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Abstrakt
Práce je zaměřena na určení parametrů váhové funkce, která je pak použita pro určení
posunu mezi dvěma obrazy se sub-pixelovou přesností. Jsou použity standartní techniky
pro registraci obrazů jako je Fourierova transformace, fázová korelace, bilineární interpo-
lace aj. V práci je zahrnuta potřebná teorie, hledané parametry, postup optimalizace a
je přiložen i program, který sloužil jako optimalizační prostředek.

Abstract
The goal of this thesis is to find parameters of weight function, thanks to them we will
gain searched shift vector with sub-pixel precision. We are applying Fourier transform, in-
verse Fourier transform, phase correlation, bilinear interpolation etc. This thesis includes
theory, wanted parameters, process of optimization and there is also enclosed program,
which helped us with optimization.
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Chapter 1

Introduction

Digital images are everywhere these days. We can find them in many scientific, con-
sumer, industrial and artistic applications. Digital image processing continues to enable
the multimedia technology we are experiencing today. Some important examples of image
processing include the removal od degradations images suffer during acquisition, compres-
sion and transmission of images, economical storage and efficient transmission.

On the Brno University of Technology there is a group of mathematicians who are
specialized in processing of different images of the Sun. The leader of this group is prof.
Druckmüller from Faculty of Mechanical Engineering.

The Sun is very fascinating object and it’s also very important for living on the Earth.
If something happened on the Sun it could affect us all, actually it could have deadly
impact. Therefore we should study more this interesting star.

Nowadays we know (almost precisely) movements of planets in our solar system. We
could estimate the rotational speed of the Sun. However it’s still really hard to say some-
thing about the motion on the Sun surface. It’s a star, so it’s a big sphere of gases, which
are moving chaotically. Nevertheless sunspots are moving with rotation of the Sun, so
their translation is predictable.

Acceptable method for finding out the motion mentioned above is phase correlation,
which computes with Fourier transforms and inverse Fourier transforms. This method
could compute estimate of shift vector between two images, which refer to translation of
the objects in the images. As it was mentioned before, the sun surface is moving chaoti-
cally, so the result of phase correlation is not feasible. That’s why we divide up the image
of the sun to plenty of small segments of size 256× 256 and we compute shift vector of all
this segment in consequence.

For now we know that the phase correlation is accurate for integer-valued shifts. But
the surface motions are so chaotic that we need to improve this method to work with
sub-pixel precision. It’s done by multiplying the phase correlation function by suitable
weight function. In this thesis, we are working with one of small segments and we are
looking for proper parameters of weight function.
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Chapter 2

Phase correlation

The phase correlation is the motion estimation technique, which is suitable for estimating
the global motion of an image, which frame is undergoing. It is also referred to as an
image registration approach. The algorithm is rather intuitively clear, and it is based on
a simple property of the Fourier transform. The phase correlation is a theme, which could
be find in many publications.

Very nice introduction and inspiration to the phase correlation technique could be
find in [6]. For our purposes is [1] the optimal choice, where is completely and clearly
elaborated theory of registration images.

Therefore in Chapter 2 and 3 is cited [1], unless otherwise specified.

2.1 Basic notions

Definition 2.1. (L(R)) Let us denote L(R) as the space of all functions R → C such
that

∞∫
−∞

|f (x)|dx

exists and is finite [2].

Definition 2.2. (L(R2)) Let us denote L(R2) as the space of all functions R
2 → C such

that ∫∫
R2

|f (x, y)|dxdy

exists and is finite [2].

Definition 2.3. (Finite function) A function f(x, y) : R2 → R is called finite if it is
equal to zero outside of Cartesian rectangle 〈a, b〉×〈c, d〉, where a, b, c, d ∈ R, a < b, c < d.

Definition 2.4. (Basic space) Let K be the set of all finite functions ϕ which have con-
tinuous derivatives of all orders. Then K = (K,+, ·) is a vector space called basic space
with standardly defined operations of functions addition and multiplication by a constant.
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Definition 2.5. (Dirac distribution) The Dirac distribution is a functional

T (ϕ) = ϕ(0, 0)

on the basic space K.
The Dirac distribution is usually written as∫∫

R2

δ(x, y)ϕ(x, y)dxdy,

where the symbol δ(x, y) represents a “function” equal to zero for all (x, y) �= (0, 0) such∫∫
R2

δ(x, y)dxdy = 1.

