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Abstract

Computation Aspects of Kriging in Chosen Engineering Problems

by Martina Valtrová

In this thesis, two different approaches to Kriging with applications to data are pro-

posed. Kriging is a popular interpolation/approximation method used in different disci-

plines ranging from the mining and geology, hydrology, meteorology, environmental sci-

ences, global optimization and even structural engineering. The first approach is aimed

at Kriging in geostatistics. This access to Kriging is the most widely used. The goal of

this method is to predict values of covariance stationarity process at unsampled points

with respect to the mean squared error. However, the covariance function is usually not

known and has to be estimated. Kriging is the best linear unbiased predictor, i.e. it has

the smallest mean squared error among all linear predictors. We also describe what the

unbiasedness is and how this condition influences the prediction.

There are many versions of Kriging used in geostatistics. In this study we present

the ordinary Kriging, simple Kriging, universal Kriging and the co-Kriging, in detail and

inclusive of their mathematical derivation. For geostatistics two or three dimensional data

are common. Thus, we show the geostatistical application of Kriging to two dimensional

data, and we also remit some problems with estimation of the covariance function or

variogram.

The second access to Kriging described in this study is the global optimization ap-

proach. Here, Kriging is used as an approximation. Instead of geostatistics, Kriging does

not have to be an exact interpolator (does not honor the data). We do not estimate the

covariance function or variogram but we have to estimate the correlation function. We

apply this approach to less common eight dimensional data using the free Matlab toolbox

DACE. We focused mainly on these data. The problems with the compliance of properties

of a function which is approximated are also discussed.
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Abstrakt

Výpočetńı aspekty metody Kriging ve vybraných inženýrských

problémech

Martina Valtrová

Tato diplomová práce se zabývá dvěmi rozd́ılnými př́ıstupy k metodě Kriging. Kriging

patř́ı mezi obĺıbené interpolačńı metody. Využit́ı nacháźı v mnoha r̊uzných odvětv́ıch jako

je d̊ulńı inženýrstv́ı, pro jehož účely byla vynalezena, geologii, hydrologii, meteorologii,

př́ırodńıch vědách a v neposledńı řadě i v optimalizaci. Nejprve je představen geostati-

stický př́ıstup. V geostatistice je Kriging velmi rozš́ı̌renou metodou a většina aplikaćı

využ́ıvá právě tento př́ıstup. Ćılem je predikce hodnot v bodech, kde daný př́ırodńı pro-

ces nebyl pozorován. Kriging je tak definován jako nejlepš́ı nestranný lineárńı odhad, což

znamená, že tento odhad má nejmenš́ı kvadratickou chybu mezi všemi ostatńımi lineárńımi

odhady. Aby byla splněna podmı́nka nestrannosti, předpokládá se, že odhadovaný proces

je kovariačně stacionárńı, přičemž se vyb́ırá taková kombinace parametr̊u, která zajǐst’uje

nejmenš́ı rozptyl. Naneštěst́ı, kovariančńı proces je obvykle neznámý a muśı být odhad-

nut.

Přestože existuje mnoho variant metody Kriging, v této práci se podrobně zabýváme

pouze jednoduchým Krigingem (simple Kriging), ordinárńım Krigingem (ordinary Krig-

ing), univerzálńım Krigingem (universal Kriging) a kokrigingem (co-Kriging), přičemž

uvád́ıme i jejich matematické odvozeńı. Dále v této práci popisujeme aplikaci Krigingu

na dvou dimenzionálńı data a zmiňujeme zde problémy, které nastaly při odhadu semi-

variogramu.

Druhý př́ıstup popisuje Kriging jako optimalizačńı metodu. Narozd́ıl od geostatis-

tiky, kde Kriging interpoluje data, v tomto př́ı stupu aproximuje danou funkci, tud́ıž ve

známých bodech nemuśı být odhadovaná hodnota shodná s pozorovanou hodnotou. Také

tento typ Krigingu jsme aplikovali na data za použit́ı volně dostupného toolboxu DACE

v Matlabu. Jedná se o osmi dimenzionálńı data, která nejsou př́ılǐs běžná při použ́ıváńı

této metody. V závěru uvád́ıme problémy, které se vyskytly při aproximaci a možné

směry, jakými by se měl ub́ırat daľśı výzkum této metody.
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Chapter 1

INTRODUCTION AND HISTORICAL REVIEW

Kriging is an approximation method frequently used in geostatistics, global optimiza-

tion and statistics. Kriging was originally developed by the South African mining engineer

D.G. Krige in the early fifties. In the 1960s the French mathematician G. Matheron gave

theoretical foundations to this method [Matheron, 1963]. More recently, Stacks et al.

[Sacks et al., 1989], and Jones et al. [Jones et al., 1998] made Kriging well-known in the

context of the modeling, and optimization of deterministic functions [Queipo et al., 2005].

Since 1970 Kriging has been intensively adapted, extended, and generalized.

The principle of Kriging is to find the optimal prediction of the covariance stationary

process due to the mean squared error. Usually the covariance structure is not known

and has to be estimated. This work focuses on the approach in geostatistics and global

optimization. The main goal is to present these two approaches in detail with applications

to the different data.

In chapter two we introduce some basic statistical concepts which appear throughout

this thesis, and which is crucial for right understanding of mathematical background.

However, the mentioned statistics which are taken from [Montgomery, 2005], is basic and

notorious, therefore the aim of this chapter is just to refresh the knowledge.

The chapter three is concerned with the geostatistical approach to Kriging. The data

interpolated by this method have two or three dimensions, therefore they are often called

spatial data. These data usually include measurement errors as well. In this chapter

we will describe and mathematically derive the ordinary Kriging, universal Kriging and

co-Kriging. The ordinary Kriging is presented at first because other types of Kriging can

be derived from it. Thus, all types are based on this equation of Kriging predictor:

Ẑ(s0) =

(
γ + 1

(1− 1′Γ−1γ)

1′Γ−11

)
Γ−1Z . (1.1)

In the last theoretical chapter we show the global optimization approach to Kriging.
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First of all, we present the model of a linear regression and how can be modified to the

general Kriging model:

Z(s) = f(s) + ε(s) . (1.2)

The Kriging is an approximation method in this approach, i.e. the Kriging predictor does

not honor the data. Further, the correlation function and its types will be described with

the estimation of the unknown parameters. The data, on which the global optimization

is applied, are multidimensional and less common for geostatistical Kriging.

Last but one chapter contains application to data. The two dimensional data are

introduced at first. The main attention is paid for the second data set which has eight

dimensions. The results of an approximation function are presented to show the applica-

bility of Kriging.

In the last chapter we summarize the Kriging method and also we describe the prob-

lems which occurred during this research.

1.1 Notation

For better orientation in the following text, we present used notation.

General Notation

a Vector

A Matrix

a′ Transpose of vector

A′ Transpose of matrix

A−1 Inverse of matrix

|a| Magnitude of vector

|A| Determinant of matrix A

‖a‖ Euclidean norm of a

Â or â Predicted value of A or a
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Geostatistics Approach to Kriging

Z Set of random variables or random field

z Outcome of random variable or a value of random field

Z ∼ N(µ, σ2) Z has the normal distribution with the mean µ and the variance σ2

{z1, z2, . . . , zn} Set of possible outcomes of random variable

z1, z2, z3, . . . Actually observed outcomes of random variable or random field

Dp p-dimensional domain of interest

s Site of the domain D

Z(s) Random function at location s

z(s) Realization of the random function Z(s)

E[Z(s)] Expected value of random function

µ Mean

V ar[Z(s)] Variance of random function

σ2 Variance

med Median

cov(Z(si), Z(sj)) Covariance

C(si − sj) or C(h) Covariance function

2γ(si − sj) or 2γ(h) Variogram

γ(si − sj) or γ(h) Semivariogram (sometimes called simply variogram)

Nh Number of pairs separated by the same distance h

c0 Nugget

c Sill

a Range

ε(s) Correlated error process

λ Vector of unknown coefficients

MSE or σ2
e Mean squared error

% or % Lagrangian multiplier or vector of Lagrangian multipliers
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γ Vector of variograms such that γ = (γ(s0 − s1), . . . , γ(s0 − sn))′

Γ Variogram matrix

σ2
k(s0) Kriging or predictor variance

Σ Matrix of covariance functions

c Vector of covariance function such that

c = (c(s0 − s1), . . . , c(s0 − sn))′

CY Z(h) Cross-covariance

2γY Z(h) or γY Z(h) Cross-variogram

Y (s) Secondary variable (co-Kriging)

ω Vector of unknown coefficients belongs to secondary

variables

Global Optimization Approach to Kriging

f(s) Linear or nonlinear function of s

β Vector of unknown coefficients of regression term

ε Vector of i.i.d. errors

d(si, sj) Distance between points si and sj

θh Unknown parametr which measures the importance

of variable sh

ph Unknown parametr which is related to the smoothness

of the function in the direction h

Corr[ε(si), ε(sj)] or ρ[ε(si), ε(sj)] Correlation between errors

Z Vector of observed values such that Z = (Z1, . . . , Zn)

R Correlation matrix

r Vector or correlation such that

r = (Corr[ε(s0), ε(s1)], . . . ,Corr[ε(s0), ε(sn)])



Chapter 2

SHORT INTRO INTO STATISTICS

First of all some basic statistical concepts will be introduced which are crucial for

correct understanding of this work, e.g. expected value, variance, normal distribution etc.

These concepts can be found in usual statistics literature, here we follow the description

from [Montgomery, 2005].

2.1 Discrete and Continuous Random Variables

In [Bárdossy, 1997] a random variable is a function Z which might take different values

(outcomes) with given probabilities. An upper case letter Z usually denotes a random

variable. A lower case letter, such as z, is used to denote an outcome of a random variable.

If the outcomes form a finite or countably infinite set then we speak of a discrete random

variable. In other words, a variable is discrete if it can have only certain numerical values,

with no intermediate values in between, for example a numerical result of throw a die:

Z ∈ {1, 2, 3, 4, 5, 6}

While a continuous random variable might take all possible values of a given interval,

for example length:

Z ∈ 〈0,∞) .

In the notation of discrete variable a distinction is made between the set of possi-

ble outcomes which is denoted by {z1, z2, . . . , zn}, and the actually observed outcomes

z1, z2, z3, . . .

