
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

C LANGUAGE COMPILER BACK-END
FOR PICOBLAZE-6

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN BŘÍZA
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

ZADNÍ ČÁST PŘEKLADAČE JAZYKA C
PRO PICOBLAZE-6
C LANGUAGE COMPILER BACK-END

FOR PICOBLAZE-6

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN BŘÍZA
AUTHOR

VEDOUCÍ PRÁCE Ing. ZBYNĚK KŘIVKA, Ph.D.
SUPERVISOR

BRNO 2014

Abstrakt
Tato práce řeší konstrukci zadní části kompilátoru jazyka C pro soft-core procesor PicoBlaze-
6 od firmy Xilinx. K řešení tohoto problému bylo zvoleno užití projektu Small Device C
Compiler coby přední části překladače. Vytvořené řešení poskytuje podporu volání ukaza-
telů na funkce a užití struktur. Hlavním přínosem této práce je přenesení pokročilých
konstrukcí jazyka C na procesor PicoBlaze.

Abstract
The goal of this thesis is to construct a C compiler back-end for the soft-core processor
PicoBlaze-6 by Xilinx, Inc. The construction itself was done by use of the Small Device C
Compiler as the front-end. The resulting application offers the ability to compile function
pointer calling and structure usage. The main benefit of this thesis is bringing some of
advanced C language constructs to the PicoBlaze processor.

Klíčová slova
vhdl, c, kompilátor, sdcc, picoblaze, procesor, fpga

Keywords
vhdl, c, compiler, sdcc, picoblaze, processor, fpga

Citace
Martin Bříza: C Language Compiler Back-End for PicoBlaze-6, bakalářská práce, Brno,
FIT VUT v Brně, 2014

Rozšířený abstrakt

Tato práce se zabývá konstrukcí zadní části překladače jazyka C pro procesor PicoBlaze-
6 od firmy Xilinx.

PicoBlaze je soft-core procesor (šířený jako design ve VHDL a Verilogu) určený pro
vložení do FPGA čipů řady Spartan a Virtex. Jeho nově vydaná verze, 6, přidává několik
nových instrukcí, upravuje chování řady stávajících a především rozšiřuje velikost pro-
gramové i operační paměti spouštěných programů.

Pro vytvoření kompletního překladače je použit open-source framework Small Device C
Compiler, který tak slouží jako přední část. V práci popsaná zadní část pak generuje jazyk
symbolických instrukcí v notaci určené pro pBlazASM od firmy Mediatronix.

Výsledná práce se pak věnuje především implementaci pokročilých konstrukcí jazyka,
které nebyly dostupné v předchozích kompilátorech.

Jmenovitě, tou nejpodstatnější vlastností jsou ukazatele na funkce, následuje podpora
komplexních datových typů (například struktur.

Z ostatních vlastností kompilátor umožňuje využívat vstupní i výstupní porty procesoru
pro komunikaci s periferiemi. Implementované je i volání funkcí, včetně rekurze. Podpora
aritmetických operací je základní, tedy shodná s jejich podporou na straně procesoru -
podporovány jsou všechny operace kromě násobení a dělení. Nicméně, kód pro násobení a
dělení na tomto procesoru je možné převzít z předchozí diplomové práce na toto téma.

Vytvořený program byl otestovaný sadou krátkých netriviálních příkladů - programů,
které demonstrují požadovanou funkcionalitu.

4

C Language Compiler Back-End for PicoBlaze-6

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval sám pod vedením Ing. Zbyňka Křivky,
Ph.D.

. .
Martin Bříza
May 20, 2014

Poděkování
Rád bych poděkoval svému vedoucímu za odborné vedení, motivaci a cenné rady při řešení
této práce a také svým blízkým za podporu v tomto období.

c© Martin Bříza, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Bachelor’s Thesis Assignment
Unofficial Translation

Student

Martin Bříza

Specialisation

Information Technology

Topic

C Compiler Back-End for PicoBlaze-6

Category

Compilers

Instructions

1. Study the standard of C programming language and the specification of the version
6 of the 8-bit softcore processor PicoBlaze by Xilinx.

2. Examine the existing compilers for 8-bit processors (e.g. PCCOMP, PBCCv2) and
identify their fundamental flaws and problems.

3. According to your supervisor’s instructions select an appropriate subset of C language
and choose an existing C compiler front-end (e.g. SDCC or LLVM) for the implemen-
tation. Then, design the back-end for the chosen front-end to translate the subset of
C language to the assembly language of PicoBlaze-6 target platform.

4. Implement the design.

5. Test the resulting compiler using at least 10 non-trivial examples and evaluate its pros
and cons compared to the other examined alternatives. In the conclusion, propose
some improvements of the compiler.

Supervisor

Křivka Zbyněk, Ing., Ph.D., UIFS FIT VUT

1

Contents

1 Introduction 5
1.1 The C Programming Language . 5
1.2 The Previous Project . 5
1.3 Structure of the Document . 5

2 The PicoBlaze Processor 6
2.1 History . 6

2.1.1 PicoBlaze . 6
2.1.2 PicoBlaze-2 . 6
2.1.3 PicoBlaze-3 . 7
2.1.4 PicoBlaze-6 . 7

2.2 Main Features . 7
2.3 Practical usage . 7
2.4 New features and properties of PicoBlaze-6 8
2.5 PacoBlaze . 9
2.6 PicoBlaze Assemblers . 9

2.6.1 pBlazASM . 9
2.7 PicoBlaze Simulators . 9

2.7.1 pBlazSIM . 10
2.7.2 PBSim . 10

3 Programming language compiler 11
3.1 Compiler Structure . 11
3.2 Preprocessor . 12
3.3 Front-end . 12

3.3.1 Lexical analysis . 12
3.3.2 Symbol Table . 13
3.3.3 Parser . 13
3.3.4 Code Generator . 14

3.4 Intermediate Code . 14
3.4.1 The Intermediate Code Optimizer 15

3.5 Back-end . 15

4 Compiler Front-End Choice 16
4.1 GNU Compiler Collection . 16
4.2 Low Level Virtual Machine . 16

4.2.1 Architecture . 17
4.3 Small Device C Compiler . 17

2

5 Existing Solutions 18
5.1 PCComp . 18

5.1.1 Features . 18
5.1.2 Limitations . 18

5.2 PBCC by Bohumil Nováček . 18
5.2.1 Features . 19
5.2.2 Limitations . 19

5.3 PBCC by Jakub Horník . 19
5.3.1 Features . 19
5.3.2 Limitations . 20

6 Implementation Design 21
6.1 New Port Addition . 21

6.1.1 Automation of new port addition . 21
6.2 Compilation . 22
6.3 SDCC Internals Wrapper . 22

6.3.1 Approach . 22
6.4 Utilities . 22

6.4.1 Emitter . 22
6.4.2 Function . 23

6.5 Register and Memory management . 23
6.5.1 Type support . 23
6.5.2 Register Allocation . 23
6.5.3 Stack Management . 24
6.5.4 Static Memory . 24

6.6 Code Generator . 24
6.6.1 Calling Conventions . 24
6.6.2 Function Pointers . 25
6.6.3 Register Bank Utilization . 25
6.6.4 Assignment Generation . 26
6.6.5 Stack and Variable Storage . 26
6.6.6 Arithmetic Operations . 26

6.7 Compiled Assembly Properties . 27
6.7.1 Comments in the Code . 27

7 Port Features 29
7.1 Code Clarity . 29
7.2 PicoBlaze-6 Support . 29
7.3 Built-in Functions . 29

8 Testing and Evaluation 30
8.1 Testing . 30

8.1.1 Tools and the Testing Process . 30
8.1.2 The Framework . 31
8.1.3 Test Cases . 32

8.2 Evaluation . 32

9 Conclusion 34
9.1 Future Development . 34

3

A CD Contents 37

B Installation and Usage 38
B.1 Usage . 38

C PicoBlaze-6 Instruction Set 39

4

Chapter 1

Introduction

Subject of this thesis project is constructing a C programming language compiler back-end
for the soft-core processor PicoBlaze-6. The 8-bit processor is quite simple but after the
recent update, it provides an interesting set of features to use in C programs.