2.2 Fourier transform
The Fourier transform is very important in engineering, physical sciences and mathemat-
ics. It is reversible, linear transform with many important properties. For example in
[2] we can find except the theory many applications too. We could say that the Fourier
transform breaks a function into an alternate representation, characterized by sines and
cosines, which have big usage in modern world of digital electronics.

2.2.1 Implementation

Definition 2.6. (Fourier transform of function in L(R2)) Let f (x, y) ∈ L(R2).
The Fourier transform of function f is function F{f}(ξ, η) = F (ξ, η) : R2 → C defined
as

F (ξ, η) =

∫∫
R2

f(x, y)e−i(xξ+yη)dxdy.

Function F is also called the Fourier spectrum of function f .

Definition 2.7. (Inverse Fourier transform of function in L(R2)) Let function
G(ξ, η) ∈ L(R2). The inverse Fourier transform of function G is function F−1{G}(x, y) =
g(x, y) : R2 → C defined as

g(x, y) =
1

4π2

∫∫
R2

G(ξ, η)ei(xξ+yη)dξdη.

Theorem 2.8. (Fourier inversion theorem for function in L(R2)) If f(ξ, η), F (ξ, η) ∈
L(R2) and f is continuous on R

2, then for every (ξ, η) ∈ R
2 it holds

F−1{F{f(x, y)}} =
1

4π2

∫∫
R2

F (ξ, η)ei(xξ+yη)dξdη.

Definition 2.9. (Amplitude spectrum, phase spectrum) Let function f(x, y) ∈
L(R2) have Fourier spectrum F (ξ, η). The amplitude spectrum of function f is a function
A(ξ, η) : R2 → R

+
0 defined as

14



A(ξ, η) = |F{f(x, y)}| = |F (ξ, η)|.
The phase spectrum of function f is a function Φ(ξ, η) : R2 → 〈0, 2π) defined as

ReF (ξ, η) = A(ξ, η) cosΦ(ξ, η),

ImF (ξ, η) = A(ξ, η) sinΦ(ξ, η).

If A(ξ, η) = 0 for some (ξ, η) we define Φ(ξ, η) = 0.

2.2.2 Properties of the Fourier transform

The basic properties are written up in Table 2.1. List of functions is situated on the left
and their Fourier transforms are in the middle. Some of them are shown below. Functions
f(x, y), g(x, y) ∈ L(R2). Further α, β, x0, y0, ξ0, η0 are real constants.

function Fourier transform name

1 αf(x, y) + βg(x, y) αF (ξ, η) + βG(ξ, η) linearity

2 f(x− x0, y − y0) F (ξ, η) e−i(ξ0x+η0y) shift theorem

3 ei(ξ0x+η0y)f(x, y) F (ξ − ξ0, η − η0) modulation theorem

4 f(αx, αy) 1
α2F ( ξ

α
, η
α
) scale-change theorem

5 f ∗(x, y) F ∗(−ξ,−η) complex conjugate

6 (f ∗ g)(x, y) F (ξ, η)G(ξ, η) convolution

Table 2.1: Properties of the Fourier transform

Theorem 2.10. (Shift theorem) Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its Fourier
spectrum. Let us suppose function

f2(x, y) = f1(x− x0, y − y0),

where x0, y0 ∈ R are given constants. Furthermore let us denote F2(ξ, η) as Fourier
spectrum of function f2(x, y). Then it holds

F2(ξ, η) = F1(ξ, η)e
−i(ξx0+ηy0),

A2(ξ, η) = A1(ξ, η),

Φ2(ξ, η) = Φ1(ξ, η)⊕ (−ξx0 − ηy0),

where ⊕ means addition modulo 2π.
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Theorem 2.11. (Scale-change theorem) Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its
Fourier spectrum. Let us suppose function

f2(x, y) = f1(αx, αy),

where α ∈ R
+ is a given constant. Let F2(ξ, η) be its Fourier spectrum. Then it holds

F2(ξ, η) =
1

α2
F1

(
ξ

α
,
η

α

)
,

A2(ξ, η) =
1

α2
A1

(
ξ

α
,
η

α

)
,

Φ2(ξ, η) = Φ1

(
ξ

α
,
η

α

)
.

Theorem 2.12. (Rotation theorem) Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its Fourier
spectrum. Let us suppose function

f2(x, y) = f1(x cos θ − y sin θ, x sin θ + y cos θ),

where θ ∈ 〈0, 2π) is a given constant. Let F2(ξ, η) be its Fourier spectrum. Then it holds

F2(ξ, η) = F1(ξ cos θ − η sin θ, ξ sin θ + η cos θ),

A2(ξ, η) = A1(ξ cos θ − η sin θ, ξ sin θ + η cos θ),

Φ2(ξ, η) = Φ1(ξ cos θ − η sin θ, ξ sin θ + η cos θ).

