e n t i t y j d I N T
- —

~Z\ features

— 1 <

— K

_J I tens
id INT
c o m m e n t V A R O H A R (2 5 6)

c o n f i g f l l e V A R C H A R (6 4)

o u t p u t f i l e V A R C H A R (6 4)

l i c e n s e _ c o m m e n t V A R C H A R (2 5 6)

x m l J i l e T E X T

x m l _ f l l e n a - n e V A R C H A R [6 4)

l i c e n s e j l e T E X T

© l i c e n s e j i l e n a m e Y A R C H A R (6 4)

up l oad_date T I M E S T A M P

l icense_uploaded_by I N T

c r e a f o n _ d a t E T I M E S T A M P

, c r e a t e d _ b y I N T

/ o r d e r j d I N T

_J orders
id INT

c o m m e n t V A R O H A R (2 5 6)

c o n f i g f l l e V A R C H A R (6 4)

o u t p u t f i l e V A R C H A R [6 4)

l i c e n s e _ c o m m e n t V A R C H A R (2 5 6)

c r e a l i o n _ d a t e T I M E S T A M P

) u s e r j d INT

- t e m p l a t e j d INT

,= p r o d u c t j d I N T

I c r e a t e d _ b y I N T

H - - 0 -

-C3-

• templates •
id INT

. n a m e V A R C H A R (6 4)

d e s c r i p t i o n T E X T

p r o d u c t j d I N T

HO 1<

1<

r "

- 4 -

— K

•40 1

_l hosbds
I i d I N T

j t y p e E N U M [„ .)

v i u e V A R C H A R [6 4)

I h o s t j d j i s t j d I N T

>-

I hosrJd lists
—

i d I N T

- t y p e E N U M („ ,)

j f e a t u r e J d I N T

H Ih

i d I N T

. n a m e V A R C H A R (6 4)

m a j o r _ v e r s i o n S M A L L I N T

0 m i n o r _ v e r s i o n S M A L L I N T

l i c e n s e e V A R C H A R C 6 4)

s t z r t D A T E

e n d D A T E

m a i n t e n a n c e _ s t a r t D A T E

m a i n t e n a n c e _ e n d D A T E

i s s u e d D A T E

d a t a T E X T

c o m m e n t T E X T

o p t i o n s T E X T

k e y c o m m e n t T E X T

p l a t f o r m s T E X T

t i m e _ z o n e s T I N Y I N T

c o u n t V A R C H A R (1 6)

token_dependency T E X T

g k e y t y p e V A R C H A R (1 6)

; s n TEXT

s o f t l i m i t T I N Y I N T

h a l _ s e r v e r s T T N Y I N T

> b o r r o w S M A L L INT

g r a c e S M A L L I N T

3 h o l d S M A L L I N T

u s e r b a s e d V A R C H A R [1 6)

h o s t b a s e d V A R 0 H A R [1 6)

s h a r e V A R C H A R C 1 6)

s y s t e m d o c k c h e c k B O O L

h o s t d j n a t c h _ r a t e T I N Y I N T

o r d e r j d I N T

. t e m p l a t e j d I N T

l i c e n s e j d I N T

Figure 4.1: Design of database schema

They are nothing more than transformations of the X M L structure of the L M - X templates
for license generating to database schema. Since there are two types of licenses, server and
local , there was in i t ia l ly some consideration about distinguishing the two on the database
level. Wi thou t such distinctions, the user has to deal w i th a large number of settings.
However, this is not the main reason for distinguishing the licenses on the database level,
because it can be done w i t h well-defined templates that allows the user to bypass the setting
of features. Th i s consideration, however, was determined to be false for another reason. It
would prevent, for example, a simple change of a node-locked license to the floating license,
and vice versa.

13

4.2 License history

A s one of the requirements for functionality is storing of the history of licenses, it is necessary
to consider how to implement i t . A l t h o u g h implementat ion of this functionality is not
necessary for this project, but it would be design how to solve that. In the event of
manipulat ion of the data composed the license, the history of licenses should be preserved.
Man ipu la t ing means adding, edit ing or deletion of data.

The licenses are stored i n the table licenses. The i r parts are stored in features,
ho s t i c L l i s t s and hostid table. Therefore the license consists of a tree of records.

If the record in the table licenses is manipulated, it has no impact for form of the
license file. At t r ibutes that have impact for form of license template file or license file,
are the configuration file, output file and commentary. The first two are not passed to
the output license file and the th i rd is used just for comment i n the license file, whose
presence i n the license file is irrelevant. Therefore, when is manipulated wi th record of
table licenses, the history of the license does not has to be preserved.

