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A b s t r a k t 
Tato práce řeší konstrukci zadní části kompilátoru jazyka C pro soft-core procesor PicoBlaze-
6 od firmy Xil inx. K řešení tohoto problému bylo zvoleno užití projektu Small Device C 
Compiler coby přední části překladače. Vytvořené řešení poskytuje podporu volání ukaza­
telů na funkce a užití struktur. Hlavním přínosem této práce je přenesení pokročilých 
konstrukcí jazyka C na procesor PicoBlaze. 

Abstrac t 
The goal of this thesis is to construct a C compiler back-end for the soft-core processor 
PicoBlaze-6 by Xil inx, Inc. The construction itself was done by use of the Small Device C 
Compiler as the front-end. The resulting application offers the ability to compile function 
pointer calling and structure usage. The main benefit of this thesis is bringing some of 
advanced C language constructs to the PicoBlaze processor. 
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Rozšířený abstrakt 

Tato práce se zabývá konstrukcí zadní části překladače jazyka C pro procesor PicoBlaze-
6 od firmy Xilinx. 

PicoBlaze je soft-core procesor (šířený jako design ve V H D L a Verilogu) určený pro 
vložení do F P G A čipů řady Spartan a Virtex. Jeho nově vydaná verze, 6, přidává několik 
nových instrukcí, upravuje chování řady stávajících a především rozšiřuje velikost pro­
gramové i operační paměti spouštěných programů. 

Pro vytvoření kompletního překladače je použit open-source framework Small Device C 
Compiler, který tak slouží jako přední část. V práci popsaná zadní část pak generuje jazyk 
symbolických instrukcí v notaci určené pro pBlazASM od firmy Mediatronix. 

Výsledná práce se pak věnuje především implementaci pokročilých konstrukcí jazyka, 
které nebyly dostupné v předchozích kompilátorech. 

Jmenovitě, tou nejpodstatnější vlastností jsou ukazatele na funkce, následuje podpora 
komplexních datových typů (například struktur. 

Z ostatních vlastností kompilátor umožňuje využívat vstupní i výstupní porty procesoru 
pro komunikaci s periferiemi. Implementované je i volání funkcí, včetně rekurze. Podpora 
aritmetických operací je základní, tedy shodná s jejich podporou na straně procesoru -
podporovány jsou všechny operace kromě násobení a dělení. Nicméně, kód pro násobení a 
dělení na tomto procesoru je možné převzít z předchozí diplomové práce na toto téma. 

Vytvořený program byl otestovaný sadou krátkých netriviálních příkladů - programů, 
které demonstrují požadovanou funkcionalitu. 
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Chapter 1 

Introduction 

Subject of this thesis project is constructing a C programming language compiler back-end 
for the soft-core processor PicoBlaze-6. The 8-bit processor is quite simple but after the 
recent update, it provides an interesting set of features to use in C programs. 

However, Currently, there is no other C compiler designed especially for the PicoBlaze-6 
processor, therefore a new compiler utilizing the new features is a welcome addition to the 
existing toolchain. 

1.1 The C Programming Language 

The C programming language was created in the 1970s by Dennis Ritchie and Ken Thomp­
son. In this project, I focused mainly on implementing its two latest standards, ISO/ IEC 
9899:1999 [2] and partially ISO/IEC 9899:2011 [11]. 

1.2 The Previous Project 

Similar thesis topic was elaborated by Jakub Horník as his Master thesis in 2011. This 
project is discussed in Section 5.3. 

While he was writing the thesis, a new version of the target processor was released (see 
Chapter 2). The resulting application is discussed in Section 5.3. 

1.3 Structure of the Document 

After the introduction to PicoBlaze in Chapter 2 and explaining the basic principles of 
compiler design in Chapter 3, the available existing and open source C language compiler 
front-ends are enumerated in Chapter 4. 

Next, the previous projects implementing a compiler for the older releases of the P i ­
coBlaze processor, are listed in Chapter 5. 

And finally, Chapter 6 explains the principles that the final application builds upon and 
its functionality is tested and evaluated in Chapter 8. Chapter 7 contains the summary of 
the compiler features and their description. 
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Chapter 2 

The PicoBlaze Processor 

PicoBlaze is a 8-bit processor created by Xil inx Inc. for their Spartan and Virtex F P G A 
series as an embeddable circuit to implement sequential programming in the parallel F P G A 
architecture. This means the processor is not meant to be physically manufactured, yet it 
would be possible [ ]. 

2.1 History 

Historically, the name of the design was KCPSM, for Ken Chapman's Programmable State 
Machine and then Constant Coded Programmable State Machine. This term is now still 
used in the F P G A design - the VHDL2 and Verilog components are still caled kcpsmX where 
X stands for the version of the processor [18]. 

2.1.1 PicoBlaze 

The first version of PicoBlaze was released in May 1999. 
The initial PicoBlaze was very simple, especially compared to the current one. There 

was only space for 256 instructions in the program memory and there was no R A M . Only 
16 8-bit registers were available to be used for storage. However, it is possible to connect 
an external memory through the 256 I /O pins. 

The multi-byte arithmetic instructions (ADDCY and SUBCY) were included since the very 
beginning. 

There was no dedicated instruction for value comparison but both the zero and carry 
flags were already present [3]. 

2.1.2 PicoBlaze-2 

The second version of the processor was initially released in December 2002. 
The program could consist of 1024 instructions at most and there was no scratchpad 

memory for runtime variables. The instructions were able to operate only with the 32 8-bit 
registers and constant values. 

The PicoBlaze instruction set remained the same in this revision. [4]. 
1 Field-Programmable Gate Array 
2 VHSIC (Very High Speed Integrated Circuit) Hardware Description Language 
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2.1.3 PicoBlaze-3 

First release of the previous version, 3, of PicoBlaze was released in May 2003. Its last 
revision, was released in August 2004. 

The register count was reduced to 16 while their size has been kept the same. The main 
addition in this version is the 64 byte large scratchpad memory, that eliminates the need 
of an external memory connected through the I /O ports. 

Instruction set changes in this version include the addition of comparison, testing and 
parity counting instructions [ ]. 

2.1.4 PicoBlaze-6 

The PicoBlaze-6 was initially released on 28th October 2010. Since then, a total of 7 newer 
revisions of this versions were released. 

The most recent one, PicoBlaze-6 release 8, was released on 31th March 2014 [5]. 
The differences and new features compared to PicoBlaze-3 are discussed in Section 2.4. 

The main features, regardless of history, are listed in Section 2.2. 

2.2 Main Features 

PicoBlaze is a RISC3, Harvard architecture4 processor. Every instruction is executed in 2 
clock cycles [5]. 

