
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

ROZŠÍŘENÍ BALÍČKOVACÍHO NÁSTROJE APT
PRO KOMUNIKACI SE SYSTÉMEM SPACEWALK
SPACEWALK PLUG-IN FOR THE APT PACKAGING TOOL

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE ŠIMON LUKAŠÍK
AUTHOR

VEDOUCÍ PRÁCE Ing. ALEŠ SMRČKA, Ph.D.
SUPERVISOR

BRNO 2011

A b s t r a k t
Spacewalk je opensource nástroj pro správu Linuxových systémů. Spacewalk pracuje se
systémy Fedora a Red Hat Enterprise Linux, na kterých je možné z něj stáhnout balíčky
pomocí nástrojů yum a yum-rhn-plugin. Avšak pro systémy Debian takový nástroj neexis
tuje. Tato práce navazuje na diplomovou práci Lukáše Ďurfiny, který do Spacewalku přidal
podporu pro Debian balíčky. Cílem této práce je vytvořit rozšíření nástroje apt-get, které
umožní stažení balíčku ze Spacewalku na Debian systém.

Abstrac t
Spacewalk is an open source management solution for Linux systems. It works well with
Fedora and Red Hat Enterprise Linux, where one can install and upgrade packages using
yum and yum-rhn-plugin tools which download packages from Spacewalk. Unfortunatelly,
for Debian, there is no such tool. This work reassumes Master Thesis of Lukáš Durfina, who
added initial support for Debian in Spacewalk Server. The main goal is to write a plug-in
for apt-get, which allows downloading the packages for a Debian system from Spacewalk.

Klíčová slova
GNU/Linux , Správa balíčku, Správa systémů, A P T , Y U M , Spacewalk

Keywords
GNU/Linux , Package Management, Systems management, A P T , Y U M , Spacewalk

Citace
Šimon Lukašík: Spacewalk Plug-in for the A P T Packaging Tool, bakalářská práce, Brno,
FIT V U T v Brně, 2011

Spacewalk P l u g - i n for the A P T Packaging Tool

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Aleše Smrčky, Ph.D. a Mgr. Miroslava Suchého.

Šimon Lukašík
May 18, 2011

Poděkování
Děkuji svému vedoucímu práce Ing. Aleši Smrčkoví, Ph.D. a mému konzultantu z firmy
RedHat Mgr. Miroslavu Suchému za odbornou pomoc a podporu při vytváření práce.

© Šimon Lukašík, 2011.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Related technologies 4
2.1 Package Management Tools 5

2.1.1 Yum Tool 5
2.1.2 Advanced Packaging Tool 6

2.2 Spacewalk 9
2.2.1 A Short History of the Spacewalk 9
2.2.2 Spacewalk Deployment Model 9
2.2.3 Server Architecture 10
2.2.4 Concept of Software Channels 11
2.2.5 Initial State of Debian Support 12

2.3 Yum R H N Plug-in 12
2.3.1 Repository Management 12
2.3.2 Authentication 12
2.3.3 Package profile Update 13
2.3.4 Yum-rhn-plugin's Workflow 13

3 Analysis of The Apt Code 15
3.1 Content Acquisition 15

3.1.1 Acquire Protocol 16
3.1.2 Spacewalk Acquire Method 17

3.2 Repository Management 17
3.2.1 Updating the Cache 17
3.2.2 U R I Translations 18
3.2.3 Dynamic Repositories 18

4 Implementation and Automated Tests of Apt-Spacewalk 21
4.1 Implementation of Apt-Spacewalk 21

4.1.1 Spacewalk Acquire Method 21
4.1.2 Pre Invoke 22
4.1.3 Post Invoke 22

4.2 Automated Tests 23
4.2.1 Choosing the Test Technique 23
4.2.2 Apt-Spacewalk Sanity Test 24

5 Conclusion 25
5.1 Further Work 25

1

A Server Side Changes 2 9

A . l Taskomatic 29
A . 1.1 Problem Definition 29
A . 1.2 Proposed Solution 30

A . 2 Spacewalk Backend 30

B R H N Client Tools 31
B. l Problem Definition 31

B . l . l Description of Package 31
B.1.2 Debian Port 31
B.1.3 Current Solution 31

B.2 Proposed Solution 32
B.2.1 Implementation 32

C Patch for the Apt 3 3

D Acquire Protocol Log 3 4

E Content of the C D 3 6

2

Chapter 1

Introduction

The software has an unpleasant attribute that it tends to become obsolete. Thus, it needs
to be replaced with a newer version many times in the life cycle. The process of replacement
or so-called update raises numerous questions which need to be answered like: which tool
is responsible for the update, if it is a single tool or do the different bits of software get
managed by different tools, or how is the new content to be delivered. In addition, the tool
installing the software should validate the content authenticity, and it should execute any
necessary actions prior or after the update. The example of such action is a resolution of
software's dependencies and conflicts.

The G N U / L i n u x distributions reply to the mentioned problems with a centralized pack
age management system, where all the delivered bits are divided into the packages, con
sidering the origin, the author or the internal logic, and managed by a single tool. Across
the distributions, there is a variety of package management systems and package formats.
Having the communities around the G N U / L i n u x and their desire to share a content, pack
ages are usually distributed freely over the Internet by the means of publically available
storages—repositories.

The upper mentioned model works well for the community, but in a corporate computing
environments, there might be higher expectations and the demands for a tool which would
provide an additional value answering the following questions: how to manage a huge
number of machines with a less effort, how to verify and audit installed packages, at which
point of time to execute the update, or how to set up the whole infrastructure to be updated
in a relatively small time frame. The another question might be: how to do an accounting
to charge the package consumers.

The Spacewalk server [] is an example of a corporate ready solution of systems manage
ment. Spacewalk was designed to manage R P M based G N U / L i n u x distributions. This work
reassumes and extends the Master thesis of Lukáš Ďurfina [] who added initial support for
Debian clients to the Spacewalk Server as a proof of concept.

The following chapter describes the technologies used in this work, such as Yum and Apt
as instances of the package management tools, and the Spacewalk server. The description is
not to be exhaustive, it only focuses on the features related to the work. Chapter 3 analyses
the source code of the Apt in a detailed manner, including a mechanism of the content
download and a repository management. The end of each section proposes a concept of
solution. Chapter 4 introduces Apt-Spacewalk package and discusses the implementation
details. Miscellaneous changes needed in existing projects are isolated in Appendices A , B
and C.

3

Chapter 2

Related technologies

The technologies related to the work can be diveded into the three parts: the package
management tools, the Spacewalk server, and the adapter enabling their communication.
In the G N U / L i n u x distributions, there is a huge variety of package management solutions
however the work focuses only on two specific ones: Yum and Apt. The Yum is a package
updater for the R P M based distributions such as Fedora and Red Hat Enterprise Linux,
while The Apt is designed for Debian packages.

The Spacewalk server is a system management system with an A P I 1 and a web interface.
One of the Spacewalk's key features is the ability to store and manage packages and serve
them as a repository to the entitled systems. Spacewalk has a large scale of capabilities
beyond that, however this work focuses only on package and system management.

The last section of this chapter describes the adapter between Yum and Spacewalk
server (yum-rhn-plugin), which is used by client system to download packages as well as
metadata from Spacewalk. The adapter is implemented as an Yum plug-in, it authenticates
with Spacewalk and forwards the bits from Spacewalk to the Yum.

APT
Repository

Figure 2.1: The technologies related to the work and the given aim—Apt-Spacewalk

1 Application Programming Interface

2.1 Package Management Tools

In the G N U / L i n u x distrubutions, whole content is delivered within packages. There is no
single package format. In fact, whole families of distributions are build around of each
of package formats. The best known package formats are rpm, deb, tgz, pkg.tar.xz, and
ebuild.

Besides the purposeful content, each package also contains a meta information. In spite
of different formats, fundamental part of the meta information is present in every package.
It applies to name, version, architecture, author, license, and dependencies2. Frequently,
the three tier architecture of package management tool can be encountered.

1. Package Manager

Package manager is the lowest layer of the package management system. It handles
the extraction of bare packages, their installation, update, and removal. The tool
usually understands dependencies and computes execution plan, however it will not
proceed if some of the requirements is not full filled. This layer also tracks installed
packages (instances: rpm, dpkg).

2. Package Updater

Package updater manages software repositories, handles the content download, re
solves inter-package dependencies and conflicts, and designs an execution plan (in
stances: Yum, Apt).