However, Currently, there is no other C compiler designed especially for the PicoBlaze-6
processor, therefore a new compiler utilizing the new features is a welcome addition to the
existing toolchain.

1.1 The C Programming Language

The C programming language was created in the 1970s by Dennis Ritchie and Ken Thomp-
son. In this project, I focused mainly on implementing its two latest standards, ISO/IEC
9899:1999 [2] and partially ISO/IEC 9899:2011 [11].

1.2 The Previous Project

Similar thesis topic was elaborated by Jakub Horník as his Master thesis in 2011. This
project is discussed in Section 5.3.

While he was writing the thesis, a new version of the target processor was released (see
Chapter 2). The resulting application is discussed in Section 5.3.

1.3 Structure of the Document

After the introduction to PicoBlaze in Chapter 2 and explaining the basic principles of
compiler design in Chapter 3, the available existing and open source C language compiler
front-ends are enumerated in Chapter 4.

Next, the previous projects implementing a compiler for the older releases of the Pi-
coBlaze processor, are listed in Chapter 5.

And finally, Chapter 6 explains the principles that the final application builds upon and
its functionality is tested and evaluated in Chapter 8. Chapter 7 contains the summary of
the compiler features and their description.

5

Chapter 2

The PicoBlaze Processor

PicoBlaze is a 8-bit processor created by Xilinx Inc. for their Spartan and Virtex FPGA1

series as an embeddable circuit to implement sequential programming in the parallel FPGA
architecture. This means the processor is not meant to be physically manufactured, yet it
would be possible [24].

2.1 History

Historically, the name of the design was KCPSM, for Ken Chapman’s Programmable State
Machine and then Constant Coded Programmable State Machine. This term is now still
used in the FPGA design - the VHDL2 and Verilog components are still caled kcpsmX where
X stands for the version of the processor [18].

2.1.1 PicoBlaze

The first version of PicoBlaze was released in May 1999.
The initial PicoBlaze was very simple, especially compared to the current one. There

was only space for 256 instructions in the program memory and there was no RAM. Only
16 8-bit registers were available to be used for storage. However, it is possible to connect
an external memory through the 256 I/O pins.

The multi-byte arithmetic instructions (ADDCY and SUBCY) were included since the very
beginning.

There was no dedicated instruction for value comparison but both the zero and carry
flags were already present [3].

2.1.2 PicoBlaze-2

The second version of the processor was initially released in December 2002.
The program could consist of 1024 instructions at most and there was no scratchpad

memory for runtime variables. The instructions were able to operate only with the 32 8-bit
registers and constant values.

The PicoBlaze instruction set remained the same in this revision.[4].

1Field-Programmable Gate Array
2VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

6

2.1.3 PicoBlaze-3

First release of the previous version, 3, of PicoBlaze was released in May 2003. Its last
revision, was released in August 2004.

The register count was reduced to 16 while their size has been kept the same. The main
addition in this version is the 64 byte large scratchpad memory, that eliminates the need
of an external memory connected through the I/O ports.

Instruction set changes in this version include the addition of comparison, testing and
parity counting instructions [6].

2.1.4 PicoBlaze-6

The PicoBlaze-6 was initially released on 28th October 2010. Since then, a total of 7 newer
revisions of this versions were released.

The most recent one, PicoBlaze-6 release 8, was released on 31th March 2014 [5].
The differences and new features compared to PicoBlaze-3 are discussed in Section 2.4.

The main features, regardless of history, are listed in Section 2.2.

2.2 Main Features

PicoBlaze is a RISC 3, Harvard architecture4 processor. Every instruction is executed in 2
clock cycles [5].

Program memory Up to 4096 instructions
Scratchpad RAM Up to 256 bytes
2 Register banks Containing 16 8-bit registers each

Input/Output 256 8-bit ports
8-bit Arithmetic-Logic Unit Supports shifting, adding and subtracting

Provides AND, OR and XOR operations
Compares and tests
Implements carry and zero flags

FPGA design Can be included directly in the hardware code
No other equipment or code needed

Table 2.1: PicoBlaze-6 features [24]

2.3 Practical usage

A sequential processor, in comparison to parallel hardware design, is much more feasible
for implementing state machines and computational cycles.

It is suitable to used to control simple devices and to communicate over serial inter-
faces. The use-cases presented by the manufacturer are LCD drivers, SPI communication,
controlling devices such as A/D controller.

Time-based operations as pulse width modulation are possible with the processor, as
well as display of real time clock or frequency measuring [27].

3Reduced Instruction Set Computing
4The program code and the data memory are stored in separate locations

7

2.4 New features and properties of PicoBlaze-6

Compared to the previous version, there were major changes in PicoBlaze design after the
upgrade to the sixth version, which is still backwards-compatible.

The most important ones are covered in this section in descending order according to
their impact on programming in C and the compiler itself [5].

New JUMP@ and CALL@ Instructions

Indirect jumps and calls, provided the address of the function or label, are possible in the
new version.

This improves compatibility with sophisticated C programs greatly as it allows the
implementation of function pointers and their calling.

It also means there had to a new addressing mode introduced - the whole program
memory cannot be covered with only an 8-bit value, so the code’s section is stored in the
lower four bytes of the first register and the rest of the address in the second one.

New REGBANK and STAR Instructions

The new version of the processor now provides two sets of 16 general purpose registers
that are switchable using the REGBANK instruction - this means only one of the sets can be
accessed at a time.

To store values in the inactive bank, the STAR instruction is provided - it is used to store
a value from the active bank register in another register that is in the inactive bank.

ADDCY and SUBCY Instruction Changes

The previous version of these instructions modified the zero flag only according to their
own result. Now they add the previous zero to the current one.

New COMPARECY and TESTCY Instructions

Instructions added to make comparing multi-byte types easier. They store the flags (carry
and zero) and propagate them according to the progress through the single bytes.

Program Memory Changes

Due to the two newly added memory addressing pins, it is possible to address four times
more program memory (now up to 4096), increasing the possible program size and com-
plexity.

RAM Changes

The amount of RAM addressable by the program was increased to up to 256 bytes from
64, yet it depends on the target device the processor will be implemented on.

This was achieved by modifying the opcodes of instructions of the processor, not the
internals.

Call stack

Only 30 levels of function call depth are now available compared to 31 of PicoBlaze-3.

8

New LOAD&RETURN Instruction and STRING Directive

The user (or compiler) can now specify a byte string location in the memory using the
STRING directive in the assembly.

Then, using the LOAD&RETURN instruction, it is possible to load a constant value into a
specified register and unconditionally return from a subroutine, making these very useful
in conjunction to generate text strings to be presented to the user.

New OUTPUTK Instruction

This instruction allows the program to output a constant instead of loading it into a register
and outputting it using the regular OUTPUT.

2.5 PacoBlaze

PacoBlaze is an open-source (under the BSD license) clone of the PicoBlaze processor
written in Verilog.

Its main advantage is the possibility to be used with hardware not provided by Xilinx
and modifiability and configurability.

Due to the higher versatility, PacoBlaze is not as efficient (resource-wise) as the original
implementation but it enables the user to remove unneeded parts from the processor and
use its smallest required subset, therefore reducing FPGA space use as the result.

The latest version is 2.2 (released in 2007) so it cannot possibly implement the new
instructions of PicoBlaze-6 that this project tries to use as much as possible [13].

2.6 PicoBlaze Assemblers

Compilation to the machine code directly is not feasible because it prevents further modifi-
cations of the resulting code. It’s also not absolutely necessary as there already are complete
assemblers, with features, implementing which would reduce the time available for writing
the C compiling part of the toolchain.

2.6.1 pBlazASM

PBlazASM is an open source assembler created by Mediatronix to be used for compiling the
machine code source files directly to machine code in several formats. It can also create a
representation (.lst files) that is then used in the pBlazSIM simulator (that is distributed
in the same repository, see Section 2.7.1) [21].

However, the program itself is bug infested and crashes quite often. There were some
trivial bugs that were possible to be fixed quickly, such as calling free on a pointer that
was not returned by malloc.

