
T
B R N O UNIVERSITY O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION T E C H N O L O G Y
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

SYSTEM FOR A U T O M A T I C FILTERING O F T E S T S
SYSTÉM PRO AUTOMATICKÉ FILTROVÁNÍ TESTŮ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

A U T H O R
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. MILAN L Y S O N Ě K

Ing. VIKTOR M A L Í K

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Master's Thesis Specification |||||||||||||||||||||||||
23098

Student: Lysoněk Milan, Be.
Programme: Information Technology Field of study: Computer Networks and Communication
Title: System for Automatic Filtering of Tests
Category: Software analysis and testing
Assignment:

1. Get acquainted with the Git versioning system and with the way it represents differences
between versions of files.

2. Learn about the ComplianceAsCode project. Explore the structure of source code of
different types of files present in the project and the dependencies among source files.
Concentrate on the types of files that change the most often in the project's history.

3. Design a method that will be able to filter tests of a software project that need to be run if
a change in the project code occurs. The filtering should be done based on analysis of the
source code of changed files and on computing the set of project files and tests that
depend on the changes.

4. Implement the proposed solution in a tool, which can filter the set of tests of the
ComplianceAsCode project, whose result might have changed after some change was
done. Support analysis of at least 4 different types of source code files.

5. Test the created tool on the history of the ComplianceAsCode project and discuss results
of these experiments.

6. Write the final text of the Master's thesis in English.
Recommended literature:

• Waltermire, David & Quinn, Stephen & Booth, Harold & Scarfone, Karen. (2018). NIST
SP 800-126 Revision 3, The Technical Specification for the Security Content Automation
Protocol (SCAP): SCAP Version 1.3.10.6028/NIST.SP.800-126r3.

• ComplianceAsCode Developer
Guide,
https://github.com/ComplianceAsCode/content/blob/master/docs/manual/developer_guid
e.adoc

Requirements for the semestral defence:
• First 2 items of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malik Viktor, Ing.
Consultant: Týč Matej, Ing., Ph.D., RedHatCZ
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 20, 2020
Approval date: October 31, 2019

Master's Thesis Specification/23098/2019/xlyson02 Strana 1 z 1

https://github.com/ComplianceAsCode/content/blob/master/docs/manual/developer_guid
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to create a system that automatically determines a set of tests
that must be run when a change is done in the ComplianceAsCode project. The proposed
method selects a set of tests based on static analysis of the changed sources, taking into
account the internal structure of ComplianceAsCode. The created system is divided into
four parts — obtaining changes from the versioning system, static analysis of different types
of files, computing the set of files affected by the change, and computing the set of tests
that must be run to test the given change. We implemented analysis of several types of
files and our system is designed to be easily extended by other analyses for other file types.
The created implementation is deployed on the server where it automatically analyzes new
contributions to the ComplianceAsCode project. The automatic running informs contrib
utors and developers about changes that it found and recommends which tests should be
run for the change. This saves the time spent on verifying the correctness of contributions
as well as the time spent on running tests.

Abstrakt
Cílem této práce je vytvořit systém, který je schopný automaticky určit množinu testů,
které mají být spuštěny, když dojde v ComplianceAsCode projektu ke změně. Navržená
metoda vybírá množinu testů na základě statické analýzy změněných zdrojových souborů,
přičemž bere v úvahu vnitřní strukturu ComplianceAsCode. Vytvořený systém je rozdělen
do čtyř částí — získání změn s využitím verzovacího systému, statická analýza různých typů
souborů, zjištění souborů, které jsou ovlivněny těmi změnami, a výpočet množiny testů,
které musí být spuštěny pro danou změnu. Naimplementovali jsme analýzu několika různých
typů souborů a náš systém je navržen tak, aby byl jednoduše rozšiřitelný o analýzy dalších
typů souborů. Vytvořená implementace je nasazena na serveru, kde automaticky analyzuje
nové příspěvky do ComplianceAsCode projektu. Automatické spouštění informuje přispě
vatelé a vývojáře o nalezených změnách a doporučuje, které testy by pro danou změnu měly
být spuštěny. Tím je ušetřen čas strávený při kontrole správnosti příspěvků a čas strávený
spouštěním testů.

Keywords
Filtering of tests, ComplianceAsCode, SCAP, OpenSCAP, Git, Github, changes in files, file
analysis, Y A M L , Ansible, Bash, Python, O V A L , X M L , Jinja, testing, Jenkins

Klíčová slova
Filtrování testů, ComplianceAsCode, SCAP, OpenSCAP, Git, Github, změny v souborech,
analýza souborů, Y A M L , Ansible, Bash, Python, O V A L , X M L , Jinja, testování, Jenkins

Reference
L Y S O N E K , Milan. System for Automatic Filtering of Tests. Brno, 2020. Master's thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Viktor
Malík

Rozšířený abstrakt
Vývoj softwaru je obor, který se rychle vyvíjí. Každý den se se v tomto oboru objeví něco
nového — nová technologie, nový programovací jazyk, nová knihovna a podobně. Zákazníci
chtějí tyto novinky v produktech, které používají. Chtějí nové funkce, aby byl software
přenositelný na jiné zařízení, aby fungoval na zastaralém hardwaru a taky od softwaru
očekávají bezchybnost. Vývojáři proto musí trávit hodně času učením se nových věcí,
ale zároveň nesmí zapomínat na kvalitu. Kvalitu softwaru si vývojáři často můžou ověřit
s pomocí automatických testů, avšak tyto testy si musí napsat ručně. Proto musí vývojáři
trávit čas hledáním slabých míst v jejich softwaru, musí vědět jak se vypořádat s chybnými
vstupy, které neobvyklé případy mohou nastat apod. Strávit čas psaním testů se však
vyplatí, protože to šetří čas jak zákazníkům, tak paradoxně i vývojářům samotným. Díky
testům jsou problémy zachyceny a opraveny mnohem dříve než se dostanou k zákazníkovi.
Opravit chybu, která se dostala do výsledného produktu až k zákazníkovi, je dražší než její
oprava ve fázi vývoje. U testování softwaru ale nesmíme zapomínat na jednu podstatnou
část, která může také trvat dlouhou dobu — spouštění testů. Zatímco u malých aplikací
průběh testů trvá zanedbatelnou dobu v řádu několika sekund nebo minut, tak u velkých
a komplikovaných systémů může testování trvat hodiny, klidně i několik dnů.

ComplianceAsCode projekt patř í do kategorie komplikovaného softwaru. Pokud bychom
pro něj chtěli spustit všechny testy, tak to zabere několik hodin, nehledě na to, že se mohlo
jednat o změnu jednoho řádku ve zdrojových souborech. Tím je vývoj značně zpomalen,
protože vývoj ComplianceAsCode je založen na postupu, kdy přispěvatelé posílají do pro
jektu změny a tyto změny musí být schváleny vývojáři, kteří mají oprávnění pro přidávání
změn do daného projektu. U ComplianceAsCode projektu je však problém testování jed
notlivých změn, protože automatické spouštění všech testů by trvalo dlouhou dobu a vývoj
by tím byl značné zpomalen. Proto musí vývojáři před schválením příspěvků ručně otestovat
jejich správnost a bezchybnost. Automaticky je spuštěn pouze test, který otestuje základní
funkcionalitu, protože další testy trvají několik hodin. Tento postup není praktický, protože
vyžaduje od vývojáře, který příspěvek schvaluje, aby změny analyzoval a určil, které testy
musí být spuštěny. Ruční testování zabírá čas a navíc způsobuje, že vývojář může něco
přehlédnout a část zapomene otestovat. To pak vede k chybám, jejichž oprava v pozdějších
fázích trvá mnohonásobně delší dobu.

Pro vyřešení tohoto problému, tato práce cílí na automatické filtrování testů. Testy
jsou filtrovány na základě změn v ComplianceAsCode projektu. Avšak tento úkol není
jednoduchý, protože ComplianceAsCode je komplikovaný projekt. V ComplianceAsCode je
několik různých typů zdrojových souborů a mnohdy jsou tyto soubory ovlivněny i jinými
zdrojovými soubory. To způsobuje komplexní provázání závislostí, díky kterému změna jed
noho řádku, který na první pohled nevypadá nijak spojen s jinými soubory, může způsobit,
že jiné části projektu přestanou správně fungovat.

Hlavním cílem této práce je vytvořit systém pro automatické filtrování testů, který je
schopný se vypořádat s projektem, který má komplexní vnitřní závislosti a obecně nepřed
vídatelné spojení mezi testy a změnami v souborech. Navržený přístup je založen na
jednoduché statické analýze změněných souborů v kombinaci se znalostmi vnitřní struk
tury ComplianceAsCode. Cílem naší analýzy je vysoká efektivita, byť za cenu nižší přes
nosti— navržená analýza může vybrat test, který není nutné spouštět pro danou změnu.
Avšak spuštění pár testů navíc, které spuštěny být nemusí, je zanedbatelné v porovnání
s velikostí testovací sady projektu. Vytvořený systém se zaměřuje spíše na automatickou
analýzu různých typů souborů než na podrobnou analýzu specifického typu souborů.

System for A u t o m a t i c F i l t er ing of Tests

Declaration
I hereby declare that this master's thesis was prepared as an original work by the author
under the supervision of Ing. Viktor Malik. The supplementary information was provided
by Ing. Matěj Týč, Ph.D and the Security Compliance team from Red Hat. I have listed all
the literary sources, publications and other sources, which were used during the preparation
of this thesis.

Milan Lysoněk
June 2, 2020

Acknowledgements
I would like to thank Viktor Malik and Matěj Týč for their support, guidance, feedback,
patience, and advice required for the creation of the thesis.

Contents

1 Introduction 2

2 ComplianceAsCode Project 4
2.1 Security Content Automation Protocol 5
2.2 OpenSCAP Tools 6
2.3 Project Structure 8
2.4 Project's File Types 11
2.5 Project Testing 12

3 Git Versioning System 15
3.1 Storing Data in Version Control System 15
3.2 Remote Repositories 16
3.3 Git References 17
3.4 Comparing Git Versions 18

4 Design of Automatic Tests Filtering for ComplianceAsCode 20
4.1 High-Level Method for Automatic Test Filtering 21
4.2 Getting Changes 21
4.3 Analyze Source Code Changes 22
4.4 Compute Affected Parts 25
4.5 Compute Set of Tests 28

5 Implementation 29
5.1 Main Control 29
5.2 Getting Changes 29
5.3 Analysis and Computing Affected Parts 33
5.4 Computing a Set of Tests to Run 43
5.5 Logging and Printing Results 45

6 Testing and Deployment 46
6.1 Testing Implementation with Bats 46
6.2 Automatic Code Analysis of the Implementation 48
6.3 Integration to ComplianceAsCode Jenkins 48

7 Testing the Filtering of Tests on the ComplianceAsCode History 51
7.1 Evaluation 52

7.2 Encountered Issues 53

8 Conclusion 56

Bibliography 57

A Contents of the Included Storage Media 59

1

Chapter 1

Introduction

The software industry moves fast forward. Something new appears every day in the in
dustry— a new technology, a new programming language, a new library, etc. Customers
want these new things in the software that they use. They want new features together with
portability to other devices, optimized for outdated hardware, and flawlessness. Developers
spend a lot of their time learning new things, but they also must pay attention to quality.
Quality is often ensured by automated testing, however, tests are usually created manually.
Developers need to spend time thinking which parts are weak, how wrong inputs should
be handled, which corner cases can appear, and so on. Time spent on writing good tests
is worthy, but there is another time consuming part — test runs. While developing a small
software, a test run is an insignificant part of development because it takes few seconds or
minutes to finish. On the contrary, big and complicated software is different — a test run
may take several hours, even days.

The ComplianceAsCode project, developed primarily at Red Hat, belongs to the inher
ently complicated software category. Running all test scenarios takes hours, even when one
line of the source code is changed. This slows down the development of the project since
ComplianceAsCode uses a development workflow based on Pul l requests. Every time a Pul l
request to the upstream repository (located on GitHub) is created or changed, the reviewer
must run tests manually based on the knowledge which parts are affected by the change.
The only test that is run automatically is a so-called the functional test because running
all tests takes several hours, which would slow down the development. This is not a very
practical approach since the reviewer needs to manually analyze the change and determine
the set of tests to run. This process takes time and, in addition, it may be imperfect since
the reviewer may overlook something and not run all necessary tests.

In order to resolve this problem, this work aims at the automatic filtering of the test
suite based on the implemented changes in the ComplianceAsCode project. This is quite
a complicated task, due to the complexity of the project. The source code contains a large
number of files of various types that are often connected to others. The sources form
a complex chain of dependencies that can cause a single line change to break parts that at
first sight do not seem to be connected to the changed line at all.

The main goal of this thesis is to create a test filtering system with the capability to deal
with the heterogeneous project that has complex inner dependencies, and generally unpre
dictable connection between tests and file changes. The approach that we propose is based
on a simple static analysis of changed files, taking into account complicated dependencies in
the ComplianceAsCode project. The main target of our analysis is high efficiency, possibly
even for the sake of its precision — the proposed analyses may conservatively include a test

2

that does not really need to be run. However, running a single or few extra tests that do
not need to be run is negligible from the point of view of the test suite size. The system
focuses on automatic analysis of a wider range of different file types rather than a deep
analysis of a specific file type.

The ComplianceAsCode project is described in Chapter 2. We focus on its structure,
testing, and dependencies among source files. Also, Chapter 2 introduces the Security Con
tent Automation Protocol standard and the OpenSCAP tools that work with the standard
and contain, among others, the ComplianceAsCode project. As we already outlined, the
ComplianceAsCode project uses Git as a versioning system that we use to acquire basic
information about changes. Moreover, the development workflow, into which our system is
incorporated, is based on Pul l requests, which are connected to Git, too. To this end, we
describe important concepts of Git in Chapter 3.

The system for automatic filtering of tests is split into four parts — getting changes,
analysis of source codes, computing affected parts, and computing the set of tests. The
design of the system and of all the parts is described in Chapter 4, where we also focus on
supported file types, on corresponding methods to analyze them, and on methods to deal
with dependencies. Chapter 5 describes the implementation of the designed system.

Chapter 6 is dedicated to testing and deployment of the implemented system. The
chapter describes the usage of Bats: Bash Automated Testing System for implementation
of tests for the created system, an automatic code analyzer that was integrated into the
implemented system repository, and deployment of the implementation to ComplianceAs
Code Jenkins where it automatically analyzes Pul l requests from the ComplianceAsCode
repository. The last chapter, Chapter 7, is about benchmarking the implementation using
actual historical data of the ComplianceAsCode.

3

Chapter 2

ComplianceAsCode Project

Since computers started to be used widely, there was a need, especially within the processing
of classified information, to process them securely. As a response to the need, The United
States Department of Defense (DoD) published the Trusted Computer System Evaluation
Criteria (TCSEC) . The T C S E C is often referred to as the Orange Book. The Orange Book
was the first book from the Rainbow series and it is abandoned now [5].

The current valid standard, providing a common set of requirements for the security of
information, is the Common Criteria for Information Technology Security Evaluation 1 (CC).
However, it does not provide a guidance on how to configure a system. It provides a guidance
and a specification for evaluating information security of a product. The guidance on how
to configure the system is provided in other policies that are specific for organizations and
data they work with. A few examples of policies are:

• Protection Profile for General Purpose Operating Systems (OSPP) — the policy for
a general purpose operating system that can work in a networked environment.

• Payment Card Industry Data Security Standard (PCI DSS) — the policy for securing
a system working with payment card information.

• Security Technical Implementation Guide (STIG) — the policy used within the U.S.
Department of Defense's IT infrastructure.