In the following two subsections, ways on how to solve history of the licenses are pre­
sented.

4.2.1 C o p y of tree

W h e n manipula t ing the records from one of the tables from features, h o s t i c L l i s t or
hostids, the original records have to be preserved. The solution can be complete copy of
the records forming the license. The original license would be a parent of the new license
(ie, copied).

For example, i f the action for deleting of hostid is triggered, the host id is not actually
deleted, but that creates a copy of the entire tree wi th the exception of record of the hostid.
Record of when it was manipulated wi th the license, would be stored as the date of creation
of the license. In essence, it goes about the creation date of the license.

The scheme of the corresponding database tables w i th the necessary data to support the
license history is shown i n figure 4.2. The data of which database w i l l have to be included
for support ing the history, is identifier of subsidiary license child. We can afford to use
child, because it is not a classic tree structure, and element has only one chi ld.

It is possible to reverse a semantic. So that table licenses would include an identifier
of the parental license, i.e. parent attribute. In this case, it would be difficult to determine
whether a record represents the history or current license. A p a r t from keeping chi ld , where
we s imply dist inguishing the history and current licenses by that the c h i l d is empty.

In addit ion, the table contains the creation.date, which handles the date wi th when
the license was manipulated.

i d I N T

c r e a 1 i o n _ d a t e T I M E E T A M P

h i s t o r y B O O L

3 p a r e n t I N T

3D features
i d I N T

' l i c e n s e id INT - i d l N T

f e a t u r e j d INT
41 1 <

_J hostids •
i d I N T

t h o s t i d l i s t id INT

Figure 4.2: Database schema of license w i t h history implemented by copying of tree

14

Since not a l l databases support s imply queries over the tree hierarchies (used M y S Q L
is one of them [4]), it would be good to optimize it by the string attr ibute which would
contain a consecution of license history. For example, identifiers of licenses are divided by
a mark.

Another solution to the problem of the lack of support of tree based queries would
be to use inverted semantic of hierarchy - parent record as the attr ibute parent. New
version of the license would contain as the attr ibute identifier of the first occurrence of the
license. W h i c h would remove the tree and the hierarchy would be constructed on the date
of creation. In such a case, it would be also for easy recognition whether the record is for
history, and to introduce boolean attr ibute history.

4.2.2 C o p y of r e c o r d

The disadvantage of this solution is the copying of the entire tree of records - a relatively
large amount of duplicate data. Solut ion of this problem would be to only create a copy of
a part icular record, which is to be handled.

The database structure would look like what is shown i n figure 4.3. Here, history is
kept i n the ind iv idua l tables features, h o s t i c L l i s t s and hostids. A s the tables are very
similar to licenses table from the solution, which is based on the copying of the entire
tree structure. It includes an attr ibute child. Unl ike copies of the tree solution, tables
have to include deletion.date attribute, which indicates when the record was deleted.
Selection of records from records for obtaining the current form of license, would be pro­
cessed by selecting a l l the elements that do not have attribute c h i l d and not set attribute
creation.date.

]̂ licenses
i d I N T

c r e a 1 i o n _ d a t e D A T E T I M E

HI features J hcsUdJists
i d I N T

1
i d I N T HI 1

c r e a 1 i o n _ d a t e D A T E T I M E 1 creat ion_datE D A T E T I M E 1
d e l e t i o n _ d f l t e D A T E T I M E - H - j - K d e l e t i o n _ d a t e D A T E T I M E HO-1,

O ch i l d I N T 1 0 ch i ld I N T 1
j l i c e n s e j d I N T HO-I •> f e a t u r e j d I N T -H-J

•

• hosöds
i d I N T

c r e a t i o n _ d a t e D A T E T I M E

d e l e t i o n _ d a t e D A T E T I M E

J ch i l d I N T

i h o s t i d j i s t j d INT

HO-n

Indexes

Figure 4.3: Database schema of license w i t h history implemented by copying of record

We w i l l demonstrate the principle on the same example - deletion of the hostid. If the
action is invoked to delete the record hostid, it is not actually deleted, but only set the
record deletion date of record. Alternat ively, it may even set a chi ld of the element to itself,
in order to simplify the selection of co current state of license.

