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Abstrakt 
Práce je zaměřena na určení p a r a m e t r ů váhové funkce, k te r á je pak použ i t a pro určení 
posunu mezi dvěma obrazy se sub­pixelovou přesnost í . Jsou použi ty s t a n d a r t n í techniky 
pro registraci obrazů jako je Fourierova transformace, fázová korelace, bil ineární interpo­

lace aj. V práci je zahrnuta p o t ř e b n á teorie, hledané parametry, postup optimalizace a 
je přiložen i program, kte rý sloužil jako opt imal izační pros t ředek. 

Abstract 
The goal of this thesis is to find parameters of weight function, thanks to them we wi l l 
gain searched shift vector with sub­pixel precision. We are applying Fourier transform, in­

verse Fourier transform, phase correlation, bilinear interpolation etc. This thesis includes 
theory, wanted parameters, process of optimization and there is also enclosed program, 
which helped us with optimization. 
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Chapter 1 

Introduction 

Digital images are everywhere these days. We can find them in many scientific, con­
sumer, industrial and artistic applications. Digi ta l image processing continues to enable 
the multimedia technology we are experiencing today. Some important examples of image 
processing include the removal od degradations images suffer during acquisition, compres­
sion and transmission of images, economical storage and efficient transmission. 

O n the Brno University of Technology there is a group of mathematicians who are 
specialized in processing of different images of the Sun. The leader of this group is prof. 
Druckmiiller from Faculty of Mechanical Engineering. 

The Sun is very fascinating object and it's also very important for l iving on the Ear th . 
If something happened on the Sun it could affect us all , actually it could have deadly 
impact. Therefore we should study more this interesting star. 

Nowadays we know (almost precisely) movements of planets in our solar system. We 
could estimate the rotational speed of the Sun. However it's st i l l really hard to say some­
thing about the motion on the Sun surface. It's a star, so it's a big sphere of gases, which 
are moving chaotically. Nevertheless sunspots are moving with rotation of the Sun, so 
their translation is predictable. 

Acceptable method for finding out the motion mentioned above is phase correlation, 
which computes with Fourier transforms and inverse Fourier transforms. This method 
could compute estimate of shift vector between two images, which refer to translation of 
the objects in the images. A s it was mentioned before, the sun surface is moving chaoti­
cally, so the result of phase correlation is not feasible. That 's why we divide up the image 
of the sun to plenty of small segments of size 256 x 256 and we compute shift vector of all 
this segment in consequence. 

For now we know that the phase correlation is accurate for integer-valued shifts. But 
the surface motions are so chaotic that we need to improve this method to work with 
sub-pixel precision. It's done by mult iplying the phase correlation function by suitable 
weight function. In this thesis, we are working with one of small segments and we are 
looking for proper parameters of weight function. 
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Chapter 2 

Phase correlation 

The phase correlation is the motion estimation technique, which is suitable for estimating 
the global motion of an image, which frame is undergoing. It is also referred to as an 
image registration approach. The algorithm is rather intuitively clear, and it is based on 
a simple property of the Fourier transform. The phase correlation is a theme, which could 
be find in many publications. 

Very nice introduction and inspiration to the phase correlation technique could be 
find in [6]. For our purposes is [1] the optimal choice, where is completely and clearly 
elaborated theory of registration images. 

Therefore in Chapter 2 and 3 is cited [1], unless otherwise specified. 

2.1 Basic notions 
Definition 2.1. Let us denote C(K) as the space of all functions M. —> C such 
that 

exists and is finite [2]. 

Definition 2.2. ( £ ( M 2 ) ) Let us denote £ ( M 2 ) as the space of all functions M2 —> C such 
that 

exists and is finite [2]. 

Definition 2.3. (Finite function) A function f(x,y) : M 2 —> M. is called finite if it is 
equal to zero outside of Cartesian rectangle (a, b) x (c, d), where a, b, c, d G M , a < b, c < d. 

Definition 2.4. (Basic space) Let K be the set of all finite functions cp which have con­
tinuous derivatives of al l orders. Then fC = (K, +, •) is a vector space called basic space 
with standardly defined operations of functions addition and multiplication by a constant. 

DC 

— oo 
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Definition 2.5. (Dirac distribution) The Dirac distribution is a functional 

on the basic space K. 

The Dirac distribution is usually written as 

J J S(x,y)ip(x,y)dxdy, 
R 2 

where the symbol 6(x,y) represents a "function" equal to zero for all (x,y) 7̂  (0,0) such 

J J' 5(x,y)dxdy = 1. 

