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Abstract 
Distributed Denial of Service (DDoS) attacks are an ever­increasing type of security inci­

dent on modern computer networks. This thesis aims to detect these attacks and provide 
relevant information in order to mitigate them in real­time. This functionality is achieved 
by data stream mining and machine learning techniques. The output of the work is a series 
of tools executing the process of the whole machine learning pipeline ­ from custom feature 
extraction through data preprocessing to exporting a trained model ready for deployment. 
The experimental results evaluated on various real and synthetic datasets indicate an ac­

curacy of over 99% with an ability to reliably detect an ongoing attack within the first 
4 seconds of its start. 

Abstrakt 
Útoky typu odoprenia služby (DDoS) sú v dnešných počítačových sieťach stále frekvento­

vanejším bezpečnostným incidentom. Táto práca sa zameriava na detekciu týchto útokov 
a poskytnutie relevantných informácii za účelom ich mitigácie v reálnom čase. Spomínaná 
funkcionalita je dosiahnutá s využitím techník prúdového dolovania z dát a strojového uče­

nia. Výsledkom práce je sada nástrojov zastrešujúca celý proces strojového učenia ­ od 
vlastnej extrakcie príznakov cez predspracovanie dát až po export natrénovaného modelu 
pripraveného na nasadenie v produkcii. Experimentálne výsledky vyhodnotené na viace­

rých reálnych a syntetických dátových sadách poukazujú na presnosť systému väčšiu ako 
99% s možnosťou spoľahlivej detekcie prebiehajúceho útoku do 4 sekúnd od jeho začiatku. 
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Rozšírený abstrakt 
Problematika bezpečnosti je jeden zo základných faktorov pri návrhu a prevádzke infor­

mačných systémov. V bezpečnostnej terminológii sa typicky snažíme o dosiahnutie troch 
základných princípov ­ dôvernosti, integrity a dostupnosti. Odoprenie služby (DoS) a dis­

tribuované odoprenie služby (DDoS) sú v súčasnosti jedny z najčastejších kybernetických 
útokov cieliace na narušenie dostupnosti. Ich typické prevedenie je vo forme zasielania 
veľkého množstva paketov so zámerom vyčerpať výpočtové alebo sieťové zdroje ich cieľa 
a tým narušiť jeho bežnú prevádzku. 

Detekcia a mitigácia týchto útokov historicky prebiehala na základe monitorovania 
sieťovej prevádzky a hľadania rôznych anomálii na báze signatúr alebo vzorov správa­

nia. Tieto údaje však museli byť manuálne definované na základe expertných znalostí 
a skúseností. S pribúdajúcim počtom a rôznorodosťou útokov sa však tento trend časom 
stal dlhodobo neudržateľný. Jedno z prípadných riešení tohto problému ponúkajú tech­

nológie umelej inteligencie a strojového učenia. Ich využitie umožňuje odvodenie podob­

ných rozhodovacích pravidiel, a teda automatizované získavanie signatúr s oveľa väčšou 
rýchlosťou, škálovateľnosťou a typicky aj presnosťou. 

Táto práca sa zaoberá návrhom a implementáciou systému pre detekciu a mitigáciu 
týchto typov útokov pomocou strojového učenia. Cieľom práce bolo vyvinúť systém de­

tegujúci DDoS incident v reálnom čase. Projekt bol vyvíjaný s podporou bezpečnostného 
výskumu spoločnosti C E S N E T a ich projektu VI20192022137 Adaptivní ochrana před DDoS 
útoky s podporou Ministerstva vnitra České republiky. 

Súčasná orientácia výskumu na detekciu DDoS útokov smeruje k využívaniu sieťových 
tokov za účelom klasifikácie. Tento prístup so sebou však prináša viaceré úskalia, ako 
napríklad stratu kontextu medzi paketmi s rozdielnym zdrojovým portom. Z tohto dôvodu 
bol navrhnutý detekčný mechanizmus vybudovaný na báze IP adries. Klasifikácia podľa IP 
adries prináša vyšší level abstrakcie, čím umožňuje vidieť kontext medzi viacerými spoje­

niami z rovnakej IP adresy. Tento fakt následne umožňuje počítanie rôznych štatistických 
údajov využívaných pre účely klasifikácie útočníkov. 

Pretože od systému vyžadujeme beh v reálnom čase, klasifikácia každého prichádza­

júceho paketu nie je realizovateľná. Z tohto dôvodu je systém navrhnutý pre zbieranie 
štatistických údajov a ich následnú klasifikáciu na pozadí. Výsledok tohto procesu po­

tom môže poslúžiť na odvodenie rýchlych pravidiel, ktoré môžu byť využité pre okamžité 
rozhodnutie či paket zahodiť alebo preposlať v ráde nanosekund (Obrázok 1). 

Detektor útoku na 
báze strojového 

učenia 

Vzorkované 
útočné dáta Odvodzovanie 

pravidiel 

Paketový tok 

Vyhľadanie 

Spracovanie prepošl i/za hoď paket 

paketov 

Obrázok 1: Návrh systému na mitigáciu DDoS. 



Keďže blok pre spracovanie paketov a databázu pravidiel môžeme uvažovať ako aktuálny 
C E S N E T DDoS Protector (systém, do ktorého je metóda vyvíjaná) a niekoľko algoritmov 
na odvodzovanie pravidiel je už implementovaných, tá to práca sa zameriava výhradne na 
blok detektoru útoku na báze strojového učenia. 

Za účelom výpočtu štatistík je z každého paketu extrahovaných 8 hodnôt: časová značka 
príchodu paketu, zdrojová IP, cieľová IP, L4 protokol, zdrojový port, cieľový port, dĺžka 
hlavičiek paketu a dĺžka obsahu paketu. Tieto hodnoty sú následne spracovávané pomocou 
technológie dolovania prúdových dát ­ princípu časových okien. Extrahované hodnoty 
z paketov sú zoskupované na základe svojej zdrojovej IP adresy v konkrétnom časovom okne 
daného príchodom paketu. Po uplynutí určitej doby sa aktuálne okno ukončí a je nahradené 
novým prázdnym oknom. Tento princíp umožňuje spracovávať teoreticky nekonečný tok dát 
v reálnom čase a počítať nad ním štatistické ukazovatele. Za účelom šetrenia pamäti boli 
využité ďalšie algoritmy a dátové štruktúry špecifické pre prúdové spracovanie dát, ako 
napr. prúdový rozptyl alebo HyperLogLog pre výpočet kardinality. 

Po získaní určitého počtu okien pre konkrétnu IP adresu prebehne ich sumarizácia, čím 
sa vypočítajú ďalšie medzi­oknové štatistiky užitočné pre klasifikáciu. Takýmto spôsobom 
je vypočítaný vektor o veľkosti 32 prvkov obsahujúci údaje ako napr. entropia zdrojových 
portov, odchýlka príchodu paketov, alebo priemerný počet zaslaných paketov behom jed­

ného spojenia. Štatistiky v takejto forme sú následne pripravené na klasifikáciu. 
Systém bol implementovaný v jazyku Python ako séria niekoľkých skriptov. Každý 

skript vykonáva určitú časť procesu strojového učenia (napr. skript pre extrakciu dát 
a tvorbu dátovej sady) a poskytuje rôznu funkcionalitu na základe dodaného konfiguračného 
súboru a parametrov príkazového riadku. Takýmto spôsobom môže byť systém jednoducho 
ovládaný na základe aktuálnych potrieb bez nutnosti zásahov do programového kódu. 

Experimentálne vyhodnotenie systému bolo prevedené na siedmich zmiešaných dátových 
sadách. Tri z týchto sád pochádzajú z reálneho sieťového záchytu, zvyšné sady boli umelo 
generované v laboratórnom prostredí. Na základe dosiahnutých výsledkov (Tabuľka 1) 
vyvodzujeme, že systém je schopný detegovať prebiehajúci útok s vysokou úspešnosťou (nad 
99%) v priebehu 4 sekúnd od začiatku útoku. Dodatočné experimenty taktiež preukázali 
schopnosť klasifikácie pomalých DoS útokov. 

Model fit time s time accuracy acc std f­score prec recall 
Adaboost 3.2352 0.0820 0.9946 0.0004 0.9946 0.9960 0.9932 
Naive Bayes 0.0526 0.0205 0.7231 0.0025 0.6279 0.9573 0.4672 
Extra Trees 1.9194 0.1248 0.9979 0.0009 0.9979 0.9989 0.9970 
Gradient Boosting 14.1202 0.0258 0.9974 0.0007 0.9974 0.9981 0.9968 
Logistic Regression 0.4203 0.0179 0.9366 0.0045 0.9369 0.9316 0.9423 
Linear Discriminant An. 0.2157 0.0170 0.9263 0.0051 0.9267 0.9219 0.9315 
Multilayer Perceptron 28.3703 0.0290 0.9952 0.0018 0.9952 0.9947 0.9957 
Nearest centroid 0.0342 0.0140 0.7939 0.0074 0.8068 0.7592 0.8609 
Support Vector Machines 6.8902 2.6329 0.9704 0.0023 0.9705 0.9677 0.9734 
Decision Trees 0.6140 0.0147 0.9946 0.0014 0.9946 0.9944 0.9949 
Random Forest 6.1454 0.1095 0.9979 0.0009 0.9979 0.9989 0.9970 
XGBoost 10.3377 0.0284 0.9985 0.0007 0.9985 0.9985 0.9984 

Tabuľka 1: Porovnanie výkonnosti modelov pre klasifikáciu 4­sekundových blokov pomocou 
technológie krížovej validácie (s_time = score_time). 
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Chapter 1 

Introduction 

The matter of security is an essential factor to consider when designing and maintaining 
a computer system. Many types of cyber-attacks can be performed to compromise a system 
or disrupt its regular operation. Denial of Service (DoS) and Distributed Denial of Service 
(DDoS) attacks are among the oldest types of these threats. They aim to disrupt the 
system's availability so that regular users are not able to access its resources. Despite their 
maturity, they are still becoming increasingly popular as functional computer networks and 
services became an essential part of any organization in today's interconnected world. 

DDoS attacks have been historically mitigated by monitoring network traffic and per­
forming decisions based on their statistics (such as anomaly detection) or per-packet rules. 
These methods are still relatively successful in mitigating attacks with known or predictable 
behavioral patterns. However, all of the decision rules and thresholds have to be specified 
manually based on expert knowledge or patterns of previously discovered attacks. In recent 
years, this approach has become rather problematic to develop and maintain as attackers 
perform less predictable types of attacks able to bypass these rules. 

As a possible countermeasure, modern mitigation approaches often experiment with var­
ious machine learning (ML) techniques, theoretically able to infer decision rules themselves 
and thus not requiring any manual intervention. Most of the research nowadays focuses 
on DoS/DDoS detection based on network flows. Such systems rely on a supposition that 
attackers use a small number of source IP addresses and ports, and so flows can provide 
relevant information for machine learning classifiers. This assumption is generally too re­
stricting, and so flow-based mitigation may fall short when attackers utilize tools generating 
malicious traffic with randomized IP addresses and ports. 

This work aims to tackle this issue by designing and creating an ML-based mechanism 
not reliant on network flows but rather classifying according to per-IP data. Therefore, 
a significantly greater generalization of the problem is created, making the method more 
usable in practical scenarios as fewer assumptions about the attack have to be made prior. 
The work has been supported by C E S N E T ' s security research VI20192022137 Adaptive 
Protection Against DDoS Attacks, co-funded by the Ministry of Interior, Czech Republic. 

The following document firstly discusses DoS and DDoS attacks principles and presents 
concepts of their mitigation with both traditional and machine learning-based approaches 
(Chapter 2). Chapter 3 examines various M L principles usable for our purposes and elabo­
rates on their usage in the current research. Chapter 4 proposes our system and a machine 
learning pipeline. Chapter 5 takes a brief look at how it is implemented and explains the 
usage of created programs. Chapter 6 then presents achieved results, whereas Chapter 7 
summarizes the thesis and suggests possible improvements and future work. 
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Chapter 2 

Denial of Service Attacks 

Denial of Service (DoS) and its distributed variant DDoS are cyber-attacks that aim to 
interrupt the regular operation of the network resource or service in order to make it 
unavailable for other users. The goal of these attacks is to exhaust the network, memory, 
or computing resources of the target so it cannot process more messages from clients. This 
state typically causes any incoming requests to be dropped, hence creating a denial of 
service situation for regular clients attempting to particular resource. 

While DoS attacks can be effective in specific scenarios, such as W i - F i deauthentication 
DoS 1 , they are usually restricted and not widely applicable. For this reason, distributed 
versions of DoS are more frequently employed when resources on the Internet are targeted. 
These can generally cause significantly greater damage and may target almost any publicly 
available network resource such as web servers, email servers or online gaming platforms. 

DDoS is a structured network attack, typically coming from various sources that are 
merged to form a large packet stream able to disrupt the target's operation or its underlying 
network infrastructure. The attack is commonly performed using a hierarchical structure. 
The attacker typically gives a signal to numerous other computers (handlers), which in turn 
command and control a vast quantity of agents to perform an actual attack (Figure 2.1). 
Agent computers (called bots or zombies) mostly consist of compromised hosts scattered 
across different geographical locations, which are in full control of an attacker. Handler 
computers directly issue commands for agents, e.g., to establish a large number of sessions 
or generate a certain type of traffic at the same time. If the target network is not explicitly 
protected, the tremendous amount of generated traffic is generally enough to make the 
target irresponsive. 

According to Cisco, the total number of DDoS attacks will double from 7.9 million in 
2018 to 15.4 million by 2023 [28]. The study [62] also states that more than 323 thousand 
dollars in excess power and added bandwidth consumption was spent by a four-day DDoS 
attack executed through a network of hacked Internet of Things (IoT) in 2016. This in­
cluded devices such as Internet routers, security cameras, and digital video recorders. The 
technical report from Radware [86] declares that 50% of organizations currently consider 
DDoS attacks as the largest threat to their business model. According to these findings, 
we may conclude that research in the DDoS attacks detection and mitigation field is a 
crucial part of the overall system's cybersecurity and will become increasingly important 
in emerging IoT network architectures and the beginnings of Industry 4.0. 

An attack during which the attacker floods a Wi-Fi network with deauthentication frames, causing 
clients to disconnect from the network. 
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Attacker 
--> Command & Control 
-> Attack traffic 

Handler 1 Handler k 

Figure 2.1: DDoS attack architecture. 

2.1 Types and Techniques 

In general, DDoS attacks can be classified according to the resource they target. By this 
definition, three main types of DDoS can be recognized as volumetric, protocol, and appli­
cation attacks [44]. Volumetric attacks attempt to use massive amounts of traffic to exhaust 
the underlying architecture of the target. The goal of these pure brute-force attacks is to 
saturate the network bandwidth, intermediary network devices' or the target's processing 
capabilities, so clients' packets either do not arrive at their destination at all or cannot be 
processed by the target due to the lack of resources [74]. The most popular techniques 
used to perform these attacks are I C M P flood, I P / I C M P fragmentation, U D P flood, IPSec 
flood, or reflection amplification attacks. 

Protocol attacks do not aim to exhaust network bandwidth but rather try to utilize 
characteristics of network or transport layer protocols to perform DoS in a more efficient 
way. The most popular technique for this attack type is the T C P S Y N Flood attack, which 
takes advantage of a limited number of T C P connections the machine can query. The attack 
still requires large amounts of segments, but its required amount for a successful denial of 
service situation is significantly lower than in volumetric attacks due to the T C P properties. 
In some literature such as [116], protocol and volumetric attacks are not explicitly separated 
and are often considered as one type. Alternatively, techniques such as I C M P flood and 
fragmentation attacks are sometimes considered to belong to both categories. 

In contrast to previous two attack types, application-layer attacks focus on exploiting 
weaknesses of the particular applications. These types of attacks are the most sophisticated 
and require knowledge about the application's version architecture and behavior in order 
to be executed successfully. Detection and mitigation of these attacks is generally harder, 
as they are often executed in a low-volume manner and traffic they produce tends to be 
indistinguishable from that generated by legitimate users [115]. Attack techniques under 
this category include Slowloris, HTTP(s) flooding, Large payload P O S T and others. 

The most prevalent DDoS attack type in the last years is T C P S Y N Flood. According 
to Kaspersky [63], 78.28% of all attacks were performed as S Y N Flood in Q4 2020. Other 
attacks in a given quarter were U D P (15.17%), Other T C P attacks (5.47%), G R E flood 
(0.69%), and H T T P flood (0.39%). 
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2.2 M i t i g a t i o n Strategies 

DDoS attacks have been traditionally detected using statistical mechanisms and mitigated 
either according to their statistical properties (anomaly-based mitigation) or by the us­
age of specific techniques against particular attack types (signature-based mitigation). For 
instance, an ongoing attack may be detected using metrics like correlation, entropy, co-
variance, packet rate, average packet size, and others [75]. Packets that trigger a certain 
predefined condition are considered to deviate from regular legitimate traffic, and thus the 
system marks them as a potential attack and drops them if required. Over the past two 
decades, these principles proved to be rather popular, according to numerous research arti­
cles published in the field. Nevertheless, both statistical triggers and anomaly patterns have 
to be specified manually by a field expert and fine-tuned for the protected network's specific 
properties. These methods are also highly unscalable, badly generalize to various attacks, 
and typically cannot react to zero-day threats not specified in the detection databases [79]. 

On the other hand, newer methods using artificial intelligence (AI) and machine learning 
(ML) generally provide a more flexible way for attack detection and mitigation at the cost 
of slightly higher utilization of computer resources. Their employment is typically faster 
than traditional methods because attack threshold values and modifiers do not need to be 
tweaked out after the method is installed. Supposing a balanced dataset representing both 
regular and attack traffic, methods based on AI and M L can provide a scalable, robust way 
to detect and mitigate DDoS attacks, usually outperforming systems statically programmed 
by humans [79]. 

2.3 Trad i t iona l and M a c h i n e Learn ing M i t i g a t i o n 

As briefly outlined in the previous section, traditional DDoS mitigation strategies are often 
unscalable and typically cannot generalize well to different attack vectors. This section will 
elaborate a little more on these issues by presenting concrete examples of traditional and 
M L methods. Both are designed to mitigate the most popular DDoS attack - T C P S Y N 
Flood. This attack is based on opening a large number of T C P connections with the server 
and not responding to its responses, so the connections stay in a half-open state. The 
server's memory eventually gets consumed, and legitimate clients are not able to access its 
resources. Mitigation approaches to combat this threat will be described, compared, and 
conclusions will be drawn. 

2.3.1 Downfalls of Traditional Approaches 

A traditional approach to mitigate S Y N Floods includes implementing mechanisms based 
on the S Y N Cookies algorithm. These are placed on the server in order to validate the 
authenticity of the incoming S Y N segments originated from clients requesting to establish a 
connection. This solution is still one of the best ways to prevent the attack, but employing a 
separate algorithm on an application server is not always desired. For these reasons, several 
network-based mitigation methods to protect against the attack, such as S Y N Cookies 
variants, R S T Cookies, or simply policing the maximum number of allowed SYNs per IP 
address [40], have also been developed. 

Several attempts of network-based mitigation based on packet contents and various 
statistical data have also been conducted. A typical example of this approach is [76], which 
uses a statistical variation of the S Y N traffic arrival. Packet content analysis detection such 
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as [45] detects a potential S Y N Flood by searching for anomalies based on the payload of 
IP and T C P headers such as ToS, IHL, T T L , and T C P flags. 

Statistical and header contents analysis may be an efficient way for attack detection but 
requires a field expert to specify the correct statistics, modifiers and thresholds so that the 
mechanism functions properly. This issue was experienced from the author's own perspec­
tive as he designed a system for automatic S Y N flood mitigation method switching [42]. In 
this case, the number of parameters that had to be manually set up was so overwhelming 
that the mechanism either worked "rather fine" or did not work at all. This behavior can 
be generalized to most of the heuristic approaches, plus the parameters may vary slightly 
from environment to environment, making the methods relatively inflexible and hard to en­
hance and maintain. For this reason, manual observation and parameter tweaking may be 
replaced by artificial intelligence techniques, which should be able to deduce the parameters 
by themselves and even find the patterns in data that a human would not have noticed. 

2.3.2 Machine Learning Approach 

A recent paper from 2019 [106] shows that the S Y N Flood attack may be mitigated using 
K-nearest neighbors algorithm based on a simple principle of source port entropy. While 
analyzing the C A I D A 2007 dataset of DDoS attack traffic from August 2007, the researchers 
found that each attack source IP opened circa 270 source ports while performing the attack. 
A n explanation for this phenomenon is that the attacker typically uses a botnet with several 
infected computers in each network. When the attack is launched, all the computers start to 
produce large quantities of traffic destined for the same target. Since all of the nodes have 
to pass through the Network Address Translation (NAT) gateway, the private IPs of zombie 
computers are translated into few (or one) public IPs with different ports (Figure 2.2). 

After calculating the port entropy between regular and attack traffic (Figure 2.3), the 
results clearly show the difference between the two - entropy for regular connection is mostly 
low, whereas the entropy for attacking hosts is predominantly high. According to these 
findings, the authors constructed a K-nearest neighbor classifier with an accuracy of 98.2% 
on the given dataset. Implemented in Software Defined Networking (SDN) environment, 
the authors were able to classify a single packet in 0.4ms, and the legitimate packet delay 
averaged 109ms. In contrast, when no mitigation was active, regular traffic often did not 
reach the destination or experienced significant latency from 7.5s to 9.5s [106]. 
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A vast number of similar machine learning solutions utilizing various statistical and 
packet features have also been proposed. These will be discussed in the following chapter. 

2.3.3 Discussion 

As mentioned in Subsection 2.3.2, the K-nearest Neighbors M L algorithm successfully clas­
sified most of the traffic only according to one feature. This approach could further be 
combined with other statistical properties to create an even more robust solution. The 
average packet delay of 109ms is not perfect but definitely serves the purpose of mitigating 
the attack while providing stable access to resources for regular clients. 

In contrast, traditional network-based mitigation methods built upon SYN-authentication 
such as T C P Reset Cookies would obtain 100% accuracy due to the nature of spoofed IP 
addresses in the dataset. This is because the method requires clients to authenticate be­
fore forwarding their S Y N messages, thus effectively denying all S Y N traffic from spoofed 
IPs [41]. Nevertheless, the experiment would not be replicable because the method requires 
to interact with the clients. Therefore, replaying a dataset to test the accuracy would not 
be possible. According to our previous measurements, the delay added by this method is 
less than 1ms after the client successfully authenticates [41]. This time is significantly lower 
than in the M L method's case, and the traditional approach also provides better protection 
in this particular case. Why would we hence bother with ML-based methods? 

As outlined earlier in this chapter, traditional methods do not scale and generalize well. 
T C P R S T Cookies and other SYN-authentication mitigation methods may work fine for 
most typical S Y N Flood attacks but are significantly less effective against attacks with non-
spoofed IP addresses. In addition, they cannot be used against other T C P DDoS threats, 
which are also relatively popular. These attacks do not typically have their associated 
bulletproof deflection technique, and thus methods based on statistical properties need to 
be used. In their case, defining and fine-tuning thresholds for various statistics is also 
not a trivial task - it is often imprecise, time-consuming, and requires adjusting for every 
network. 

On the other hand, mitigation based on machine learning can cover a much wider 
range of attacks, not requiring a specific method for each attack technique, and so might 
be developed and employed much faster. For instance, K-nearest Neighbors with entropy 
may be generalized to provide several other mitigation capabilities, like protection against 
T C P , U D P , and H T T P Floods, which would behave very similarly to S Y N Flood from 
the perspective of port entropy. Due to high generalization capabilities, M L approaches 
may hence detect even a new type of DDoS attack that has never been seen before. This 
would be possible only according to its behavioral patterns (such as packet arrival variance, 
average packet length, or mentioned port entropy), similar to other attacks that the method 
already encountered during the training phase. 

From this perspective, we can clearly see the robustness of the machine learning so­
lutions and why it is beneficial to employ them as detection and mitigation mechanisms. 
Nevertheless, this does not disqualify traditional approaches from being used. These solu­
tions often offer excellent mitigation capabilities, and their performance is typically much 
better, allowing them to process more packets with lesser latency. Therefore, it is the most 
beneficial to use traditional approaches if possible, but their combination with M L methods 
can significantly improve the detection and mitigation capabilities of other types of attacks, 
for which traditional approaches are either unavailable or unreliable. 
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Figure 2.4: C E S N E T ' s DDoS Protector architecture. 

2.4 C E S N E T ' s D D o S Pro tec tor 

Several existing DDoS protection solutions such as CloudFlare [29], Akamai [3], Imperva [54], 
and many others are available. C E S N E T a.I.e., as a Czech operator and developer of na­
tional e-infrastructure for science, research, and education, is also developing its own so­
lution to tackle this problem. The project utilizes a hardware-accelerated traffic filtering 
using F P G A technology2, own firmware, and a software-based malicious traffic detection 
core (Figure 2.4). 

The product was created to mitigate volumetric DDoS attacks such as DNS amplification 
DDoS, which produce tremendous amounts of traffic and which needs to be filtered on the 
network level before reaching end devices. At the time of writing this thesis, the usage 
of F P G A technology allowed traffic processing of up to 400 Gbps [59]. Most of the traffic 
is simply forwarded to their destination, but interesting packets like T C P SYNs can be 
analyzed to determine whether to forward or drop them. The analysis can be done directly 
in the hardware, but more advanced mitigation mechanisms (like R S T Cookies) require the 
packet to be software processed. 

In order to software-process a packet, it needs to be passed from the network interface 
card to the application running in the operating system (OS). This process is done without 
the intervention of the OS kernel to maximize the processing performance. For this rea­
son, the C E S N E T ' s DDoS Protector is currently being rebuilt upon D P D K architecture3. 
Packets are then polled from input buffers and passed straight to software modules, such 
as data loggers or mitigation algorithms. 

Currently implemented software mitigation methods focus mostly on T C P S Y N Flood 
mitigation. These include mechanisms like R S T Cookies, T C P Handshaker, and S Y N Drop. 
The purpose of this thesis is to design and implement a mitigation method based on machine 
learning that could detect and mitigate a wider range of attacks and be integrable to the 
DDoS Protector in the future. 