Program memory 
Scratchpad R A M 
2 Register banks 

Input / Output 
-bit Arithmetic-Logic Unit 

F P G A design 

Up to 4096 instructions 
Up to 256 bytes 
Containing 16 8-bit registers each 
256 8-bit ports 
Supports shifting, adding and subtracting 
Provides A N D , O R and X O R operations 
Compares and tests 
Implements carry and zero flags 
Can be included directly in the hardware code 
No other equipment or code needed 

Table 2.1: PicoBlaze-6 features [24] 

2.3 Practical usage 

A sequential processor, in comparison to parallel hardware design, is much more feasible 
for implementing state machines and computational cycles. 

It is suitable to used to control simple devices and to communicate over serial inter­
faces. The use-cases presented by the manufacturer are L C D drivers, SPI communication, 
controlling devices such as A / D controller. 

Time-based operations as pulse width modulation are possible with the processor, as 
well as display of real time clock or frequency measuring [27]. 

3Reduced Instruction Set Computing 
4The program code and the data memory are stored in separate locations 
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2.4 New features and properties of PicoBlaze-6 

Compared to the previous version, there were major changes in PicoBlaze design after the 
upgrade to the sixth version, which is still backwards-compatible. 

The most important ones are covered in this section in descending order according to 
their impact on programming in C and the compiler itself [5]. 

New JUMP® and CALL® Instructions 

Indirect jumps and calls, provided the address of the function or label, are possible in the 
new version. 

This improves compatibility with sophisticated C programs greatly as it allows the 
implementation of function pointers and their calling. 

It also means there had to a new addressing mode introduced - the whole program 
memory cannot be covered with only an 8-bit value, so the code's section is stored in the 
lower four bytes of the first register and the rest of the address in the second one. 

New REGBANK and STAR Instructions 

The new version of the processor now provides two sets of 16 general purpose registers 
that are switchable using the REGBANK instruction - this means only one of the sets can be 
accessed at a time. 

To store values in the inactive bank, the STAR instruction is provided - it is used to store 
a value from the active bank register in another register that is in the inactive bank. 

ADDCY and SUBCY Instruction Changes 

The previous version of these instructions modified the zero flag only according to their 
own result. Now they add the previous zero to the current one. 

New COMPARECY and TESTCY Instructions 

Instructions added to make comparing multi-byte types easier. They store the flags (carry 
and zero) and propagate them according to the progress through the single bytes. 

Program Memory Changes 

Due to the two newly added memory addressing pins, it is possible to address four times 
more program memory (now up to 4096), increasing the possible program size and com­
plexity. 

R A M Changes 

The amount of R A M addressable by the program was increased to up to 256 bytes from 
64, yet it depends on the target device the processor will be implemented on. 

This was achieved by modifying the opcodes of instructions of the processor, not the 
internals. 

Call stack 

Only 30 levels of function call depth are now available compared to 31 of PicoBlaze-3. 
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New LOAD&RETURN Instruction and STRING Directive 

The user (or compiler) can now specify a byte string location in the memory using the 
STRING directive in the assembly. 

Then, using the LOAD&RETURN instruction, it is possible to load a constant value into a 
specified register and unconditionally return from a subroutine, making these very useful 
in conjunction to generate text strings to be presented to the user. 

New OUTPUTK Instruction 

This instruction allows the program to output a constant instead of loading it into a register 
and outputting it using the regular OUTPUT. 

2.5 PacoBlaze 

PacoBlaze is an open-source (under the BSD license) clone of the PicoBlaze processor 
written in Verilog. 

Its main advantage is the possibility to be used with hardware not provided by Xil inx 
and modifiability and configurability. 

Due to the higher versatility, PacoBlaze is not as efficient (resource-wise) as the original 
implementation but it enables the user to remove unneeded parts from the processor and 
use its smallest required subset, therefore reducing F P G A space use as the result. 

The latest version is 2.2 (released in 2007) so it cannot possibly implement the new 
instructions of PicoBlaze-6 that this project tries to use as much as possible [ ]. 

2.6 PicoBlaze Assemblers 

Compilation to the machine code directly is not feasible because it prevents further modifi­
cations of the resulting code. It's also not absolutely necessary as there already are complete 
assemblers, with features, implementing which would reduce the time available for writing 
the C compiling part of the toolchain. 

2.6.1 p B l a z A S M 

P B l a z A S M is an open source assembler created by Mediatronix to be used for compiling the 
machine code source files directly to machine code in several formats. It can also create a 
representation (. 1st files) that is then used in the pBlazSIM simulator (that is distributed 
in the same repository, see Section 2.7.1) [21]. 

However, the program itself is bug infested and crashes quite often. There were some 
trivial bugs that were possible to be fixed quickly, such as calling free on a pointer that 
was not returned by malloc. 

2.7 PicoBlaze Simulators 

As the debugging capabilities of the processor are limited, making debugging of the pro­
grams on real hardware too complicated, possibility of usage a simulator of the target 
processor is more than welcome. 
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2.7.1 p B l a z S I M 

One of the most recent ones, pBlazSIM, was created by Mediatronix, too. It is actually 
hosted in the same repository tree as pBlazASM (see Section 2.6.1), along with some other 
tools [23]. [22] 

Hosted under the GPLv2 open source license, it is written in C++ and Qt, so its use is 
not limited only to one platform. Mediatronix distributes only the Windows binary form, 
though. 

Running Under Linux 

First attempts to run the simulator in Wine5 were quite unsuccessful as it was only capable 
to simulate the code which was included in the distributed binary package and no other. 

Attempts to compile the simulator from the source provided were also unsuccessful at 
first. Some changes to the distributed files were required. 

The needed steps to finish the compilation successfully are fixing the qmake project file 
to include all needed source files and adding one missing icon for the G U I 6 (for example by 
copying the existing ones in different colors). 

The hand-compiled version is able to run the assembly files generated by pBlazASM 
(see Section 2.6.1) well. A l l features in the GUI are working, too. 

I contacted the upstream developer responsible for the changes that introduced the 
invalid constructions to fix them. The code was fixed by the developer in two days. 

Command Line Simulator 

A simple simulator without any user interface was introduced to the code-base recently. 
The officially provided build system information does not handle its compilation but due 
to the relative simplicity of the project, it is easy to compile this executable by hand by 
using the object files of the pBlaze.cpp module. 

The simplest way possible (provided you use a C++ compiler that is able to link directly) 
to compile this binary is by using the following command: 

${CXX} pBlaze.cpp pBlazSIMcl.cpp -o ${SIM_BINARY} 

2.7.2 P B S i m 

A project that is being developed on the University, started as a Master's project in year 
2012 [16]. 

Bound to SDCC (see Section 4.3) and tightly related to Eclipse, it is possible to use it 
as a part of its UI. 

It is hosted under the GPLv2 license on Github [ ] but there are no instruction to 
compile the project. In comparison to pBlazSIM (see Section 2.7.1), it's not active at all. 