R 2 

2.2 Fourier transform 
The Fourier transform is very important in engineering, physical sciences and mathemat­
ics. It is reversible, linear transform with many important properties. For example in 
[2] we can find except the theory many applications too. We could say that the Fourier 
transform breaks a function into an alternate representation, characterized by sines and 
cosines, which have big usage in modern world of digital electronics. 

2.2.1 Implementation 
Definition 2.6. (Fourier transform of function in £ ( M 2 ) ) Let f(x,y) £ £ ( M 2 ) . 
The Fourier transform of function / is function . F { / } ( £ , 77) = F ( £ , 77) : M 2 —> C defined 
as 

F(£,v) = U f(x,y)e-^+y^dxdy. 

R 2 

Function F is also called the Fourier spectrum of function / . 

Definition 2.7. (Inverse Fourier transform of function in £ ( M 2 ) ) Let function 
G(£, rf) £ £ ( M 2 ) . The inverse Fourier transform of function G is function J7~1{G}(x, y) = 
g(x, y) : M 2 —> C defined as 

R 2 

Theorem 2.8. (Fourier inversion theorem for function in £ ( M 2 ) ) I f / ( £ , 77), F ( £ , 77) £ 
£ ( M 2 ) and / is continuous on M 2 , then for every (£ ,77) £ M 2 it holds 

R 2 

Definition 2.9. (Amplitude spectrum, phase spectrum) Let function f(x,y) £ 
£ ( M 2 ) have Fourier spectrum F ( £ , 77). The amplitude spectrum of function / is a function 
A(Z, rj) : R2 M+ defined as 

14 



MZ,v) = \Hf(x,v)}\ = \nz,v)\-

The phase spectrum of function / is a function $ ( £ , 7 7 ) : M 2 —> (0,27r) defined as 

WeFfor?) = A ( e , r / ) c o s $ ( e , r / ) , 

JmF(C,v) = A(£,ri)8m$(S,ri). 

If 77) = 0 for some (£ ,77) we define $ ( £ , 7 7 ) = 0. 

2.2.2 Properties of the Fourier transform 
The basic properties are written up in Table 2.1. List of functions is situated on the left 
and their Fourier transforms are in the middle. Some of them are shown below. Functions 
f(x,y),g(x,y) £ £ ( M 2 ) . Further a, ß, XQ, yo, £0 , Vo are real constants. 

function Fourier transform name 

1 <*f(x,y) + ßg(x,y) aF(t,V) + ßG(£,ri) linearity 

2 f(x-x0,y-y0) shift theorem 

3 étt°x+r)w)f(x,y) modulation theorem 

4 f{ax,ay) 
OL

 v a ' a 1 
scale-change theorem 

5 f*(x,y) F*(-t,-ri) complex conjugate 

6 (/ *g)(x,y) F ( £ , 7 7 ) G ( £ , 7 7 ) convolution 

Table 2.1: Properties of the Fourier transform 

Theorem 2.10. (Shift theorem) Let fi(x,y) £ £ ( M 2 ) and let F i (£ , 77) be its Fourier 
spectrum. Let us suppose function 

f2(x,y) = fi(x - x0,y -y0), 

where xo,yo £ K are given constants. Furthermore let us denote F 2(£,?7) as Fourier 
spectrum of function f2(x,y). Then it holds 

F2(Z,V) = F 1 ( £ , 7 / ) e - ^ 0 + ™ ) , 

A2(Z,V) = A^rj), 

$2(^,77) = 77) © (-£x0 -777/0), 

where © means addition modulo 2TT. 
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Theorem 2.11. (Scale-change theorem) Let fi(x,y) £ £ ( M 2 ) and let Fi(£,r]) be its 
Fourier spectrum. Let us suppose function 

f2(x,y) = fi(ax,ay), 

where a £ M + is a given constant. Let i ^ f^ r ? ) be its Fourier spectrum. Then it holds 

az \a> a 

A2(Z,r,) = V i f - » -a"1 \ a a 

Theorem 2.12. (Rotation theorem) Let fi(x, y) £ £ ( M 2 ) and let F i (£ , rj) be its Fourier 
spectrum. Let us suppose function 

J2 (x,y) = fi (x cos 9 — y sin 9, x sin 9 + y cos 9), 

where 9 £ {0,2n) is a given constant. Let F 2 (^,r / ) be its Fourier spectrum. Then it holds 

F2 (£,v) = F1(^cos9 — rj sm9,^sm 9 + rj cos 9), 

^(CTV) = ^4i(£cos 9 — rj sm9, £ s i n # + 77 cos 9). 