3. Graphical front-end

Even though this layer is not essential it is often present and used by the desktop
users (instances: Synaptic, PackageManager)

2.1.1 Y u m Tool

Yum (The Yellowdog Updater, Modified) is the open source command line utility for soft
ware installation, update, and removal []. Yum is written in Python. It is modular, highly
configurable and provides the interface for a plug-in development. A lot of additional func
tionalities are distributed over the yum-utils and Yum plug-ins. The yum-utils package
contains collection of utilities and examples that make yum easier and more powerful to
use [].

As a backend for low-level package handling, Yum issues R P M Package Manager [5].
Unlike the backend, Yum determines inter-package dependencies (and conflicts) and auto
matically computes an execution plan for transactions. Software consumed by the transac
tion is acquired after the planning phase from the sources called repositories.

The Repository

Yum repository is a storage of defined structure containing packages and its indexes [6].
Indexes are known as repodata, named after the main index file (repomd.xml) repository
metadata. Yum uses the indexes for accessing various information about R P M packages3.

2 With the exception of Slackware GNU/Linux packages (tar-balls) which do not track inter-package
dependencies.

3Not only about single packages. Optional comps file holds the information regarding whole package sets.

5

Considering the fact that repository can be not only local but remote, the size of re-
podata and the number of retrieves should be minimal. That is also one of the reasons
why structure of repository indexes has changed over time. Yum retrieves repomd.xml any
time the cache timeout has been hit. The rest of indexes is updated on demand, when
the checksum of the cached one and the remote one differs.

Yum repositories are configured in plain text files stored in /etc/yum.repos .d/. How
ever, Yum provides an interface for a dynamic repository configuration.

The Plug-in Interface

Yum has a simple but powerful plug-in interface which allows external modules to add new
features and/or modify Yum behavior []. Plug-ins are Python modules which are loaded at
start and Yum invokes the plugin code in dozen of specified points so-called hooks. Plug-in
is then supplied with the conduit interface to be able to modify the internal structures of
the Yum.

2.1.2 Advanced Packaging Tool

The Apt (The Advanced Packaging Tool) is an open source set of libraries and user space
tools for a package installation and removal [8]. The Apt has been designed to make use of
dpkg 4 and provides further operations beyond it, such as dependency resolution, repository
management, and package retrieval.

The Apt suite contains various executables, each for separate set of actions, for instance
there is apt-cache binary for accessing the cached information. The common actions across
these exacutables are provided by shared libraries: libapt-pkg. so and libapt-inst. so.

The apt-pkg library, as the name suggests, focuses mainly on packages. It contains
mixture of classes: for acquiring a content, accessing a cache, the default resolver for
a dependencies, and other aspects as work with checksums and a pinnig interface.

The apt-inst library is notably smaller and it provides only a few classes for handling
file archives. According to the Wikipedia [10], the apt-inst project was meant to replace
dpkg, but the project did not succeded. During a further development, a few functions
from the library have been marked as obsolete. Both libraries are applied by an amount5

of package management tools distributed with the Debian GNU/Linux .

The Configuration

The Apt configuration is stored in plain text files within the /etc/apt / directory. There are
three sections of the configuration: repository definitions (sources .list), apt configuration
(apt.conf), and pining settings (preferences).

Each section can be stored either in the file or in the directory of the same name with
the .d extension (e.g. /etc/apt/sources .l i s t .d/). Such a system of configuration can
be also seen in other subsystems such as /etc/modprobe. d/ or /etc/sudoers. d/. The files
within the directory usually start with one or two digits indicating the priority of the file.
Having the multiple files for each section eases the manipulation with the configurations
for the third-party applications.

The configuration section (apt. conf) is organized in a tree of options [11]. Where each
node of the tree represents a single option which can be assigned with a value. The node is

4Package management system delivered with the Debian GNU/Linux distribution and its derivatives [!)].
5Aptitude, Dselect, Synaptic, Adept, Update notifier, Ubuntu Software Center, KPackage and others

6

described by a full path from a root node (the root itself is excluded from a path). The nodes
on the path are separated by a double colon notation. E.g. APT: :Get: :Assume-Yes is
the option within the Apt and the Get nodes. Options do not inherit anything from their
parent.

The Repository

Likewise the Yum repository, the Apt repository consists of the packages and its indexes.
However, the structure of Apt repository is more sophisticated in the way that it can hold
multiple distributions and multiple components for the distribution.

dists/
stable/

| non-free/
contrib/

main/
binary-all/
binary-arm/

source/

unstable/

non-free/
contrib/
main/
binary-all/
binary-arm/

source/

testing/

non-free/
contrib/
main/
binary-all/
binary-arm/

source/

db/

pool/

conf/

Figure 2.2: The structure of the Apt repository [12].

Figure 2.2 represents the standard directory tree of the Apt repository. In the dists/
directory, there are either names of available distributions, distribution keywords (stable,
unstable, experimental, testing), or the combination of both.

Within the subdirectories there is a Release file containing a list of metadata checksums
for each of the component/architecture pair. The Release file is not essential for the Apt's
workflow, though it is useful for verifying metadata authenticity. Metadata for packages
(files named Packages and Sources) rest on the bottom of the directory tree. The packages
are located in the separate directory (usually the pool/) and they are referenced from
the metadata.

As illustrated on the figure, distributions and components are inseparable part of repos
itory structure. In the other words, the Apt is able to assemble the U R I 6 location based on
distribution, configured components and machine's architecture. The repository definitions
are stored in the sources.list in the following form [14]:

type protocol://provider/path distribution componentl component2

The type is either deb for installable packages or deb-src for Debian source packages.
When updating, the Apt retrieves a metadata file for each of listed components according to
the type—either Packages or Sources. The triplet of protocol, provider, path denotes
a standard U R I of repository root, the only constraint is that appropriate acquire method
must exist for the given protocol.

6Uniform Resource Identifier, R F C 3986 [13].

7

The Interfaces for Plug-ins

Despite the fact that the Apt suite does not have a concept of plug-ins, there is quite a lot
of third party applications co-existing with the Apt. These applications can either utilize
the shared libraries of the Apt, register a new acquire methods, or make use of Invoke
hook of the Apt.

The Acquire Methods

The Apt supports multiple network protocols: H T T P 7 , F T P , F I L E , R S H and more. Each
one of the supported protocols is implemented as a separate binary which is executed by
the Apt once the protocol is needed. These binaries are called acquire methods and they are
located in the /var/lib/apt/methods/ directory. The Apt chooses the method according
to a protocol field from the sources. l i s t .

The Apt communicates with the method through a pipe by an Acquire Protocol. The Ac
quire Protocol is text-based and it resembles H T T P . The protocol is described in a detail
in Section 3.1.1. By introducing a new acquire method to the Apt, a plug-in can modify
the behavior of the Apt on the network (for instance introduce a support for a new protocol
to the Apt) .

The Invoke Hooks

Another option of customizing the Apt's behavior is to use invoke hooks. The invoke hook
is a point of a program execution where a snipet of another program might be executed.
The Apt offers about 7 hooks on various occasions, details are described in the Table 2.1.

Name Occasion
Apt: :Update:: Auth- Failure
Apt: :Update: :Pre-Invoke
Apt: :Update: :Post-Invoke
Apt: :Update: :Post-Invoke-Success
DPkg::Pre-Invoke
DPkg::Post-Invoke
DPkg::Pre-Install-Pkgs

When either Release file or a signature is missing
Before updating a cache (apt-get update)
After the update of a cache
After successfull update of a cache
Before invoking dpkg
After invoking dpkg
Before an installation of packages

Table 2.1: Apt's Invoke Hooks

The Apt hooks can be configured via the apt.conf. For example, the following line is
to make an entry in the system log, with each attempt to update the Apt cache.

Apt::Update::Pre-Invoke { /usr/bin/logger 'The apt-get update'; };

The Python Bindings

The Apt's interface is also available from within a Python code. There is a python-apt
package providing access to almost every functionality supported by the underlying apt-pkg
and apt-inst libraries [16]. Besides the direct bindings, python-apt presents its own
derivated objects for high level operations.

7Hyper Text Transfer Protocol, RFC 2616 [15].

8

We have to note here that Python is not the only one language with the binding to Apt
libraries. For example libapt-pkg-perl package makes the library available from Perl
programming language.

2.2 S pace walk

A Spacewalk is a complex, web based, systems managing system, designed for G N U / L i n u x
clients with the R P M package manager []. Besides the systems, Spacewalk is able to
manage packages, errata, package channels, and custom non-rpm content. Spacewalk can
administer client system from a source provisioning 8 through a while life cycle. Spacewalk
is able to establish remote commands, remote package management, monitoring, and many
other.