5 W I N E is not an Emulator - an open source Windows API implementation 
6 Graphical User Interface 
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Chapter 3 

Programming language compiler 

Most of the modern computer processors are programmed using a fairly complicated binary 
instruction set. To make writing more complex and powerful applications more pleasant and 
comprehensible, we are now using programming languages that are translated (compiled) 
into the low level binary form executable by the processor. 

In this chapter, the most vital parts and terms in construction of a compiler are dis­
cussed, with focus on C language [1]. 

3.1 Compiler Structure 

A typical programming language compiler consists of two to four main parts: 
First part is an optional preprocessor which prepares the source code for the front-end, 

for example by removing comments or expanding macro definitions. 
A language front-end, which transforms the code from a programming language to its 

simple intermediate and internal representation. 
A n intermediate code optimizer searches the representation for patterns that can be 

changed to more efficient, smaller or faster equivalents. This part is optional, too. 
And finally, the back-end, that generates the target code for the processor itself, be it 

assembly code, virtual machine code or a processor-native code [1]. 

Source Program Preprocessor 

Stripped Source Code 

Front-End 
T 

Intermediate Code 

Intermediate Code Optimizer 

Optimized Intermediate Code 

Back-End > Target Code 

Figure 3.1: Structure of a compiler front-end 
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3.2 Preprocessor 

Preprocessor performs a simple task of removing or replacing text in the input source code 
according to some pre-set rules. 

The most common task is removing comments to leave only language defined tokens for 
the further stages of compilation. 

In the C programming language, there are preprocessor macros, too. These serve a 
purpose of replacing and inserting text. However, describing the entirety of the C prepro­
cessor is a task beyond limits of this thesis, only few directives are listed, along with their 
simplified descriptions [28]. 

#include " f i l e " or <file> 

#define MACRO ... 

#if cond 

#ifdef MACRO 

Behaves as if the whole contents of f i l e were inserted 
instead of it. 
Every occurrence of NAME in the code is replaced with 
what is substituted with . . . (until the end of line). 
The following lines until #endif are pasted if cond is 
met. cond supports C expression syntax. 
Equivalent to #if def ined(MACRO). True if MACRO was 
defined. 

Table 3.1: Basic C preprocessor macros 

3.3 Front-end 

The central and most important part of the compiler, it does a whole set of operations over 
the source code to produce its independent representation. 

It is a language-specific part, that also checks the correctness of the input code. 
Large compiler projects even aim to its complete and clear replaceability (see Sections 

4.1 and 4.2 for examples) to benefit from the optimization in the following stages of com­
pilation. 

Source Program Lexical Analyzer Parser 

Symbol Table < > Code Generator 

Intermediate Code 

Figure 3.2: Structure of a compiler front-end 

3.3.1 Lexical analysis 

Lexical analyzer comes into contact with the raw source code. 
Reading the input stream character by character, it breaks it down to segments called 

tokens, according to rules that are set by the language standard. 
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For example, there can be a token representing a keyword (like i f or for), a literal 
value (42 or "string",...) or a type or symbol name (foo, main,...) [ ]. 

A token of the i f keyword will be always represented with the same string - i f . How­
ever, a variable name in C can take form of any string that matches the following regular 
expression [2]. 

[A-Za-z_] [A-Za-z_0-9]* 

These names and values are then stored in the symbol table, which will be discussed in 
the next section. 

3.3.2 Symbol Table 

A symbol table is a container storing names of all symbols that the lexical analyzer has 
detected [ ]. 

The values here are used further in the compilation, either to resolve the identity of 
tokens, or to actually assign the literal values and use them in the program itself. 

3.3.3 Parser 

Parser then takes the stream of tokens and arranges them into a tree-like structure. This 
process is called syntactic analysis. It consists not only of arranging the tree but as a 
side-effect, correct syntax of the input code is being checked. 

Consider the following expression for demonstration of processes taking place in the 
parser: 

1 * foo + 5 * bar 

Listing 3.1: Example expression 

The tree, as a result of the syntactic analysis, would take the form represented in the 
next diagram [8]. 

Note the operator precedence is honored in the same way as in regular mathematical 
expressions. 

+ 

value(l) identifier(foo) value(5) identifier{bar) 

Figure 3.3: Syntactic tree 

There is also other information about the tokens in this expression, like types in case 
of variables. It is necessary to check if they are used in the right context, like if functions 
are used like functions and not variables or if defined operations are being used upon them. 
This process is called semantic analysis [1]. 
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< i n t > 1 <f loat>foo < i n t > 5 <int>bar 

Figure 3.4: Operator and operand relation in semantic analysis 

If foo was not a f l o a t but for example a bool variable the semantic analysis of the 
expression would fail because the operation of multiplication is not be defined between these 
two types. 

The result types of expressions, are deduced as well. In this case, in C language, the 
whole expression's result would take form of a f l oa t . 

3.3.4 Code Generator 

While the trees are being constructed and checked, the intermediate code is created as well. 
The parser feeds the completed subtrees and their nodes into the code generator that 

flattens the structure into a series of instructions, similar to the assembly language of a 
computer processor [ ]. 

Only one kind of resemblance of the previous code will be left - the links in code branches 
for both conditional and unconditional jumps - this is required to make creating the links 
in the resulting code easier. 

In case the compiler does not use any kind of intermediate code, directly the target 
language is being emitted in this section, making the code generator serve the purpose of a 
back-end (described in Section 3.5), too. 

3.4 Intermediate Code 

As mentioned in the previous section, the intermediate code resembles assembly. The 
difference between the two is still quite big though. Intermediate code contains a lot 
more information, like variable names, information about liveness of the variables, type 
information and much more. 

Popular form of such output is called three address code. Every instruction in this 
simple language takes a maximum of three operands, first marks where the result will be 
stored and the other to are the source operands [ ]. 

Consider the example we already used, defined in Listing 3.1. 
The expression will be transformed to the following (simplified) series of instructions in 

three address code: 

mul tempi, 1, foo 
mul temp2, 5, bar 
add tempi, tempi, temp2 

Listing 3.2: Example of a three address code 

The instructions in the code can be limited to take only two operands. The first operand 
will be both the result and the first argument in this case. This code is equivalent to the 
previous, only printed in two-operand notation: 
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assign tempi, 1 
mul tempi, f 00 
assign temp2, 5 

mul temp2, bar 

add tempi, temp2 

Listing 3.3: Example of a two-operand intermediate code 

Three address code as intermediate language is very common in compilers. This puts 
them close to some processor architectures, such as A R M , that uses a form of three address 
code as its assembly language. [ ] In contrary, other architectures, like x86 [ ], or, 
PicoBlaze [5], that this thesis targets, use only two operands in their assembly. 

3.4.1 The Intermediate Code Optimizer 

Optimizing the code during the compilation is not absolutely vital for the whole process. 
However, it is a welcome part, especially by the end-users of the tool. 