$ 2 (£ ,77) = $ i ( £ c o s # — 77 sin #, £ sin # + rj cos 9). 

Theorem 2.13. (Similarity theorem) Let fi(x,y) £ £ ( M 2 ) and let i*i(£,77) be its 
Fourier spectrum. Let us suppose function 

/2(x, y) = fi(ax cos 9 — a y sin 9 — xo, ax sm9 + a y cos 9 — yo), 

where 9 £ (0,27r),a £ M.+ ,x0,yo £ M. are given constants. Let F 2 ( £ , 77) be its Fourier 
spectrum. Then it holds 

V • a % • a 1 7 1 

— sin u, — sin 9 H — cos 1 
a a a 

F 2 (£ , r / ) = J - e - ^ o + ^ F i f - c o s # 
a"5 \ a 
1 / £ 77 £ 77 

^ 2 = —^1 — cos# sin#, — s in#H—cos( 
a2 \a a a a 

77 £ 77 \ 
— cos# sin#, — sin# H — cos# © ( — — 777/0)-
a a a a / 

Theorem 2.14. Let / ( x , 7/) £ £ ( M 2 ) and let F(£, rj) be its Fourier spectrum. The Fourier 
spectrum of the complex conjugate of function / is the complex conjugate of its Fourier 
spectrum wi th reversed axes 

F{r(x,y)} = F*(-Z, - 7 7 ) . 

Moreover if / is continuous, then the inverse Fourier transform of the complex conjugate 
of spectrum F is the complex conjugate of function / wi th reversed axes 

F-1{F*(^r])} = r(-x, -V)-
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2.3 Convolution 
Definition 2.15. (Convolution) Let functions fi(x,y), f2(x,y) £ £ ( M 2 ) . The convolu­
tion fi * f2 of functions fi, f2 is a function 

f(x,y) = J J fi(s,t)f2(x - s,y - t)dsdt. 

R 2 

Theorem 2.16. Let functions fi(x, y), f2(x, y) £ £ ( M 2 ) wi th Fourier spectra Fi(£, rj), F2(£, rj) 
Then it holds 

F{f1(x,y)*f2(x,y)} = F^r,) • F2(^r,). 

Remark 2.17. Proof of Theorem 2.16 could be find in [3]. 

The fastest way how to compute convolution of fi and f2 is to take the Fourier trans­
form of the first function fi and the Fourier transform of the second function f2, mult iply 
them and then calculate the inverse Fourier transform of that result. We wi l l see that 
a very closely related operation is cross correlation function. 

2.4 Various correlation 
Correlation is used to assess how similar are two different functions. 

2.4.1 Cross-power spectrum 
Definition 2.18. (Cross-power spectrum) Let functions fi(x,y), f2(x,y) £ £ ( M 2 ) 
have Fourier spectra FI(^,TJ), F2(^,TJ). The cross-power spectrum of function fi,f2 is 
a function C , / 1 , / 2 (^ r ? ) : K 2 —>• C defined as 

c h j 2 { i ^ ) = m ^ ) - m ^ ) -

Definition 2.19. (Normalized cross-power spectrum) Let functions fi(x, y), f2(x, y) £ 
£ ( M 2 ) have Fourier spectra F ^ , rj), F 2 ( ^ , rj). The normalized cross-power spectrum of func­
tion fi, f2 is a function Z^j2 (£, rj) : M 2 —> C defined as 

\Fifov)-F2&v)[ 

Definition 2.20. (Semi-normalized cross-power spectrum) Let functions fi(x, y), f2(x, 
£(R2) have Fourier spectra Fi(£, rj), F2(^, rj). The semi-normalized cross-power spectrum 
of function fi, f2 is a function Zf'if2(£,v) : K 2 —>• C defined as 

zv,q <c n ) = Fi(Z,v)-FM,v) 

h,f^,V) (\Fl(Z,r))\+p).(\F2(Z,r))\ + qy 

where p,q £ R + are given constants. 
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2.4.2 Correlation function 
Definition 2.21. (Cross-correlation function) Let functions fi(x, y), f2(x, y) £ £ ( M 2 ) 
have Fourier spectra 77), F 2 ( £ , rj). Function Qfuf2(x, y) : M 2 —> C defined as 

Qhlh(x,y) = r - 1 { c h J a ( t , v ) } = r-1{F1(t,T,)-F;(t,T,ft 

is called the cross-correlation function of functions / i , f2. 