Theorem 2.13. (Similarity theorem) Let f1(x, y) ∈ L(R2) and let F1(ξ, η) be its
Fourier spectrum. Let us suppose function

f2(x, y) = f1(αx cos θ − αy sin θ − x0, αx sin θ + αy cos θ − y0),

where θ ∈ 〈0, 2π), α ∈ R
+, x0, y0 ∈ R are given constants. Let F2(ξ, η) be its Fourier

spectrum. Then it holds

F2(ξ, η) =
1

α2
e−i(ξx0+ηy0)F1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
,

A2(ξ, η) =
1

α2
A1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
,

Φ2(ξ, η) = Φ1

(
ξ

α
cos θ − η

α
sin θ,

ξ

α
sin θ +

η

α
cos θ

)
⊕ (−ξx0 − ηy0).

Theorem 2.14. Let f(x, y) ∈ L(R2) and let F (ξ, η) be its Fourier spectrum. The Fourier
spectrum of the complex conjugate of function f is the complex conjugate of its Fourier
spectrum with reversed axes

F{f ∗(x, y)} = F ∗(−ξ,−η).

Moreover if f is continuous, then the inverse Fourier transform of the complex conjugate
of spectrum F is the complex conjugate of function f with reversed axes

F−1{F ∗(ξ, η)} = f ∗(−x,−y).
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2.3 Convolution

Definition 2.15. (Convolution) Let functions f1(x, y), f2(x, y) ∈ L(R2). The convolu-
tion f1 ∗ f2 of functions f1, f2 is a function

f(x, y) =

∫∫
R2

f1(s, t)f2(x− s, y − t)dsdt.

Theorem 2.16. Let functions f1(x, y), f2(x, y) ∈ L(R2) with Fourier spectra F1(ξ, η), F2(ξ, η).
Then it holds

F{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η).

Remark 2.17. Proof of Theorem 2.16 could be find in [3].

The fastest way how to compute convolution of f1 and f2 is to take the Fourier trans-
form of the first function f1 and the Fourier transform of the second function f2, multiply
them and then calculate the inverse Fourier transform of that result. We will see that
a very closely related operation is cross correlation function.

2.4 Various correlation

Correlation is used to assess how similar are two different functions.

2.4.1 Cross-power spectrum

Definition 2.18. (Cross-power spectrum) Let functions f1(x, y), f2(x, y) ∈ L(R2)
have Fourier spectra F1(ξ, η), F2(ξ, η). The cross-power spectrum of function f1, f2 is
a function Cf1,f2(ξ, η) : R

2 → C defined as

Cf1,f2(ξ, η) = F1(ξ, η) · F ∗
2 (ξ, η).

Definition 2.19. (Normalized cross-power spectrum) Let functions f1(x, y), f2(x, y) ∈
L(R2) have Fourier spectra F1(ξ, η), F2(ξ, η). The normalized cross-power spectrum of func-
tion f1, f2 is a function Zf1,f2(ξ, η) : R

2 → C defined as

Zf1,f2(ξ, η) =
F1(ξ, η) · F ∗

2 (ξ, η)

|F1(ξ, η) · F2(ξ, η)| .

Definition 2.20. (Semi-normalized cross-power spectrum) Let functions f1(x, y), f2(x, y) ∈
L(R2) have Fourier spectra F1(ξ, η), F2(ξ, η). The semi-normalized cross-power spectrum
of function f1, f2 is a function Zp,q

f1,f2
(ξ, η) : R2 → C defined as

Zp,q
f1,f2

(ξ, η) =
F1(ξ, η) · F ∗

2 (ξ, η)

(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)
,

where p, q ∈ R
+ are given constants.
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2.4.2 Correlation function

Definition 2.21. (Cross-correlation function) Let functions f1(x, y), f2(x, y) ∈ L(R2)
have Fourier spectra F1(ξ, η), F2(ξ, η). Function Qf1,f2(x, y) : R

2 → C defined as

Qf1,f2(x, y) = F−1{Cf1,f2(ξ, η)} = F−1{F1(ξ, η) · F ∗
2 (ξ, η)}

is called the cross-correlation function of functions f1, f2.