Policies contain many requirements that need to be met to be compliant. These require
ments define system configurations such as password length, password character variability,
file permissions, logging, disabled services, disk encryption, using cipher suites, disabled
ssh root login, and so on. For an experienced system administrator, it may take few hours
of work to set everything properly. Moreover, the fact that a system is compliant does
not mean that it will be compliant the next time. The system evolves — new packages are
installed, a new person starts working with the system, a new vulnerability is discovered,
and other — it must be checked and properly configured periodically. Moreover, today's IT
infrastructures consist of hundreds, even thousands, of computers, of virtual machines, or of
containers. It is almost impossible to do that manually. As a response to it, Security Con
tent Automation Protocol has been created [15]. Security Content Automation Protocol is
described in detail in Section 2.1.

Security Content Automation Protocol (SCAP) is a standard that defines a format and
a terminology for security configurations. S C A P scanners are based on the standard to

1https://www.commoncriteriaportal.org/

4

https://www.commoncriteriaportal.org/

scan machines to find out if the machines are security compliant. One of these scanners is
OpenSCAP, described in Section 2.2.

For S C A P scanners, the most important part is the S C A P content. The content speci
fies checks that can determine whether a system is configured properly. Each check, called
a rule, has its description stating how it should be configured. The content needs to be
implemented so it can be used as an input for the scanner. One of the content imple
mentations is the ComplianceAsCode project which is the core of this thesis (Section 2.2).
The description of the project's structure is in Section 2.3. The structure of the project is
complex and consists of several different file types. Selection of the file types is described
in Section 2.1. Description of the project's testing is in Section 2.5.

2.1 Security Content Automation Protocol

Security Content Automation Protocol (SCAP) [13] is a set of specifications. It stan
dardizes a format and a terminology for security configuration information. The protocol
supports automated configuration, vulnerability checking, patch checking, technical control
compliance activities, and security measurement.

S C A P 1.0 was published by the National Institute of Standards and Technology in July
2010 and current version is 1.3 which was released in February 2018. S C A P 1.3 consists of
twelve component specifications. The specifications are divided into five categories:

• Languages — provide standard vocabularies and conventions for expressing security
policies, technical check mechanisms, and assessment results. The specifications are
Extensible Configuration Checklist Description Format (X C C D F) , Open Vulnerability
and Assessment Language (OVAL), and Open Checklist Interactive Language (OCIL).

• Reporting formats — provide the necessary constructs to express collected infor
mation in standardized formats. The formats are Asset Reporting Format (ARF)
and Asset Identification.

• Identification schemes — provide a means to identify key concepts such as soft
ware products, vulnerabilities, and configuration items using standardized identifiers
formats. The schemes are Common Platform Enumeration (CPE) , Software Iden
tification Tags (SWID), Common Configuration Enumeration (CCE) , and Common
Vulnerabilities and Exposures (CVE) .

• Measurement and scoring systems — refers to evaluating specification character
istics of a security weakness and generating a score that reflects their relative severity.
The scoring system specifications are Common Vulnerability Scoring System (CVSS)
and Common Configuration Scoring System (CCSS).

• Integrity — helps to preserve the integrity of S C A P content and results. The in
tegrity specification is Trust Model for Security Automation Data (TMSAD) .

For us, the important category is Languages. A security policy is specified in a form of
an X C C D F document, which is written in the X C C D F language. A n X C C D F document
contains, organizes, and aggregates rules into one unit. The O V A L language is used to
define rules, which check system configuration. And OCIL is used to define rules, which
need people to collect information, for example, transcribe a number from a label.

5

X C C D F from its name — Extensible Configuration Checklist Description Format — is
a checklist with additional data on the top. The most important additional data are
information about profiles. A profile is a set of rules from an X C C D F document. The
set of rules from a profile can overlap with a set from another profile.

O V A L defines an expected state of a system and reports its actual state. According to
O V A L website, O V A L standardizes three main steps [12]:

1. Representing configuration information of systems,

2. Analyzing the system for presence of the specified machine state (vulnerability, con
figuration, patch state, etc.),

3. Reporting the results of this assessment.

O V A L definitions are usually in separate files, so it is easy to edit them and a user does not
need to edit X C C D F documents.

A n X C C D F document can be used as an input into S C A P scanners, but often multiple
X C C D F documents are wrapped into one file called a datastream. The datastream can
be also used as an input for the scanner. Using the datastream is more convenient for
a publisher and as well for a consumer because it is just one file which can be used for
different purposes.

S C A P scanners scan a system state according to a selected profile and present results
to a user. There exist few such scanners. From the proprietary side, there are, for example,
Qualys 2 and Nessus'^. From the open-source side, there are OpenVAS 4 and OpenSCAP 5 .
We will describe more in detail only the OpenSCAP scanner.

2.2 OpenSCAP Tools

OpenSCAP is a collection of free and open-source tools. The development started in Novem
ber 2008 within Red Hat and the collection is open-source from the beginning [14]. Cur
rently, it is widely used by many businesses and government organizations. The OpenSCAP
collection provides a wide range of tools related to the security compliance. There are:

• OpenSCAP,

• S C A P Workbench,

• ComplianceAsCode,

• O S C A P Anaconda Add-on,

• and more.

Tools from the collection are used within other Red Hat products, for example, Red
Hat Satellite 6 or Cloud Management Services for R H E L .

2https://www. qualys. com/
3https: / / www.tenable.com / products / nessus
4littp: / / openvas.org/
5littps://www.open-scap.org/
6littps: / / www.redliat.com/en/teclinologies/management / satellite
7littps://cloud.redliat.com/

G

https://www
http://www.tenable.com
http://openvas.org/
http://www.open-scap.org/
http://www.redliat.com/en/teclinologies/management
http://redliat.com/

OpenSCAP

OpenSCAP is a library and a command-line tool used to parse and evaluate components of
the S C A P standard. The library implements the majority of the OpenSCAP functionality.
It implements a processing of S C A P documents, a system scanning, an evaluation of the
scan, and a reporting. The library provides Application Programming Interface (API) for
developers to create applications working with the S C A P standard.

The command-line tool is called oscap and it is a wrapper using the OpenSCAP library.
The usability of the command-line tool is not straightforward. Just base oscap offers sev
eral options regard to the S C A P standard — ds (datastream utilities), oval, xccdf, cvss,
cpe, eve, cvrf (Common Vulnerability Reporting Framework), and info. The command-
line tool also offers an option to fix (remediate) a non-compliant system setting. As an
exemplary input and output from oscap which fixes selected rules from P C I DSS profile,
see Listing 2.1.

$ oscap xccdf eval — p r o f i l e pci-dss —remediate \
— r u l e xccdf_org.ssgproject.content_rule_rpm_verify_permissions \
ssg-rhel8-ds.xml

T i t l e V e r i f y and Correct F i l e Permissions with RPM
Rule xccdf_org.ssgproject.content_rule_rpm_verify_permissions
Ident CCE-80858-4
Result f a i l

S t a r t i n g Remediation
T i t l e V e r i f y and Correct F i l e Permissions with RPM
Rule xccdf_org.ssgproject.content_rule_rpm_verify_permissions
Ident CCE-80858-4
Result f i x e d

Listing 2.1: Output from oscap xccdf eval command (shortened)

Compliance AsCode

The most important part of the scanning is the S C A P content. S C A P scanners interpret
the S C A P content and if the content is not good enough, it may give false positives or false
negative results. Wi th the poor content, a user may have more complications than benefits.
Hence, SCAP Security Guide was created to provide the open-source S C A P content.

S C A P Security Guide started as a common platform to create the security content.
Over time, the project came through many changes to achieve [3]:

• Easy contribution for non-programmers,

• Ease of use,

• Flexibility — for new approaches to testing or creating a new content,
• Extensibility for different needs — offers remediation scripts in Bash, Ansible or

Anaconda,

7

• Community — for developers, testers, and solution architects to contribute and cre
ate together the security content,

• Quality — easy way of creating test scenarios.

Scope of the project grew and the S C A P Security Guide's name did not reflect it. As
a result, the project was renamed to ComplianceAsCode.

ComplianceAsCode offers the S C A P content for 18 products including Red Hat Enter
prise Linux, Fedora, Debian, Firefox, and more [3]. It delivers security checks in the O V A L
language and remediations in Bash, Ansible, Anaconda, and Puppet. The remediation is
a script, which changes a configuration of a non-compliant setting to a compliant setting.
Thanks to it, a user can get a system to a compliant state with very little effort.

As the introduction of Chapter 2 mentions, there are many policies specific for or
ganizations and data they work with. These policies are called profiles, and they define
guidance on how to configure a system. ComplianceAsCode delivers a lot of profiles spe
cific to individual products. For example, Red Hat Enterprise 8 product has Payment Card
Industry Data Security Standard (PCI DSS), Protection Profile for General Purpose Op
erating Systems (OSPP), Australian Cyber Security Centre Essential Eight (E8), Security
Technical Implementation Guide (STIG), Health Insurance Portability and Accountability
Act (HIPAA), and more profiles available in ComplianceAsCode. Profiles are there defined
as lists of rules. ComplianceAsCode merges all profiles related to a product together and
creates one file — datastream.

S C A P Workbench

S C A P Workbench is an application with Graphical User Interface implemented in C++
using Qt. It uses the OpenSCAP library. Intuitive GUI helps inexperienced users when
working with the S C A P content. S C A P Workbench scan is shown in Figure 2.1.

O S C A P Anaconda Add-on

Anaconda is a Red Hat Enterprise Linux installer. O S C A P Anaconda Add-on is a plug-in
into the installer. Wi th the plug-in, it is possible to choose a security policy which a user
wants to be compliant right from the first boot [14]. The installer configures and installs
all policy requirements. Moreover, a user is warned before starting installation if there is
any non-compliant setting that the installer cannot change or it is not possible to change
it after the installation. A n example of such a setting is that /var/log must be located on
a separate partition.

O S C A P Anaconda Add-on comes with Anaconda remediations. Anaconda remediations
are specific for the Anaconda installer and they can easily change the installation run. They
can add installed packages, disable services, set options for partitions, and more.

2.3 Project Structure

The ComplianceAsCode project aims to solve security issues that are relevant to various
products of various versions while trying to reduce duplication of a content. The struc
ture of the project reflects this complex challenge and even the directory structure seems
complicated. The project files can be divided into categories [7]:

8

ssg-rhelS-ds.xml- SCAP Workbench X

File Help

Title Guide to the Secure Configuration of Red Hat Enterprise Linux 8

Customization None selected

Profile PCI-DSSv3.2.1 Control Baseline for Red Hat Enterprise LinuxS (121)
1 Customize

Target Local Machine

User and host I root@192.168,122,145

'•' Remote Machine (over SSH)

Rules

Enable GNOME3 Screensaver Idle Activation

Enable GNOME3 Screensaver Lock After Idle Period

Disable Prelinking

Install Intrusion Detection Software

Configure Libreswan to use System Crypto Policy

Configure SSH to use System Crypto Policy

Configure BIND to use System Crypto Policy

Configure System Cryptography Policy

Configure OpenSSL Library to use System Crypto Policy

Configure Kerberosto use System Crypto Policy

Verify File Hashes with RPM

Verify and Correct File Permissions with RPM

Install AIDE

Build and Test AIDE Database

root@192.168122.145:22

Expand all

notapplicable

notapplicable

pass

pass

pass

pass

pass

pass

fail

pass

= 57% (69 results, 121 rules selected)

Cancel

Processing on the remote machine..

Figure 2.1: Scanning with S C A P Workbench

• The security content — rule descriptions, O V A L checks, Bash remediations, Ansi-
ble remediations, and more,

• Tests for the security content — to assess the quality of the content,

• Products — product specific data,

• Build files — build configuration files and build scripts,

• Content templates — to reduce duplication of the content,

• Documentations,

• SSG Python module — a project specific module implementing functions for test
ing, building, processing rules, and more.

Restructuring the project is not simple because the most of the categories are somehow
connected — products are built from the security content, some security content is tem-
plated, the SSG Python module builds, processes, or tests other parts, and more. The
restructuring also includes moving directories around — it makes the project's history con
voluted and historical references get lost because of it.

From the items mentioned in the list above, we can group them into three categories —
rules, the build system, and tests — which will be more detailed described. Others are

9

part of some category (Products, SSG Python module, or templates) or not important for
a detailed description (Documentations).

Rules

Each rule has metadata. The metadata are a title, a description, a rationale, a severity, an
OCIL, and identifiers. A rule can have an O V A L check and remediation scripts (Bash, An-
sible, and Anaconda), but it does not have to. There are rules which only carry information
about a security configuration, but does not have a check nor a remediation script. And
there are rules where it does not make sense to have a remediation script. For example,
the Set Boot Loader Password in grub2 rule requires setting a password in grub2. Setting
it to some default password without a user interaction could make a device unavailable or
would not increase the security, because an attacker can know the default password.

In ComplianceAsCode, each rule's identifier is encoded in the containing directory
name. Rules are grouped into groups. The groups can be grouped to more generic
groups and so on. For example, path to Set Boot Loader Password in grub2 rule is
linux_os/guide/system/bootloader-grub2/grub2_password/ in ComplianceAsCode.
The last folder — grub2_password — is the identifier and others are groups where linux_os
is the most generic.

1. Rule is not templated 2. Rule is templated

Rule metainformation Rule test scenarios

Rule
Bash remediation

Ansible remediation

OVAL check

Connected through filepath

Connected through definition in file

Figure 2.2: Connection of a rule and its files

A lot of rules are similar in terms of what they do. In the project, there are many
rules checking a configuration of a file. The principle of checks and fixes of the rules is still
the same. It always edits a line in a file. The difference is in a file path, a line, a case
sensitivity of keys or values, a separator, and a file type (normal format or INI format).
It all can be configured by a template. Thanks to it, redundant code is decreased, and
creating new rules is faster. However, templates are under a different folder than rules and
the connection between rule's metadata, a rule's check, and remediation scripts differs from
not templated rules. The difference is shown in Figure 2.2.

10

Build System

A n output of ComplianceAsCode in the form of a datastream is used as the S C A P scanner
input. The datastream contains several parts. The parts include profiles information, O V A L
checks, Bash remediations, Ansible remediations, and Anaconda remediation scripts.

Stated components, which assemble the datastream, are divided into individual files in
ComplianceAsCode. The reason is an easy development and contributing. A contributor
does not need to know the datastream structure and edit an enormous file that mixes
multiple programming languages. The assembling part is done by the ComplianceAsCode
build system. The build system puts together all individual files and creates the datastream.
Figure 2.3 shows the ComplianceAsCode build schema. In the figure is used the old project
name — Scap Security Guide (SSG).

YAML rule metadata

OVAL check snippets

Bash fix snippets

Ansible fix snippets

SSG build
system

SCAP Source DataStream

X C C D F OVAL

C P E C P E OVAL

Bash fix scripts

Ansible playbooks

Figure 2.3: ComplianceAsCode build schema [8]

Tests

Tests can be divided into two categories. First are unit tests for the ComplianceAsCode
functional part. These tests assure a quality of the build system and the Python ssg
module. The second category is tests for rules. Tests for a rule are located in the t e s t s /
folder under the rule's folder. The tests for rules validate O V A L checks and remediation
scripts correctness.

2.4 Project's File Types

The system for automatic filtering of tests that we propose in this work is based on the static
analysis of changed files. The ComplianceAsCode project contains a number of different
types of files, each of them requiring a different analysis approach. The analysis for each
type is based on the file's type and the expected structure.

Since ComplianceAsCode contains many file types, support for all of them is a rather
difficult task. Therefore, we concentrate on a number of selected types that we describe in
this section. The types were chosen based on the following criteria:

• File types are changed the most often in the ComplianceAsCode history — we focus
on files whose content changed the most often. Changes that moved files to different
folders or that added new files to the project are skipped.

11

• Recommended by ComplianceAsCode developers — some of the file types were sug
gested by developers even though the files do not change often. However, analysis of
the file types can save developers a lot of time spent on change analysis or on testing.