Definition 2.22. (Phase-correlation function) Let functions fi(x, y), f2(x, y) £ £ ( M 2 ) 
have Fourier spectra F i (£ , 77), F2(^,r)). Function Pflj2(x,y) : M 2 —> C defined as 

is called the phase-correlation function of functions fi,f2. 

Definition 2.23. (Semi-phase correlation function) Let functions fi(x, y), f2(x, y) £ 
£ ( M 2 ) have Fourier spectra 77), F 2 ( £ , 77). Function P™^(x,y) : M 2 —> C defined as 

/ l j 2 ( , l / ) " V ^ ™ - * 1 ( 1 ^ ( ^ , 7 7 ) 1 + p ) - ( | F 2 ( e , 7 7 ) | + g) 

is called the semi-phase correlation function of functions fi, f2-

Remark 2.24. Let functions fi(x, y), f2(x, y) £ £ ( M 2 ) be continuous real, i.e. /-j* = / 1 
and / | = / 2 and wi th Fourier spectra Fi(£, 77), -F 2(£, 77) £ £ ( M 2 ) . Then we can compute 
the cross-correlation function of f\ and f2 as 

Qhlfa(x,y) = J " " 1 { ^ ( £ , 7 7 ) • F*(e , r / ) } = J 7 " 1 { ^ { / i ( x , y ) } • ^ { / J ( - s , - y ) } } = 
fi(x,y)* f2(-x,-y) = fi(x,y)*f2(-x,-y). 

Theorem 2.25. (Phase-correlation function of shifted functions) Let function 
fi(x,y) £ £ ( M 2 ) and let i*i(£,77) be its Fourier spectrum. Let us suppose function 
f2(x,y) — fi(x — xo,y — yo), where xo,yo are given constants. Let -F 2(£,77) be the Fourier 
spectrum of function f2. Then the phase-correlation function of functions fi,f2 is the 
Dirac distribution shifted by (—x0, —yo) 

phJ2(x,y) = S(x + x0,y + y0). 

Remark 2.26. In whole Chapter 2 we consider function f(x,y) to be defined as / : 
M 2 —> C . When we need to take an image to the frequency domain we change its domain 
to a bounded area {0,1, • • • ,N — 1} x {0,1, • • • , TV — 1}, N £ N . Therefore we have to 
compute with discrete version of Fourier transform or inverse Fourier transform defined 
as 

i V - l i V - l 

77) = F(£,77) = £ X ) / ( a ; , y ) e -
x=0 y=0 

N-1N-1 

V^{F}(x,y) = ^ E E F ^ ^ ) e ¥ ^ + O T ) -

The properties of Fourier transform, just as convolution and correlation stay unmodified, 
we only swap T and V in equations. 

18 



Chapter 3 

Image registration 

Image registration is the process of spatially aligning two images of a scene so that cor­
responding point assume the same coordinates. The first image wi l l be referred to as the 
master image and the second as the slave image. For more information see [4]. 

Definition 3.1. (Digital grey-scale image) Let R — {0 ,1 , • • • , M — 1} x {0,1, • • • , N — 
1}, M, N e N and let W = {0 ,1 , • • • , w - 1}, w e N . Function 

f(x,y):R^W 

is called a digital grey-scale image or image only if no confusion may be caused. M is 
called the image width, N the image height. Elements of R are called pixels, value of / 
in pixel (x, y) is called the pixel value. The value of w determines the image dynamic 
range. We say that the dynamic range is n bits per pixel or it is an n-bit image if w — 2n. 

Remark 3.2. We work only with grey-scale image, because in this case it is not important 
to register colour components of the images. 

3.1 Registration of shifted images 
We consider that both images thus functions / i , / 2 are identical but shifted wi th respect 
to each other by vector (x0,y0), so 

f2(x,y) = fi(x - x0,y -y0). 

We find out the shift vector by using phase-correlation function. In simple cases we should 
get discrete impulse function (discrete Dirac impulse), in this case there is one global 
maximum in coordinates (xo,yo) for which we are looking for. If we use original images 
the result could be ambigious, due to edges of the images where are the big differences 
in pixels values. Therefore, it is necessary to cut off or at least smoothen these edges from 
the images for good shift estimation. 