Definition 2.22. (Phase-correlation function) Let functions f1(x, y), f2(x, y) ∈ L(R2)
have Fourier spectra F1(ξ, η), F2(ξ, η). Function Pf1,f2(x, y) : R

2 → C defined as

Pf1,f2(x, y) = F−1{Zf1,f2(ξ, η)} = F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)

|F1(ξ, η) · F2(ξ, η)|
}

is called the phase-correlation function of functions f1, f2.

Definition 2.23. (Semi-phase correlation function) Let functions f1(x, y), f2(x, y) ∈
L(R2) have Fourier spectra F1(ξ, η), F2(ξ, η). Function P p,q

f1,f2
(x, y) : R2 → C defined as

P p,q
f1,f2

(x, y) = F−1{Zp,q
f1,f2

(ξ, η)} = F−1

{
F1(ξ, η) · F ∗

2 (ξ, η)

(|F1(ξ, η)|+ p) · (|F2(ξ, η)|+ q)

}

is called the semi-phase correlation function of functions f1, f2.

Remark 2.24. Let functions f1(x, y), f2(x, y) ∈ L(R2) be continuous real, i.e. f ∗
1 = f1

and f ∗
2 = f2 and with Fourier spectra F1(ξ, η), F2(ξ, η) ∈ L(R2). Then we can compute

the cross-correlation function of f1 and f2 as

Qf1,f2(x, y) = F−1 {F1(ξ, η) · F ∗
2 (ξ, η)} = F−1 {F{f1(x, y)} · F{f ∗

2 (−x,−y)}} =
f1(x, y) ∗ f ∗

2 (−x,−y) = f1(x, y) ∗ f2(−x,−y).

Theorem 2.25. (Phase-correlation function of shifted functions) Let function
f1(x, y) ∈ L(R2) and let F1(ξ, η) be its Fourier spectrum. Let us suppose function
f2(x, y) = f1(x− x0, y− y0), where x0, y0 are given constants. Let F2(ξ, η) be the Fourier
spectrum of function f2. Then the phase-correlation function of functions f1, f2 is the
Dirac distribution shifted by (−x0,−y0)

Pf1,f2(x, y) = δ(x+ x0, y + y0).

Remark 2.26. In whole Chapter 2 we consider function f(x, y) to be defined as f :
R

2 → C. When we need to take an image to the frequency domain we change its domain
to a bounded area {0, 1, · · · , N − 1} × {0, 1, · · · , N − 1}, N ∈ N. Therefore we have to
compute with discrete version of Fourier transform or inverse Fourier transform defined
as

D{f}(ξ, η) = F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(xξ+yη),

D−1{F}(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).

The properties of Fourier transform, just as convolution and correlation stay unmodified,
we only swap F and D in equations.
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Chapter 3

Image registration

Image registration is the process of spatially aligning two images of a scene so that cor-
responding point assume the same coordinates. The first image will be referred to as the
master image and the second as the slave image. For more information see [4].

Definition 3.1. (Digital grey-scale image) Let R = {0, 1, · · · ,M−1}×{0, 1, · · · , N−
1},M,N ∈ N and let W = {0, 1, · · · , w − 1}, w ∈ N. Function

f(x, y) : R → W

is called a digital grey-scale image or image only if no confusion may be caused. M is
called the image width, N the image height. Elements of R are called pixels, value of f
in pixel (x, y) is called the pixel value. The value of w determines the image dynamic
range. We say that the dynamic range is n bits per pixel or it is an n-bit image if w = 2n.

Remark 3.2. We work only with grey-scale image, because in this case it is not important
to register colour components of the images.

3.1 Registration of shifted images
We consider that both images thus functions f1, f2 are identical but shifted with respect
to each other by vector (x0, y0), so

f2(x, y) = f1(x− x0, y − y0).

We find out the shift vector by using phase-correlation function. In simple cases we should
get discrete impulse function (discrete Dirac impulse), in this case there is one global
maximum in coordinates (x0, y0) for which we are looking for. If we use original images
the result could be ambigious, due to edges of the images where are the big differences
in pixels values. Therefore, it is necessary to cut off or at least smoothen these edges from
the images for good shift estimation.

It is achieved by multiplying our image by suitable function g called window function.
This function must be equal to zero or almost zero at the image edges and continuously
tends to one for the rest of the image.

There are number of different window functions which can be used for digital signal
processing, like the triangular window, Kaiser window and so on. We will use Gaussian
and Hanning window function.
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Definition 3.3. (Window function) Let us set

A = 〈−a, a〉 × 〈−b, b〉 , a, b ∈ R
+
0 ,

B = {(x, y); x2 + y2 ≤ r2}, r ∈ R
+
0 .