2Field-Programable Gate Array (FPGA) is a technology of integrated circuits that can be configured by 
a customer after manufacturing. 

3Data Plane Development Kit (DPDK) is a set of libraries and network interface controller drivers for 
offloading packet processing from the operating system kernel to processes running in user space. 
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Chapter 3 

Machine Learning in DDoS 
Mitigation 

Machine learning techniques for DDoS detection and mitigation are almost always based on 
supervised learning algorithms. These can be defined as functions mapping an input to an 
output based on example input-output pairs [94]. Example pairs are called training data, 
which the machine learning method processes during the training phase. This procedure is 
supposed to "teach" the method to correlate different input features with desired outputs, 
so it will be able to determine the output correctly even for data that were not seen during 
the training. More formally, the training process is used to infer the function f(x), where x 
is an input feature vector, and the result of fix) is a class to which the data belong to. In 
our case, the feature vector will consist of packet contents or statistical information about 
the traffic, and the result will define if the packet belongs to the legitimate traffic or an 
attack. 

Machine learning mechanisms used for this purpose can be classified into three categories 
according to the data they use: 

• Packet analyzers 

• Statistical data analyzers 

• Combined 

Methods based on packet analysis classify packets only according to their contents. 
These values typically include IP addresses, port numbers, T C P flags, T C P window sizes, 
IP flags, and various data from application protocols. This approach is a typically used in 
non-AI-based systems such as firewalls. Nevertheless, classification of network traffic based 
on this principle can be done by M L principles as well. However, a smart attacker may 
masquerade an attack as legitimate traffic by setting packet fields in the same way as the 
legitimate traffic. Methods based only upon packet analysis may thus fail to detect the 
security incident. 

Other solutions for DDoS detection do not rely on packet content analysis, but rather on 
the statistical behavior of the traffic as a whole. Attack traffic typically shares various be­
havioral patterns that may be used for successful detection. As mentioned in Section 2.3.1, 
traditional systems utilizing this approach have to contain various thresholds and modifiers, 
which have to be set up manually by a field expert. Machine learning methods are able 
to infer these values on their own, thus providing a robust and scalable way of mitigation 
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against various attack types. As discussed later in this chapter, some solutions may utilize 
both types of information to perform network traffic classification. 

Sections in this chapter will summarize research in the machine learning DDoS detec­
tion and mitigation field. Various M L models commonly used to achieve this goal will 
be discussed. For each model, we firstly present its general concepts, mathematical back­
ground, and finally, its usage against DDoS attack with concrete examples based on existing 
research. Machine learning methods examined in this chapter include: 

• Naive Bayes 

• K-means 

• K-nearest Neighbors 

• Support Vector Machines 

• Random Forest 

• Artificial Neural Networks 

3.1 Na ive Bayes 

Naive Bayes (Multinomial naive Bayes in our context) method is one of the simplest al­
gorithms used in the field of machine learning and classification. As the name suggests, 
its probabilistic model is built upon the Bayes theorem. Suppose we have an instance to 
be classified represented by vector x = (xi,X2, • • • ,xn) and a probability that the given 
instance belongs to the class Ck as p(Ck\xi,X2, • • • ,xn). Therefore, we are calculating a 
probability that the class Ck contains x, when we know parameters of the instance. When 
the Bayes theorem is applied, the conditional probability is decomposed as E q 3.1: 

p m m = « ^ m ± (3,) 
p(x) 

where 

• p(Ck\x) is the postterior probability (the probability that the class Ck contains x) 

• p(Ck) is the prior probability (the probability of class Ck occurrence) 

• p(x\Ck) is the likelihood (the probability that x belongs to C&) 

• p(x) is the evidence (the probability of x occurrence) 

A classifier that assigns a class label y = Ck for some k can then be constructed according 
to Eq. 3.2: 

n 
y= argmax p(Ck) T\p{xi \ Ck) (3.2) 

ke{i,...,K} i = 1 

The Bayes hypothesis can be easily mapped into a DDoS traffic classification problem, 
where x is the received packet, and Ck represents either attack or legitimate traffic. The 
method can be used for off-line packet capture classification and forensics, as suggested 
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Figure 3.1: K-means algorithm result example. Retrieved from [111]. 

by [120] and [34]. In this case, the whole dataset can be analyzed, and statistical features 
can be computed for each flow during the preprocessing phase. When these statistics are 
obtained, the Naive Bayes model should be able to classify particular flows correctly. Nev­
ertheless, we are typically interested in classifying and filtering real-time traffic. In this 
case, statistical features for flows cannot be computed exactly, but the method has to work 
with statistics per time window, such as via data mining techniques in streams. When deal­
ing with streams, the model may struggle to provide reliable classifications only according 
to the Bayes theorem and a training dataset due to its lesser robustness. Therefore, we 
conclude that the Naive Bayes may not be the best choice for real-time DDoS protection 
and hence will not be examined any further. 

3.2 K-means 

K-means is an analysis technique used for determining K clusters in the bulk of data. It 
is categorized as an unsupervised machine learning algorithm, though K-means for DDoS 
detection is typically used in a semi-supervised way. In this case, the context about the 
attack or non-attack is provided at least for some data during the training. Therefore, 
created clusters may be categorized according to the ratio of labeled samples they contain. 
K-means algorithm works by using a centroid 1 as a prototype for a cluster. Initially, all 
centroids are selected randomly, and their position is iteratively updated according to the 
minimum sum of squares of the points within the cluster. 

Mathematically, suppose a set of observations x\, X2, • • •, xn, whereas each observation 
Xi is represented by a d-dimensional vector. K-means aims to partition the n observations 
into k sets S = {Si, 52 , . . . , Sk} so that the within-cluster sum of squares (i.e. variance) is 
minimal. Formally, the algorithm is defined by Eq. 3.3, where is the mean of points in 
Si. A n example of the K-means clustering algorithm is shown in Figure 3.1. 

k k 
a r g m i n ^ ^ ||x — /x^112 = a r g m i n \ S j \ Var S (3-3) 

s i=l x&Si s i=l 

She, Wen, Zheng, and Lyu used K-means to detect Application-Layer DDoS attacks [100]. 
Authors state that user webpage browsing behavioral patterns are rather deterministic. 

1Mean position of all the points in all of the coordinate directions [5]. 
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Statistical features of sessions like the total number of H T T P requests, the total size of all 
requests, request rate, and an average access frequency of the request can distinguish le­
gitimate traffic from application-level flood attacks. The mechanism firstly creates clusters 
from legitimate browsing sessions in the training dataset. Since the created clusters are in 
the form of spheres, a single instance can be validated whether it belongs to a particular 
sphere or not. If the analyzed instance is not matched with an existing sphere, it is con­
sidered an anomaly and probably represents an attack. The best result was achieved for 
K = 9, which provided a 97.56% detection rate and a 2.67% rate of false positives. 

Similar results with a 98% detection rate were achieved by [84] with modified K-means 
on D A R P A 98 dataset. As in the previously mentioned article, a windowing principle was 
used to compute statistics for the stream of data. In this case, the author used landmark 
windowing for which 9 features were collected. 

As shown in the previous paragraphs, the K-means method can be used to classify 
traffic relatively reliably. When a principle of time windows is implemented, statistics can 
be collected on-the-go, and therefore providing real-time DDoS protection. However, the 
collected statistics still need to be specified manually. Inappropriate features may create 
too many overlapping clusters and degrade detection capabilities. 

3.3 K-nearest Neighbors 

The classification with K-nearest neighbors is based on finding K nearest instances to 
the analyzed instance /. This is most commonly done by calculating Euclidean metric d 
between instances x and x' (Eq. 3.4). Other types of metrics like Manhattan, Chebyshev, 
and Hamming can be considered according to the type of solved problem. Nevertheless, 
the majority of solutions for DDoS detection use the Euclidean metric. 

More formally, suppose a positive integer K, an unseen observation x, and a similarity 
metric d. The K N N classifier firstly runs through the whole dataset computing d with x for 
each training observation. Let A be a set consisting of K nearest instances to observation x. 
Conditional probability for each class is then estimated as the fraction of points in A with 
that given class label. Let I{x) be the indicator function that evaluates to 1 when the 
argument x is true and 0 otherwise. K N N classifier can then be expressed as Eq. 3.5 [121]. 

For the classifier to function properly, the value K must also be appropriately set. 
Small K restrains the region of a given prediction, thus forces the classifier to ignore the 
context of other nearby instances. This provides the most flexible fit with low bias but 
high variance. Higher K averages more neighboring instances, making it more resilient 
to outliers. Larger values of K will have smoother decision boundaries, which mean lower 
variance but increased bias (Figure 3.2) [121]. Typically, K is set between 7 and 15, but 
again, this is highly dependent on a given task. 

Apart from [106] discussed in Section 2.3.2, many other studies utilized K-nearest neigh­
bors to classify network traffic and detect anomalies. [73] used K N N to detect DDoS 
proactively in the early stages of the attack. For this purpose, the entropy of source and 
destination IPs/ports with packet type entropy, number of packets, and other statistics 

(3.4) 

(3.5) 
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Figure 3.2: K-nearest neighbors K value comparison. Retrieved from [121]. 

were used. A l l of these can be collected and computed in real-time, thus allowing an al­
gorithm to be integrated into IDS/IPS systems. Achieved detection accuracy was 92%. 
Similarly, other research projects like [32] and [78] use K N N with entropy and statistical 
data to detect an attack with promising results as well. 

As outlined in this subsection, K-nearest neighbors classification allows robust detection 
and mitigation of DDoS attacks. Due to low computational demands, the method can be 
employed in real-world scenarios as a part of IDS/IPS systems or implemented on SDN-
based networks. The detection mechanism for these methods is based on statistical traffic 
properties. These have to be observed and specified by a field expert, but many publications 
in the field have mostly done the job already. 

3.4 Suppor t Vec tor Machines 

Support Vector Machines (SVMs) are a sophisticated M L technique used for both classifi­
cation and regression tasks. The main idea of the S V M classification is to construct a linear 
decision boundary, so the gap (margin) between the classified classes is as large as possible. 
The decision boundary is generally an N-dimensional hyperplane2 (Figure 3.3), theoreti­
cally reaching up to infinite dimensions. Since it is not always possible to classify data 
using a hyperplane, the elements are internally classified in higher-dimensional space as 
they are originally observed. Using this method, the data that would normally be linearly 
inseparable can be classified using a linear classifier. The relationship between the elements 
in higher-dimensional space is computed by kernel functions (such as radial or polynomial), 
which allow efficient computation without performing the actual transformation. If the 
classified data partially overlap, a soft margin variant, which does not try to separate two 
groups strictly but allows a small number of misclassifications, could be used. 

If we consider perfectly separable data, the S V M searches for a hyperplane that has 
the maximum margin from the closest points of different classes (hard-margin). Defining a 
hyperplane as H : wT(p(x) + 6 = 0, the problem of finding the best decision boundary can 
be represented according to Eq. 3.6. 

2Subspace whose dimension is one less than that of its ambient space (space surrounding an object.) 
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Figure 3.3: S V M maximum-margin hyperplane. 

,\w\r n 
where: 

w* = a rgmax-—^ [min yn[wT4>(xn) + b]\ (3-6) 

• w is a normal vector to the hyperplane (hyperplane parameter) 

• Expression min yn[wT 4>{xn) + b] represents a distance of the closest point to H. 
n 

• yn defines the class (1 or -1) to which the point xn belongs. 

• Function (j)(x) is the transformation of the point x. (j)(x) : W1 —> W1, x £ M m . 

The above equation can be solved by the steps of normalization, transformation, and 
Lagrange multipliers 3 application. Two different views on the optimization problem - primal 
or dual form, may be taken. There, dual form is preferred because it provides a lower bound 
to the solution [10]. By applying a kernel trick 1 upon it, we receive an optimization problem 
fully independent of (f)(x) terms, which can be efficiently calculated to make a classification 
prediction. In practice, primal and dual forms are not computed directly, but many modern 
approaches for finding S V M classifiers utilize techniques like sub-gradient descent [98] or 
coordinate descent methods [52]. 

In the context of DDoS detection, many research articles employed SVMs in Software-
defined networks (SDNs) utilizing SDN switches to collect data and perform S V M com­
putations on the controller. For example, [117] uses S V M data classification in the SDN 
environment based on the statistical properties of the flows. Statistics like the number 
of unique IP addresses, number of unique ports, standard deviation of packets, standard 
deviation of bytes, and others, are computed in time windows of length T. Several of these 
windows are then used to classify the flow cts ct rc gular or potential attack. The authors 
achieved around 95% accuracy for a custom dataset. Similar results were also obtained 

3Strategy for finding the local maxima and minima of a function subject to equality constraints (such as 
the condition that one or more equations have to be satisfied by the chosen variable values) [50]. 

4 Computation that allows operating in higher dimensional feature space without the need for transfor­
mation from the original feature space. 
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by [61]. This work also employed the S V M method in the SDN environment and measured 
about 95% accuracy in two combined public datasets in an off-line mode. 

Non-SDN applications of SVMs comprise several research papers such as [89], which 
utilizes Enhanced Support Vector Machine (ESVM) and string kernels to detect ongoing 
DDoS in real-time. The traffic is classified into one of the 7 classes (normal or a particular 
DDoS type, e.g., I C M P Flood) according to statistical data such as the number of packets, 
session rate, and a protocol type. Classification accuracy of 99% was achieved on a live 
generated attack using common DDoS tools. A n intriguingly similar article [103] also uses 
E S V M to classify the traffic into 10 classes represented by different attack types. The 
authors use 14 statistical features collected per flow for the classification. The model was 
trained on K D D 9 9 ' as well as a custom dataset, achieving over 90% accuracy in both 
cases. Another interesting approach by [112] uses S V M in conjunction with Random Forest 
(RDF) (discussed in Subsection 3.5). R D F algorithm is used to identify the most significant 
features out of 42 provided in the KDD99 dataset and train the S V M model with them. 
This way, the presented solution has achieved high classification precision and F-score6. 

As outlined in this subsection, Support Vector Machines are a robust M L model usable 
mostly for classification tasks. Its principles allow us to process multi-dimensional data in 
a relatively fast way while achieving rather fast convergence. Several conducted research 
projects mentioned in previous paragraphs successfully used SVMs in DDoS detection per­
formed offline and online with fair results. Therefore, SVMs are definitely a mechanism 
that may be considered for our needs as well. 

3.5 R a n d o m Forest 

Random Forest is an M L technique especially popular in the computer networking field since 
it provides a way to visualize decisions made by the model. Therefore, the model does not 
act like a black-box that receives an input and produces an output, but the end-user is able 
to follow the model's decision flow. This is indeed useful when dealing with packets because 
features (packet fields) and their thresholds contributing to the classification process may be 
analyzed. This fact allows to tweak or modify them if the model's behavior is undesired or 
additional fine-tuning is needed. When discussing the Random Forest technique, a method 
called Decision trees has to be examined first. Therefore, this section will firstly examine 
Decision trees and their flaws, which will eventually lead to the Random Forest algorithm 
and its usage in modern DDoS mitigation systems. 

3.5.1 Decision Trees 

Classification with a decision tree is done by constructing an n-ary tree based on a training 
dataset and then performing the tree traversal for each analyzed data sample. Initially, 
only the prior probabilities of the particular classes are known. The main idea of decision 
trees is to increase the probability of a successful classification with each new level of the 
tree. Therefore, we need to define a sequence of features and their associated thresholds to 
perform these splits on. After the split on some feature is defined, the dataset is divided into 
several subsets according to the number of thresholds of that feature. This process is then 
repeated for every subset, each time with a different splitting feature. The mechanism thus 
constructs a tree, in which each node consists of a dataset subset and defines probabilities 

5kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 
statistical measure of the test's accuracy. 
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Protocol Port Packet size SEQ Number Attack 
T C P 80 1500 9999 True 
T C P 443 719 55634117 False 
T C P 13401 1301 143577913 False 
T C P 21 512 9999 True 
U D P 53 240 - True 
U D P 53 240 - True 
U D P 53 314 - False 
U D P 10005 1500 - False 

Table 3.1: Packet classification dataset example. 

Figure 3.4: Decision tree based on Table 3.1 example. 

of the observed classes based on its subset contents. The resulting probability of the data 
being classified is given by a leaf node or a node at a certain predefined level. 

For example, consider a simple packet classification problem consisting of the dataset 
with 4 features and 8 samples given by Table 3.1. Our task is to construct a decision tree 
that classifies a new unseen packet as either an attack or regular traffic. A n example decision 
tree for the given dataset is shown in Figure 3.4. The values of the tree nodes represent 
the probability that a classified packet belongs to an attack. As it may be seen, the first 
split on the protocol feature does not improve the accuracy but allows precise classification 
in the following tree levels. Some features were not used in certain tree branches at all 
because the mechanism does not consider them essential for classification purposes. 

The learning phase of the Decision Tree model comprises the estimation of features 
on the particular tree levels and the definition of thresholds used to branch the tree. For 
this purpose, either information gain based on entropy or Gini impurity index is typically 
used. Entropy, originally defined by Shanon, is a measure of information, choice, and uncer­
tainty [99]. Supposing a random discrete variable X with possible outcomes x\, X2, • • •, xn 

and their probabilities P(xi), P{xi), • • •, P(xn), the entropy H(X) is computed according 
to Eq. 3.7. Based on logarithm properties, the entropy is also often calculated as Eq. 3.8. 

16 



In the original Shanon's proposal and for the purposes of classification trees, a logarithm 
of base 2 is used. The computed value is hence in bits. 

n 

H(X) = -Y/P(xi) log P(Xi) (3.7) 
i=l 

H(X) = J2 P{xi) log — ( 3 . 8 ) 
i=i % 

Entropy can be used to describe (im) purity of the analyzed subset of the dataset. Low 
entropy signifies that the dataset contains mostly data classified into the same class. On 
the other hand, data from many different classes would produce high entropy. Therefore, 
given entropy as a measure of impurity in a collection of training examples, we can measure 
the effectiveness of a feature (attribute) in classifying the training data using information 
gain. Information gain is simply the expected reduction in entropy caused by partitioning 
the examples according to this attribute [70]. Formally, information gain IG(S,A) of an 
attribute A relative to the collection of examples S is computed according to Eq. 3.9. 

IG(S,A) = H(S)- W ^ " ) ( 3- 9) 
v e Values(A) 

where: 

• Values(A) is the set of all possible values for attribute A 

• Sv is the subset of S for which attribute A has value v 

• H(S) is the entropy for S 

With the concept of information gain, we are able to rate the splits upon different 
features and choose the one with the biggest value. If we applied this technique for the 
training dataset in Table 3.1, a tree different from Figure 3.4 would be generated because 
the first split does not provide any information gain. This is because the probabilities of 
correct classification are the same in the root node and the first level of the tree (greedy-
splitting). However, non-greedy heuristic techniques considering more splits are once may 
be used, which may generate the same tree as in the example. 

Another popular way to determine tree splits is by using the Gini impurity index. 
Instead of measuring entropy, Gini impurity works with variance in the class allocation. In 
other words, it is a measure of how often a randomly chosen element from the set would 
be incorrectly labeled if it was randomly labeled according to the distribution of labels in 
the subset [114]. Therefore, Gini impurity for category K would be calculated according to 
Eq. 3.10. 

Gini(K) = Pi,K(l ~ Pi,K) = 1~Y.PIK (3-10) 

ie N ie N 

where: 

• N is the list of classes 

• PiTK is the probability that category K has class i 
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Features for tree splitting are then determined by computing weighted sums of Gini 
impurities for all categ ories across all features (Gini impurity indexes). Considering Pk,a 
as a fraction of category k in feature a and M as a list of all feature a categories, the 
Gini impurity index is computed as Eq. 3.11. The index with the lowest value signifies 
the best purity of the data (most samples are matched to the correct class), and thus its 
corresponding feature should be used for splitting on the current tree level. 

In addition to the tree split determination, entropy and Gini index can also be used for 
feature selection. Note that both methods compute how pure a subset of a dataset is in 
slightly different ways. The purity of the dataset describes a portion of records that are 
classified correctly. Therefore, these metrics can be used to select features that contribute 
to the successful classification the most. When we select only top N features with the 
highest informative value, the classified problem's dimensionality is effectively reduced. 
This strategy can be used in the preprocessing phase for various classification tasks, such 
as when a method that can not work with a large number of dimensions is used. 

As discussed in many articles, the chosen metric for splitting is not significant because 
both the Gini impurity index and information gain produce somewhat similar results. As 
observed by [87], they differ only in approximately 2% of cases. However, Gini impurity does 
not require calculating the logarithm, thus being a little faster and a slightly more popular 
variant used in implementations such as Classification and Regression Trees (CART) . 

Decision Trees Drawbacks and Solutions 

The most common problem with decision trees is overfitting. The tree may be theoretically 
split up to the point that only 1 record in their associated dataset subset remains. This 
behavior is undesirable, and therefore a cut-off condition denying further tree splitting is 
typically defined. The condition is commonly defined by minimum records in the subset of 
the dataset, and of course, by subset purity. If all subset data are classified into the same 
class, there is no point in splitting the tree anymore. Other techniques, such as pruning, can 
also be applied to further reduce the number of splits by eliminating unnecessary branches. 

Another severe problem of decision trees is their variance. Models with high variance 
tend to react very sensitively against small changes in the training dataset. According to 
the calculation of tree split metrics, it may be seen that adding/removing a single record 
from the dataset would produce slightly different values, which may, in turn, construct a 
completely different tree as before. This behavior is also highly undesirable because the 
model may have problems generalizing and may provide poor or inefficient classification 
results. 

For these reasons, multiple decision trees are commonly grouped together as a single 
ensemble learning technique. Ensemble techniques combine several weak learners (such as 
shallow trees) with the goal of achieving similar or better results as more complex strong 
learners8, while considerably reducing learning variance and bias [11]. Common ensemble 
learning algorithms include Random Forest or Extra Trees based on the bagging technique 
(explained below), and AdaBoost and Gradient Boosting algorithms based on technique of 
boosting. 

7Classifier only slightly correlated with the true classification 
8 Classifier well-correlated with the true classification. 
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Random Forest is an ensemble learning method assembled of multiple decision trees that 
process the classified element independently. The classification result is then determined 
by combining results from all trees (such as majority vote or mean). This approach is 
based on the wisdom of the crowd principle 9. According to this concept, we can say that 
a large number of relatively uncorrelated models (trees) operating as a committee will 
outperform any of the individual constituent models [118]. Therefore, the fundamental 
idea is to generate many random uncorrelated trees that will participate in the classification 
process. Generation of these trees is done with boostrap aggregating and random feature 
selection techniques. 

Bootstrap aggregating (bagging) is a mechanism used to generate new datasets by ran­
domly resampling the original one. Each resampled dataset is then used to train a decision 
tree that will be a part of the random forest. This technique takes advantage of the deci­
sion trees' high variance and supposes that each dataset will generate a unique tree with 
minimal correlation to the others. Another way to minimize the correlation is to randomly 
reduce the number of features in each of these datasets (random feature selection). This 
way, each tree will classify only according to the random features subset while being trained 
on the random dataset subset. Combining these two techniques provide the generation of 
relatively random trees with low correlation. After constructing a number of these trees 
(forest), each tree performs classification on its own, and the final result is determined by 
combining their result, such as with the arithmetic mean formula in Eq. 3.12. 

• p ( c l v ) is t n e probability of class c for vector feature v 

• T is the number of trees in the forest 

• Pt(c\v) is the probability of class c for feature vector v computed in tree t 

Other ways of determining the final result can also be employed. Alongside the presented 
arithmetic mean, geometric or harmonic means can be used. Another popular technique 
of result determination is the majority vote - the class on which the most trees agree on 
wins. One way or the other, the random forest principle enhances classification accuracy, 
reduces the variance, and helps to avoid overfitting when compared to regular decision tree 
classification. Random Forest is a popular method in bioinformatics, data mining, finance, 
and many more for both classification and regression tasks. 

3.5.2 Random Forest in D D o S Mitigation 

The Random forest model is often a favored way for DDoS detection and network data 
processing in general. Its overall popularity is mostly based on the model's robustness and 
properties, such as the ease of implementation and visualization. For example, [35] pre­
sented an IDS system based on Random Forest, trained and evaluated on the N S L - K D D 
dataset 1 0 with 42 features. The authors performed a feature selection using symmetrical 
uncertainty (based on information gain). The model was able to detect several types of 

9 A collective opinion of a group of individuals rather than that of a single expert. 
10https: //www.unb.ca/cic/datasets/nsl.html 

(3.12) 
t=i 

where: 
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attacks, including DoS, with a 99.6% accuracy. Similar research was also conducted by [39], 
which also used the N S L - K D D dataset, Random forest, and information gain metric, achiev­
ing over 99% accuracy. Both of these papers described an off-line detection; however, the 
problem can be transformed into an on-line attack detection task using data mining tech­
niques in data streams, similar to the research presented in previous subsections. 

Random forest was also used by [23] to protect DNS servers against DNS DDoS Water 
Torture Attack with 99.2% accuracy. Jia et al. [57] used Random Forest as a part of the 
heterogeneous ensemble model with 41 features. Although the ensemble learning achieved 
over 99% accuracy on the KDD99 dataset, it was outperformed by a single Random forest 
model. As outlined, the Random forest algorithm can be used for feature selection as well. 
This functionality was utilized by [112] in conjunction with an S V M model, as discussed in 
Section 3.4. 

3.5.3 Summary 

As discussed in this subsection, Random forest consisting of multiple decision trees is a 
powerful model for not only classification but regression tasks as well. It is especially 
popular for network data processing since it allows simple visualization and fine-tuning. 
The collected features have to be specified manually, but the mechanism can select the 
most important features on its own, allowing to be deployed either standalone or as a part 
of a more robust M L solution. Features selected by the model can be viewed by the user, 
providing further intelligence about the solved problem. 

3.6 A r t i f i c i a l N e u r a l Networks 

Artificial neural networks (ANNs) are computational systems which attempt to simulate 
the decision process in networks of nerve cell of the biological central nervous system. 
Simulating a biological system, ANNs are designed to perform elementary computational 
operations to solve complex, nonlinear, stochastic, or mathematically ill-defined problems 
in a highly parallelized manner [43]. According to these properties, they are often able to 
carry out tasks such as detection and recognition, in which humans and animals excel, but 
conventional systems perform poorly. 