• File types that can lead to the test selection — the project contains a few file types
that do not lead to any test selection. Those file types were skipped, for example,
documentation files.

Overall, we chose to support the following file types from ComplianceAsCode:

• Profile files — files that define specific security policies. The profile files contain
information (title, description, and rule selection) about profiles. The profile files are
in the Y A M L language which is data-serialization language.

• Ansible remediations — scripts that change configurations of non-compliant set
tings to compliant settings. The scripts are written in Ansible automation language
that uses the Y A M L format.

• Bash remediations — similar to the Ansible remediations but written in Bash.

• Python files — file type that is not used directly in security policies. It is used in
the build system, in the test suite, and in utility scripts.

• O V A L files — files written in the O V A L language that is used to define a specific
system configuration check. The O V A L language is written in X M L .

• Jinja macro files — file type used for templatization of rule checks, of remediations,
or of descriptions. The file type uses Jinja 8 templating language.

2.5 Project Testing

As 2.3 describes, in the ComplianceAsCode project are two categories of tests. The second
category — tests for rules — can be difficult to perform without changing a machine state.
The tests need to validate that rules are correctly checking and fixing a machine. Thus,
tests adapt a machine state to their needs, perform a check, and optionally fix the state.
The problem is adapting the machine state. In the worst case, a test scenario can break
the machine and the machine is not usable anymore. Hence, tests for rules are executed on
virtual machines or containers.

Working with a virtual machine or a container allows easy preservation of the machine
state. It allows saving and restoring to the previous state if something breaks. Steps of
testing a rule are shown in Figure 2.4. Description of each step:

1. Connect to a virtual machine or a container through a network interface,

2. Save the current state of the machine,

3. Perform a test scenario script,

4. Perform an O V A L check,

5. Check if the result from the O V A L check is expected,
8https://palletsprojects.com/p/jinja/

12

https://palletsprojects.com/p/jinja/

Pass

Connect to a machine

\

Save state of the machine

i. }

\

Perform a test scenario

r

Perform an OVAL check

Check the OVAL result

Fail

Fix the machine with
remediation script

j
r

Perform the OVAL check

r

Revert state of the machine
to state before

Check if the OVAL
result is pass

Figure 2.4: Testing a rule in ComplianceAsCode

6. If the expected result is pass:

(a) Revert a state of the machine to the state before performing the test scenario.

7. If the expected result is fail:

(a) F ix the machine with a remediation script,

(b) Perform the O V A L check again,

(c) Check if the O V A L result is pass,

(d) Revert a state of the machine to the state before performing the test scenario.

Expected result means a result which should be resulted from an O V A L check after
changing a machine state according to a test scenario. For example, Ensure rsyslog is
Installed rule has test scenarios called installed.pass.sh and n o t i n s t a l l e d . f a i l . s h .

13

The pass (fail) string in filenames indicates the expected result from the O V A L check. The
installed.pass.sh test scenario installs the rsyslog tool. In this case, the O V A L check
should return pass result. The n o t i n s t a l l e d . f a i l . s h scenario uninstalls rsyslog, expects
fail result from the check, performs the remediation script, and performs the O V A L check
again with the expected pass result.

This way of preserving a machine state is time-consuming, especially in the case of
virtual machines. It is possible to test all rules in a profile this way. This functionality
is implemented in the ComplianceAsCode test suite and it is called the combined mode.
However, it should be performed deliberately because the average time of running one test
scenario is 2 minutes. The usual profile has over 100 rules. Wi th several test scenarios
per a rule, testing one profile takes few hours on a virtual machine using Intel Skylake
6th Generation processor with 2.1 Ghz frequency and 4 G B memory. For running all test
scenarios for one rule, the test suite has the rule mode.

One of the minimal tests to consider would be a test of a freshly installed, i.e. un
modified, system when running O V A L checks for all rules in a profile and then performing
remediations for failed ones. This test is also implemented by the ComplianceAsCode test
suite where it is referred to as the profile mode. The mode checks if some rules are still
failing after a remediation. However, this test is not sufficient to ensure that everything
works correctly. Testing a profile as a whole is not as effective as testing each rule with
several scenarios. When testing a profile as a whole, some rules influence others and it may
lead to misleading results.

14

Chapter 3

Git Versioning System

Git is an open-source version control system. A version control system records changes to
a file or a set of files over time. How version control systems record changes is described in
Section 3.1. Wi th the version control system, it is possible to return to a specific version
of a file. It allows reverting files to a previous state, to see who last modified a file, when
an issue was introduced, compare changes over time, and more. Using a versioning control
system means that if something has been broken or lost, it is possible to recover to a sanity
state with a very little overhead [10].

The Red Hat Security Compliance team uses Git as the version control system for
the ComplianceAsCode project. The project is saved at the GitHub remote repository.
The remote repository serves as a common actual state of the project for all developers.
Developers can obtain the project from it or save to it. More about remote repositories is
described in Section 3.2.

This thesis implements test filtering for the ComplianceAsCode project. Test filtering
is done based on changes in the project. Changes are acquired from Git by comparing
previous and new versions of files. A file state is found with Git references (Section 3.3)
which point to individual states of files. The comparison of states is also performed by Git
(Section 3.4). If not stated otherwise, information in this chapter is taken from [10].

3.1 Storing Data in Version Control System

Generally, there are three kinds of version control systems (VCS)—local , centralized, and
distributed. The local V C S is located on the local computer together with the files that are
controlled, for example, R C S 2 . The centralized V C S has a single server that contains all
the versioned files at a central place, for example, Subversion3. In the case of distributed
V C S , clients fully mirror the version database from a server. Git is one of the distributed
version control system.

In centralized version control systems, most operations have a network latency overhead,
since it is necessary to synchronize with the central server. On the other hand in Git, most
operations need only local files and local resources to operate. The entire history of the
project is on the local disk and therefore Git does not need to contact a remote server to
obtain, for example, the state of the project from one month before.

1https://git-scm.com/
2https: //www.gnu.org/software/res/
3https://subversion.apache.org/

15

https://git-scm.com/
http://www.gnu.org/software/res/
https://subversion.apache.org/

The way Git thinks about data is different from other version control systems. Most
version control systems store information as a list of file-based changes. On the contrary,
Git thinks of its data more like a set of snapshots of a miniature file system. A snapshot,
called a commit, describes what the project files look like at the given moment.

Each version of a file in Git is represented as a blob. Blob (binary large object) holds
a file's data, but it does not contain any metadata about the file [4].

A file can have several versions at the same time in Git thanks to branches. Branches
diverge development from a main line (often called the master branch) of development. It
is useful for developing without messing the main line. Switching from an actual branch to
another is called checkout, derived from Git command g i t checkout.

3.2 Remote Repositories

A repository stores files as well as a history of changes made to those files. A repository can
be located at a user's computer (a client's repository) or at a server (a remote repository).

Wi th Git, it is technically possible to upload, called push, and download, called pull,
changes from client repositories, but it can be easily confused what others are working
on and it is not possible to access the repository if their computer is offline. Therefore,
the preferred method for collaborating is to set up an intermediary remote repository, and
push to and pull from that. Even though every user has its own copy of the repository, it
is agreed that the remote repository contains the newest accepted version of the project.

There exist several options for creating an intermediate repository and they use different
protocols for remote synchronization:

• Local protocol — the remote repository is in another directory on disk. It is simple,
and it uses existing file permissions and network access. However, these methods are
difficult to set up and to reach from multiple locations than other network protocols.

• H T T P protocols — Git can communicate over H T T P in two different modes — the
„Smart" H T T P protocol or the older called „Dumb" H T T P . The „Dumb" H T T P
protocol is very simple and generally read-only. The „Smart" H T T P protocol is very
similar to SSH or Git protocols. It can use various H T T P authentication mechanisms
and can be also set up to serve anonymously.

• SSH protocol — a common transport protocol for Git, because SSH access to servers
is already set up in most places and if it is not, then it is easy to do so. The negative
aspect is the impossibility to serve anonymous access of the repository over it.

• Git protocol — provides a service similar to the SSH protocol and works based on
special a daemon that comes packed with Git . The protocol's setup is difficult and it
lacks authentication. Generally, it is undesirable for the Git protocol to be the only
access to the repository. The Git protocol is used for read-only access.

The single largest host for Git repositories is GitHub . It offers communication via
H T T P S , SSH, or Git protocols [6]. GitHub is the central point of collaboration for millions
of developers and projects, which use it for hosting, issue tracking, code review, and other
things. However, GitHub is not a direct part of the Git open-source project.

4https://github.com/

16

https://github.com/

Typically, working with GitHub is designed around a particular collaboration workflow.
It is centered on Pull requests. Basically, a contributor copies a repository, called fork,
implements changes, pushes them to the forked repository and creates a Pul l request against
the original repository in the GitHub's web interface. The flow works whether collaborating
with a small team, or a globally distributed company. The detailed process of Pul l requests:

1. Fork a project — when contributing to an existing project without push access, then
workflow starts with forking the project. It creates a copy of the project repository
into the user's namespace where the user has push access, regardless of the user's
rights in the original repository.

2. Create a branch from the master branch.

3. Make new changes and capture them using commits to the project.

4. Push the branch (new commits) to the GitHub project fork.

5. Open a Pul l request from the forked GitHub repository to the project's original repos
itory— the main part of the workflow, which allows a project owner to review the
suggested changes before merging them into the project.

6. The project owner merges or closes the Pul l request.

GitHub offers dozens of services that can be used to integrate the repository with other
commercial or open-source systems. These systems provide, for example, bug tracking, doc
umentation system, issue tracking, or Continuous Integration. Perhaps the most common
of these is the Continuous Integration (CI) and testing services. They provide automated
testing of the new code. Usually, a CI service is related to Pul l requests when the service
reacts to new changes added to a Pul l request by running tests and reporting the results
to the Pul l request thread.

3.3 Git References

Each commit has a SHA-1 value. The SHA-1 value is a unique identifier within an entire
repository. Each commit points to the previous one thereby creating a tree-like structure of
commits. Wi th the SHA-1 value identifying a commit, it is possible to traverse the tree-like
structure — go through the history of a project.

A SHA-1 value can be stored under a simple name in a file. The name is an alias to the
SHA-1 value. The name can be then used instead of the raw SHA-1 value. In Git, these
are called references or refs and can be found in the Git repository in the . g i t / r e f s folder.
The parent folder, . g i t , groups all necessary information (logs, commits, ...) for the Git
version control system. In Git, there are few different reference types:

• Tag — an object which is very much like a commit object — it contains a tagger
name, a pointer, a message, and a date. The difference is the tag generally points to
a commit, while the commit object points to a tree. The tag pointer is like a branch
reference, but it always points to the same commit.

• The H E A D — a reference to the branch a user is currently on. The HEAD is not
a reference as others, but it is a symbolic reference. By a symbolic reference, it is
meant it does not contain a SHA-1 value but a pointer to another reference. In the

17

case of HEAD, it is a reference to a reference of a branch. As Listing 3.1 shows, HEAD
can be found in the . g i t / folder.

$ cat .git/HEAD
re f : refs/heads/master

Listing 3.1: H E A D pointing to the master branch

When committing a change, it creates a commit object and specifies a parent of the
commit object. The parent is the SHA-1 value referenced by HEAD.

• Remote — difference between remote references and branches is that remote refer
ences are considered read-only. It is possible to checkout to remote reference, but
Git will not point HEAD to it and will not update it with the commit command. Git
manages these references as bookmarks to the last known state of the branches on
remote servers.

3.4 Comparing Git Versions

When comparing versions of two items, the appropriate way of displaying changes is by
showing differences between them [4]. For example, the Linux and the Unix d i f f command
compares the file line by line and summarizes the differences, as shown in Listing 3.2.

$ cat f i l e l
Hello

$ cat f i l e 2
Hello World!

$ d i f f f i l e l f i l e 2
l c l
< Hello

> Hello World!
Listing 3.2: Differences between two files displayed by diff utility

The - u option used with the d i f f command, produces the output in a unified diff format.
The unified diff format is a standardized format used to share modifications. Minus signs
indicate lines from the old file and plus signs indicate the new file. The output also contains
a date, a time zone, and the differences are divided into chunks. Each chunk starts with
@@, the number of the starting line in the new or in the old file, and the chunk length [9].
The output of a unified diff is shown in Listing 3.3.

$ d i f f - u f i l e l f i l e 2
— f i l e l 2019-11-26 18:35:50.202960384 +0100
+++ f i l e 2 2019-11-26 18:34:41.964413558 +0100
@@ -1 +1 @@
-Hello
+Hello World!

Listing 3.3: Differences between two files displayed in unified diff format

18

The d i f f command can be extended to show differences among multiple files and entire
directory hierarchies with the - r option. It computes differences of all pairs of files found
in two directory hierarchies. The command traverses each hierarchy, pairs files by path
names, summarizes the differences between each pair, and produces a set of unified diffs [4].

Git has its own diff facility under the g i t d i f f command. The command is similar to
d i f f - r . It traverses two tree objects and generate a representation of the variances. The
g i t d i f f command has its own powerful features tailored to the particular needs of a Git
user. There are three basic sources for trees or tree-like objects to use with g i t d i f f [4]:

• Any tree object within the commit graph — a tree object represents directory informa
tion. It contains path names, blob identifiers, and metadata for files in the directory.

• The working directory.

• The index — the index captures the project's structure at some moment in time. It
records and retains changes until they are committed.

Typically, trees compared are named via commits, tags, or branch names. Also, a file
and a directory hierarchy of the working directory can be treated as trees. The g i t d i f f
input can also be specified as a range. The most common range specification is the double-
dot syntax [4]. For example, g i t d i f f master, .feature shows changes included in the
feature branch that are not in the master branch.

The g i t d i f f output is similar to the unified diff format with a few additional infor
mation. In the beginning, there is a git diff header followed by extended header lines. The
extended header lines contain information related to the displayed change. There can be
a path from which the file was copied, how the file mode (a file type and file permission bits)
changed, how the file was renamed, and so on [2]. Listing 3.4 shows a g i t d i f f output
when a file got changed.

$ g i t i n i t
I n i t i a l i z e d empty Git repository i n /home/Example/.git/
$ echo "Hello" > f i l e ; g i t add f i l e ; g i t commit -m "Adds f i l e "

[master (root-commit) 8368ed6] Adds f i l e
1 f i l e changed, 1 insertion(+)
create mode 100644 f i l e

$ echo "Hello World!" > f i l e # Change the f i l e
$ g i t d i f f

d i f f — g i t a / f i l e b / f i l e
index e965047..980a0d5 100644
— a / f i l e
+++ b / f i l e
@@ -1 +1 @@
-Hello
+Hello World!

Listing 3.4: Differences between two files displayed by git diff command

19

Chapter 4

Design of Automatic Tests
Filtering for ComplianceAsCode

The base of test filtering is knowledge which tests cover which parts of the project's behavior.
Wi th such knowledge, it is possible to determine the set of tests that are sufficient to be run
for a certain change. A manual way of choosing tests is in most cases easy for a developer
that knows the implementation, because he knows which parts of the implementation are
covered by which tests.

On the other hand, for an automatic test filtering, two different approaches are available:

• General approach — it is insensitive to any internal dependencies of the project. It
is usually based on automatic analysis (static, dynamic, or both) of changes in the
project and of its tests. The selection of tests is based then purely on results of such
analysis,

• Project-specific approach — it operates with the knowledge of the project struc
ture and of dependencies among project files. It extends the first case since some
kind of analysis must be still performed, however, project specifics are now used for
interpretation of the results.

Each of the cases has advantages and disadvantages. The first case is general and can be
used on any project but it is usually not as accurate at tests filtering as the second case.
The second, usually more accurate approach, works only for a specific project and a change
in the project structure or in its dependencies can cause that the filtering will not work
properly and that it must be adjusted to these changes.