Delet ion is not the best demonstration of functionality in this case. It is better to
demonstrate the principle by edit ing the list of hostid. If the list of hostid is edited, a copy
is created and the attr ibute c h i l d is set to the value of chi ld identifier of the new record.
It is important that the elements associated wi th the original record w i l l be updated -
assigned to the new record.

This preservation of licenses' history is better in terms of memory consumption, as it is
now less tedious than copying the entire tree structure. However, this is at the cost of t ime,
as there w i l l be more queries for the obtaining of history. These queries w i l l be also more
complicated. This second way of storing history is more suitable for this project, because
browsing of the history is rare.

15

B o t h designs can keep information of when the license was modified, what was modified
and how it was modified. However, it would be better to add who modified the records of
the tables.

4.3 Data presentation

Access to data in the L D S is mediated through a tree of objects. This approach is quite
useful for the user to have an overview of the hierarchy of objects. However, it is not
suitable i f many objects are contained i n the system. Furthermore, this approach does not
allow for bulk actions wi th the objects, which is a big flaw especially i n the case of the
licenses. Th is approach is suitable only to a certain extent and therefore its presence can
be considered secondary.

A s the pr imary approach, the following was designed: show a list of a l l items and allow
to restrict the list by using of the filters. The consequence of this approach is the abil i ty to
process data i n bulk. For example, it is very important for the administrat ion of licenses,
whether they delete them, blacklist ing, etc.

16

4.4 System logic

The module w i l l use two types of users, so i n other words, it should contain two roles. The
first is an administrator and the other is a customer. The system on which this module
is bui l t supports d iv id ing user roles, and future plans are to divide the functionality of
the system to more than one role, par t icular ly wi th regard to user administrat ion. A s an
example, the role of an administrator who has assigned rights, w i l l only process orders
and generate the licenses for them, and so on. Generally, in design we w i l l keep the basic
dist inct ion between the customer and the administrator.

4.4.1 A d m i n i s t r a t o r

A s a result of the design of the database schema and how present data was created, a use case
diagram for administrat ion part shown in 4.4. The use case diagram contains functionalities
related to the objects, which are based on the corresponding database tables. These objects
are Enti t ies, Products , Users, Orders and Licences.

It may seem that there are no other objects contained based on database tables. How­
ever, these objects are not included, but transactions over them are hidden i n the part icular
use cases of the object. So when we speak about product object, we speak about more ta­
bles than just product table. The main functionality is contained i n edit ing and addit ion.
W o r t h mentioning is that editing is not just for editing, but also for showing of object's
properties.

O n the left side from administrator are functionalities, of which is the system is based.
These are actions w i t h entities, orders and users. O n the right side are the core func­
tionalities, which are core for license administrat ion. These are actions wi th orders and
licenses.

A d d i t i o n (or creation) of license is shown as a separate action. In fact it w i l l be sub-
action of editing of orders, since licenses w i l l be created from the orders. However for its
importance, it was shown as a separate action. Hostids assigned to order can be empty, but
in licenses, they have to be filled. W h e n creating a license from the order, the administrator
is prompted to fill up the hostids.

Other action related to the license is the downloading of X M L file, for generation of
the license file. W h e n the administrator generates a license file, he can upload it to the
appropriate license. Last action of license is the showing of license history.

A final note worth taking of, is the action is showing the tree structure of objects, but
as was wri t ten i n section 4.3 it is just secondary functionality.

4.4.2 C u s t o m e r

The customer has access to actions wi th objects. However, as compared to the admin­
istrator, these actions are greatly reduced. The most important functionality provided
includes downloading a file that is uploaded. There is also a need to pause over the fact
that it is appropriate to inform the customer to upload the license file, for example, through
automatical ly generated email .

17

Figure 4.4: Use case diagram of administrator

Figure 4.5: Use case diagram of user

18

Chapter 5

Implementation

5.1 Technologies

Since this project is implemented to an existing information system, technologies were
predetermined. Nonetheless it is important to mention them.

The database is implemented i n M y S Q L (tested and implemented i n version 5.1.41). It
is an open-source, fast and mult i -platform relational database management system.

The applicat ion logic implemented i n script ing is P H P 5.3.1. Due to the fact that
P H P is server language, it was necessary to use a server. Apache 2.0. was used during
implementation.

P H P is an imperative object oriented language. It is dynamic-typed, i.e. the data type
of the variable is determined at the t ime of assigning a value. Another important feature is
that the arrays are heterogeneous; the same array can contain items of different data types.