Another important term is the probability distribution. In short, the set of all possi-

ble values of a discrete random variable and their probabilities is probability distribution

described by the probability function

p(z) = P (Z = z) . (2.1)
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It means that the probability function gives the probability that a discrete random variable

Z will take a particular value z. It is obvious that∑
p(z) = 1 . (2.2)

The actual values of a continuous random variable is denoted by z1, z2, z3, . . . and for all

possible values is used the interval Z ∈ (z1, z2). A continuous random variable has no

probability function but can be described by the probability density function

P (z1 ≤ Z ≤ z2) =

z2∫
z1

f(z) dz . (2.3)

The key property of a function f(z) is

∞∫
−∞

f(z) dz = 1 . (2.4)

The probability density function is connected to the cumulative distribution function or

shortly the distribution function that can be defined for both discrete and continuous

random variables. It gives the probability that Z takes a value that is lower or equal then

z. The distribution function is described for discrete variables as

P (Z ≤ z1) = F (z1) =

z1∑
i=−∞

p(zi) (2.5)

and for continuous variables as

P (Z ≤ z1) = F (z1) =

z1∫
−∞

f(z) dz . (2.6)

2.2 Parameters of Random Variables

In this section some important parameters of random variables will be introduced. Let

g(Z) denote any function of a random variable Z. Then the expected value of discrete

random variable Z is defined as

E[g(Z)] =
∑
z

g(z)p(z) (2.7)

and in case of a continuous variable is defined as

E[g(Z)] =

∞∫
−∞

g(z)f(z) dz . (2.8)
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The expected value plays a role of a gravity centre because

E[Z − E[Z]] = 0 (2.9)

The list of some properties of the expected value follows from which it is obvious that

the expected value has a linear behavior:

E[Y + Z] = E[Y ] + E[Z] (2.10)

E[cZ] = cE[Z] (2.11)

E[−Z] = −E[Z] (2.12)

E[c] = c (2.13)

The mean of a random variable is

µ = E[Z] . (2.14)

For a discrete random variable, this is

µ =
∑
z

zp(z) (2.15)

and for a continuous random variable it is defined as

µ =

∫
zf(z) dz . (2.16)

Another parametr of random variables is the variance:

σ2 = V ar[Z] = E[(Z − E[Z])2] = E[Z2]− E2[Z] . (2.17)

For a discrete random variable the variance can be derived as

V ar[Z] =
∑
z

p(z)z2 − E2[Z] (2.18)

and for a continuous random variable as

V ar[Z] =

∞∫
−∞

z2f(z) dz − E2[Z] . (2.19)

All parameters above are derived for one random variable Z. Next, we will describe

parameters which are valid for two variables, e.g. random variables Z and Y . Two random
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variables are independent if probabilities taken by a random variable Y are independent

on probabilities taken by a random variable Z and oppositely. This independence is

measured by the covariance:

cov(Y, Z) = E[(Y − E[Y ])(Z − E[Z])] . (2.20)

It is obvious that

cov(Z,Z) = E[(Z − E[Z])(Z − E[Z])] = E[(Z − E[Z])2] = var[Z] . (2.21)

The four possible cases may occur:

1. cov(Y, Z) = 0 random variables are independent (uncorrelated).

2. cov(Y, Z) 6= 0 random variables are correlated.

3. cov(Y, Z) < 0 random variables are negatively correlated. It means that high

values of variable Y can be associated with low values or variable Z.

4. cov(Y, Z) > 0 random variables are positively correlated. Then high values of

variable Y can be associated with high values of variable Z.

The covariance is connected with the term correlation coefficient. This coefficient is equal

to the covariance divided by the standard deviation (= square root of variance) of both

variables:

ρY,Z =
cov(Y, Z)

σY σZ
. (2.22)

The rank of covariance is

−∞ ≤ cov(Y, Z) ≤ ∞ (2.23)

in contrast to correlation

− 1 ≤ ρY,Z ≤ 1 (2.24)

As well as in the covariance the four cases may occur:

1. ρY,Z = 0 random variables Y and Z are uncorrelated.
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2. ρY,Z 6= 0 random variables are correlated.

3. ρY,Z < 0 random variables are negatively correlated.

4. ρY,Z > 0 random variables are positively correlated.

Both the covariance and the correlation coefficient are measures of the linear correla-

tion between two random variables but the advantage of the covariance is that it gives

information about the magnitude of the data, while the correlation coefficient is normal-

ized with regard to standard deviations. In some cases, it could by also an advantage.

However, the covariance and correlation coefficient are influenced by outliers, where the

data can be highly correlated but the correlation coefficient is low.

The normal distribution is the most common way how to describe a distribution of

random variables. Shortly, it fits on many variables of an empirical nature, obtained from

limited and observed data. A random variable Z is normally, or Gaussian, distributed if

its probability distribution function is defined as

f(z) =
1√

2πσ2
exp

[
− 1

2σ2
(z − µ)2

]
. (2.25)

where µ is the mean and σ2 is the variance.

If the random variable Z has the normal distribution with the mean µ and the variance

σ2 it is usual to write Z ∼ N(µ, σ2). The normal distribution N(0, 1) is called the standard

normal distribution. The normal distribution is crucial due to the central limit theorem,

which states that the sum of n independent random variables with a common probability

distribution function will approximate a normal distribution when n becomes very large.



Chapter 3

GEOSTATISTICS APPROACH TO KRIGING

3.1 Geostatistics

The apt formulation what geostatistics means is nicely expressed by Caers [Bohling, 2007]:

“In its broadest sense, geostatistics can be defined as the branch of statistical

sciences that studies spatial phenomena and capitalizes on spatial relationships

to model possible values of variable(s) at unobserved, unsampled locations.”

The name geostatistics has arisen by application of Theory of Regionalized Variables

to problems in geology and mining [Clark, 1979]. However, nowadays the geostatisti-

cal methods are used in very different disciplines ranging from hydrology, meteorology,

environmental sciences, structural engineering etc.

In [Bárdossy, 1997] the main concept of Theory of Regionalized Variables is a random

function. A random function denoted as Z is a set of random variables corresponding

to the points of a spatial region of interest D. Usually D is a two or three dimensional

region of the earth’s surface. Any site of the domain D is denoted as s, in two dimensions

s = (x, y)′ and s = (x, y, z)′ in three dimensions, respectively. The realization of a random

function Z is called a regionalized variable. Then z(s) is one realization of the random

function Z(s) at a location s, in other words z(s) is an observation of some phenomena.

Z(s) can be generalized as a multivariate field, i.e. Z(s) represents a suite of variables at

a location s. Note that D contains an infinite number of sites but observations may only

be taken on a finite collection of sample sites. Let s, s, . . . , sn denote a such collection of

sample sites. s represents unsampled site with value Z(s) which have to be predicted.
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3.2 Stationarity

If the geostatistical methods should be optimal then the data have to be stationary. The

random function Z(s) is stationary if distribution of this function depends only on the

configuration of the points, not on their locations. This form of stationarity is called

strong stationarity. However, an assumption of strong stationarity is overmuch complex

therefore two simpler assumptions are considered. The second order stationarity is a

weaker form of stationarity and is often used in time series analysis, where the raw data

are usually transformed to become stationary. The random function Z(s) is second order

stationary if the three following assumptions are satisfied:

1. The expected value does not change over time or position. In other words, the mean

is constant:

E[Z(s)] = µ . (3.1)

2. The second assumption is similar to the first one, the variance is invariant over time

or position:

V ar[Z(s)] = σ2 . (3.2)

3. The covariance function only depends on the difference of arguments, i.e. on the

locations (distance and direction) of the pair of sites si, sj ∈ D:

cov(Z(si), Z(sj)) = C(Z(si), Z(sj)) = C(si − sj) = C(h) . (3.3)

If the covariance function only depends on the length h then C(h) = C(‖h‖) where ‖h‖

denotes Euclidean norm of the vector h. Such random field Z(s) is called isotropic. From

properties of the covariance mentioned above it is obvious that in case h = 0 following is

valid:

C(0) = V ar[Z(s)] = σ2 . (3.4)

Mentioned conditions mean that the random variables corresponding to different locations

in a domain D have both the same expected value and the same variance. But the

fulfillment of the second condition is rare thus weaker assumption can be formulated.
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This assumption is called intrinsic stationarity. Two following conditions have to be

satisfied:

1. First condition is the same as in the second order stationarity:

E[Z(s)] = µ . (3.5)

2. The second one is different and says that the variance of increment depends on the

difference of arguments:

V ar[Z(si)− Z(sj)] = E[(Z(si)− Z(sj))
2] = 2γ(h) . (3.6)

The function 2γ(h) is called variogram and γ(h) is called semivariogram. As well as the

covariance function the variogram is isotropic if 2γ(h) = 2γ(‖h‖). It is easy to see that

the second order stationary process is also intrinsic stationary. However, the reverse is

not true.

3.3 Covariance Function and Variogram

The covariance function C(h) is valid if and only if it is positive semi-definite. A ma-

trix C is positive definite if for every nonzero vector a the following expression is true

[Shewchuk, 1994]:

aTC a ≥ 0 .

In other words, the covariance function C(h) is positive definite if for all finite sets of sites

s, s, . . . , sn and all finite sets of constants a1, a2, . . . , an a following statement is valid

[Cressie, 1993]:

n∑
i=1

n∑
j=1

aiaj C(si − sj) ≥ 0 . (3.7)

On the contrary, the function 2γ(h) is valid if and only if it is conditionally negative

definite [Cressie, 1993]:

n∑
i=1

n∑
j=1

aiaj 2γ(si − sj) ≤ 0 , (3.8)
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but sets of constants a1, a2, . . . , an are restricted by condition

n∑
i=1

ai = 0 . (3.9)

If the second order stationarity is valid the relationship between covariance function

and variogram can be derived

2γ(h) = E[(Z(si)− Z(sj))
2] = E[((Z(si)− µ)− (Z(sj)− µ))2] =

= E[(Z(si)− µ)2]− 2E[(Z(si)− µ)− (Z(sj)− µ)] + E[(Z(sj)− µ)2] =

= V ar[Z(si)] + V ar[Z(sj)]− 2E[(Z(si)− µ)− (Z(sj)− µ)] =

= 2C(0)− 2C(h)

Consequently:

γ(h) = C(0)− C(h) . (3.10)
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Figure 3.1: The relationship between the covariance function and the semivariogram (or

simply variogram).
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Covariance function is measure of the similarity of the points but variance is measure of

the dissimilarity. Both covariance function and variogram play crucial role in geostatistics.

However, the main problem of practical applications is that variogram neither covariance is

not known and has to be estimated. First of all it is necessary to estimate the experimental

covariance function and variogram based on Matheron’s formulas [Cressie, 1993]:

Ĉ(h) =
1

Nh

∑
Nh

(Z(si)− µ̂)(Z(sj)− µ̂) , (3.11)

where the Ĉ(h) is estimated covariance function. The sum is over all pairs separated by

the same distance h, Nh is the number of such pairs and µ̂ is the estimation of a mean

computed according to

µ̂ =
1

n

n∑
i=1

Z(si) . (3.12)

And formula for the variogram reads [Michálek, 2001]:

2γ̂(h) =
1

Nh

∑
Nh

(Z(si)− Z(sj))
2 . (3.13)

In geostatistics the variogram is preferred against the covariance function. There are

more reasons for that. It is obvious from intrinsic stationarity that if the covariance func-

tion exists then the variogram also exists. In some cases the covariance function cannot be

defined but the variogram still exists. Another reason is stated in [Bárdossy, 1997]: “The

covariance function is defined using the value of the expectation, while the variogram does

not depend on this value. This is an advantage because slight trends do not influence the

variogram severely, in contrast to the covariance function where through the improper es-

timation of the mean these effects are more severe.” Owing to these reasons, the attention

will be paid to the variogram rather then covariance function in the following text.

3.4 The Experimental Variogram

The variogram defined as (2.13) is estimated on the basis of measured (observed) data.

Because the variogram is sensitive to data outliers, Cressie and Hawkins suggested two

robust formulas for estimation of a variogram [Michálek, 2001]:

2γ̂(h) =
( 1
Nh

∑
Nh
|Z(si)− Z(sj)|

1
2 )4

0.457 + 0.494
Nh

. (3.14)
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Figure 3.2: A Lay-out of data and the corresponding experimental semivariogram for lag

1000 m.