In ComplianceAsCode, the general approach, is not sufficient because connections be
tween the implementation and the tests depend on several factors. General static analysis of
ComplianceAsCode content can be performed, however, knowledge of internal dependencies
must be taken in mind — comments can contain metadata, content of files can be generated
from a template, a file content can be only a reference to a macro that is expanded during
the project build (thus the file content is not the resulting content), and more — more infor
mation on different file types from ComplianceAsCode are described in Section 2.4. Wi th
respect to this, the automatic filtering of tests that we propose in this chapter uses the
project-specific approach. We focus on automatically analyzing the changed source files,
using a combination of general static analysis with project knowledge. The input to the
analysis are new changes in the ComplianceAsCode project. The output is a list of detected
changes and a list of tests that are recommended to be run for the changes. A high-level

20

description of the proposed method workflow is presented in Section 4.1. The following
sections describe individual parts in more detail — Section 4.2 describes how changes are
obtained, Section 4.3 describes methods for analysis of the changes, Section 4.4 is about
computing parts of the project affected by the changes, and Section 4.5 describes the last
part that computes the resulting set of tests.

4.1 High-Level Method for Automatic Test Filtering

The design of the system for automatic filtering of tests is shown in Figure 4.1. The
input to the system is a Pul l request number that serves as the reference to new changes
in the project. From the reference, the actual changes are obtained. These changes are
analyzed and other affected parts are computed. The computing of affected parts can
output additional files that need to be analyzed. At the end, the analysis results and the
information about other affected parts are used to compute a set of tests that are sufficient
to be executed to test the given change.

Pull Request Content of files before Changes in Affected parts of Set of tests
number and after changes files the project to run

Get changes
from Pull Request

Compute a set
tests to run

Figure 4.1: Diagram of the designed system for automatic filtering of tests

4.2 Getting Changes

The static analysis phase is the most computationally expensive part of the implemented
system. Each file is analyzed twice — in the state before the changes and after the changes.
The majority of the analysis is unnecessary because it finds out changes in few files only
and in most of the files, nothing changes. Therefore, it is convenient to pre-process the
changes and find out which files changed and hence must be analyzed. To this, we can use
information from the version control system. Moreover, since files can be moved, renamed,
etc., it is essential to know the mapping between files from the two versions. As an example,
Figure 4.2 shows a change in a source tree. Without any information about the mapping,
we do not know if F i l e B was removed and F i l e D added or if F i l e B was moved to F i l e
D. Again, this can be determined from the version control system.

Analyzing each file in ComplianceAsCode could be useful for analyzing built files that
are created from its build system. The build system is complicated, it creates intermediate
files from sources and then connects them to datastreams (documents used as an input to
S C A P scanners that wrap multiple X C C D F documents that contain rules for profiles). The

21

Original source tree Updated source tree

(Folder 2

> r
1 Folder 3

>

(File C

Figure 4.2: File moved within a source tree

analysis would reveal connections among the source and the built files. It could be useful,
even for an experienced developer, to see these connections.

The ComplianceAsCode build takes several minutes and even though the time is negli
gible when compared to duration of test runs, we decided not to analyze each file including
the built ones because it is computationally expensive. If we will need to analyze built
files for a specific analysis, then we will build ComplianceAsCode only during the analysis.
Thus, we save time and we do not perform unnecessary builds. The information about
changed files is obtained from the version control system, Git . Another reason for using
Git is that the ComplianceAsCode project uses Git for version control and all contributions
to the project happen on GitHub.

The input for getting changes is an identifier of a Pul l request, i.e a number. The remote
repository is the main place for the ComplianceAsCode project where all new features, new
rules, bug fixes, and new tests are introduced, reviewed, and approved. The workflow starts
with creating a new Pul l Request. Hence, a convenient way to refer the new contribution
is the Pul l request number.

From the Pul l request, changes are obtained with Git version control system and saved
to a record that represents a file record. Each changed file is saved to an individual file
record. The output from this part are these file records.

4.3 Analyze Source Code Changes

The ComplianceAsCode project contains different file types as Section 2.4 describes. For
each file type, we propose a separate approach to analysis of changes, with respect to the
file's language and expected structure. The proposed analyses are described in the rest of
this section.

The input to this phase are file records that contain contents of changed files before and
after the changes. The output is a record that contains information about importance of the
changes in each file — if the change affects the file thus a test will be selected or the change
is not important thus no test will be selected — and additional information for following
computation of affected parts and tests selection. Each changed file has the information in
its own record and the form of the information differs by the kind of a source file.

22

Profiles

A profile file is a file in Y A M L format that defines a specific security policy. In a profile
file, several keys can be used — documentation_complete, t i t l e , description, extends,
and selections. Most of them serve for documentation purposes, only the selections
key is important for the analysis. Under the key, there is a list of rules that are selected
for the policy. If the list of rules changes, the profile test should be run because an added
or a removed rule can cause the profile not to work as a whole.

Y A M L format uses lists and dictionaries (each key has a value). These can be nested and
mixed together — it forms a tree structure. The tree structure root node is the document
itself, an unlabeled edge to a node represents an item from a list where a single node
corresponds to one value from the list, and a labeled edge to a node represents an item
from a dictionary where the edge label corresponds to the key and the node is the key's
value. The comparison of the old and the new tree traverses recursively from the root node
to leaf nodes in both trees and tries to find most similar paths in them. The order of edges
and nodes is not important for profile files because they are order insensitive — it does not
matter if d e s c r i p t i o n precedes t i t l e and also the order of rules in the rule selection does
not affect their order in the built datastream file.

Ansible Remediations

Ansible is an automation language used for deployment, orchestration, and, most impor
tantly for the ComplianceAsCode project, for configuration management.

Ansible remediations use Ansible, however, they can be also templated with Jinja macros
and hence the content of the file does not have to be an actual Ansible. If it is templated,
then during the build the macro is expanded, a new file for remediation is created within
the build files, and the new file is used for remediating. Remediations can contain metadata
that are present at the beginning of the files in the form of comments. These metadata are
used during a build process and the analysis should record if they have changed.

Ansible remediations are in the Y A M L format, however, contrary to the profile files,
they do not have a defined structure and they can contain arbitrary content. The only
known key is name that specifies the name of the remediation. Hence, we use a more
straightforward way to analyze Ansible remediations. We compare the old and the new
content as strings, obtain the differences in the unified format, and analyze the output. In
the output, metadata changes can be seen and it does not matter if the file is templated
with a Jinja macro or not.

We distinguish the following types of changes of Ansible remediations:

• changed line has a pattern that starts with {{{ and ends with }}} — usage of Jinja
macro changed,

• changed line starts with # and platform, disruption, strategy, complexity, or
reboot keyword follows — metadata changed,

• changed line is empty or starts with # and the next word is not a keyword — an
irrelevant change,

• all other cases — the usage of Ansible changed.

The particular changes can be identified using regular expressions (see Chapter 5 for
more details).

23

A regular expression can also find that the remediation templatization changed — the
remediation did not use a Jinja macro and now it uses the macro, or vice versa. This type
of a change is important and if it happens, no more analysis has to be performed because
the file content completely changed.

Bash Remediations

Bash remediations are similar to Ansible remediations — they are used for configuration
management and they can have the same metadata. However, as the name implies, they
are written in Bash language or templated with Jinja macros.

If a Bash remediation is templated, then it can be analyzed the same way as the Ansible
remediations (see description of Ansible remediations analysis). Similarly, if the remedia
tion templatization changes, then it is an important change because the file content was
completely changed.

A different case is if the Bash remediation is not templated and contains actual Bash
code. Bash code can be compared using lexical analysis. The code is parsed into tokens and
the individual tokens from the old Bash code are compared with the tokens from the new
code. If a change in a token is found, then the analysis determines that the source code has
changed. Changes in comments and indentations do not affect the lexical analysis, hence
these types of changes are filtered out. Such filtering is sufficient for our analysis because
Bash remediations are short scripts that fix specific configuration mostly within few lines
and in a vast majority of cases, a change in the code causes an actual change of the script
semantics.

Python Files

Python code is used in the build system, in the test system, and in utility scripts. When
a change is found in any Python file, it is sufficient to run a single specific set of basic tests
from the project. A more important decision, in this case, is if these tests should or should
not be run.

Python source code is parsed to an Abstract Syntax Tree (AST). It is an abstract
structure in the form of a tree that represents the code. Afterwards, we compare ASTs for
tree isomorphism. This allows us to filter out, e.g. changes in comments.

O V A L Files

O V A L language is written in X M L , therefore, a general analysis for X M L files can be used.
Each O V A L file contains an O V A L check that represents a rule check.

Before we start analyzing an O V A L file, we must add the X M L header and the X M L
footer to the file. It creates the valid X M L file that can be parsed. In ComplianceAsCode,
the header and the footer are added during the build.

X M L is a markup language. It has start and end tags, these tags can have attributes, and
they form elements. Elements can be nested together and they form a tree-like structure.
For analysis of the differences, we use an algorithm for detection of changes in hierarchically
structured information [1].

Afterwards, we distinguish a number of types of changes:

• New node inserted or node removed — if the node was added to or removed from
a metadata node, then the change is irrelevant for the O V A L check. If it was added
to or removed from other node, then it is considered an important change.

24

• Node moved — if the node was moved within the same node that specifies one part
of the check — metadata, c r i t e r i a , t e x t f i l e c o n t e n t 5 4 _ t e s t , t e x t f i l e c o n t e n t -
54_object, or t e x t f ilecontent54_state node — then the change does not affect it.
However, if the node was moved from one part of the check to another, then the check
could not work at all, thus this must lead to testing every time.

• New attribute added — a new attribute does not affect the O V A L check.

• Attribute removed, renamed, or attribute's value changed — if the changed attribute is
comment or version then the check is not affected by the change but other attributes
could affect it thus they are considered as important changes.

• Text within a node changed — if the changed text is a t i t l e , description, or
platform node then the check is not affected, otherwise it could be.

• Text added after a node — adding a text after a node, not to a node, is not a typical
type of change in an O V A L check and must be verified every time.

• Inserted comment — this type of change can be ignored, because comments in O V A L
checks do not contain important information.

Jinja Macros

Jinja is a templating language. In the ComplianceAsCode project, it is used for templati-
zation of rule's checks, of remediations, or of descriptions, which differ only in a part that
can be parameterized. For example, package installation rules and their remediations are
usually templated — the package name is parameterized and the other parts are the same.
Therefore, a macro can contain any string and it does not distinguish if it is a text or
a source code. The important knowledge is where the macro is used and whether it makes
sense in the context. Jinja macros can be also used within other Jinja macros.

The only certainty for analyzing Jinja macro definitions are the macro keyword, the
macro name, the parameters at the beginning of the macro, and the endmacro keyword
in the ending tag. Even the format of these tags can vary in systems that use Jinja
macros because Jinja allows to specify a string for marking the beginning and the ending
of a macro — Jinja macro documentation1 refers to a format that uses {{ and }} to mark
the start and the end of the tag, respectively, while ComplianceAsCode uses {{% and %}}.

The important part in analyzing Jinja macros is finding which macro has changed. Each
file with Jinja macros contains several macros and we need to filter out not changed ones.

The file with Jinja macros is analyzed as a string. We use a combination of getting
changes in the unified format, analysis of the file content, and regular expressions to parse
the changed macros (see Chapter 5 for details).

4.4 Compute Affected Parts

The input to this phase is a record that contains information about the importance of
found changes and additional information about them, e.g. the name of the changed rule.
Based on the information, it computes the set of files that are affected by the changes.
Computing affected parts can lead to different scenarios depending on the file type and

1https://jinja.palletsprojects.com/en/2.11.x/templates/#macros

25

https://jinja.palletsprojects.com/en/2.11.x/templates/%23macros

the change — a new file will need to be analyzed, a product that uses changed files will be
tested, or nothing will be tested because the changed part is not used in any built output.
The most important part in computing affected parts is to determine what type of file was
changed. The record from the input is filled with information about other affected parts of
the ComplianceAsCode project. Wi th the affected parts, we mean files but the format how
the information is saved the record depends on the analyzed file — if a profile file is affected
then we save the information as the profile name, if a file from built files is affected, then
we save the file path, and so on. The output from this phase is the filled record.

Profiles

Profiles can be extended by other profiles. That means if a profile was changed, then all
profiles that are extending it are also affected by the change. These profiles can be found
in the same folder as the changed profile and they contain the extends key with the value
equal to the name of the changed profile. During the computation of affected parts, we
check the profile files in the same folder to see if there is any profile that extends the changed
one. This check is recursively repeated to find profiles that extend the extending one. A l l
affected profiles, including the changed one and all profiles that (directly or indirectly)
extend it are saved to the record.

Ansible Remediations

Ansible remediation is a remediation for a specific rule. The rule must be a part of a pro
file— the rule must be in the s e l e c t i o n s part of some profile. If the rule is not a part of
any profile, then it cannot be tested. This is because the rules to test are selected from
datastreams, which are created from profiles, thus if no profile contains the rule, then also
no datastream will contain it. During the computation of affected parts of an Ansible
remediation change, we must search all profile files (all files in all p r o f i l e s folders) in
ComplianceAsCode and find at least one profile that includes the changed rule. If no such
profile is found, the rule cannot be tested and we do not add it to the record.

Bash Remediations

Similar to Ansible remediations. A Bash remediation is a remediation for a specific rule,
therefore if the changed Bash remediation is from a rule that is not present in any profile,
then it cannot be tested and hence we do not add it to the record.

Python Files

If a Python file was changed and during the analysis we found that the change must be
tested, then we have recorded to the record that the functional test must be selected in
next phase. No computation of affected parts is needed because Python files do not affect
rules, profiles, or products. They affect the build system and the testing system that are
checked by the functional test.

O V A L Files

The O V A L file represents a check for a rule, thus the rule must be a part of some profile as
we described in the Ansible remediations part. The difference is that tests from an O V A L
check can be used within other O V A L checks. The O V A L file can have one or more tests

26

and each of them has an i d attribute. The value of the attribute can be used in other
O V A L files via the def i n i t i o n _ r e f attribute that references the i d value. Thus, we parse
values of all i d attributes from the changed O V A L file and search for all O V A L checks that
contain a def i n i t i o n _ r e f attribute that has the same value as any i d from the changed
O V A L . A l l rules that use a check from the changed or from an affected O V A L file must be
added to the record provided they are a part of a datastream. Hence, before the affected
rules are added to the record, we search if they are included in any profile.

Jinja Macros

When computing affected parts for a changed Jinja macro, we must first find the name of
the macro. From the previous phase, we know which macro changed and hence we can parse
from it the name with a regular expression. The format of Jinja macros is the following:

{{%[-] macro NAME(PARAMETERS) [-]%}}
MACRO BODY
{{*/.[-] endmacro [-]%}}

The name we are looking for is in the first line.

Wi th the name we can search for usage of the macro. Usage of each macro has format:

{{{ NAME(PARAMETERS) }}}

There are three cases where a changed Jinja macro can be used:
• The changed macro can be used in other Jinja macros — when the macro is used in

other macros, then we need to find usages of those macros in other macros. This
process is repeated until we know all macros that (directly or indirectly) use the
changed macro.

• The changed macro is used in a specific rule file — the macro is used in an O V A L file,
a remediation file, or a rule description file. Such a file must be processed two times
through the build system so the macro is expanded — the first time with the value of
the macro before the changes and then after the changes. Then, we can create a file
record the same way as we have created file records during obtaining changes from
Git — create a record that has the content of the file before the changes, the content
of the file after the changes, the file path, and the flag that indicates the file was
modified. The created file record is added to the record from the input as the affected
file that must be analyzed. This is done with all files that use the macro. After the
Jinja macro analysis, the system processes the new file records the same way as other
changed files — uses them as inputs to the analysis phase.