A n object-oriented paradigm was also used i n this project. Since P H P gives the pro­
grammer considerable flexibility, it is very easy to create a code leading to confusion or
mistakes, as is the case i n any language. For this reason, some rules were settled for sup­
port ing the pur i ty of design. A n example of this was the defining of every class either as
abstract or final, and nothing i n between.

Nowadays, implementing the information system in pure P H P without any framework
is unthinkable. Therefore, for this system, Nette Framework was employed. More about
them is wri t ten i n following section.

Another technology which was used is JavaScript framework j Query, which was mainly
used as part of used components. W h e n we speak about JavaScript it is important to
mention that A J A X , a Javascript-based technology, was used for better user experience.

19

5.2 Nette Framework

Nette Framework is a Czech open-source framework for bui ld ing Web applications i n P H P
5. It eliminates security risks, which for the licensing system is very important . It supports
A J A X (Asynchronous JavaScript and X M L) , D R Y (Do not repeat yourself), and K I S S (keep
it short and simple). It fully supports the M V P design pattern (Model V i e w Presenter). It
is not necessary to use M V P , but it is clearer and more comfortable. Nette leads developers
to clean object-oriented design of applications w i th emphasis on future extensibility. One
of the great advantages of this framework is that around them there is a large active
Czech community [2], and therefore one can get support direct ly from developers. So many
components are available thanks to the existence of a community and the openness of the
framework [3].

5.2.1 M V P

M V P is a design pattern, by Pecinocsky [] or rather, software architecture, used i n software
engineering. The ma in a im of this architecture is to separate the business logic and appli­
cation data from the user interface. M V P is derived from M V C (Mode l V i e w Control ler) ,
which is more commonly known. B o t h divide applications into three layers:

• The data model (Model) - provides access to data and manipulat ion wi th it ,

• The user interface (View) - converts the data represented by model into a form
suitable for presenting to the user,

• The control logic (Presenter/Controller) - responds to requests from user and provides
changes in the model or view.

D i v i d i n g three layers for implementat ion and above al l , maintaining them separately,
w i l l make our applicat ion more robust and flexible.

The ma in difference between M V P and M V C is how requests by manager are accepted
(Controller/Presenter) [7]. In M V C a l l applicat ion requests come straight through to the
controller and it w i l l decide what to do wi th the requests (forward to V i e w or Mode l) . It
is i l lustrated on figure 5.1. M V P is different i n that the applicat ion requests are accepted
by V i e w and forwarded to Presenter. It is i l lustrated i n figure 5.2.

In the proper design according to the M V P pattern, the application developed i n Nette
framework should follow these rules:

• M o d e l should not know that any Views or Models exists.

• V i e w should not know about M o d e l

• Presenter makes V i e w familiar w i th the M o d e l (not vice versa), and implements user
actions. User actions are:

— Change of V i e w

— Change of state

— C o m m a n d for M o d e l

20

Figure 5.1: Pr inc ip le of M o d e l V i e w Controller

Figure 5.2: Pr inc ip le of M o d e l V i e w Presenter

In the ideal case the application should follow these rules:

• L i m i t the act ivi ty of Models just to data acquisition and manipulat ion

• Logic i n Views l imi t just for iterations and conditions

• Logic i n Presenter l imi t just for:

— F i l l i n g of Views

— Creat ing of components

— Communica t ion wi th Models

21

5.3 Generally about models

Models are used to obtain data from a part icular source, and in most cases from the
database. Contrary to the views and presenter, which have an absolutely strict form, we
have complete freedom i n the creation of models. Usual ly the database layer is used i n the
model, and i n our case it is d ib i l ibrary, which is part of Nette Framework.

In order to work wi th data in the models, it is necessary to first connect to the database.
This connection is realized only at one point in the project, i n script loadconf.php. Regis­
t ra t ion is very simple:

dibi::connect(Environment::getConfigCdatabase'));

The static class Environment represents an environment, where the application is cur­
rently running, and contains method getConfig. Th is method is for the obtaining of
settings from the configuration file cnofig.ini, which contains settings of database:

database.driver = mysql
database.database = database
database.host = localhost
database.username = username
database.password = password

The configuration file contains, in addit ion the setting of the database, a l l the necessary
settings to run applications on the server, e.g. the setting of P H P , variables, services etc.

A ma in consideration was, then, the method to access data through models. There are
two possible options.

The first opt ion is to use the Ac t ive Record design pattern, which s imply means that
one class w i l l represent a record from the database, while the second w i l l cater returning of
records from the database i n the format of the class.