The optimizer looks for patterns that can be reordered, changed for their faster equiv­
alents or completely removed, while maintaining the same functionality as before. 

To demonstrate on the three address code from Listing 3.2, consider this instruction: 

mul tempi, 1, foo 

Multiplying anything with 1 is redundant. After removing this unnecessary operation 
and changing the order to preserve the same result, the example would look like this: 

mul tempi, 5, bar 

add tempi, tempi, foo 

Listing 3.4: Optimized three address code from Listing 3.2 

One whole instruction was saved in this case. 
There are many more techniques that can be applied on any amount of code. One of 

the simplest ones is dead code and dead variable detection. When a variable is not used or 
a conditional branch cannot be entered at any time when the program will be executed, 
the optimizer can completely remove it [19]. 

3.5 Back-end 

The target specific part of the compiler, generating the sought code, is the back-end. 
For each instruction of the immediate code, it matches its equivalent, be it single in­

struction, or a whole function, in the target language. 
Aside from this its main task is to allocate registers for each target instruction, as the 

immediate code does not use any. Because the number of the registers is finite, it also needs 
to handle management of other data storage forms, such as the stack [1]. 

More complex compilers are usually aiming to be retargetable - that means they are 
equipped to support multiple back-ends for different compilation targets. There is a list of 
some of them in Chapter 4. 

Writing a compiler back-end is the goal of this thesis. 
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Chapter 4 

Compiler Front-End Choice 

As starting a new compiler from scratch would not be possible in the limited time frame 
of a bachelor thesis, I had to choose an existing front-end and provide a corresponding 
back-end part for the target platform. 

This basically rules out all of the proprietary compilers and the selection limited to 
those from the world of free and open source software. In the end, the choice consisted of 
the following three. 

4.1 G N U Compiler Collection 

The G N U Compiler Collection, more known as GCC, was started as a simple C compiler in 
1985 by Richard Stallman. It is now one of the most widely used compiler suites not only 
in open source systems [7]. 

Due to its huge history and background, its code base is stable and mature but it also 
is very hard to read due to historical reasons and the fact basically everything is wrapped 
in several layers of macros. 

The documentation of the inner functionality is hard to find and it is not very well 
arranged. Because of its heritage, the structure does not seem very transparent. 

Free Software Foundation and the G N U Project are holding governance over the devel­
opment and are prohibiting major changes to the architecture or code style which drives 
many new developers away.1 

4.2 Low Level Virtual Machine 

L L V M is a modern project with a gaining popularity in past years for implementing the 
features very fast and providing of interesting and useful tools, like static analyzer. 

Its C and C++ front-end, Clang, is adding the latest features of the new language 
standards and their drafts sooner than the competitors. 

Compared to G C C , L L V M is a really young project. It was founded in 2005. The 
codebase is dynamically changing, written in C++ with heavy use of templates and auto­
matically generated code [29]. 

Its development is sponsored by companies like Google, for example to provide ability 
to run native applications in the browser (NaCl project, or especially its part PNaCl) or 

x

http://gcc.gnu.org/ml/gcc/2014-01/msg00176.html 
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Apple, which utilizes the ecosystem in the official development toolkit provided for their 
products [17] [30]. 

L L V M provides a very well documented intermediate representation of the compiled 
source code. Its documentation is publicly visible on their wiki page, every necessary detail 
is described and the community provides several easy ways to be approached. 

4.2.1 Architecture 

L L V M is strictly separated into front and back ends, divided by the L L V M intermediate 
code that is heavily optimized and is executable directly in a virtual machine (hence the 
name Low Level Virtual Machine) 

4.3 Small Device C Compiler 

SDCC is a simple (compared to the previous two) compiler aimed to be easily retargetable 
and provide a quality background for creating compilers for 8bit processors [26]. 

It is not a very large project (especially when compared to G C C and L L V M ) and it uses 
parts (for example, the preprocessor) of G C C . 

It optimizes the compiled source code with focusing on issues appearing on small devices. 
The intermediate code is not documented very well (there is a list of all the iCodes on 

the project's wiki) but is simple enough to be understandable. 

17 



Chapter 5 

Existing Solutions 

The idea of writing C compilers for PicoBlaze is not new. There has been a few projects 
implementing C compilers directly, or compilers of languages based on C. The most exposed 
ones are covered in this chapter. 

5.1 PCComp 

PicoBlaze C Compiler, the project of Francesco Poderico, has its own page on SourceForge1, 
yet there are no files to download or source code in the repository and the only relevant 
activity visible is a question where to actually download the compiler. 

I managed to find a Windows binary in version 1.8.4 in a web archive and a user manual 
describing the compiler's features, both created in 2005 or 2006. 

However, the limitations of the compiler are vast. It generates stack-based code. This 
is unfortunate because PicoBlaze lacks any stack [25]. 

5.1.1 Features 

The compiler is not strictly following the C standard and implements only its small subset. 
The supported cores are PicoBlaze, PicoBlaze-2 and PicoBlaze-3. 
Only the support for byte and word (1 and 2 bytes) types was implemented. 
One-dimensional arrays without any pointer arithmetic are supported by the compiler. 

5.1.2 Limitations 

Type conversions are missing, as are variable modifiers (e.g. v o l a t i l e ) . 

The compiler does not support any kind of resulting code optimization, except dead 
branch detection. 

The compiled assembly is often buggy or even nonfunctional and the probability of 
getting broken code is increasing with the complexity of the input source code and the 
arithmetic expressions in particular. 

5.2 P B C C by Bohumil Nováček 

This bachelor thesis was written on Faculty of Electrical Engineering of Czech Technical 
University in Prague in 2008 when only PCComp (Section 5.1) existed. 

x

http://sourceforge.net/proj ects/pccomp/ 
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A compiler was written as a goal of the thesis, resulting in a small application able to 
compile a limited subset of the C programming language [20]. 

Also, the source code is not to be found anywhere on the Internet, only the text part 
of the thesis was made public. 

5.2.1 Features 

The compiler only allows the user to compile a small subset of the actual ISO/IEC 9899:1999 
standard. 

Processor support is limited to PicoBlaze-3. 
The types supported are void, char and int, again sized only 1 and 2 bytes. 
Only one-dimensional arrays are available to the user. 
Despite the simplicity of the compiler, there are some optimization methods imple­

mented. For example, constant expressions are replaced by values directly. 

5.2.2 Limitations 

There is no support for any user-defined type, whether it is only an enumeration, a typedef 
type or a complex type (struct or union). This effectively limits the user to use only the 
basic types that are in this case integers sized one and two bytes. 

There is no expression conditions, strings and multidimensional arrays. 
These limitations are caused by the fact the author decided to write the compiler from 

scratch without use of any framework or front-end. The time needed to finish a complete 
C compiler is far beyond the time-frame of a bachelor thesis. 