• The changed macro is used in a template file — the template file is a file that generates
files during a build. From the template file name we must parse out the template
name and the type of files that are generated from the template (OVAL files, Bash
remediations, or Ansible remediations). The template name is used for searching the
template usage in rules — rules that have generated checks and remediations from
templates have the template keyword with a name that is the same as the template
name in their rule description file. When we know specific rule names and which type
of files are generated from the template, then we know what the names of the created
files from the template during the build will look like. The format is the rule name

27

with a suffix according to the file type (OVAL files have .xml and so on). Then,
we can proceed similar in a way as we do for the second mentioned case — run the
ComplianceAsCode build two times (before and after the changes), get contents of
created files (we already found out the names of files that are generated from the
changed macro), create file records, and add the file records to the record from the
input as affected files. The system then analyzes the new file records the same way
as others (inputs them to the analysis phase).

4.5 Compute Set of Tests

The input for computing set of tests are records filled with information from file analyses and
from computing of affected parts. The records already contain all important information
about what must be tested. The information from the records serves for the selection of
specific tests.

The tests in ComplianceAsCode are specific that they do not need paths to test scenar
ios. Inputs to tests differ for individual test types:

• rule test — uses the testing suite in the rule mode. Inputs are the name of the tested
rule and a datastream of a product that contains a profile with the tested rule,

• profile test — uses the testing suite in the profile mode. Inputs are the name of the
tested profile and a datastream of a product that contains the tested profile,

• product test — builds the product's datastream. The only input is the name of the
tested product,

• functional test — no input to the test.

The record from the input contains information in the form of a rule name with a product
name, a profile name with a product name, a product name, or the boolean variable that
signalizes a changed functionality. Thus, this phase selects tests based on the information
provided in the record, for example, if the record contains a rule name with a product
name then the product test and the rule test are selected. In this case, the product test is
important for the rule test because it builds the datastream that is used for the rule testing
(same for the profile test). Detailed description of testing modes in ComplianceAsCode is
in Section 2.5.

The output from the computing is a list of tests. These tests are in the form of commands
that are almost ready to be used for ComplianceAsCode project. The user must only change
the path to script that runs the test suite and the name of virtual machine where tests will
be performed.

28

Chapter 5

Implementation

This chapter describes the implementation of the system for the automatic filtering of tests.
The implementation and the description of it correspond to the design described in Section
4.1 with a difference in the analysis part and the computing affected parts part. These two
parts overlap because some findings during the analysis are actually part of the computing
affected parts and vice versa. The implementation is open-source and available on Gi tHub 1 .

The system is implemented in Python 3. Python 3 was selected because the Compli-
anceAsCode project uses it for the build system, the testing library, and utility scripts.
Another reason is its library variability.

In Section 5.1, the main control of the system is described. The following sections
deeply dive into individual parts that are run from the main control. Section 5.2 describes
how changes are obtained from the ComplianceAsCode project with Git commands. The
next section, Section 5.3, describes the implementation of analyses of file types that are
described in the previous chapter, in Section 4.3. In the analysis part, we have focused
on extensibility and thus more analyzers can be added easily without changes in already
implemented parts. For the extensibility, we have used polymorphism for the analyzers
and for their selection. Section 5.4 outlines how specific test commands are obtained from
results from an analysis. The last section 5.5 is dedicated to printing results and commands
from the run of the system.

5.1 Main Control

The content_test_f i l t e r i n g . p y file implements the highest level of the filtering algo
rithm. In the beginning, logging and variables are initialized. Then the main part starts.

At Algorithm 1 is the main control of the implementation. At line 3 starts the main
loop that analyzes each changed file, computes its affected parts, saves results, and extends
changed files with affected files. In the algorithm, the analysis and finding of affected parts
are divided, but in the implementation, those parts are in a single step.

5.2 Getting Changes

Changes are obtained with Git commands. Python has the GitPython 2 library for working
with Git . Git commands in the library are implemented either in a pure Python or through

xhttps: //github.com/mildas/content-test-filtering
2https://github.com/gitpython-developers/GitPython

29

https://github.com/gitpython-developers/GitPython

1 initialize Git repository R:
2 Files = changed files from R:
3 do
4 File = Files.popQ:
5 result = analyze(File):
6 affected_files = result.findAffected():
7 tests, append (result, tests):
8 logs.append(results.logs):
9 Files.extend(affected_files):

10 while Files not empty,
n print (tests.getCommands());
12 print (logs):

Algorithm 1: Main control of automatic test filtering

Git commands. The pure Python implementation is less resource-intensive but some of
the commands are not implemented in that way or they miss some of the options imple
mented. If such commands are needed, the implementation directly uses Git commands.
In this section, we present the used Git commands, however, in the implementation we use
GitPython methods that are equivalent to the presented Git commands.

This phase consists of five steps:

1. Obtaining changes from the remote repository to the local repository,

2. Finding the last common commit of the master branch and the branch with changes,

3. Finding files that are changed in the branch with changes,

4. Obtaining contents of the changed files,

5. Creating file records with the contents of the changed files.

The source code for this phase is in the c t f / d i f f .py file. The basis of the code is the
GitDiffWrapper class that wraps the GitPython library and provides methods important
for the filtering system. The class is a singleton because some analyses need to know the
repository path, need to get the state of the project before and after changes, or build the
project. As a singleton the class can be imported and used without a need to re-initialize
the repository or pass it in as an argument. The rest of this section describes the above
five steps in detail.

Obtaining Changes from the Remote Repository to the Local Repository

The G i t D i f f Wrapper class has a method that prepares the ComplianceAsCode repository.
It creates a directory and clones the repository to a local repository. If the local repository
exists on a disk and its path is provided to the system with the — r e p o s i t o r y <path>
argument, then nothing is cloned. It saves time and it is also useful for filtering tests for
a local change that is not available at the remote repository yet.

The g i t _ d i f f _ f i l e s method from G i t D i f f Wrapper manages obtaining changes. First,
it finds a remote repository that will be used for pulling changes and updating the local
repository. As a default value is used the ComplianceAsCode repository3 but it is possible to

3https://github.com/ComplianceAsCode/content

30

https://github.com/ComplianceAsCode/content

use an arbitrary fork of the remote ComplianceAsCode repository with the —remote_repo
<repository_url> argument.

The input to the g i t _ d i f f _ f i l e s method, thus the input to this phase, is a name of
a branch or a Pul l request number. The input depends if the application was run with
the sub-command branch or pr. The difference is how the changes are obtained from
the remote repository and to which local branch they are saved:

• branch — obtains changes from a branch. It works with the exact name of the branch
and saves it to a local branch with the same name.

• pr — obtains changes from a Pul l request. It pulls changes from a remote branch
pull/ID/head where ID is a Pul l request number. This reference is specific for repos
itories saved on GitHub. Changes are saved to a branch with the name pr-ID.

Now, we have a new local branch that contains the changes of interest that we call the
changes branch.

Finding the Last Common Commit

After the changes branch is created, it is necessary to find the commit at which it diverged
from the master branch. The common commit, against which the changes need to be
compared, is shown in Figure 5.1. It is not possible to compare the changes branch with
the master branch directly because the master branch can contain additional changes that
are not present in the changes branch.

master branch

o
Figure 5.1: Divergence of branch with changes

When finding the common commit, two cases can happen — the changes branch can
be already merged into the master branch or not. The difference between these cases is
shown in Figure 5.2. It can be detected by finding the most recent common commit of
these two branches. When the common commit is the same commit as the last commit of
the changes branch, then the changes branch was already merged. When the most recent
common commit is not the last commit of the changes branch, then the commit is the
common commit we were looking for and we can use it for the comparison.

If the changes branch is already merged, we need to find the common commit from
which was the changes branch created. That can be achieved in three steps:

31

Not yet merged
branch with changes

Already merged
branch with changes

master branch

Figure 5.2: Difference between not merged and already merged branch

1. Get commits that are descendants of the changes branch and ancestors of the master
branch. We can do that by invoking g i t log:

g i t log MASTER_BRANCH ~NEW_BRANCH —ancestry-path \
— r e v e r s e —format=0/0P

2. Retrieve the oldest record that has two parents commits associates,

3. Get the common ancestor of the two parents commits, e.g. by invoking g i t
merge-base:

g i t merge-base — a l l commit1 commit2

The first step gets changes branch descendants and the master branch's ancestors with
the —ancestry-path option. Usually, the returned list of commits is sorted from the
newest one to the oldest one. In this case, the oldest commit from the list is needed — that
is the merge commit of the master branch with the changes branch — thus the list is reversed
with the —reverse option. Wi th the —format=0/0P option, it is possible to get a hash of
the parent commit. In this case, the oldest record's parent commit that we are looking
for are actually two commits because it is a merge commit that has two parents — the last
commit from the changes branch and the last commit from the master branch before the
merge commit. The common ancestor of the two commits is the common commit from
which was the changes branch created — the common commit that we were looking for.

Now, we know the common commit from the two branches and we can use it for finding
files that were changed in the changes branch.

32

Finding Files that are Changed in the Branch with Changes

With the hash of the common commit, information about changes can be obtained with
g i t d i f f . When the —name-status option is used within the command, it returns a list
of changed files in the form of a path or paths (if the file was renamed) with a flag that
informs about the change — the M flag if the file was modified, A flag if the file was added,
and so on. The full command, when switched to the changes branch, is:

g i t d i f f —name-status C0MM0N_C0MMIT..HEAD

Now, we have the list of all files that were changed in the changes branch.

Obtaining Contents of the Changed Files

When we know which files have been changed and how they have been changed, we need
to obtain the content of each file before the changes and after the changes. That can be
achieved with g i t show commands:

g i t show C0MM0N_C0MMIT:./OLD_FILE_PATH # the content before the changes
g i t show HEAD:./NEW_FILE_PATH # the content a f t e r the changes

The commands operate on the changes branch so it is not necessary to use a specific commit
hash for the last commit from the changes branch — we can use the H E A D reference. These
commands vary on a type of the change of the file. If the file path did not change, then
OLD_FILE_PATH and NEW_FILE_PATH are the same. If the file was added, then the first
command is not relevant because the file did not exist before. If the file was removed, then
the second command is not relevant because the file does not exist anymore.

Creating File Records

The information about the changed files we found must be wrapped to records. Then we
can output these records from this phase and use them in the next phases.

For each changed file we create a single record. The records represent file records with
all information that is needed for the analysis. Each record contains the file path (if the file
was renamed, then the new file path is used, otherwise the file path is the same for the file
before and after changes), the modification flag, the content of the file before the changes,
and the content of the file after the changes. If the file was added, then we put the empty
string to the content of the file before changes. If the file was removed, then we put the
empty string to the content of the file after changes.

Now, we have everything for the analysis. The output from this phase are the created
file records. They are returned to the main control for the next phase.

5.3 Analysis and Computing Affected Parts

The input to this part is a file record structure with changes. It starts at the
c t f / d i f f _analysis .py file where each analysis class decides if it can analyze the file — at
most one class can be chosen.

The selection of the analysis (if the file will be analyzed as Bash, as Ansible, and so
on) is implemented by a plug-in system that allows extension by other analyzers as long as
they conform to the interface. The selection of analyzer is done in four steps:

33

1. Import all analysis classes from modules located in the c t f / a n a l y s i s folder,

2. Each of analysis classes with the can_analyse method runs the method on a file path
of the changed file (the information is contained in the file record),

3. If the method returns True, then the class knows it can perform the analysis,

4. The class is selected and will perform the analysis.

Thus, the newly added analysis class does not need to be added to c t f / d i f f _analysis .py.
The class only needs to be defined in the c t f / a n a l y s i s folder and to have implemented
the can_analyse method.

If no analyzer can perform analysis of a file, then no class returns True, no analysis will
be performed, and the file is skipped.

A l l analysis classes inherit from the AbstractAnalysis class. Besides few methods
useful for analysis (to check if the file was added and to check if the file was deleted),
there are static abstract can_analyse method and abstract process_analysis method.
Abstract methods enforce the implementation of the methods in subclasses. The static
method, can_analyse, allows us to use the method without an instance of the analysis
class and hence we do not need instances of analysis classes when selecting the analyzer.

Each analysis records changes, logs, and affected parts to an instance of the Dif f Struct
class, which is the output from the analysis. A detailed description of the Dif f Struct class
is in Section 5.4. The rest of this section presents implementation details of analyses of
different file types.

Profile Analysis

A profile file is detected if its file path has the . p r o f i l e suffix. The initialization of the
class for profile analysis starts with parsing the name of the profile and of the product using
the profile file path. Each profile file has the same file path format. The format relative to
a repository path is PRODUCT_NAME/profiles/PROFILE_NAME.profile.

The analysis starts with checks if the profile file was added or removed. Three cases
may occur:

• Profile file was added but there is no list of rules — the new profile does not have
the selections section with rules. We only record the logging information to the
instance of D i f f S t r u c t but we do not record the change that would lead to test
selection in the next phase.

• Profile file with rules was added — the new profile has rules in the rule list. We
record the logging information and the change to D i f f S t r u c t , which will lead to test
selection in the next phase.

• Profile file was removed — we record the logging information but we do not record
the change, thus this will not lead to test selection.

When the profile file is modified, the previous and the new content of the file are parsed
to dictionaries with the PyYAML1 library. These dictionaries are then compared using the
DeepDiff class from the DeepDif 0 library. The DeepDiff class compares the dictionaries

4https://pyyaml.org/
5https://github.com/seperman/deepdiff

34

https://pyyaml.org/
https://github.com/seperman/deepdiff

and for each change saves a change type and how it changed. Each change type is handled
differently in the profile analysis:

• dictionary item added or dictionary item removed — a new key was added
to the profile or a key was removed from it. If the key is t i t l e , description, or
documentation_complete, no change is recorded to the instance of D i f f S t r u c t . If
anything else changes, then the change is recorded to the instance.

• type changes — type of a value changed. This change is not typical thus, in this
case, the change is always recorded to D i f f S t r u c t and it will lead to the test selection.

• values changed — some value was changed. If the value is from the selections
key, then the change is recorded to D i f f S t r u c t for following test selection. Otherwise,
no change is recorded because the change does not affect the profile functionality.

• iterable item added or iterable item removed — an iterable value was added
to the profile or removed from it. The only key that contains iterable values is
selections with rules. We obtain names of rules that were added or removed, add
them to the instance of D i f f S t r u c t as logging information for the user, and we record
the change to the instance thus the following phase will select the profile test.

When the change is being recorded to the D i f f S t r u c t instance, we already know that
the profile file changed. Thus, as a part of computing the affected parts, we must find all
profiles that extend the changed one. A l l relevant profiles are found in the same folder
as the changed one. We open them and try to find the extends key. If a profile has the
key and the key's value is the name of the changed profile then we record the affected
profile name to the D i f f S t r u c t instance, thus the test for the profile is also selected in the
next phase. The process is repeated until all profiles that directly or indirectly extend the
changed profile are collected.

After analyzing all the changes, the analysis ends and the D i f f S t r u c t instance with
information about changes and logging information are returned to the main control.

Ansible Remediation Analysis
A n Ansible remediation file is recognized with a regular expression that matches a file path
if it has the .yml suffix and if it is in the ansible folder:

.+/ansible/\w+\.yml$

The name of the rule that the remediation corresponds to is detected with a similar
regular expression because the rule name is the name of the parent folder of the ansible
folder. The regular expression that captures the rule name with a capturing group is:

.+/((?:\w|-)+)/ansible/\w+\.yml$

The analysis starts with a detection if the Ansible remediation is newly added or re
moved. If it is added, we record it to the instance of D i f f S t r u c t so the test for the rule
is selected in the next phase and the analysis ends. If the file is removed, we record the
logging information to inform the user but we do not record any change so no test will be
selected and the analysis ends.