This subsection will introduce the concept of a biological and artificial neuron, present 
various types of artificial neural networks and discuss their usability for real-time DDoS 
detection and mitigation. 

3.6.1 Biological Neuron 

The biological networks of humans are composed of approximately 100 billion nerve cells 
(neurons) that are densely interconnected with thousands of connections per cell. A neuron 
(Figure 3.5) is a simple processing unit that combines signals from other neurons through 
input paths called dendrites. The signals from all dendrites are combined in the cell core 
(nucleus). If this combined signal is strong enough, the neuron "fires", producing an output 
signal along a path called the axon. The axon splits up and connects to thousands of 
dendrites of other neurons through synapses. Synapses, located in dendrites, are junctions 
controlling the flow of electrical signals. Each synaptic junction has a specific conductance 
strength that defines the magnitude of the signal. This strength is modified as the brain 
learns new information. Therefore, synapses act as the brain's basic "memory units" [109]. 
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dendrites 

Figure 3.5: Simplified structure of the biological neuron. Retrieved from [1] (modified). 

Figure 3.6: Artificial neuron scheme. 

3.6.2 Artificial Neuron 

Artificial neurons are essential building blocks of artificial neural networks discussed in this 
section. Their general model (Figure 3.6) is built upon biological neuron concepts presented 
in the previous subsection. The artificial neuron can hence be viewed as a mathematical 
model with N inputs Xi representing dendrites. Each input has an associated weight pa­
rameter Wi modifying the input value. The "firing" process is represented by summing all 
inputs multiplied with their corresponding weights and running the result through the acti­
vation function ip. Therefore, the output y of the artificial neuron can be defined according 
to Eq. 3.13. The result of summation before activation function application is called the 
neuron's internal state. 

N 
y = <p(y^J

 xiwi) (3.13) 
i=0 

Activation function (p is a non-linear function defining the output of the neuron. Its 
essential idea is to produce a reaction of the neuron according its internal state. If the in­
put value exceeds the threshold defined by the activation function (typically 0), the neuron 
output is a positive value. Otherwise, the output is 0 or a negative value, as defined by 
an employed function. This process is an analogy to operations in the biological neuron's 
nucleus and impulse transfer through the axon. Historically, the most commonly used ac­
tivation function was sigmoid (o~(x) = ) (Figure 3.7a) due to a friendly interpretation 
of neuron firing rate: from not firing at all (0) to fully-saturated firing at an assumed maxi­
mum frequency (1). However, other activation functions such as hyperbolic tangent (tanh) 
(Figure 3.7b), Maxout (f(x) = max(wfx + bijivjx + 62)) (Figure 3.7c), Rectified Linear 
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(a) Sigmoid. (b) Hyperbolic tangent. (c) Maxout (n = 2). 

Figure 3.7: Examples of various activation functions. 

Unit (ReLU(x) = max(0,x)), and others are used nowadays due to sigmoid's limitations 
in modern A N N learning algorithms [2]. 

As illustrated in Figure 3.6, the neuron contains a hidden input XQ associated with 
a trainable weight WQ. The input is commonly set to —1 (as in the figure) or 1. Together, 
they form a bias O. Therefore, an alternative way to define neuron output instead of 

N 
Eq. 3.13 is y = <p(^2 XiWi + O). Whereas input weights influence the steepness of the 

i=i 
activation function, the bias is used to shift it on the horizontal axis. Both the steepness 
and shift extents are learned by adjusting corresponding weights during training [67]. 

The Perceptron 1 1 (Rosenblatt 1958 [92]) is one of the first artificial neuron models that 
was proposed. The model computes its output as given by Eq. 3.13, while being activated 
by the Heaviside step function (Eq. 3.14), thus producing a binary output of either 0 
or 1. Training is performed by updating its weights based on the class classification error. 
Today's neuron models also compute their output according to Eq. 3.13 but use continuous 
activation functions, such as in Figure 3.7. The output of these functions enhances the 
training process by allowing the usage of more sophisticated algorithms. Nevertheless, 
a single neuron of any type can only produce a hyperplane decision boundary. Therefore, 
it can only be used for binary classification problems that are linearly separable. More 
advanced (linearly inseparable) problems have to be solved using neural networks. 

H(x) 
0 if x < 0 
1 if x > 0 

(3.14) 

3.6.3 Neural Networks 

As outlined at the end of previous subsection, ANNs were created to tackle the issue of 
linearly inseparable tasks, which cannot be solved by a single neuron. However, when we 
put several neurons together to form a layer and interconnect at least two of these layers 
together, a M L model able to learn complex non-linear patterns is created. This property 
of multilayer neural networks is known as Universal Aproximation Theorem [30] [51]. 

11Note that the term Perceptron often refers a general artificial neuron model in some literature. Multilayer 
Perceptron networks may thus refer to general feedforward ANNs. In this thesis, the perceptron represents 
only a neuron model proposed by Rosenblatt in 1958. 
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Figure 3.8: A simple 3-layer feed-forward artificial neural network. 

The simplest neural network architecture is a network consisting of two neural network 
layers. According to conventions, the first layer always represents the input to the network. 
This way, the simplest N N is commonly represented as a 3-layer acyclic graph (Figure 3.8). 
In our case, the network receives three inputs (xi, X2, £ 3 ) and produces two outputs (yi, 
y2). The network thus solves a binary classification problem for three input features. The 
numbers of input and output neurons are given by the solved problem, whereas the number 
of hidden neurons is chosen with the network design. Network layers that are not input 
nor output are called hidden layers. When training a network, each neuron in each layer 
updates its weights so that the output of a layer as a whole is some representation of the 
original vector the network received as its input. Neural network layer is thus a function 
I>nm_i —>• Mn™, where nm represents the number of neurons in the m t h layer. 

In classification problems, we typically want neurons in the last (output) layer to rep­
resent the probabilities of the classes the input vector may belong to. For this reason, the 
activation function Softmax (Eq. 3.15) is commonly used. Softmax turns the internal states 
of neurons into probabilities that sum to one. The function thus outputs a vector repre­
senting probability distributions of a list of potential outcomes. Top K classes (typically 
one) with the biggest value are then chosen and presented as the final classification result. 

a(z)i = 6 ' for i = l,...,K and z = (zu ..., zK) € MK (3.15) 

E e Z j 

The simplest neural network architecture presented in this section belongs to the cate­
gory of feed-forward networks. These types of networks do not contain cycles, so each layer 
works only with the output of the previous layer. Nevertheless, networks with different 
architectures that allow loops - Recurrent Neural Networks, also exist. These two main 
architectures can be modified by certain functions and neuron types, creating even more 
combinations of various NNs. The following subsections will discuss a few of these main 
network types and elaborate on their usability for DDoS detection. 

3.6.4 Feedforward Architectures 

As outlined at the end of Subsection 3.6.3, the example network in Figure 3.8 belongs to 
the feedforward neural networks (FNN) category. The essential building blocks of these 
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networks are fully-connected layers, which connect output of each neuron in the previous 
layer to every neuron in that layer. Connections between neurons in the same layer do not 
exist. Information from the input is thus "fed forward" from one layer to the next. 

Neural networks with one hidden layer are considered to be shallow machine learning 
models. According to Universal Aproximation Theorem [30], they should be able to ap­
proximate any function. Nevertheless, it was found out that shallow models typically do 
not achieve desired accuracy for complex tasks, such as image recognition. For this rea­
son, many M L models nowadays utilize principles of deep learning, which perform multiple 
levels of non-linear operations before producing the output [8]. In the context of neural 
networks, the principles of deep learning are represented by deep neural network (DNN) 
architectures, which have more than one hidden layer. Such networks are typically able to 
learn more complex patterns in the data and thus achieve better accuracy. Nevertheless, 
these types of networks are generally harder to train, requiring more training samples and 
more computing time. DNNs are also generally prone to overfitting due to additional layers 
of abstractions that allow the model to pick rare dependencies in the training data [8]. 

Both shallow and deep feedforward neural networks are mostly used for supervised 
learning tasks such as classification. Therefore, they may be suitable for DDoS detection. 
Nevertheless, only a detection based on statistical data without other context is possible 
because these networks do not have any "memory". For this reason, sequential or time-
dependent data (such as network packets as they come) can not be processed by FNNs. To 
tackle this issue, recurrent neural networks, presented in Subsection 3.6.5, are used. 

3.6.5 Recurrent Architectures 

In contrast to feedforward networks, recurrent neural network (RNN) architectures do not 
form an acyclic oriented graph but rather allow cycles composed of neuron connections. 
Wi th this design, the network gains the ability to model time or sequential dependencies 
of the input data. Sequential data are fed into the network by steps, one element (vector) 
of the sequence at the time. Computations in RNNs are performed in a cyclic manner, 
where the same operation is applied to every element of the processed sequence. The 
fundamental idea of these networks is to propagate the result computed at time t into 
the next computation at t + 1. The propagation is achieved by mentioned cycles, either 
self-loops for delay by one timestep or larger cycles across multiple layers. 

A simple three-layer R N N is represented in Figure 3.9. The input layer acts the same as 
in the feedforward architecture - just passes its values to the next layer. R N N neurons in 
the hidden layers contain self-loops to pass its previous result to the current computation. 
The output layer is composed of regular linear neurons, typically activated with Softmax 
for classification tasks. Note that neurons with a self-loop need an extra trainable weight 
matrix to represent the importance of the past information for the computation process. 

R N N networks are often unfolded in time/steps for better demonstration purposes. If 
we unfold the network from Figure 3.9, Figure 3.10 is obtained. From this representation, 
equations 3.16 and 3.17 to calculate outputs of hidden R N N and output neurons become 
more apparent. 

h < l > = y^Vh**-1* + Wrx<l> + br) (3.16) 

y<t> = ¥ , 0 ( W 0 / » < t > + b0) (3.17) 

where the upper index < t > represents a computation made in the timestep t. Therefore: 

24 



hi 

-> yi 

-> y2 

Figure 3.9: Simple 3-layer recurrent neural network. 
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Figure 3.10: Unfolded R N N from Figure 3.9. 

• x < l > , y<l> are network input and output vectors in t 

• h<l>, / i < i _ 1 > are the recurrent layer outputs in t and t — 1 

• tpr, (p0 are activation functions for the recurrent and the output layer 

• Wr, WQ are weight vectors for the recurrent and the output layer 

• V is the weight vector for self-loops in the recurrent layer 

• br, bQ are biases for neurons in recurrent and output layers 

In addition to the simple R N N variant presented in previous paragraphs (also known as 
Elman Recurrent Neural Network), numerous other architectures also exist. For instance, 
this network can be expanded into a deep recurrent neural network by adding one or more 
hidden layers to the existing model. Such networks have been confirmed to outperform the 
conventional, shallow RNNs [81]. RNNs can also act as memory cells. For example, the 
Hopfield network can be used as robust content-addressable memory, resistant to connec­
tion alteration. Similarly, Bidirectional Associative Memory (BAM) network architecture 
provides associative memory functionality. In the context of DDoS detection, classic archi­
tectures based on Elman Recurrent Networks and their variants are typically used. 

R N N architectures can be generally classified into four categories according to the length 
of their input (Tx) and output (Ty) sequences. Traditional networks can be considered one-
to-one model, in which Tx = Ty = 1. In this case, the network receives one input vector and 
an initial state, for which it produces one output vector. Other models like one-to-many 
(Tx = 1, Ty > 1), many-to-one (Tx > 1, Ty = 1), and many-to-many (Tx > 1, Ty > 1) in 
variants Tx = Ty and Tx ^ Ty also exists. The architecture type mainly depends on the task 
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Figure 3.11: Long-Short Term Memory cell structure. 

for which the network is built for. In the context of DDoS detection and mitigation, many-
to-many models are typically used due to processing many packets (flows) and labeling each 
of them as either attack or non-attack. 

Shallow R N N network architectures were a great success initially, but it was shortly dis­
covered that they could memorize only the last few inputs and thus struggled heavily when 
longer dependencies had to be processed. This was primarily caused by a simple structure of 
the original R N N cells, which contain only one hyperbolic tangent block. These standard 
types of cells cause problems for learning long data sequences by forgetting information 
about the network prediction error, formally defined as vanishing gradient problem [48]. 
Similar situation - gradient exploding happens when information about network prediction 
errors exponentially increases and thus loses its informative value. This issue has been tack­
led by new R N N cell designs like L S T M and G R U , discussed in the following paragraphs. 

Vanishing and Exploding Gradient Solutions — L S T M & G R U 

Vanishing and exploding gradient problems can be solved by numerous means, such as mod­
ifying the network training algorithm, gradient clipping, or architecture modification [47]. 
The most popular solutions in practice are Long-Short Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) architecture types. These replace the regular recurrent cell design 
with a custom structure, which prevents discussed gradient problems. For this reason, net­
works employing these architectures can work with significantly longer sequences (dozens 
to hundreds) with relative ease by design [49]. 

A single L S T M cell is composed of an input gate, output gate, and forget gate (Fig­
ure 3.11). When the input in the current timestep (xt) enters the cell, it is concatenated 
with the previous cell state ht-\ and processed in this form by these gates. The forget 
gate ft squashes its input into the number between 0 and 1, representing how much in­
formation from the previous cell state should be forgotten (Eq. 3.18). Similarly, the input 
gate it defines values that should be updated. When multiplied with the candidate vector 
ct, the new information that should be added to the cell is obtained. The new cell state is 
determined by multiplying the old cell state with the forget gate's output to forget some 
information and adding it to it • c~t in order to obtain new information (Eq. 3.19). The cell 
output ht is computed by combining the new cell state with the output gate ot (Eq. 3.20). 

ft = a(Wr[ht-1,xt} + bf) (3.18) 
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Ct = ff Ct-1 +ifCt (3.19) 

ht = ot- tanh(c t) (3.20) 

Gated Recurrent Unit (GRU) cells are relatively similar to the L S T M architecture. They 
are composed of an update gate and reset gate. As in L S T M , the update gate controls what 
part of the current input should be remembered for the next cell state. Updating is done 
by an additive operation, enabling to keep specific features from the input and allowing an 
effective error propagation without gradient vanishing. Similarly, the reset gate is used to 
forget the past cell state information via multiplication with the sigmoid operation result. 
In contrast to L S T M , the G R U cell does not contain an output gate. For this reason, the 
GRU's memory content is fully exposed without any control, the cell state in timestep t thus 
being the same as its output in t. The computation of candidate value in L S T M and G R U is 
also slightly different. As evident from Figure 3.11, candidate q is computed independently 
of the previous cell state ct-i- On the other hand, G R U computes its candidate value by 
considering both the input and the previous state. 

In theory, L S T M s should be able to remember longer sequences and train slightly slower 
due to their more complex structure. Nevertheless, empirical evaluations such as [26] have 
shown that both L S T M and G R U perform similarly, while significantly outperforming reg­
ular RNNs. The choice of the cell type should therefore depend on a particular task. In 
practice, both architectures are typically tested, and the one performing better is employed. 

3.6.6 Convolutional Architectures 

Convolutional Neural Networks (ConvNets, CNNs) are a subclass of deep feedforward neural 
networks. CNNs consist of multiple fully-connected layers as regular feedforward networks 
but also add several CNN-specific layers. The most important, convolutional layer, then 
gives a name for this network architecture type. These networks are mostly used to pro­
cess large multidimensional data, such as images, which cannot be efficiently processed by 
regular FNNs due to low parameter scalability with such inputs. 

Convolutional networks implicitly expect high-dimensional data at its input. For this 
reason, neurons in layers are also arranged in several dimensions, such as 3D for image 
processing. A n example of a handwritten digits C N N classifier is shown in Figure 3.12. 
As it may be seen, the network is composed of convolutional, pooling, ReLU, and fully-
connected layers, which are the core of every C N N . 

Convolutional layers are composed of a set of learnable filters (kernels). Performing the 
convolution involves sliding these filters across the width and height of the input volume and 
compute dot products between filters' values and the given position of the input. Sliding 
produces 2-dimensional activation maps that give the responses of the particular filter at 
every spatial position [66]. This way, the network is able to learn filters that cause the 
activations on certain positions of the input, such as vertical lines (edges) and others. Used 
kernels can be of different sizes (such as 3x3x1), with additional hyperparameters such as 
stride, zero-padding, and output depth. 

Pooling layers are designed to reduce the spatial size of their inputs. They operate 
independently on every depth dimension with the purpose of resizing it spatially. Pooling 
is typically done with maximum or average functions, which process several elements given 
by the filter's size and output their maximum or average. Similar to convolution, the filter 
is moved across the whole input, resulting in a reduced-size output. 
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Figure 3.12: Example C N N for handwritten digits recognition. Retrieved from [95]. 

Other layers that can be found in CNNs include fully-connected layers and R e L U layers. 
ReLU layers perform element-wise R e L U operations to remove negative values that may be 
created as the convolution's result. Fully-connected layers are typically placed at the end of 
the network to classify the output produced by the convolutional, pooling, and R e L U layers. 
Neurons in this layer are fully connected and behave exactly like neurons in feedforward 
neural networks described before. 

C N N s for Sequence Processing 

Although CNNs have been initially designed and used to process image data primarily, it 
was soon discovered that their use could be much broader. Data representable in the form 
of the image (set of 2D objects) may be fed to regular CNNs to learn patterns in them in a 
relatively efficient way. Alternatively, one-dimensional CNNs that operate on ID data may 
also be constructed. 

CNNs have been successfully used in traditional sequence modeling tasks such as text 
classification [122]. [4] further empirically evaluated that CNNs perform similarly or may 
even outperform RNNs in several sequence modeling problems in a way more efficient 
manner. For these reasons, the usage of CNNs may be considered in the field of DDoS 
detection and mitigation as well. 

3.6.7 Attention Architectures 

The current state-of-the-art sequence-to-sequence models for tasks such as natural language 
processing or computer vision include neural networks based on an attention mechanism. 
It allows the identification of relevant data with respect to the presented query. In contrast 
to RNNs, which need to process the whole input sequentially, attention allows the input 
to be processed at once in parallel, significantly improving both training and operation 
times. Attention also allows working with longer sequences than L S T M or G R U cells can. 
Although its widespread adoption in the text and speech processing areas, the author is 
not aware of any evidence of their usage in DDoS detection or mitigation at the time of 
writing this document (December 2020). 
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3.6.8 Learning 

Neural networks typically learn in a supervised manner. Firstly, an output estimate for a 
given input is computed. A Loss function L is then computed for this estimation based on 
a ground truth label. L is then used to determine an error E the network made during the 
estimation process. The goal of learning is to minimize these errors by computing gradients 
WE. This process, alongside a network parameter update, is performed by an optimizer, 
such as the gradient descent algorithm. The process is repeated for each sample within the 
training dataset over several training epochs. Network learning, alongside its mathematical 
definition, is further examined in Appendix A . 

3.6.9 Artificial Neural Networks for D D o S Mitigation 

As one of the most popular machine learning methods nowadays, ANNs have been used 
in numerous research papers to detect and mitigate DDoS attacks. For example, [96] used 
knowledge of the tools commonly used by attackers to design a set of three neural networks 
with one hidden layer that could detect DDoS using T C P , UDP, and I C M P protocol. This 
was achieved by extracting 3-5 features from each packet's protocol header and feeding 
them into the network corresponding to the analyzed protocol. The system achieved real­
time accuracy of 98% for both known and unknown types of attacks manually generated 
by publicly-available DDoS tools using a simulated botnet. 

A n influential publication DeepDefense [119] from 2017 suggested using deep neural 
network with both backward and forward recurrent layers to enhance DDoS detection ca­
pabilities. Instead of per-packet classification, the proposed system utilized per-window 
classification. In this case, the last packet of the window was classified by also supplying 
T previous packets (authors suggest 100), so the R N N with L S T M cells can make better 
predictions. The paper states that DeepDefense outperform Random Forest and gener­
alizes better on bigger and unknown datasets. In [65], the authors of DeepDefense then 
implemented it to SDN environment and used to deflect real-time generated attack. 

Other approaches, such as [123] and [27], utilize DNNs to perform the selection of the 
most important features automatically. These methods are more convenient but bring 
relatively no innovation nor improved accuracy when compared to methods described in 
previous paragraphs. Many other, either feedforward, recurrent, shallow or deep network 
implementation exists. They typically process statistical and packet features and are mostly 
employed as cloud IDS or a part of the SDN network. 

3.6.10 Summary 

Neural networks are undoubtedly one of the machine learning methods with the best gen­
eralization abilities. Their architectures and usage are still a subject to extensive scientific 
experimentation and research. For these reasons, they could be a perfect match for DDoS 
traffic classification. Nevertheless, they are not applicable in all cases due to high classi­
fication latency (further discussed in Section 3.7) and unrepresentability of their internal 
states, unlike decision tree and random forest algorithms. 

3.7 Conc lus ion 

As discussed in previous sections, almost all machine-learning methods can be used to 
successfully detect and, in a way, prevent DDoS attacks. However, for our purpose of 

29 



Algorithm Prediction 
Naive Bayes o(P) 
K-means 0(pndusts) 
K-nearest Neighbors 0(klog(n)) 
Support Vector Machines 0(pnsv) 
Decision Tree o(P) 
Random Forest 0(pntrees) 
Feedforward Neural Network Q(pnh + nhnh + ••• + nlm_jilm) 

Table 3.2: M L methods theoretical predictions complexities comparison. Legend: 

• k - number of K neighbors 

• n - number of training samples 

• ndusts ~ number of clusters 

• nii - number of neurons in layer i 

• ntrees ~ number of decision trees 

• nsv - number of support vectors 

• m - number of N N layers 

• p - number of features 

real-time detection, robust models with the ability to make a decision without a significant 
delay are required. As shown in Table 3.2, the theoretical prediction complexities of various 
algorithms differ. Empirical measurements of several classification algorithms such as [88] 
also confirmed that even usage of a simple 3-layer neural network with fully-connected layers 
classifies samples significantly slower than algorithms such as S V M or Random forest. In 
practice, the classification time is mostly influenced by the M L method implementation 
and various optimizations, but classification times taking longer than several dozens of 
milliseconds are generally unacceptable for our purposes. 

According to these findings, we conclude that the M L method for our purposes will 
have to be chosen very carefully, and several of them may be tried during the process. At 
first, the requirements on the classification accuracy of a non-trivial network traffic analysis 
problem need to be satisfied. However, at the same time, restrictions on the method's 
performance also need to be considered. Despite neural networks' superior capabilities, 
other alternative methods such as Random Forest or Support Vector Machines may need 
to be experimented with in order to meet these criteria. The issue of choosing the method 
will further be elaborated on in the following chapter discussing the proposed mitigation 
mechanism design. 
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Chapter 4 

Machine Learning-Based System 
for DDoS Detection and Mitigation 

This chapter will build upon the theoretical foundations of DDoS attacks and their way of 
M L mitigation discussed in previous chapters. Based on this knowledge, a machine learning 
system capable of detecting and mitigating DDoS attacks in real-time will be proposed. The 
system was designed in a way that it addresses various flaws of other current research in 
the field, aiming to provide accurate decisions during an ongoing attack in order to lower 
or completely mitigate its impact. 

The following sections will firstly elaborate on current research imperfections and discuss 
constraints put on the proposed system before the design phase. The chapter will further 
look at the whole M L pipeline, present its pros and cons, and finally, will examine available 
datasets usable for our purposes. 

4.1 E x i s t i n g Research Shortcomings 

A considerable part of the M L DDoS detection research in recent years works with statistical 
features of network flows. These include already cited papers from the previous chapter 
like [112] (2017), [39] (2017), or [27] (2021), but also others like [97] (2020), [107] (2020), 
and many more. This source of statistics makes sense because architecture for collecting 
information about flows is typically included on most of the Internet Service Providers' and 
larger campus networks by design. The flow information collection is done via NetFlow 
exporters and collectors. 

The definition of a network traffic flow is rather loose and not standardized - an artificial 
logical equivalent to a call or connection (RFC 2722 [12]) or as a set of IP packets passing an 
observation point in the network during a certain time interval. (RFC [85]). However, the 
defacto standard for network monitoring - NetFlow, defines a flow as a 7-tuple consisting of 
the source IP address, destination IP address, source port number, destination port number, 
layer 3 protocol type (e.g. T C P , UDP) , ToS (type of service) byte, and input logical 
interface. Therefore, a significant share of today's DDoS detection research is centered 
around identifying malicious traffic grouped by these values. 

At this point, one may see that the phenomenon described in the previous paragraph 
may become somewhat problematic. If a perpetrator manages to utilize these NetFlow 
properties, an attack with a small number of packets per flow, or ideally, one packet-flows, 
may be conducted. This can be achieved by traffic with ever-changing source ports, IP 
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addresses, ToS fields, or managing to change the routing of a packet, so it enters the 
network via a different interface. For this reason, machine learning algorithms would be 
unable to make an accurate decision due to the insufficient amount of traffic collected from 
each flow. 

Even though there are still various popular types of DDoS where threat actors cannot 
control the source port (such as amplification attacks), many other attacks are performable 
with these properties in mind. Attackers have already taken advantage of this fact and 
create more and more sophisticated tools to trick similar mechanisms. As an example, an 
infamous tool Low Orbit Ion Cannon (LOIC) 1 popular between 2010 and 2015 did not 
provide port randomization and instead used a single or a limited set of ports and a single 
non-spoofed IP address to send traffic from. On the other hand, its newer improvements 
High Orbit Ion Cannon (HOIC) and XOIC also use a single IP address, but with increment­
ing port numbers according to our tests. Therefore, each packet creates its unique NetFlow 
entry, and so estimators based on flow data would struggle to make a correct decision. 

Another problem with NetFlow flows for real-time DDoS mitigation is that they are 
not exported from NetFlow exporters instantly. Firstly, a flow has to timeout before it is 
marked as completed. This may take up to several seconds based on the exporter settings. 
Also, completed flows are not sent to the NetFlow collector at once but rather in batches 
with several others to improve performance. Wi th batching enabled, few more seconds until 
the flow statistics reach the NetFlow collector are added. Only there can they be retrieved 
by machine learning methods and processed. 

As apparent, reliance on network flows can be too restricting and may significantly 
decrease mitigation capabilities against certain types of attacks in the real world. For this 
reason, this work will aim to design a system not reliant on network flows, which should 
be able to provide a better generalization of the problem and thus be used against a wider 
variety of DDoS attacks in practice. 