The second is simpler, as it only consists of a class that w i l l return the records from the
database as an unspecified class, i.e. in the array.

A l though the first opt ion is the better approach in terms of software engineering for
the ease of scalabili ty of code, only the second option was implemented i n most cases. The
reason was that the application of specific class would be min ima l . Even though the second
option was mostly used, support was also implemented for Ac t ive Record technology. This
w i l l be discussed later.

The class which provides the reading of records from the database is called Manager . Be­
sides returning records from the database, it performs other functions. The basic functions
it caters to are as follow:

• Creat ing of record

• Reading of record (s)

• Upda t ing of record

• Delet ing of record

22

These four basic functions of persistent storage are i n short called C R U D . In the case
of a class based manager like i n the Ac t ive Record design pattern, creating, updat ing and
deleting would be contained in specific class. Other common but more specific functions
include:

• Reading of records as pairs

• Reading of records as data source

The class diagram is shown on figure 5.3. For clar i ty attributes and methods are not
shown. A s you can see, there is convention of manager classes naming, database singular
table name i n camel case and Manager on the end. There are two abstract classes B a s e M -
anager and ClassBaseManager. The first is the parent for managers which return records
wi th unspecified class, and the second is the records wi th specified class. In other words
ClassBaseManager is the class which supports the Ac t ive Record design pattern. Thanks
to the naming convention it is easy to notice the name of table, which should be used in
database queries of common methods included i n these two abstract classes.

UserData

Usei Manager

ClassBaseManager

CustomerHanager

EntityManager

FeatureManager

BaseManager

HostidListManager

HostidManager

LicenseHanager

OrderHanager

ProductManagei •

TemplateManager

Figure 5.3: Class diagram of models

23

5.4 Specific models

The following sections describe the managers, which contain some behavior that makes
them significantly different from the others and therefore worthy of mention.

5.4.1 O r d e r M a n a g e r

A n Order can be created pla in or from a predefined template. If it is created from template,
the identifier of template is recorded i n order. B u t the template is editable. For this reason
a copy of template properties has to be stored. Therefore, the properties of the template
are gradually crawled and copied.

5.4.2 License M a n a g e r

For the same reason, the principle of copying of records was used in license manager, w i th
the difference of it copying order properties to license properties.

Another function of this manager is the generation of X M L templates, which are inputs
for the license generator. The D O M (Document Object Model) was used for these purposes.

D O M is a platform- and language-independent interface providing access, creation or
modification of content, structure or style of document or their part []. The principle of
D O M is the storing of document as a tree containing elements of the document.

It was useful for just creating of content, because every property of license are stored
in the database and can also be edited there. X M L template is generated when you create
a license or regenerated in the editing.

5.4.3 M a n a g e r s represent ing license propert ies

It goes for feature, hostid list and host id manager. F i rs t it is necessary to explain the
affair, which apparently is not related to these managers. Due to the relatively high com­
plications wi th implementation, the license history, especially of temporal nature, was not
implemented. It has an influence on the edit ing of licenses. Instead of the implementat ion
of history, the creation of a copy wi th changed properties would be used for edit ing of the
license, so that the records i n the database would be never changed, only created.

Before the license history is implemented, we have to provide editing of license. If we do
it, we also have to regenerate template file. For this reason a mechanism which regenerates
template files of relevant license is implemented in managers of license properties.

24

5.5 Views

A s was said i n section 5.2.1 views are used for presenting of data to user. The best way of
creating views is by templates. A l though P H P is i n a way templat ing language, i n its pure
form it is not suitable for coding them. Hence various template engines have arisen. Nette
also contains a template engine. However it does not have to be used. Instead of them, the
Smarty template engine, for example, can be used.

The Nette templates have to follow a strict form. The template has to be named like
an action, to which it belongs w i t h sum phtml and have to be stored i n directory named
like the template. The template includes information about what action of presenter draw
on the screen. It contains H T M L and macros. These macros are transformed wi th so-
called filters. For templates of this project the La t te filter was used, which is part of Nette
Framework.

Thanks to this filter it is possible to write constructions like this:

{if $showForm}
Hello {$name} please f i l l t h i s form:
{control $informationForm}
or go here.

{/if}

This short code contains macro i f , control used for drawing of forms or components
and macro link, that generate destinations. Code write variable name on screen. Norma l ly
there would be security risk of X S S , but Nette automatical ly escapes a l l variables.

25

5.6 Presenters

The Presenter communicate directly w i t h models and mediate presentation of results in
human-friendly form.