Let σ ∈ R
+
0 be a given number. Let �(X,A) be the distance of point X = (x, y) from

set A, i.e.
�(X,A) = inf {d ∈ R, d = �(X, Y ), Y ∈ A} ,

where �(X, Y ) is the Euclidean metric. Then

1. Function
gGR(x, y) = e−

�2(X,A)

σ2

is called the rectangular Gaussian window function.

2. Function
gGC(x, y) = e−

�2(X,B)

σ2

is called the circular Gaussian window function.

3. Function

gHR(x, y) =

{
1
2
+ 1

2
sin

(
π�(X,A)

σ
− π

2

)
if �(X,A) ≤ σ,

0 if �(X,A) > σ

is called the rectangular Hanning window function.

4. Function

gHC(x, y) =

{
1
2
+ 1

2
sin

(
π�(X,B)

σ
− π

2

)
if �(X,B) ≤ σ,

0 if �(X,B) > σ

is called the circular Hanning window function.

Remark 3.4. The window functions are defined as a symmetrical functions with centre
in (0, 0) so we have to shift our images by

(
N
2
, N

2

)
, it means that we multiply image f

by shifted window function g
(
x− N

2
, y − N

2

)
.

The advantage of rectangular window functions is that they retain a big part of the
image without change. However their drawback is the fact that they do not diminish
totally on the edges, it means that there are still some information left. By using circular
window function, we miss out on big part of the image, on the other hand we lose the
information on the edges. It’s possible to use different window functions on both registered
images.

Definition 3.5. (Centering images) Let us assume that images f1, f2 have width m
and height n. Let N ∈ N be a number divisible by higher power of 2 (at least 16), not
divisible by a high prime number, such that m ≤ N, n ≤ N . Then we create images
fc1, fc2 from images f1, f2 by

fck(x, y) =

{
fk(x−m0, y − n0) if m0 ≤ x ≤ m0 +m− 1, n0 ≤ x ≤ n0 + n− 1,

0 else

for k = 1, 2, where m0 = 
N−m
2

�, n0 = 
N−n
2

�.
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3.2 Registration of real images
Up to this point we have assumed images f1, f2 to be identical except for some transfor-
mation. Now we use the real images, which may contain additive noise, impulse noise,
defects caused by our optical system, dust particles, diffuse light etc.

The cross-correlation function does not need to have clear global maximum, it is why
we use semi-phase correlation instead. It could happened that the division by zero occur
so we choose p, q to eliminate it. For sharp images we may select small values of p, q, for
images which are blurred, taken with poor optics, or at bad conditions, we should increase
p, q to decrease influence of frequencies with no information.

Additive noise and variable impulse noise represent information of all spatial frequen-
cies, primary of the highest one. It makes them useless for our registration. Furthermore
the low frequencies contain information about optics vignetting and diffuse light of the im-
ages. Due to the facts written above, we multiply the Fourier spectra of the image by
a suitable weight function to reduce information on the highest/lowest spatial frequencies.

Definition 3.6. (Gaussian low-pass high-pass weight function) Let λ1, λ2 ∈ R
+
0

and N ∈ N be the size of domain of image f . Function Hλ1(ξ, η) : R
2 → (0, 1〉 defined as

Hλ1(ξ, η) = e−λ1
ξ2+η2

N2

is called the Gaussian low-pass weight function with parameter λ1. Function Hλ2(ξ, η) :
R

2 → 〈0, 1) defined as

Hλ2(ξ, η) = 1− e−λ2
ξ2+η2

N2

is called the Gaussian high-pass weight function with parameter λ2. Function Hλ2
λ1
(ξ, η) :

R
2 → 〈0, 1〉 defined as

Hλ2
λ1
(ξ, η) = Hλ2(ξ, η) ·Hλ1(ξ, η)

is called the Gaussian low-pass high-pass weight function.

Remark 3.7. The weight functions are defined symmetrically with centre in (0,0). We
have to shift the images by vector

(
N
2
, N

2

)
, i.e. multiply the Fourier spectra of the images

by function Hλ2
λ1

(
ξ − N

2
, η − N

2

)
.

It’s possible to apply Gaussian low-pass high-pass weight function after computing
(inverse) Fourier spectra of images, due to the fact that the Gaussian function stay in-
variable. This weight function is not applicable if there’s indispensable amount of additive
and variable impulse noise. Therefore we use another type of weight function so called
low-pass high-pass weight function.