5.3 P B C C by Jakub Horník 

PicoBlaze C Compiler is a project sponsored by Virtuální laboratoř aplikovaných mikropro­
cesorů realized on the Faculty of Information Technology, Brno University of Technology. 

It was written in years 2010 - 2011 by Jakub Horník as a part of his master's thesis and 
is now maintained by Zbyněk Křivka, supervisor of this thesis [ ]. 

The compiler is based on the Small Device C Compiler (SDCC) modified to provide 
support for the processor so it offers a subset of features of S D C C in version 3.0 [9]. 

5.3.1 Features 

There is support for adding further optimization methods provided by S D C C , additionally 
to its own optimization procedures that are ran during the compilation process on the 
intermediate code. 

Data types supported are integers large from 1 to 4 bytes, there is also no problem with 
converting them. 

Use of arrays (even multidimensional) and pointers is implemented, including their use 
as function parameters. 

PicoBlaze-6 was released only a few months after the inception of the thesis that was 
targeting the previous one, PicoBlaze-3. This topic is discussed in Chapter 2. The main 
focus of the thesis was the older iteration of the processor, therefore function pointers and 
all other new features were left unimplemented. 
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5.3.2 Limitations 

There is a list of known problems and limits list in the official documentation. To name 
a few, there is no support for getting or setting values on a memory address and limited 
support for global variables and interrupt vectors. 

The main reason to rewrite the compiler from scratch is to avoid carrying all the legacy 
instructions and features and to focus on the cleanest possible implementation of the current 
revision of the processor. 

The author also suggests allocating the registers by coloring them and using the infor­
mation for better results when memory access frequency is taken in question. 

Unclear code copied over from other ports that is not very comprehensible is the reason 
why I wrote the whole program again while using just a few parts from the original code. 
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Chapter 6 

Implementation Design 

In this chapter, the technical details of the project are discussed. 
The port itself is written in C++ with a layer wrapping the C internals of SDCC. 

6.1 New Port Addition 

As this process is not documented anywhere in the S D C C documentation and doing it 
properly would require deep and good understanding of the G N U autotools toolchain, the 
following procedure was used to add the new port to the S D C C source: 

1. Create a port source directory in src/, in this case, I was calling it pblaze. 

2. Add the basic source files in the port directory, for example main.c and main.h. 
main. c has to contain an instance of PORT structure containing information about the 
port specifications and pointers to functions that will be called during the compilation. 

3. A new (unique) port ID needs to be inserted into src/port.h: 

#define TARGET_ID_PBLAZE 16 

4. And create an extern reference to the PORT instance from src/pblaze/main.c, for 
example: 

#if !OPT_DISABLE_PBLAZE 

extern PORT pblaze_port; 

#endif 

5. In src/SDCCmain. c, insert a reference to the structure defined in src/pblaze/main. c. 

6.1.1 Automation of new port addition 

These tasks are automated in the included glue.sh script. When it is executed in Bash 1 

with the SDCC-HOME environment variable set to point to the directory with both P B C C 
and S D C C source code, it completes all the necessary tasks. 

1Bourne Again Shell, http://www.gnu.org/software/bash/ 
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6.2 Compilation 

After the port was added, S D C C can be compiled. The steps to achieve successful compi­
lation are: 

1. autoconf creates a configure script to configure the components and compiler op­
tions of the final binary 

2. ./configure is a script that compiles a Makefile for the compilation itself. It is 
possible, for example, to modify the optimization of the compiler binary or disable 
compilation of ports of architectures we will not need. 

3. make is the compilation script itself. You can speed the whole process by using the 
-jX argument specifying that X compiler processes should run at the same time. 

6.3 SDCC Internals Wrapper 

Using pure C library calls and macros in a C++ project would be a waste of potential of 
the language, therefore the project is built upon a wrapper library for the S D C C internals 
instead of using them directly. 

The whole wrapper library is included in the wrap modules. 

6.3.1 Approach 

Every S D C C structure that is vital for the process is wrapped in its own class. These 
classes are Set, Ebblndex, EbBlock, SymLink, Symbol, Value, Operand and ICode. Their 
SDCC counterparts are named the same, except they have lower-case initials. 

To provide the ability of implicit up-cast, the classes are directly inheriting the structures 
themselves. 

Each of the classes has its methods derived from the functions and macros that are 
operating over them in the S D C C internal library. The methods are partially hand-written 
and partially generated from the definitions in the header files. 

Aside from the methods, nothing was added to the classes. None of the methods is 
virtual. That means the memory footprint and binary compatibility with original structures 
is kept. 

6.4 Utilities 

The u t i l module contains code for making the code in other parts of the projects easier 
to read and understand. 

6.4.1 Emitter 

Every target code output in the C++ part of the port is handled using this class. 
It implements a std: : ostream-like2 (left shift operator overloading) A P I to be easy to 

spot in the code. 
2 Output stream class in the C++ Standard Template Library 
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There is one static instance of the class that is used to output from all other modules. 
The constructor was left open in case another separate output was needed. This option 
was left unused so far though. 

The class also provides a static member variable i for iterating when an instruction 
is being output. This allows the Instruction class that is being handled to be able to 
check the byte position in the multi-byte operands. This makes changing instruction forms 
(for example between ADD and ADDCY) possible. It is also used in the overloaded left shift 
operator for operands, to get their current needed byte. 

6.4.2 Function 

Function is a class containing public static members only. It provides information about 
the current function the compiler is processing such as parameter count and their sizes. 

Its main purpose is to compute which function parameters will need to be stored on the 
stack and which parameters will be passed through registers. 

The processing method is called every time the FUNCTION iCode is reached. 

6.5 Register and Memory management 

The code providing the functionality described in Section 3.4 is located in the r a l l o c 

module. 
The entry point is the Allocator class, precisely its static method assignRegisters 

that takes the basic block index as its parameter. 

6.5.1 Type support 

PicoBlaze-6 supports one byte integer operations only, some with possibility to reuse the 
carry bit (see Appendix C for the list of available instructions). 

Implementing floating point operations on such a simple device is neither feasible, nor 
actually usable. Emulating hardware support for any standard defining the format would 
result in huge memory use and each operation would take huge amounts of processor power. 

Advised usage in this case is to connect a hardware F P circuit over the I /O pins. 

char short int long long long void* void(*) () 

I 2 2 4 4 1 2 

Table 6.1: Basic types supported by the compiler 

6.5.2 Register Allocation 

The register management is handled in the Register class. Two sets of Register instances 
are aggregated each in one Bank instance to provide the ability to switch the banks and 
pass operands between them. 

When there is no free register available, the L R U 3 algorithm is applied to find the one 
that is to be freed and stored in the scratchpad memory until the next use. 