The second formula is based on a median:

2γ̂(h) =
(med{|Z(si)− Z(sj)|

1
2 : (si − sj) ∈ Nh})4

0.457
. (3.15)

It is proved that these robust formulas give better estimation then a Matheron’s formula

(2.13). Variograms (2.13), (2.14) and (2.15) are called experimental variograms and can

be applied only if data points are regularly spaced. In the case of irregularly spaced data

the summation could be carried out over the pairs fulfilling [Bárdossy, 1997]:

|si − sj| − |h| ≤ ε (3.16)

angle(si − sj,h) ≤ δ (3.17)
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where ε is a certain allowed difference in the length and δ is a certain allowed difference

in the angle.

3.5 The Theoretical Variogram

The problem is that experimental variograms do not fulfill the condition (2.8), therefore

models of theoretical variograms have to be introduced. However, it is necessary to explain

some important terms at first.

3.5.1 Nugget Effect

The distance h is also called lag. Apparently the value of the semivariogram at lag equals

to zero should be also zero:

γ(h) = 0, for h→ 0 (3.18)

If the semivariogram value is meaningfully different from zero then this value has been

called the nugget effect :

γ(h)→ c0 > 0, for h→ 0 (3.19)

It is mentioned in [Cressie, 1993] that this is caused by a microscale variation (variation

at spatial scales shorter than separation of the sample sites) that makes a discontinuity

at the origin, and also a measurement error.

3.5.2 Sill

It is supposed for very distant points that corresponding random variables are independent

due to the second order stationarity. If variables Z(si) and Z(sj) are independent then

C(h) = 0 and according to (2.10) and (2.4)

γ(h) = C(0) = σ2 . (3.20)

It means that after a certain distance the semivariogram becomes constant. The semivar-

iogram value c at which the semivariogram levels off is called the sill [Bohling, 2007]. It

also means that if the condition of the second order stationarity is not satisfied, just the

intrinsic stationarity is met, then the semivariogram does not have sill and it can show

an unlimited increase. The nugget effect can be included also in the sill.
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3.5.3 Range

Range is a certain lag distance at which the semivariogram achieve the sill. In other

words, the range is the distance which separates the correlated and the uncorrelated

random variables [Bárdossy, 1997].

Figure 3.3: The nugget effect, the sill and the range are illustrated on the variogram.

3.5.4 Models of Theoretical Variogram

Theoretical semivariograms can be divided into two groups, with the sill and without the

sill. As mentioned above, h represents lag distance, c0 is the nugget effect and c represents

the sill. Main semivariograms with the sill are [Cressie, 1993]:
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1. Nugget:

γ̂(h) =

 0 if h = 0

c0 if h > 0
. (3.21)

2. Spherical:

γ̂(h) =

 c0 + cs

(
3h
2 as
− 1h3

2 a3
s

)
if h ≤ as

c0 + cs if h > as
, (3.22)

where the sill is C = c0 + cs and the range is as.
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Figure 3.4: The Spherical Semivariogram.
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Figure 3.5: The Exponential Semivariogram.

3. Exponential:

γ̂(h) = c0 + ce

(
1− e

−3h
ae

)
, (3.23)

where c0 + ce is the sill and ae is the range.

4. Gaussian:

γ̂(h) = c0 + cg

(
1− e

− 3h2

a2
g

)
, (3.24)

where ag is the range of spatial correlation and c0 + cg is the sill.
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Figure 3.6: The Gaussian Semivariogram.

The semivariogram without the sill:

5. Power:

γ̂(h) = c0 + aph
p for 0 < p < 2 , (3.25)

where ap represents the range. In case of p = 1 the semivariogram is linear. This

semivariogram is often used. If the semivariogram has no sill then the variance of

the process is infinite.
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Figure 3.7: The Power Semivariogram.

3.6 Estimation of Suitable Semivariogram

The appropriate estimation of a semivariogram is obtained by fitting a theoretical curve

to the experimental one see Fig. 3.8. In practical geostatistics the most extended method

is “by eye.” It is provided by plotting the experimental variogram and finding a linear

combination of theoretical models whose plot is the most similar to the experimental one

[Bárdossy, 1997].

This method has the advantage that it can detect errors of the data set, e.g. the

intrinsic stationarity is not valid, there are trends in the data set, inhomogeneities etc.

However, this method is disadvantageous because it is too subjective. Hence, the common

practice is to use other methods, for example nonlinear least squared approach or the

maximum likelihood method which will be discussed later.
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Figure 3.8: An example of fitting the curves of theoretical variograms to a curve of the

experimental variogram.

3.7 Kriging

As mentioned earlier, the Kriging is the geostatistical method of predicting values at

unsampled points. The semivariogram or variogram plays the crucial role in Kriging

therefore the theory of variogram was discussed above. Kriging is similar to other in-

terpolation methods, e.g. splines and radial basis functions. For more details about the

relationship between Kriging and splines see [Watson, 1984], and the relationship between

Kriging and radial basis function can be found in [Hornby and Horowitz, 1999].

There are many versions of Kriging. We introduce the ordinary Kriging at first be-

cause most of the other Kriging techniques can be derived from it. Further in this section

we will discuss the universal Kriging and co-Kriging. The other types of Kriging, e.g. in-

dicator Kriging, soft Kriging, fixed rank Kriging etc., can be found, e.g. in [Cressie, 1993],

[Cressie and Johannesson, 2008], or [Bárdossy, 1997].
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3.7.1 Ordinary Kriging

Let assume the model:

Z(s) = µ(s) + ε(s) . (3.26)

The term µ(s) is the deterministic part of Z which describes large-scale variability of

a process Z. The term ε(s) is a correlated error process and it describes smooth-scale

variability, micro-scale variability and measurement errors [Michálek, 2001]. It is sup-

posed that this term has following properties:

1.

E[ε(s)] = 0 (3.27)

2.

V ar[ε(s)] = σ2 (3.28)

The variance does not depend on spatial location s ∈ D.

3.

C(si − sj) = cov(ε(si), ε(sj)) (3.29)

The covariance function only depends on the difference in the locations, i.e. the

distance and direction of the pairs of sites si, sj ∈ D.

If all these presumptions are satisfied then following is valid:

1.

E[Z(s)] = µ(s) (3.30)

2.

V ar[Z(s)] = σ2 (3.31)
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3.

C(si − sj) = cov(Z(si), Z(sj)) (3.32)

We also assume that the covariance function C(h) or semivariogram γ(h) is known.

Then the goal of Kriging is to find the best linear unbiased predictor (BLUP) or the

best linear unbiased estimator (BLUE) in the point s0:

Ẑ(s0) =
n∑
i=1

λiZ(si) , (3.33)

where terms λi’s are chosen to minimize the mean squared error:

MSE = E[(Ẑ(s0)− Z(s0))
2] = E

[
(Z(s0)−

n∑
i=1

λiZ(si))
2

]
. (3.34)

If the prediction Ẑ in the unsampled point s0 should be unbiased then the following

condition has to be fulfilled:

E[(Ẑ(s0)] = E[(Z(s0)] , (3.35)

then according to (3.30)

E[Ẑ(s0)] = E

[
n∑
i=1

λiZ(si)

]

=
n∑
i=1

λiE[Z(si)]

= µ(s)
n∑
i=1

λi

Hence, the prediction Ẑ(s0) is unbiased for Z(s0) if and only if

n∑
i=1

λi = 1 . (3.36)

The mean squared error of predictor Ẑ(s0) is:

MSE(s0) = E
[
(Ẑ(s0)− Z(s0))

2
]

= σ2
e , (3.37)
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or equivalently:

E
[
(Ẑ(s0)− Z(s0))

2
]

= V ar[Ẑ(s0)− Z(s0)]

= V ar[Ẑ(s0)] + V ar[Z(s0)]− 2cov[Ẑ(s0), Z(s0)]

= V ar

[
n∑
i=1

λiZ(si)

]
+ V ar[Z(s0)]− 2cov

[
n∑
i=1

λiZ(si), Z(s0)

]

=
n∑
i=1

n∑
j=1

λiλjC(si − sj) + σ2 − 2
n∑
i=1

λiC(si − s0) .

With respect to condition (3.10), we can rewrite these equations as a function of the

variogram:

MSE(s0) = σ2 +
n∑
i=1

n∑
j=1

λiλj[σ
2 − γ(si − sj)]− 2

n∑
i=1

λi[σ
2 − γ(si − s0)]

= σ2 + σ2 −
n∑
i=1

n∑
j=1

λiλjγ(si − sj)− 2σ2 + 2
n∑
i=1

λiγ(si − s0)

= −
n∑
i=1

n∑
j=1

λiλjγ(si − sj) + 2
n∑
i=1

λiγ(si − s0) .

To obtain the vector of coefficients λ = (λ1, λ2, . . . , λn)′ by minimizing the mean squared

error subjected to the constraint (3.36) we have to apply the method of Lagrange multi-

pliers:

Q(λ, %) = −
n∑
i=1

n∑
j=1

λiλjγ(si − sj) + 2
n∑
i=1

λiγ(si − s0) + 2%

(
1−

n∑
i=1

λi

)
. (3.38)

By taking derivatives of the function Q(λ, %) with respect to the λ and % one obtains:

∂

∂λi
Q(λ, %) = −2

n∑
i=1

λiγ(si − sj) + 2γ(si − s0)− 2% (3.39)

∂

∂%
Q(λ, %) = 2

(
1−

n∑
i=1

λi

)
(3.40)

Kriging equations can be obtained by setting each of the expressions above equal to zero,

and by re-arranging terms:

n∑
i=1

λiγ(si − sj) + % = γ(so − si) (3.41)

n∑
i=1

λi = 1 (3.42)
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The both kriging equations can be written in the matrix notation which is more trans-

parent [Cressie, 1993]:

0 γ(s1 − s2) γ(s1 − s3) · · · γ(s1 − sn) 1

γ(s2 − s1) 0 γ(s2 − s3) · · · γ(s2 − sn) 1

γ(s3 − s1) γ(s3 − s2) 0 · · · γ(s3 − sn) 1
...

...
...

. . .
...

...

γ(sn − s1) γ(sn − s2) γ(sn − s3) · · · 0 1

1 1 1 · · · 1 0


︸ ︷︷ ︸

ΓO



λ1

λ2

λ3

...

λn

%


︸ ︷︷ ︸
λO

=



γ(s0 − s1)

γ(s0 − s2)

γ(s0 − s3)
...

γ(s0 − sn)

1


︸ ︷︷ ︸

γO

Shortly:

λO = Γ−1
O γO , (3.43)

where ΓO is a symmetric (n + 1) × (n + 1) matrix. From (3.43), the coefficients λ =

(λ1, λ2, . . . , λn)′ are given by [Cressie, 1993]:

λ′ =

(
γ + 1

(1− 1′Γ−1γ)

1′Γ−11

)′
Γ−1 , (3.44)

and

% = −(1− 1′Γ−1γ)

1′Γ−11
, (3.45)

where γ = (γ(s0 − s1), . . . , γ(s0 − sn))′, Γ is the n × n matrix whose (i, j) th element is

γ(si − sj) and 1 is 1× n vector of ones.

The Kriging (prediction) variance is the minimized mean-squared prediction error

(3.37):

σ2
k(s0) = λ′OγO =

∑n
i=1 λiγ(s0 − si) + %

= γ ′Γ−1γ −
(
1′Γ−1γ−1

)2

1′Γ−11
.