Definition 3.8. (Low-pass high-pass weight function). Let r1, r2, σ1, σ2 ∈ R
+ such

that r1 < r2. Function Hr1,σ1(ξ, η) : R
2 → 〈0, 1〉 defined as

Hr1,σ1(ξ, η) =

⎧⎪⎪⎨
⎪⎪⎩
0 if 4

N2 (ξ
2 + η2) < (r1 − σ1)

2,

1
2
+ 1

2
cos

π(r1− 2
N

√
ξ2+η2)

σ1
if (r1 − σ1)

2 ≤ 4
N2 (ξ

2 + η2) < r21,

1 else

is called the high-pass weight function. Function Hr2,σ2(ξ, η) : R2 → 〈0, 1〉 defined as

Hr2,σ2(ξ, η) =

⎧⎪⎪⎨
⎪⎪⎩
1 if 4

N2 (ξ
2 + η2) < r22,

1
2
+ 1

2
cos

π(r2− 2
N

√
ξ2+η2)

σ2
if r22 ≤ 4

N2 (ξ
2 + η2) < (r2 + σ2)

2,

0 else
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is called the low-pass weight function. Function Hr2,σ2
r1,σ1

(ξ, η) : R2 → 〈0, 1〉 defined as

Hr2,σ2
r1,σ1

(ξ, η) = Hr2,σ2(ξ, η) ·Hr1,σ1(ξ, η)

is called the low-pass high-pass weight function.

3.2.1 Registration of shifted images step by step

Let us denote f1, f2 the registered images. The Fourier transform will be computed
on a square N ×N , where N is even. Steps of registration:

1. Multiplying images f1, f2 by window functions. It gives images fw1, fw2.

2. Centering images fw1, fw2 in the square N ×N pixels. It gives images fc1, fc2.

3. Computing the semi-normalized cross-power spectrum Z = Zp,q
fc1,fc2

of images fc1, fc2.
Constants p, q are chosen with respect to used optical system, fuzziness, haze etc.

4. Multiplying Z by a low-pass high-pass weight function. It gives Zw.

5. Computing the inverse discrete Fourier transform P of Zw.

6. Finding the coordinates of the global maximum of function P , i.e. finding the shift
vector (x0, y0) .

3.3 Sub-pixel precision registration
The vector (x0, y0) is integer valued estimate of the shift vector between images f1, f2. We
are looking for sub-pixel precision estimate of the shift vector denoted by (x̃0, ỹ0). There
are many methods how to estimate noninteger valued shifts. We will use method based
on geometric moments computed from pixel values.

Definition 3.9. (Geometric moment) Let us have circle with centre (x0, y0) and radius
ε ∈ R

+. Then the geometric moment is defined as

Mk,l =
∑∑
x2+y2<ε

xkylP (x0 + x, y0 + y), k, l = 0, 1,

where P (x, y) is the modified semi-phase correlation function described in step 5 of Sub-
section 3.2.1 and M0,0 is equal to total image intensity (see [4]) .

The sub-pixel precision estimate of the shift vector, i.e. the vector (x̃0, ỹ0), is computed
as

(x̃0, ỹ0) =

(
M1,0

M0,0

,
M0,1

M0,0

)
and we can consider the point [x̃0, ỹ0] as the centre of gravity of the peak and its neigh-
bourhood with radius ε

Remark 3.10. The sub-pixel precision estimate of the shift vector may be computed also
by bilinear interpolation. We will use this procedure only for making our own sub-pixel
shifts, due to the fact that it is much more faster. On the other hand it’s not so accurate.
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Figure 3.1: Example of 2D grid for bilinear interpolation

3.3.1 Bilinear interpolation

Bilinear interpolation is an extension of linear interpolation for interpolating functions
of two variables on a 2D grid. In image processing it’s basic resampling technique. It’s
used for finding out a pixel value of a point in sub-pixel position. We could say, that
bilinear interpolation is weighted average in image processing.