3Least Recently Used 
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6.5.3 Stack Management 

The stack is growing up, starting at the zero address. A l l stores and operations on both 
function entry and leave are processed in the Stack class which implements all necessary 
moves on the stack pointer (SP). 

Each of the stored variables has an instance of StackCell class assigned, containing 
the information about the offset from the pointer and the start of the variable. 

A l l variables are stored in big endian order, consecutively. 
The stack pointer is stored in the sF register, in both banks. On bank switch, it is 

propagated to contain the changes done to it. 

6.5.4 Static Memory 

Static memory, used for storage of global variables, is implemented in the Memory class. 
In most aspects, including the implemented interface, it is similar to the Stack (see 

Section 6.5.3). The most important difference is no necessity to do anything on function 
calls and different implementation using only position in memory. 

It grows in the opposite direction to the stack, from the highest possible address in the 
memory - address OxFF. 

As in the case of Stack, the variables are stored consecutively in big endian order. 

6.6 Code Generator 

To avoid as much code duplication as possible, every instruction is being emitted using iter­
ation over the Emitter: : i variable in the manner displayed in the following code snippet. 

for (Emitter::i = 0; Emitter::i < left->getType()->getSize(); Emitter::i++) 

emit « I::Xor(result, r i g h t ) ; 

Listing 6.1: Emitter and Instruction example use 

A l l instruction classes inherit from the generic I class that also acts as their parent and 
enclosing class both. It defines the toString virtual method that the children implement. 
This method is used in the overloaded left shift operator of Emitter (see Section 6.4.1) and 
I to obtain the whole string representation of the operation and write it into the output 
file. 

6.6.1 Calling Conventions 

The calling conventions were designed to utilize as much of the variables as possible because 
of the limited capabilities of the processor. 

Caller saves strategy is implemented by the compiler. That means the registers are 
saved to the function stack by the caller, not the callee function. Variable liveness is 
considered, dead variables are omitted. 

The arguments are stored consecutively in little-endian order4 in the registers. 
By default, the first 8 registers are used for passing the arguments directly and the rest 

is stored on the stack of the callee. Their count can be modified by the compiler command 
line argument —argregs=N, with the maximum value of N being 13. 

4The least significant byte is stored first, the most significant one last 
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For example, consider the following function: 

int function(int 1, long r ) ; 

Listing 6.2: Called function prototype 

Its initial register utilization would be as follows: 

sO s i s2 s3 s4 s5 s6 s7 

1[0] 1[1] r[0] r [ l ] r[2] r[3] free free 
s8 s9 sA sB sC sD sE sF 

free free free free free free free SP 

Listing 6.3: Register bank state when function from Listing 6.2 is called 

The returned value is stored in the first registers in the same way as the parameters 
were stored. Little-endian order limits the register use in the caller to the bare minimum. 
Returning structure values is not supported, pointer use is necessarry in this case. 

After the function has returned, caller (according to the caller saves strategy) restores 
its variables back into registers. 

6.6.2 Function Pointers 

As mentioned in new feature overview (this particular change is discussed in Section 2.4), 
the processor now supports jumping to labels and calling functions that have their address 
loaded on run-time. 

To make use of the new specification as much as possible, the compiler supports calling 
function pointers using the CALL® instruction. 

Prior to the instruction invocation itself, the function pointer is stored in the sD and sE 
registers. As the address of a function is larger than the size of one register, it has to be 
stored in two of them - sD contains the upper 4 bits of the address and sE the lower 8 bits. 

6.6.3 Register Bank Utilization 

From the perspective of register banks, there are two types of functions (as there are two 
banks). 

The first type is either function main or a state when the program has not entered main 
yet - on initialization of global and static variables. This code has access only to variables 
stored in registers in Bank A . 

The other types are all other functions. These have access to registers in Bank B . 
The bank selection is handled from the code of the first type. This makes the other 

functions able to call any other function including itself. Any kind of recursion including 
main is not supported though. 

Before and after the call, bank has to be switched to the appropriate one. Also, if the 
function returned any value, it has to be transferred from the other bank to the current 
one before the bank is switched. 

In effect, this makes having most of the program logic in the main function, as it does 
not have to store most of its registers before calling a function, thus reducing the number 
of necessary FETCH and STORE instructions to move the local variables in the stack memory. 
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6.6.4 Assignment Generation 

There are different cases we have to handle on assignment in the compiler. 

Function Call Parameters 

The compiler detects when the assignment is done in a function call. This means the 
available operand registers are already full, so the following arguments need to be stored 
on stack. 

These assignments are done preemptively, the variables go on stack directly. The stack 
pointer in the function will handle these as if they were saved there in the function body 
directly. 

Dereferenced Pointer Assignment 

The PicoBlaze-6 has only 256 bytes of scratchpad R A M (see Section 2.2). This means the 
pointers to variables take only one byte of memory. 

Assignment to these variables is done using the STORE instruction. However, STORE 
cannot take a literal as its source data argument. Therefore, a temporary operand is 
allocated and used for temporary storage of the data being stored. 

Temporary Variable on the Right Side 

This case occurs when a temporary variable with a live scope that does not reach beyond 
the sequence number of the iCode containing this assignment. This usually occurs on an 
immediate computation in an complex expression. 

Instead of moving the variable, the registers are only reassigned to the result operand. 

Other Cases 

The other cases cover assignments with regular variables and literal values as operands. 
The temporary variables with longer life scope are included, too. 

There is nothing special on this case - the values are moved using the LOAD instruction. 
A FETCH is used first if the variable has been saved to memory. 

6.6.5 Stack and Variable Storage 

Local variables of the program are initially created in the registers. Only once there is not 
enough room for any other variable needed for an operation in future, it is freed from the 
register and stored (spilled) on the stack. 

Stack pointer is stored only in register sF only in Bank B . Stack pointer is not tracked 
in the main function. As does register bank selection, this also makes recursive calls to 
main impossible. 

6.6.6 Arithmetic Operations 

Only basic arithmetic supported by the processor is implemented. More specifically, there 
is no basic support for neither multiplication nor division of the variables. 

The multiplication functions can be extracted from the previous P B C C (see Section 5.3) 
and inserted as inline assembly in a separate function, according to the calling conventions. 
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The other arithmetic and logic operations of the C language are implemented, with 
focus on utilizing the new and improved instructions of PicoBlaze-6 to save computational 
cycles. 

6.7 Compiled Assembly Properties 

The compiler is producing commented assembly to be given to an assembler which then 
in turn produces its various binary equivalents or other formats, for example suitable for 
simulation. 

In this section, the vital properties, required for getting grasp of the code (for its further 
modification by hand or integrating hand tuned assembly code, for example), are discussed. 

6.7.1 Comments in the Code 

To improve the readability and comprehensiveness of the code, there are explanatory com­
ments included in the compiled assembly. 