(3.46)
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For the sake of completeness, we introduce also a matrix notation of Kriging in terms

of the covariance function [Cressie, 1993]:

C(0) C(s1 − s2) C(s1 − s3) · · · C(s1 − sn) 1

C(s2 − s1) C(0) C(s2 − s3) · · · C(s2 − sn) 1

C(s3 − s1) C(s3 − s2) C(0) · · · C(s3 − sn) 1
...

...
...

. . .
...

...

C(sn − s1) C(sn − s2) C(sn − s3) · · · C(0) 1

1 1 1 · · · 1 0


︸ ︷︷ ︸

ΣO



λ1

λ2

λ3

...

λn

%


︸ ︷︷ ︸
λO

=



C(s0 − s1)

C(s0 − s2)

C(s0 − s3)
...

C(s0 − sn)

1


︸ ︷︷ ︸

cO

That is:

λO = Σ−1
O cO , (3.47)

where ΣO is a symmetric (n + 1) × (n + 1) matrix. As well as in the case of variogram,

the coefficients λ = (λ1, λ2, . . . , λn)′ are given by:

λ′ =

(
c+ 1

(1− 1′Σ−1c)

1′Σ−11

)′
Σ−1 , (3.48)

and

% = −(1− 1′Γ−1c)

1′Σ−11
, (3.49)

where c = (C(s0 − s1), . . . , C(s0 − sn))′, Σ is the n× n matrix whose (i, j) th element is

C(si − sj) and 1 is 1 × n vector of ones. These equations require the assumption of the

second order stationarity.

Finally, the Kriging variance is defined as:

σ2
k(s0) = C(0)− λ′c+ % . (3.50)

3.7.2 Simple Kriging

The simple Kriging is the simplest type. In the case of the simple Kriging it is assumed

that µ(s) is known constant mean µ over the whole domain D and the coefficients do not

add up to one. A distinction between simple and ordinary Kriging can be seen when all n

observation have the same value z. With ordinary Kriging the estimate at the unobserved

location is also z, whereas with simple Kriging the estimate at the unobserved location is

a linear combination of z and the specified model mean µ.
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3.7.3 Universal Kriging

Universal Kriging is similar to the ordinary Kriging. The differences are in the determinis-

tic term µ(s). Let assume that the mean value µ(s) of a process (or random function) Z is

the linear combination of known functions x1(s), x2(s), . . . , xp(s), s ∈ D. The coefficients

of this linear combination are unknown parameters β0, β1, . . . , βn. These parameters have

to be estimated. Thus, it is supposed:

µ(s) =

p∑
j=0

βjxj(s) . (3.51)

The best linear unbiased predictor in the point s0 is identical to ordinary Kriging:

Ẑ(s0) =
n∑
i=1

λiZ(si) , (3.52)

where terms λi’s are chosen to minimize the mean squared error:

MSE = E[(Ẑ(s0)− Z(s0))
2] = E

[
(Z(s0)−

n∑
i=1

λiZ(si))
2

]
. (3.53)

If the prediction Ẑ in the unsampled point s0 should be unbiased then the following

condition has to be fulfilled:

E[(Ẑ(s0)] = E[(Z(s0)] , (3.54)

for all β0, β1, β2, . . . , βn. The expected value of predictor is:

E[(Ẑ(s0)] = β0 + β1x1(s0) + β2x2(s0) + · · ·+ βpxp(s0) , (3.55)

then

E[Ẑ(s0)] = E

[
n∑
i=1

λiZ(si)

]

=
n∑
i=1

λiE[Z(si)]

=
n∑
i=1

λi(β0 + β1x1(si) + β2x2(si) + · · ·+ βpxp(si))

= β0

n∑
i=1

λi + β1

n∑
i=1

λix1(si) + β2

n∑
i=1

λix2(si) + · · ·+ βp

n∑
i=1

λixp(si) .
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So the prediction Ẑ(s0) is unbiased for Z(s0) if and only if

n∑
i=1

λi = 1 , (3.56)

n∑
i=1

λixj(si) = xj(s0) for j = 1, 2, . . . , p . (3.57)

The condition (3.54) also can be expressed as [Michálek, 2001]:

µ(s0) =

p∑
j=0

βjxj(s0) =
n∑
i=1

λi

p∑
j=0

βjxj(si) . (3.58)

In matrix notation it is:

x′β = λ′Xβ , (3.59)
(x1(s0)

x2(s0)
...

xp(s0)



′

︸ ︷︷ ︸
x


β0

β1

...

βp


︸ ︷︷ ︸
β

=


λ1

λ2

...

λn



′

︸ ︷︷ ︸
λ


x1(s1) · · · xp(s1)

x1(s2) · · · xp(s2)
...

...

x1(sn) · · · xp(sn)


︸ ︷︷ ︸

X


β0

β1

...

βp


︸ ︷︷ ︸
β

Thus, we can rewrite the model (3.26) as:

Z(s0) = µ(s0) + ε(s0) = x′β + ε(s0) , (3.60)

and the predictor is:

Ẑ(s0) =
n∑
i=1

λiZ(si) = λ′Z = λ′Xβ + λ′ε . (3.61)

where Z = (Z(s1), Z(s2), . . . , Z(sn))′ is a vector of observed values in points s1, s2, . . . , sn.

And ε = (ε(s1), ε(s2), . . . , ε(sn))′ is vector of corresponding random errors.

The mean squared error of a predictor Ẑ(s0) is similar to the MSE in the case of

ordinary Kriging:

MSE(s0) = E
[
(Ẑ(s0)− Z(s0))

2
]

= σ2
e , (3.62)
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or equivalently:

MSE(s0) = σ2 +
n∑
i=1

n∑
j=1

λiλj[σ
2 − γ(si − sj)]− 2

n∑
i=1

λi[σ
2 − γ(si − s0)]

= σ2 + σ2 −
n∑
i=1

n∑
j=1

λiλjγ(si − sj)− 2σ2 + 2
n∑
i=1

λiγ(si − s0)

= −
n∑
i=1

n∑
j=1

λiλjγ(si − sj) + 2
n∑
i=1

λiγ(si − s0) .

To obtain the vector of coefficients λ = (λ1, λ2, . . . , λn)′ by minimizing the mean squared

error subjected to constraints (3.56, 3.57) we have to apply the method of Lagrange

multipliers:

Q(λ,%) = −
∑n

i=1

∑n
j=1 λiλjγ(si − sj) + 2

∑n
i=1 λiγ(si − s0)

+ 2%0 (1−
∑n

i=1 λi) + 2
∑p

j=1 %j (xj(s0)−
∑n

i=1 λixj(si)) .

(3.63)

By taking derivatives of the function Q(λ,%) with respect to the λ and % we get:

∂

∂λk
Q(λ, %) = −2

n∑
i=1

λiγ(si − sk) + 2γ(sk − s0)− 2%0 − 2

p∑
j=1

%jxj(sk) , (3.64)

for k = 1, 2, . . . , n,

∂

∂%0

Q(λ, %) = 2

(
1−

n∑
i=1

λi

)
(3.65)

∂

∂%k
Q(λ, %) = 2

(
xk(s0)−

n∑
i=1

λixk(si)

)
for k = 1, . . . , p . (3.66)

Kriging equations can be obtained by setting each of the expressions above equal to zero,

and by re-arranging terms:

n∑
i=1

λiγ(si − sj) + %0 +

p∑
j=1

%jxj(sk) = γ(so − sk) for k = 1, . . . , n , (3.67)

n∑
i=1

λi = 1 , (3.68)

n∑
i=1

λixk(si) = xk(so) for k = 1, . . . , p . (3.69)
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We can rewrite equations in matrix notation:

0 γ(s1 − s2) · · · γ(s1 − sn) 1 x1(s1) · · · xp(s1)

γ(s2 − s1) 0 · · · γ(s2 − sn) 1 x1(s2) · · · xp(s2)
...

...
. . .

...
...

...
...

γ(sn − s1) γ(sn − s2) · · · 0 1 x1(sn) · · · xp(sn)

1 1 · · · 1 0 0 · · · 0

x1(s1) x2(s2) · · · xn(sn) 0 0 · · · 0
...

...
...

...
...

...

xp(s1) xp(s2) · · · xp(sn) 0 0 · · · 0


︸ ︷︷ ︸

ΓU



λ1

λ2

...

λn

%0

%1

...

%p


︸ ︷︷ ︸
λU

=

=



γ(s0 − s1)

γ(s0 − s2)
...

γ(s0 − sn)

1

x1(s0)
...

xp(s0)


︸ ︷︷ ︸

γU

or easily:

λU = Γ−1
U γU , (3.70)

where ΓU is a symmetric (n + p + 1) × (n + p + 1) matrix. Thus, the coefficients

λ = (λ1, λ2, . . . , λn)′ are given by [Cressie, 1993]:

λ′ =
(
γ + X(X′Γ−1X)−1(x−X′Γ−1γ

)′
Γ−1 , (3.71)

and

% = −(x−X′Γ−1γ)′(X′Γ−1X)−1 , (3.72)

where γ = (γ(s0 − s1), . . . , γ(s0 − sn))′, Γ is the n × n matrix whose (i, j) th element is

γ(si − sj) and X is an n× (p+ 1) matrix whose (i, j) th element is xj−1(si).
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The prediction variance is:

σ2
k(s0) = λ′UγU =

∑n
i=1 λiγ(s0 − si) + %0 +

∑p
j=1 %jxj(s0)

= γ ′Γ−1γ −
(
x−X′Γ−1γ

)−1 (
x−X′Γ−1γ

)
.

(3.73)

We also release a matrix notation of universal Kriging in terms of the covariance

function [Cressie, 1993]:

C(0) C(s1 − s2) · · · C(s1 − sn) 1 x1(s1) · · · xp(s1)
...

...
. . .

...
...

...
...

C(sn − s1) C(sn − s2) · · · C(0) 1 x1(sn) · · · xp(sn)

1 1 · · · 1 0 0 · · · 0

x1(s1) x2(s2) · · · xn(sn) 0 0 · · · 0
...

...
...

...
...

...

xp(s1) xp(s2) · · · xp(sn) 0 0 · · · 0


︸ ︷︷ ︸

ΣU



λ1

...

λn

%0

%1

...

%p


︸ ︷︷ ︸
λU

=

=



C(s0 − s1)
...

C(s0 − sn)

1

x1(s0)
...

xp(s0)


︸ ︷︷ ︸

cU

That is:

λU = Σ−1
U cU , (3.74)

where ΣU is a symmetric (n + p + 1) × (n + p + 1) matrix. Thus, the coefficients

λ = (λ1, λ2, . . . , λn)′ are given by [Cressie, 1993]:

λ′ =
(
c + X(X′Σ−1X)−1(x−X′Σ−1c

)′
Σ−1 , (3.75)

and

% = (x−X′Σ−1c)′(X′Σ−1X)−1 , (3.76)
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where c = (C(s0 − s1), . . . , C(s0 − sn))′, Σ is the n× n matrix whose (i, j) th element is

C(si − sj) and X is an n× (p+ 1) matrix whose (i, j) th element is xj−1(si).

The prediction variance is:

σ2
k(s0) = C(0) +

∑n
i=1 λiC(s0 − si) + %0 +

∑p
j=1 %jxj(s0)

= C(0)− c′Σ−1c +
(
x−X′Σ−1c

)′ (
X′Σ−1X

)−1 (
x−X′Σ−1c

)
.