It is achieved by mult iplying our image by suitable function g called window function. 
This function must be equal to zero or almost zero at the image edges and continuously 
tends to one for the rest of the image. 

There are number of different window functions which can be used for digital signal 
processing, like the triangular window, Kaiser window and so on. We wi l l use Gaussian 
and Hanning window function. 
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Definition 3.3. (Window function) Let us set 

A = (-a, a) x (-b,b), a , i G l J . 

B = {(x,y);x2 + y2 < r 2 } , r e R j . 

Let a G be a given number. Let g(X, A) be the distance of point X = (x, y) from 
set A , i.e. 

g(X, A) = inf { d 6 R , ( f = g(X, Y), Y <E A} , 

where g(X, Y) is the Euclidean metric. Then 

1. Function 
, x _e 2(x,A) 

gGR{x,y) = e ^ 

is called the rectangular Gaussian window function. 
2. Function 

gGc{x,y) = e ^ 

is called the circular Gaussian window function. 

3. Function 

gHR(x,y) 
I + I sin - f ) i f ^ ( X , A ) < a , 

0 if ^ ( X , A ) >cr 

is called the rectangular Hanning window function. 

4. Function 

gHc(x,y) 
I + I sin f ) if ß ) < a, 

0 i f ^ ( X , J B ) > a 

is called the circular Hanning window function. 

Remark 3.4. The window functions are defined as a symmetrical functions wi th centre 
in (0,0) so we have to shift our images by ( y , y ) , it means that we mult iply image / 
by shifted window function g — y , y — y ) . 

The advantage of rectangular window functions is that they retain a big part of the 
image without change. However their drawback is the fact that they do not diminish 
totally on the edges, it means that there are still some information left. B y using circular 
window function, we miss out on big part of the image, on the other hand we lose the 
information on the edges. It's possible to use different window functions on both registered 
images. 

Definition 3.5. (Centering images) Let us assume that images / i , / 2 have width m 
and height n. Let N e N be a number divisible by higher power of 2 (at least 16), not 
divisible by a high prime number, such that m < N,n < N. Then we create images 
/ c i , fc2 from images fu f2 by 

fck(x,y) 
fk(x — m 0 , y — n0) if m0 < x < m0 + m — 1, n0 < x < n0 + n — 1, 

0 else 

for k = 1, 2, where m 0 = , « 0 = L ^ ? J • 
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3.2 Registration of real images 
U p to this point we have assumed images / i , / 2 to be identical except for some transfor­
mation. Now we use the real images, which may contain additive noise, impulse noise, 
defects caused by our optical system, dust particles, diffuse light etc. 

The cross-correlation function does not need to have clear global maximum, it is why 
we use semi-phase correlation instead. It could happened that the division by zero occur 
so we choose p, q to eliminate it. For sharp images we may select small values of p, q, for 
images which are blurred, taken wi th poor optics, or at bad conditions, we should increase 
p, q to decrease influence of frequencies with no information. 

Addit ive noise and variable impulse noise represent information of all spatial frequen­
cies, primary of the highest one. It makes them useless for our registration. Furthermore 
the low frequencies contain information about optics vignetting and diffuse light of the im­
ages. Due to the facts written above, we mult iply the Fourier spectra of the image by 
a suitable weight function to reduce information on the highest/lowest spatial frequencies. 

Definition 3.6. (Gaussian low-pass high-pass weight function) Let Ai ,A2 G RQ 
and TV G N be the size of domain of image / . Function HXL(C,r/) : M 2 —>• (0,1) defined as 

is called the Gaussian low-pass weight function wi th parameter A i . Function HX2(^,rj) : 
R2 —>• (0,1) defined as 

HX2(£,r)) = l - e ~ X 2 ^ 

is called the Gaussian high-pass weight function wi th parameter A 2 . Function i f £ 2 ( £ , 77) : 
R2 —>• (0,1) defined as 

Hx^r]) = HX2(^r])-HXl(^r]) 

is called the Gaussian low-pass high-pass weight function. 
Remark 3.7. The weight functions are defined symmetrically with centre in (0,0). We 
have to shift the images by vector ( y , y ) , i.e. mult iply the Fourier spectra of the images 
by function ^ ( C - f ^ - f ) . 