Definition 3.11. Let us have points P11 = (x1, y1), P12 = (x1, y2), P21 = (x2, y1), P22 =
(x2, y2) (see Figure 3.1) and assume that we know the pixel value of f in these points .
Then it holds

f(x, y1) ≈ x2 − x

x2 − x1

f(P11) +
x− x1

x2 − x1

f(P21),

f(x, y2) ≈ x2 − x

x2 − x1

f(P12) +
x− x1

x2 − x1

f(P22),

f(x, y) ≈ y2 − y

y2 − y1
f(x, y1) +

y2 − y

y2 − y1
f(x, y2).
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Chapter 4

Program

We would like to find the best parameters for registration of images bz the method de-
scribed before. We used the set of 10 000 images with known sub-pixel shift, for our
purpose it was really necessary to make a special program for finding the best parame-
ters. This program is based on procedures developed by Prof. Miloslav Druckmüller and
was made under his supervision and the set of testing images was generated by another
program created by my colleague Eliška Málková. The program was made in Delphi XE6
and the basic Pascal commands could be found in [5].

In the program presented in this thesis are done some interesting innovations. One of
them is remake of the Druckmüller’s procedure called LowPass, which compute Gaus-
sian low-pass weight function shifted by N

2

(
Hλ1

(
ξ − N

2
, η − N

2

))
to procedure called

LowPassHighPass, which compute shifted Gaussian low-pass high-pass weight function
Hλ2

λ1

(
ξ − N

2
, η − N

2

)
defined by Definition 3.6. with respect to Remark 3.7. This new pro-

cedure LowPassHighPass has four parameters. Oldspec referring to cross-power spectrum,
Newspec computed by this procedure, λ1 and λ2. Further we had to add one parameter
called HPF (high-pass filter) to procedures GetTranslation and FindImgTranslation.

Figure 4.1: Control panel of the program
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In the program there are included user-friendly elements as for example possibility to
change scale or gamma correction of displayed image. User can crop and save part of
image, compute shift vector of two images etc. (see Figure 4.1).

The cropping procedure Crop includes four Edit Boxes. Two of them for choosing the
coordinates of the top left vertex of the cropped image and two remaining for choosing
which shift we want to apply. If we want to crop unshifted image, it’s possible to write
zeros there. The exact position x, y could be found out below the image by moving cursor
over it. This procedure includes bilinear interpolation. There’s also save button for saving
your new image to specific file.

Shift button launches procedure called FindImgTranslation and DisplayPhasseCorr-
Result. The first procedure computes the shift vector, which is written up above Gaussian
filter button. The second one shows us the result of phase correlation, it means that it
displays the image of Dirac distribution. The final “point” will be always at the centre of
top right image window (scroll-box moves with this point). Further we can use Gaussian
filter button, which changes the λ1 and λ2 in Gaussian low-pass high-pass weight function.
The shift vector, selected parameters and names of the images are written to a Memo Box.
We can save these information to a text file by using Save Memo button. These method
is good for finding a few possible parameters, but it’s not usable with our huge number
of images.

Due to the fact mentioned above, there is button called Fast shift. This button
launches procedure, which computes shift vectors of all images, deviations in x, y from
real shift and also maximum deviations in x, y. It is all written to a text file for later
usage.
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Chapter 5

Parameter Optimization

It was mentioned in Chapter 4 that we work with the set of 10 000 images. The source
file hmi.ic_45s.2014.10.23_15_00_45_TAI.continuum.fits which contains image of
the Sun obtained from SDO is downloaded from webpage of NASA, see [7]. Further we
cropped out segment of size 256 × 256 pixels (see displayed image on left part of Figure
4.1), which we consider to be our master image. Then we cropped out sequence of new im-
ages from the source one, but now they are gradually shifted. We decided to do a percent
steps, it means that each next image is shifted by 0.01 pixel up to 0.99 pixel in axis x and
in the same way in axis y. At the end we had all combinations of shifts in area of one pixel.

5.1 Chosen constants and methods
Our cropped square segment has not got black edges so we need to apply Hanning rect-
angular window function for removing the information there. From previous studies we
know that the best choice for parameter σ in the window function gHR is 0.5, it means
that the weight function is equal to 1 on 50 % of image.

It’s possible to do phase correlation only on part of image, which is called “ROI”
(Range Of Interest), it would be used, if we did not crop out the segment. In our case
the ROI is identical with used image, so its width and height are 256 pixels.

The result from phase correlation is displayed as a point on black background (see
Figure 5.1). We work with sub-pixel precision, such that we find maximum pixel value
of this point, further we take this pixel and we will find the geometric moments of it with
ε equals to 6.

5.2 Proper optimization
At the beginning of testing program we tried different λ1 and λ2 on few images for finding
a group of parameters for next optimization. On Figure 5.1 we can see how does it work.
For small λ1 we will obtain small peak, it means that we remove only little bit of the
highest frequencies and our maximum peak is steep. On the contrary, if we use big λ1,
we will get bigger peak, it means that we remove the highest frequencies and our peak
is more rounded. The parameter λ2 changes information in the lowest frequencies so we
can’t see any differences in the displayed result.