(3.77)

3.7.4 Co-Kriging

Before we describe the co-Kriging we have to introduce two new terms. The optimiza-

tion of the linear co-Kriging estimate requires modeling of the cross-covariance or cross-

variogram between pairs of variable at location pairs. Thus, the cross-covariance is for-

mulated as:

CY Z(h) =
1

Nh

∑
hij=h

(Y (si)− µ̂Y )(Y (sj)− µ̂Y )(Z(si)− µ̂Z)(Z(sj)− µ̂Z) , (3.78)

and the cross-variogram si defined as:

2γY Z(h) =
1

Nh

∑
hij=h

(Y (si)− Y (sj))(Z(si)− Z(sj)) , (3.79)

where Nh is number of pairs whose locations are separated by vector h. Index hij =

location[Y (si)]− location[Y (sj)] = location[Z(si)]− location[Z(sj)], where location[Y (si)]

is location where Y (si) is calculated, and similarly for other values [Memarsadeghi, 2004].

It is clear from equations (3.78, 3.79) that we are dealing with values of two random

variables from different distributions. The first variable Z(s) is called primary variable

(or variable of interest) and Y (s) is secondary variable.

Co-Kriging is defined as a multivariate version of Kriging as well as the universal

Kriging. The best linear unbiased predictor of Z(s0) is estimated as a linear combination

of both the variable of interest Z(s) and the secondary variable Y (s):

Ẑ(s0) =
n∑
i=1

λiZ(si) +
m∑
j=1

ωjY (sj) , (3.80)

where λ = (λ1, λ2, . . . , λn)′ and ω = (ω1, ω2, . . . , ωm)′ are vectors of unknown coefficients

that have to be estimated. Note that auxiliary information does not need to be collected at
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the same data points as the variable of interest [Memarsadeghi, 2004]. These coefficients

are chosen to minimize the mean squared error:

MSE = E[(Ẑ(s0)− Z(s0))
2] = E

[
(Z(s0)−

n∑
i=1

λiZ(si)−
m∑
j=1

ωjY (sj))
2

]
. (3.81)

As well as previous types of Kriging, the predictor Ẑ at unsampled point s0 is unbiased

for Z(s0) if:

E[(Ẑ(s0)] = E[(Z(s0)] , (3.82)

and using property of the expected value (2.10):

E[Ẑ(s0)] = E

[
n∑
i=1

λiZ(si) +
m∑
j=1

ωjY (sj)

]

=
n∑
i=1

λiE[Z(si)] +
m∑
j=1

ωjE[Y (sj)]

= µZ

n∑
i=1

λi + µY

m∑
j=1

ωj

So constraints on coefficients are:

n∑
i=1

λi = 1 , (3.83)

m∑
j=1

ωj = 0 . (3.84)

The mean squared error of predictor Ẑ(s0) is:

MSE(s0) = E
[
(Ẑ(s0)− Z(s0))

2
]

= σ2
e , (3.85)
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and by [Memarsadeghi, 2004] follows:

E
[
(Ẑ(s0)− Z(s0))

2
]

= V ar[Ẑ(s0)− Z(s0)]

=
n∑
i=1

n∑
j=1

λiλjcov(Z(si), Z(sj)) +
m∑
i=1

m∑
j=1

ωiωjcov(Y (si), Y (sj))

+ 2
n∑
i=1

m∑
j=1

λiωjcov(Z(si), Y (sj))− 2
n∑
i=1

λicov(Z(s0), Z(si))

− 2
m∑
j=1

ωjcov(Z(s0), Y (sj)) + cov(Z(s0), Z(s0))

=
n∑
i=1

n∑
j=1

λiλjCZ(si − sj) +
m∑
i=1

m∑
j=1

ωiωjCY (si − sj)

+ 2
n∑
i=1

m∑
j=1

λiωjCZY (si − sj)− 2
n∑
i=1

λiCZ(s0 − si)

− 2
m∑
j=1

ωjCZY (s0 − sj) + σ2 .

We can expressed previous equations as a function of the variogram:

E
[
(Ẑ(s0)− Z(s0))

2
]

= V ar[Ẑ(s0)− Z(s0)]

= −
n∑
i=1

n∑
j=1

λiλjγZ(si − sj)−
m∑
i=1

m∑
j=1

ωiωjγY (si − sj)

− 2
n∑
i=1

m∑
j=1

λiωjγZY (si − sj) + 2
n∑
i=1

λiγZ(s0 − si)

+ 2
m∑
j=1

ωjγZY (s0 − sj) .

To obtain vectors of coefficients λ = (λ1, λ2, . . . , λn) and ω = (ω1, ω2, . . . , ωm) to minimize

the mean squared error subjected to the constraint of unbiasedness we have to again apply

the method of Lagrange multipliers:

Q(λ,ω,%) = −
∑n

i=1

∑n
j=1 λiλjγZ(si − sj)−

∑m
i=1

∑m
j=1 ωiωjγY (si − sj)

− 2
∑n

i=1

∑m
j=1 λiωjγZY (si − sj) + 2

∑n
i=1 λiγZ(s0 − si)

+ 2
∑m

j=1 ωjγZY (s0 − sj) + 2%Z (
∑n

i=1 λi − 1) + 2%Y

(∑m
j=1 ωj

)
.

(3.86)
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By taking derivatives of the function Q(λ,ω,%) with respect to the λ, ω and % one obtains:

∂
∂λj
Q(λ,ω,%) = − 2

∑n
i=1 λiγZ(si − sj) + 2

∑m
i=1 ωiγZY (si − sj)

− 2γZ(sj − s0) + 2%Z ,

(3.87)

for j = 1, 2, . . . , n,

∂
∂ωj

Q(λ,ω,%) = − 2
∑n

i=1 λiγZY (si − sj) + 2
∑m

i=1 ωiγY (si − sj)

− 2γZY (sj − s0) + 2%Y ,

(3.88)

for j = 1, 2, . . . ,m,

∂

∂%Z
Q(λ,ω,%) = 2%Z

(
n∑
i=1

λi − 1

)
(3.89)

∂

∂%Y
Q(λ,ω,%) = 2%Y

(
m∑
j=1

ωj

)
. (3.90)

Kriging equations can be obtained by setting each of the expressions above equal to zero,

and by re-arranging terms:

n∑
i=1

λiγZ(si − sj) +
m∑
i=1

ωiγZY (si − sj) + %Z = γZ(sj − s0) , (3.91)

for j = 1, 2, . . . , n,

n∑
i=1

λiγZY (si − sj) +
m∑
i=1

ωiγY (si − sj) + %Y = γZY (sj − s0) , (3.92)

for j = 1, 2, . . . ,m,

n∑
i=1

λi = 1 (3.93)

m∑
i=1

ωi = 0 . (3.94)
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Next, we can express previous equations in matrix notation:

γZ(s1 − s1) · · · γZ(s1 − sn) γZY (s1 − s1) · · · γZY (s1 − sm) 1 0
...

...
...

...
...

...
...

...

γZ(sn − s1) · · · γZ(sn − sn) γZY (sn − s1) · · · γZY (sn − sm) 1 0

γY Z(s1 − s1) · · · γY Z(s1 − sn) γY (s1 − s1) · · · γY (s1 − sm) 1 0
...

...
...

...
...

...
...

...

γY Z(sm − s1) · · · γY Z(sm − sn) γY (s1 − s1) · · · γY (sm − sm) 1 0

1 · · · 1 0 · · · 0 0 0

0 · · · 0 1 · · · 1 0 0


︸ ︷︷ ︸

ΓC



λ1

...

λn

ω1

...

ωn

%Z

%Y


︸ ︷︷ ︸
λC

=

=



γZ(s0 − s1)
...

γZ(s0 − sn)

γZY (s0 − s1)

γZY (s0 − sm)

1

0


︸ ︷︷ ︸

γC

Or shortly:

λC = Γ−1
C γC . (3.95)

The matrix of covariance functions ΣC is provided by replacing the variogram γ(·) by the

covariance function C(·).

Finally, the prediction variance can be computed from:

σ2
k(s0) = −

n∑
i=1

λiγZY (s0 − si)−
m∑
i=1

ωiγZY (s0 − si) + %Z + %Y . (3.96)

3.7.5 Properties of Kriging

At the end of this chapter we summarize some properties of Kriging which can be seen

from above-mentioned equations.
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1. By construction, Kriging is unbiased:

E[Ẑ(s0)] = Z(s0) .

2. By construction, the Kriging predictor is the best linear unbiased predictor. It

means that it has the smallest mean squared error among all linear predictors.

3. Kriging is an exact interpolator, see Fig. 3.9. For a sampled site si, the Kriging

predictor is:

Ẑ(si) = Z(si) ,

and the corresponding estimation variance is:

σ2
k(si) = 0 .

Nevertheless, Kriging can be an approximation, too. The distinction between the

method presented here and an approximation is whether the fitted/interpolated

function goes exactly through all the input data points (interpolation), or whether

it allows measurement errors to be specified and then ”smooths” to get a statis-

tically better predictor that does not generally go through the data points (does

not ”honor the data”). Such access can be found, e.g. in [Krivoruchko, 2001] or in

[Kleijnen, 2007].

4. The Kriging predictor is continuous if there is no nugget effect:

lim
h→0

Ẑ(s0 + h) = Ẑ(s0) .

If there is a nugget effect, then the Kriging predictor is continuous everywhere except

at the data points where there are discontinuities.

5. Kriging coefficients λ sum up to 1, but they can also be negative.

6. Furthermore, Kriging coefficients λ are not influenced by the measurement values.

If the same configuration appears at two different locations the Kriging weights λ

will be the same, abstractedly from the measured values [Bárdossy, 1997].
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Kriging is an exact interpolator

Figure 3.9: Kriging is an exact interpolator. Red circles are sampled points, black line is

predicted value at unsampled points and green lines bound the confidence range.

7. It is typical for Kriging weights that distant points get lower weights if the further

measurements are available. This property is named a screening effect.

8. It is obvious from equations presented above that the computation of Kriging weights

λ requires inverting of the variogram matrix (or the matrix of covariance func-

tion) which is time consuming if a number of observations is very large. The time

required to solve a dense n × n matrix grows at order of n3. The problem of

a large number of observations can be solved by application of sparse matrix tech-

niques, see [Barry and Pace, 1997]. Alternatively, the special type of Kriging can

be used: for instance fixed rank Kriging, that is adapted to large data set, see e.g.

[Cressie and Johannesson, 2008].



Chapter 4

GLOBAL OPTIMIZATION APPROACH TO KRIGING

In this chapter the global optimization approach to Kriging is presented. We are

inspired by the work of [Jones et al., 1998] and [Jones, 2001]. They took the stochastic

process model (Kriging) used in statistics and applied it to global optimization. We start

with showing how the Kriging can be derived as a modification to linear regression. The

notation used in the previous chapter is preserved with less but necessary differences.

Let assume a evaluated function of k variables at n points. The sampled point i is

denoted by si = (si 1, si 2, . . . , si n)′ and a function value at the same point by Zi = Z(si),

for i = 1, 2, . . . , n. The model of linear regression fitting a response of given data is

provided by:

Z(si) =
∑
h

βhfh(si) + εi for i = 1, 2, . . . , n , (4.1)

where each fh(s) is a linear or nonlinear function of s. The term β = (β0, β1, . . . , βh)
′ is

a vector of unknown coefficients which have to be estimated, and the ε = (ε1, ε2, . . . , εn)′

are independent error terms with normal distribution. Among others, it means that these

terms have mean equals to zero and variance equals to σ2:

E[ε] = 0 , (4.2)

V ar[ε] = σ2 . (4.3)

When we are applying linear regression to a computer code, there is a problem that

the functional form of regression terms is often unknown. Another problem is that the

assumption of an independent error is wrong. Because the code is deterministic, any lack

of fit will be entirely modeling error, not measurement error or noise [Jones et al., 1998].