When the remediation is modified, first of all, the analysis detects if the remediation
used a Jinja macro in the previous state and if it uses in the new state. The fact is detected

35

with a regular expressions that remove the Jinja macro usage (everything from {{{ to }}}),
empty lines, and comments. If no lines are left, then the file uses a Jinja macro. If the
file used a macro in the previous state and the new state it does not use any macro or
vice versa, then it is an important change that is recorded to the D i f f Struct instance, the
analysis ends, and next phase will select the test scenario for it.

If the file uses a Jinja macro both in the new and the old state or it does not use
the macro in any state, then we use the old and the new file contents as inputs to the
DeepDiff class to analyze the changes. Both inputs to the class are strings and in such
case, the output from the analysis is in a unified format. A l l unnecessary lines (unified
format header and empty lines) for the analysis are deleted from it and only changed lines
are kept — lines starting with + or - . The changed lines are then analyzed one by one
according to the description of Ansible remediation file type in Section 4.3:

• changed line starts with # — it is a comment. If the comment starts with platform,
reboot, strategy, complexity, or d i s r u p t i o n keyword, then it is a change in meta
data. The change is recorded in D i f f Struct and in the next phase the test for the
product will be selected. Otherwise, no test is selected and no change recorded,

• changed line is empty — no change is recorded to D i f f Struct,

• other cases — the remediation was changed. If the remediation uses a Jinja macro,
then we record the change and it will always lead to the rule test selection in the
next phase. If the remediation does not use any Jinja macro, then we first check if
the changed line does not start with the name: string. If it starts with the string,
then we do not record anything and analysis ends. Otherwise, we record the change
so that the rule test is selected in the next phase.

During recording of the changes to the D i f f Struct instance, we first check if the rule is
used in any profile. That is achieved by finding all p r o f i l e s folders in ComplianceAsCode
and searching all files from the folders. If any profile has the rule in the rule list, then we
choose the profile's product (because datastreams are created for products and datastreams
contain all product's profiles) and record the rule and the product to D i f f Struct so that
the test selection phase knows the rule is used in some profile and thus it can be tested. If
the rule is not contained in any profile, then even though we found a change in the rule's
remediation we do not record the change so that the test selection phase does not select
any test for it because the change cannot be tested.

After analyzing and recording changes to the instance of D i f f Struct, the Ansible anal
ysis ends and the instance is returned to the main control.

Bash Remediation Analysis

A Bash remediation file has the . sh suffix and is located in the bash folder. The regular
expression that recognizes the remediation is:

.*/bash/\w+\.sh$

Most of the Bash remediation analysis is similar to the Ansible remediation analysis —
first we detect if the file is added or removed, then if the remediation used a Jinja macro
in the previous state and in the new state it does not or vice versa. Also if the remediation
uses a Jinja macro in the old and in the new state, then the steps are the same as for the
Ansible remediation that uses a Jinja macro. Recording of the changes to the DeepDiff

36

instance and computing affected parts (if the rule is contained in any profile) is also the
same. Thus, for more information see the Ansible remediation implementation part.

The difference from the Ansible remediation analysis is when the Bash remediation
does not use a Jinja macro — the remediation is written in Bash. In such case, we compare
outputs of a lexical analysis of two versions of the file. For the lexical analysis of the code
the shlex 6 library is used. The algorithm for comparison of Bash remediations is shown at
Algorithm 2.

1 token_before = getNextToken(file_before):
2 token_after = getNextToken(file_after):
3 while token_before not empty A token_after not empty do
4 if token_before ^ token_after then
5 | break:
6 end
7 token_before = getNextToken(file_before):
8 token_after = getNextToken(file_after):
9 end

io if token_before ^ token_after then
n | code has changed:
12 end

Algorithm 2: Comparison of Bash source codes

If the analysis finds a change in the remediation, then it is recorded to the D i f f Struct
instance so the test for the rule is selected in the next phase. The instance is returned to
the main control.

Python Analysis

A Python file is recognized if it has the .py suffix. If a change in a Python file is found
during the analysis, then we record the change to the instance of D i f f S t r u c t always as
the functionality change.

The analysis starts with checking if the file was added or removed. In both cases, we
record it to the D i f f S t r u c t instance and the analysis ends.

If the file is modified, then the old and the new Python source codes are parsed to
Abstract Syntax Trees (ASTs) with the ast' library and these two trees are compared.
Nodes of a Python A S T are described in the Green Tree Snakes documentation8.

Algorithm 3 shows the comparison of two ASTs. The comparison returns a boolean
value whether the trees are the same. The comparison starts with comparing root nodes
of both trees and recursively dives deeper to child nodes until it hits leaf nodes. First, the
algorithm checks if both nodes are of the same type. If so, and the nodes are instances of
the AST class, then items of the nodes are further analyzed. For each item, the algorithm
checks if the item's key is a line number or an offset of a token. These items can be changed
and the A S T remains the same thus they are not compared. The context of the node is
also ignored because if a context of the node changes, then the type changes and the first
condition with the type check fails. If the whole content of the first check passes, then

6https: / / docs.python.org/3/library/shlex.html
7https://docs.python.org/3/library/ast.html
8https://greentreesnakes.readthedocs.io/en/latest/nodes.html

37

https://docs.python.org/3/library/ast.html
https://greentreesnakes.readthedocs.io/en/latest/nodes.html

Input: TreesToCompare
Output: TreesE'quality
Function ASTEquality(nl, n2):

if type(nl) ^ type{n2) then
return False:

end
if type(nl) == AST class then

foreach key,vl £ nl.items do
if key == number of line" V ,pffset of token" V ,pontext" then

continue:
end
v2 = n2[key]:
if not ASTEquality(vl, v2) then

return False:
end

end
return True;

end
if type(nl) == list then

foreach {vl,v2) G zip{n\.items, n2.items) do
if not ASTEquality(vl, v2) then

return False:
end

end
else

return n l == n2:
end

26 End Function
Algorithm 3: Finding Abstract Syntax Trees equality

True is returned. If the nodes are not the instances of the AST class but they are lists, then
foreach loop creates pairs of nth item from the first node with nth item from the second
node and uses them as the input to the function. If none of the previous conditions were
fulfilled, then the equality of nodes if returned.

If the algorithm found a change in the A S T , then the functionality change is recorded
to the D i f f Struct instance, and the test selection phase selects the functionality test that
runs ctest from ComplianceAsCode. Hence, we do not need to check which specific Python
file changed and which other Python files are affected because we ensure the functionality
is correct with the test.

O V A L Analysis

A n O V A L file path has the .xml suffix and it can be found in the oval folder that is in
a rule folder. The regular expression that checks if a file is a rule check is:

.*/oval/\w+\.xml$

O V A L files themselves are not valid X M L files because:

38

• they can be fully written in a Jinja macro, same as Ansible and Bash remediations,

• they can use Jinja macro for conditions — majority of such files is in X M L but
a few parts are conditioned with a Jinja macro, see example at Listing 5.1 from the
ensure_redhat_gpgkey_installed rule's check,

• they do not have the X M L header and the X M L footer.

A l l the cases are resolved during the ComplianceAsCode build process — macros are ren
dered, the X M L header is prepended, and the X M L footer is appended to the file content.

{{%- i f product == "rhel6" %}}
<extend_definition comment="SL6 i n s t a l l e d "
d e f i n i t i o n _ r e f = " i n s t a l l e d _ 0 S _ i s _ s l 6 " />

{{*/.- endif %}}
{{%- i f product == "rhel7" %}}

<extend_definition comment="SL7 i n s t a l l e d "
d e f i n i t i o n _ r e f = " i n s t a l l e d _ 0 S _ i s _ s l 7 " />

{{*/.- endif %}}
Listing 5.1: Partially templated O V A L check

First, we check if the file is newly added or removed. If it is added, we record it to
D i f f Struct for the test selection and the analysis ends. If it is removed, the analysis ends.
Then, we check if the file is fully written in a Jinja macro, same as we do for Bash and
Ansible remediations with regular expressions. Also, if the check did not use a Jinja macro
and now it uses a macro or vice versa, then we record the fact to the D i f f Struct instance
and the analysis ends.

If the check is not fully written in a Jinja macro, then the X M L format must be analyzed.
Since the content of the O V A L file is not a valid X M L , we must create a valid X M L from
it. The analysis does partially the job of the build system:

• completely removes lines with Jinja macros — from Listing 5.1, it creates Listing 5.2,
thus the check may not be proper (conditions may be contradictory) but the X M L is
valid and no part of the check is overlooked,

• prepends the X M L header,

• appends the X M L footer.

<extend_definition comment="SL6 i n s t a l l e d "
d e f i n i t i o n _ r e f = " i n s t a l l e d _ 0 S _ i s _ s l 6 " />
<extend_definition comment="SL7 i n s t a l l e d "
d e f i n i t i o n _ r e f = " i n s t a l l e d _ 0 S _ i s _ s l 7 " />

Listing 5.2: O V A L check after removing Jinja macros

When the check is a valid X M L , then the old and the new X M L s are compared with the
d i f f _texts function from the xmldif f 9 library. The function compares X M L s and returns
changes in a form of an object for each change. Each change class is handled differently:

9https: / / xmldiff.readthedocs.io/en/stable / index.html

39

• InsertNode or DeleteNode — a new node was added to the check or removed from
it. If the changed node is from the metadata node (a node that contains name,
platforms, and description of the check), then we do not record the change to the
Diff Struct instance. Otherwise, we record the change and a test will be selected.

• MoveNode — a node was moved within the check. If the node was moved within
a single node, for example, a node was moved within the metadata node, then no
change is recorded. Otherwise, it is recorded and the next phase will select tests.

• InsertAttrib — a new attribute was added to a node. For this change, we do not
record any change, because a new attribute does not affect an already working check.

• Delete Attrib, RenameAttrib, or Update Attrib — an attribute was removed, re
named, or changed. If the attribute change is the comment or the version attribute,
no change is recorded. In other cases, we record the change for the test selection.

• UpdateTextln — a text within a node was updated. If the text is from the t i t l e
node, the description node, or the platform node, then we do not record the change.
Otherwise, we record it for test selection.

• UpdateTextAfter — a text was added after a node. This change is not typical,
because texts in O V A L checks are usually within a node, thus, in this case, it is
always recorded and it leads to the test selection,

• Insert Comment — a comment was added. This change is ignored.

When a change is being recorded to the Diff Struct instance, first we check which other
rules use a check from the changed check:

1. Get all values from id attributes with X P a t h 1 0 . / / * [Sid],

2. Search through all O V A L files from ComplianceAsCode and in each of them, try to
find if it contains the def inition_ref attribute,

3. Check the def inition_ref value, if it is the same as some of id attribute's values
from the changed O V A L ,

4. Save all rules that reference any part from the changed rule because they are affected
by the change.

Then we check if the changed rule and the affected rules are part of any profile, same as we
do for remediations to know that we can test them.

Jinja Analysis

File with Jinja macros is recognized if it has the . j inja suffix. The analysis starts with
checking if the file is newly added or removed. If the file with macros is newly added, no
record is added to the DiffStruct instance because macros in the file are new and not
used anywhere. In case the change also adds files that use the new macros, then these files
are analyzed separately. If the file was removed, then we record to DiffStruct a change in
functionality thus the functionality test will be selected in the next phase. If any file uses

1 0https: //www. w3.org/TR/xpath-31 /

40

http://w3.org/TR/xpath-31

a macro that was removed, the test reveals the fact because it renders macros, and if any
macro usage misses the definition of the macro, the test fails.

When a Jinja macro is changed, we need to:

1. Find the name of the macro,

2. Find which other macros use the changed one,

3. Find usages of all affected macros in rule files (remediations, checks, and descriptions),

4. Find all usages of all affected macros in template files that generate rule files during
the ComplianceAsCode build.

When finding the name of the changed macro, we have chosen the approach that based
on differences in the unified format marks changed lines in the file with macros, splits
macros from the file to individual macros, and then finds which macros have those marked
lines. However, more approaches are available, for example, to load the Jinja macro to
bytecode and compare bytecodes of each macro before and after changes.

Changes in unified format Marked changes in the Jinja file

{{%- macro lineinfile_absent(path, regex, insensitive=true) -%}}
{{%- if insensitive -%}}

{{%- set modifier="ld" -%}}
{{%- else -%}}

{{%- set modifier="d" -%}}
{{%- endif -%}}

»»>touch "{{{ path }}}"««<
LC_ALL=C sed -i"/{{{ regex }}}/{{{ modifier}}}""{{{ path }}}"
{{%- endmacro -%}}

Figure 5.3: Marking change in Jinja file with unified format input

Our approach uses the DeepDiff class from the DeepDiff library to compare the file
with Jinja macros in the state before changes with the state after changes. It outputs
differences in the unified format that we use for finding the macro name:

1. Parse information about changes from the unified format — the number of the line
where the unified format block starts, number of lines displayed in the unified format,
and specific lines that are changed. Figure 5.3 shows the information in a unified
format output.

2. Wi th the information, mark the changed lines both in the content before the changes
and in the content after the changes. We have the contents in the file record from
the input to the analysis. We need to try to mark the changed lines in both contents
because if the change only removed lines then we will not find the lines in the content
after changes (the lines do not exist in the content after the changes). A similar case
is added lines with the content before changes (the added lines do not exist in the
content before the changes). We need to have marked lines in at least one of the
contents for the next steps. See an example of marking changes in Figure 5.3. As
marker was have chosen the » » > prefix and the « « < suffix but it could be an
arbitrary marker that is not used in any Jinja macro's definitions.

Number of the line where Number of lines
the displayed block starts. .displayed in the block

— \n+++ \n@@ -420,6 +420,7 @@
{{%- else -%}}

{{%- set modifier="d" -%}}
{{%- endif -%}}

+touch "{{{ path >»"
7LC_ALL=C sed -i"/{{{ regex }}}/{{{ modifier}}}""{{{ path }}}"

/ {{%- endmacro -%}}

The changed line

41

3. Split the file contents to individual Jinja macros. That is achieved with a regular
expression that captures each Jinja macro and saves it to separate string:

ra(?:\s|-|\n|>|<)+?macro(?:\s|\n|<|>)(?:.|\n)+?
endmacro(?:\sI -1\n|>|<)+?%}}

The regular expression is based on the specific knowledge of ComplianceAsCode Jinja
macros — they start with {{% macro or {{%- macro and end with endmacro %}} or
endmacro -%}}.

4. In each Jinja macro we try to find our markers, in our case » » > and < « « . We
need to find at least one of the markers because, for example, if the first line of the
macro changed, then we did not capture the first marker.

5. Macros that contain a marker are the changed ones that we are looking for. From
them, we can capture their names with the following regular expression:

(?:\s|-)macro(?:\s|\n) + ([~(] +)

The regular expression uses the capturing group for the name capturing. Now, we
know the names of the macros that were changed.

When we know which macros are the changed ones, we save them to the instance of the
JinjaMacroChange class. The class constructor uses the macro name for searching macro
usages in the ComplianceAsCode project. When the constructor finds that the macro is
used in a rule file or in a template, it just saves the rule name or the template name to the
attribute. However, if the constructor finds that the macro is used in another Jinja macro,
then it captures the name of the macro that uses the changed macro in a similar way as
we did for changed macros, creates a new instance of JinjaMacroChange for it, and saves
the reference to the newly created instance. Wi th that, we achieve a next invocation of the
JinjaMacroChange constructor, thus searching the usages of the macro, and repeating this
process until there are no more macros that are affected with the changed macro. Now, we
have a hierarchy of changed macros, where we have references to the lowest-level macros
and they point to higher-level macros.

A l l affected macros already found their usage in rule files and in template files during
the initialization of their instances of JinjaMacroChange. Now, we need to analyze all
those usages.

If the usage is in a rule file (remediation, check, or description):

1. Render the Jinja macro in the file. The rendering process is taken from the ssg module
that is a part of the ComplianceAsCode project. The module is dynamically imported
from the cloned ComplianceAsCode repository. We render the file two times — first
time with the macro before the change and then with the macro after the change,

2. The rendered file is used to create the file record in the same way as file records are
created from the G i t D i f fWrapper class. We have the rendered file content before and
after the change and as the flag we use M (modified),

3. The created file record is added to the D i f f Struct instance to affected files and that
causes the main control will analyze the file record as other changed files.