2.7 PicoBlaze Simulators

As the debugging capabilities of the processor are limited, making debugging of the pro-
grams on real hardware too complicated, possibility of usage a simulator of the target
processor is more than welcome.

9

2.7.1 pBlazSIM

One of the most recent ones, pBlazSIM, was created by Mediatronix, too. It is actually
hosted in the same repository tree as pBlazASM (see Section 2.6.1), along with some other
tools [23]. [22]

Hosted under the GPLv2 open source license, it is written in C++ and Qt, so its use is
not limited only to one platform. Mediatronix distributes only the Windows binary form,
though.

Running Under Linux

First attempts to run the simulator in Wine5 were quite unsuccessful as it was only capable
to simulate the code which was included in the distributed binary package and no other.

Attempts to compile the simulator from the source provided were also unsuccessful at
first. Some changes to the distributed files were required.

The needed steps to finish the compilation successfully are fixing the qmake project file
to include all needed source files and adding one missing icon for the GUI6 (for example by
copying the existing ones in different colors).

The hand-compiled version is able to run the assembly files generated by pBlazASM
(see Section 2.6.1) well. All features in the GUI are working, too.

I contacted the upstream developer responsible for the changes that introduced the
invalid constructions to fix them. The code was fixed by the developer in two days.

Command Line Simulator

A simple simulator without any user interface was introduced to the code-base recently.
The officially provided build system information does not handle its compilation but due
to the relative simplicity of the project, it is easy to compile this executable by hand by
using the object files of the pBlaze.cpp module.

The simplest way possible (provided you use a C++ compiler that is able to link directly)
to compile this binary is by using the following command:

${CXX} pBlaze.cpp pBlazSIMcl.cpp -o ${SIM BINARY}

2.7.2 PBSim

A project that is being developed on the University, started as a Master’s project in year
2012 [16].

Bound to SDCC (see Section 4.3) and tightly related to Eclipse, it is possible to use it
as a part of its UI.

It is hosted under the GPLv2 license on Github [14] but there are no instruction to
compile the project. In comparison to pBlazSIM (see Section 2.7.1), it’s not active at all.

5WINE is not an Emulator - an open source Windows API implementation
6Graphical User Interface

10

Chapter 3

Programming language compiler

Most of the modern computer processors are programmed using a fairly complicated binary
instruction set. To make writing more complex and powerful applications more pleasant and
comprehensible, we are now using programming languages that are translated (compiled)
into the low level binary form executable by the processor.

In this chapter, the most vital parts and terms in construction of a compiler are dis-
cussed, with focus on C language [1].

3.1 Compiler Structure

A typical programming language compiler consists of two to four main parts:
First part is an optional preprocessor which prepares the source code for the front-end,

for example by removing comments or expanding macro definitions.
A language front-end, which transforms the code from a programming language to its

simple intermediate and internal representation.
An intermediate code optimizer searches the representation for patterns that can be

changed to more efficient, smaller or faster equivalents. This part is optional, too.
And finally, the back-end, that generates the target code for the processor itself, be it

assembly code, virtual machine code or a processor-native code [1].

Source Program Preprocessor

Front-End

Intermediate Code Optimizer

Back-End Target Code

Stripped Source Code

Intermediate Code

Optimized Intermediate Code

Figure 3.1: Structure of a compiler front-end

11

3.2 Preprocessor

Preprocessor performs a simple task of removing or replacing text in the input source code
according to some pre-set rules.

The most common task is removing comments to leave only language defined tokens for
the further stages of compilation.

In the C programming language, there are preprocessor macros, too. These serve a
purpose of replacing and inserting text. However, describing the entirety of the C prepro-
cessor is a task beyond limits of this thesis, only few directives are listed, along with their
simplified descriptions [28].

#include "file" or <file> Behaves as if the whole contents of file were inserted
instead of it.

#define MACRO ... Every occurrence of NAME in the code is replaced with
what is substituted with ... (until the end of line).

#if cond The following lines until #endif are pasted if cond is
met. cond supports C expression syntax.

#ifdef MACRO Equivalent to #if defined(MACRO). True if MACRO was
defined.

Table 3.1: Basic C preprocessor macros

3.3 Front-end

The central and most important part of the compiler, it does a whole set of operations over
the source code to produce its independent representation.

It is a language-specific part, that also checks the correctness of the input code.
Large compiler projects even aim to its complete and clear replaceability (see Sections

4.1 and 4.2 for examples) to benefit from the optimization in the following stages of com-
pilation.

Source Program Lexical Analyzer Parser

Symbol Table Code Generator

Intermediate Code

Figure 3.2: Structure of a compiler front-end

3.3.1 Lexical analysis

Lexical analyzer comes into contact with the raw source code.
Reading the input stream character by character, it breaks it down to segments called

tokens, according to rules that are set by the language standard.

12

For example, there can be a token representing a keyword (like if or for), a literal
value (42 or "string",. . .) or a type or symbol name (foo, main,. . .) [1].

A token of the if keyword will be always represented with the same string - if. How-
ever, a variable name in C can take form of any string that matches the following regular
expression [2].

[A-Za-z][A-Za-z 0-9]*

These names and values are then stored in the symbol table, which will be discussed in
the next section.

3.3.2 Symbol Table

A symbol table is a container storing names of all symbols that the lexical analyzer has
detected [1].

The values here are used further in the compilation, either to resolve the identity of
tokens, or to actually assign the literal values and use them in the program itself.

3.3.3 Parser

Parser then takes the stream of tokens and arranges them into a tree-like structure. This
process is called syntactic analysis. It consists not only of arranging the tree but as a
side-effect, correct syntax of the input code is being checked.

Consider the following expression for demonstration of processes taking place in the
parser:

1 * foo + 5 * bar

Listing 3.1: Example expression

The tree, as a result of the syntactic analysis, would take the form represented in the
next diagram [8].

Note the operator precedence is honored in the same way as in regular mathematical
expressions.

+

* *

value(1) identifier(foo) value(5) identifier(bar)

Figure 3.3: Syntactic tree

There is also other information about the tokens in this expression, like types in case
of variables. It is necessary to check if they are used in the right context, like if functions
are used like functions and not variables or if defined operations are being used upon them.
This process is called semantic analysis [1].

13

+

* *

<int> 1 <float>foo <int> 5 <int>bar

Figure 3.4: Operator and operand relation in semantic analysis

If foo was not a float but for example a bool variable the semantic analysis of the
expression would fail because the operation of multiplication is not be defined between these
two types.

The result types of expressions, are deduced as well. In this case, in C language, the
whole expression’s result would take form of a float.

3.3.4 Code Generator

While the trees are being constructed and checked, the intermediate code is created as well.
The parser feeds the completed subtrees and their nodes into the code generator that

flattens the structure into a series of instructions, similar to the assembly language of a
computer processor [1].

Only one kind of resemblance of the previous code will be left - the links in code branches
for both conditional and unconditional jumps - this is required to make creating the links
in the resulting code easier.

In case the compiler does not use any kind of intermediate code, directly the target
language is being emitted in this section, making the code generator serve the purpose of a
back-end (described in Section 3.5), too.

3.4 Intermediate Code

As mentioned in the previous section, the intermediate code resembles assembly. The
difference between the two is still quite big though. Intermediate code contains a lot
more information, like variable names, information about liveness of the variables, type
information and much more.

Popular form of such output is called three address code. Every instruction in this
simple language takes a maximum of three operands, first marks where the result will be
stored and the other to are the source operands [1].

Consider the example we already used, defined in Listing 3.1.
The expression will be transformed to the following (simplified) series of instructions in

three address code:

mul temp1, 1, foo

mul temp2, 5, bar

add temp1, temp1, temp2

Listing 3.2: Example of a three address code

The instructions in the code can be limited to take only two operands. The first operand
will be both the result and the first argument in this case. This code is equivalent to the
previous, only printed in two-operand notation:

14

assign temp1, 1

mul temp1, foo

assign temp2, 5

mul temp2, bar

add temp1, temp2

Listing 3.3: Example of a two-operand intermediate code

Three address code as intermediate language is very common in compilers. This puts
them close to some processor architectures, such as ARM, that uses a form of three address
code as its assembly language. [12] In contrary, other architectures, like x86 [10], or,
PicoBlaze [5], that this thesis targets, use only two operands in their assembly.