This Section briefly describes history, architecture and deployment model of Spacewalk.
To understand the details of architecture, one might find helpful to learn the history and
the purpose first. Spacewalk features and capabilities are not described in a detail 9 with
the exception of Software Channels and Debian support which are essential for the work.

2.2.1 A Short History of the Spacewalk

The project was started in June 17, 2008 by opensourcing Red Hat Network Satellite [18].
However its genesis dates back to 2000, when the Red Hat Network was openned up for
public [19]. Since then, Red Hat Network, abbreviated to RHN and also known as a Hosted,
serves as a publicly available mechanism for maintaing Red Hat Enterprise Linux machines.
Besides of the updates and the distributin of installation media, the Hosted allows customers
to manage their systems and subscriptions.

Centralized architecture of Hosted used for a package delivery leads to a high load of
Hosted and high Internet bandwith usage at customers with multiple subscribtions. To
address the problem Red Hat Network Proxy has been relased. It is deployed at customers
where it caches the packages to speed up a secured download []. The Proxy can also be
an assistant for building separate network segments.

Although the solution was suboptimal. Management capabilities were limited by de
sign and the content delivery system was highly dependent on the Internet access. Such
dependency was not acceptable for local area neworks disconnected from the Internet, e.g.
because of the security concerns.

In February 2002, Red Hat released Red Hat Network Satellite, providing users much
greater functionality and allowing customization [20]. The first releases of the R H N Satel
lite was based om the codebase of the Hosted. Later then, developement of the Hosted
and the R H N Satellite has dispart and each team has concentrated on a different set of
features. By opensourcing R H N Satellite, Spacewalk project was brought to life and it
became an upstream of the next releases of R H N Satellite (the 5.3.0 and higher).

2.2.2 Spacewalk Deployment Mode l

Figure 2.3 shows the comparison of the deployment models focusing on the management and
the capabilities of the content delivery. Customer A uses a direct connection to the provider
while customer B has the management system (Spacewalk in this case) deployed in his

8The automated installation of the operating system
9Spacewalk features and capabilities are well documented on the project wikipage [].

9

private network []. Having all the machinery in the private network gives the customer B
extra abilities like monitoring, which might not be doable through the wide area network
(the Internet in this case). In addition, customer B can be separeted completelly from outer
world, which might be needed for high security deployments.

Figure 2.3: The comparison of the deployment models [21].

2.2.3 Server Architecture

Spacewalk consists of the server code deployed on the Apache H T T P server, the backend
tools, the deamons, and the database []. The most of the Spacewalk's functionalities are
available through the Apache handlers (including the web interface), although the root
access to the underlying machine might be needed for some of the management actions.
E.g. whole stack can be turned on and off by rhn-satellite command-line tool.

H T T P Server

The code deployed on the Apache H T T P server compound of several programming lan
guages, each of stacks has separate responsibilities. There is a Python code, which handles
the communication with the clients, a Perl code serving a minority of the Web pages [23],
and finally a Java rendering most of the Web pages and providing frontend A P I calls.
The Apache handlers communicates outwards by XML-RPC

10

, HTTP and HTTPS protocols.
The client systems invoke the remote procedure calls (XML-RPC), which are dispatched

by Python backend stack [25]. This model is used for most of the client actions, the example
might be the registration of a new client which involves many of the backend calls. However,
the XML-RPC is not the only mean of the client communication, clients may use the HTTPS
for the package download, jabber for real-time messaging, ssh for the monitoring or tftp
in the very beginning of the client's life cycle 1 1 .

The Perl and the Java parts form the Spacewalk's web user interface, exposing the most
of the Spacewalk's management capabilities. The Java also serves the frontend XML-RPC
interface, providing a considerable part of web's management capabilities. The custom IT
applications (on Figure 2.3) are utilizing just the frontend A P I . The long-running actions

1 0 The protocol for remote procedure calls encoded in X M L [24].
n T h e tftp protocol is used during the network boot of a client, when the system is being provisioned

(Kickstarted).

10

(scheduled eiher on a Web or X M L - R P C interface) are inserted into the queue and executed
asynchronously by the Taskomatic deamon [26].

Deamons

Beside the Database, Apache, and Tomcat, the Spacewalk runs various deamon services.
The already mentioned one is the Taskomatic which is responsible for scheduling asyn
chronous actions. The RHN-Search deamon covers the indexing and search of the database.

The following daemons are not essential, but they are used for the additional and support
communication with the client systems. The Jabberd daemon provides the jabber server
and the Osa-dispatcher uses it for talking to clients in real-time. The Cobbler is used for
the provissioning and interoperates with Spacewalk through the database, X M L - R P C , and
J S O N A P I . Finally, the Monitoring Deamon as the name suggests covers the monitoring of
the clients.

Backend tools

A backend tools are command-line tools on the Spacewalk server providing additional
management functionality to the Spacewalk administrator. These tools can manipulate
a database, export and import software channels, generate various reports, or upgrade
the Spacewalk.

Database

A l l the data stored by Spacewalk server are integrated in a single database instance.
The Spacewalk server supports two database backends: Oracle and PostgreSQL. Tradi
tionally, Spacewalk runs on Oracle database, but since June 2008, there have been an effort
to support the PostgreSQL as well [27]. At present, PostgreSQL port is considered to be
functional [28].

The information about PostgreSQL database backend might be important for this work,
because the repository of Debian distribution does not fit to the Oracle lOg Express Edition,
which has a limited tablespace to 4 G i B . Wi th the PostgreSQL backend there is no such
limitation.

2.2.4 Concept of Software Channels

Packages managed by Spacewalk server are grouped to the sets called software channels.
Channels are associated to the clients and their purpose is to define the content intended
for the client. A software channel can be either a base or a child. The client system can be
associated with one base channel and a number of its child channels.

From the client perspective, the channel is very similar to any other software repository.
Thus, Spacewalk has to provide equivalent repository metadata 1 2 for each of managed
channels. However, the difference between channels and standard repositories is a client
authorization. Spacewalk does not serve the content, unless the client is authenticated
and authorized to consume it. Each client request is evaluated respectively considering
the client system, the channel and the package identifier.

1 2 The process of metadata generation is is described in the Appendix A. 1.

11

2.2.5 Initial State of Debian Support

Lukáš Durfina in his Master thesis [2] introduced Debian support to Spacewalk. In order
to register and manage Debian clients, both sides, server and client, have been modified.
Since then, Spacewalk is able to manage Debian binary packages and Debian channels.
Debian clients can be registered with Spacewalk using activation keys and a basic set of
remote actions can be executed. The package managements capabilities has not been fully
completed.

Server side changes have been merged with upstream project on spring 2010. However,
the changes in the client code as well as packaging information were not published. Ďurfina
has only provided built .deb packages. The builts were based on the client code from
December 2009. The rebase of one of the core client packages (rhn-client—tools) is
described in the Appendix B .

2.3 Yum R H N Plug-in

A package yum-rhn-plugin is an adapter between Yum and Spacewalk. If the client system
is registered with the Spacewalk, yum-rhn-plugin activates and forwards the communication
between Yum and Spacewalk (Figure 2.1). The plug-in is written in Python and it uses
rhn-client—tools library for high-level operations with Spacewalk server. In the plug-in
workflow, one can find three key responsibilities:

• Transform Spacewalk's software channels to Yum's repositories (Section 2.3.1).

• Attach authentication when Yum make a use of these repositories (Section 2.3.2).

• Refresh Package profile after each transaction (Section 2.3.3).

2.3.1 Repository Management

When initiated, yum-rhn-plugin authenticates to Spacewalk and gathers the information
about entitled software channels. For each channel, plug-in creates RhnRepo object which
is then forwarded to the Yum as a YumRepository. B y overriding YumRepository object,
plug-in slightly modifies inner structures and behavior of the Yum.

2.3.2 Authentication

There are two types of client authentication, one for a remote procedure calls and another
for HTTPS requests. The former is established with credentials from a systemid file and
settles a transient token for a subsequent HTTPS communication. The remote procedure
calls are encapsulated in rhn-client—tools library and bonded by XML-RPC. protocol.

The transient token also refered as loginlnfo is a structure generated by server. It con
tains key-value pairs. One of the items is X-RHN-Auth, which is an MD5 digest generated
from all the other items and the server secret salt. The X-RHN-Auth is a signature which
verifies the authenticity of the client [29].

The mechanism not unlike Basic Authentication [30] is used for HTTPS connections to
Spacewalk. The loginlnfo attached to H T T P S request is called Authentication headers.
The following is the example of H T T P S request amended with the Authentication Headers.
Especially note the U R I (line 7) which points out the location of the channel metadata on
the Spacewalk server.