Instruction Comments 

Lines of most of the instructions contain a short comment explaining the instruction and 
its operands. This covers moves and arithmetic operations especially. 

To demonstrate, when the following code snippet is compiled: 

int baz = 42 + foo - bar; 

Listing 6.4: Example assignment 

Then, assuming the variable was not loaded in the registers beforehand and the other 
variables were already used (foo is in sO and s i and bar is in s2 and s3), the resulting 
assembly will take the following form: 

load s4, sO iTempO[0]=foo[0] 
load s5, s i iTempO[l]=foo[0] 
add s4, 0x2a iTempO[0]+=42[0] 
addcy s5, 0x0 iTempO[l]+=42[l] 

iTempl=iTempO 
sub s4, s2 iTempl[0]-=bar[0] 
subcy s5, s3 iTempl[ l ] -=bar [ l ] 

baz=iTempl 

Listing 6.5: Assembly output compiled from code in Listing 6.4 

Each byte in the operation is covered by the regular C-style array notation. 
Moves on temporary variables to next variables in a more complex expressions are 

optimized out, too. They are marked in the assembly to point out that another variable 
now resides in the particular registers. 
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Function Comments 

Every function is prepended with a comment that states its name with a list of its argu­
ments. Every argument's name is written in the list along with the registers it is stored in, 
in case it is not stored on stack directly. 

Demonstrated on an example: 

char func(long a r g l , i n t arg2, char arg3); 

Listing 6.6: Example function to be compiled 

; Funct ion func, arguments: 
[ a r g l : { s O , s i , s 2 , s 3 , } , a r g 2 : { s 4 , s 5 , } , a r g 3 : { s 6 , } , ] 

Listing 6.7: Explanatory assembly comment before the label generated for Listing 6.6 
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Chapter 7 

Port Features 

7.1 Code Clarity 

The extensibility and readability of this port is not comparable to any other port. The 
code generation itself takes only about 5 lines of code for each ICode, compared to tens to 
hundreds in PBCCv2(see Section 5.3). 

Providing a C++ A P I also helps by providing more syntax sugar for anybody who 
wants to further modify the compiler. Using class methods instead of macros and functions 
also adds the possibility to use an I D E 1 with method suggestion. 

7.2 PicoBlaze-6 Support 

There is no other C compiler designed to produce code exclusively for the newest revision 
of the PicoBlaze processor. 

The most modern ones support only PicoBlaze-3 so they miss the opportunity to save 
not only the program space (meaning less C P U cycles for the same program) but also the 
scratchpad memory and registers (which means the program will utilize less C P U cycles 
again). 

One of the cases when this is true is multi-byte variable comparison - equality check had 
to be done using many jumps and storing intermediate results, the new COMPARECY reuses 
the carry and zero values that are already in the flags. 

7.3 Built-in Functions 

The necessity to communicate with connected peripherals is satisfied by using the char 
port_in(char port) and void port_out(char port, char value) built-in functions. 

They are compiled into OUTPUT, OUTPUTK and INPUT instructions, respectively. OUTPUTK 
is used when it is possible. That is, when both operands are constant and the port is in 
the range 0x0 - OxF. 

As they are not really functions, when compiled to the assembly, there is no need to use 
the registers designated for function calling. The first available registers are used instead 
of sO and s i (as specified in Section 6.6.1). 

1 Integrated Development Environment 
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Chapter 8 

Testing and Evaluation 

It is necessary to evaluate the overall success of a compiler project by testing it and com­
paring it to the alternatives. In this section, the testing and comparison methods are 
described. 

8.1 Testing 

Several example source files were compiled and ran in a simulator to prove the resulting 
assembly corresponds to the input source code. 

8.1.1 Tools and the Testing Process 

PBlazSIM (described in Section 2.7.1) was chosen to simulate the resulting code due to its 
simplicity, maturity and liveliness of the upstream developers. 

Obtaining the Simulation Result 

The simplicity of PBlazSIM cleared the way for modifying of the (small) codebase and 
including it as a part of the test-suite in this project. 

The only modification done is as follows: When the simulation ends because of an error 
or reaches the correct final state of the simulation (this happens once it the BREAK internal 
opcode is processed), it prints the state of the processor to the standard output. 

The output is formatted for easy parsing and use in the attached test suite. 

Assembler 

The input to PBlazSIM are rich assembly language files enhanced with binary representation 
of the code it is about to simulate. This format is compiled using PBlazASM (see Section 
2.6.1) using the 1 flag and results in a file with .LST extension. 

There were no special modifications required to get the needed results except the ones 
mentioned in Section 2.6.1. 
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8.1.2 The Framework 

A l l scripts are ran recursively for each . c and .tst file in the test directory in the root of 
the code tree. 

Every . c file has to have its .tst counter-part with the same base name to be considered 
a valid test. 

It tests the memory and the registers for presence of any value given (with the exception 
of omitted zero values, considering major part of the memory will be free in most cases), 
be it on a specifically given position or anywhere. 

It is also possible to test ZERO and CARRY flags of the processor. 

Test File Format 

The .tst file format requires every such file to include declaration of every of the following 
variables: 

storecLsomewhere 

storecLthere 

bank A 

bankB 

Array, bounds undefined. 
Each value contained in it is looked for in the memory and 
register dump. The value can be contained anywhere. 
Array of 256 values. 
If there is a value X on position Y , the memory has to contain 
value X on position Y too. 
Array of 16 values. 
Contains a value for each of the registers in the bank. 
Analogic to bankA, for bank B. 

The variables are declared and defined in pseudo-C style (without the type specification), 
that means: enumerations take a brace-enclosed list as their initializer and Boolean values 
can be either true or false. 

Every definition has to be ended with a semicolon. Double definitions will result in a 
failing test. 

For example, the following declaration will check all memory locations to contain the 
values 1, 2 and 3: 

storecLsomewhere = { l , 002, 0x3}; 

And the following declaration says register s2 has to contain value OxFF - other registers 
are omitted (because they are equal to zero). 

bankA = {0, 0, OxFF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 
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8.1.3 Test Cases 

This is the list of the included and applied test cases that were also ran and checked in the 
simulator. 

n u l l 

basic 

arithmetics 

array 

bitoper 

concLsimple 

concLcomplex 

func.simple 

func_recursive 

func_ptr 

struct 

Does not compute anything, tests if the whole stack works 
Basic variable assignment 
Addition and subtraction 
Array (pointer) data assignment and reading 
Binary operations on the variables 
Simple condition evaluation 
Complicated condition and cycle evaluation 
Basic function calling 
Recursive function calling 
Function pointer calling - functionally equivalent to func_recursive 
Structure operations 

The code of the tests is completely synthetic, with no real world purpose. Some variables 
had to be defined as v o l a t i l e , to avoid their optimization which would remove some of 
them completely, defeating the purpose of testing the mentioned features. 