3.4.1 The Intermediate Code Optimizer

Optimizing the code during the compilation is not absolutely vital for the whole process.
However, it is a welcome part, especially by the end-users of the tool.

The optimizer looks for patterns that can be reordered, changed for their faster equiv-
alents or completely removed, while maintaining the same functionality as before.

To demonstrate on the three address code from Listing 3.2, consider this instruction:

mul temp1, 1, foo

Multiplying anything with 1 is redundant. After removing this unnecessary operation
and changing the order to preserve the same result, the example would look like this:

mul temp1, 5, bar

add temp1, temp1, foo

Listing 3.4: Optimized three address code from Listing 3.2

One whole instruction was saved in this case.
There are many more techniques that can be applied on any amount of code. One of

the simplest ones is dead code and dead variable detection. When a variable is not used or
a conditional branch cannot be entered at any time when the program will be executed,
the optimizer can completely remove it [19].

3.5 Back-end

The target specific part of the compiler, generating the sought code, is the back-end.
For each instruction of the immediate code, it matches its equivalent, be it single in-

struction, or a whole function, in the target language.
Aside from this its main task is to allocate registers for each target instruction, as the

immediate code does not use any. Because the number of the registers is finite, it also needs
to handle management of other data storage forms, such as the stack [1].

More complex compilers are usually aiming to be retargetable - that means they are
equipped to support multiple back-ends for different compilation targets. There is a list of
some of them in Chapter 4.

Writing a compiler back-end is the goal of this thesis.

15

Chapter 4

Compiler Front-End Choice

As starting a new compiler from scratch would not be possible in the limited time frame
of a bachelor thesis, I had to choose an existing front-end and provide a corresponding
back-end part for the target platform.

This basically rules out all of the proprietary compilers and the selection limited to
those from the world of free and open source software. In the end, the choice consisted of
the following three.

4.1 GNU Compiler Collection

The GNU Compiler Collection, more known as GCC, was started as a simple C compiler in
1985 by Richard Stallman. It is now one of the most widely used compiler suites not only
in open source systems [7].

Due to its huge history and background, its code base is stable and mature but it also
is very hard to read due to historical reasons and the fact basically everything is wrapped
in several layers of macros.

The documentation of the inner functionality is hard to find and it is not very well
arranged. Because of its heritage, the structure does not seem very transparent.

Free Software Foundation and the GNU Project are holding governance over the devel-
opment and are prohibiting major changes to the architecture or code style which drives
many new developers away.1

4.2 Low Level Virtual Machine

LLVM is a modern project with a gaining popularity in past years for implementing the
features very fast and providing of interesting and useful tools, like static analyzer.

Its C and C++ front-end, Clang, is adding the latest features of the new language
standards and their drafts sooner than the competitors.

Compared to GCC, LLVM is a really young project. It was founded in 2005. The
codebase is dynamically changing, written in C++ with heavy use of templates and auto-
matically generated code [29].

Its development is sponsored by companies like Google, for example to provide ability
to run native applications in the browser (NaCl project, or especially its part PNaCl) or

1http://gcc.gnu.org/ml/gcc/2014-01/msg00176.html

16

http://gcc.gnu.org/ml/gcc/2014-01/msg00176.html

Apple, which utilizes the ecosystem in the official development toolkit provided for their
products [17] [30].

LLVM provides a very well documented intermediate representation of the compiled
source code. Its documentation is publicly visible on their wiki page, every necessary detail
is described and the community provides several easy ways to be approached.

4.2.1 Architecture

LLVM is strictly separated into front and back ends, divided by the LLVM intermediate
code that is heavily optimized and is executable directly in a virtual machine (hence the
name Low Level Virtual Machine)

4.3 Small Device C Compiler

SDCC is a simple (compared to the previous two) compiler aimed to be easily retargetable
and provide a quality background for creating compilers for 8bit processors [26].

It is not a very large project (especially when compared to GCC and LLVM) and it uses
parts (for example, the preprocessor) of GCC.

It optimizes the compiled source code with focusing on issues appearing on small devices.
The intermediate code is not documented very well (there is a list of all the iCodes on

the project’s wiki) but is simple enough to be understandable.

17

Chapter 5

Existing Solutions

The idea of writing C compilers for PicoBlaze is not new. There has been a few projects
implementing C compilers directly, or compilers of languages based on C. The most exposed
ones are covered in this chapter.

5.1 PCComp

PicoBlaze C Compiler, the project of Francesco Poderico, has its own page on SourceForge1,
yet there are no files to download or source code in the repository and the only relevant
activity visible is a question where to actually download the compiler.

I managed to find a Windows binary in version 1.8.4 in a web archive and a user manual
describing the compiler’s features, both created in 2005 or 2006.

However, the limitations of the compiler are vast. It generates stack-based code. This
is unfortunate because PicoBlaze lacks any stack [25].

5.1.1 Features

The compiler is not strictly following the C standard and implements only its small subset.
The supported cores are PicoBlaze, PicoBlaze-2 and PicoBlaze-3.
Only the support for byte and word (1 and 2 bytes) types was implemented.
One-dimensional arrays without any pointer arithmetic are supported by the compiler.

5.1.2 Limitations

Type conversions are missing, as are variable modifiers (e.g. volatile).
The compiler does not support any kind of resulting code optimization, except dead

branch detection.
The compiled assembly is often buggy or even nonfunctional and the probability of

getting broken code is increasing with the complexity of the input source code and the
arithmetic expressions in particular.

5.2 PBCC by Bohumil Nováček

This bachelor thesis was written on Faculty of Electrical Engineering of Czech Technical
University in Prague in 2008 when only PCComp (Section 5.1) existed.

1http://sourceforge.net/projects/pccomp/

18

http://sourceforge.net/projects/pccomp/

A compiler was written as a goal of the thesis, resulting in a small application able to
compile a limited subset of the C programming language [20].

Also, the source code is not to be found anywhere on the Internet, only the text part
of the thesis was made public.

5.2.1 Features

The compiler only allows the user to compile a small subset of the actual ISO/IEC 9899:1999
standard.

Processor support is limited to PicoBlaze-3.
The types supported are void, char and int, again sized only 1 and 2 bytes.
Only one-dimensional arrays are available to the user.
Despite the simplicity of the compiler, there are some optimization methods imple-

mented. For example, constant expressions are replaced by values directly.

5.2.2 Limitations

There is no support for any user-defined type, whether it is only an enumeration, a typedef
type or a complex type (struct or union). This effectively limits the user to use only the
basic types that are in this case integers sized one and two bytes.

There is no expression conditions, strings and multidimensional arrays.
These limitations are caused by the fact the author decided to write the compiler from

scratch without use of any framework or front-end. The time needed to finish a complete
C compiler is far beyond the time-frame of a bachelor thesis.

5.3 PBCC by Jakub Horník

PicoBlaze C Compiler is a project sponsored by Virtuální laboratoř aplikovaných mikropro-
cesorů realized on the Faculty of Information Technology, Brno University of Technology.

It was written in years 2010 - 2011 by Jakub Horník as a part of his master’s thesis and
is now maintained by Zbyněk Křivka, supervisor of this thesis [15].

The compiler is based on the Small Device C Compiler (SDCC) modified to provide
support for the processor so it offers a subset of features of SDCC in version 3.0 [9].

5.3.1 Features

There is support for adding further optimization methods provided by SDCC, additionally
to its own optimization procedures that are ran during the compilation process on the
intermediate code.

Data types supported are integers large from 1 to 4 bytes, there is also no problem with
converting them.

Use of arrays (even multidimensional) and pointers is implemented, including their use
as function parameters.

PicoBlaze-6 was released only a few months after the inception of the thesis that was
targeting the previous one, PicoBlaze-3. This topic is discussed in Chapter 2. The main
focus of the thesis was the older iteration of the processor, therefore function pointers and
all other new features were left unimplemented.