12

1 wget —header='X-RHN-Server-Id: 1000010298' \

2 --header='X-RHN-Auth-Server-Time: 1285423201.81' \

s —header='X-RHN-Auth: RhIkjPZRjUjeIxN2zoEMEw==' \

4 —header='X-RHN-Transport-Capability: follow-redirects=3' \

s ~header='X-RHN-Auth-User-Id: ' \

e —header='X-RHN-Auth-Expire-Offset: 3600.0' \

7 https://example.com/XMLRPC/GET-REQ/epel-i386-5/repodata/repomd.xml

2.3.3 Package profile Update

For each client Spacewalk tracks the list (Package profile) of installed packages with ver
sions and installation dates. Obviously the list of packages changes with each Yum trans
action and therefore needs to be refreshed on Spacewalk side. The yum-rhn-pligin binds to
the posttrans_hook of the Yum, and at that time the information about installed packages
is sent to the Spacewalk.

2.3.4 Yum-rhn-plugin's Workflow

The sequence diagram in Figure 2.4 illustrates the signals sent between Yum and Spacewalk
being transformed by Yum-rhn-plugin. Yum communicates with the plug-in by methods
invocation, which gets transformed either to X M L - R P C call or H T T P S G E T request.

At the very beginning, Yum asks plug-ins for a list of available repositories by invoking
the prereposetup_hook. As a result, the plug-in logs in with the Spacewalk server to
access the loginlnf o structure containing the Authentication headers. In the next query,
Spacewalk returns a list of entitled software channels and the plug-in composes an RhnRepo
object per each of software channels. The RhnRepo class is specialization of YumRepository,
overriding the get() method to handle the authenticated download.

Yum calls the get() method of a particular repository object whenever it needs to
acquire content, for instance the index file repomd.xml. The RhnRepo .get () compiles
the H T T P S request attaching the authentication headers from the loginlnf o. Spacewalk
back-end tier validates the headers and only authorize the request if the client system is
entitled to consume the content. As a result, Yum is supplied with the desired content.

When the transaction completes, Yum invokes plug-in again through posttrans_hook.
Within the hook plug-in refreshes the package profile on the Spacewalk server through
the X M L - R P C call, using support functions from rhn-client-tools library.

13

https://example.com/XMLRPC/GET-REQ/epel-i386-5/repodata/repomd.xml

Yum : Yum-rhn-plugin : Spacewalk

up2date.login(systemid) _̂_[
Prereposetup_hook(conduit) i

T

{loginlnfo}

up2date.listChannels(systemid5

[channels]
jRhnRepo]

RhnRepo.getlrepomd) j
HTTPS -I- loginlnfo i

i

Raw Data
l

RhnRepo. get! bash, rpm) I
HTTP5 4- loginlnfo

Raw Data

posttrans_hook(conduit)
registration.update_packagest...)

T I I

Figure 2.4: The communication betwen yum, yum-rhn-plugin and Spacewalk backend tier
during yum update command (an update of specific packages).

14

Chapter 3

Analysis of The Apt Code

The goal of this work is to provide an adapter similar to yum-rhn-plugin for the Apt.
Such adapter should not be bound to any specific Apt frontend like apt-get, aptitude or
synaptic. Ideally all the frontends will use the adapter in a way transparent for the user.
Such requirement implies the adapter operating fully-enclosed in the Apt primitives. This
chapter describes parts of the Apt architecture related to the adapter's workflow.

3.1 Content Acquisition

This section describes a mechanism used by the Apt to fetch a content from the repositories.
The mechanism is called Acquire and the interface is available in libapt-pkg 1. To understand
the mechanism, see the following Python script, which is to fetch the Release file from
a Debian repository.

1 from apt import apt_pkg

2 acquire = apt_pkg.Acquire()

3 acquireFile = apt_pkg.AcquireFile(acquire,

4 'http://ftp.cz.debian.org/debian/dists/unstable/Release')

5 acquire.run()

The first line includes the apt.pkg module, which is a low-level binding for libapt-pkg
library. The Acquire object (line 2) represents a queue and a scheduler for download. To
optimize parallel download the Acquire object contains multiple discretive queues served
in parallel. Each item registered to download is classified to the proper queue according to
the U R L

There are two modes of classification: access and host. The access mode creates named
queues based on the protocol identifier from U R L The host mode considers both, the pro
tocol and the domain name. Either way the URIs with a different protocol are grouped to
different queues. User is allowed to configure the mode.

Each file registered to the download is represented by Acquireltem class or its special
ization, e.g. AcqureFile. The constructor of AcquireFile (on the line 3) will automatically
register with the Acquire object appending the URI location to one of the upper mentioned
queues.

1The name scheme in Python module differs from the one used in the shared library. This work prefers
the Python variant, which is more human-readable.

15

http://ftp.cz.debian.org/debian/dists/unstable/Release'

When the Acquire is being run (line 5), it creates AcquireWorker object for each queue.
The AcquireWorker is responsible for the download of a given queue. Whereas, the Ac-
quireMethod is responsible for a download of a single item. The AcquireWorker executes
the acquire method as a subprocess. The inter-process communication between the worker
and the method is covered in the Acquire Protocol and transfered via U N I X pipe. The im
plementation of the protocol is encapsulated in AcquireWorker class (for a master end) and
AcquireMethod class.

A l l the methods in the Apt suite are separate executables with the common behav
ior inherited from the AcquireMethod. Each one of the specializations implements only
the Fetch function used for downloading a single U R L

Acquire

+Setup ()

+Enqueue ()

+Dequeue ()

+Run()

AcquireWorker

+OwnerQ: Queue

+Start ()

AcquireWorker

+OwnerQ: Queue

+Start ()

Pipe HttpMethod

+Fetch()

Pipe FtpMethod

+Fetch ()

AcquireMethod

+Run()

+URIStart ()

+URIDone ()

+Redirect ()

+Fail ()

+MediaFail ()

+Configuration()

Figure 3.1: The class diagram ilustrates the communication between Worker and Method.

3.1.1 Acquire Protocol

The text protocol between AcquireWorker and AcquireMethod can be sniffed by interleaving
the pipe chain with a tapping program. For instance, the H T T P method can be replaced
with the folowing script which will be activated by an attempt to download a content
through H T T P .

1 #!/bin/bash

2 tee -a methodlog.in \

3 I /usr/lib/apt/methods/http.distrib \

4 | tee -a methodlog.out

The captured log of communication 2 resembles the H T T P protocol. Likewise the H T T P
response5 the messages in the log start with Status-Line folowed by the headers. Status-
Line consists of the numerical identifier known as Status-Code and the Reason-Phrase.
Unlike the H T T P response, the acquire protocol message does not contain a message body.
Raw data are stored directly on a disk and the protocol transmits only filenames.

Table 3.1 gives a detail of the message types within the protocol. The message types
marked with a symbol * are esential for a successfull download, however different methods
may use a different set of messages.

At the start, each method prints the 100 Capabilities message, declaring its charac
teristics and eventually requesting the 601 Configuration message from the worker. After
the capabilities and configuration is exchanged, worker may issue the download by 600
Acquire message. Such a request must include U R I location and filename of destination

2 Example can be found in Appendix D.
3 H T T P terminology is denned in RFC 2616 [15].

16

http://http.distrib

object. While fetching the URI , method notifies the master about progress with 1, 2 or 4
houndred messages. These messages always consists of URI regarding the initial request.
Methods with a pipeline capability may dispatch multiple URIs at once.

Code Phrase Send by Brief description

100 Capabilities Method * Declare method's characteristics
101 Log Method Arbitrary or debug information
102 Status Method Report details of progress
103 Redirect Method Download has been redirected
200 U R I Start Method Download has started
201 U R I Done Method * Download has been successfully completed
400 U R I Failure Method Download has failed
401 Failure Method General failure
403 Media Failure Method Need to change physical media (C D / D V D)
600 Acquire Worker * Request for download
601 Configuration Worker Declare worker's configuration
603 Media changed Worker Media has been changed upon request

Table 3.1: Message types of Acquire protocol.

3.1.2 Spacewalk Acquire Method

From the Spacewalk perspective, each H T T P S request must be amend with authentication
headers, which can be achieved by a special acquire method. Call the method spacewalk.
The method communicates with the Apt through upper mentioned protocol and transfers
the requests to the Spacewalk server.

Since all the well known Apt frontends use apt-pkg for the content download, introduc
tion of a new method will be transparent to them. Apt-pkg library will choose the Spacewalk
Acquire Method for any URI , which has the protocol equal to spacewalk

3.2 Repository Management

As described in Section 2.1.2, the Apt repositories are configured statically in a text file and
Apt caches metadata in the /var/cache/apt/ directory. Considering the fact that Apt-get
has a special command for downloading repository metadata to the cache, one can presume
that the metadata will not change very often.