From this cognisance ensues that we may write εi as ε(si), and that if the points si and

sj are close together, then the errors ε(si) and ε(sj) should be close, too. It all means

that the assumption of correlated errors is more reasonable. Similar to geostatistics the
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correlation between errors is related to the distance between the corresponding points.

We compute the distance by the help of formula [Jones et al., 1998]:

d(si, sj) =
k∑

h=1

θh |si h − sj h|ph , (4.4)

where the parameter θh ≥ 0 is a measure of the importance of the variable sh. A larger

θ is related to a more active variable, and the correlation descends more rapidly with the

change in s. The parametr ph ∈ {1, 2} is related to the smoothness of the function in the

direction h. A higher value of ph makes a function more smoother.

Originally [Jones et al., 1998], the distance formula presented above leads to the defi-

nition of the correlation between errors:

Corr[ε(si), ε(sj)] = exp[−d(si − sj)] . (4.5)

Then, the correlation can be denoted for any function ρ as:

Corr[ε(si), ε(sj)] = ρ[ε(si), ε(sj)] , (4.6)

where ρ is a correlation function selected by user, see next page.

The Kriging model can be seen as a combination of a global model plus a localized

’deviation’ [Jin, 2005]:

Z(s) = f(s) + ε(s) , (4.7)

where f(s) is a known function of s as a global model of the original function, and ε(s) is

a Gaussian random function with zero mean and non-zero covariance that represents a lo-

calized deviation from the global model. Usually the regression term f(s) is a polynomial

function but in [Jones et al., 1998] is stated that under circumstances mentioned above,

we can replace the regression term by the constant term. Then, we get the ordinary

Kriging model:

Z(si) = µ+ ε(si) for i = 1, 2, . . . , n . (4.8)

The parameters µ and variance of error terms σ2 is unknown and have to be estimated.

The estimation of these parameters is not direct and should be connected with estima-

tion of the correlation parameters θh and ph. As is mentioned in [Jones et al., 1998] and
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[Giunta and Watson, 1998], it is common to call this model the DACE stochastic pro-

cess model [Sacks et al., 1989], where DACE is abbreviated from Design and Analysis of

Computer Experiments.

The model (4.6) has 2k + 2 parameters, namely µ, σ2, θ1, θ2, . . . , θk and p1, p2, . . . , pk.

These parameters are estimated by the method of maximum likelihood. Here, the likeli-

hood function is:

1

(2π)n/2(σ2)n/2|R|1/2
exp

[
−(Z− 1µ)′R−1(Z− 1µ)

2σ2

]
, (4.9)

where Z = (Z1, Z2, . . . , Zn)′ denotes the vector of observed values, R is the correlation

matrix n × n whose (i, j) th element is Corr[ε(si), ε(sj)]. And finally, 1 denotes 1 × n

vector of ones.

By maximization of this function we get the parameters θ1, θ2, . . . , θk and p1, p2, . . . , pk

which are hidden in correlation matrix R. Next, the two remaining parameters can be

estimated:

µ̂ =
1′R−1Z

1′R−11
, (4.10)

σ̂2 =
(Z− 1µ̂)′R−1(Z− 1µ̂)

n
. (4.11)

The concentrated likelihood function can be obtained by substituting the equations (4.10)

and (4.11) to the likelihood function (4.9). Then the concentrated likelihood function will

depend on parameters θ1, θ2, . . . , θk and p1, p2, . . . , pk only. Now the Kriging is essentially

a generalized least squares (GLS) 1 model with a constant term as a set of regressors

and a special correlation matrix that depends upon distances between sampled points

[Jones et al., 1998]. When the errors are correlated then the GLS estimates of µ and σ2

are more efficient then ordinary least squares (OLS) estimates.

If we get all needed parameters we can predict the value Z(s0). The best linear

unbiased predictor of Ẑ(s0) is:

Ẑ(s0) = µ̂+ r′R−1(Z− 1µ̂) , (4.12)

where r is 1×n vector of correlations between the error terms at unsampled point s0 and

the error terms at sampled points. The i th element ri = Corr[ε(s0), ε(si)]. If there is no

correlation, i.e. r = 0, then Ẑ(s0) = µ̂ and we again obtain ordinary Kriging.

1 For details how the predictor of GLS looks like, see Appendix A
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As well as in the case of Kriging used in geostatistics, the predictor variance is defined

by:

σ2
k(s0) = σ2

[
1− r′R−1r +

(1− 1′R−1r)2

1′R−11

]
. (4.13)

The term −r′R−1r represents the reduction in a prediction error with respect to the fact

that s0 is correlated with the sampled points [Jones et al., 1998]. And the term (1−1′R−1r)2

1′R−11

reflects the uncertainty that follows from unknowing the µ̂ exactly.

4.1 Types of Correlation Function

The correlation function ρ[ε(si), ε(sj)] is specified by the user. Depending on the choice of a

correlation function, Kriging can either ’honor the data’, providing an exact interpolation

of the data, or ’smooth the data’, providing an inexact interpolation [Simpson et al., 2001].

We assume that the correlation function depends only on the distance between points.

Thus, we can write:

hh(i, j) = |si h − sj h| for h = 1, . . . , k; i, j = 1, 2, . . . , n , (4.14)

so the ρ[ε(si), ε(sj)] reduces to ρ[hh(i, j)]. Then matrix R reads:

R =



1 ρ(s1 − s2) ρ(s1 − s3) · · · ρ(s1 − sn)

ρ(s2 − s1) 1 ρ(s2 − s3) · · · ρ(s2 − sn)

ρ(s3 − s1) ρ(s3 − s2) 1 · · · ρ(s3 − sn)
...

...
...

. . .
...

ρ(sn − s1) ρ(sn − s2) ρ(sn − s3) · · · 1


,

and the vector r can be rewritten as:

r =



ρ(s0 − s1)

ρ(s0 − s2)

ρ(s0 − s3)
...

ρ(s0 − sn)


.
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The most usual form put on the correlation function is

ρ(h) =
k∏

h=1

ρ(hh) , (4.15)

where ρ[h] is a user selected correlation function. The most frequently used types of

functions according to [Kleijnen, 2008] are:

1.

ρ[h] = exp [−θhhph

h ] , (4.16)

2. which for ph = 1 simplifies into the exponential correlation function:

ρ[h] = exp(−θh) , (4.17)

3. or in case of ph = 2 the traditional Gaussian correlation function is obtained:

ρ[h] = exp
(
−θh2

)
. (4.18)

4. Other possibility is a linear correlation function:

ρ[h] = max(1− θh, 0) , (4.19)

5. or inspect Tab. 5.1 for other popular functions.



Chapter 5

APPLICATION ON EXPERIMENTAL DATA

Our research in this work is focused on multidimensional data which has more then a

three dimensions. Nevertheless, we also show application of Kriging to a spatial data for

the sake of completeness. Another application of Kriging to the spatial data is introduced

in the graduation thesis by Maxim Bernstein [Bernstein, 2006]. His work was aimed at

an interpolation of rainfall on the area of Prague, see again [Bernstein, 2006] for more

details.

5.1 Two Dimensional Data

The spatial data are frequently used in geostatistics. The data can be multivariate but

the domain D is usually limited to two or three dimensions. The estimation of the

variogram is pivotal for prediction values at unsampled points. There the free available

data which can be downloaded from http://people.ku.edu/~gbohling/BoiseGeostat

are used. The data consist of 85 entries of vertically averaged porosity values in percents.

The eighty five porosity values are measured at points distributed throughout the domain

which is approximately 20 km in east-west extent and 16 km north-south. The porosity

range from 12 % to 17 %, see Fig. 5.1. In this figure we can see that the values of

porosity are irregularly spaced. Therefore, we used the equation (3.17) for including

allowed difference ε in length:

|si − sj| − |h| ≤ ε (5.1)

The experimental variogram was computed from (3.13):

2γ̂(h) =
1

Nh

∑
Nh

(Z(si)− Z(sj))
2 . (5.2)

Different lags h = {500, 1000, 2000, 3000} has been tested with two lag tolerances ε =

{0, 500}:

http://people.ku.edu/~gbohling/BoiseGeostat
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Figure 5.1: Scatter plot of locations where the porosity was measured.
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Figure 5.2: Experimental variogram with h = 500 and lag tolerance ε = 0.
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Figure 5.3: Experimental variogram with h = 1000 and lag tolerance ε = 0.
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Figure 5.4: Experimental variogram with h = 1000 and lag tolerance ε = 500.
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Figure 5.5: Experimental variogram with h = 2000 and lag tolerance ε = 500.
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Figure 5.6: Experimental variogram with h = 3000 and lag tolerance ε = 500.
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We decided o use the experimental variogram with lag h = 1000 and lag tolerance

ε = 500, because the corresponding variogram seems to be the most appropriate for

tuning. Then, the curve of theoretical variogram was fitted to the experimental one. The

method ‘by eye’ was applied. The sill was fixed at 0.78 and the range was changing in an

aim to get the best fit. Following figures show chosen examples of several possible fits:
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Figure 5.7: Three theoretical variograms with a range a = 5039.
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Figure 5.8: Three theoretical variograms with a range a = 4223.
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Figure 5.9: Three theoretical variograms with a range a = 2996.
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Figure 5.10: Three theoretical variograms with a range a = 2365.
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Figure 5.11: Three theoretical variograms with a range a = 1984.
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After carefully study of all pictures, we have decided to use a model with a spherical

semivariogram, no nugget and a range a = 4223. Then a regular grid of unsampled points

from 19 500 × 19 500 area with spacing of 100 m has been generated. Thus, we have to

predict 38 416 values of porosity. The simple Kriging was used for prediction. The map

of porosity is a result, see Fig. 5.12, 5.13 and 5.14:

Figure 5.12: Surface plot of predicted values of porosity. Black points represent values at

sampled points.
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Figure 5.13: Surface plot with the contour map of predicted values of porosity. Black

points represent values at sampled points.

Figure 5.14: Predicted values of porosity. Circles denote sampled points.
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5.2 Kriging Approximation in Cement Paste Experimental Performance

This section shows an engineering application utilizing approximation as well as interpo-

lation properties of Kriging. This research is a part of a project aimed at a development of

new concrete compositions. This section was also published in [Valtrová* and Lepš, 2009]

as a conference paper.

5.2.1 Introduction

Cement paste is a fundamental scale from which concrete inherits majority of its prop-

erties. Experimental results show considerable scatter in the elastic response of cement

paste samples, however, virtual testing in a computer allows testing the influence of input

parameters on resulting macroscopic response [Šmilauer, 2006]. Last year, a combina-

tion of CEMHYD3D model with homogenization processes was employed as a basis for

an optimization [Šmilauer et al., 2008], where the Young modulus and heat of hydration

appear as objective functions. Question arises, whether results from the optimization of

the virtual model can be trusted. Our proposed solution is based on a so-called robust

optimization [H.-G. Beyer, 2007] where some selected distance to existing experimental

results is employed as the robustness measure. Hence, our goal is to create the closest

approximation to available experimental data and to provide estimation of the quality of

that approximation.