Before we say more about implementat ion of presenters i n this project, we should know
how they are stored. Basical ly we divide application to more modules, thus achieving
modulari ty. For example, an application can be divided for front end or back end. In these
modules, Presenters and also templates are stored; models are often stored separately. B u t
everything is up to one. Nette presenters have to comply to strict form, which applies
also to the naming of presenters. A n example of a name of class of presenter for entities
is such: Admin_License_EntityPresenter. The class name includes hierarchy of modules
separated by '_' and on the end is name of presenter w i th Presenter suffix.

O n figure 5.4 is the class diagram of presenters. For clari ty attributes and methods are
not shown. Names of classes are without models hierarchy prefix. Also , it is not shown.

A dm in Presenter

A
BasePres enter <}

EntityPresenter

ProductPresenter

UserPresenter

FeaturePresenter TemplatePresenter

BaseLicensePres enter <]-
r License Presenter

L OrderPresenter

Figure 5.4: Class diagram of presenters

26

5.6.1 G e t t i n g of models

The Presenter in this project can use one or more models. Whenever it is necessary to
use some of their methods, i n order to avoid creating of instances of classes of models,
a variat ion of the design pattern Singleton was used. This design pattern allows us to
create a single instance of the class and then use other objects [6].

It is called variat ion, because the method for obtaining of object of model is not imple­
mented as method of model's class, according to proper implementat ion of Singleton. It is
however implemented as a method of the presenter, meaning there is only one instance of
the model i n the presenter. The a im of that was a lazy instantiat ion of class. The code of
this technique is as follows:

private $someManager = NULL;

public function getModelO
{

i f (!isset($this->someManager)) {
$this->someManager = new SomeManager;

}
return $this->someManager;

}

Another th ing is how the getting of model is called. Nette provides cal l ing of getter
method just by using the getter's attribute, even i f it does not exist:

$something = $this->model->fint($id);

5.6.2 A c t i o n s

Act ions have names and correspondence to views. Every view has to be named like action.
For every action two methods can be implemented i n the presenter: action<NameOf Action>
and render<NameOf Action>. The reason to why there are two and not merely one is that
the Nette Framework is M V P . So the application contains of three parts. The presenter is
one of them and work w i t h the remaining two. M e t h o d wi th prefix action is for dealing
wi th database. M e t h o d wi th prefix render is for dealing wi th views. For example there are
set variables used i n template. Sett ing of variable i n view representing tit le can looks:

$this->template->title = "Orders";

C o m m o n actions of this project are default, add and edit. Default action is for l is t ing
of records. A d d is for adding of record to database and usually is there implemented just
adaptation of form component, which is often common for both edit ing and adding. E d i t
action is for edit ing and here is mostly taken care of filling the form by default values.
Alternatively, other variables of the view.

27

5.6.3 D a t a l i s t ing

A s was described i n section 4.3 data should be displayed wi th the possibil i ty of l imi t ing
them by some cri teria and the possibil i ty of sorting. Furthermore, it should be possible to
process data in bulk. For this purpose a D a t a G r i d component was used, which is wri t ten
specifically for the Nette.

Before we discuss about D a t a G r i d , it is good to know how the creation of components
works. Components are created by method createComponent<Name> () , where Name is
name of component, which is used i n templates 5.5. Th is method is called only when it is
wri t ten i n template. Therefore it is basically a lazy ini t ia l izat ion of components.

Component D a t a G r i d can work just i f we give that some source of data like:

$grid->bindDataTable($this->model->getGridDataSource());

It shows al l columns, which are i n data source, but usually we want to show specific
columns. In this case we write only the columns we want, as follows:

$grid->addColumn('name', 'Name')->addFilter();

There is more to this code than just showing part icular columns. There is also added
filter for l imi t ing of listed data. Act ions w i th specific row are carried by this code:

$grid->addActionColumn('Actions');
$grid->keyName = ' i d ' ;
$grid->addAction('My Action', 'myAction');

Where keyName is identifier used as parameter of action. Another provided feature is
mult iple operations on rows:

$operations = array('delete' => 'delete');
$callback = array($this, 'gridOperationHandler');
$this->allowOperations($operations, $callback);

A r r a y operations contain keys that are name of action and values, which are i n tu rn
names showed to the user. A r r a y callback contains the definition of mult iple operations
handler.

Due to the fact that almost every DataGrid w i l l support mult iple delete action, class
DeleteDataGrid, which inherits from DataGrid and extends it for mult iple delete action
and handling of that, was created.