4.2 Des ign Considerat ions and Constra ints 

As outlined in the previous section, the machine learning system proposed in this thesis aims 
to provide DDoS mitigation functionality independent of the NetFlow flow data. In order 
to achieve such a goal, the generalization of the classification problem needs to be moved 
one level higher. This section will discuss how it is achieved, as well as what advantages 
and disadvantages it hides. Expected requirements on the system's performance will also 
be outlined. 

4.2.1 Generalized Traffic Statistics Estimation 

In order to make the system more robust and allow working on a higher level of abstraction, 
we need to redefine how is the traffic coming from clients grouped and analyzed. We aim 
to design a system resilient to changes in most of the variables defining a NetFlow flow so 
that the traffic may still be grouped regardless of the packet's content sent by the same 
host. The common grouping value unique for each host on the network is indeed its source 
IP address. Therefore, we do not try to separate legitimate (benign) flows from malicious 
DDoS flows but rather look at the client's communication as a whole. The input for the 
machine learning method is thus grouped based on the client's IP address, and so the 

xhttps: //en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon 
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method's expected output will be whether the particular IP address produced malicious 
traffic or not. 

Machine learning methods working with flows look on the flow as a whole - from its 
start to its end since only flows marked as completed are exported from a NetFlow exporter 
to a collector. However, this principle does not apply to per-IP collected statistics because 
we cannot tell whether the IP address will send more data or not. Also, waiting for a 
host to stop communicating (such as with a timeout) and classifying its data afterward is 
counterproductive since we want to reveal an ongoing attack and mitigate malicious traffic 
as soon as possible. For these reasons, we want a processing technique able to process a 
stream of data in real-time and produce relevant statistics so that our machine learning 
model will be able to make a proper decision. 

Despite the fact that the per-IP principle generalizes much better than per-flow clas­
sification, it is important to add that it is not entirely bulletproof. Recall that a per-flow 
system may be fooled by spoofing IP addresses, randomizing source or destination ports, 
randomizing the ToS field, or tampering with a packet routing. Although the per-IP system 
addresses most of these issues, the attacker has one and the only way to deny the system to 
collect enough data - IP spoofing2. This way, malicious traffic can again be spread across 
multiple statistics entries or intermixed into communication of other IP hosts, creating a 
hard time for the machine learning method to make an accurate conclusion. 

Regardless of the previously mentioned setback, note that IP address spoofing is not 
necessarily performable in all situations. Randomization of source or destination ports or a 
ToS field can be performed by any client by design. Although there are various mechanisms 
that may mark such communication as suspicious, it does not necessarily need to indicate 
any threat activity, and such traffic is typically forwarded within the Internet without a 
problem. On the other hand, IP address spoofing is considered harmful in a vast majority of 
cases, and some Internet Service Providers (ISPs) and bigger network operators are actively 
taking precautions to prevent such behavior from happening. 

The process of spoofed IP addresses filtering is defined in R F C 2827, currently marked as 
Best Current Practice (BCP) #38. The document briefly explains the problem of IP address 
spoofing, its connection to DDoS attacks and suggests a solution for filtering inbound traffic 
on network edge routers. Supposing these routers would restrict transit traffic originating 
from a downstream network to known and intentionally advertised prefix(es), the problem 
of source address spoofing would be virtually eliminated [37]. In other words, all traffic 
that does not match its source network prefix should be dropped before it is forwarded on 
the Internet. As efficient as this technique is, it would require adoption on the majority 
of Internet providers, which cannot be generally relied on. Even if traffic filtering was 
adopted, an adversary might still forge packets that match the source network prefix and 
thus partially circumvent this principle. 

Another thing to take into account in per-IP systems is N A T for IPv4. Network Address 
Translation (NAT) is a process of translating a set of private IP addresses to one or more 
public IP addresses and alternatively changing a source port (Port Address Translation 
(PAT)). When the packet leaves an internal network, its source IP is translated into a 
public IP address according to the translation table. When a packet with a spoofed IP 
address arrives on the NAT-enabled interface, one of three scenarios typically occurs: 

1. Reverse path filtering, as explained in the previous paragraph, is applied and the 
packet is dropped. 

2 A process of crafting a packet with a different source IP address as the original IP of the sender. 

33 



2. The packet is treated like any other L A N packet, thus being translated by N A T . 

3. Filtering nor N A T are not applied, and so the packet is forwarded to the Internet as 
it is. 

As discussed previously, reverse path filtering cannot be relied on. Some routers may 
treat a packet with a spoofed IP address as any other packet and thus perform NAT-ing, 
which efficiently denies distribution of DDoS traffic across multiple IP addresses. This is 
indeed beneficial for the proposed method because attack traffic will be grouped under the 
same IP, allowing it to be analyzed in a M L model together. Nevertheless, the described 
behavior is also not provided on the majority of routers by default [71], and so packets with 
forged IP addresses may still reach the Internet in some cases. Therefore, we consider IP 
address spoofing as a relevant drawback with a possibility to affect the proposed method 
negatively, but the extent of its use is significantly limited compared to other perpetrator's 
possibilities against flow-based detection systems. 

The second consideration about N A T is the possibility of mixing legitimate and mali­
cious traffic under one IP address. Suppose there are more hosts in a single network com­
municating simultaneously, and P A T is employed. In that case, their resulting IP addresses 
will be the same, with only a source port changed after the translation. This process may 
create a problem for our M L method since both legitimate and malicious packets could be 
included in the traffic statistics for a given IP. When considering high-volume attacks based 
on flooding a large number of packets, the problem of merging multiple data streams under 
one IP address is negligible. This supposition lies in the fact that tremendous amounts of 
malicious traffic would significantly outweigh legitimate traffic, and so its share upon the 
whole computed statistics for a given IP would be minimal. However, flow merging can 
considerably affect low-volume attacks such as slow H T T P G E T / P O S T DoS since they can 
easily become statistically insignificant when mixed with other legitimate traffic. For these 
reasons, we suspect that the presented method will be limited for detection and mitiga­
tion of high-volume DDoS threats, but experiments with low-volume attacks will still be 
conducted. 

4.2.2 Real-Time Performance 

During the real-time DDoS mitigation, performance is one of the key aspects. Through­
put of the network cannot be significantly degraded during the ongoing mitigation, so the 
security device does not create a bottleneck on the network. For this reason, it is compu­
tationally infeasible to analyze each incoming packet in the M L method and wait with its 
forwarding until a decision is made. This would limit the throughput so significantly that 
DoS situation for the majority of the clients could still occur because their packet would be 
timeouted while waiting for the M L algorithm to draw a conclusion. 

For these reasons, the mitigation itself needs to be performed in a way that the packet 
forwarding engine can do a quick lookup whether to forward a packet based on single, 
easily computable rules so that the incoming data are processed with minimal latency. This 
principle applies on both forwarded and dropped traffic. Therefore, our machine learning 
method cannot aim at executing a deep per-packet inspection, but rather analyze data that 
describe the traffic as a whole - such as metadata, various statistical features, etc. 

Therefore, the method needs to be designed to predict malicious activity based on 
the obtained statistical information about the network data, grouped by IP addresses. 
However, in order to compute these statistics, some samples of the traffic need to be collected 

34 



_ ML-based attack 
detector 

Sampled attack 
traffic Rule-inferring 

engine 

Update 

Packet flow Rule 
database 

Lookup 

Packet processing forward/drop packet Packet processing forward/drop packet 
engine 

Figure 4.1: ML-based DDoS mitigation system high-level overview. 

first. As it may be seen, we will not be able to decide whether the particular packet is 
malicious or not with M L , but we will have to focus on inferring quick lookup rules that 
will identify the malicious traffic. Another consequence of this design is that the ML-based 
decision making cannot be truly performed real-time, but some time to sample enough data, 
compute their statistics and make the actual prediction will be necessary. By relaxing these 
time requirements on the machine learning method itself, we admit that 100% mitigation 
accuracy cannot be achieved by design. This lies in the fact that some data need to be 
collected first and data that are not explicitly dropped must be implicitly forwarded to its 
destination. Nevertheless, if we are able to infer rules that are generic enough, a rule for 
malicious traffic detected for IP A might be used to drop packets from other IPs B, C, D, 
if they resemble the same packet structure, without the need of evaluating them in M L 
method. 

4.2.3 System Proposal 

Based on the problem definition and terms clarification in the previous subsection, a high-
level concept of the system is proposed in Figure 4.1. ML-based attack detection mechanism 
will receive network data from the input, extract their statistics and save them to internal 
structures. If a sufficient amount of data is collected for a particular IP, it feeds these 
statistics into the underlying M L model and generates a prediction. If such a prediction 
detects a malicious activity for a given IP address, some of its data are sampled, and 
these samples are passed to the Rule-inferring engine. Based on a rule-inferring setup (e.g., 
signature creation), a rule to drop packets with specific characteristics will be generated. 
Such rule is then saved to Rule database, which is used for quick lookups from Packet 
processing engine, determining the following action for a concrete packet. According to this 
lookup, the packet is dropped or forwarded. 

When mapping this high-level overview on the current C E S N E T ' s DDoS protector ar­
chitecture, we may consider it to be the Packet processing engine with an A P I to control 
its rule database. As there are also several solutions for rule-inferring already available, 
such as [56], this work will discuss the design, implementation, and evaluation of only the 
ML-based Attack Detector block hereafter if not explicitly stated otherwise. 

The M L detection block (Figure 4.2) is composed of three main logical parts - Feature 
extractor, Statistics logger, and Machine learning manager. Feature extractor processes 
packets and retrieves relevant features from them. It is currently implemented in software 
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Figure 4.2: Detailed machine learning pipeline of the DDoS detection system. 

for demonstration purposes, but its functionality can be entirely replaced with a hardware-
accelerated solution such as F P G A . 

Statistics logger is supposed to store extracted features and compute summary statistics 
upon them. It also exports these statistics in a format suitable for M L processing. Finally, 
the Machine learning manager module is responsible for preprocessing the computed statis­
tics and managing the machine learning process as such model creation, training, and 
evaluation. A l l of these concepts are described later in this chapter. 

4.3 Feature Engineer ing 

With requirements, constraints, and leading design ideas of the system already clarified, let 
us look at the first step of any machine learning project - the data. As the system will be 
working with network packets, we will aim to retrieve relevant features from these data and 
transform them into a form useful for the machine learning model. This section will hence 
discuss what features are extracted and how are various statistics based on them computed. 
Derived statistical features are then used as the input for preprocessing module and the 
machine learning classifier, as further examined in Section 4.4. 

4.3.1 Packet Feature Extraction 

In order to achieve as generic use-case as possible, the proposed system aims to mainly 
utilize traffic metadata instead of the actual packet contents. This metadata is then used to 
compute various statistical features used for classification, as described in Subsection 4.3.2. 

36 



Feature name Data type 
Timestamp Integ ;cr 
Source IP String 
Destination IP String 
L4 protocol Integ ;cr 
Source port Integ ;cr 
Destination port Integ ;cr 
Headers length Integ ;cr 
Payload length Integ ;cr 

Table 4.1: List of extracted features from each packet. 

The extracted features have been chosen based on the needs of computed statistics and 
their ease of retrieval, which can be done in hardware with minimal additional overhead. 
These include the packet arrival timestamp that allows the computation of timing statistics. 
Since we need to know the communicating hosts, source and destination IPs are retrieved 
as well. Furthermore, some statistics also require layer 4 port numbers, and thus the 
transport layer protocol and port extraction are also performed. The complete list of 
extracted features from each packet is displayed in Table 4.1. 

Timestamps are extracted as 64-bit unsigned integers, representing the number of 
nanoseconds elapsed since the Unix epoch (1 January 1970). IP addresses are extracted as 
strings to ease their manipulation without extra conversions later in the pipeline. However, 
byte representation is also possible if optimization of the extractor's memory usage would be 
desired. L4 protocol is represented by its protocol number assigned by I A N A [55], I C M P for 
IPv4 and I C M P for IPv6 both represented by same value of 1 for simplicity. Port numbers 
are extracted as integers as they are directly extracted from L4 headers. Headers without 
port numbers (ICMP) leave their port field values at 0. The packet length is not extracted 
directly, but each packet is instead split into header length and payload length, which allow 
for computation of more advanced statistics, as described in the following subsections. 

By design, data are only extracted from IPv4 and IPv6 packets. Other types of traffic 
would not provide any relevant information for our purposes and would unnecessarily dimin­
ish the performance. For this reason, non-IP traffic should not be passed to the extractor 
at all. Nevertheless, if such scenario occurs, a NULL-l ike value must be returned. 

4.3.2 From Packet Features to Traffic Statistical Features 

Extracted packet features in their raw form are still not much of a use for machine learning 
methods. They provide a little informational value on their own, and there are too many 
of them as well. For these reasons, several data mining algorithms can be applied to 
obtain information useful for learning and classification. Extracted features are then further 
processed in the Statistics logger module (Figure 1.2). At this point, we want to control 
which part of the continuous packet flow contributes to computed statistics and other 
data mining patterns. Several data mining techniques for streams could be considered: 
however, the best fitting for our purpose is the window model. The window model divides a 
theoretically infinite data stream into sequences of a specified length and computes statistics 
upon them independently. 
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Figure 4.3: Window models visualization. The intensity of the background color represents 
an object's weight. 

Window Models 

A few variants of windowing principles can be used throughout multiple use-cases. These 
include landmark windowing (Figure 4.3a), damped windowing (Figure 4.3b), sliding win­
dowing (Figure 4.3c), and a few others. Landmark window clusters (groups) features from 
a starting time-point (landmark) up to the current time-point. When a new landmark 
starts, all items from the previous one are removed. As we are interested in the history of 
the host's communication and want to see how this communication changed over time, this 
model is not particularly useful for our use case. 

In a damped window model, each object is associated with a weight depending on its 
arrival time. The first arrived object is assigned the highest possible weight, decreasing over 
time according to some aging function [69]. This windowing principle could be useful if we 
were interested at the start of the host's communication and less interested in its activity 
later on. Although this principle may be interesting in some networking applications, we 
aim to describe the overall host's communication over time, and so putting less weight upon 
the samples received later on could cause detection algorithms to perform poorly. 

The sliding window model splits the stream by windows of constant length w and groups 
objects in the same window together. Each object belongs only to one window, and each 
window contains objects from the interval [wn, w(n + l)), where n is the window's identifier 
starting from 0. The window hence "slides" from one part of the stream to the other as 
time progresses. When we relax the condition of disjunct windows and allow an object to 
exist in more windows simultaneously, a concept of overlapping sliding windows is received. 
In contrast to damped variant, all objects within the same window are of equal importance. 

As we want to monitor the client's activity over time and compute statistics upon them, 
a non-overlapping sliding window model is a perfect choice. Therefore, we will group the 
incoming data by their IP address, whereas each IP address will have an associated list of 
windows, in which the statistics for a particular IP will be stored. Storing only a single (last) 
window is insufficient because we want to look at the communication process in more detail. 
For this reason, several historical windows will need to be kept. This section will further 
discuss which statistics are computed and how is the whole windowing system managed. 

Collected Statistics 

As already indicated, values extracted from each packet (Table 4.1) are not saved into win­
dowing structures as they come. Memory conservation and relevant traffic description are 
achieved by statistical features like count, mean, min, max, standard deviation, and others 
computed instead. Each of them represented by a single value, achieving an acceptable 
memory usage even when millions of clients are being processed at the same time. 

The Statistics logger module uses 18 unique features (Table 1.2) computed and logged in 
each time window for every communicating IP address. This is represented by the "Current 
window per-IP data" component in Figure 4.2. However, the classifier would still not be 
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Feature identifier Description 

pkts_total 

bytes_total 

tstamp_start 

tstamp_end 

pkt_arrivals_avg 

pkt_arrivals_std 

pkt_size_min 

pkt_size_max 

pkt_size_avg 

pkt_size_std 

tcp_pkt_count 

udp _pkt _ c ount 

i cmp_pkt _ c ount 

port_src_unique 

port_src_entropy 

conn_pkts_avg 

hdrs_payload_rat 

window id 

io_avg 

Window identifier 
Total number of packets 
Sum of bytes of all packets 
Timestamp of the first packet 
Timestamp of the last packet 
Average time between packet arrivals 
Standard deviation between packet arrivals 
Minimum packet size 
Maximum packet size 
Average of packet sizes 
Standard deviation of packet sizes 
Number of T C P packets 
Number of U D P packets 
Number of I C M P packets 
Number of unique source ports 
Source port entropy 
Average number of socket-to-socket transfers 
Average of header to whole packet size ratio 

Table 4.2: List of stored window features for each IP address. 

able to correctly predict whether the malicious traffic is present or not. If only 1 window 
(such as a 1-second timeframe) was analyzed, quick traffic bursts of legitimate traffic could 
produce a large number of packets in a short duration, possibly having similar characteristics 
as DDoS attacks in such a short period. Therefore, statistics of a single window are not 
suitable on their own. However, we may compute advanced characteristics better describing 
the traffic if we combine several of these windows together. For this reason, values in each 
time window are not fed into the M L model directly but represent only auxiliary values 
used to compute more complex statistics. 

When several of these windows are combined, a total number of 32 features is produced 
(Table 4.3). They can be divided into two logical groups based on their way of computation 
as Window summary statistics and Inter-window statistics. Whereas Window summary 
statistics were mainly inspired by existing research like [77], and [18], Inter-window statistics 
were formed based on the author's domain knowledge of DDoS characteristics. 

Window summary statistics summarize the contents of all combined windows. Note that 
statistics with the same names as in Table 4.2 (except pkt_size_min and pkt_size_max) 
are not a sum but an average of the underlying statistical value over all windows. This 
should theoretically allow the classifier to provide relevant results even if it was trained 
with a different number of summarized windows than it is estimating because the statistics 
over all windows are averaged. Instead of storing flat counts (like T C P , UDP, and I C M P 
traffic), we compute their traffic shares, and again, provide an average of their values over 
all windows. These groups of statistics aim to capture common characteristics of DDoS in a 
short period of time. The rationale behind their usage is explained in the following points: 

• pkts_total, bytes_total, pkt_rate, byte_rate - Volumetric attacks will have 
these values significantly higher than regular traffic over an extended period of time. 
Slow attacks may resemble patterns of regular traffic or be even lower. 
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Feature identifier Description 

Window summary statistics 
src_ip 

window_count 

window_span 

pkts_total 

bytes_total 

pkt_rate 

byte_rate 

pkt_arrivals_avg 

pkt_arrivals_std 

pkt_size_min 

pkt_size_max 

pkt_size_avg 

pkt_size_std 

proto_tcp_share 

proto_udp_share 

proto_icmp_share 

port_src_unique 

port_src_entropy 

conn_pkts_avg 

hdrs_payload_ratio_avg 

IP address for the corresponding statistics 
Number of summarized windows 
Difference between the last and the first window ID 
Total number of packets 
Sum of bytes of all packets 
Estimate of pps value 
Estimate of bps value 
Average time between packet arrivals 
Standard deviation between packet arrivals 
Overall minimum (not avg of min) packet size 
Overall maximum (not avg of max) packet size 
Average of packet sizes 
Standard deviation of packet sizes 
T C P traffic share 
U D P traffic share 
I C M P traffic share 
Number of unique source ports 
Source port entropy 
Average number of socket-to-socket transfers 
Average of header to whole packet size ratio 

Inter-window statistics 
pkts_total_std 

bytes_total_std 

pkt_size_avg_std 

pkt_size_std_std 

pkt_arrivals_avg_std 

port_src_unique_std 

port_src_entropy_std 

conn_pkt s _avg_ st d 

hdrs_payload_ratio_avg_std 

dominant_proto_ratio_std 

intrawindow_activity_ratio 

interwindow_activity_ratio 

Std of a total number of packets 
Std of a total number of bytes 
Std of packet size averages 
Std of packet size stds 
Std of a packet average time between packet arrivals 
Std of number of unique source port number 
Std of source port entropy values 
Std of number of packets per connection averages 
Std of header to whole packet ratios 
Std of ratio of the dominant L4 protocol 
Host activity estimate within the summarized windows 
Host activity estimate during the summarized period 

Table 4.3: Complete list of summary statistics over several windows for a single IP. 
*Std = standard deviation. 

• pkt_rate, byte_rate - ppse = p^ts, bpse = by*es are packets per second (pps) 
and bytes per second (bps) estimates. npkts, and nbytes are the total number of 
packets/bytes collected over the whole summarized window, whereas t = te — ts, te 

being a timestamp of the client's last communication in the last window and ts a 
timestamp of the client's first communication in the first window. Note that these 
are only estimates because a situation when the client's data are not sampled, or it 
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does not reach the sufficient number of packets to be included in the window statistics 
(discussed later), may occur. 

• pkt_arrivals_avg, pkt_arrivals_std, pkt_size_std - DDoS attacks are typically 
performed by bots running malicious packet-crafting software that produces packets 
at a specific rate and sends them to the victim. The packets are often the same, are 
produced one after another very shortly, and thus arrive in regular intervals. These 
features aim to detect this behavior, where we expect much smaller values for an 
attack than for regular traffic. 

• proto_tcp_share, proto_udp_share, proto_icmp_share - T C P is the most dom­
inant L4 protocol on the Internet nowadays. According to our measurements from 
Apri l 2021 on C E S N E T ' s backbone network, T C P has a share of 78.6% and U D P 
20.03% of all traffic. A regular client will, therefore, utilize these protocols with 
similar share ratios. Significant deviations from them - like 99% of U D P or I C M P 
share may signalize U D P / I C M P flood attack. However, these features are mutually 
collinear, so some machine learning methods like Linear or Quadratic Discriminant 
Analyses may not be able to provide easily interpretable results. 

• port_src_unique, port_src_unique - Malicious software for DDoS packet-crafting 
often utilizes port randomization techniques. These two features aim to detect an ex­
ceptionally large number of ports and port entropy on a similar principle as presented 
back in Section 2.3.1. 

• conn_pkts_avg - A n average number of packets sent per connections. This feature 
partially relates to the previous point, as attackers often randomize source ports and 
thus send a very small number of packets from them. Recall that socket-to-socket 
communication is defined by a (Source IP, Source port, Destination IP, Destination 
Port) 4-tuple. If an attacker does port randomization, this value will be significantly 
smaller than for regular users. 

• hdrs_payload_ratio_avg - Despite its name, this feature describes the ratio between 
the header and the whole packet size. Some attacks (such as S Y N flood) typically 
send only headers without any payload to maximize possible packet throughput by 
not wasting bandwidth on the unnecessary payload. On the other hand, other attacks 
aim to exhaust the target's bandwidth by creating packets with large, mostly junk 
payloads. Therefore, this value is expected to be either very small (big payloads) or 
close to 1 (no payloads) in the case of the attack. 

The second logical group, as the name suggests, is computed based on properties be­
tween different windows. Most of these features utilize a standard deviation between all 
summarized windows with the rationale that attackers tend to produce malicious traffic 
with predictable metadata patterns. Even if the packets' size is randomized and duration 
between their sending nondeterministic, the randomization patterns will eventually produce 
relatively similar statistics in each analyzed window if we look at the traffic from a longer 
perspective. The standard deviation of these statistics should indicate whether the pack­
ets are generated from a legitimate client (high variance between windows) or a malicious 
source (lower variance). Another two, activity ratio statistics are also computed: 

• intrawindow_activity_ratio - estimates the host's activity within the summarized 
window: t e ~ t s where te is the host's communication end timestamp, ts is the com-
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munication start timestamp, and lw is the length of the window. This gives us an 
approximation of how long the host was active within the given window. As already 
mentioned, malicious software generating DDoS will typically send packets in small 
deterministic intervals. Therefore, its intra-window activity should be close to 1, as 
new packets are flowing from the given IP constantly. Whereas legitimate hosts can 
hit the start of the window a few times, their burst-based communication should not 
achieve values close to 1 in a longer-term. This value is computed for each window, 
and an average of them is provided. 

• interwindow_activity_ratio - estimates the host's activity between all summa­
rized windows: i d™™ i d g, where nw is the number of summarized windows, ide is the ID 
of the last, and ids the ID of the first summarized window. If a host is communicating 
continuously, this value is 1. However, if the host does not send enough data or its 
data are not sampled at all, no window entry for it will be created, so there may 
be gaps in the IDs of windows to be summarized. Gaps will cause the inter-window 
activity to be less than 1. Again, attackers continuously sending data will have their 
ratio as 1 almost exclusively (except for slow attacks), whereas burst-based traffic of 
legitimate traffic should achieve smaller values of this indicator. 

4.3.3 Statistical Features Computation 

The previous subsection discussed which features are calculated as well as the rationale 
behind their use. This part will cover how they are calculated in an online scenario with 
an endless data flow. 

As it can be seen in Table 4.2, the system collects 5 counts, 4 averages, 2 standard 
deviations, 2 unique counts, and 1 entropy estimation for every IP in each window. As 
the system may need to process tens of gigabits of traffic per second, it is computationally 
infeasible to store extracted features for all packets in each time window. As a result, we 
need an effective way to compute these values without storing them in the memory. For 
this purpose, stream data mining and processing algorithms will be used. 

The most frequent feature - counts, can be computed easily. For each packet that 
matches a certain condition, a corresponding counter is incremented by one. For example, 
if the packet contains a T C P header, increment the counter for T C P segments. However, 
computing other statistics like unique elements or entropies becomes a little more tricky. 

The commonly-known form of the mean (Eq. 4.1) and standard deviation (Eq. 4.2) 
require to process of the whole dataset before producing a result. This fact becomes prob­
lematic for our case since we cannot save the data for later processing. Therefore, stream 
(known as running or moving) algorithm variants need to be used. Later on, this part will 
also describe how the system computes stream entropy and the number of unique elements. 

i=l 

(4.2) 
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Streaming Mean Computation 

The computation of the streaming mean is relatively straightforward and can be derived 
from its standard form in Eq. 4.1. Assume \x as x. Then: 

+ In = - ((n - l ) x„_ i + x n ) = 
I n n 

Therefore: 

— — . s n — x n _ i . . 
XN = X n _ l H (4.3) 

n 
Given the above computation and the result in Eq. 4.3, we are able to compute the 

running mean by keeping a counter of how many elements were processed and the previously 
computed mean {xn-\). 