In this contribution, we demonstrate that Kriging/DACE [Sacks et al., 1989]), ap-

proximation is far away from the surface that is expected to describe physical process

underneath. Therefore, nonlinear optimization of the maximum monotonicity is pre-

sented. Overall, dozen of combinations of regression and correlation parts have been

tested. Unfortunately, the importance of a proper regression part is more crucial than

presented in the optimization literature [Jones, 2001]. We have found a regression part

that almost ideally describes the physical problem, however, the strict monotonicity has

not been preserved.
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5.2.2 Methods

Since the response in terms of mixture parameters is non-linear, the Kriging [Jones, 2001]

approximation in the space of hydration heat of available real measurements seems as

natural choice. Generally, Kriging predictor is composed of a regression and interpolation

part that constitutes the nonlinear surface among available data [Lophaven et al., 2002]:

Ẑ(s0) = f(s0)
′β + r(s0)

′R−1φ̂ , (5.3)

where vekf(s) is an a-priori selected set of basis functions creating the response surface

and r(s0) is the correlation term between an unsampled point s0 and known points si,

i = 1, . . . , n : r(s0) = [R(θ; s1; s0), . . . , R(θ; sn; s0)]
′, where R is a-priori selected correla-

tion function with unknown coefficients θ, see later. The regression part is solved by a

generalized least squares solution

β = (X′R−1X)−1XTR−1Z , (5.4)

where X is a matrix containing f(s) evaluated at known sites si, R stems for correlation

among si using again the correlation function R and Z are known values of Zi at si. The

Kriging part then interpolates the residual leading to the system of linear equations

φ̂ = R−1(Z−Xβ̂) . (5.5)

The use of such metamodel for optimization purposes is less demanding on the regres-

sion part since an interpolation is dominant and hence, the constant regression part usu-

ally suffices. Then, the correlation function is traditionally selected to obtain a positive-

definite system of equations, mainly restricted to the form

R(θ, s, s0) =
n∏
h=1

Rh(θ, si h − sj h) . (5.6)

In our case, a free Matlab toolbox DACE [Lophaven et al., 2002] is utilized providing

seven correlation functions, where five of them are presented in this work, see Tab. 5.1.

Note that at this point we still do not know the tuning/shape parameters θ. Their

functionality is twofold: they express the anisotropy among dimensions and also deter-

mine the shape of the metamodel in the vicinity of given samples. Traditionally, these
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Name R(θ; dh), dh = si h − sj h

EXP exp(−θh|dh|)

GAUSS exp(−θhd2
h)

LIN max{0, 1− θh|dh|}

SPHERICAL 1− 1.5ξh + 0.5ξ3
h, ξh = min{1,θh|dh|}

SPLINE 1− 15ξh + 30ξ3
h, for 0 ≤ ξh ≤ 0.2

1.25(1− ξh)3, for 0.2 ≤ ξh ≤ 1

0, for ξh > 1, ξh = θh|dh|

Table 5.1: Correlation functions

parameters are found a-posteriori by minimizing an expected mean squared error (MSE),

which leads to the constrained nonlinear optimization problem. See e.g. [Jones, 2001] for

discussion how to efficiently solve this problem without re-calculation of β and φ̂ for this

new θ.

Designation C3S C2S C3A C4AF Gyp. w/c Fin.

Mass Mass Mass Mass Vol

% % % % % - m2/kg

Aalborg white 0.666 0.238 0.034 0.004 0.036 0.400 390

Princigallo 0.554 0.184 0.082 0.091 0.051 0.375 530

BAM Fontana 0.492 0.243 0.090 0.076 0.0652 0.300 380

Hua 0.688 0.075 0.081 0.092 0.04 0.420 400

Robeyst 0.634 0.084 0.074 0.100 0.05 0.500 390

Smolik Litos 0.612 0.126 0.070 0.100 0.05 0.500 306

Tamtsia early 0.465 0.246 0.104 0.083 0.05 0.500 340

Table 5.2: Composition of experimental measurements

5.2.3 Fitting of experimental data

Particular application is shown on experimental data see Tab. 5.2 and Tab. 5.3, ob-

tained from seven sources, consecutively from top: Data measured at CTU by TAMAir
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Designation Hydration heat

(time in h, heat in J/g of cement)

Aalborg white 24 48 168 [h]

170.3 234 327 [J/g]

Princigallo 9.42 80.24 400.00 [h]

63.388 323.247 377.466 [J/g]

BAM Fontana 10.01 144.03 310.69 [h]

159.2624 295.6692 322.3247 [J/g]

Hua 24.00 168.00 600.00 [h]

233.4 317.25 339.8 [J/g]

Robeyst 14.66 45.79 140.99 [h]

94.07 238.623 348.757 [J/g]

Smolik Litos 10.01 19.19 261.78 [h]

59.9159 329.2083 466.1589 [J/g]

Tamtsia early 18.00 24.00 102.00 [h]

279.4076 307.3484 447.0522 [J/g]

Table 5.3: Experimental results of hydration heat



Application on Experimental Data 58

isothermal calorimeter, from [Princigallo et al., 2003], data from private communication

and determined from evaporable water content and assumed potential hydration heat 480

J/g, from [Hua et al., 1995], [Robeyst et al., 2007], data measured at CTU by TAMAir

isothermal calorimeter and finally, from [Tamtsia et al., 2004] assuming potential heat

500 J/g. In Tab. 5.2 cement chemical composition, gypsum content, w/c and fineness are

presented. Measurements of hydration heat at three different times recalculated for the

same reference temperature of 20˚C are shown in Tab. 5.3.

First, almost linear dependency within the input data caused by volume unity and

hence the resulting ill-conditioning is solved by Principal Component Analysis (PCA)

by transforming inputs into the space of principal directions and removing the direction

with the smallest eigenvalue, for more details about Principal Component Analysis see

[Shlens, 2003] or [Smith, 2002] Therefore, our approximation is a real function (hydration

heat) of seven inputs – time plus seven original inputs transformed with PCA to the six

dimensions. Next, several combinations of regression and correlation functions have been

tested, see Fig. 5.15 and Fig. 5.16. Horizontal axes are for time and vertical axes for

hydration heat. Note that zero point [0 h, 0 J/g] has been added to enforce a physically

reasonable start of the heat-time relationship.

There are two main requirements on the approximation. We need an interpolation of

experimental data to precisely describe the behavior in the vicinity of existing experiments

and oppositely, the best possible description of the trend in extrapolation. This is of great

importance since there is low number of available data and the range of parameters covered

is usually also small. The deficiency of created metamodels for extrapolation purposes is

clearly visible from Fig. 5.15 and Fig. 5.16. Whenever the metamodel is far away from

given data, the prediction is approaching the mean trend. This means that in distant

extrapolation we would obtain a flat surface in the case of a constant regression term and

a linear surface in a linear case.

We have tried a dozen of combinations of regression descriptions and correlation func-

tions and finally, a combination of an exponential correlation function, a linear regression

of mixture parameters and an exponential regression term (1 − e−T ) for time T gives

reasonable regression output, see Fig. 5.17. In Fig. 5.18, the result for optimized weights

θ with respect to the minimal MSE is presented. Since the curve of hydration heat his-
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Figure 5.15: Cuts of approximations for not optimized weights θ: Constant regression

term (left column), linear regression term (right column) and (from top) five correlation

functions.
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Figure 5.16: Cuts of approximations for optimized weights θ for minimal MSE:

Constant regression term (left column), linear regression term (right column) and (from

top) five correlation functions.
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Figure 5.17: Cut of approximation through experiments using exponential correlation

function, linear term of composition and exponential regression term in time for not

optimized weights θ.
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Figure 5.18: Cut of approximation through experiments using exponential correlation

function, linear term of composition and exponential regression term in time for opti-

mized weights θ for minimal MSE.
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tory should be (from physical principles) monotonous, the traditional MSE minimization

is replaced by minimization of a negative (numerical) derivative of a resulting curve in

the time direction. As an optimization algorithm, the Quasi-Newton line-search method

available in Matlab Optimization toolbox was used. The optimization algorithm ran 6.5

minutes on AMD Turion MT-37 notebook processor with more than 700 evaluations of

the metamodel. The resulting curves are presented in Fig. 5.19. The approximation

that almost ideally describes the physical problem has been found, however, the strict

monotonicity has not been preserved, see again Fig. 5.19.

Figure 5.19: Cut of approximation through experiments with expected mean (black con-

tinuous line) and MSE bounds (blue dashed lines) for optimized weights θ for maxi-

mal monotonicity.



Chapter 6

CONCLUSION

The two different approaches to Kriging was presented. Namely, the geostatistical and

global optimization derivations have been shown. We also applied both Kriging methods

to distinct data sets to show pros and cons of both approaches.

Chapter three was concerned with the geostatistical approach to Kriging. In this

method the determination of a variogram (or semivariogram) is crucial. However, the

determination of a variogram is not easy task. The usual practice of estimating the

variogram is the method ”by eye”. It has the advantage that many errors of data can

be uncovered. However, such fitting of a variogram requires very experienced curve fitter

and enhanced knowledge of the data structure. The method of least squares can be also

used to fit the variogram. In the case of the least squares, data errors are not uncovered.

Furthermore, errors (deviation of a theoretical and experimental variogram) are supposed

to be independent. However, this assumption is rarely met. From this summary it is

obvious that the fitting of a variogram is more an art of an experienced curve fitter than

the strict science.

In the chapter four a quite different access to Kriging was shown. Namely, the global

optimization approach to Kriging was presented. This approach is approximation rather

a interpolating method. The correlation function plays the crucial role instead of the

variogram which is used in geostatistics. Nevertheless, the difficulties connected with the

selection of the right model of a correlation function are similar to difficulties of the choice

of a variogram model. The most common technique of estimating of a correlation function

is maximizing the likelihood function. The main problem is that a less attention is paid

to the regression term which is often taken as a constant. But analysts often know that

the function, which has to be approximate, has a certain properties, e.g. monotonicity.

However, Kriging do not preserve these properties. The searching for a proper model

function is exhausting and time consuming, but the result is not guaranteed.
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There is also the problem with large data sets. For example the free Matlab toolbox

DACE is not able to compute a data set which has more than thousand points. Last but

not least, another questions arise here. Kriging is defined as the best linear predictor.

Another restriction in this definition is hidden: why should be the estimation computed

only from the linear combinations of values? Why should be the minimum of variance the

only one optimization criteria? It is clear that further research is needed. Nowadays, the

new techniques are developed which use the nonlinear estimation and different optimiza-

tion criteria. In the case of searching for a proper model, the Genetic Programming can

be used to solve this task using a burden of computational power, see e.g. [Streeter, 2001]

for more details.
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[Watson, 1984] Watson, G. S. (1984). Smoothing and interpolation by kriging and with

splines. Mathematical Geology, 16(6):601–615.



Appendix A

THE LEAST SQUARES PREDICTOR

The purpose of this chapter is to gather information related to the Least Squares

Predictor used throughout the text. In linear regression the Ordinary Least Squares

(OLS) Estimator for β is used:

β̂OLS = (X′X)−1X′Z , (A.1)

and

V ar[β̂OLS] = (X′X)−1X′Σ−1X(X′X)−1 . (A.2)

β is the vector of unknown coefficients which have to be estimated:

β =


β0

β1

...

βp

 .

Matrix X looks like this:

X =


1 x1(s1) x2(s1) · · · xp(s1)

1 x1(s2) x2(s2) · · · xp(s2)
...