42

If the usage is in a template file:

1. Find which files are generated from the template file,

2. Generate files from the template,

3. Create file records from the generated files and add them to the D i f f Struct instance.

The first step, finding which files are generated, starts with parsing the template file
name. The name is in the template_TYPE_TEMPLATE-NAME format, where TYPE is a type
of files that are generated from the template (BASH for the Bash remediation, OVAL for
O V A L check, and so on) and TEMPLATE-NAME is the template identifier for referencing in
rule descriptions. The TEMPLATE-NAME part is used for finding rules that use the template.
Wi th it, we search all rule descriptions (rule.yml files). Rule descriptions that contain
the identifier, are the rules that will have generated files. The generated files have the
RULE_NAME. SUFFIX format, where RULE_NAME is found from the rule description's file path
(the parent folder of the rule description file is the rule name). The SUFFIX part is obtained
from the template's TYPE (the .sh suffix for the BASH type, etc.). Now, we know the exact
names of generated files from the template.

The generated files do not exist in the ComplianceAsCode project until the project is
built. Therefore building is needed. The project is built with the GitDiffWrapper class
from d i f f .py that takes care of getting changes from Git. The class is a singleton and has
all information about the repository, the previous state of the project, the new state of the
project, and the b u i l d _ p r o j e c t method that builds only the templated content. When
the method is called, it deletes build folders from previous builds, creates empty folders,
runs cmake, and then builds the templated content. Actually, the project is built two times
to two folders — first time for the state of the project before the change and other time for
the state after the change. Now, ComplianceAsCode has generated files from templates.

In folders with built contents are now files with the RULE_NAME. SUFFIX name format.
These files contain complete rule contents and they can be used to create file records. One
build folder has the content of the file before changes and the second folder has the content
after changes. As a file path for the file record is used the path to the folder with the build
after changes and the flag is set to M as modified. The created file records are added to
D i f f S t r u c t to affected files and the main control will get them and handle them as other
changed files.

When all macros are analyzed, the important output from this analysis are affected files
in the Dif f Struct instance. Those affected files analyses lead to test selections.

5.4 Computing a Set of Tests to Run

During the analysis, information which tests will be selected and logging information are
saved to the instance of the Dif f Struct class. Each analysis result is saved to a separate
instance of the class. The class is defined in the c t f / D i f f Struct .py file.

The D i f f Struct class has an attribute for each affected part — rules, profiles, products,
changed functionality, and affected files. The type and the purpose of attributes differ
depending on a data required for selecting a test:

• f i l e _ t y p e — contains information about the type of the changed file, for example,
Bash, Python and so on,

43

• changed_rules — a dictionary with product names as keys. Each key has a list of
changed rules for the product. For testing a rule, information which product includes
the rule must be known because if no product contains the rule, we cannot test it,

• changed_prof i l e s — a dictionary with product names as keys. Each key has a list of
changed profiles for the product. Similar to changed_rules, a product that includes
the profile must be known for the testing,

• changed_products — set of changed products,

• functionality_changes — a boolean variable, that indicates that the functionality
has changed and the fact that it must be tested with the functional test,

• af f ected_f i l e s — a list of file records that contains the affected files. This attribute
is used in the main control for analyzing affected files found during analyses.

These attributes are not filled directly in the analysis. The analysis uses methods
from the D i f f S t r u c t class and the methods fills the attributes. The methods ensure the
attributes are properly filled — in most of the cases, during the analysis, information about
which product includes the changed rule or the changed profile is unknown. The input
to these methods is the name of a changed rule, of a profile, or of a product and if the
attribute format requires the product name the method finds the product and then fills the
attribute. Other attributes that do not require a product name they serve as a wrapper for
manipulating with the attributes.

A n optional input to the methods that fill attributes is a string where can be justified
why the test was selected. The string is printed to the standard output at the end of the
implemented system run.

Individual steps of the computing a set of tests are:

1. D i f f S t r u c t instances are used as the input to the instance of ContentTests class in
the main control,

2. The ContentTests class goes through all attributes from D i f f S t r u c t and transfers
them to ContentTests attributes in a form of instances of classes that represent
specific tests. Each of the classes that represent specific tests has the get_tests
method that knows how to get test commands for the test the class presents,

3. The filled ContentTests instance is used as the input to the get_labels function
that gets all test commands. The function prepares the Jinja environment for loading
the file with predefined test commands. The function goes through affected products
(products their part must be tested — rule, profile, or the product itself) from the
ContentTests instance and for each individual product the function renders the file
with predefined test commands. It is because the file contains a placeholder that
needs to be replaced with the product name so the file content has real commands
that are ready to use. From the rendered file content, we find all tests that use the
current product. Test commands of those test are get with the get_tests method.
After selecting all relevant test commands, the function outputs the list of the test
commands. The get_labels function is shown in Algorithm 4.

The list of test commands is returned to the main control.

44

Input: ContentTests instance
Output: List of test commands
Function get_labels (input):

tests = list():
foreach product G input. affected_products do

all_commands = file_all_commands.render(placeholder.replace(product)):
foreach test £ input, tests do

if test.product == product then
command = test.get_tests(all_commands):
tests.extend(command):

end
end

end
return tests:

Algorithm 4: Getting test commands from instance of test class

5.5 Logging and Printing Results

A l l results are printed at one place after performing all analyses and computing the list
of test commands to run. The DiffLogging class defined in the ctf/DiffLogging.py
file handles the printing. The instance of the class is filled similar way as ContentTests —
D i f f S t r u c t instances are used as the input to DiffLogging and DiffLogging goes through
all attributes from D i f f S t r u c t and transfers them to DiffLogging attributes.

The Dif f Struct class has attributes and methods for saving logging information about
findings. The attributes are similar to attributes where information for test selection is
saved. Thus there are attributes for logging information of rules, of profiles, of products,
of macros, and of functionality, so the DiffLogging class can use them for creation of the
structured log.

At the end of the implemented system run, the p r i n t _ a l l _ l o g s method from the
DiffLogging instance filled with logging strings is called with the list of tests as arguments.
It prints structured information about findings and then the list of test commands.

45

Chapter 6

Testing and Deployment

When adding new features or changing an already implemented behavior to a project, it
is good to have tests that will ensure that the change did not break the expected func
tionality. One of test types that tests an application against functional requirements is
called the functional testing. It is a testing that is based on providing input to the algo
rithm implementation, and comparing the actual output to a reference one. Section 6.1,
describes how Bats: Bash Automated Testing System is used for the functional testing of
our implementation.

Large projects with a long life cycle undergo major changes — new features are added,
issues are fixed, unused code is removed, files are moved to different folders, and so on.
A long exposure to short-sighted code modifications can impart its readability and quality.
For better readability of the code, there are guides, such as P E P - 8 1 for Python, that
standardize a coding style (naming convention, code lay-out, comments, etc.). When an
implementation meets the coding style, the readability is better even for people that are
not familiar with the project. However, the coding style does not prevent anti-patterns
or security risks. For that, there are automatic code analyzers. They can be integrated,
for example, to the GitHub repository, and then they automatically analyze changes in the
repository. One of code analyzers, DeepSource2, is used for our implementation. Section 6.2
describes the analyzer, integration of the analyzer to the GitHub repository, and findings
from the analysis in our implementation.

To ease users their work, we have automated running of our implementation to analyze
new contributions in the ComplianceAsCode repository. The ComplianceAsCode project is
hosted on GitHub, and all contributions have form of GitHub Pul l requests. The Security
Compliance team uses Jenkins 3 for automatic testing of projects in the whole ecosystem
(ComplianceAsCode, OpenSCAP, etc.). Jenkins is an open-source automation server that
can automate tasks related to building, testing, or deployment a software. Section 6.3
describes how we have integrated our implementation to Jenkins.

6.1 Testing Implementation with Bats

Bats: Bash Automated Testing System 1 is a testing framework that provides a simple way
to test U N I X programs based on the comparison of actual and expected output to a given

1https: / / www.python.org/dev / peps / pep-0008/
2https://deepsource.io/
3https://www.jenkins.io/
4https: / / github.com/sstephenson/bats

46

http://www.python.org/
https://deepsource.io/
https://www.jenkins.io/
http://github.com/sstephenson/bats

input. Bats comes as an executable script, and it features the following commands to use
for test scenarios [11]:

• run — invokes its arguments as a command, saves the status code, and returns the
status code,

• load — command for sourcing Bash source files,

• skip — command for skipping tests,

• setup and teardown — pre-test (setup) and post-test (teardown) hooks that run
before and after each test scenario.

We have implemented few test scenarios using Bats for each file type analyzer. A l l test
scenarios are located in the t e s t s folder. At the beginning of each test run, the test run
clones the ComplianceAsCode repository that is used for creating changes and used as the
input to our implemented system. The user can also export the repo_dir variable with the
path to the local ComplianceAsCode repository. The variable saves time because then test
scenarios do not have to clone the repository. Then, a test run creates the test_branch
branch from the master branch for testing purposes. After that, the testing environment
is prepared and individual test scenarios are run. Each test scenarios has a similar process
that varies in the part which file is changed and what results are expected:

1. setup is called by Bats — it creates an empty file for saving the output,

2. a file that will be changed is specified,

3. the file is changed — most of the time using the sed command. For example, a specific
line is changed, a comment is added, or an empty line is removed,

4. the changed file is added and committed to the test_branch branch,

5. the implemented system is run:

c o n t e n t _ t e s t _ f i l t e r i n g . p y branch — l o c a l — r e p o s i t o r y "$repo_dir" \
test_branch &> "$tmp_file"

the — l o c a l option forces the implementation to find the changed branch at the local
repository and not to pull the changes from the remote repository. The test_branch
branch is used for the comparison against the master branch (the default comparison)
and the standard output with the standard error are redirected to the empty file,

6. check if the return code from the system run is 0,

7. check if the output from the implementation has the expected string — this is done
with regular expressions that search, for example, for a specific test scenario or for an
empty output,

8. teardown is called by Bats — it resets the state of the test_branch branch to the
state before changes so the next test scenario is not affected by the changes.

The setup and teardown functions are defined in the t e s t s / t e s t _ u t i l s . b a s h file and
the file is loaded to test scenarios with load t e s t u t i l s .

47

6.2 Automatic Code Analysis of the Implementation

For code analysis of our implementation, we used the DeepSource0 tool. It is free to use
for open-source projects.

When the DeepSource analyzer is integrated to a remote repository, it analyzes commits
that are pushed to the remote repository. The user can see the issues and metrics of his
repository at the DeepSource page after logging in with the GitHub account.

For our implemented system, it found several issues. Most of them were in the style
category — too many blank lines between classes or methods, too long lines, wrong inden
tation in continuation line, and so on. These issues were easy to fix. Then, other easy fixes
were in the anti-pattern category that revealed few unused variables and unused imports.

The security issues category revealed issues in usage of insecure libraries, commands,
or options, and the bug risks category revealed, for example, usage of protected members.
Not all of those issues were fixed because some of them are about a problem we could not
avoid — for example, using the subprocess library and its run function for running the Shell
command is generally considered as insecure. However, in our implementation the usage
was intended because we use the ComplianceAsCode build that works with cmake tool and
we run the cmake commands with the run function. Another example of an issue that was
not fixed is usage of a protected member (Python does not have the concept of protected
members but the naming convention is that a variable name with the underscore prefix
indicates the variable is a protected member) caused by using the _get_ j inja_environment
function that we used for creating same Jinja environment as ComplianceAsCode does (that
could be avoided by copy-pasting the function to our implementation but it could cause
problems with the code redundancy).

Overall, we did not fix all issues and suggestions from DeepSource because those are
general suggestions and each project is unique. The developer must decide if the fix is worth
it or if it causes more problems than benefits. However, a lot of issues and suggestions were
fixed and thanks to that the overall code quality has been improved.

6.3 Integration to ComplianceAsCode Jenkins

To automate usage of the implemented system on newly created Pul l requests for the Com
plianceAsCode repository, we have deployed the implementation to the ComplianceAsCode
Jenkins 6 where all contributions are tested.

The Red Hat Security Compliance team has their own machines where the Jenkins soft
ware is deployed and where tests are run. The infrastructure consists of the master machine
and slave machines. The master machine runs Jenkins software , provides a web interface,
starts jobs on slaves, and is the only machine that is accessible from outside networks. The
slave machines are only accessible from the master machine and they test projects that are
developed by the team (ComplianceAsCode, OpenSCAP, S C A P Workbench, etc.).

For the deployment we needed the following:

1. to prepare a slave machine for running our implementation,

2. to run our implementation and to collect the results,
5https://deepsource.io/
6https: //Jenkins.complianceascode.io/
7https://www.jenkins.io/

18

https://deepsource.io/
https://www.jenkins.io/

3. to post the results as an always-single Pul l request comment,

4. to create a Jenkins job that hooks to the ComplianceAsCode project and make sure
that the job is triggered whenever applicable (new Pul l request or new push).

For the machine preparation, all requirements of our implementation were installed
on all Fedora slave machines because Fedora is the newest system available on the slave
machines. Currently, we did not prepare other available slave machines because it is not
needed to load the balance to multiple machines since the run of the filtering is not time
expensive (it takes from several seconds to few minutes). Implementation requirements
were also added to the Ansible playbook that is used for the automatic configuration of
slave machines. The playbook is available at the OpenSCAP Jenkins repository . In this
part, we cloned neither ComplianceAsCode nor our implementation — it will be done by
the Jenkins job.

Script Github server

Get list of comments
from Pull Request

GET rjquest

Send list of comments

200 (OK)

Find ID of comments
that contain output

from the filtering system

Delete those comments
from Pull Request thread

DELETE equest
Delete comments at

Pull Request

204 (No Content)

Send comment
with the newest
filtering results

POST roquest

Create new comment

200 (Created)

Figure 6.1: Process of script that creates comment in Pul l request thread

The utility_scripts/comment_pr .py file contains a script that creates the Pul l re
quest comment. Figure 6.1 shows the script process — the script deletes comments that
contain an already existing output from our implementation in the Pul l request thread and

8https://github.com/OpenSCAP/jenkins

49

https://github.com/OpenSCAP/jenkins

sends the latest output. Therefore, each Pul l request has only a single comment with the
newest output. Inputs to the script are:

• number of the Pul l request that will be commented,

• a file with the content for the comment,

• a personal access token that serves as an authentication of the account from which
the comment will be created.

In case our implementation cannot analyze anything, we do not post comments. That can
happen if there is no change or only unsupported files are changed. We decided not to
create unnecessary comments with information that our filtering system does not know
how to analyze the changed file.

The last part is creating the Jenkins job that will use the prepared machines and the
script that we have created. Figure 6.2 shows the process of the job that we have created.
The job uses GitHub Pul l request Builder plugin 9 . The job was configured according to the

ComplianceAsCode
remote repository

New Pull Request
is created or Pull

Request is updated

New comment is created

Jenkins job

Gets noticed with
the new contribution

V 7

Triggers Shell script

4

Shell script

Clones the
implemented system

V
Runs the implemented

system on the new
Pull Request

V
Runs script that sends

standard output from the
implemented system

Figure 6.2: Process of creating new Pul l request comment

plugin documentation and as the repository for the job was selected the ComplianceAsCode
repository thus the plugin is hooked to it and gets triggered when a new Pul l request is
created or when a change is pushed to an existing Pul l Request in the ComplianceAsCode
repository. We have restricted the job to run only on Fedora machines with specifying
fedora label thus the master machine will start the job only on machines with the label.
At the end, we have specified a list of administrators that can configure and re-run the job.