It's possible to apply Gaussian low-pass high-pass weight function after computing 
(inverse) Fourier spectra of images, due to the fact that the Gaussian function stay in­
variable. This weight function is not applicable if there's indispensable amount of additive 
and variable impulse noise. Therefore we use another type of weight function so called 
low-pass high-pass weight function. 

Definition 3.8. (Low-pass high-pass weight function). Let r*i, r-i, &i, o~2 G R+ such 
that r*i < T2- Function Hrij(7l(^,r)) : R2 —> (0,1) defined as 

[0 i f ^ ( e 2 + r / 2 ) < ( r 1 - a 1 ) 2 , 

Hw&v) = U + \cos ^ " y ^ if (n - a,)2 < U e + V2) < rl 
I 1 else 

is called the high-pass weight function. Function Hr2,(72(^,r]) : R2 —> (0,1) defined as 

[ l if U e + V2)<rl 
H T 2 ^ V) - i + \ cos if r\ <Me + ri2) < (r 2 + a 2 ) 2 , 

[o else 
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—> (0,1) defined as 

is called the low-pass high-pass weight function. 

3.2.1 Registration of shifted images step by step 

Let us denote / i , / 2 the registered images. The Fourier transform wi l l be computed 
on a square 7V x N, where 7V is even. Steps of registration: 

1. Mul t ip ly ing images / i , / 2 by window functions. It gives images fwi, fW2-

2. Centering images fwi, fw2 in the square N x N pixels. It gives images / C i , / C 2 -

3. Computing the semi-normalized cross-power spectrum Z = ^ of images fci, fa. 
Constants p, q are chosen wi th respect to used optical system, fuzziness, haze etc. 

4. Mul t ip ly ing Z by a low-pass high-pass weight function. It gives Zw. 

5. Computing the inverse discrete Fourier transform P of Zw. 

6. Finding the coordinates of the global maximum of function P, i.e. finding the shift 
vector (x0,y0) • 

3.3 Sub-pixel precision registration 
The vector (x 0 , yo) is integer valued estimate of the shift vector between images / i , / 2 . We 
are looking for sub-pixel precision estimate of the shift vector denoted by (xo,yo)- There 
are many methods how to estimate noninteger valued shifts. We wi l l use method based 
on geometric moments computed from pixel values. 

Definition 3.9. (Geometric moment) Let us have circle wi th centre (XQ, yo) and radius 
e e M + . Then the geometric moment is defined as 

where P(x, y) is the modified semi-phase correlation function described in step 5 of Sub­
section 3.2.1 and M 0 j o is equal to total image intensity (see [4]) . 

The sub-pixel precision estimate of the shift vector, i.e. the vector (x 0 , yo), is computed 
as 

and we can consider the point [50,^o] a s the centre of gravity of the peak and its neigh­
bourhood with radius e 

Remark 3.10. The sub-pixel precision estimate of the shift vector may be computed also 
by bilinear interpolation. We wi l l use this procedure only for making our own sub-pixel 
shifts, due to the fact that it is much more faster. On the other hand it's not so accurate. 

M M = Yl J2%kylp(xo + x,y0 + y), k, I = 0,1, 
x2+y2<e 

22 



x %2 

Figure 3.1: Example of 2D grid for bilinear interpolation 

3.3.1 Bilinear interpolation 
Bilinear interpolation is an extension of linear interpolation for interpolating functions 
of two variables on a 2D grid. In image processing it's basic resampling technique. It's 
used for finding out a pixel value of a point in sub-pixel position. We could say, that 
bilinear interpolation is weighted average in image processing. 

Definition 3.11. Let us have points Pu = (xi,yi), P\2 = (xi, 2/2), P21 = (x2, yi), P22 = 
{x2,y2) (see Figure 3.1) and assume that we know the pixel value of / in these points . 
Then it holds 

f(x,yi) 

f(x,y2) 

f(x,y) 

X2 — X 

X2 ~ X! 

X2 — X 

X2 ~ X! 

V2 -y 

f(Pn) + 

+ 

x X\ 

V2-yi 
f(x,yi) + 

X2 ~ Xl' 

x — X\ 

X2 ~ X\ 

y2 --y 
V2-yi 

KP21), 

/ ( A 2 ) , 

f(x,y2). 
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Chapter 4 

Program 

We would like to find the best parameters for registration of images bz the method de­
scribed before. We used the set of 10 000 images with known sub-pixel shift, for our 
purpose it was really necessary to make a special program for finding the best parame­
ters. This program is based on procedures developed by Prof. Miloslav Druckmuller and 
was made under his supervision and the set of testing images was generated by another 
program created by my colleague Eliška Málková. The program was made in Delphi X E 6 
and the basic Pascal commands could be found in [5]. 