For instance if one runs apt-get install tcsh command, the Apt looks up for which
of repositories configured in the sources.list is the cache available. The Apt attempts to
install the package, only if it is present in the cache. Apt-get will neither update the cache
automatically nor challange any plug-in to adjust the sources.list in the run-time.

The Apt lacks for the concept of dynamic software repositories, which is in contrast with
the typical Spacewalk use cases. On Spacewalk web user interface, additional repositories
might be associated to the client system at any time.

3.2.1 Updating the Cache

Even thought the metadata of the Apt repository are spread into the multiple files, the most
important one is a Packages file which holds the information about all the packages for given

17

repository. When updating the cache, the Apt downloads Packages for each configured
component in the sources.list. Which implies the fact that multiple repositories associated
to the client in Spacewalk can be configured to the Apt as components. The following is
a hyphotetical line in the sources.list of the client registered to Spacewalk (example.com)
associated with two channels: channell and channel2.

deb spacewalk://example.com channels: channell channel2
i i i i i i i i i i

packages acquire domain distribution list of
type method name channels

Keyword deb tells us that repository contains binary packages. Second item specifies
Spacewalk's domain name and the acquire method which is to be used. The third item
originally represents the distribution and the item is mandatory, but Spacewalk does not
have the concept of ditributions similar to Debian. We decided to use word channels: as
a human readable keyword, which does not have any other meaning for the communication.
The rest of the line is the listing of associated software channels.

3.2.2 U R I Translations

When downloading the metadata, the Apt automatically composes U R I for a given line in
the sources.list. The exemplary line from Section 3.2.1 will result in the following URIs.

1 spacewalk://example.com/dists/channels:/channell/binary-i386/Packages.gz

2 spacewalk://example.com/dists/channels:/channel2/binary-i386/Packages.gz

However, the Spacewalk server provides the content under the different locations.

1 https://example.com/XMLRPC/GET-REQ/channell/Packages.gz

2 https://example.com/XMLRPC/GET-REQ/channel2/Packages.gz

On the server side, there is a Python handler (/XMLRPC/GET-REQ/) which verifies the au
thentication and serves the content only to the authorized clients. The U R I inconsistence
could be redeemed by a proper configuration on Server side 4 or even better on the client
side by Spacewalk Acquire Method.

3.2.3 Dynamic Repositories

A dynamic repository is a repository, which can be configured under certain conditions in
the run-time, e.g. by some sort of plug-in. In contrast to Yum, Apt does not support the dy
namic repositories. The Apt stores the configuration in the plain-text file (sources.list).
The problem is that the sources.list is often read by third-party programs. These pro
grams use either primitives in apt-pkg library or they parse the sources.list on their
own. Neither the Apt nor the third-party applications do expect repositories to change
dynamically.

4For instance by Apache's mocLrewrite.

18

http://example.com
https://example.com/XMLRPC/GET-REQ/channell/Packages.gz
https://example.com/XMLRPC/GET-REQ/channel2/Packages.gz

Possible Solutions

1. Modify sources.list synchronously.

(a) Dynamic repository feature could be implemented in a synchronous action, which
will activate any time apt-pkg is asked to read sources.list. The problem with
this approach is that sources.list are frequently read by non-root processes (as M .
Vogt from debian.org wrote on deity Debian mainling list cf. [31]). Additionally,
even when the new repository is successfully added, the Apt would most probably
not have the repodata for it.

(b) A step better solution would be to bind with the action which updates the repos
itory cache of the Apt. In that case, the sources.list and the repository cache will
be consistent. The update of cache is much less frequent compared to reading
the sources.list and it is always executed by a process with a root priviledges.

(c) Another option would be not to modify sources.list at all but extend the proce
dure which reads it. Such procedure is available in apt-pkg library. However, this
solution will not be transparent for users and other tools parsing the sources.list
on their own.

2. Modify sources.list asynchronously.

Either a cronjob or a deamon can be set up. Spacewalk has multiple client deamons
which can be adjusted to update the sources.list timely. The deamon rhnsd polls every
4 hours with Spacewalk to pick up remote actions. Osad is the deamon which talks
to Spacewalk in a real time on jabber protocol. Finally, the rhncfg deamon deploys
configuration files. Unfortunatelly, an for asynchronous action there is no guarantee
that it will be run. The problem with the deamons is that they are not necessarily up
and running. Consider also the pooling interval, which is 4 hours by default, it may
fail or get postponed by another 4 hours.

3. Conceal multiple repositories from the Apt.

When the cache is being updated particular acquire methods are asked to download
the metadata. The acquire method could query Spacewalk for configured repositories,
download metadata for each, concatenate them to the single file and forward it to
the Apt.

However, this will not be transparent for the user, who will never know from which
exact repository the new package comes from. In addition, the pinning feature would
not be used in between single Spacewalk repositories.

4. Modify the Apt to allow dynamic repositories.

A quite intrusive change would be to introduce a new type of repository defininition
in the sources.list. Such change would require a big change set for the Apt and also
some of the third-parties.

19

http://debian.org

The Proposal

After the discussion on the Apt mailing list [], we have decided to take the option l b
and modify the Apt to allow plug-ins to alter the sources.list prior to the cache update. In
other words, any time when user issues apt-get update (or an equivalent) sources.list will
be adjusted.

The Apt already has the APT:.-Update::Pre-Invoke hook which is run before the cache
is updated. Plug-ins can utilize the hook and amend the source.list, however the Apt reads
the sources.list prior to the hook and does not reload it after then. Meaning that the cache
is populated by the repositories defined in the sources.list prior the Invoke hook. Proposed
change is to force the Apt to reload the sources.list after the hook and before the cache
update.

Anyway, the change must not affect only the Apt itself, alas it should be transparent
to all the frontends. In the apt-pkg, there is a ListUpdate function, which is the top level
routine for updating the cache. Brief look on the code of Apt-get, Aptitude and Synaptic
proofs that they use the function in order to update the Apt's cache. The desired behavior
can be enforced by a trivial patch (Appendix C).

20

Chapter 4

Implementation and Automated
Tests of Apt-Spacewalk

This chapter describes the implementation of Apt-Spacewalk and the creation of the auto
mated tests. The Apt-Spacewalk is a small adapter forwarding the communication between
the Apt and the Spacewalk server. Therefore, the testing section focus on the communica
tion between the components and the package management life-cycle.

4.1 Implementation of Apt-Spacewalk

Apt-Spacewalk—the plug-in for the Apt should be a standalone Debian package. The plug-
in will comprise own acquire method for the communication with Spacewalk and two scripts:
first one to update the sources.list and another for refreshing the package profile.

4.1.1 Spacewalk Acquire Method

The Spacewalk acquire method is an executable in /usr/lib/apt/methods directory. It
communicates with the Apt on standard input/output and with Spacewalk through H T T P S
and X M L - R P C protocols. The communication has been already implemented by third-
parties in Apt (C++) and rhn-client-tools (Python) packages.

The spacewalk acquire method is written in Python programming language and utilizes
rhn-client-tools library for all the communication with Spacewalk. Apparently, the inter
process communication with the Apt is rewritten from C++ to Python.

Design of the Solution

Design of a proposed solution is similar to all the other acquire methods. Base class
pkg_acquire_method covers the communication with the Apt. While its specialization
spacewalk_method implements the fetchO method, which is responsible for the down
load. The class pkg_acquire_method (Figure 4.1) is inspired by AcquireMethod (Figure
3.1) from the apt-pkg library, but it contains only the subset of functionality which is usefull
for Spacewalk.

The interaction with Spacewalk comprise several actions and most of them are required
to be run only once even for multiple requested URIs. We have to point here that the most
of these actions are similar to the yum-rhn-plugin workflow. In order to fetch the content,
client must log-in, look-up for associated channels, preparare the authenticated headers,

21

spacewalkmethod
pkg_acquire_method

spacewalkmethod
pkg_acquire_method

- u r i

-eof: Boolean +fail(msg)

+status(**kwargs) +fetch(msg)

+uri_start(msg) -lo g i n ()

+uri_done(msg) -i n i t _ c h a n n e l s ()

+uri_failure(msg) -init_headers()

+ run () -make_conn()

-transfer_document()

Figure 4.1: Class diagram of Spacewalk Acquire Method.

verify the H T T P S certificate, and establish a keep-alive connection. The mentioned actions
are good candidates to be be extracted to the private methods.