The created job runs on the ComplianceAsCode Jenkins, comments Pul l requests that
our implementation is able to analyze (it needs to have implemented analyzer for the
changed file types), and helps us to improve the created filtering system (find cases that
are problematic for the filtering).

9 lit t ps: / / plugins. j enkins. io/ghprb/

50

Chapter 7

Testing the Filtering of Tests on
the ComplianceAsCode History

We have decided to validate our system against historical data. We propose to select
a sample of Pul l requests and compare the time needed for execution of the complete test
suite with the time needed for the execution of recommended tests.

1 all_time = sum(all test scenarios times):
2 selection_time = sum(selection of test scenarios times):
3 pr_list = get 500 Pul l requests from the ComplianceAsCode repository:
4 foreach pr £ pr_list do
5 filtered_tests = filter_tests(pr);
6 filtered_time = calculate_duration(filtered_tests);
7 complete_filtered = complete_filtered + filtered_time;
8 complete_all = complete_all + all_time:
9 complete_selection = complete_selection + selection_time:

10 end
Algorithm 5: Calculation of complete and average time spent on tests

For the testing, we have created a Python script u t i l i t y _ s c r i p t s / e x p e r i m e n t s .py
that is shown at Algorithm 5. Our implemented system is not able to analyze all historical
Pul l requests because the file structure of the ComplianceAsCode project changed signif
icantly a couple of times in the project's history. Recently, new types of files whose file
analysis we do not support started to be used in ComplianceAsCode. Hence, we have se
lected 500 Pul l requests over a longer time period. The Pul l requests are not the latest ones
but from a time period before the new file types started to be used in ComplianceAsCode
(December 2019 and earlier).

The Pul l requests numbers are obtained with GitHub A P I 1 . The testing algorithm has
three different calculations of time spent on tests:

• filtered tests — calculates how much time would take running of tests that were
selected by our tool. If the filtering could not analyze files in a Pul l request because
it does not have implemented analyzers for the changed files, the time is taken from
the selection of tests described below,

xhttps: / / developer.github.com/v3 / pulls /

51

http://developer.github.com/v3

• all tests — calculates how much time would take running all tests (all rule tests, all
profiles tests, and the functional test),

• selection of tests — calculates how much time would take running a specific selection
of tests (a subset of all tests) that is used the most often in the project.

The second and the third time are constants, while filtered tests can vary for every Pul l
request. The second case counts every profile test, every rule with tests, and the function
ality check — currently, the entire ComplianceAsCode has 132 profiles, 248 rules with tests,
and one functionality test. The number of profiles in ComplianceAsCode was found with
the command:

f i n d -name * . p r o f i l e | wc -1

The number of rules that have at least one test scenario was found with the command:

f i n d -name t e s t s | wc -1

The third case — selection of tests — calculates the time that would be spent on running
tests of 25 profiles and 94 rules. The profiles represent profiles that contributors of Com
plianceAsCode are working on the most — currently, most of the profiles are from the Red
Hat Enterprise Linux 7 and the Red Hat Enterprise Linux 8 products and other products
are represented with zero to two profiles. The rules represent a selection of rules that have
at least one test scenario and are a part of the most contributed profiles.

The time for each test type was calculated as the average duration of it on a virtual
machine using Intel Sky lake 6th Generation processor with 2.1 Ghz frequency and 4 G B
memory. Table 7.1 shows times for each test. A rule test is a ComplianceAsCode testing
in the rule mode where the rule is tested for each test scenario available for it. A profile
test is a testing in the profile mode where a machine is scanned to assess compliance of the
default configuration, then all failed rules from the profile are fixed, and then tested again if
it complies to the profile. The functionality test builds all products in ComplianceAsCode
and runs the ctest tests. The build time in the table refers to the product build. The
implemented filtering system can select a build of a specific product if it needs the built
datastream for testing, thus it does not have to build all products (as the functional test
always does). The detailed description of testing modes is in Section 2.5.

Rule test [min] Profile test [min] Functionality test [min] Build [min]
5.3 11.3 31.4 1.6

Table 7.1: Average duration of individual test types

Evaluation of the testing is in Section 7.1. During the testing, we have encountered few
issues that appeared only for certain Pul l requests. Section 7.2 describes those issues and
their solutions.

7.1 Evaluation

Table 7.2 shows the average duration for each type of test selection. Running all tests from
ComplianceAsCode takes too much time. Actually, all tests are never run because of the
length and because many profiles and rules are obsolete and not maintained for a long time.
The selection of tests is run when a new version of ComplianceAsCode is released but the

52

selection is not run for each Pul l request because 13.5 hours is still a lot. Currently, only
the functional test is run automatically and developers manually choose other tests to run.

All tests [h] Selection of tests [h] Filtered tests [h]
47.1 13.5 5.0

Table 7.2: Average duration of testing each Pul l request

From the 500 tested Pul l requests, our tool was able successfully process 337 Pul l Re
quests (64.7% of all Pu l l requests) with an average time of 5 hours of testing per a Pul l
request. If the filtering system could not analyze any file from a Pul l request because the
system does not implement the analyzer for the type of the changed file, it assumed that
the selection of tests needs to be executed. Wi th more implemented analyzers, the resulting
time could decrease substantially.

Even though the implemented system does not automatically run recommended tests,
it serves as an assistant that automatically analyses each Pul l request, recommends tests to
run, and presents findings of analyzed changes in a human-readable form. Currently, it saves
developers their time for test selection. Based on developers experience, the test selection
for a Pul l request takes approximately 3 minutes and approximately 5 Pul l requests are
opened each working day. Wi th the implemented analyzers, our implementation analyzes
a little over 60% thus 3 of 5 Pul l requests on average each day — it saves almost 10 minutes
of developers time spent on test selection. However, the implemented system also calculates
the set of files affected by the changes while developers do not usually do it. For example, if
a Pul l request changes a profile, then a reviewer tests the changed profile. However, he does
not analyze dependencies (finding profiles that extend the profile) and, therefore, he does
not run tests for the dependencies which can lead to missing bugs for which it is difficult
to find what caused them.

The saved time for developers would greatly increase if the implementation could run
recommended tests automatically. Running test scenarios manually and waiting for test
results takes approximately 15 minutes on average. Wi th the automatic running of recom
mended tests, developers could start reviewing Pul l requests after they have all test results
available. In the current state of the implementation (analyzed 3 of 5 Pul l requests each
day), it would save almost 1 hour of developers time every day.

7.2 Encountered Issues

This section describes issues that appeared during the testing of the implemented system.
These issues are rare because they depend on several conditions to appear, for example,
a merged Pul l request with a commit that is also part of another Pul l request (author pulled
changes from the master branch to the branch connected to the Pul l request).

Next commit after the merged branch is not a merge commit

In Section 5.2, we have described the method to obtain the common commit of the master
branch and the branch we are analyzing that is already merged to the master branch. The
method is based on obtaining descendants of the analyzed branch and it relies on the fact
that the commit after the analyzed branch is the merge commit of the analyzed branch with
the master branch. Actually, it appears that there are some specific cases when that is not
true. Figure 7.1 shows such a case — we are analyzing the analyzed branch that contains

53

a commit with changes. Before the analyzed branch was created, another contributor has
created the updated branch. The analyzed branch got merged and the creator of the updated
branch wants to update his branch and he pulls changes directly to the updated branch
causing the commit from the analyzed branch to appear also in the updated branch.

master branch

Figure 7.1: Problematic branch that puts a commit before a merge commit

In such a case, we observe that g i t log —ancestry-path — r e v e r s e does not show
the merge commit that we are looking for as the first commit in the log. The g i t log
command first shows commits (from the branch after merge commit) that were added after
the merge commit of the analyzed branch but before the merge commit of the updated
branch. After those commits, the command shows the merge commit we are looking for.
However, none of the commits before the merge commit is a merge commit — the first
merge commit (a commit that has two parents) in the log is the commit we want. Hence,
a solution for those situations is not to refer only to a single commit from the log, but to
find the oldest merge commit in the log.

Machine does not have installed ComplianceAsCode dependencies

The testing was performed on a clean machine where we have cloned ComplianceAsCode,
cloned our implementation, and installed the required packages for our implementation.

The problem appeared when our implementation needed to run the ComplianceAsCode
build. Without ComplianceAsCode dependencies, the build fails, and we do not have built
files for the analysis. The solution is simple — install ComplianceAsCode dependencies —
because without them, some of our analyzers do not work.

The ComplianceAsCode build system did not support used function

Because the ComplianceAsCode build system is still developed, we encountered the issue
when running the ComplianceAsCode build for old Pul l requests.

In our implementation, we run the ComplianceAsCode build when we need to build files
for the analysis. We build with a command that builds only templated files, which saves
time and does not create files that we do not need. However, the command was added to

54

the project in September 2019. Hence, when our implementation tries to build files using
the ComplianceAsCode state older than the date, it fails.

The building issue is one of the problems that prevent us from analyzing a longer
history of the ComplianceAsCode project. We aim to analyze newly created contributions
and not to analyze the project's history. However, because of these types of changes in
the ComplianceAsCode project, we must keep in mind that in the future, changes that will
require adjustment of our implemented filtering system can appear.

55

Chapter 8

Conclusion

In the master thesis, we have designed, implemented, integrated, and tested the system
for automatic filtering of tests for the ComplianceAsCode project. ComplianceAsCode is
a complex and large project whose testing may take several hours, even when running basic
test scenarios. To automatically filter tests for the project, we have created a system that
uses static analysis of different file types with the knowledge of ComplianceAsCode internals
to produce a set of tests that must be run to verify a specific change.

The implemented system uses a version control system for obtaining changes from the
ComplianceAsCode repository. The changes are used as the input to the static analysis
that evaluates the importance of the changes. The results from the static analysis are used
for computation of affected parts of ComplianceAsCode. Wi th the analysis results and the
knowledge of affected parts, we compute a set of tests that are recommended to run.

The implementation was deployed to a server and it automatically analyzes new contri
butions to the ComplianceAsCode repository. If the analysis of a contribution is successful
and it found important changes, then the deployment is set to automatically create a Pul l
request comment containing a message about the found changes and the recommended
tests to run. To evaluate benefits of our solution, we have run the implementation on past
contributions and estimated that, currently, it saves developers approximately 10 minutes
each day spent on test selections.

The filtering system is implemented in Python 3. The implementation is open-source
and available on GitHub. In the implementation, we have focused on static analysis of
different file types and on the possibility to easily extend the system by new analyzers for
other file types. Currently, the system supports analyses for six file types from the Compli
anceAsCode project — Profile files, Ansible remediations, Bash remediations, Python files,
O V A L files, and files with Jinja macros. For the implemented system, we have created tests
with Bats: Bash Automated Testing System, and to improve the quality of source code, we
have integrated the DeepSource code analyzer to the GitHub repository of the project.

Even though the implemented system supports six different file types, there are still
several file types that are missing. Wi th more implemented analyzers, more contributions
would be analyzed and more time could be saved for the developers.

The next steps as a follow-up for the master thesis can be implementing analyzers for
other file types, or preparation of infrastructure for integration of the filtering into Contin
uous Integration of the project (to run the selected tests automatically). The automatic
running of tests would save developers the time they spend on running the tests manually.

56

Bibliography

[1] C H A W A T H E , S. S., R A J A R A M A N , A . , G A R C I A M O L I N A , H . and W I D O M , J . Change

detection in hierarchically structured information. Acm Sigmod Record. A C M New
York, N Y , USA. 1996, vol. 25, no. 2, p. 493-504.

[2] G I T C O M M U N I T Y . Git - diff-format Documentation [online]. 2019 [cit. 2019-12-02].
Available at: https://git-scm.com/docs/diff-format.

[3] H A I C M A N , M . SCAP Security Guide intro pitch [Red Hat internal slides]. September
2018.

[4] J O N L O E L I G E R , M . M . Version Control with Git: Powerful tools and techniques for
collaborative software development. 2nd ed. O'Reilly Media, 2012. ISBN
978-1449316389.

[5] L I P N E R , S. B . The Birth and Death of the Orange Book. IEEE Annals of the History
of Computing. Apr 2015, vol. 37, no. 2, p. 19-31. DOI: 10.1109/MAHC.2015.27.
ISSN 1934-1547.

[6] M I K U L E N A S , M . A comparison of protocols offered by GitHub [online]. 2013 [cit.
2019-11-26]. Available at: https://gist.github.com/grawity/4392747.

[7] R E D H A T S E C U R I T Y C O M P L I A N C E T E A M . ComplianceAsCode Developer Guide
[online]. 2019 [cit. 2019-12-08]. Available at: https://github.com/ComplianceAsCode/
content/blob/master/docs/manual/developer_guide.adoc.

[8] R E D H A T S E C U R I T Y C O M P L I A N C E T E A M . Security compliance content in SCAP,
Bash, Ansible, and other formats [online]. 2019 [cit. 2019-12-09]. Available at:
https: //github.com/ComplianceAsCode/content.

[9] R O S S U M , G . van van. Unified Diff Format [online]. 2006 [cit. 2019-12-02]. Available at:
https: //www.artima.com/weblogs/viewpost.j sp?thread=164293.

[10] S C O T T C H A C O N , B . S. Pro Git. 2nd ed. Apress, 2014. ISBN 1484200772,
978-1484200773.

[11] S T E P H E N S O N , S. Bash Automated Testing System [online]. 2014 [cit. 2020-12-05].
Available at: https://github.com/sstephenson/bats.

[12] T H E M I T R E C O R P O R A T I O N . OVAL - Open Vulnerability and Assessment Language
[online]. 2016 [cit. 2019-12-17]. Available at: https://oval.mitre.org/.

57

https://git-scm.com/docs/diff-format
https://gist.github.com/grawity/4392747
https://github.com/ComplianceAsCode/
http://www.artima.com/weblogs/viewpost.j
https://github.com/sstephenson/bats
https://oval.mitre.org/

[13] W A L T E R M I R E , D. , Q U I N N , S., B O O T H , H . , S C A R F O N E , K . and P R I S A C A , D. The

Technical Specification for the Security Content Automation Protocol (SCAP): SCAP
Version 1.3. National Institute of Standards and Technology, 2016.

[14] Č E R N Ý , J . Nástroj pro tvorbu definic OVAL v projektu OpenSCAP. Brno, C Z , 2016.
Bachelor's thesis. Brno University of Technology, Faculty of Information Technology.
Available at: https ://www .fit .vut.cz/study/thesis/18235/.

[15] C E R N Y , J . Automatizované ověřování konfigurace operačního systému MS Windows
pomocí projektu OpenSCAP. Brno, C Z , 2018. Master's thesis. Brno University of
Technology, Faculty of Information Technology. Available at:
https: //www. f i t .vut .cz/study/thesis/20842/.

58

https://www.fit.vut.cz/study/thesis/18235/
http://fit.vut.cz/

Appendix A

Contents of the Included Storage
Media

The storage media contains the following files and directories:
/ S T O R A G E M E D I A

. c o n t e n t - t e s t - f i l t e r i n g / . C O M P L E T E S O U R C E C O D E S O F T H E I M P L E M E N T A T I O N

c o n t e n t _ t e s t _ f i l t e r i n g . p y S T A R T I N G S C R I P T

c t f / I M P L E M E N T E D M O D U L E S

README.md D E S C R I P T I O N O F I N S T A L L A T I O N A N D U S A G E O F T H E T O O L

t e s t s / S O U R C E C O D E S O F T E S T S

U t i l i t y _ s c r i p t s / F O L D E R W I T H S C R I P T S

comment_pr .py S C R I P T T H A T C R E A T E S C O M M E N T A T G I T H U B

experimentS.py S C R I P T F O R E X P E R I M E N T A L T E S T I N G

dp.pdf E L E C T R O N I C V E R S I O N O F THIS D O C U M E N T

t h e s i s sources/ S O U R C E C O D E S O F THIS D O C U M E N T

59