In the program presented in this thesis are done some interesting innovations. One of 
them is remake of the Druckmiiller 's procedure called LowPass, which compute Gaus­
sian low-pass weight function shifted by y (H\1 (£ — y , r\ — y ) ) to procedure called 
LowPassHighPass, which compute shifted Gaussian low-pass high-pass weight function 
H^2 (£ — y , TJ — y ) defined by Definition 3.6. with respect to Remark 3.7. This new pro­
cedure LowPassHighPass has four parameters. Oldspec referring to cross-power spectrum, 
Newspec computed by this procedure, A i and A 2 . Further we had to add one parameter 
called HPF (high-pass filter) to procedures G e t T r a n s l a t i o n and F i n d l m g T r a n s l a t i o n . 
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In the program there are included user-friendly elements as for example possibility to 
change scale or gamma correction of displayed image. User can crop and save part of 
image, compute shift vector of two images etc. (see Figure 4.1). 

The cropping procedure Crop includes four Edi t Boxes. Two of them for choosing the 
coordinates of the top left vertex of the cropped image and two remaining for choosing 
which shift we want to apply. If we want to crop unshifted image, it's possible to write 
zeros there. The exact position x, y could be found out below the image by moving cursor 
over it. This procedure includes bilinear interpolation. There's also save button for saving 
your new image to specific file. 

Shift button launches procedure called F i n d l m g T r a n s l a t i o n and D i s p l a y P h a s s e C o r r -
R e s u l t . The first procedure computes the shift vector, which is written up above Gaussian 
filter button. The second one shows us the result of phase correlation, it means that it 
displays the image of Dirac distribution. The final "point" wi l l be always at the centre of 
top right image window (scroll-box moves with this point). Further we can use Gaussian 
filter button, which changes the A i and A 2 in Gaussian low-pass high-pass weight function. 
The shift vector, selected parameters and names of the images are written to a Memo Box. 
We can save these information to a text file by using Save Memo button. These method 
is good for finding a few possible parameters, but it's not usable wi th our huge number 
of images. 

Due to the fact mentioned above, there is button called Fast shift. This button 
launches procedure, which computes shift vectors of all images, deviations in x, y from 
real shift and also maximum deviations in x,y. It is all written to a text file for later 
usage. 
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Chapter 5 

Parameter Optimization 

It was mentioned in Chapter 4 that we work wi th the set of 10 000 images. The source 
file h m i . i c _ 4 5 s . 2014.10.23_15_00_45_TAI. continuum, f i t s which contains image of 
the Sun obtained from S D O is downloaded from webpage of N A S A , see [7]. Further we 
cropped out segment of size 256 x 256 pixels (see displayed image on left part of Figure 
4.1), which we consider to be our master image. Then we cropped out sequence of new im­
ages from the source one, but now they are gradually shifted. We decided to do a percent 
steps, it means that each next image is shifted by 0.01 pixel up to 0.99 pixel in axis x and 
in the same way in axis y. A t the end we had all combinations of shifts in area of one pixel. 

5.1 Chosen constants and methods 
Our cropped square segment has not got black edges so we need to apply Hanning rect­
angular window function for removing the information there. From previous studies we 
know that the best choice for parameter a in the window function QHR is 0.5, it means 
that the weight function is equal to 1 on 50 % of image. 

It's possible to do phase correlation only on part of image, which is called "ROI" 
(Range Of Interest), it would be used, if we did not crop out the segment. In our case 
the R O I is identical wi th used image, so its width and height are 256 pixels. 

The result from phase correlation is displayed as a point on black background (see 
Figure 5.1). We work wi th sub-pixel precision, such that we find maximum pixel value 
of this point, further we take this pixel and we wi l l find the geometric moments of it with 
s equals to 6. 

5.2 Proper optimization 
A t the beginning of testing program we tried different A i and A 2 on few images for finding 
a group of parameters for next optimization. O n Figure 5.1 we can see how does it work. 
For small A i we wi l l obtain small peak, it means that we remove only little bit of the 
highest frequencies and our maximum peak is steep. O n the contrary, if we use big A i , 
we wi l l get bigger peak, it means that we remove the highest frequencies and our peak 
is more rounded. The parameter A 2 changes information in the lowest frequencies so we 
can't see any differences in the displayed result. 