For a better idea how the final component may looks like, is shown example i n figure
5.5. Th is part icular example is list of entities. A s you can see, the user filtered the entities,
in this case states that lie in Europe, i n other words, are subordinate entity of Europe. A l so
some states are selected, which can be processed i n bulk using of some actions, for example,
deleting of these states. If should be displayed i n the DataGrid many items is allowed to
view only a certain amount of these elements. Other elements w i l l appear by switching
to the next page. It is possible to set the number of elements on the page. If paging is
not satisfactory you can show al l the elements. This functionality is also sometimes called
paginator.

28

Name t Parent entity t Actions

Europe 1 Apply filters ft)

• Czech Europe edit delete
B Switzerland Europe edit delete

Austria Europe edit delete

• Germany Europe edit delete
m Slovakia Europe edit delete

Selected: delete Q Send) Items 1 - 5 of 5 | Display: 15 Q

Figure 5.5: L i s t ing of the items i n DataGrid

5.6.4 F o r m s

Generally there are just two types of forms. The first is a form for confirmation, now used
just for confirmation of delete action. The second is a form for input or editing of data.

Some events require increased user attention. The deletion of records is one of them.
For this reason a confirmation form was implemented. Ca l led Conf irmForm, it inherits from
component Conf irmationDialog.

A c t i o n or signal for confirming is defined by three items: name of action or signal,
callback called when confirmation is succeed and callback which contain questions. The
user is always informed about the action and items over which the action is or w i l l be
performed.

The text of messages is adapted to whether the operation is carried out over one or
more items. A s exceptions exist i n the Engl i sh language for the creation of the plura l , it
was necessary to implement it w i t h support for these exceptions in displayed question or
information messages.

Here is how Conf irmForm is created i n EntityPresenter:

public function createComponentConfirmForm($name)
{

return new ConfirmForm($this, $name, $this->model,
"entity", " e n t i t i e s ") ;

}

A s you can see, there are five parameters. The first two are common for a l l components
- presenter itself and name of component. The th i rd parameter is model, which is used
for obtaining of items' names. The last two parameters are singular and p lura l name of
i tem/i tems.

Nette provides for the creation of the forms component AppForm. Th is component is
very powerful. More w i l l be discussed later.

There was one th ing which had to be considered. Input fields are rather similar in
almost a l l forms for edit ing or creating of i tem. In these cases only one form for editing
and creating of data is created. If an input field should be shown, recognition is realized

29

by testing of the H T T P parameter which identifies the i tem, rather said, whether it is set
or not.

AppForm contains methods for creating many types of inputs: hidden, text, text area,
select, submit etc. It is possible to define val idat ion rules to inputs, or i f it is necessary to
use custom val idat ion rules. Here is an example of field w i th val idat ion rule:

$form->addText('name', 'Name:')
->addRule(Form::FILLED, 'Name i s required');

For filling of the selects (ie. combo boxes), getPairs methods from models are used.
AppForm lacks one important field, i.e. a field for date. For this purpose, there is an external
component DatePicker, which is for example used i n adding of feature as is shown on figure
5.6. It is based on jQuery component Datepicker.

•J.IJJ-.WIIJJ
NAME

MAJOR_VERSION

MINOR_VERSION

LICENSEE

START

END

M AINTENAN CE_START

M AINTENAN CE_EN D

ISSUED

SN

DATA

F1

2011-05-11| ED

O May 2011 O
Su Mo Tu We Th Fr Sa

1 1 l l 2 I I 3 4 S || 6 7
e 9|| 10 l l | 12 13 14

| 15 161| 17 18 19] 20 | 21
22 23 24 25 26 27 28
2 9 3D _3l]

Figure 5.6: Adding of feature wi th date input

In one case it was necessary to solve the problem of depended select box. It was
in OrderPresenter, where the user has to select product and then template, dur ing the
creation of a new order. It is solved by an external component DependendSelectBox.

There are two ways to ensure the processing of the form. One can either use onClick
array for callback of part icular submit i tem, or use onSubmit array for callback of the whole
form. I used the second method, because the processing of request is handled as a whole,
as opposed to the creation of method for every submit input.

30

5.6.5 D o w n l o a d of file

The template license file which is generated is stored i n database as well as license file after
uploading. It is necessary to provide the user the possibil i ty of downloading these files.
These functionalities are implemented as action of BaseLicensePresenter.