Python Specifics

We have to note here that the Python 2.x bufferes the operations on the standard output
and the print command is not guaranteed to be implemented as a single syscall 1. On
the other hand, parser on the Apt side (acquire-worker) requires the messages to be
delivered timely and in one piece. The acquire-worker expects a whole message to be read
by a single syscall.

Futher investigation of Python 2.x implementation reveals that command print ' Hello'

requires two syscalls, first one for the string 'Hello' and second one for a new line. Fortu-
natelly, the same output can be generated using only one syscall. The first possibility is to
use os. write () function, which is a direct binding to the syscall. Or another possibility is
to use print command ended by a comma (print 'Hello\n',). The comma forces Python
to not append the new line. In the final solution, We prefered the later, because of human
redability.

4.1.2 Pre Invoke

As discussed in Section 3.2.3, The Apt-Spacewalk will bind to APT::Update::Pre-Invoke
hook and adjust the configuration in the sources.list. It logs in with Spacewalk and retrieves
the list of channels the client is subscribed to. The result is written to the separate file
/etc/apt/sources. l i s t . d/spacewalk. l i s t . The file must remain in the correct syntax
even if the client gets unsubscribed.

The Pre-Invoke script utilizes apt-pkg library for parsing and modifying the sources.list
and rhn-client-tools library for communication with Spacewalk.

4.1.3 Post Invoke

Post Invoke is the simpliest part of the Apt-Spacewalk. It does only a part of the tool
rhn-prof ile-sync does. It collects the list of currently installed packages and pass them
forward to the Spacewalk by a single X M L - R P C call.

1System call write sends the data to the buffer using primitives of underlying Operating System [32].
In our case the buffer is the standard output (stdout).

22

4.2 Automated Tests

The automated tests are considered to be the essential part of every software project.
This section will describe the creation of tests for Spacewalk's Debian client. It discusses
the possibilities of creating the test for multiple components in heterogenous environments,
optimizing the run-time/coverage ratio. The end of section introduces a functional test
which covers a basic package management scenario of Debian client.

4.2.1 Choosing the Test Technique

Given the work introduced small changes in numerous components, the tests should cover
all of them, including their communication and interoperability. The changes affected
the following packages: apt-spacewalk, apt, spacewalk-java, spacewalk-backend, and rhn-
client-tools.

Functional vs. Non-functional Tests

This section focuses mainly on the functional tests, consider the fact that in the Spacewalk
case, the non-funcional test techniques such as stress and performance tests apply rather
to the specific set-up. For example, it is possible to stress a single component within
the Spacewalk (e.g. as database) or to stress the whole stack by the particular scenario,
but not vice versa.

There is a problem with non-functional test of Spacewalk that the most interesting ones
might be hard to execute because of unsatisfiable requirements. Consider the following
scenario: a huge amount of machines communicationg with the Spacewalk in the same
time. In the real world, there might be thousands of client machines spread across the planet
with different connectivity contactiong the Spacewalk through numerous Spacewalk Proxies.
Such scenario could be the real bottleneck for the given Spacewalk installation, alas it is
very hard to execute in the test laboratory. Saying nothing about routine retrials.

The changes introduced by this work are not the first line candidates to be a performance
drawback for Spacewalk. Naturally, the Apt might be slowed down by the Apt-Spacewalk
due to the additional network communication, but the slowdown might be hard to assert
in a general. The work introduces is a new functionality across the multiple components
and therefore the functional tests are needed first.

Considering Unit, Component, and Integration Levels

The tests can be also divided by the size of its target. The Unit tests aims on the small piece
of software or its A P I , they are good choise for the developers of the monolitic systems.
Component tests are a step above and focuses on the components as a whole. Finally, the in
tegration tests verify the interoperation between multiple components often also simulating
the uncertain environment.

The Spacewalk versioning system contains unit tests and a few component tests. How
ever, a notable amount of the tests are outdated and not conforming the current source
code. If the unit tests was in the good shape it would make a complete sense to amend
them. The Apt-Spacewalk is a package too small for the unit tests, in addition, its main
purpose is to enable the communication between other systems. Hence, the integration
test which automates the communication between Spacewalk, Apt, rhmcheck, and possibly

23

even more components would give us much more evidence about the functionality of whole
scenarios. Such an integration test could be also used as regression test.

The Test Framework

The tests are written in the U N I X shell and the choosen test framework is the Beakerlib [33]
Bash library. The Beakerlib provides functions which simplifies the logging and assertions
from bash. In a shell, the most common assertions could be the check for a return value of
command-line tool.

4.2.2 Apt-Spacewalk Sanity Test

The test is to be deployed and run on Debian G N U / L i n u x client. Ideally, the integration test
is dependent on a very few variables, in any case it should not be dependent on the particular
set-up nor the content. The implemented test passes and the log from the test run is present
on attached C D .

The Apt-Spacewalk Sanity test covers installation, update, and removal of the Debian
packages from the Spacewalk server. A l l the actions are being test with both base and
child channels for multiple package architectures. First of all, the test creates the content
within the given Spacewalk server. Consequently, it registers itself with the Spacewalk and
consumes the content. Each action with Spacewalk is followed by assertions for expected
results.

The test cases:

• Creation of the Debian channels

• Registration with the activation key

• Package push to the Spacewalk server

• Package and hardware profile synchronization with Spacewalk

• Creation and download of Debian repository metadata

• Installation and update against the Spacewalk

• Schedule and pick-up of remote action to install/update packages

• Purge of a Debian content

24

Chapter 5

Conclusion

The work introduced the Apt-Spacewalk package which handles the communication between
Apt and Spacewalk server. Wi th the provided package and the changes in existing projects
(described in Appendices A and B), Debian-based clients are able to install and update
packages from Spacewalk server. The Apt-Spacewalk package has been handovered to
community [28] and the reported problems were addressed.

Patch for the Apt to support dynamic repositories has been submitted upstream, but
the conversative Apt community has not responded at all even upon a reminder. The Apt-
Spacewalk tool remains usable, even without applying the dynamic repositories patch. How
ever, under certain circumstances, some actions require to be run twice in a row to succeed.
Spacewalk community distributes both, patch and patched version of the Apt.

5.1 Further Work

Spacewalk is a complex system build around the rpm. Considering the current community
which is focusing mainly on the functionality of rpm based systems, there will always be
segments which will work for rpm but not for deb. Further work should focus on the features
required by the community at most. The challenging ones are:

• Abilli ty to fetch the content of remote Debian repository into the Spacewalk channel.

• Support of the Debian clients in the Spacewalk Proxy server.

• Spacewalk to generate pdiff metadata known from Debian repositories.

• Abilli ty to store and manage Debian source packages.

• Spacewalk client tools become a part of standard Debian distribution.

• Inter-Spacewalk synchronization of Debian channels.

• Provisioning of Debian clients using the cobbler tool.

25

Bibliography

[1] Spacewalk. Homepage, h t tp : / / spacewalk . redha t . com, [Online, 2011-04-30].

[2] L . Durfina. Native Support for D E B Packages in Spacewalk. Master thesis, FIT
B U T , 2010.

[3] Yellow Dog Updater, Modified. Homepage, h t tp : / /yum.baseur l .o rg , [Online,
2011-02-24].

[4] Seth Vidal . Yum Utils. Fedora Package Database,
h t tps : / /admin. fedoraproj ec t . org/pkgdb/acls/name/yum-uti ls , [Online,
2011-05-02].

[5] R P M Package Manager. Homepage, h t tp : / / rpm.o rg / , [Online, 2011-03-04].

[6] How to Setup Your Own Package Repository. Project Wikipage,
h t tp : / /yum.baseur l .org /wiki /RepoCrea te , [Online, 2011-02-26].

[7] Writing Yum plugins. Project Wikipage,
h t tp : / /yum. baseu r l . org/wiki /Wri t ingYumPlugins , [Online, 2011-02-26].

[8] D. Burrows. Modelling and Resolving Software Dependencies. Unpublished, Debian,
2005.

[9] Debian New Maintainers' Guide. Tutorial,
h t tp: / /www.debian.org/doc/maint-guide/ , [Online, 2011-02-27].

[10] Advanced Packaging Tool. Wikipedia,

h t tp : / / e n . w i k i p e d i a . org/wiki/Advanced_Packaging_Tool, [Online, 2011-03-24].

[11] Apt.conf. Man Page, h t t p : / / l i n u x . d i e . n e t / m a n / 5 / a p t . c o n f , [Online, 2011-03-06].

[12] A . Isotton. Debian Repository Howto. Tutorial,
ht tp: / /www.debian.org/doc/manuals/reposi tory-howto/reposi tory-howto,
[Online, 2011-02-28].