For our next research we chose λ1 = {4, 5, 6} and λ2 = {11, 12, 13, 14}. Thanks to
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(a) (b)

Figure 5.1: Displayed result from phase correlation after multiplication by Gaussian low-
pass high-pass weight function. Used parameters λ1 = 3 and λ2 = 13 for image a) and
λ1 = 7 and λ2 = 13 for image b).
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Figure 5.2: Graph of usable parameters and maximal deviations

these parameters, we can get shifts, which are identical with real shift up to thousandths.
We did combinations of all these parameters and then we applied them to all images.
Further we went through text files (see attachment on CD) created by this program
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and we found the maximal deviations from real shifts. Then we put them to the graph
(see Figure 5.2) from where we can see many information. The axis x matches to λ1,
the axis y matches to λ2 and the axis z equals to maximal deviations multiplied by
10−4. The combinations with λ1 = 6 are inapplicable, due to big deviations, for example
the deviation for combination of {λ1, λ2} = {6, 14} equals to 0.0094 and it’s indispensable
error. The combinations with λ1 = 5 are better then the previous one, we can say that
it’s stationary parameter, but still we can get more exact shifts. The combinations with
λ1 = 4 are less stable then the previous one, but as we can see from graph the combination
of {4, 12} has the minimal deviation, which equals to 0.0031. Thus my chosen optimal
parameters are λ1 = 4 and λ2 = 12.
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Chapter 6

Conclusion

The goal of this thesis was to find optimal parameters of low-pass high-pass weight function
(see Definition 3.6) and to made a program for computing shift vector with sub-pixel
precision (see Chapter 4). For optimization we used pack of images with known shifts.

In Chapter 2 we summarised theory about phase correlation. The most important
parts are definitions of Fourier transform (see Definition 2.6), convolution (see Definition
2.15), normalized cross-power spectrum (see Definition 2.19) and of course the definition
of phase-correlation function (see Definition 2.22).

The Chapter 3 talks about image registration, mainly about the problems of working
with real images, like presence of additive and multiple noise, dust particles and diffuse
light. There is written how to abolish them also, for example by window function, which
deals with big differences in image edges (see Definition 3.3). Further we wrote there
about sub-pixel precision registration.

The Chapter 5 is the major part of this thesis, it is about the proper optimization.
We mentioned there which constants have been used and why. We described the process
of optimization and at the end we described the best parameters for sub-pixel registration
as well as rationalization.

The current accuracy surpassed our expectations. We awaited that the shift vector
will be precise only on hundredths, but as we can see in Figure 5.2, we are working with
thousandths there. We are not in need of it, but if we wanted, we would optimize used
constants (see Section 5.1) and maybe we will get even more precise shift vectors.
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Used symbols

N the set of natural numbers
R the set of real numbers
R

+ the set of positive real numbers, i.e. (0,∞)
R

+
0 the set of positive real numbers plus zero, i.e. 〈0,∞)

C the set of complex numbers
ReF (ξ, η) the real part of Fourier spectrum
ImF (ξ, η) the imaginary part of Fourier spectrum
f ∗ the complex conjugate of f ∈ C

f(x, y), f1(x, y), f2(x, y) functions of L(R2), see Definition 2.2
F (x, y), F1(x, y), F2(x, y) the Fourier spectra of functions f(x, y), f1(x, y), f2(x, y),

see Definition 2.6
A(ξ, η), A1(ξ, η), A2(ξ, η) the amplitude spectra of functions f(x, y), f1(x, y), f2(x, y),

see Definition 2.9
Φ(ξ, η), Φ1(ξ, η), Φ2(ξ, η) the phase spectra of functions f(x, y), f1(x, y), f2(x, y),

see Definition 2.9
f1(x, y) ∗ f2(x, y) the convolution of functions f1 and f2

a� the integer part of real number a
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Attachment

CD with text files and program in Delphi XE6.

• shift-parameter-4-11.txt

• shift parameter-4-12.txt

• shift-parameter-4-13.txt

• shift-parameter-4-14.txt

• shift-parameter-5-11.txt

• shift-parameter-5-12.txt

• shift-parameter-5-13.txt

• shift-parameter-5-14.txt

• shift-parameter-6-11.txt

• shift-parameter-6-12.txt

• shift-parameter-6-13.txt

• shift-parameter-6-14.txt
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