For our next research we chose A i = {4,5,6} and A 2 = {11,12,13,14}. Thanks to 
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(a) (b) 

Figure 5.1: Displayed result from phase correlation after multiplication by Gaussian low-
pass high-pass weight function. Used parameters A i = 3 and A 2 = 13 for image a) and 
Ai = 7 and A 2 = 13 for image b). 

Figure 5.2: Graph of usable parameters and maximal deviations 

these parameters, we can get shifts, which are identical wi th real shift up to thousandths. 
We did combinations of all these parameters and then we applied them to all images. 
Further we went through text files (see attachment on C D ) created by this program 
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and we found the maximal deviations from real shifts. Then we put them to the graph 
(see Figure 5.2) from where we can see many information. The axis x matches to A i , 
the axis y matches to A 2 and the axis z equals to maximal deviations multiplied by 
10~ 4 . The combinations with A i = 6 are inapplicable, due to big deviations, for example 
the deviation for combination of { A i , A 2 } = {6,14} equals to 0.0094 and it's indispensable 
error. The combinations wi th A i = 5 are better then the previous one, we can say that 
it's stationary parameter, but still we can get more exact shifts. The combinations with 
Ai = 4 are less stable then the previous one, but as we can see from graph the combination 
of {4,12} has the minimal deviation, which equals to 0.0031. Thus my chosen optimal 
parameters are A i = 4 and A 2 = 12. 
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Chapter 6 

Conclusion 

The goal of this thesis was to find optimal parameters of low-pass high-pass weight function 
(see Definition 3.6) and to made a program for computing shift vector wi th sub-pixel 
precision (see Chapter 4). For optimization we used pack of images wi th known shifts. 

In Chapter 2 we summarised theory about phase correlation. The most important 
parts are definitions of Fourier transform (see Definition 2.6), convolution (see Definition 
2.15), normalized cross-power spectrum (see Definition 2.19) and of course the definition 
of phase-correlation function (see Definition 2.22). 

The Chapter 3 talks about image registration, mainly about the problems of working 
with real images, like presence of additive and multiple noise, dust particles and diffuse 
light. There is written how to abolish them also, for example by window function, which 
deals wi th big differences in image edges (see Definition 3.3). Further we wrote there 
about sub-pixel precision registration. 

The Chapter 5 is the major part of this thesis, it is about the proper optimization. 
We mentioned there which constants have been used and why. We described the process 
of optimization and at the end we described the best parameters for sub-pixel registration 
as well as rationalization. 

The current accuracy surpassed our expectations. We awaited that the shift vector 
wil l be precise only on hundredths, but as we can see in Figure 5.2, we are working with 
thousandths there. We are not in need of it, but if we wanted, we would optimize used 
constants (see Section 5.1) and maybe we wi l l get even more precise shift vectors. 
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Used symbols 

N 
R 
R+ 
K+ 
C 

r 
f(x,y),f1(x,y),f2(x,y) 
F(x,y),F1(x,y),F2(x,y) 

h(x,y) * f2(x,y) 

the set of natural numbers 
the set of real numbers 
the set of positive real numbers, i.e. (0, oo) 
the set of positive real numbers plus zero, i.e. (0, oo) 
the set of complex numbers 
the real part of Fourier spectrum 
the imaginary part of Fourier spectrum 
the complex conjugate of / € C 
functions of £ ( M 2 ) , see Definition 2.2 
the Fourier spectra of functions f(x, y), fi(x, y), f2(x, y). 
see Definition 2.6 
the amplitude spectra of functions f(x, y), fi(x, y), f2(x, y). 
see Definition 2.9 
the phase spectra of functions f(x, y),fi(x, y), f2(x, y). 
see Definition 2.9 
the convolution of functions f\ and f2 

the integer part of real number a 
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Attachment 

C D with text files and program in Delphi X E 6 . 

• shift- par ameter- 4- l l . t x t 

• shift parameter- 4- 12.txt 

• shift--parameter- 4- 13.txt 

• shift--parameter- 4- 14.txt 

• shift--parameter- 5- l l . t x t 

• shift--parameter- 5- 12.txt 

• shift--parameter- 5- 13.txt 

• shift--parameter- 5- 14.txt 

• shift--parameter- 6- l l . t x t 

• shift--parameter- 6- 12.txt 

• shift--parameter- 6- 13.txt 

• shift--parameter- 6- 14.txt 
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