...
...

...

1 x1(sn) x2(sn) · · · xp(sn)

 ,

and the vector of observed value Z is defined as:

Z =


Z1

Z2

...

Zn

 .
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Finally, the term Σ is a covariance matrix:

Σ =



C(0) C(s1 − s2) C(s1 − s3) · · · C(s1 − sn)

C(s2 − s1) C(0) C(s2 − s3) · · · C(s2 − sn)

C(s3 − s1) C(s3 − s2) C(0) · · · C(s3 − sn)
...

...
...

. . .
...

C(sn − s1) C(sn − s2) C(sn − s3) · · · C(0)


In Kriging the General Least Squares (GLS) Estimator for β is used:

β̂GLS = (X′Σ−1X)−1X′Σ−1Z , (A.3)

and

V ar[β̂GLS] = (X′Σ−1X)−1 . (A.4)
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MATLAB CODES

B.1 Experimental Semivariogram

1 % function [V,A,C,sill] = esemivario (X,t,r1,r2,nl)

2 % Function computes experimental semivariogram

3 %

4 % Input:

5 % X - Matrix of location of sampled points (x, y)

6 % t - Vector of value at sampled points

7 % r1 - Minimum range

8 % r2 - Maximum range

9 % nl - Number of lags

10 %

11 % Output:

12 % V - Distance matrix

13 % A - Experimental semivariogram

14 % C - Vector of lags

15 % sill - Variance of data

16

17 function [V,A,C,sill] = esemivario (X,t,r1,r2,nl)

18

19 % Distance Matrix

20 [n nn] = size(X);

21 V = zeros(n,n);

22 for i = 1:n

23 for j = 1:n

24 dott = 0;

25 for k = 1:nn

26 dott = dott + (X(i,k)-X(j,k))^2;

27 end

28 V(i,j) = dott^0.5;

29 end

30 end

31

32 % ----- Experimental Semivariogram ------------------------

33 sill = var(t);

34 A = zeros(nl,1);

35 d = r2 - r1;

36 for l = 1:nl
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37 [r,c] = find((V >= ((l-1)*d + r1) & (V < ((l-1)*d + r2))));

38 if length(r) >= 1

39 dott = 0;

40 for k = 1:length(r)

41 dott = dott + (t(r(k)) - t(c(k)))^2;

42 end

43 A(l,1) = dott /(2*length(r));

44 end

45 end

46

47 % Vector of lags

48 C = (r2:d:(nl+1)*d)’;

49

50 % --------- Plot semivariogram ----------------------

51 figure(1)

52 subplot(2,1,1)

53 hold on

54 for i = 1:n

55 plot(X(i,1),X(i,2),’*red’,’MarkerSize’,5)

56 end

57 title(’Lay-out of data’);

58 xlabel(’x [m]’);

59 ylabel(’y [m]’);

60

61 subplot(2,1,2)

62 hold on

63 for i = 1:nl

64 if (A(i,1) ~= 0)

65 plot(C(i,1),A(i,1),’.k’,’MarkerSize’,15);

66 end

67 end

68 title(’Experimental Semivariogram’)

69 xlabel(’Lag [m]’);

70 ylabel(’Semivariance’);

71 set(gcf,’PaperSize’,[19.75 18.00],’PaperPositionMode’,’auto’)

72 hold off

73 print -dpdf E_Semivario.pdf

74 close all
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B.2 Theoretical Semivariograms

1 % function tsemivario (sill,V,A,C,sillS,sillE,sillG,nr,krok)

2 % Function creates theoretical semivariograms

3 % The range can be find out to call fucntion recursive

4 %

5 % Input:

6 % sill - Variance of data

7 % V - Distance matrix

8 % A - Vector of experimental semivariogram

9 % C - Vector of lags

10 % sillS - Practical range for spherical s.

11 % sillE - Practical range for exponential s.

12 % sillG - Practical range for gaussian s.

13 % nr - Number of calling

14 % step - Step for correction of sill

15 %

16

17 function tsemivario(sill,V,A,C,sillS,sillE,sillG,nr,step)

18 if nr >= 1

19

20 % -------- theoretical semivariogram (Spherical)----------------------

21 S = A - (sillS - nr*step/10)*sill;

22 if (S(1) > 0)

23 [r] = find(S < 0);

24 else

25 [r] = find(S > 0);

26 end

27

28 rangeS = C(r(1)-1) + ((abs(S(r(1)-1))*(C(r(1)) - C(r(1)-1)))...

29 /(abs(S(r(1)-1))+abs(S(r(1)))));

30

31 % matrix of spherical theoretical semivariogram

32 [n] = size(V);

33 AS = zeros(n);

34

35 for i = 1:n(1)

36 for j = 1:n(2)

37 if (i == j)

38 AS(i,j) = sill;

39 else

40 if (V(i,j) <= rangeS)

41 AS(i,j) = sill*(1.5*(V(i,j)/rangeS)...

42 - 0.5*(V(i,j)/rangeS)^3);

43 else

44 AS(i,j) = sill;

45 end
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46 end

47 end

48 end

49

50

51 % -------- theoretical semivariogram (Exponential)----------------------

52 E = A - (sillE - nr*step/10)*sill;

53 if (E(1) > 0)

54 [r] = find(E < 0);

55 else

56 [r] = find(E > 0);

57 end

58

59 rangeE = C(r(1)-1) + ((abs(E(r(1)-1))*(C(r(1)) - C(r(1)-1)))...

60 /(abs(E(r(1)-1))+abs(E(r(1)))));

61

62 % matrix of exponential theoretical semivariogram

63 AE = zeros(n);

64

65 for i = 1:n(1)

66 for j = 1:n(2)

67 if (i == j)

68 AE(i,j) = sill;

69 else

70 AE(i,j) = sill*(1-exp(-3*V(i,j)/rangeE));

71 end

72 end

73 end

74

75

76 % -------- theoretical semivariogram (Gaussian)----------------------

77 G = A - (sillG - nr*step/10)*sill;

78 if (G(1) > 0)

79 [r] = find(G < 0);

80 else

81 [r] = find(G > 0);

82 end

83

84 rangeG = C(r(1)-1) + ((abs(G(r(1)-1))*(C(r(1)) - C(r(1)-1)))...

85 /(abs(G(r(1)-1))+abs(G(r(1)))));

86

87 % matrix of gaussian theoretical semivariogram

88 AG = zeros(n);

89

90 for i = 1:n(1)

91 for j = 1:n(2)

92 if (i == j)
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93 AG(i,j) = sill;

94 else

95 AG(i,j) = sill*(1-exp(-3*(V(i,j)^2)/(rangeG^2)));

96 end

97 end

98 end

99

100 % --------- plot semivariograms ----------------------

101 % plot experimental semivariogram

102 figure(nr);

103 hold on

104 for i = 1:length(A)

105 if (A(i,1) ~= 0)

106 plot(C(i,1),A(i,1),’*black’,’MarkerSize’,5);

107 end

108 end

109

110 % plot Spherical theoretical semivariogram

111 for i = 1:(n(1))

112 for j = (i+1):n(2)

113 plot(V(i,j),AS(i,j),’.red’,’MarkerSize’,4)

114 end

115 end

116

117 % plot Exponencial s.

118 for i = 1:(n(1))

119 for j = (i+1):n(2)

120 plot(V(i,j),AE(i,j),’.blue’,’MarkerSize’,4)

121 end

122 end

123

124 % plot Gaussian s.

125 for i = 1:(n(1))

126 for j = (i+1):n(2)

127 plot(V(i,j),AG(i,j),’.green’,’MarkerSize’,4)

128 end

129 end

130

131 title({[’Spherical (red): range ’,num2str(rangeS)];

132 [’Exponential (blue): range ’,num2str(rangeE)];

133 [’Gaussian (green): range ’,num2str(rangeG)]});

134 xlabel(’Lag [m]’);

135 print (’-dpdf’,[’Power ’,num2str(nr),’.pdf’])

136 close all

137

138 tsemivario(sill,V,A,C,sillS,sillE,sillG,nr-1,step);

139 end
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B.3 Simple Kriging in Geostatistics

1 function [K,k,lam,tp,v] = etkriging (sill,X,x,t,range,typ)

2 % Simple Kriging

3 %

4 % Input:

5 % sill - Variance

6 % X - Matrix of Sampled points (x, y)

7 % x - Matrix of Unsampled points (x, y)

8 % t - Vector of values at sampled points

9 % range - Range

10 % typ - Type of semivarogram: s = spherical

11 % e = exponential

12 % g = gaussian

13 %

14 % Output:

15 % K - Covariance matrix

16 % k - Covariance matrix between sampled and unsampled points

17 % lam - Vector of unknown coefficients

18 % tp - Predicted values at unsampled points

19

20

21

22 % Distance matrix

23 [n nn] = size(X);

24 V = zeros(n);

25 for i = 1:n

26 for j = 1:n

27 dott = 0;

28 for k = 1:nn

29 dott = dott + (X(i,k)-X(j,k))^2;

30 end

31 V(i,j) = dott^0.5;

32 end

33 end

34

35 % Dinstance matrix between points of sampled and unsampled points

36 [r s] = size(x);

37 v = ones(r,n);

38 for j = 1:r

39 for i = 1:n

40 dott = 0;

41 for k = 1:s

42 dott = dott + (x(j,k)-X(i,k))^2;

43 end

44 v(j,i) = dott^0.5;

45 end
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46 end

47

48 [n] = size(V);

49 [m] = size(v);

50 K = zeros(n(1),n(2));

51 k = zeros(m(1),m(2));

52

53 % spherical semi

54 if (typ == ’s’)

55 for i = 1:n(1)

56 for j = 1:n(2)

57 if (V(i,j) <= range)

58 K(i,j) = sill*(1 - (1.5*(V(i,j)/range) - 0.5*(V(i,j)/range)^3));

59 else

60 K(i,j) = 0;

61 end

62 end

63 end

64

65

66 for i = 1:m(1)

67 for j = 1:m(2)

68 if (v(i,j) <= range)

69 k(i,j) = sill*(1 - (1.5*(v(i,j)/range)...

70 - 0.5*(v(i,j)/range)^3));

71 else

72 k(i,j) = 0;

73 end

74 end

75 end

76

77

78 % exponential semi

79 elseif (typ == ’e’)

80 for i = 1:n(1)

81 for j = 1:n(2)

82 K(i,j) = sill*(1 - (1-exp(-3*V(i,j)/range)));

83 end

84 end

85

86 for i = 1:m(1)

87 for j = 1:m(2)

88 k(i,j) = sill*(1 - (1-exp(-3*v(i,j)/range)));

89 end

90 end

91

92 % gaussian semi
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93 elseif (typ == ’g’)

94 for i = 1:n(1)

95 for j = 1:n(2)

96 K(i,j) = sill*(1-(1-exp(-3*(V(i,j)^2)/(range^2))));

97 end

98 end

99

100 for i = 1:m(1)

101 for j = 1:m(2)

102 k(i,j) = sill*(1-(1-exp(-3*(v(i,j)^2)/(range^2))));

103 end

104 end

105 end

106

107 k = k’;

108

109 % Vector of coefficients

110 lam = inv(K)*k;

111

112 % Mean of all data

113 mu = mean(t);

114

115 % Residuals from mean

116 Ra = t - mu;

117

118 R = lam’*Ra;

119

120 % Predicted values

121 tp = R + mean(t);
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