19

5.3.2 Limitations

There is a list of known problems and limits list in the official documentation. To name
a few, there is no support for getting or setting values on a memory address and limited
support for global variables and interrupt vectors.

The main reason to rewrite the compiler from scratch is to avoid carrying all the legacy
instructions and features and to focus on the cleanest possible implementation of the current
revision of the processor.

The author also suggests allocating the registers by coloring them and using the infor-
mation for better results when memory access frequency is taken in question.

Unclear code copied over from other ports that is not very comprehensible is the reason
why I wrote the whole program again while using just a few parts from the original code.

20

Chapter 6

Implementation Design

In this chapter, the technical details of the project are discussed.
The port itself is written in C++ with a layer wrapping the C internals of SDCC.

6.1 New Port Addition

As this process is not documented anywhere in the SDCC documentation and doing it
properly would require deep and good understanding of the GNU autotools toolchain, the
following procedure was used to add the new port to the SDCC source:

1. Create a port source directory in src/, in this case, I was calling it pblaze.

2. Add the basic source files in the port directory, for example main.c and main.h.
main.c has to contain an instance of PORT structure containing information about the
port specifications and pointers to functions that will be called during the compilation.

3. A new (unique) port ID needs to be inserted into src/port.h:

#define TARGET ID PBLAZE 16

4. And create an extern reference to the PORT instance from src/pblaze/main.c, for
example:

#if !OPT_DISABLE_PBLAZE

extern PORT pblaze_port;

#endif

5. In src/SDCCmain.c, insert a reference to the structure defined in src/pblaze/main.c.

6.1.1 Automation of new port addition

These tasks are automated in the included glue.sh script. When it is executed in Bash1

with the SDCC HOME environment variable set to point to the directory with both PBCC
and SDCC source code, it completes all the necessary tasks.

1Bourne Again Shell, http://www.gnu.org/software/bash/

21

http://www.gnu.org/software/bash/

6.2 Compilation

After the port was added, SDCC can be compiled. The steps to achieve successful compi-
lation are:

1. autoconf creates a configure script to configure the components and compiler op-
tions of the final binary

2. ./configure is a script that compiles a Makefile for the compilation itself. It is
possible, for example, to modify the optimization of the compiler binary or disable
compilation of ports of architectures we will not need.

3. make is the compilation script itself. You can speed the whole process by using the
-jX argument specifying that X compiler processes should run at the same time.

6.3 SDCC Internals Wrapper

Using pure C library calls and macros in a C++ project would be a waste of potential of
the language, therefore the project is built upon a wrapper library for the SDCC internals
instead of using them directly.

The whole wrapper library is included in the wrap modules.

6.3.1 Approach

Every SDCC structure that is vital for the process is wrapped in its own class. These
classes are Set, EbbIndex, EbBlock, SymLink, Symbol, Value, Operand and ICode. Their
SDCC counterparts are named the same, except they have lower-case initials.

To provide the ability of implicit up-cast, the classes are directly inheriting the structures
themselves.

Each of the classes has its methods derived from the functions and macros that are
operating over them in the SDCC internal library. The methods are partially hand-written
and partially generated from the definitions in the header files.

Aside from the methods, nothing was added to the classes. None of the methods is
virtual. That means the memory footprint and binary compatibility with original structures
is kept.

6.4 Utilities

The util module contains code for making the code in other parts of the projects easier
to read and understand.

6.4.1 Emitter

Every target code output in the C++ part of the port is handled using this class.
It implements a std::ostream-like2 (left shift operator overloading) API to be easy to

spot in the code.

2Output stream class in the C++ Standard Template Library

22

There is one static instance of the class that is used to output from all other modules.
The constructor was left open in case another separate output was needed. This option
was left unused so far though.

The class also provides a static member variable i for iterating when an instruction
is being output. This allows the Instruction class that is being handled to be able to
check the byte position in the multi-byte operands. This makes changing instruction forms
(for example between ADD and ADDCY) possible. It is also used in the overloaded left shift
operator for operands, to get their current needed byte.

6.4.2 Function

Function is a class containing public static members only. It provides information about
the current function the compiler is processing such as parameter count and their sizes.

Its main purpose is to compute which function parameters will need to be stored on the
stack and which parameters will be passed through registers.

The processing method is called every time the FUNCTION iCode is reached.

6.5 Register and Memory management

The code providing the functionality described in Section 3.4 is located in the ralloc
module.

The entry point is the Allocator class, precisely its static method assignRegisters
that takes the basic block index as its parameter.

6.5.1 Type support

PicoBlaze-6 supports one byte integer operations only, some with possibility to reuse the
carry bit (see Appendix C for the list of available instructions).

Implementing floating point operations on such a simple device is neither feasible, nor
actually usable. Emulating hardware support for any standard defining the format would
result in huge memory use and each operation would take huge amounts of processor power.

Advised usage in this case is to connect a hardware FP circuit over the I/O pins.

char short int long long long void* void(*)()

1 2 2 4 4 1 2

Table 6.1: Basic types supported by the compiler

6.5.2 Register Allocation

The register management is handled in the Register class. Two sets of Register instances
are aggregated each in one Bank instance to provide the ability to switch the banks and
pass operands between them.

When there is no free register available, the LRU3 algorithm is applied to find the one
that is to be freed and stored in the scratchpad memory until the next use.

3Least Recently Used

23

6.5.3 Stack Management

The stack is growing up, starting at the zero address. All stores and operations on both
function entry and leave are processed in the Stack class which implements all necessary
moves on the stack pointer (SP).

Each of the stored variables has an instance of StackCell class assigned, containing
the information about the offset from the pointer and the start of the variable.

All variables are stored in big endian order, consecutively.
The stack pointer is stored in the sF register, in both banks. On bank switch, it is

propagated to contain the changes done to it.

6.5.4 Static Memory

Static memory, used for storage of global variables, is implemented in the Memory class.
In most aspects, including the implemented interface, it is similar to the Stack (see

Section 6.5.3). The most important difference is no necessity to do anything on function
calls and different implementation using only position in memory.

It grows in the opposite direction to the stack, from the highest possible address in the
memory - address 0xFF.

As in the case of Stack, the variables are stored consecutively in big endian order.

6.6 Code Generator

To avoid as much code duplication as possible, every instruction is being emitted using iter-
ation over the Emitter::i variable in the manner displayed in the following code snippet.

for (Emitter::i = 0; Emitter::i < left->getType()->getSize(); Emitter::i++)

emit << I::Xor(result, right);

Listing 6.1: Emitter and Instruction example use

All instruction classes inherit from the generic I class that also acts as their parent and
enclosing class both. It defines the toString virtual method that the children implement.
This method is used in the overloaded left shift operator of Emitter (see Section 6.4.1) and
I to obtain the whole string representation of the operation and write it into the output
file.

6.6.1 Calling Conventions

The calling conventions were designed to utilize as much of the variables as possible because
of the limited capabilities of the processor.

Caller saves strategy is implemented by the compiler. That means the registers are
saved to the function stack by the caller, not the callee function. Variable liveness is
considered, dead variables are omitted.

The arguments are stored consecutively in little-endian order4 in the registers.
By default, the first 8 registers are used for passing the arguments directly and the rest

is stored on the stack of the callee. Their count can be modified by the compiler command
line argument --argregs=N, with the maximum value of N being 13.

4The least significant byte is stored first, the most significant one last

24

For example, consider the following function:

int function(int l, long r);

Listing 6.2: Called function prototype

Its initial register utilization would be as follows:

s0 s1 s2 s3 s4 s5 s6 s7

l[0] l[1] r[0] r[1] r[2] r[3] free free

s8 s9 sA sB sC sD sE sF

free free free free free free free SP

Listing 6.3: Register bank state when function from Listing 6.2 is called

The returned value is stored in the first registers in the same way as the parameters
were stored. Little-endian order limits the register use in the caller to the bare minimum.
Returning structure values is not supported, pointer use is necessarry in this case.