Streaming Variance Computation 

There are several ways of computing streaming variance. Nevertheless, some of them are 
numerically unstable. Welford's algorithm [113] provides a numerically stable way of online 
variance computation in a single pass. This is achieved by keeping an auxiliary value s 
updated for each new element (Eq. 4.4) along with running mean x (Eq. 4.3). After all the 
elements are processed, streaming variance is computed according to Eq. 4.5. Streaming 
standard deviation is then a square root of the variance, as usual: a = x / i 2 

sn = s„_i + (xn - xn) * (xn - xn-i) (4.4) 

s2 = - A r (4.5) n — 1 

Number of Unique Elements 

Determining the number of unique elements (cardinality estimation) is needed in two places. 
These are counting the number of unique ports and the number of unique connections in 
order to compute the average number of packets per connection. A typical way of doing 
this would be to implement a set-like structure either by hashing or a tree. This principle 
would be sufficient for most cases, but in the data-mining world, there is one significant 
disadvantage - memory requirements. 

Since we are working with data streams, we cannot predict how many elements will be 
processed in advance. W i l l it be a hundred or a million? In a regular set structure, each 
processed element would need to be saved, thus consuming additional computer memory 
after each add operation. This behavior is highly undesirable because memory requirements 
to maintain such structure could become unbearably high, eventually leading to significant 
performance degradation or even program crashes. This issue is addressed by the use of 
probabilistic data structures. 

Probabilistic data structures are data structures with a probabilistic component, which 
is used to reduce time or space trade-offs. They cannot give a definite answer but rather 
provide an approximation within some maximum error range [102]. For the purpose of 
cardinality estimation, the HyperLogLog probabilistic algorithm is used. 
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HyperLogLog's fundamental idea is based on the observation that the cardinality of 
the multiset of uniformly distributed values can be estimated by calculating the maximum 
number of leading zeros of each number in a set. Simulation of the uniform distribution 
is achieved by hashing each element and logging its result to one of the multiset subsets 
(buckets). A n estimate of distinct elements is then calculated as 2^, where N represents 
a harmonic mean of the maximum values of observed leading zeros of each bucket [40] [38]. 

The standard error of HyperLogLog can be controlled by the number of buckets and 
their width. In most available libraries, the bucket's width is determined automatically, and 
only the parameter n is accepted. Parameter n defines the number of buckets as m = 2 n , 
and the maximum error is then typically about a = 1.04y /m [38]. This allows us to estimate 
cardinalities beyond 109 with a typical accuracy of 2% while using 1.5 kB of memory. In 
our case, setting n = 9, and thus achieving a standard error of 4.6%, is totally acceptable. 

Entropy Computation 

Source port entropy is computed using a mechanism of sampling alongside a standard way 
of Shannon's entropy computation specified in Eq. 4.6. Online data stream sampling can 
be done by a number of techniques, the proposed system using Reservoir sampling. 

Suppose the objective is to maintain a random sample of n elements without replace­
ment from a stream of N elements, where N is not known a priori. Let the elements be 
ai, a,2, • • • a a t - In Reservoir sampling, the first n elements of the stream are deterministically 
included in the sample. For t > n when a^+i arrives, it is included in the sample with the 
probability If an element is selected to be included in the sample, a randomly chosen 
element from the current sample is replaced. This way, the resulting sample is equally likely 
to be any of the subsets of size n composed of stream elements a\, a<2, • • • ajv [64]. 

If a sufficient number of samples with respect to the window length was given, this 
technique should provide a sufficiently accurate estimate of the source port entropy corre­
sponding to a particular IP address. Accuracy for large streams can further be improved 
by utilizing specialized techniques for sample entropy [91] or with techniques designed to 
compute entropy directly from streams [22]. 

4.4 M a c h i n e Lea rn ing P ipe l ine 

With respect to various considerations regarding the system design outlined in Section 4.2, 
the following pages will present a view of the whole system pipeline. As already discussed, 
the ML-based detector will accept (sampled) network packets, compute, store, and group 
its relevant statistics, and provide them for further processing after a sufficient amount of 
them was collected. The provided statistics will further have to be preprocessed and finally 
fed to the M L model, determining whether they are malicious or not (Figure 4.2). The 
following section will examine the functionality behind each of these pipeline components 
in more detail. 

i=l 
(4.6) 

n 
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4.4.1 Feature Management 

The process of how features are extracted and computed has already been described in 
Section 4. This subsection will now put these statistics into the M L pipeline and explain 
how they are fetched for further analysis and processing. 

As shown in Figure 4.2, the extracted packet features are firstly processed in the "Cur­
rent window per-IP data" component of the Statistics logger. This component produces 
per-IP window features shown back in Table 4.2. Nevertheless, the pipeline also needs to 
control the window creation. 

Although this could be done internally, a better approach is to let an external process 
handle windowing by issuing external signals (triggers), marking the end of the current 
window, as well as starting the new one. This gives more control to the process using the 
Logger and allows for easier multithreading, where the management thread is in charge of 
windowing, and worker threads handle packet logging and statistics computation. 

Upon each window end, we need to determine whether the gathered statistics for a 
particular IP address are usable. In this context, usability is considered a simple check 
against the threshold of minimum packets per a given window. Consider a scenario when 
only a single packet in a window was received. Processing such a window would make 
statistics like averages, standard deviations, unique counts, min, max, and others worthless 
because 1 sample is simply not enough to generate a representative statistic of the whole 
window. Windows with such small values could potentially skew the statistics of the whole 
communication, so we want to filter them out prior. Specifying a minimum threshold, say 
10 packets per second, will ensure that windows with fewer data will not be included in the 
statistics and thus not skew it. 

After the window statistics are filtered out, those who satisfy the minimum packets 
conditions are recomputed, and Window summary statistics from Table 4.3 are obtained. 
They are then saved to the "Per-IP all windows statistics" component in Figure 1.2. As 
already mentioned in Section 4.3.2, we want to look at more than one window in order to 
provide relevant classification results. For this reason, a data-pulling mechanism needs to 
be designed. 

Retrieval of all window statistics needs to be controlled similarly to window statistics 
for the current window. A threshold of the minimum number of windows is specified, and 
statistics are only retrieved if this minimum was reached. Therefore, a "Data pulling" 
component is suggested, which lets the caller know if there are any available IP addresses 
with a sufficient number of windows to be processed. If yes, the caller may utilize its 
interface to retrieve those window statistics. 

After all of the window statistics for a particular IP are pulled, they are summarized, 
primarily by computing averages of all processed windows. Inter-window statistics (Ta­
ble 4.3) are computed as well. Finally, after all these steps, statistical features for a given 
IP are returned for further processing and classification. 

4.4.2 Data Analysis 

Although not a direct part of the M L pipeline itself, data analysis is necessary for most 
machine learning projects. Data analysis aims to reveal relationships between data and 
thus provide valuable intelligence for the machine learning engineer. In general, there are 
three types of data analyses according to the number of variables considered: univariate, 
bivariate, and multivariate. 
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Univariate data analysis aims to describe only one variable. Univariate statistical de­
scriptors used in this project include the mean, median, variance, kurtosis, and others. The 
visual univariate analysis utilizes boxplots, empirical cumulative distribution functions, his­
tograms, and kernel density estimates. 

Bivariate data analysis examines the relationship between two variables. These can be 
two features, or a feature and a target variable. It is often beneficial to add target variable y 
to traditional univariate plots like boxplots, histograms, or kernel density functions, which 
will then display the distribution of the variable with respect to y. The proposed system also 
utilizes this feature. Another possibility is to display bivariate relationships are scatterplots. 

Multivariate data analysis compares multiple variables to each other. This creates 3D 
(for 3 variables), or generally N D plots. Due to low interpretability by humans, this type 
of analysis is not used. 

4.4.3 Data Preprocessing 

Data preprocessing is a set of data filtering and transformation techniques applied to the 
data before passing them to the machine learning method. Preprocessing is used to im­
prove the quality of data, which simplifies their processing and enhances the learning and 
classification capabilities of the M L algorithm. Typical actions performed in these steps 
include data cleaning, encoding categorical and non-numeric types, data standardization, 
and alternatively performing feature projection or selection. This subsection will further 
present some of these techniques performed in the proposed system's pipeline to achieve 
maximum performance. 

Cleaning 

Data cleaning generally includes handling the entries with missing values and optionally 
removing redundant features or entries with outliers 3. These practices are typically crucial 
for noisy data or data coming from measurements prone to error. Missing values and 
outliers removal are not relevant for the proposed system since all features are generated by 
the Statistics logger module. Therefore, we do not expect any missing values on the input. 
Outliers are also not a problem since we know that they originate from a valid source and 
thus are not a product of an invalid measurement or other error. 

Nevertheless, not all statistical features from the Statistics logger's output are us­
able for classification. Therefore, the cleaning phase drops src_ip, window_count, and 
window_count columns before further processing described later in this section. The 
src_ip column is used for feature grouping (Section 4.4.4), whereas window_count and 
window_span are only informational and are not used for any specific purpose in the cur­
rent version of the system. 

Variable Encoding 

Variable encoding procedures are used for non-numeric values or numeric categorical values. 
In these qualitative 1 variable type has to be converted to a quantitative type, so that 
machine learning algorithms will be able to process it. There are many types of encodings 
based on the use-case, one of the most popular being dummy encoding. Nevertheless, 

3 An observation that lies an abnormal distance from other values in a random population sample. 
4 A property that cannot be numerically measured. 
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as our input features are produced internally, they have been intentionally chosen to be 
representable by quantitative numerical types, and thus no variable encodings are required. 

Standardization and Normalization 

Some machine learning models such as neural networks or SVMs require their input features 
to be in the same interval. In some cases, unsealed input variables can result in a slow, 
unstable learning process or even causing learning to fail. These problems can be avoided 
by input features scaling. Scaling can be done by the standardization or normalization 
techniques applied as a part of the preprocessing pipeline. 

Normalization is the process of rescaling the original data into the specified interval, 
most typically [0,1]. Normalizing the value x is done via the MinMax function shown in 
Eq. 4.7, where xmin and x m a x represent the minimum and maximum values of the given 
feature across the whole training dataset. 

Standardization (whitening) means rescaling the distribution so that the mean of ob­
served values is 0 and the standard deviation is 1. Standardization assumes that the scaled 
data fit the Gaussian distribution. If this condition is not met, the reliability of results or 
the M L model's learning ability may be negatively affected. Standardization is achieved by 
the Standard function according to Eq. 4.8. Similar to MinMax, statistical features mean 
\xx and standard deviation ox have to be computed across the training dataset in prior. 

o-x 

The proposed system implemented and experimented with both of these techniques. 
The currently preferred one is MinMax, although no significant differences between models' 
performance have been discovered, as further discussed in Chapter 6. 

Dimensionality Reduction 

One of the last steps of M L preprocessing is dimensionality reduction. This set of procedures 
is used when working with very high-dimensional data in order to prevent the curse of 
dimensionality . In machine learning, the curse of dimensionality is closely related to the 
peaking phenomenon. This phenomenon states that for a fixed number of training samples 
N, an initial improvement of the classifier's predictive power is achieved by increasing the 
number of dimensions, but increases beyond a critical value result in predictive power to 
deteriorate instead [105]. This issue is tackled by techniques of feature projection and 
feature selection. 

Feature projection algorithms like Principal Component Analysis (PCA) or Linear Dis­
criminant Analysis (LDA) aim to transform the data from high-dimensional space into a 
space of fewer dimensions. For example, P C A performs linear transformation, but other 
non-linear transformations are available as well. 

Instead of projecting features from one space to the other, the process of feature selection 
selects a subset of the most relevant features without transformation. The selection is 
primarily beneficial for the model's interpretability, as we exactly know which features were 

5 With an increase of dimensionality, the volume of the space increases so fast that the data are becoming 
sparse, causing numerous problems. 

X — X. 
(4.7) 
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selected and how they contribute to the overall model decision-making. This is unavailable 
in projection techniques since the methods transform the state space, causing it to lose 
information about the particular dimensions. 

The selection process may be performed by numerous means. The most straightforward 
principle depends on removing features with very low variance. More complex, already 
mentioned feature selection principle with decision trees (Section 3.5) works with Gini 
impurity or information gain (entropy) principles. In this case, features with the highest 
decrease in the Gini index or entropy are selected as the most relevant features providing 
the most information gain. Several other, like sequential feature selection and recursive 
feature elimination, can also be used. 

Due to the fact that the M L system uses only 32 features (Table 4.3), dimensionality 
reduction techniques are not used as a part of the pipeline by default. However, the system 
was designed so their functionality can be easily plugged in and turned on and off as 
required, as further discussed in Chapter 5. 

4.4.4 Mode l Training 

After extracting, analyzing, and preprocessing the data, they can finally be fed to the 
machine learning model. After the model is trained, we typically want to evaluate its per­
formance on yet-unseen data. For this reason, the dataset is typically split into two separate 
parts - train data and test data. Train data are used to fit the model parameters and test 
data to evaluate the model's performance, such as by computing prediction accuracy. See 
Chapter 6 for further information about model evaluation. 

In our case, one additional action with the data must be performed before the training. 
In general, M L methods expect that training samples are not mutually dependent. This 
assumption is almost always wrong, but we can improve classification capabilities if we 
have information about their dependence. Recall the functionality of the Statistics Logger 
module from 4.4.1. After a sufficient amount of windows for a particular IP address are 
collected, they can be pulled from the structure. Such pulled windows are then summarized, 
additional statistics are computed, and so a new dataset sample is created. However, the 
given IP address will probably communicate longer, creating new windows containing its 
particular statistics. Again, after sufficient numbers of these windows are collected, they 
may be pulled, processed, and another dataset sample created. This can become somewhat 
problematic because we obtain several highly dependent dataset samples (coming from the 
same IP). 

If such highly dependent samples were present in both training and the test dataset, the 
M L method would perform excellently during the evaluation phase but might fail miserably 
in the real world. This is based on the fact that if a yet-unseen but highly dependent element 
is classified, a M L algorithm should have an easy time because it resembles very similar 
characteristics to the data used during the training. This phenomenon could significantly 
skew the method evaluation results and thus needs to be avoided. 

The above-mentioned situation could be solved by defining a common feature for each 
strongly dependent sample and grouping them based on it. Such a common grouping 
feature is the IP address, which is prepended to each created sample (Table 4.3). The 
dataset splitting mechanism then needs to respect these groups and ensure that samples 
from the same group will not be split between train and test dataset subsets. By enforcing 
this splitting policy, more accurate and unskewed results of dataset evaluation may be 
obtained. 
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Figure 4.4: 3-fold cross validation with additional test split. 

4.4.5 Mode l Selection 

When the dataset is fully prepared, and its elements are properly grouped, we may finally 
select the most appropriate machine learning model. This process is known as model selec­
tion. The model can be chosen according to different criteria. In our case, the concerning 
parameters are accuracy, low false-positives ratio, and computational complexity. 

In an ideal ("data-rich") scenario, the dataset would not be split into two but rather 
into three disjunct subsets - training, validation, and test. The candidate models would be 
fit on the training set, evaluated and selected on the validation set, and the performance of 
the final model reported on the test set [46]. 

Nevertheless, splitting the dataset into three parts is often too data-demanding, which is 
a problem in most M L projects. For this reason, approximation techniques like probabilistic 
measures and resampling methods are used for the model selection. Probabilistic methods 
are only applicable for simpler linear models, so resampling methods are typically preferred. 

This project compares and selects models using Cross-validation (CV), a popular method 
based on resampling. This procedure splits the dataset into k subsets (called k-fold C V ) , 
performs the training on k — 1 of them, and evaluates the fitted model on the remaining 
one. The process is then repeated for every combination of k — 1 subsets. The final model's 
evaluation result is computed as an average over the results of all combinations. Similar 
to regular train-test splitting, the technique determines the model's ability to predict yet-
unseen data during the training. However, since the performance evaluation is run multiple 
times across different dataset subsets, the final performance estimation is generally more 
accurate and thus better represents real-world scenarios while being very efficient with the 
data it uses. In some cases, the available data is split before the C V is applied (Figure 4.4). 
This creates another test dataset subset, which may be used for final evaluation after the 
best model with its hyperparameters is selected based on the C V procedure. 

In the system, cross-validation is used for model performance comparison as well as 
model evaluation like validation and learning curves plotting. 

4.4.6 Hyper-Parameters Optimization 

The process of hyper-parameter fine-tuning is typically interleaved with or as a part of 
the model selection process. Hyper-parameters are parameters of the model that are not 
directly learned within estimators. Typical examples are the number of neighbors in K -
nearest neighbors or the number of neurons in the hidden layer of a neural network. During 
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the optimization procedure, we aim to find the values for these parameters that perform 
the best upon the analyzed dataset. 

A n approach to solve this problem is to define a parameter space to be explored and 
use the Cross-validation technique, as explained in Subsection 4.4.5. In such a scenario, the 
model is trained with combinations of hyper-parameters from the parameter space, and its 
performance is estimated with C V . The combination of parameters with the best score is 
chosen as the best model configuration. 

There are numerous ways of how to search the parameter space and thus find the 
best combination. This project uses the technique called GridSearch, which exhaustively 
generates candidates from a grid of parameter values and evaluates the model for each 
such combination. This method provides the best results but might be computationally 
costly because the whole state space needs to be explored in a "brute-force" manner. Other 
techniques like RandomizedSearch or various heuristics also exist. These do not explore the 
whole parameter space but only its subset, resulting in a much faster search process at the 
cost of typically finding a local maximum instead of the global one. 

4.5 D D o S Datasets 

Despite all design considerations discussed throughout this chapter, the machine learning 
system would not be able to provide relevant decisions without quality balanced datasets. 
Such datasets are required to resemble patterns of both legitimate and attack traffic re­
alistically. Additionally, datasets in their raw P C A P form are required since the project 
utilizes a custom feature extractor. As discussed further in this section, obtaining such 
datasets proved to be quite problematic. The section further looks at various publicly 
available datasets, briefly describes them, and explains why they were or were not used in 
the project. Modifications and transformations of used datasets will also be outlined. The 
provided datasets list is not exhaustive but covers most of the relevant public datasets to 
this day, so its usage as a reference for future research is possible. 

4.5.1 Current State of Public Datasets 

In general, the field of DDoS detection and mitigation suffers from a severe lack of availabil­
ity of quality datasets resembling the behavior of modern computer networks and threat 
actors. Currently, there is no standardized dataset used for testing state-of-the-art de­
tection techniques. This fact has led various research works to utilize various types of 
non-standard, sometimes exotic datasets. These are often outdated, irrelevant to the DDoS 
field (e.g., datasets for intrusion detection), or publicly unavailable. They are either self-
generated or captured from internal networks and kept in secret. 

This phenomenon is mainly caused by privacy issues because packet payloads and IP 
addresses cannot be publicly shared. Another reason is the fact that DDoS traffic is not 
trivial to capture due to high packet rates and overall overload of network equipment 
during an active attack. On top of these setbacks, one has to think about a competitive 
struggle between big players in the industry. There is no doubt that the market leaders like 
Akamai, Imperva, or Cloudflare have their own DDoS traffic from past attacks captured 
but are unwilling to make it public as the data are precious commodities nowadays. As far 
as the author of this document is aware, C E S N E T does not have such DDoS attack capture 
available. 
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Historically, a to-go variant for DDoS and generally intrusion detection was the K D D -
99 dataset [110] created at The Fifth International Conference on Knowledge Discovery 
and Data Mining 1999. The dataset is provided as a file with 41 high-level features de­
scribing the user's session activity like the number of accessed files, opened shells, or bytes 
transferred between the communicating parties. Its cleaned and improved variant, NSL-
K D D [104], was, and respectively still is, a popular choice for testing intrusion detection 
systems. Although designed for intrusion detection, it also contains several DoS-labeled 
sessions and thus was widely used for DDoS detection M L projects as well. However, very 
few features from the dataset are actually usable for DoS purposes, and thus the dataset 
was mainly used because nothing "better" was available at that time. As reported by [80], 
KDD'99 was used in 149 research articles across 65 journals between 2010 and 2015. In 
some of the recent DDoS detection-related research, N S L - K D D is still being used [31]. Sev­
eral other datasets for DDoS methods validation created between 1998 and 2014 have also 
been mentioned in [7], but most of them are not publicly available to this day anymore. 

In recent years, several popular datasets for IDS and D(DoS) detection have been pub­
lished by the Canadian Institute of Cybersecurity (CIC) in cooperation with the University 
of New Brunswick. These include datasets ISCXIDS2012 [15], CIC-IDS2017 [17], CIC DoS 
dataset 2017 [16], CSE-CIC-IDS2018 [18], and CIC-DDoS2019 [19]. They have become 
relatively popular in the community, and most of the published papers nowadays use one 
of them for training and evaluation purposes. However, several problems have emerged 
during their testing with our system, as described later in the section. Therefore, finding 
a non-outdated, well-documented dataset of raw P C A P data with acceptable quality is a 
relatively challenging task nowadays. 

4.5.2 Attack Traffic Datasets 

Due to the higher number of available datasets with questionable quality, the project did not 
restrict itself to a single dataset only. Instead, several datasets were downloaded, tested, 
and intermixed to produce the final result. This process ensures better generalization 
capabilities of the trained model as well as more accurate results with respect to real-world 
scenarios. Most of the datasets are publicly available online downloadable by anyone. Two 
datasets are available after their owner's approval, and one is a private dataset of legitimate 
traffic captured on C E S N E T ' s networks. 

C A I D A "DDoS Attack 2007" Dataset 

C A I D A "DDoS Attack 2007" Dataset [20] is currently one of the most popular DDoS public 
datasets. It contains approximately one hour of anonymized traffic traces from a real DDoS 
attack on August 4, 2007 (20:50:08 U T C to 21:56:16 U T C ) . The data consist of a volumetric 
attack type, which attempts to block access to the target server by consuming computing 
resources of the server and underlying network infrastructure. 

The one-hour trace is split up into 5-minute P C A P files. The total size of the dataset is 
21GB. C A I D A states that it contains only communication between the attackers and the 
server, with non-attack traffic removed as much as possible. The dataset is only available 
after approval from C A I D A through a data access request form. 

After downloading, the dataset was separately split into attacker's requests (to-victim) 
and responses (from-victim). For our purpose, only the attacker's traffic was the point of 
interest. Therefore, all 5-minute traffic captures were merged into a single P C A P file and 
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processed like that. After these filters were applied, the modified dataset contained 85 M 
of packets, 8736 unique IP addresses, and span 36.1 minutes. 

Although the dataset is quite old, it contains precious information about real DDoS 
attacks and their characteristics. Nevertheless, its older age may cause some characteristics 
not to correspond to attacks in modern network environments. These primarily include 
timing, as modern networks can transfer data at much higher rates with lower round-trip 
times. According to the protocol hierarchy analysis, the dataset is composed of 91.94% of 
I C M P traffic, above 8% of T C P traffic and a only a few U D P segments. For these reasons, 
it may be need to be combined with other, fresher datasets to resemble as many real-world 
characteristics as possible. 

CIC-DDoS2019 

CIC-DDoS2019 Evaluation Dataset [19] looks very good on the paper at first glance. It is 
supposed to contain various DDoS attacks like U D P flood, S Y N flood, WebDDoS, NetBIOS, 
and many others. The dataset is split into two days, each containing a series of raw P C A P 
files and an associated C S V with per-flow features already extracted. 

Although the C S V variant seems to be comprehensive and well-labeled, working with the 
P C A P version is not straightforward at all. Firstly, time-interval captures were merged into 
one file with the mergecap utility. According to the dataset's webpage and C S V analysis, 
the attacks should come from 172.16.0.5, so the merged data were filtered to only include 
packets from the given source IP with tcpdump. 

Despite limiting the capture to 1 source, malicious and legitimate traffic could still 
not be clearly distinguished. This is because the given IP sends various types of traffic, 
clearly not limited to attacks only. The other crucial factor is that the P C A P variant of 
the dataset does not explicitly specify demarcations between the attacks. Although these 
times are specified on the web, a manual analysis has revealed that provided timestamps 
do not correspond to P C A P timestamps. At last, the amount of traffic (224 M for the first 
day, 55 M for the second) is so enormous that manual analysis was also hardly performable. 

Regardless of all the previously mentioned problems, a limited packet analysis was made. 
During the process, it was discovered that the S Y N Flood attack, which should begin 
at 11:28 and last until 17:35, starts at 16:28:42.58 U T C and only lasts until 16:43:58.06 
U T C . Therefore, there is probably a 5-hour shift between actual and declared timestamps. 
Nevertheless, since all other attacks are UDP-based, distinguishing their starts and ends 
is not always possible. Due to these reasons, attacks were not extracted one by one, but 
the whole file captures were used. This approach causes that some legitimate traffic will be 
unconditionally included in the final file. This effect was reduced by additionally cleansing 
the data by removing around 46 k of T C P traffic, mostly H T T P and SSH, which are indeed 
not part of these attacks. The resulting files thus contain only U D P traffic and packets 
from the S Y N Flood, but guarantee that no legitimate traffic is included within the capture 
cannot be made. 

The purpose of previous paragraphs was not to comprehensively review all dataset flaws 
but to provide an overview of its state and question its quality and credibility. Despite 
all of these setbacks, the dataset was extracted with the proposed logging mechanism and 
marked as attacking traffic. However, it will provide sub-optimal results due to the reviewed 
problems. Experiments with it will be further described in Chapter 6. 
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CSE-CIC-IDS2018 

CSE-CIC-IDS2018 [18] is a dataset focused on anomaly and intrusion detection. It contains 
different attack scenarios like Brute-force, Hearthbleed, Botnet, DoS, DDoS, and others 
distributed across 10 days. Legitimate synthetic traffic based on profiles is also provided. 
The dataset was generated on a topology of almost 500 computers. 

Similar to CIC-DDoS2019, the dataset also have contains several flaws. This project 
used datasets from days 02-15 (Slowloris & Goldeneye), 02-16 (SlowHTTPtest & H U L K ) , 
02-20 (LOIC-HTTP & L O I C - U D P ) , and 02-21 (HOIC & L O I C - U D P ) . Data within these 
days are provided as P C A P captures from particular computers, whereas attack targets 
are specified very ambiguously. Fistly, merging of all the captures within one file with 
mergecap was tried. This returned various errors probably caused by non-compliant P C A P 
creation software or capture file corruption. Therefore, tcpdump -r filename .pcap -w 
filename .pcap. fixed command was used to read the files and save them with tcpdump, 
which erroneous P C A P captures to be trimmed. These files were then finally merged with 
mergecap. 