Firs t file content and file name from database is obtained and then the file is transferred
by using H T T P response. The code is done as follows:

$response = $this->getHttpResponse();
$response->setContentType('text/plain');
$response->setHeader('Content-Disposition',

'attachment; filename="' . $license[$fileName] . " ");
echo $content;
$this->terminate();

The content type is set to the H T T P response, and then the name of file is set in the
header. After that the content of file is s imply wri t ten by echo. In the end the presenter is
correctly terminated.

31

Chapter 6

Deploying of the application

The information system, the result of this project, can be used by deploying on the server,
which must meet the following requirements:

• Apache 2

• P H P 5.3

• M y S Q L 5.1

Versions are only recommended, because testing was carried out on them.
The easiest way to deploy the system is using of L A M P or X A M P P package, that

provides the platform for running web applications. This is also a solution for using stand­
alone running of the system. However, the user w i l l lose access from anywhere i n the world,
as long as there is access to the Internet.

The instal lat ion is carried out such that the project is copied into the web directory of
Apache. Scripts for creating of database structure are located i n directory /data that must
be run on the database server. The script that contains the license management is called
license.sql.

In the instance of the removal of a license management, the following script can be used:
license.delete. sql. It would also be necessary to remove the directory
/admin/app/AdminModule/LicenseModule and the database models from the directory
/admin/app/models.

32

Chapter 7

Conclusion

The system, which allows the vendor to centrally manage the software licenses of his prod­
ucts, is an information system designed for deploying on a server that is accessible over the
internet. Th is system is used to store the license files and generate files that serve as input
to the generator, of which outputs the license files.

In the beginning, goals of the project were set. The goals of making the system ap­
plicable for license management were met. It allows storing and managing of the orders
and licenses. In addit ion, the system allows the creation of orders, and hence the licenses
from previously predefined templates. Thus it provides the user of system the comfortable
creation of licenses, when i n the case of well-defined templates, only adapt the license for
the use of a part icular customer.

The solution was implemented i n P H P using Nette Framework. The system architecture
is buil t on the M V P pattern, which separates application logic from the user interface
structure. It splits application into three layers. Thus, some modification has min ima l
effect on other layers.

7.1 Future extensions

There are extensions that would make the system a relatively complex solution. These
include in particular, the extension by the customers' part, al lowing customers to access
their licenses. However, since the system was designed pr imar i ly as a solution for the
company Codasip, which has very specific focus and thus a relatively narrow range of
customers, it is not crucial for this t ime. However, that would be required in the future.

Another possible extension is to preserve the license history. The solution was designed
and only remains to be implemented. Its implementat ion w i l l take place without too much
interference to the database structure and be relatively isolated from existing application
logic.

7.2 Personal benefit

The size of this project required proper t ime scheduling. This was the first t ime that I
was required to manage my t ime under such important circumstances. I have improved my
skills i n the estimation of t ime, i n terms of part icular activities. I learned how the licensing
of the software works. The last benefit was the familiarizat ion wi th P H P programming and
Nette Framework.

33

34

Bibliography

[1] L issom, http://www.fit.vutbr.cz/research/groups/lissom/index.html, 2006
[cit. 2011-05-18].

[2] Nette Framework Fo rum [online], http://forum.nette.org/cs/, 2011 [cit.
2011-05-11].

[3] Doplnky, pluginy a komponenty [online], http://addons.nette.org/cs/, 2011 [cit.
2011-05-12].

[4] P a u l D u B o i s . MySQL. Addison-Wesley, 2008. I S B N 0-672-32938-7.

[5] J i ŕ í Kosek. PHP a XML. G R a d a , 200. I S B N 80-247-1116-8.

[6] Rudo l f Pec inovský . Návrhové vzory 33 vzorových postupu pro objektové
programovaní Computer Press, 2007. I S B N 978-80-251-1582-4.

[7] R o n a l d W i d h a . Difference between model-view-presenter and model-view-controller
[online], http://www.ronaldwidha.net/2009/03/19/, 2009 [cit. 2011-05-12].

[8] X -Fo rma t ion . License dis t r ibut ion service developers manual , 2009.

[9] X -Fo rma t ion . L M - X Developers Manua l , 2010.

[10] X -Fo rma t ion . L M - X E n d Users Guide .
http: //www. x-formation. com/lm-x_license_manager/enduser. pdf, 2010.

35

http://www.fit.vutbr.cz/research/groups/lissom/index.html
http://forum.nette.org/cs/
http://addons.nette.org/cs/
http://www.ronaldwidha.net/2009/03/19/