After the function has returned, caller (according to the caller saves strategy) restores
its variables back into registers.

6.6.2 Function Pointers

As mentioned in new feature overview (this particular change is discussed in Section 2.4),
the processor now supports jumping to labels and calling functions that have their address
loaded on run-time.

To make use of the new specification as much as possible, the compiler supports calling
function pointers using the CALL@ instruction.

Prior to the instruction invocation itself, the function pointer is stored in the sD and sE
registers. As the address of a function is larger than the size of one register, it has to be
stored in two of them - sD contains the upper 4 bits of the address and sE the lower 8 bits.

6.6.3 Register Bank Utilization

From the perspective of register banks, there are two types of functions (as there are two
banks).

The first type is either function main or a state when the program has not entered main
yet - on initialization of global and static variables. This code has access only to variables
stored in registers in Bank A.

The other types are all other functions. These have access to registers in Bank B.
The bank selection is handled from the code of the first type. This makes the other

functions able to call any other function including itself. Any kind of recursion including
main is not supported though.

Before and after the call, bank has to be switched to the appropriate one. Also, if the
function returned any value, it has to be transferred from the other bank to the current
one before the bank is switched.

In effect, this makes having most of the program logic in the main function, as it does
not have to store most of its registers before calling a function, thus reducing the number
of necessary FETCH and STORE instructions to move the local variables in the stack memory.

25

6.6.4 Assignment Generation

There are different cases we have to handle on assignment in the compiler.

Function Call Parameters

The compiler detects when the assignment is done in a function call. This means the
available operand registers are already full, so the following arguments need to be stored
on stack.

These assignments are done preemptively, the variables go on stack directly. The stack
pointer in the function will handle these as if they were saved there in the function body
directly.

Dereferenced Pointer Assignment

The PicoBlaze-6 has only 256 bytes of scratchpad RAM (see Section 2.2). This means the
pointers to variables take only one byte of memory.

Assignment to these variables is done using the STORE instruction. However, STORE
cannot take a literal as its source data argument. Therefore, a temporary operand is
allocated and used for temporary storage of the data being stored.

Temporary Variable on the Right Side

This case occurs when a temporary variable with a live scope that does not reach beyond
the sequence number of the iCode containing this assignment. This usually occurs on an
immediate computation in an complex expression.

Instead of moving the variable, the registers are only reassigned to the result operand.

Other Cases

The other cases cover assignments with regular variables and literal values as operands.
The temporary variables with longer life scope are included, too.

There is nothing special on this case - the values are moved using the LOAD instruction.
A FETCH is used first if the variable has been saved to memory.

6.6.5 Stack and Variable Storage

Local variables of the program are initially created in the registers. Only once there is not
enough room for any other variable needed for an operation in future, it is freed from the
register and stored (spilled) on the stack.

Stack pointer is stored only in register sF only in Bank B. Stack pointer is not tracked
in the main function. As does register bank selection, this also makes recursive calls to
main impossible.

6.6.6 Arithmetic Operations

Only basic arithmetic supported by the processor is implemented. More specifically, there
is no basic support for neither multiplication nor division of the variables.

The multiplication functions can be extracted from the previous PBCC (see Section 5.3)
and inserted as inline assembly in a separate function, according to the calling conventions.

26

The other arithmetic and logic operations of the C language are implemented, with
focus on utilizing the new and improved instructions of PicoBlaze-6 to save computational
cycles.

6.7 Compiled Assembly Properties

The compiler is producing commented assembly to be given to an assembler which then
in turn produces its various binary equivalents or other formats, for example suitable for
simulation.

In this section, the vital properties, required for getting grasp of the code (for its further
modification by hand or integrating hand tuned assembly code, for example), are discussed.

6.7.1 Comments in the Code

To improve the readability and comprehensiveness of the code, there are explanatory com-
ments included in the compiled assembly.

Instruction Comments

Lines of most of the instructions contain a short comment explaining the instruction and
its operands. This covers moves and arithmetic operations especially.

To demonstrate, when the following code snippet is compiled:

int baz = 42 + foo - bar;

Listing 6.4: Example assignment

Then, assuming the variable was not loaded in the registers beforehand and the other
variables were already used (foo is in s0 and s1 and bar is in s2 and s3), the resulting
assembly will take the following form:

load s4, s0 ; iTemp0[0]=foo[0]

load s5, s1 ; iTemp0[1]=foo[0]

add s4, 0x2a ; iTemp0[0]+=42[0]

addcy s5, 0x0 ; iTemp0[1]+=42[1]

; iTemp1=iTemp0

sub s4, s2 ; iTemp1[0]-=bar[0]

subcy s5, s3 ; iTemp1[1]-=bar[1]

; baz=iTemp1

Listing 6.5: Assembly output compiled from code in Listing 6.4

Each byte in the operation is covered by the regular C-style array notation.
Moves on temporary variables to next variables in a more complex expressions are

optimized out, too. They are marked in the assembly to point out that another variable
now resides in the particular registers.

27

Function Comments

Every function is prepended with a comment that states its name with a list of its argu-
ments. Every argument’s name is written in the list along with the registers it is stored in,
in case it is not stored on stack directly.

Demonstrated on an example:

char func(long arg1, int arg2, char arg3);

Listing 6.6: Example function to be compiled

; Function func, arguments:

[arg1:{s0,s1,s2,s3,},arg2:{s4,s5,},arg3:{s6,},]

Listing 6.7: Explanatory assembly comment before the label generated for Listing 6.6

28

Chapter 7

Port Features

7.1 Code Clarity

The extensibility and readability of this port is not comparable to any other port. The
code generation itself takes only about 5 lines of code for each ICode, compared to tens to
hundreds in PBCCv2(see Section 5.3).

Providing a C++ API also helps by providing more syntax sugar for anybody who
wants to further modify the compiler. Using class methods instead of macros and functions
also adds the possibility to use an IDE1 with method suggestion.

7.2 PicoBlaze-6 Support

There is no other C compiler designed to produce code exclusively for the newest revision
of the PicoBlaze processor.

The most modern ones support only PicoBlaze-3 so they miss the opportunity to save
not only the program space (meaning less CPU cycles for the same program) but also the
scratchpad memory and registers (which means the program will utilize less CPU cycles
again).

One of the cases when this is true is multi-byte variable comparison - equality check had
to be done using many jumps and storing intermediate results, the new COMPARECY reuses
the carry and zero values that are already in the flags.

7.3 Built-in Functions

The necessity to communicate with connected peripherals is satisfied by using the char
port in(char port) and void port out(char port, char value) built-in functions.

They are compiled into OUTPUT, OUTPUTK and INPUT instructions, respectively. OUTPUTK
is used when it is possible. That is, when both operands are constant and the port is in
the range 0x0 - 0xF.

As they are not really functions, when compiled to the assembly, there is no need to use
the registers designated for function calling. The first available registers are used instead
of s0 and s1 (as specified in Section 6.6.1).

1Integrated Development Environment

29

Chapter 8

Testing and Evaluation

It is necessary to evaluate the overall success of a compiler project by testing it and com-
paring it to the alternatives. In this section, the testing and comparison methods are
described.

8.1 Testing

Several example source files were compiled and ran in a simulator to prove the resulting
assembly corresponds to the input source code.

8.1.1 Tools and the Testing Process

PBlazSIM (described in Section 2.7.1) was chosen to simulate the resulting code due to its
simplicity, maturity and liveliness of the upstream developers.

Obtaining the Simulation Result

The simplicity of PBlazSIM cleared the way for modifying of the (small) codebase and
including it as a part of the test-suite in this project.

The only modification done is as follows: When the simulation ends because of an error
or reaches the correct final state of the simulation (this happens once it the BREAK internal
opcode is processed), it prints the state of the processor to the standard output.

The output is formatted for easy parsing and use in the attached test suite.

Assembler

The input to PBlazSIM are rich assembly language files enhanced with binary representation
of the code it is about to simulate. This format is compiled using PBlazASM (see Section
2.6.1) using the l flag and results in a file with .LST extension.