The next step was to separate attacking and legitimate traffic from the single merged 
file. According to the dataset's webpage, there should be 10 attacking IP addresses in 02-
20 and 02-21. Therefore, a filter to extract all traffic from these addresses was applied via 
tcpdump. While this process managed to extract 208 M of packets for these IP addresses in 
02-21, none in 02-20 were extracted. 

Manual analysis of traffic from supposedly attacking hosts in 02-21 shows that the 
first 203 M corresponded to the first attack that day (DDoS-LOIC UDP) between 10:09 
and 10:43. Timestamps were again shifted by 3 hours from U T C as in CIC-DDoS2019, 
but otherwise correct. This attack was extracted perfectly - it contains all of the packets 
with no other traffic, as found out by tshark analysis. However, the second attack was 
apparently conducted from different IP addresses or is not present because a brief inspection 
of the remaining 102 M of packets did not reveal possible attacking IPs. Therefore, only 1 
attack from this day was extracted. 

In the 02-20 file, despite the web stating that 10 IP addresses should be attacking, no 
traffic from them was found at all. 02-15 and 02-16 files were also not used due to an 
enormous amount of P C A P errors, which rendered these captures unusable. 

Despite all the setbacks, extracted traffic from 02-21 was marked as attacking and used 
within the project. The one extracted attack has a solid quality, but several other attacks 
could not be used due to mislabeling of attackers' IP addresses or P C A P errors. 

CIC-IDS2017 

Intrusion Detection Evaluation Dataset (CIC-IDS2017) [17] from the Canadian Institute 
of Cybersecurity wants to address various flaws from IDS datasets created by 2017. These 
include a lack of diversity and volume, anonymization of packet data, and general inability to 
address current attack trends. The dataset comprises 5 days of traffic containing abstraction 
behavior of 25 legitimate users, Brute-force, DoS and DDoS attacks, Web and Database 
attacks, infiltration, and port scanning. In our case, legitimate traffic and DDoS attacks in 
the captures from Monday, Wednesday, and Friday are the main point of interest. 

As Monday is declared to contain legitimate traffic only, we used this capture file without 
any modifications. It contains 11 M packets, including A R P s and control traffic like ICMPv6 
messages. IP, IPv6, and I C M P traffic could potentially be filtered with a particular tcpdump 
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command. However, since the M L system is supposed to ignore undesirable input, the file 
can safely be processed as is. 

The capture from Wednesday is declared to contain Slowloris, Slowhttptest, Hulk, and 
Goldeneye attacks from a single IP address. In order to extract these attacks, a tcpdump 
filter with source and destination IPs was used. The first attack (Slowloris) is supposed 
to start at 9:47. As found out, the times are probably specified in local times as the start 
of the attack was found to be 12:48:46 U T C based on the manual analysis. Timestamps 
thus approximately correspond to the times declared on the webpage with a 3-hour shift. 
However, the last attack - DoS GoldenEye actually ended 3 minutes earlier. 

Friday's capture is described to contain A R E S Botnet traffic, port scanning, and DDoS 
LOIT traffic between 15:56 and 16:16. The DDoS is declared to come from 3 distinct ma­
chines. Nevertheless, their IPs are merged into one - 172.16.0.1 due to the incomprehensible 
use of N A T within the network environment. The victim machine is also under N A T with 
a private IP 192.168.10.50. Wi th this knowledge, traffic between attackers and the victim 
was filtered. 

Similarly to Wednesday, Friday's timestamps were again shifted 3 hours from U T C , 
but otherwise correct. Manual analysis has revealed that the port scan started at 17:51 
U T C sent around 162 k packets to various ports, looking more like T C P S Y N Flood with 
randomized destination ports. H T T P DDoS attack was started at 18:56:31 U T C and lasted 
until 16:16:12 U T C with around 926 k packets. 

Although an acceptable quality, the problem with this dataset is that all attacks come 
from a single IP. Therefore, they will not produce many dataset entries and could not be 
used in both train and test dataset subsets due to entries grouping (Subsection 4.4.4). 

4.5.3 Legitimate Traffic Datasets 

As discovered, datasets of legitimate traffic are much easier to come by than datasets 
containing DDoS attacks. These are available in several places, either as unrestricted public 
or public on request. This subsection will present a few datasets of legitimate traffic that 
were used within the project. 

C A I D A Anonymized Internet Traces Dataset 

CAIDA Anonymized Internet Traces Dataset [21] contains traces collected from high-speed 
monitors on a commercial backbone link. Data are provided by C A I D A to encourage 
research on the characteristics of Internet traffic like including application breakdown, se­
curity events, geographic and topological distribution, flow volume, and duration. Data are 
collected regularly since 2008. Similar to C A I D A ' s "DDoS Attack 2007" Dataset, data are 
also available only after a data access request is made. 

This project utilizes anonymized traces from the 2016 Equinix Chicago passive moni­
tor. In this case, the captured traffic is split into 1-minute traffic intervals. Each file has 
around 1 G B of size when compressed, containing between 20 and 40 million packets with 
anonymized IPs and trimmed L4 payloads. 3 such files from January 2016 and 3 files from 
March 2016 have been merged, creating a small sample of legitimate traffic. Many more files 
could have been used, but legitimate traffic from other sources was also used, so additional 
samples from this dataset were not needed. 
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C E S N E T i—> A C O N E T Traffic Capture 

More samples of legitimate traffic were retrieved from a private capture between C E S N E T 
and A C O N E T networks. The capture has been made on June 18 2018, lasts 29 m and 
26 s, contains over 509 M packets, and its uncompressed size is 393 G B . IP addresses are 
anonymized and payloads encrypted to preserve privacy. Since there have been no re­
ported attacks at the time of capture, we suppose all the traffic is legitimate, although this 
statement cannot be interpreted ground truth. 

CIC Synthetic Data 

Some datasets from CIC contain legitimate synthetic traffic generated using user profiles. 
Although it is generally non-trivial to distinguish legitimate and malicious traffic in these 
datasets, some dataset parts are marked as "legitimate only" and thus can be safely used 
as legitimate traffic samples. These include June 11, 2010, in ISCXIDS2012, and July 3, 
2017, in CIC-IDS2017. Therefore, synthetic traffic from CIC datasets was also extracted to 
complement real legitimate traffic from C A I D A and C E S N E T - A C O N E T captures, although 
real-world traffic will always be preferred. 

4.5.4 Other Datasets 

This subsection will briefly describe other available DDoS datasets that were not used 
within this project but may be helpful in other circumstances or as future work. 

D A R P A 2009 Intrusion Detection Dataset 

DARPA 2009 Intrusion Detection Dataset [68] looks ideal for our purposes. It is a syn­
thetically generated dataset with H T T P , SMTP, and DNS legitimate background traffic 
to emulate hosts' behavior on the Internet. It is composed of over 7000 P C A P files with 
around 6.5 T B of the total size. However, it is available only by request via the I M P A C T 
project [53]. The requests are only available for researchers in the United States and several 
other approved locations, the Czech republic not being on the list. Therefore, this dataset 
was unable to be obtained. 

CIC DoS Dataset 2017 

CIC DoS dataset 2017 [16] is supposed to contain Slow H T T P attacks generated using 
different tools. Nevertheless, similar to other CIC datasets, it is highly disorganized and 
hard to interpret. The dataset is composed of a 4.4 G B P C A P file and the text document 
attacks.txt describing the attacks. The file contains 26 lines in the following form: 

slowread to 74.55.1.4 after 11:02 662 minutes 

As it may be seen, an example line from the file specifies the type of attack, the tar­
get, and the starting timestamp. However, there is no information about attack source 
IP addresses, and the timestamp is highly ambiguous as there is no ending of the attack 
specified. On top of that, the dataset's webpage states that attack traffic is intermixed with 
legitimate one, but there is no information about how such traffic can be identified. Sup­
posed attack traffic (with a destination IP defined by the file) was extracted with a custom 
script. After the extraction, the file containing packets only with destination IPs specified 
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by attacks.txt contained 788k packets with a size of only 9 5 M B . Although manual in­
spection has shown signs of the attack, it was still unclear whether such extracted data 
contain only attack traffic or some regular was still present. However, only-attack traffic 
could not be extracted due to the lack of information, so dataset usage was abandoned. 

CIC ISCXIDS2012 

ISCXIDS2012 [15] was the first dataset from the Canadian Institute of Cybersecurity, which 
utilized models and profiles to facilitate the reproduction of certain real-world behaviors on 
the network [101]. The dataset is split into 7 days of over 83GB of raw packet data. Each 
day contains normal activity, and some contain intrusion data like brute-force, network 
infiltration, and DDoS. However, its interpretability is not optimal again. 

Due to labeling by flows using X M L files, a custom X M L parser distinguishing attacking 
and legitimate IPs was written. However, the dataset uses a very limited scope of source IP 
addresses, which are even usually the same for both attack and legitimate traffic. Therefore, 
attack traffic cannot be easily extracted from the P C A P by IP addresses, but per-flow 
extraction needs to be made. The dataset contains only slightly above 40 thousand DDoS 
flows, out of which some were found to be mislabeled by manual analysis. Therefore, we 
conclude that writing a custom per-flow packet extractor is undesirable due to low possible 
benefits for our use case. Although attack traffic was not used, legitimate synthetic packets 
from the 11th of June 2010 were extracted for complement already-collected legitimate 
samples, as mentioned in Subsection 4.5.3. 

NDSec-1 

NDSec-1 [72] is a synthetic dataset created by incorporating traces and log files of various 
cyber-attacks performed at Fulda University in Germany. It was created in 2016 to bench­
mark existing intrusion detection systems and support research in new detection techniques. 
Attacks were performed using state-of-the-art tools in three distinct attack scenarios [6]. 

NDSec-1 covers a set of classic and novel attack vectors encapsulated within simple but 
realistic scenarios that can be adopted to most network environments easily. The dataset 
includes raw network traces, including pay load along with Syslog and Windows logs. Data 
are labeled by bidirectional flows as either legitimate or malicious with additional labels 
specifying an attack category (such as DoS, brute-force, probe) and optionally additional 
information about a particular service being attacked. 

Although the dataset contains several DoS labeled flows, it was not used within this 
project. Similar to CIC ISCXIDS2012, labeling is done by flows, and so malicious DoS 
packets would need to be extracted with a custom script. Since only 2330 flows are con­
sidered a malicious DDoS [60], no attempt to extract them was made due to low possible 
gains by such an action. 

C S V Datasets 

The following datasets could not be used because they provide only comma-separated-
values data (often only on a per-flow basis) with an insufficient amount of information for 
our purposes: 

• KDD-99 [110] 

• N S L - K D D [14] 
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• Bogazigi University Distributed Denial of Service Dataset [33] 

There are also a few datasets on a M L community webpage www.kaggle.com such as [58]. 
However, these are either in unusable for our purposes (CSVs) or provide absolutely no 
descriptive information, so their usage and interpretability would be highly questionable. 

4.5.5 A Note on Generating Custom Datasets 

As discussed throughout this section, out of all examined datasets, only a few suffice. The 
lack of information, a different purpose, or incorrect or flow-based only labeling caused 
that a majority of public datasets could have been used only partially or not at all. Since 
the proposed mechanism does not need the attack and legitimate data to be intermixed, 
generating an own DDoS dataset may also be considered. Although not a direct part of the 
project, this subsection will briefly suggest how such a dataset could be generated. This 
could be helpful for further development or as future work. 

As already indicated, there is enough synthetic and even real legitimate traffic available. 
The biggest problem is the attack data. When generating them, one must ensure that their 
properties are realistic with respect to modern computer networks and other technologies. 
This can be ensured by using commonly-used operating systems, real-wo rid networking 
equipment, and software commonly used by threat actors. 

Popular choices for generating simple volumetric DDoS attacks are High Orbit Ion 
Cannon (HOIC), its predecessor LOIC, and updated variant X O I C . These provide a simple 
graphical interface, allowing to launch of a D(DoS) attack for almost anyone. Depending 
on the type of attack, various Linux command-line tools like hping3 or Scapy can also 
be used to craft custom packets by more advanced attackers. Slow DDoS attacks may be 
generated by utilities like HULK, Slowloris, RUDY, Tor's Hammer, and many more. It may 
also be desired to simulate amplification attacks with services like DNS, N T P , and I C M P 
(Smurf attack) to cover a wider range of attack vectors. 

When creating a custom dataset, note that it is important to generate longer-lasting 
attacks from multiple IP addresses. According to the extraction mechanism functionality, 
a single dataset sample is created for several time windows for 1 IP address. Therefore, a 
quality dataset would contain at least several minutes of traffic from 10 or more IP addresses. 
Of course, more traffic with more IP addresses would create more dataset entries. 
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Chapter 5 

Implementation and Usage 

After outlining the motivation, presenting theoretical background, and discussing design 
concepts, this chapter will take a look at selected parts of the system's implementation. 
The project's purpose was not to implement a method instantly usable in the production 
but rather to ensure the functionality of the designed M L system proposal. Therefore, no 
big emphasis was put on the system's performance, although several memory optimizations 
have been made. Instead, the focus was shifted on flexibility so that future experiments 
can be performed without the need for significant code changes. 

Due to excellent support for data processing and various machine learning libraries, 
Python was chosen as the implementation language. Machine learning functionality is 
provided by Scientific Learn (Scikit) [82] and XGBoost [24] libraries. 

The whole system was split into a series of 5 independent scripts, which resemble the 
machine learning pipeline described throughout Chapter 4. A l l of these scripts are highly 
configurable with an attached Y A M L file, allowing for replication, modification, and fine-
tuning of the pipeline's functionality without the need to touch the code. For demonstration 
purposes, a single-command run script is also provided. It executes the whole pipeline with 
a single command and presents the results to the user. The following chapter will now 
examine the above-mentioned concepts in more detail. 

5.1 Conf igurabi l i ty 

Most of the machine learning projects in the development phase are typically hard-coded 
solutions fit for a certain purpose according to the dataset they use. In this project, the 
dataset will always have the same structure regardless of the input traffic. This is because 
input packets are processed by the custom extraction mechanism usable for any P C A P or 
P C A P N G files. One may thus supplement different capture files, creating a completely 
new dataset with the structure the pipeline already understands. This fact allows for much 
greater flexibility, as users unaware of machine learning principles may still use the model 
by plugging different P C A P files at the extractor's input and observing the results. 

For this reason, the project was developed to be as flexible and configurable as possible. 
The aim was to provide a solution, which can be used, evaluated, and modified by anyone 
with none to minimal machine learning knowledge. This is achieved with a Y A M L config­
uration file and various command-line options for each script. Options for each script can 
be viewed with -h or —help options. 
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library Name: 
modelNamel: 

paraml: value 

paramN: value 

modelName2: 
param: value 

Figure 5.1: Models' hyperparameters configuration syntax. 

Furthermore, all scripts comprising the system are configurable by a single file in 
src/conf ig/conf ig.yml. Its default version is shown in Appendix B. Top-level keys define 
the configured module, while the keys on the second level specify a particular module's set­
ting. Every script module can be configured with the configuration, so one script may have 
(and typically has) numerous configuration keys. Configuration keys used by the particular 
script are included in its help message. 

For example, the user may have control over how are the IP addresses logged, such as 
by specifying the length of a time window, the minimum number of packets per window, 
and the minimum number of time windows to log the host. When such a dataset in 
the form of a C S V file is created, aspects like feature exploration and data preprocessing 
techniques can also be configured. The user may further choose a particular machine 
learning model for the training and evaluation. A l l configuration options can be viewed in 
src/conf ig/conf ig.yml or Appendix B. 

The goal of most machine learning projects is to find a suitable model and its hyperpa­
rameters best for the solved task. As mentioned in the previous paragraph, the model can 
be chosen simply by changing the system's configuration file. The model hyperparameters 
can be provided in a similar manner through a Y A M L configuration. For this purpose, 
the src/conf ig/models .yml file is provided with the syntax as displayed in Figure 5.1. 
The top-level key is defined by library name, currently either scikit for Scientific Learn 
and xgboost for XGBoost. The second-level keys specify a particular model from that 
library, and the third-level keys its particular parameters. Several libraries and models can 
be placed within a single file, while the system always picks only the relevant configuration 
according to the specified model according to conf ig.yml. 

To facilitate the creation of such hyperparameters configuration files, the system script 
model_manager .py allows exporting such configuration using the —params-save option 
after performing grid search, as further elaborated on in Subsection 5.2.4. 

5.2 P ipe l ine Scripts 

The machine learning pipeline is not implemented as a simple monolithic program but rather 
split into 5 independent scripts: dataset_creator, dataset_editor, dataset_explorer, 
model_manager, and mitigator. Each script implements a part of the pipeline, so the 
output of one is typically used as an input for another. Their typical pipelined usage is 
depicted in Figure 5.2. The section will briefly describe each of these scripts' features, 
functionality, and submodules. 
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Attack traffic PCAP 

Legitimate traffic PCAP 
dataset_creator 

Attack traffic CSV Legitimate traffic CSV 

dataset_editor 

Merged balanced 
traffic CSV 

Merged traffic CSV 
dataset_exp1orer 

Dataset stats & plots 

model_manager 

Fitted model, 
fitted preprocessors 

Evaluation traffic PCAP 

(Attackers information) 

Training, evaluation 
statistics & graphs 

mi tigator 
Mitigation statistics 

Figure 5.2: Implementation of the system pipeline through scripts. 

5.2.1 Dataset Creator 

The Dataset Creator stands at the start of the pipeline. It is used to transform an input 
P C A P file into C S V samples according to its configuration and supplied command-line 
arguments. It thus incorporates the Extractor and Statistical logger modules to retrieve 
relevant features from P C A P s and compute their statistics using the windowing mechanism, 
as explained in Section 4.3. The script can accept a single P C A P file, which has to be 
marked with command-line argument "-p" for positive (attack) traffic or "-n" for negative 
(benign) traffic. Both options can also be provided at once. In this case, the script merges 
positive and negative traffic into a single output file. 

Packet Processing 

Packet processing includes reading each packet from the input, extracting its features, and 
logging them to the Statistical logger. This functionality is provided by the packet_handler 
module inside the dataset_creator package. Packet reading and feature extraction are 
achieved with Scapy, a packet manipulation library for Python. 

Extracted features are processed within the Statistical logger's log method. In addition 
to managing feature extraction and logging, the Packet handler module also handles the 
logger's windowing. As briefly depicted in Subsection 4.4.1. The windowing is performed 
by checking the time of each processed packet and keeping the value of the last started 
window. If the difference between the last started window and the currently processed 
packet is greater than the specified window's length, a window length value is added to the 
last started window variable, and the end_window() logger's method is called. 
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Statistical Logger 

According to design matters considered in Section 4.3 and Subsection 4.4.1, the primary 
purpose of the Statistical logger is to log processed packets in the windowing structures and 
compute their relevant statistical features. For this purpose, a data structure containing 
window statistics (Table 4.2), a list of source port samples, and two HyperLogLog structures 
are stored for each IP address. HyperLogLogs are used for logging the number of unique 
source ports and connections. In addition, another data structure containing the last packet 
arrival timestamp and two auxiliary values for running variance computation, as defined 
by Subsection 4.3.3, is also needed. 

Based on the current design, a statistical entry is created for every communicating 
IP with enough data sent in each window. When enough of these entries are collected, 
the particular IP's data can be pulled by an external call. During the pull, summary 
statistics are computed and returned, whereas processed window statistics for the given 
IP are removed. However, if an IP host does not communicate for extended time periods, 
its statistics may get stuck in the dictionary structure, never be retrieved, and thus never 
be deleted. This phenomenon may cause undesired memory demands. This issue can be 
addressed by data structures with a limited number of entries. Therefore, window statistics 
storage is implemented as TTLCache from the cachetools library. Time-to-live (TTL) 
cache is a regular dictionary structure with a limited number of entries expiring after a 
specific time has elapsed. Using this structure thus guarantees that old window statistics 
entries will be removed if they are not pulled within the T T L timeout. 

To signalize which IPs are ready to be pulled, the Logger maintains a list of "ready" 
IP addresses, which have communicated with enough traffic in at least iV windows, so a 
sufficient amount of statistics was collected. Logger's A P I can then be used to retrieve this 
list. When a pull for a particular IP is made, its entry from the list is removed. However, 
the code using Logger may not wish to retrieve statistics for some particular IP, and a 
similar situation as for window statistics - memory overflow, may occur. Therefore, this 
ready list is implemented via LRUCache from the cachetools library. This structure is 
similar to TTLCache with a limited number of entries. However, they do not automatically 
timeout, but the least recently used entry is removed when the structure is full and a new 
entry is being added. This process also helps to control the memory consumption of the 
module. 

Although the module is not implemented with respect to performance, another huge 
memory optimization is achieved by logging the statistics in the form of numpy arrays. 
These structures provide very efficient storage with C-like datatypes and padding. Wi th all 
these considerations in place, the module's memory usage can be efficiently limited, thus 
not exceeding the memory on regular systems or various system limits. However, packet 
extraction, logging, and statistics computation in Python are very inefficient and thus not 
suitable for real-time traffic processing at all. 

5.2.2 Dataset Editor 

The purpose of the Dataset Editor script is to modify the dataset in order to prepare it 
for further processing. Its primary goals are to remove redundant fields obtained from 
P C A P processing and merge two independent datasets obtained from the Dataset Cre­
ator. As already mentioned during the design discussion, features src_ip, window_count, 
window_span are not used for classification purposes but are removed during the prepro­
cessing phase. Since src_ip is used for the feature grouping, it cannot be removed before 
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the dataset is split to test and train parts, so only window_count and window_span features 
are dropped in this state by default. Additional features may be dropped by changing the 
cleaning configuration key. 

Datasets can be merged using the -m option. In this situation, one has to consider 
a scenario when IP addresses from both datasets are the same. In this case, merging the 
datasets without changing these IPs could create somewhat undesirable behavior since they 
would be considered as coming from the same source and thus never be split between train 
and test datasets. This would not be a problem if only a negligible percentage of IPs were 
affected. However, if a significant portion of IPs would be the same in both datasets, the 
resulting dataset splits could miss some important data features, possibly affecting overall 
performance. To mitigate this issue, option -u ( —unique-ips) is provided. If the option is 
present, conflicting IPs are not merged as they are, but the IP with fewer samples is changed 
to a random one, thus preventing the above-mentioned phenomenon from occurring. 

A n additional important feature of the Dataset Editor is the ability to balance datasets. 
A balanced dataset is a dataset with the same number of elements in all classes. Keeping the 
balance is vital to prevent the model from being biased towards one of the classes during 
the training. In practice, datasets created by extracting P C A P files are almost always 
unbalanced since input P C A P s have a different amount of source IP addresses, number of 
packets, and timing properties. Therefore, the option -b (—balance) is provided, which 
ensures that the number of elements corresponding to attack and benign traffic is exactly 
the same. By default, this is achieved by undersampling - dropping data from the class with 
more elements. However, oversampling methods like duplicating the rows multiple times 
or creating synthetic data are also supported. The balancing behavior can be changed by 
modifying the resampling configuration top-level key. 

Additional features provided by the script are dataset trimming (-t) and shuffling (-s). 
Trimming functionality trims the dataset (after merging and balancing) to the specified 
number of elements. This is achieved by undersampling. Shuffling simply randomly shuffles 
the dataset entries. 

5.2.3 Dataset Explorer 

Dataset Explorer script's functionality corresponds to design concerns mentioned in Sub­
section 4.4.2. The module provides an easy interface to perform exploratory data analysis 
upon the dataset retrieved from the Dataset Editor. The script may be used to print dataset 
information (

_

i), print or save feature statistics to file -s, plot various graphs according to 
design (-p), and determine the feature importance (-f). 

Graph plotting may be controlled by the configuration's file key feature_plotter. 
There, a user may specify the plots' target directory, file format, types of graphs to be 
plotted, and even specify feature pairs to be plotted as multivariate scatter plots. Since 
plotting all graphs may take significant time, types of created graphs can be controlled by 
toggling True/False values in various second-level keys. 

As it is often desired to know how to interpret the model, determining feature impor­
tance is also provided as a part of the script. By default, a "direct" method using the 
Random Forest algorithm is applied. This method uses tree-based models to determine 
feature importance directly from the model according to information gain or Gini impurity 
reduction, similarly to feature selection principles. 

Another commonly used technique for this purpose is the method of Permutation im­
portance. This algorithm utilizes an already-fitted classifier and a test dataset. Firstly, a 
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classification's performance baseline upon the dataset with the given classifier is established. 
Then, iteratively for each feature, one at a time, its state space is randomly permuted. Clas­
sifications are then performed on a dataset with such permuted features. The permuted 
feature for which the classifier achieved the biggest deviation from the baseline is considered 
important because its modification influenced the model the most. 

5.2.4 Mode l Manager 

The Model Manager script incorporates element grouping (explained in Subsection 4.4.4), 
data preprocessing like standardization and dimensionality reduction, and various actions 
with the machine learning model itself. These actions include training of the concrete 
model (~t), comparison of models' performances (-C), estimation of model parameters 
using grid search (-e), and evaluation of the already fitted model (-1). 

A l l of the mentioned actions are highly configurable using the configuration file. The 
trained model can be selected using the model_source and model_type subkeys of the 
model configuration top-level key. Model source specifies the model's source library -
scikit or xgboost, whereas model type specifies the concrete model like "bayes". Path 
to model hyperparameters can be specified by the models_cf g_f i l e subkey. In case the 
file does not exist or the desired model is not included within it, default model parameters 
from the underlying library are used. The training and evaluation process of the model can 
further be plotted with the -P option, configured via the model_plotter top-level key. 

A trained model instance can also be dumped to a binary file (-d) and later loaded with 
the -1 option or within the Mitigator script. The ability to perform feature selection or 
projection and dump the fitted transformation objects to the file is also provided. Another 
important thing that needs to be saved is data statistics for feature standardization. By 
default, the statistics are computed within each run upon the training set and applied 
to the whole dataset afterward. However, one may want to use statistics that have been 
already precomputed or simply save the statistics for the model deployment. Saving of 
the computed statistics can be achieved with the -g option, which creates a Y A M L with 
average, max, mean, and standard deviation computed for all dataset features. 