[13] T. Berners-Lee, R. Fielding, and L . Masinter. Uniform Resource Identifier (URI):
Generic Syntax. R F C 3986 (Standard), January 2005.

[14] Sources.list. Man Page, h t t p : / / l i n u x . d i e . n e t / m a n / 5 / s o u r c e s . l i s t , [Online,
2011-02-27].

[15] R. Fielding, J . Gettys, J . Mogul, H . Frystyk, L . Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol - H T T P / 1 . 1 . R F C 2616 (Draft
Standard), jun 1999. Updated by RFCs 2817, 5785.

26

http://spacewalk.redhat
http://yum.baseurl.org
http://rpm.org/
http://yum.baseurl.org/wiki/RepoCreate
http://www.debian.org/doc/maint-guide/
http://linux.die.net/man/5/apt.conf
http://www.debian.org/doc/manuals/repository-howto/repository-howto
http://linux.die

[16] Python-Apt vO.7.100 Documentation. A P I Documentation,
h t tp : / / ap t . a l i o th .deb ian .o rg /py thon-ap t -doc / , [Online, 2011-03-03].

[17] Spacewalk. Project Wikipage, h t tps : / / fedorahos ted .org / spacewalk /wik i ,
[Online, 2011-04-30].

[18] J . M . Rodriguez. Introducing Project Spacewalk. Announcement, h t tps :
//www.redhat.com/archives/spacewalk-devel/2008-June/msgOOOOl.html,
[Online, 2011-05-02].

[19] History of Red Hat Linux. W W W Page,
h t t p : / / f e d o r a p r o j e c t . o r g / w i k i / H i s t o r y , [Online, 2011-05-02].

[20] Red Hat Network. Wikipedia, h t tp : / /en .wikipedia .org/wiki /Red_Hat_Network,
[Online, 2011-04-30].

[21] Red Hat Network Architectural Overview. W W W Page,
h t tp : //www.redhat. com/red_hat_network/deploydetail / , [Online, 2011-02-28].

[22] Spacewalk Architecture. Project Wikipage,
h t tps : //fedorahosted.org/spacewalk/wiki /Archi tec ture , [Online, 2011-02-23].

[23] Spacewalk - Perl Stack. Project Wikipage,
h t tps : //fedorahosted. o rg /spacewalk /wik i /Per lS tack , [Online, 2011-04-25].

[24] D. Winer. X M L - R P C Specification, http://www.xmlrpc.com/spec, January 1999.

[25] Spacewalk - Python Backend Architecture. Project Wikipage,
https://fedorahosted.org/spacewalk/wiki/PythonDocumentation, [Online,
2011-04-25].

[26] Spacewalk - Taskomatic. Project Wikipage,
h t tps : //f edorahosted. org/spacewalk/wiki /TaskoMatic , [Online, 2011-03-15].

[27] J . Pazdziora. Spacewalk on PostgreSQL. Presentation,
http:/ /www.adelton.com/docs/spacewalk/spacewalk-on-postgresql , [Online,
2011-04-30].

[28] M . Suchy. Spacewalk 1.4 Released. Announcement, https:/ /www.redhat.com/
archives/spacewalk-announce-l is t /2011-Apri l /msg00000.html, [Online,
2011-04-30].

[29] Description of The A P I Used by Up2date, version 2. Spacewalk Documentation,
h t tp : / /g i t .fedorahos ted .o rg /g i t / ?p=spacewalk .g i t ; a=b lob_pla in ;f=
backend/doc/api . tx t , [Online, 2011-03-25].

[30] J . Franks, P. Hallam-Baker, J . Hostetler, S. Lawrence, P. Leach, A . Luotonen, and
L . Stewart. H T T P Authentication: Basic and Digest Access Authentication. R F C
2617 (Draft Standard), jun 1999.

[31] S. Lukasik, , J . M . Navarro M . Suchy, and M . Vogt. Writing a Spacewalk plugin for
Apt-Get. Mai l Thread, h t tp : / / l i s t s .deb ian .o rg /de i ty /2011/02 /msg00134 .h tml ,
[Online, 2011-02-16].

27

https://fedorahosted.org/spacewalk/wiki
http://www.redhat.com/archives/spacewalk-devel/2008-June/msgOOOOl.html
http://fedoraproject.org/wiki/History
http://en.wikipedia.org/wiki/Red_Hat_Network
http://www.redhat
http://www.xmlrpc.com/spec
https://fedorahosted.org/spacewalk/wiki/PythonDocumentation
http://www.adelton.com/docs/spacewalk/spacewalk-on-postgresql
https://www.redhat.com/
http://git.fedorahosted.org/git/?p=spacewalk.git;a=blob_plain;f=
http://lists.debian.org/deity/2011/02/msg00134.html

[32] Write System Call. Man Page, http://linux.die.net/man/2Zwrite, [Online,

2011-05-01].

[33] Beaker library. Homepage, https://fedorahosted.org/beakerlib, [Online,

2011-04-29].

28

http://linux.die.net/man/2Zwrite
https://fedorahosted.org/beakerlib

Appendix A

Server Side Changes

In order to allow Debian clients, there are changes needed in the Spacewalk server code-
base. Including the Java part, which generates the metadata for channels, and the backend
part serving the content to the clients. A l l the described changes has been commited to
the upstream project.

A . l Taskomatic

Taskomatic [. i] is a daemon which serves as a scheduler for asynchronous tasks needed by
Spacewalk server. It is written in Java and deployed on Apache Tomcat. Taskomatic has
a cron like ability for scheduling tasks on regular basis.

One of the tasks is ChannelRepodata and it is used for generating metadata for Software
Channels. The task is scheduled on top of every minute and it looks up the channels
with outdated metadata in order to regenerate them. The ChannelRepodata task utilizes
the RepositoryWriter class to create the metadata for a given channel. Lukáš Durfina has
modified the RepositoryWriter class to generate metadata not only for the Yum but also
for the Apt.

A . 1.1 Problem Definition

The problem with the solution in question was that the repository metadata was partialy
incorect and their creation worked only under certain conditions. In addtion, the function
alities of Yum and Apt part were not equivalent.

The Spacewalk server stores the generated metadata on a disk in separate directo
ries. Thus, RepositoryWriter needs to make sure that the appropriate directory exists.
The RepositoryWriter has also a responsibility for the deletion of the metadata, and de
cision whether the metadata needs to be regenerated. Nevertheless, such capabilities were
not present in the Debian part of the Taskomatic code.

The another problem was the content of generated Packages file. The Packages con
tained file path for each package equal to the location on the Spacewalk disk. On the other
hand, Apache server was not configured to server the content from that path location. And
even if the Apache was configured to do so, the result would be in contrary to the concept
of the Software Channels (2.2.4).

29

A.1.2 Proposed Solution

Since the creation of Yum and Apt repository metadata differs, I propose to introduce
a separate class for each. When the task ChannelRepodata starts it will look up the chan
nel architecture and choose either DebRepositoryWriter or RpmRepositoryWriter class.
The original RepositoryWriter class will remain as the abstract base class. The process
of metadata deletion could be rewritten in more general way, with the ability to remove
any metadata. The generalized code should become a part of abstract base class.

Additionaly, the Apt's metadata creation must be modified to point out the correct
URI location for packages. The U R I must involve the /XMLRPC/GET-REQ/ handler fol
lowed by the channel's name. The U R I is then used by Apt for the content download and
/XMLRPC/GET-REQ/ handler on Spacewalk side will cover the authentication and authoriza
tion of H T T P S requests.

A.2 Spacewalk Backend

Spacewalk backend is a part of the Spacewalk server writen in Python and deployed on
Apache. Beyond others, the backend is responsible for handling the XML-RPC calls and
H T T P S requests from clients. For example it might be the client registration, retrieval of
metadata or packages, or the rhnpush of a package to the server. The part of the Spacewalk
backend which serves the packages and channel metadata needs to be modified to allow
the Debian content.

The handler, which serves the content listens on the /XMLRPC/GET-REQ/ URI . The han
dler sticks to the principle that everything what is not allowed explicitelly is forbidden.
Aparently, the Debian content belongs to the forbidden group. The proposed change is
to allow the Debian content (patterns: Packages.gz and *.deb). The changeset is quite
small and isolated. We have to note here that the similar change might be needed in
the Spacewalk Proxy code.

30

Appendix B

RHN Client Tools

Rhn Client Tools is a set of libraries and executables used on the clients for elementar
actions with Spacewalk server. The current implementation is distribution dependent.
This appendix briefly describes the Debian port of the package.