There were no special modifications required to get the needed results except the ones
mentioned in Section 2.6.1.

30

8.1.2 The Framework

All scripts are ran recursively for each .c and .tst file in the test directory in the root of
the code tree.

Every .c file has to have its .tst counter-part with the same base name to be considered
a valid test.

It tests the memory and the registers for presence of any value given (with the exception
of omitted zero values, considering major part of the memory will be free in most cases),
be it on a specifically given position or anywhere.

It is also possible to test ZERO and CARRY flags of the processor.

Test File Format

The .tst file format requires every such file to include declaration of every of the following
variables:

stored somewhere Array, bounds undefined.
Each value contained in it is looked for in the memory and
register dump. The value can be contained anywhere.

stored there Array of 256 values.
If there is a value X on position Y, the memory has to contain
value X on position Y too.

bankA Array of 16 values.
Contains a value for each of the registers in the bank.

bankB Analogic to bankA, for bank B.

The variables are declared and defined in pseudo-C style (without the type specification),
that means: enumerations take a brace-enclosed list as their initializer and Boolean values
can be either true or false.

Every definition has to be ended with a semicolon. Double definitions will result in a
failing test.

For example, the following declaration will check all memory locations to contain the
values 1, 2 and 3:

stored somewhere = {1, 002, 0x3};

And the following declaration says register s2 has to contain value 0xFF - other registers
are omitted (because they are equal to zero).

bankA = {0, 0, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

31

8.1.3 Test Cases

This is the list of the included and applied test cases that were also ran and checked in the
simulator.

null Does not compute anything, tests if the whole stack works
basic Basic variable assignment

arithmetics Addition and subtraction
array Array (pointer) data assignment and reading

bitoper Binary operations on the variables
cond simple Simple condition evaluation
cond complex Complicated condition and cycle evaluation
func simple Basic function calling

func recursive Recursive function calling
func ptr Function pointer calling - functionally equivalent to func recursive
struct Structure operations

The code of the tests is completely synthetic, with no real world purpose. Some variables
had to be defined as volatile, to avoid their optimization which would remove some of
them completely, defeating the purpose of testing the mentioned features.

8.2 Evaluation

Due to the fact neither the source code of PBCC by Bohumil Nováček nor PCComp is
publicly available, also considering the simplicity of the other compilers, only the previous
PBCC projekt by Jakub Horník was used in comparison (see Chapter 5 for more details).

The same test cases were used as in the functionality testing (described in Section 8.1).
The tests were designed to be compileable in all other compilers, except the cases when

an unavailable feature is being tested.
The quality metric (in case the program compiles and is valid) was chosen to be the

count of used instructions.

test case PBCCv3 (this project) PBCCv2 (Horník)
basic X(23) X(62)

arithmetics X(19) X(26)
array X(70) ×(internal error)

bitoper X(29) X(49)
cond_simple X(56) X(87)
cond_complex X(33) X(53)
func_simple X(35) X(51)
func_recurs X(44) ×(infinite recursion)
func_ptr X(51) ×(no support)
struct X(55) X(52)

X(instruction count) for succeeded cases, ×(reason) for failed cases

Table 8.1: Test results

PBCCv3 gives shorter code for most test cases, except the cases when PBCCv2 fails.
In PBCCv2, cases array and func ptr failed in the compilation phase and no output

32

was produced. The test case func recurs compiled fine. However, when simulated, the
processor got stuck in an infinite call loop and stopped eventually.

The only case when PBCCv2 gives shorter code is for the struct test case. This is
caused by the slight overhead needed for calling a function between register banks (explained
in Section 6.6.3).

33

Chapter 9

Conclusion

The back-end project was started from scratch except for some output wrapper code, there-
fore the expected functionality was not a complete C compiler. The implemented subset is
able to compile a wide range of test applications.

Considering the produced code quality, the compiler is better, compared to the alterna-
tives. On the applied test set, the produced code is on average 33% shorter than the code
compiled with the previous PBCC. It is also more understandable by the extensive usage
of generated explanatory comments.

If taken as an exercise and exploration of the limits of the processor, the project suc-
ceeded, too. Function pointers are really usable and testing applications utilizing them
work correctly. There is also basic support for pointer assignment which is then utilized in
array and structure usage.

9.1 Future Development

The compiler was tested on synthetic cases only. Real world complex applications are
needed to be tested with the compiler to have potential issues or inefficiencies fixed.

Some features lack at this moment, too, such as an implementation of integer division
and multiplication or interrupt table generation.

The back-end was also designed to be partially portable to other front-ends. It could be
used with LLVM, for example, to achieve the ability to compile programs written in other
languages. too.

34

Bibliography

[1] Alfred V Aho et al. Compilers: principles, techniques, & tools. Vol. 1009.
ISBN 0-321-48681-1. Pearson/Addison Wesley, 2007.

[2] American National Standards Institute. ANSI/ISO/IEC 9899-1999: Programming
Languages — C. pub-ANSI, 1999. url: http://webstore.ansi.org/
ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999.

[3] Ken Chapman. PicoBlaze 8-bit Microcontroller for CPLD Devices. Xilinx Ltd.
2003. url: http:
//www.xilinx.com/support/documentation/application_notes/xapp387.pdf.

[4] Ken Chapman. PicoBlaze 8-bit Microcontroller for Virtex-II Series Devices. Xilinx
Ltd. 2003. url: http:
//www.xilinx.com/support/documentation/application_notes/xapp627.pdf.

[5] Ken Chapman. PicoBlaze for Spartan-6, Virtex-6 and 7-Series (KCPSM6). Xilinx
Ltd. 2014. url: http://www.xilinx.com/ipcenter/processor_central/
picoblaze/member/KCPSM6_Release8_31March14.zip.

[6] Ken Chapman. PicoBlaze KCPSM3: 8-bit Micro Controller for Spartan-3, Virtex-II
and Virtex-IIPRO. Xilinx Ltd. 2003. url: http://www.xilinx.com/ipcenter/
processor_central/picoblaze/member/KCPSM3.zip.

[7] GCC, the GNU Compiler Collection. url: http://gcc.gnu.org.

[8] Allen I Holub. Compiler design in C. ISBN 0-13-155045-4. Prentice Hall, 1990.

[9] Jakub Horník. “Compiler Back-End of Subset of Language C for 8-Bit Processor”.
MA thesis. Brno University of Technology, 2011.

[10] Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation.
url: http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

[11] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C.
pub-ISO, 2011. url: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=57853.

[12] Peter Knaggs and Stephen Welsh. ARM: Assembly Language Programming.
Bournemouth University, 2004. url: http:
//www.eng.auburn.edu/~nelson/courses/elec5260_6260/ARM_AssyLang.pdf.

[13] Pablo Bleyer Kocik. PacoBlaze. 2007. url: http://bleyer.org/pacoblaze/.

[14] Zbyněk Křivka. Pbsim Github Repository. url:
https://github.com/krivka/pbsim.

35

http://webstore.ansi.org/ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999
http://webstore.ansi.org/ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999
http://www.xilinx.com/support/documentation/application_notes/xapp387.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp387.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp627.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp627.pdf
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/KCPSM6_Release8_31March14.zip
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/KCPSM6_Release8_31March14.zip
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/KCPSM3.zip
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/KCPSM3.zip
http://gcc.gnu.org
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/ARM_AssyLang.pdf
http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/ARM_AssyLang.pdf
http://bleyer.org/pacoblaze/
https://github.com/krivka/pbsim

[15] Zbyněk Křivka. PicoBlaze C Compiler. url:
http://www.fit.vutbr.cz/research/view_product.php.en?id=126¬itle=1.

[16] Zbyněk Křivka and Jiří Šimek. PicoBlaze Instruction Simulator. 2013. url:
http://www.fit.vutbr.cz/research/prod/index.php.en?id=309.

[17] LLVM Compiler Overview. url:
https://developer.apple.com/library/iOs/documentation/CompilerTools/

Conceptual/LLVMCompilerOverview/index.html.

[18] Uwe Meyer-Baese. Digital Signal Processing with Field Programmable Gate Arrays.
ISBN 987-3-540-72612-8. Springer, 2007.