8.2 Evaluation 

Due to the fact neither the source code of P B C C by Bohumil Nováček nor PCComp is 
publicly available, also considering the simplicity of the other compilers, only the previous 
P B C C projekt by Jakub Horník was used in comparison (see Chapter 5 for more details). 

The same test cases were used as in the functionality testing (described in Section 8.1). 
The tests were designed to be compileable in all other compilers, except the cases when 

an unavailable feature is being tested. 
The quality metric (in case the program compiles and is valid) was chosen to be the 

count of used instructions. 

test case P B C C v 3 (this project) P B C C v 2 (Horník) 
basic /(23) / (62) 

arithmetics /(19) / (26) 
array / (70 ) x (internal error) 

bitoper /(29) / (49) 
cond_simple /(56) / (87) 

cond_complex /(33) / (53) 
func_simple /(35) ^ /(51) 
func_recurs /(44) x (infinite recursion) 

func_ptr /(51) x (no support) 
struct / (55) /(52) 

/ (instruction count) for succeeded cases, x (reason) for failed cases 

Table 8.1: Test results 

P B C C v 3 gives shorter code for most test cases, except the cases when P B C C v 2 fails. 
In P B C C v 2 , cases array and func.ptr failed in the compilation phase and no output 
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was produced. The test case func_recurs compiled fine. However, when simulated, the 
processor got stuck in an infinite call loop and stopped eventually. 

The only case when P B C C v 2 gives shorter code is for the struct test case. This is 
caused by the slight overhead needed for calling a function between register banks (explained 
in Section 6.6.3). 
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Chapter 9 

Conclusion 

The back-end project was started from scratch except for some output wrapper code, there­
fore the expected functionality was not a complete C compiler. The implemented subset is 
able to compile a wide range of test applications. 

Considering the produced code quality, the compiler is better, compared to the alterna­
tives. On the applied test set, the produced code is on average 33% shorter than the code 
compiled with the previous P B C C . It is also more understandable by the extensive usage 
of generated explanatory comments. 

If taken as an exercise and exploration of the limits of the processor, the project suc­
ceeded, too. Function pointers are really usable and testing applications utilizing them 
work correctly. There is also basic support for pointer assignment which is then utilized in 
array and structure usage. 

9.1 Future Development 

The compiler was tested on synthetic cases only. Real world complex applications are 
needed to be tested with the compiler to have potential issues or inefficiencies fixed. 

Some features lack at this moment, too, such as an implementation of integer division 
and multiplication or interrupt table generation. 

The back-end was also designed to be partially portable to other front-ends. It could be 
used with L L V M , for example, to achieve the ability to compile programs written in other 
languages, too. 
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Appendix A 

C D Contents 

The attached C D contains the source code, with S D C C included, the tests and installation 
and compilation scripts. 
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Appendix B 

Installation and Usage 

SDCC lists the following dependencies: Boost, Yacc, Bison. 
To compile the pblaze port, you have to use a C++ compiler that supports the ISO/IEC 

14882:2011 (C++11) standard. 
The port can be built against any recent snapshot of S D C C and version 3.4.0. It is 

possible to compile it against S D C C 3.3.0, too but on some machines, configure does not 
generate the required Makefile. The C D includes version 3.3.0 with the Makefile already 
generated. 

If you compile the project from new source directly, please follow the steps listed in 
Section 6.1 now. 

To run the compiled binary (especially on merlin.fit.vutbr.cz), you need to link 
against the correct libstdc++ on runtime. To do so on merlin, add the following path to 
your LD_LIBRARY_PATH: 

/pub/tmp/gcc/gcc-4.9.0/.x86_64-linux/x86_64-linux/libstdc++-v3/src/.libs 

B . l Usage 

To use the pblaze port, specify the -mpblaze command line option to the sdcc binary. 
To change the size of the function arguments to be passed via registers, use the —argreg=N 

option, specifying the count of the registers. 
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Appendix C 

PicoBlaze-6 Instruction Set 

r - register, p - address in register, cX - constant, size, 1 - label 
LOAD r r Moves contents of registers 
LOAD r c Moves contents of registers 
STAR r r Moves contents of registers between banks 
AND r r Binary and 
AND r c Binary and 
OR r r Binary or 
OR r c Binary or 
XOR r r Binary xor 
XOR r c Binary xor 
ADD r r Addition 
ADD r c Addition 

ADDCY r r Addition, reuses carry 
ADDCY r c Addition, reuses carry 

SUB r r Subtraction 
SUB r c Subtraction 

SUBCY r r Subtraction, reuses carry 
SUBCY r c Subtraction, reuses carry 
TEST r r Binary and without result storage 
TEST r c Binary and without result storage 

TESTCY r r Binary and without result storage, reuses carry 
TESTCY r c Binary and without result storage, reuses carry 
COMPARE r r Operand comparison 
COMPARE r c Operand comparison 

COMPARECY r r Operand comparison, reuses carry 
COMPARECY r c Operand comparison, reuses carry 

SLO r Shift left, fill 0 
SL1 r Shift left, fill 1 
SLX r Shift left, fill L S B 
SLA r Shift left, fill carry 
RL r Rotate left 
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r - register, p - ac dress in register, cX - constant, size, 1 - label 
SRO r Shift right, fill 0 
SRI r Shift right, fill 1 
SRX r Shift right, fill L S B 
SRA r Shift right, fill carry 
RR r Rotate right 

REGBANK A Select bank A 
REGBANK B Select bank B 

INPUT r P Read data from a port 
INPUT r c8 Read data from a port 
OUTPUT r P Write data to a port 
OUTPUT r c8 Write data to a port 
OUTPUTK r P Write constant data to a specific port 
STORE r P Write data to scratchpad memory 
STORE r c8 Write data to scratchpad memory 
FETCH r P Read data from scratchpad memory 
FETCH r c8 Read data from scratchpad memory 

DISABLE INTERRUPT Disable interrupt 
ENABLE INTERRUPT Enable interrupt 
RETURNI DISABLE Disable return from interrupt handler 
RETURNI ENABLE Enable return from interrupt handler 

JUMP 1 Jump to label 
JUMP Z 1 Jump to label if zero 
JUMP NZ 1 Jump to label if not zero 
JUMP C 1 Jump to label if carry 
JUMP NC 1 Jump to label if not carry 

JUMP® P P Jump to label pointer 
CALL 1 Call label 
CALL Z 1 Call label if zero 
CALL NZ 1 Call label if not zero 
CALL C 1 Call label if carry 
CALL NC 1 Call label if not carry 

CALL® P P Call label pointer 
RETURN Return from call 
RETURN Z Return if zero 
RETURN NZ Return if not zero 
RETURN C Return if carry 
RETURN NC Return if not carry 

LOAD&RETURN r c Load a constant and return 
HWBUILD r Get harware information 
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