Hyperparameter estimation is achieved by a grid search technique. Grid search simply 
takes all hyperparameter combinations from the specified hyperparameter space, trains the 
model with them, and performs evaluation using cross-validation. In the end, the best 
parameters are printed to standard output or saved to the hyperparameter configuration 
file with the -p (—params-save) option. 

Model comparison is performed via 5-fold cross-validation. Models to compare can be 
specified in the comparison_models subkey within the model top-level key. Each compared 
model then provides statistics about its training (fitting) time, scoring time, accuracy, F l -
score, precision, and recall by default. A n example of such output is shown in Figure 5.3. 
Displayed statistical values can further be customized with the score_metrics subkey. 

5.2.5 Mitigator 

The Mitigator script simulates the deployment of the model in the real world. Its inputs are 
a dumped model and saved feature statistics Y A M L file generated by the Model Manager. 
Alternatively, the script can also accept dumped feature selector and projector files from 
Model Manager if feature dimensionality functionality is required. 

The primary purpose of the Mitigator is to check how the model would perform in 
practice. During the evaluation in Model Manager, the model performance statistics are 
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Model 
scikit.bayes 
scikit.mlp 
scikit.svm 
scikit.random_forest 
xgboost.xgboost 

CROSS VALIDATION RESULTS 
fit_time score_time accuracy accur_std f l 
0.0163 
1.5644 
0.0868 
0.1405 

73.2325 

0.0089 
0.0145 
0.0269 
0.0152 
0.1826 

0.9947 
0.9991 
0.9987 
0.9991 
0.9994 

0.0014 
0.0006 
0.0011 
0.0011 
0.0004 

0.9947 
0.9991 
0.9987 
0.9991 
0.9994 

precision recal l 
0.9932 0.9962 
0.9986 
0.9978 
0.9996 
0.9994 

0.9996 
0.9996 
0.9986 
0.9994 

Figure 5.3: Output of model comparison using cross-validation in the Model manager script. 

computed upon already computed statistical features. In this case, one such entry can 
consist of hundreds of packets scattered across multiple seconds. Labeling such entries as 
attacking or legitimate provides information about the classifier's performance, but not 
about how many packets were actually dropped and how many of them were forwarded. 
For this reason, the Mitigator script works with packets and logs statistics related to them 
instead. This approach provides a more accurate view of the mitigation progress itself. 

The Mitigator uses a Statistics Logger instance in the same way as during a regular 
dataset creation. However, instead of creating new dataset entries, the statistical features 
are sent for preprocessing and to the classifier to make a prediction. If this prediction 
signifies that an attacking IP is present, the IP is added to a deny list (implemented as 
LRUCache), which simulates that traffic from a particular IP is being denied. Traffic from 
both legitimate and attack sources is logged. In the end, statistics of how many packets 
were allowed and denied, alongside the success rate and others, are printed. 

The script is primarily supposed to read the data from P C A P files (offline) with -r. In 
addition, the ability to read packets and perform classifications from a specified interface 
(online mode) with - i is also included. This functionality is provided by a Scapy sniffer, 
which has been implemented to run in a separate thread. In this case, the program enters 
an infinite loop and is stopped by entering a Ctrl+C into the command line. The emitted 
Interrupt signal is caught, sniffer stopped, and statistics printed to the standard output. 
However, keep in mind that despite the included online functionality, the program is not 
designed to work in online mode due to high processing inefficiencies, leading to significant 
decreases in network throughput. Instead, it is provided for demonstration purposes only. 

In order to print mitigation statistics in the end, the script needs to know the classifi­
cation ground truth. Such information can be supplied as a list of attackers with the -e 
(—evaluate) option. The list of attackers is supposed to be in the form of I P l \ n IP2 \n , 
etc. 

5.3 R u n n i n g the P ipe l ine 

So far, this chapter has briefly presented how the pipeline is implemented and outlined the 
most important command-line options and configuration parameters of each script. Let us 
now apply this knowledge and take a look at an example of how such a M L pipeline could 
be run. Firstly, a step-by-step example of its usage will be introduced (Subsection 5.3.1). 
However, this process may be too complex for some users at first, so a single-command 
demonstration solution is provided in Subsection 5.3.2. 
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1 dataset_creator.py -c config.yml -p traffic_attack.pcap attack.csv 
2 dataset_creator.py -c config.yml -n traffic_legit.pcap legit.csv 
3 dataset_editor.py -c config.yml -m attack.csv legit.csv -u -b -s dataset.csv 
4 dataset_explorer.py -c config.yml - i -s stats.txt -p dataset.csv 
5 model_manager.py -c config.yml -C dataset.csv 
6 model_manager.py -c config.yml -v -e -p estimation_params.yml dataset.csv 
7 model_manager.py -c config.yml -t -s -P -g std_params.yml -d model.bin 

dataset.csv 
8 mitigator.py -c config.yml -e attackers.txt -E export_stats.txt 

-s std_params.yml -r traffic_verify.pcap model.bin 

Figure 5.4: Sequence of commands for manual pipeline run. 

5.3.1 Manual Example 

Suppose we have filtered our legitimate and attack traffic into files traf fic_legit .pcap 
and traffic_attack.pcap placed in the same path as the scripts. Already prepared con­
figuration file is located in relative path config.yml. We have a Python > 3.9 with all the 
required modules and libraries installed. The process of executing the pipeline manually 
then is depicted in Figure 5.4. 

As the first step, P C A P files are converted into CSVs by extracting relevant features, 
performing windowing, and computing relevant statistics (lines 1-2). Next, the created 
CSVs are merged into a single dataset file while keeping the IPs unique, balancing the 
dataset, and shuffling it at the end. The resulting dataset is saved as dataset.csv. Wi th 
the data prepared, the exploratory analysis is performed by querying the basic information 
about the dataset, calculating features statistics to stats.txt, and plotting various graphs 
according to the supplied configuration (line 4). 

As we gathered enough information about the dataset, several machine learning models 
are chosen and written to the comparison_models subkey of the model top-level key in the 
system configuration file. At this point, cross-validation is run to determine the model we 
will use (line 5). According to the output analysis, we determine that a simple decision tree 
model has the best decision-making times with acceptable accuracy. Therefore, we decide 
to use this model for future classification. We change the model's model_source subkey to 
scikit and model_type to tree. The next step is to determine the best hyperparameter 
values for min_samples_leaf and max_depth parameters. We thus update the model's 
estimation_params .yml subkey with the hyper parameters' names and the values to be 
tried. After this, a grid search to estimate the best parameters in a verbose mode is run, 
and its results are saved to the models_params.yml file (line 6). 

After the best parameters are estimated, we can finally train the model with them. 
Since we will also be interested in using the model later, the trained model is saved to the 
file model.bin and features statistics for standardization to std_params.yml. Advanced 
statistics about model evaluation alongside various plots are also requested (line 7). 

In the end, we want to simulate a deployment of the trained model against a validation 
P C A P dataset traffic_verify.pcap. Suppose we have specified attacking IP addresses 
from the given dataset in the attackers.txt file. Mitigator script can thus be run to 
perform such evaluation upon the saved model and standardization data while exporting 
the mitigation information into the export_stats.txt file (line 8). 

65 



By executing the commands according to Figure 5.4, we have managed to successfully 
extract statistics from training P C A P files, preprocessed them, chose the model and deter­
mined its best hyperparameters, fit such model, and verified its functionality in a simulated 
model deployment scenario. 

5.3.2 Automated Demonstration 

In order to facilitate the pipeline execution for demonstration purposes, the run.py script is 
provided. The script utilizes files in its default locations to perform a quick overview of the 
main system parts' functionality described in Section 5.2. When run without arguments, 
the pipeline execution starts from line 4 in Figure 5.4. This process prints statistics and 
plots feature graphs, compares multiple models, estimates parameters, trains and saves the 
model into the file, and finally performs an evaluation with the Mitigator. 

Lines 1-3 are not executed by default since dataset creation may take a significant 
amount of time, so its inclusion within the demonstration may be inappropriate. If the 
user wishes to execute this part of the pipeline as well, the option -f (—full) can be 
used. In this case, own traf f ic_attack.pcap and traf f ic_legit .pcap files used for the 
extraction and traffic_verify.pcap along with attackets.txt for validation have to be 
supplied. These are not included in the final submission due to their immense size and 
limited space conditions. 

Note that some filenames from Figure 5.4 were shortened in order to fit the figure's 
width and thus may not need to correspond to the filenames used within the system's code. 
Please consult run.py's lines 26-54 for the naming of demonstration files within the project. 

66 



Chapter 6 

Evaluation 

Ability to evaluate the performance of the machine learning model and alternatively inter­
pret its decisions is crucial for the practical usability of the system. Depending on the usage, 
different criteria may be put on the model. Therefore, interpretation of the "best" model 
may also differ across various scenarios. When choosing the final model or the final M L 
pipeline as a whole, numerically expressible metrics may not be the only relevant factor, 
but other requirements such as fitting time, estimation time, interpretability, scalability, 
and others may also need to be taken into account. 

When evaluating the system as a whole, considering only the model is not sufficient. 
The process of how the data are retrieved and preprocessed must be incorporated into the 
evaluation process as well. This is especially important in our case since feature extraction 
and statistics computation is very flexible due to all possible configuration options. 

In this chapter, a discussion on all of the above-mentioned issues will be conducted. 
Firstly, relevant criteria for the system evaluation will be specified (Section 6.2). This will 
be followed by the introduction of standard numerical evaluation metrics for M L models 
(Section 6.1), discussion about hyperparameters during dataset creation (Section ??), and 
finally, the evaluation of the model based on various experiments with available datasets 
(Section 6.4). Section 6.5 will then summarize these results and discuss the suggested form 
of the M L pipeline concerning performance and other relevant factors. 

6.1 M o d e l Eva lua t ion M e t r i c s 

As briefly outlined at the start of this chapter, there are various evaluation metrics and 
criteria to determine the performance of a M L system. This section will focus on the most 
commonly used numerical and visual evaluation metrics for binary classification problems. 
For these purposes, terms True positives, True negatives, False positives, and False negatives 
need to be firstly defined: 

• True positives (tp) - outcomes where the model correctly predicts the positive class. 

• True negatives (tn) - outcomes where the model correctly predicts the negative class. 

• False positives (fp) - outcomes where the model incorrectly predicts the positive class. 

• False negatives (fn) - outcomes where the model incorrectly predicts the negative 
class. 

Wi th respect to these definitions, other model classification metrics can now be defined. 
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6.1.1 Numerical Metrics 

Numerical metrics for model evaluation aim to describe the model's performance by a single 
numerical value. These are typically in the range [0,1], with 0 as the worst score, whereas 
1 represents the perfect score. Metrics presented in this section include accuracy, precision, 
recall, f-score, and Matthews correlation coefficient. 

Accuracy (Eq. 6.1) represents the portion of successful classifications out of all that were 
made. In order words, it gives a probability estimate of a correct prediction. This metrics 
works only with balanced datasets since high class imbalance may provide a false sense of 
high accuracy. This happens if the model classifies most elements of significantly smaller 
classes wrongly. However, high accuracy is achieved regardless due to the influence of other 
populous classes. This issue can be tackled by the Balanced accuracy metric. 

Accuracy = — (6-1) 
tp + tn + jp + jn 

Precision (Eq. 6.2) is defined as a ratio of correctly classified elements in the positive 
class to all positively classified elements. Therefore, the metric describes the ability of the 
estimator not to make mistakes when classifying an object as positive. For this reason, it is 
a helpful indicator in scenarios with false positives being one of the main points of interest. 

Precision = (6.2) 
tp + fp 

Recall (Eq. 6.3) describes a relationship between correctly classified elements in the 
positive class and all positive class elements. Intuitively, it is an ability of the estimator to 
recognize objects that should be classified positively. 

Recall = —— - (6.3) 
tp + fn v ' 

Precision and recall metrics are rarely used separately because they have little informa­
tive value on their own. In fact, precision and recall are often in an inverse relationship, 
where it is possible to increase one at the cost of reducing the other [13]. For this reason, 
they are typically compared for a fixed level at the other measure (e.g., recall at a precision 
level of 0.9) or both combined into a single measure such as the F-score. 

F-score (Eq. 6.4) in the M L context typically represents Fl-score, which the harmonic 
mean 1 of the precision and recall. By combining these metrics, F-score provides a compre­
hensive evaluation measure for M L systems, for which simple accuracy is not descriptive 
enough. These include systems with imbalanced datasets or systems with differing costs of 
false positives and false nagatives. A more generic F-score variant - Fp also exists, which 
applies additional weights, valuing precision or recall more than the other. 

precision-1 + recall-1 precision + recall 

Application of recall, precision, and f-score is sometimes argued to provide a biased 
estimate, and should not be used without understanding these biases [83]. Instead, [25] 
suggests to use Matthews correlation coefficient (MCC) (Eq. 6.5), as it is more reliable 
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tp fn 
fp tn 

Figure 6.1: Confusion matrix layout for binary classification problem. 

statistical rate which produces a high score only if the prediction obtained good results in 
all of the four possible classification results: tp, tn, fp, and fn. 

MCC = tp-tn-fp.fn ^ 
V (tP + fp) (tP + fn) (tn + fp) (tn + fn) 

6.1.2 Performance Visualization 

In addition to numerical metrics, the model's performance can also be visualized. Per­
formance or behavior visualization allows presenting numerous important quantities in a 
single, easily interpretable plot. Techniques presented in this subsection include confusion 
matrix, R O C , A U C , validation, and learning curves. 

The confusion matrix (Figure 6.1) is used to visualize true positives, true negatives, 
false positives, and false negatives values. It is a matrix of N x N elements (2x2 for binary 
classification), in which rows represent actual class instances, whereas columns represent 
predicted class instances. 

The receiver operating characteristics (ROC) curve depicts a relationship between the 
true positive rate (TPR) and the false positive rate (FPR) . T P R is a rate of correct positive 
results among all positive samples, computed the same way as precision in E q 6.2. There­
fore, tpr = precision. On the other hand, F P R defines a rate of incorrect positive results 
among all negative samples (Eq. 6.6). Plotting these values against each other ( F P R = 
x, T P R = y) shows relative trade-offs between true positives (benefits) and false positives 
(costs). A n ideal classifier would yield a point in the coordinate (0,1), representing no 
false negatives nor false positives. This scenario is rather unlikely in practice, so the model 
hyper parameters are tweaked to reach the desired performance instead. 

fp fpr = t — — (6.6) fp + tn 

The area under (the) curve (AUC) is a value representing the area under R O C curve 
(JQROC(X) dx). A U C can be interpreted as the probability that the model ranks a random 
positive example higher than a random negative one [36]. A U C value of 1.0 would then 
represent a model with 100% correct classifications. 

Although estimation of the model's parameters should be achieved by techniques like 
Grid search (Subsection 4.4.6), it may be sometimes helpful to measure the influence of a 
single hyper parameter on both training and test scores. Plotting such a relationship can be 
done with the validation curve, typically used to determine whether the model is overfitting 
or underfitting at specific parameter values. Axis x on the plot is thus a hyperparameter 
space, whereas y represents a specified evaluation metric, typically accuracy for classifiers. 

Lastly, the learning curve can be used to show the validation and training scores of an 
estimator for varying numbers of training samples. This tool can determine the benefit of 
adding more training data or whether the model suffers from a variance or a bias error. 
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6.2 Eva lua t ion C r i t e r i a 

In the case of an online M L DDoS mitigation system, the most crucial feature is the ability 
to determine and mitigate the attack traffic. However, this process needs to be fast, so 
network throughput will not be significantly impacted, and so the model's decisions could 
affect the mitigation process as soon as possible. For this reason, we aim to pick only 
high-performance models with as low classification time as possible. Since the model can 
be trained offline and deployed later, the estimator's fitting time is of no importance. 

Wi th timing requirements clear, let us have a look at what a high-performance model 
represents. Typically, one of the key determining factors of the model performance is its 
accuracy. Since the proposed system generates a dataset by itself, inbalance will not be a 
concern. Therefore, the accuracy will not be biased. However, this metric only describes 
an ability to estimate the correct class in general. In the context of DDoS mitigation and 
generally in cybersecurity, more strict standards are typically in place. 

The purpose of attack mitigation is to block the attacker's messages so the victim's 
infrastructure and end-users will not be affected. Therefore, ongoing mitigation must affect 
an end-user as little as possible. Ideally, it would be completely transparent. Wi th this in 
mind, we require the model to work with a small ratio of false positives (higher precision), 
even at the cost of slightly more false negatives (lower recall). In other words, we do 
not mind if the model misses a few attacking IP addresses that much, but misclassifying 
legitimate users and denying their traffic is highly undesired. 

Concrete values of precision and recall should be specified according to the network 
environment and additional requirements on the system. However, it is reasonable to 
demand the precision of at least 0.95 with recall above 0.8. One way to tweak these values 
is to modify the model's hyperparameters. Some models may also have the ability to 
return classes' probabilities instead of directly estimated class labels. In these scenarios, 
the threshold can be manually adjusted to limit the number of false positives. Visualization 
tools such as a R O C curve may be helpful for this purpose. 

6.3 Statistics C o m p u t a t i o n Parameters 

Before quantified the system's performance, the parameters of the used data should be 
specified first. Recall that the Statistical logger module uses a concept of time windows to 
group packets' features and compute statistics upon them independently. It is thus crucial 
to set these parameters carefully so that the attack detection can be achieved with high 
precision in a reasonable amount of time. Referring to Appendix B, top-level key logger, 
the following statistics logging parameters can be configured: 

• window_ length - length of the window in seconds 

• history_min - minimum number of collected windows for a given IP 

• history_size - maximum number of history elements in memory 

• history_timeout - validity of history entries duration in seconds 

• packet s_min - minimum number of packets in the window to log it 

• samples_size - number of samples to collect for entropy estimation 
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Parameter history size 

Although history_size is mostly a memory optimization parameter, it may affect the 
computation of some history entries upon massive loads of traffic. In such a case, so many 
history entries are created within each window so that the memory will not be sufficient, 
causing some valid entries (least recently used due to implementation) to be dropped. 

During the experiments, the default parameter of 0 was used. This setting allowed 
around 5 G B of memory to be available, so almost 48 M history entries would be required 
in order for valid entries removal due to full memory to happen. This corresponds to almost 
8 M IP addresses with 6 history entries communicating simultaneously in the worst case. 
Although this scenario is possible in backbone network deployments, we can ignore this 
parameter as it cannot influence the produced statistics. 

Parameter history timeout 

Parameter history_timeout defines for how long are the collected statistics valid in history. 
Invalid history entries are not used for summary statistics computation and are deleted 
instead. This parameter thus specifies how old statistics for a communicating host are we 
willing to accept in order to determine whether it generates malicious traffic or not. 

DDoS attacks typically produce a continuous stream of data, so in their case, the time­
out could be equal to window_length x history_min. However, regular clients typically 
communicate in bursts, so some reserve needs to be held if a client does not manage to 
communicate with at least packets_min packets within a particular window, so its traffic 
will not be logged at all. 

A reasonable parameter value could be 10-20 times of window_length x history_min 
to not keep the old statistics in the memory for too long and not miss any possible burst-
based attacks. The experiments were performed with this value set to 240 seconds, as 
we are not generally limited by the memory in offline mode (disk swapping is not such a 
performance issue) but want to keep the experiments realistic. 

Parameter samples size 

Modifying the samples_size parameter only influences the precision of source port entropy 
estimation. Smaller value provides lesser memory consumption, whereas bigger value a 
better estimate. In the experiments in this chapter, the value of 40 was predominantly 
used. This was chosen based on tests with various parameter values and standard deviation 
computation across 5 such runs upon both legitimate and attack dataset subsets. Legitimate 
dataset normalized entropies reached a standard deviation of 0.05 at the threshold of 25 
samples, whereas 0.1 std was achieved at 50 samples for attack traffic. Value 40 was thus 
chosen as a compromise, providing a reasonable entropy estimate and relatively low memory 
consumption. 

Parameters window length and history min 

Parameters window_length, history_min, and packets_min are closely related, as they 
define the minimum length of the host's communication and the number of packets it is 
supposed to send. They also influence the generated statistics the most. Generally, we want 
to detect an attack as soon as possible but also achieve high detection precision and recall. 
As one may notice, there is a trade-off between these two - the sooner we want to detect 
an attack, the fewer data we can collect, and thus the detection performance is worse. 
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Figure 6.2: Packets-per-second empirical cumulative distribution function for C A I D A 2016 
Internet Traces sample. 

According to the project requirements, the reaction to the attack needs to be done 
within 10 seconds of its start. This includes attack detection, perpetrator's IP addresses 
determination, mitigation rule creation, and its application in the database. Since rule 
creation requires to sample some of the attacker's data and rule inferring and database 
update taking some time as well, this leaves us with a space of 6-8 seconds to detect 
attacking IP addresses. For this reason, the experiments use window_length of 1 or 2 
seconds and history_min of 3 to 6 depending on the previous parameter. 

Parameter packets min 

The last not-yet discussed parameter is packets_min. It defines the minimum number of 
packets that needs to be sent by the client in order to log its data. By tweaking it, we aim 
to limit the number of classified IP addresses, so entries from clients sending low amounts 
of traffic are not considered. Statistical data such as mean or standard deviation may be 
significantly skewed if computed on a small set of data. Therefore, by setting this number 
sufficiently high, the system makes sure that only clients with relevant statistical data will 
be classified. This ensures statistical features of finer quality, leading to better classification 
results. As a positive side-effect, the state space of analyzed entries is significantly limited, 
the model needs to perform a lesser number of classifications, leading to improved packet 
throughput and better system reaction times. 

The value of this parameter was chosen according to packets-per-seconds (PPS) analy­
sis of the several legitimate captures with respect to the window_length parameter (Fig­
ure 6.2). Based on these results, a P P S value of 10 corresponds to roughly 0.89-percentile 
(CAIDA Traces) to 0.93-percentile ( C E S N E T <—> A C O N E T capture) of all the legitimate 
clients over the length of their active communication. Therefore, by specifying a minimum 
of 10 packets per a 1-second time window, we filter out approximately 90% of all legitimate 
clients' traffic uninteresting for our purposes. Since (D)DoS attacks typically produce much 
larger traffic volumes, the ability to detect them will not be negatively affected. 
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Parameter name Values 

window_length 1, 2 
history_min 4, 6, 8 
history_size 0 (unlimited) 
history_timeout 240 
packets_min 10, 15, 20, 30, 40 
samples_size 40, 50 

Table 6.1: Parameter values tried throughout experiments. 

Parameters Configuration Summary 

In order to bring a little diversity and perform various experiments not only for the machine 
learning model itself but for statistics computation as well, the data were extracted by 
various parameter settings, as suggested by Table 6.1. However, not all combinations from 
the given table were tried, but the state space was rather reduced only to a subset of the 
most relevant combinations. 

The limited scope of experiments with various dataset creation settings is caused by 
the complexity of computation. Processing 1 M of packets standardly takes between 7 
(cider.liberouter.org) to 25 minutes (pinot.liberouter.org), so processing files with 
tens to hundreds of millions of packets gets computationally very expensive. Achieved 
classification results with various parameter combinations are discussed in Section 6.4. 

6.4 Classif icat ion Performance 

This subsection covers several picked experiments with the system, provides their analysis, 
results, and a brief commentary. Experiments cover the detection performance of both 
volumetric and slow (D)DoS attacks, comparison of various machine learning models and 
data modifications and transformations. As outlined in Table 6.1, various parameters were 
used during the data extraction process. Statistical logging mechanism was then further 
applied on datasets from Section 4.5 with various parameters combinations. 

A l l the described datasets were created by dataset_creator .py script and merged 
using dataset_editor.py. Further data processing steps are described in their particu­
lar subsection. A l l datasets have 4 different variants according to the Statistical logger's 
configuration during the data extraction process. These include: 

1. window_ length = 1, history_ min = 6, packets_ min = 10, samples_ _size = 40 

2. window_ length = 1, history_ min = 6, packets_ min = 15, samples_ _size = 40 

3. window_ length = 1, history_ min = 4, packets_ min = 15, samples_ _size = 40 

4. window_ length = 1, history_ min = 4, packets_ min = 20, samples_ _size = 40 

Most of the described experiments were performed with the first dataset variant con­
taining at least 10 packets per window with minimum 6 windows to generate a single data 
sample. If not explicitly stated otherwise, this variant is used. C S V datasets created with 
this configuration are displayed in Table 6.2. Note that P C A P files extracted from CIC 
datasets use a significantly limited number of IP addresses, and thus the windowing system 
in Statistics logger produced a relatively small amount of C S V entries. 
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Dataset name Samples 
C A I D A Internet Traces 338310 
C E S N E T <—• A C O N E T 361666 
CIC-IDS2017 Benign 14649 
CIC-ISCXIDS2012 96025 

(a) Benign datasets (Subsection 4.5.3). 

Dataset name Samples 
C A I D A "DDoS Attack 2007" 394200 
CIC-DDoS2019 1877 
CSE-CIC-IDS2018 3363 
CIC-IDS2017 (all) 586 
CIC-IDS217 (Slow DoS) 361 

(b) Attack datasets (Subsection 4.5.2). 

Table 6.2: Dataset sizes for 1-sec windows, 10-packets per window minimum, 6-windows 
size and 40-sized samples. 

Dataset class distribution 
700000 

600000 

500000 

» 400000 

300000 

100000 

Benign 
Target class 

Figure 6.3: Distribution of classes in dataset extracted from real data. 

The following section will firstly present experimental results with available real (non-
synthetic) datasets (Subsection 6.4.1) and mixed datasets (Subsection 6.4.2). 

6.4.1 Real Data 

First performed experiments were performed with real (non-synthetic) data. These include 
merged C E S N E T <—> A C O N E T capture, C A I D A anonymized traces from Subsection 4.5.3 
as legitimate data and C A I D A DDoS Attack 2007 from Subsection 4.5.2 as attack traffic. 