[19] Robert Morgan. Building an Optimizing Compiler. ISBN 1-55558-179-X. Elsevier
Science, 1998.

[20] Bohumil Nováček. “C Compiler for PicoBlaze Microcontrollers”. BA thesis. Czech
Technical University in Prague, 2008. url:
https://dip.felk.cvut.cz/browse/pdfcache/xnovaceb_2008bach.pdf.

[21] pBlazASM. url: http://www.mediatronix.com/pages/pBlazASM.

[22] pBlazASM Google Code Repository. url: http://code.google.com/p/pblazasm/.

[23] pBlazSIM. url: http://www.mediatronix.com/pages/pBlazSIM.

[24] PicoBlaze 8-bit Microcontroller. url:
http://www.xilinx.com/products/intellectual-property/picoblaze.htm.

[25] Francesco Poderico. Picoblaze C Compiler: User’s Manual 1.1. 2005. url:
http://www.ux.uis.no/~karlsk/ELE610/dok/pccomp_manual.pdf.

[26] SDCC - Small Device C Compiler. url: http://sdcc.sourceforge.net.

[27] Spartan-3E FPGA Starter Kit Board Design Examples. url: http:
//www.xilinx.com/products/boards/s3estarter/reference_designs.htm.

[28] The C Preprocessor. 2014. url: http://gcc.gnu.org/onlinedocs/cpp/.

[29] The LLVM Compiler Infrastructure. url: http://llvm.org/.

[30] Welcome to Native Client. url: https://developer.chrome.com/native-client.

36

http://www.fit.vutbr.cz/research/view_product.php.en?id=126¬itle=1
http://www.fit.vutbr.cz/research/prod/index.php.en?id=309
https://developer.apple.com/library/iOs/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html
https://developer.apple.com/library/iOs/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html
https://dip.felk.cvut.cz/browse/pdfcache/xnovaceb_2008bach.pdf
http://www.mediatronix.com/pages/pBlazASM
http://code.google.com/p/pblazasm/
http://www.mediatronix.com/pages/pBlazSIM
http://www.xilinx.com/products/intellectual-property/picoblaze.htm
http://www.ux.uis.no/~karlsk/ELE610/dok/pccomp_manual.pdf
http://sdcc.sourceforge.net
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm
http://gcc.gnu.org/onlinedocs/cpp/
http://llvm.org/
https://developer.chrome.com/native-client

Appendix A

CD Contents

The attached CD contains the source code, with SDCC included, the tests and installation
and compilation scripts.

37

Appendix B

Installation and Usage

SDCC lists the following dependencies: Boost, Yacc, Bison.
To compile the pblaze port, you have to use a C++ compiler that supports the ISO/IEC

14882:2011 (C++11) standard.
The port can be built against any recent snapshot of SDCC and version 3.4.0. It is

possible to compile it against SDCC 3.3.0, too but on some machines, configure does not
generate the required Makefile. The CD includes version 3.3.0 with the Makefile already
generated.

If you compile the project from new source directly, please follow the steps listed in
Section 6.1 now.

To run the compiled binary (especially on merlin.fit.vutbr.cz), you need to link
against the correct libstdc++ on runtime. To do so on merlin, add the following path to
your LD LIBRARY PATH:

/pub/tmp/gcc/gcc-4.9.0/.x86_64-linux/x86_64-linux/libstdc++-v3/src/.libs

B.1 Usage

To use the pblaze port, specify the -mpblaze command line option to the sdcc binary.
To change the size of the function arguments to be passed via registers, use the --argreg=N

option, specifying the count of the registers.

38

Appendix C

PicoBlaze-6 Instruction Set

r - register, p - address in register, cX - constant, size, l - label
LOAD r r Moves contents of registers
LOAD r c Moves contents of registers
STAR r r Moves contents of registers between banks
AND r r Binary and
AND r c Binary and
OR r r Binary or
OR r c Binary or
XOR r r Binary xor
XOR r c Binary xor
ADD r r Addition
ADD r c Addition

ADDCY r r Addition, reuses carry
ADDCY r c Addition, reuses carry
SUB r r Subtraction
SUB r c Subtraction

SUBCY r r Subtraction, reuses carry
SUBCY r c Subtraction, reuses carry
TEST r r Binary and without result storage
TEST r c Binary and without result storage

TESTCY r r Binary and without result storage, reuses carry
TESTCY r c Binary and without result storage, reuses carry
COMPARE r r Operand comparison
COMPARE r c Operand comparison

COMPARECY r r Operand comparison, reuses carry
COMPARECY r c Operand comparison, reuses carry

SL0 r Shift left, fill 0
SL1 r Shift left, fill 1
SLX r Shift left, fill LSB
SLA r Shift left, fill carry
RL r Rotate left

39

r - register, p - address in register, cX - constant, size, l - label
SR0 r Shift right, fill 0
SR1 r Shift right, fill 1
SRX r Shift right, fill LSB
SRA r Shift right, fill carry
RR r Rotate right

REGBANK A Select bank A
REGBANK B Select bank B
INPUT r p Read data from a port
INPUT r c8 Read data from a port
OUTPUT r p Write data to a port
OUTPUT r c8 Write data to a port
OUTPUTK r p Write constant data to a specific port
STORE r p Write data to scratchpad memory
STORE r c8 Write data to scratchpad memory
FETCH r p Read data from scratchpad memory
FETCH r c8 Read data from scratchpad memory

DISABLE INTERRUPT Disable interrupt
ENABLE INTERRUPT Enable interrupt
RETURNI DISABLE Disable return from interrupt handler
RETURNI ENABLE Enable return from interrupt handler

JUMP l Jump to label
JUMP Z l Jump to label if zero
JUMP NZ l Jump to label if not zero
JUMP C l Jump to label if carry
JUMP NC l Jump to label if not carry
JUMP@ p p Jump to label pointer
CALL l Call label
CALL Z l Call label if zero
CALL NZ l Call label if not zero
CALL C l Call label if carry
CALL NC l Call label if not carry
CALL@ p p Call label pointer
RETURN Return from call
RETURN Z Return if zero
RETURN NZ Return if not zero
RETURN C Return if carry
RETURN NC Return if not carry

LOAD&RETURN r c Load a constant and return
HWBUILD r Get harware information

40

	Introduction
	The C Programming Language
	The Previous Project
	Structure of the Document

	The PicoBlaze Processor
	History
	PicoBlaze
	PicoBlaze-2
	PicoBlaze-3
	PicoBlaze-6

	Main Features
	Practical usage
	New features and properties of PicoBlaze-6
	PacoBlaze
	PicoBlaze Assemblers
	pBlazASM

	PicoBlaze Simulators
	pBlazSIM
	PBSim

	Programming language compiler
	Compiler Structure
	Preprocessor
	Front-end
	Lexical analysis
	Symbol Table
	Parser
	Code Generator

	Intermediate Code
	The Intermediate Code Optimizer

	Back-end

	Compiler Front-End Choice
	GNU Compiler Collection
	Low Level Virtual Machine
	Architecture

	Small Device C Compiler

	Existing Solutions
	PCComp
	Features
	Limitations

	PBCC by Bohumil Nováček
	Features
	Limitations

	PBCC by Jakub Horník
	Features
	Limitations

	Implementation Design
	New Port Addition
	Automation of new port addition

	Compilation
	SDCC Internals Wrapper
	Approach

	Utilities
	Emitter
	Function

	Register and Memory management
	Type support
	Register Allocation
	Stack Management
	Static Memory

	Code Generator
	Calling Conventions
	Function Pointers
	Register Bank Utilization
	Assignment Generation
	Stack and Variable Storage
	Arithmetic Operations

	Compiled Assembly Properties
	Comments in the Code

	Port Features
	Code Clarity
	PicoBlaze-6 Support
	Built-in Functions

	Testing and Evaluation
	Testing
	Tools and the Testing Process
	The Framework
	Test Cases

	Evaluation

	Conclusion
	Future Development

	CD Contents
	Installation and Usage
	Usage

	PicoBlaze-6 Instruction Set