B . l Problem Definition

B . l . l Description of Package

Rhn Client Tools package contains exacutables and Python modules used on a client side
for a basic set of actions with the Spacewalk server. The modules encapsulate remote
communication with Spacewalk as well as common client actions: parsing the configuration
file, work with local package management tool, and collection of the information about
the local machine—hardware and distribution related.

The executables allows registering with Spacewalk (rhn_register, rhnreg_ks), refresh
ing profile information (rhn-prof ile-sync), management of associated software channgels
(spacewalk-channel), and picking up remote actions (rhn_check).

B . l . 2 Debian Port

Library is distributed on Fedora G N U / L i n u x and its derivates. Certain parts of the library
are distribution dependent. For example the library imports python-rpm and utilizes it as
the only one packaging system.

Moreover, the library parses the information about installed distribution from an rpm
package providing a redhat-relase and the information about system architecture from
/etc/rpm/platf orm file. The configuration is stored in /etc/sysconf ig/ directory. Also
note the documentation strings and output which is intended for Red Hat users. These
listed facts, while they are native on Fedora, pose unsatisfied dependencies on Debian.
Fortunatelly, The rest of the rhn-client-tools library is independent on the underlying dis
tribution.

B . l . 3 Current Solution

Lukáš Durfina in his Master thesis [2] provided a Debian package of rhn-client-tools.
His package uses python-apt as package manager and parses distribution information from
/etc/issue file.

31

The main problem with this package was that the Durfina's changes were not tracked in
any versioning systems, which makes the maintainance hard. Furthermore, the package was
still dependent on python-rpm and over the year diverged significantly from the upstream
version.

B.2 Proposed Solution

In an ideal case, rhn-client-tools package would be compiled from a single source code for
both platforms: rpm and deb. The package should neither require python-rpm on Debian
nor python-apt on Fedora. More or less the implementations on Fedora and Debian are
known. The problems is to integrate them to a single peace of software.

It could be achived by polymorphism (either in run-time or in build time) or by inter
leaving with if-else statements. Since the most of the rhn-client-tools library is not object
oriented, polymorphism needs to be made not on the class level but on the module level.
Wi th such an approach, introducing a new module for each inconsistence, there is a risk for
amount of modules to grow surprisingly. On the other hand, interleaving with if-else struts
might lead to deep-nested if-else branches. Viable solution is to combine both concepts.

B.2.1 Implementation

When doing an change in the library code, the very first step should be to run the unit
tests and maybe improve their coverage ration to involve also the planned change. The pity
with rhn-client-tools package is that the unit tests are not maintained. During a work I
have amended a few test cases, but most of them remained untouched.

The fundamential part of changes is a newly introduced platform module. The mod
ule contains only one function: getPlatform returning string equal to either deb or rpm.
A l l the platform dependent bits from the library behave accordingly to given platform.
The value of platform is stored statically and set up during the package build.

The next step would is to cut of the dependencies on a package manager. Let's take
rpmUtils module as an example. The module is dependent on python-rpm and provides
high level functions above it. The same functionality could be achieved on the Debian with
a help of python-apt module. The usage of both modules (the rpmUtils and the new
one debUtils) should transparent to the user. And the transparency could be achieved by
polymorphism on the module level. The abstract module pkgUtils can look as follows:

1 from platform import getPlatform

2 i f getPlatform() == 'deb':

3 from debUtils import *

4 else:

5 from rpmUtils import *

Some of the remaining modules in the library were also dependent on python-rpm, al
though the polymorphism on the module level might not be optimal for them, as it will lead
to numerous and very small modules and lot of duplicity. The rest of platform dependent
code in the rhn-client-tools package could be enterleaved with the local if-getPlatform-else
branches.

32

Appendix C

Patch for the Apt

The patch has been proposed on the Apt's mailing list [31] and even thought the commu
nication on the list was quite active before the patch was sent, no one has ever responded
to the proposal.

1 === modified f i l e 'apt-pkg/algorithms.cc'

2 apt-pkg/algorithms.cc 2011-02-10 16:51:44 +0000

3 +++ apt-pkg/algorithms.cc 2011-02-20 13:03:51 +0000

4 00 -1458,12 +1458,17 00

5 i f (Fetcher.Setup(&Stat, _config->FindDir("Dir::State::Lists")) == false)

6 return false;

r
8 + // Run scripts

9 + RunScriptsC'APT::Update::Pre-Invoke'');

10 +

n + // Refresh source l i s t s , Pre-Invoke might change content

12 + i f (_conf ig->FindB("APT: :Update: :List-Refresh" ,true) == true)

13 + i f (List .ReadMainListO == false)

14 + return false;

15 +

16 // Populate i t with the source selection

17 i f (List.GetIndexes(&Fetcher) == false)

i s return false;

19

20 - // Run scripts

21 - RunScriptsC'APT::Update::Pre-Invoke'');

22

23 // check arguments

24 if(Pulselnterval>0)

The patch introduces a new boolean option—APT: :Update: :List-Refresh (line 12).
If the option is set sources.list will be reloaded after APT: :Update: :Pre-Invoke and before
the cache update.

The changeset has been tested with the common Apt frontends without observing any
problems. Nonetheless, I admit that the patch has two hypothetical problems, which cannot
be avoided unless the public A P I is changed. It changes behavior of the hook, which will
be run even if the sources.list is empty, and it can change the value of the List reference
(line 13).

33

Appendix D

Acquire Protocol Log

The following is the example of the Acquire Protocol (Section 3.1.1). This particular log
is a snippet of the communication between Apt and Apt-Spacewalk tools captured during
the apt-get update command. The lines introduced by '<' character were send by the
Spacewalk Acquire Method (Section 4.1.1), while the lines introduced by '>' were sent by
the Apt.

< 100 Capabilities

< Version: 1.0

< Single-Instance: true

<
> 600 URI Acquire

> URI: spacewalk://s01.lab/dists/channels:/Release.gpg

> Filename: /var/lib/apt/lists/partial/sOl.lab_dists_channels:_Release.gpg

> Index-File: true

>

< 102 Status

< Message: Logging into the spacewalk server

< URI: spacewalk://sOl.lab/dists/channels:/Release.gpg

<
< 102 Status

< Message: Logged in

< URI: spacewalk://sOl.lab/dists/channels:/Release.gpg

<
< 102 Status

< Message: Waiting for headers

< URI: spacewalk://sOl.lab/dists/channels:/Release.gpg

<
< 400 URI Failure

< FailReason: HttpError404

< Message: 404 Not Found

< URI: spacewalk://sOl.lab/dists/channels:/Release.gpg

<
> 600 URI Acquire

> URI: spacewalk://sOl.lab/dists/channels:/Release

> Filename: /var/lib/apt/lists/partial/sOl.lab_dists_channels:_Release

> Index-File: true

>

< 102 Status

< Message: Waiting for headers

34

< URI: spacewalk://s01.lab/dists/channels:/Release

<

< 400 URI Failure

< FailReason: HttpError404

< Message: 404 Not Found

< URI: spacewalk://s01.lab/dists/channels:/Release

<
> 600 URI Acquire

> URI: spacewalk://s01.lab/dists/channels:/main/binary-i386/Packages.gz

> Filename: /var/lib/apt/lists/partial/sOl.lab_dists_channels:_main_binary-i386_Packages

> Index-File: true

> Last-Modified: Sat, 01 Jan 2011 14:59:41 GMT

>

< 102 Status

< Message: Waiting for headers

< URI: spacewalk://s01.lab/dists/channels:/main/binary-i386/Packages.gz

<
< 200 URI Start

< Last-Modified: Tue, 21 Dec 2010 20:13:00 GMT

< URI: spacewalk://s01.lab/dists/channels:/main/binary-i386/Packages.gz

< Size: 1830

<

< 201 URI Done

< MD5-Hash: a7f25012454d56cl835fa54cel00a291

< MD5Sum-Hash: a7f25012454d56cl835fa54cel00a291

< URI: spacewalk://s01.lab/dists/channels:/main/binary-i386/Packages.gz

< Last-Modified: Tue, 21 Dec 2010 20:13:00 GMT

< Filename: /var/lib/apt/lists/partial/sOl.lab_dists_channels:_main_binary-i386_Packages

< SHA256-Hash: f8db564d338475503140bcc7b83f1651e59ce32e00de4910c278e3dc70228fcf

< Size: 1830

<

35

Appendix E

Content of the CD

The attached CD contains source code of Apt-Spacewalk package, separate patches, final packages,
and Apt-Spacewalk sanity test.

I — logs
I '— acquire-methods
I — packages
| — README. txt
I — src
I |— apt-spacewalk
I | I — debian
I I I — src
I | '— test
I '— patches
I I— apt
| |— cl ient
| I — server
I '— test
'— tex

30