Initial analysis of the merged dataset has shown rather significant data imbalance (Fig­
ure 6.3). For this reason, the dataset was balanced for processing in M L methods by ran­
domly sampling values from benign class, until the same number of entries in both classes 
was reached. This process yielded a dataset with over 788 k of elements. In addition, all 
the feature graphs are plotted based on a balanced sample of 50 000 elements to keep the 
file sizes low. 

74 



Feature Correlation 

As the first analysis step, the feature correlation heatmap was plotted (Figure 6.4). Ac­
cording to this analysis, it may be seen that pkts_total, bytes_total, pkt_rate, and 
byte_rate are almost perfectly positively correlated. This makes sense, as pkts_total 
and bytes_total are an average over all summarized windows, whereas pkt_rate and 
byte_rate and an average over the whole time the client communicated (even including 
inter-windows not logged in the system). However, when there are no window gaps between 
the communication, the values will be approximately the same. Another highly correlated 
features with them are pkts_total_std and bytes_total_std. This is most likely caused 
by the burst communication character, so the number of packets/bytes between different 
windows is highly unbalanced. 

Other understandable correlations like between the maximum size of the seen packet and 
standard deviation of its sizes are shown. These have a strong positive correlation. Medium 
positive correlations between the client's inter-window and intra-window activity signify 
that suppositions about their possible usefulness were fulfilled - if the client communicates 
continuously throughout a more extended period, it may be an attacker. However, this 
cannot be considered ground truth because regular clients can achieve similar characteristics 
using data streaming services. 

Nevertheless, the analysis has also shown that the maximum size of the packet and 
T C P protocol share a relatively strong negative correlation with the target. In contrast, 
I C M P protocol share has a perfect positive correlation. These findings are rather intriguing 
since the mentioned features could provide some degree of information in combination with 
others but should not correlate with the target so strongly. Therefore, the legitimate data 
either do not contain enough I C M P traffic or I C M P share in attack traffic is so predominant 
that it may cause a classifier to become biased and generalize poorly upon out-of-dataset 
data. 

Correlation analysis has provided valuable insights, leading to the conclusion that 
columns with the total number of packets and bytes may be dropped, as they have the 
same relationship with all other features and the target variable. Protocol shares may also 
become relatively problematic, as they correlate relatively strongly with the target, and ac­
cording to expert knowledge, this correlation is rather unfounded. Dropping these features 
will also be tried in order to increase the generalization capabilities of the final model. 

Feature Analysis 

Another step to better understand the data is feature analysis. Generally, we aim to know 
more about features whose values cannot be estimated by expert knowledge or which help 
us to get to know the unique properties of the processed dataset. This part includes a few 
picked plots (Figure 6.5) alongside their short descriptions. 

Figures 6.5a and 6.5b confirm our thoughts from the previous section. Attack data are 
primarily composed of I C M P traffic, and real benign data contain almost none of it. For 
this reason, classifiers will probably have an easy time because the two classes are separable 
by a simple linear decision boundary with this feature. 

Figure 6.5c also aligns with the statement described earlier and confirms our hypothesis 
that attackers send large amounts of packets continuously. Therefore, there is a minimal 
inactivity period between the window start and the host's first packet and its last packet 
and the window end. A very similar distribution was achieved for the intra-window activity 
ratio as well. 
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Histogram for proto_tcp_share Histogram for proto_icmp_share 
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(c) Inter-window activity ratio. 
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(e) Packet arrivals standard deviation density. 

Figure 6.5: Real dataset feature analysis. 

(f) Relationship between packet arrivals average 
and standard deviation. 

Figure 6.5d is a direct consequence of I C M P traffic share predominance. Since I C M P 
does not use port numbers, the resulting port is 0, and thus its entropy is also 0. 

A n interesting insight is displayed in Figure 6.5c. As it may be seen, the attack traffic 
does not actually have its packet arrivals standard deviations close to 0 but is somewhat 
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Model f i t . _time score_time accuracy accur_std f 1 precision recall 

scikit adaboost 184 4754 1 7544 0 9996 0 0 0 9996 0 9996 0 9995 

scikit bayes 1 2891 0 2852 0 9640 0 001 0 9652 0 9358 0 9965 

scikit extra_trees 83 2605 2 2573 0 9998 0 0 0 9998 1 0 0 9996 

scikit grad_boosting 680 1072 0 3994 0 9998 0 0 0 9998 0 9999 0 9996 

scikit logreg 18 3962 0 1693 0 9987 0 0 0 9987 0 998 0 9994 

scikit Ida 26 5794 0 2798 0 9972 0 0001 0 9972 0 9986 0 9958 

scikit mlp 149 9141 1 4796 0 9991 0 0004 0 9991 0 9993 0 9990 

scikit nearest_centroid 1 1646 0 2108 0 9779 0 0003 0 9774 0 9979 0 9577 

scikit svm 862 7121 29 1655 0 9992 0 0 0 9992 0 9988 0 9995 

scikit tree 27 1975 0 1733 0 9997 0 0 0 9997 0 9997 0 9997 

scikit random_forest 232 4759 1 4291 0 9998 0 0 0 9998 1 0 0 9997 

xgboost.xgboost 435 8562 0 9845 0 9999 0 0 0 9999 1 0 0 9997 

Figure 6.6: Model comparison with cross-validation upon the real dataset containing 788 k 
samples. Trained on Fujitsu Esprimo Q920. 

Codename Full name Codename Full name 

scikit.adaboost AdaBoost scikit.mlp Multilayer Perceptron* 
scikit.bayes Naive Bayes scikit.nearest_centroid Nearest Centroid Classifier 
scikit.extra_trees Extra trees scikit.svm Support Vector Machines 
grad_boosting Gradient Boosting scikit . tree Decision Tree 
scikit . logreg Logistic Regression scikit.random_forest Random Forest 
scikit .Ida Linear Disc. Analysis xgboost.xgboost XGBoost 

Table 6.3: Explanation of machine learning model codenames. 
*Regular neural network with 1 hidden layer. 

centered around 30 ms, which is quite a lot for DDoS traffic. However, the attack capture 
is from 2007, so networks and packets rates were significantly lower back then. 

Figure 6.5f displays a relationship between packet arrivals averages and standard devi­
ations. According to seen data, a relatively accurate quadratic or even linear boundary can 
be drawn to distinguish both classes. This fact aligns with our previous prediction that IP 
addresses with bigger arrivals deviation would most likely resemble legitimate clients, as 
packets are not generated periodically by some malicious software. 

Classification Results 

After reviewing the dataset and obtaining an idea of its characteristics, we may try to fit 
a machine learning model onto them and review its performance. As stated in previous 
subsections, the I C M P share should be the most important factor, as the data are almost 
perfectly linearly separable according to its value. A l l available models with their default 
parameter settings were reviewed with cross-validation (Figure 6.6). Dataset columns with 
values not within the range [0,1] were standardized with the MinMax function. Model 
codenames in Figure 6.6 used throughout this section are explained in Table 6.3. 

As it may be seen, all models have achieved outstanding performance. This was probably 
caused by the task character, as the two classes were so easily separable. Performance 
evaluation was performed on Fujitsu Esprimo Q920. The "weaker" workstation was chosen 
instead of the server on purpose, so fitting and scoring times are amplified, and timing 
differences between them thus becoming more apparent. The k-nearest neighbors model 
could not be used because the dataset is so extensive that the model consumes a vast 
amount of memory, causing the operating system to terminate the process. 
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Figure 6.7: Decision Tree Gini features' importance for real dataset. 

At this point, performing hyperparameter tuning or other data preprocessing techniques 
would have no purpose since all the models classify the data so well already. To confirm 
our assumptions, a process to determine feature importance (Figure 6.7) was executed. 
Importance was estimated directly from a tree classifier according to the mean decrease in 
impurity (Gini importance) technique. As it may be seen, a decision tree is able to decide 
almost exclusively based only on a single feature - the share of I C M P traffic, with almost 
perfect accuracy. 

Since a bigger share of I C M P than usual may signify a network anomaly, deciding only 
according to it is nonsense because it definitely cannot generalize on different kinds of 
traffic. This result was somewhat expected after the first dataset analysis. Therefore, some 
less-generalizing features need to be removed in order to remove these skewed results. 

Enhanced Dataset Features for Better Generalization 

In order to achieve better generalization, we may try to remove irrelevant and obviously 
skewed features, which may affect the generalization performance negatively. These features 
include: 

• pkts_total and bytes_total - irrelevant as found out with the correlation analysis 

• proto_tcp_share, proto_udp_share, proto_icmp_share - provide skewed results 
according to the processed dataset 

Similar to the whole dataset's case, cross-validation was run upon such modified data 
as well (Figure 6.8). As apparent, removing features allowing linear-separability caused 
less sophistical models (Naive Bayes, Nearest Centroid) to decrease their performance, 
especially the precision. However, more complex models such as neural network or ensemble 
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Model fit_time score_time accuracy accur_std f 1 precision recall 

scikit .adaboost 167 .3584 1. .5803 0 .9983 0 .0001 0. .9983 0 .9978 0 .9988 

scikit .bayes 1. .4161 0. .4063 0 .9401 0 .0004 0. .9427 0 .9039 0 .9849 

scikit .extra_trees 144. .1588 3. .4363 0 .9996 0 .0001 0. .9996 0 .9996 0 .9995 

scikit .grad_boosting 627. .6410 0. .4925 0 .9993 0 .0001 0. .9993 0 .9991 0 .9995 

scikit •logreg 14. .3863 0. .2113 0 .9798 0 .0005 0. .9801 0 .9675 0 .9930 

scikit .Ida 11. .6721 0. .2315 0 .9498 0 .0006 0. .9519 0 .9132 0 .9940 

scikit . mlp 292 .2500 1. .6201 0 .9983 0 .0002 0. .9983 0 .9973 0 .9994 

scikit .nearest_centroid 1. .1571 0. .2366 0 .8534 0 .0004 0. .8642 0 .8048 0 .9329 

scikit . svm 3664 .7791 215. .5575 0 .9945 0 .0001 0. .9946 0 .9899 0 .9993 

scikit . tree 28 .5166 0. .2055 0 .9993 0 .0001 0. .9993 0 .9993 0 .9993 

scikit .random_f orest 319 .4423 1. .9953 0 .9996 0 .0001 0. .9996 0 .9996 0 .9996 

xgboost.xgboost 441 .6553 0. .8398 0 .9997 0 .0001 0. .9997 0 .9996 0 .9997 

Figure 6.8: Model comparison with cross-validation upon the feature-reduced dataset con­
taining 788 k samples. Trained on Fujitsu Esprimo Q920. 

interwindowactivityratio 
intrawindowactivityratio 
dominantpratoratiostd 

h d r sp a y I o a drati o_a vgstd 
c o n r ip ktsa vgstd 

po r t s rce ntropystd 
po r t s r c u n i q u es td 
p k t a rri v a I s a vgstd 

pkts izestdstd 
pkts izeavgstd 

bytestotalstd 
pktstotalstd 

hdrspayloadratioavg 
connpktsavg 

portsrcentropy 
portsrcunique 

pktsizestd 
pktsizeavg 

pktsizemax 
pktsizemin 

pktarrivalsstd 
pktarrivalsavg 

byterate 
pktrate 

-0.04 

Figure 6.9: Feature importance for a neural network in feature-reduced dataset. Based on 
feature permutation importance technique. 

techniques could still achieve excellent results. To our surprise, the performance of a single 
decision tree classifier also did not drop significantly. Feature importance analysis was thus 
performed again. 

As apparent, more sophisticated methods have managed to find other important features 
with which they could successfully classify the given traffic. Whereas more sophisticated 
models were able to find many complex relationships such as the neural network (Figure 6.9) 
or random forest (Figure 6.10). Simple models such as the decision tree managed to provide 
similar performance with only 3 used features: pkt_size_max (0.84), pkt_size_avg (0,11), 
and port_source_entropy (0.02). 

Reacting to these results, a closer look at the features has confirmed that the majority of 
attack traffic is composed of small packets, so almost perfect performance can be achieved 
almost purely based on them. This behavior is, indeed, undesired, as it biases towards 

-0.03 -0.02 -0.01 0.00 0.01 0.02 
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Figure 6.10: Feature importance for a random forest in feature-reduced dataset. Based on 
feature permutation importance technique. 

a concrete dataset heavily and would thus provide very poor classification performance 
in general. Therefore, as the last attempt to increase generalization abilities and make 
the estimator's performance "more realistic", features pkt_size_min, pkt_size_max, and 
pkt_size_avg were dropped in addition to those mentioned at the start of this subsection. 
Cross-validation with default hyperparameters was again run, as shown in Figure 6.11. 

Apparently, more sophisticated methods were still able to achieve astonishing results 
despite removing 8 out of 29 features used for classifications. A l l of the left features are 
mostly based on standard deviations, ratios, and rates, so they should generalize rather 
well on other types of traffic as well. The 6 most important features determined by the 
permutation feature importance technique for the XGBoost and neural network models 
are listed in Table 6.4. As it may be seen, two models working on different principles are 
affected by completely different features. Although due to the character of the permutation 
importance method, one has to keep in mind that this result is only an importance estimate. 
Figure 6.12 displays empirical feature (permutation) importance for a single decision tree. 
Gini impurity importance signified pkt_size_std_std to be the most significant with the 
value of 0.7684 and hdrs_payload_ratio_avg as the second with 0.1716. 

Real Data Experiments Summary 

This subsection has presented several of the picked experiments' results performed upon 
the real dataset. The tests were executed on the data extracted with the configuration 
of 1-second windows, 10-packet minimum per window, 6-window entry minimum, and 40 
entropy samples. Cross-validation was run on data extracted with other configurations as 
well (e.g., 15-packet per window minimum with 6 windows or 20-packet minimum with 4 
windows). Obtained results were very similar, all achieving over 0.995 f-score with high 
accuracy as well for more complex models. However, such high scores are nothing unusual. 
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Model fit_time score_time accuracy accur_std f 1 precision recall 

scikit adaboost 150.98 1.5022 0 9948 0 0005 0 9948 0 9940 0 9955 

scikit bay es 0.7383 0.2699 0 9290 0 0009 0 9324 0 8902 0 9788 

scikit extra_trees 156.3544 3.5291 0 9994 0 0001 0 9994 0 9993 0 9994 

scikit grad_boosting 581.0599 0.4709 0 9988 0 0001 0 9988 0 9983 0 9994 

scikit logreg 15.3653 0.2006 0 9482 0 0004 0 9502 0 9149 0 9883 

scikit Ida 11.3532 0.2339 0 8899 0 0006 0 9000 0 8248 0 9902 

scikit mlp 317.4023 1.2292 0 9984 0 0002 0 9985 0 9974 0 9995 

scikit nearest_centroid 0.7684 0.2428 0 8085 0 0006 0 8263 0 7559 0 9113 

scikit svm 2896.6739 259.16 0 9948 0 0001 0 9948 0 9904 0 9992 

scikit tree 29.4183 0.2507 0 9989 0 0001 0 9989 0 9989 0 9989 

scikit random_forest 428.4336 2.1473 0 9994 0 0001 0 9994 0 9993 0 9995 

xgboost.xgboost 443.5139 0.6792 0 9994 0 0000 0 9994 0 9993 0 9996 

Figure 6.11: Model comparison with cross-validation upon a feature-decimated real dataset 
containing 788 k samples. Trained on Fujitsu Esprimo Q920. 

Rank 
XGBoost 

Feature Value 

Neural Network (MLP) 

Feature Value 

1 hdrs_payload_ratio_avg 0.273 byte_rate 0.024 

2 pkt_size_std_std 0.224 pkt_arrivals_std -0.014 

3 pkt_size_std 0.015 bytes_total_std 0.012 

4 dominant_proto_ratio_std 0.012 pkt_arrivals_avg_std 0.002 

5 port_src_entropy 0.008 pkt_arrivals_avg_std 0.001 

6 conn_pkts_avg 0.001 pkt_size_std_std 0.000 

Table 6.4: Permutation feature importance for various models upon feature-decimated real 
dataset. 
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Figure 6.12: Feature importance for decision tree classifier based on feature permutation 
importance upon a feature-decimated real dataset. 
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Learning curve for XGBCIassifier Learning curve for MLPCIassifier 
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(a) Learning curve for an XGBoost model. (b) Learning curve for a neural network model. 

Figure 6.13: Effect of number of dataset samples on models' performance. 

Similar research papers working with the CAIDA2007 DDoS attack dataset such as [108], [9], 
or [90] also declared similar accuracy with completely different classification approaches. 

Since most of the models provide such perfect results, hyperparameter tuning was not 
performed, as it would be time-consuming with none to minimal benefits and may even 
lead to undesired overfitting in some cases. 

As evident from the results, even a single decision tree model achieved almost perfect 
accuracy, fl-score, and other relevant metrics above 0.998 for all cases. These scores were 
obtained even after dropping most of the "bad" features, which were either unsuitable for 
generalization or suffered from being skewed based on the used dataset. The dataset itself 
was indeed not perfect - most of the data was ICMP, packets were mostly small, and the 
average number of packets/bytes sent by a single host was also relatively low for a DDoS 
scenario. For this reason, the dataset will be combined with synthetic data and experiments 
performed once again, as further described in Subsection 6.4.2. 

Since the experimental results were obtained from a regular workstation P C , fitting and 
scoring times (in seconds) were relatively high. However, this fact amplified the models' 
performance, crucial for our online classification scenario. Therefore, despite some models 
performing with solid results, such as SVMs, random forest, or extra trees, their usage for 
our purposes is significantly limited due to their scoring times. As already noted, fitting 
times are not critical as there are no limits on them. These times can be shortened by 
not processing the dataset as a whole but only its representative sample of a limited size. 
However, significant dataset trimming was not performed because additional data may still 
increase the model's performance very slightly (Figure 6.13). 

6.4.2 Mixed Data 

The last subsection has performed system evaluation on real data. As discovered, the real 
DDoS dataset is mainly composed of I C M P traffic and thus is highly biased towards L4 
protocol share features. Therefore, this subsection will mix the given dataset with synthetic 
data from CIC datasets and perform the evaluation process once again. 

CIC datasets are mostly comprised of high-volume traffic with both T C P and U D P 
protocols. However, due to limited number of source addresses, a number of created dataset 
entries is rather low (Table 6.2). For this reason, all datasets cannot be simply merged 
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together because a high imbalance between them would cause the real datasets to dominate 
other entries, and thus a bias towards I C M P traffic would still be a threat. Therefore, real 
datasets were undersampled to include exactly as many entries as synthetic CIC data, so 
biasing should be significantly limited. Slow DoS attacks were not used in this series of 
experiments due to their specificity, as briefly outlined in the last paragraph of 4.2.1. The 
final balanced dataset used in the presented results thus contains 21860 entries of benign 
and attack traffic from both real and synthetic sources. 

Feature Correlation 

Similar to analysis in Subsection 6.4.1, a feature correlation analysis was performed first, as 
depicted in Figure 6.14. As in the real dataset, features describing the total number of bytes, 
the total number of packets, and their rates are correlated very strongly among themselves. 
In fact, pairs (pkts_total, pkt_rate) and (bytes_total, byte_rate) correlate exactly 
the same with all other features. Therefore, one of each can be considered redundant 
and dropped as in the previous case. As rates commonly generalize better than sums, 
pkts_total and bytes_total features can be safely dropped. 

As can be observed from the correlation heatmap, many strong correlations are very 
similar to the real dataset. Since half of the mixed dataset is comprised of the previ­
ously analyzed one, strong correlations not ultimately negated by the synthetic dataset 
will still be present. A n example of such negated relationship can be seen between the 
proto_icmp_share and target. In the real dataset, the correlation between them was 1.0. 
After supplying synthetic data, its value dropped to 0.6 since synthetic data contained no 
I C M P attacks. 

Characteristics describing flat packet size (packet_size_min, packet_size_max, and 
packet_size_avg) now correlate with the target rather weakly. This is an optimistic finding 
because they correlated rather strongly in the real dataset, thus significantly decreasing the 
model's generalization. However, with such weak correlations like these, the features will 
probably not need to be dropped, as their impact on the model decision-making would not 
be that big. 

A definitely unhealthy correlation can be found between T C P protocol share and the 
target. This relationship was strong even in the real dataset at the value of —0.8. Since 
the synthetic traffic did not provide enough T C P attacking data, the negative correlation 
strengthened. A strong negative correlation like this signifies a low probability of the attack 
if the traffic is of the T C P type. Although most of the T C P traffic on the Internet is indeed 
not malicious, the feature cannot be used as an ultimate deciding factor during traffic 
classification on its own. 

By analyzing other correlations between features and the target, we may see that all 
others correlate expectedly according to expert knowledge and initial suppositions presented 
in Subsection 4.3.2. This is a relatively good sign, as the skewed real dataset was partially 
healed by merging it with the synthetically generated traffic. However, correlations between 
the target and protocols' shares will probably still need to be dropped. 

Feature Analysis 

After reviewing the features' correlation, some more exciting feature distributions and rela­
tionships are listed in Figure 6.15. Most of the features are the same as for the real dataset 
- primarily to illustrate the effects of dataset mixing, but also because they are relatively 
significant in this case as well. 
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Figure 6.15: Real dataset feature analysis. 

Figure 6.15a and Figure 6.15b illustrate T C P and U D P protocol shares across the attack 
and benign traffic. Compared to the real's dataset T C P share histogram (Figure 6.5a), it 
looks almost the same. Although there is some legitimate traffic at 0.0 share and some 
attack traffic at 1.0 share, their amount is so negligible that classification can be done 
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almost linearly with relatively good accuracy. On the other hand, U D P share ratio 1.0 
is mostly associated with attack traffic, and a ratio of 0.0 dominates the legitimate class. 
However, there is a significant portion of attack traffic at a 0.0 ratio as well. 

Inter-window and intra-window ratios (Figure 6.15c) distributions are almost identical 
to each other and very similar to the real dataset's case. Mixing the dataset thus has not 
affected this feature as much, but its density was somewhat increased due to volumetric 
attack characteristics behavior. 

Source port entropy density (Figure 6.15d) and packet arrivals standard deviation (Fig­
ure 6.15c) clearly show the effects of mixing the datasets when compared to their equivalents 
in Figure 6.5. In the original dataset, attack traffic port entropy was predominant at 0.0 
value due to I C M P traffic with no ports. Although port entropy of 0.0 is still predominant 
in attack traffic (due to the real dataset still comprising a significant portion), other 2 peaks 
around 0.6 and 1.0 for attack traffic were added. This is a sign of synthetic volumetric at­
tacks, which often contain randomized ever-changing port numbers. The packet arrivals 
standard deviation was also updated by introducing a big peak at 0.0, again caused by 
high-volume attacking traffic. 

A n interesting relationship was found between the average number of packets per con­
nection and their standard deviation between various windows (Figure 6.15f). These results 
actually counter our initial suppositions, which expected bigger numbers of packets per con­
nection to be typical behavior of legitimate traffic. However, such connections with larger 
traffic amounts are almost exclusively related to attacking traffic. This can be explained 
in two scenarios: the attacker does not utilize port randomization, and so tremendous 
amounts of traffic may arrive from the same port, thus under a single connection. The 
second explanation lies within the real's dataset I C M P traffic. Since I C M P does not use 
port numbers, all of its traffic is labeled to come from a port 0 and thus may create an 
illusion that all data come from a single connection. 

Classification Results 

The evaluation of the classification performance was firstly performed by cross-validation 
upon all data without dropping any features. Since more sophisticated models again 
achieved over 0.998 performance similar to the real dataset, the specified features with lower 
generalization abilities or redundancy were again dropped. These include pkts_total, 
bytes_total, proto_tcp_share, proto_udp_share, and proto_icmp_share. Classifica­
tion results upon mixed datasets with these features dropped are then displayed in Fig­
ure 6.16. 

As apparent, the results of simple models (Bayes, nearest centroid) dropped significantly, 
but more complex models are still performing extraordinary well even without parameter 
tuning. Feature importance for a decision tree and random forest models is given in Ta­
ble 6.5. As seen, these tree-based techniques were still able to pick the most relevant features 
based on packet sizes, which do not correlate with the target very strongly. As these are 
less generalizing for the real world, they were again dropped as in the real's dataset case. 
Although the dropping affected simpler methods like Bayes, L D A , logistic regression, and 
Nearest centroid, which achieved between 0.6266 and 0.8772 of F-score, more sophisticated 
methods like Random Forest, XGBoost, or Extra trees did not change their performance 
at all. To our surprise, a simple decision tree also achieved a 0.9921 F-score with the best 
scoring times overall. 
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Model fit_time score_time accuracy accur_std f 1 precision recall 

scikit adaboost 3 2352 0 082 0 9946 0 0004 0 9946 0 996 0 9932 

scikit bayes 0 0526 0 0205 0 7231 0 0025 0 6279 0 9573 0 4672 

scikit extra_trees 1 9194 0 1248 0 9979 0 0009 0 9979 0 9989 0 9970 

scikit grad_boosting 14 1202 0 0258 0 9974 0 0007 0 9974 0 9981 0 9968 

scikit logreg 0 4203 0 0179 0 9366 0 0045 0 9369 0 9316 0 9423 

scikit Ida 0 2157 0 0170 0 9263 0 0051 0 9267 0 9219 0 9315 

scikit mlp 28 3703 0 0290 0 9952 0 0018 0 9952 0 9947 0 9957 

scikit nearest_centroid 0 0342 0 0140 0 7939 0 0074 0 8068 0 7592 0 8609 

scikit svm 6 8902 2 6329 0 9704 0 0023 0 9705 0 9677 0 9734 

scikit tree 0 614 0 0147 0 9946 0 0014 0 9946 0 9944 0 9949 

scikit random_forest 6 1454 0 1095 0 9979 0 0009 0 9979 0 9989 0 9970 

xgboost.xgboost 10 3377 0 0284 0 9985 0 0007 0 9985 0 9985 0 9984 

Figure 6.16: Model comparison with cross-validation upon a feature-reduced mixed dataset 
containing 21 860 samples. Trained on Lenovo Yoga 460. 

Decision Tree Random Forest 
Rank Feature Value Feature Value 

i pkt_size_max 0.609 pkt_size_max 0.154 

2 pkt_rate 0.206 hdrs_payload_ratio_avg 0.096 

3 hdrs_payload_ratio_avg 0.097 pkt_size_std_std 0.092 

4 pkt_size_std 0.019 pkt_size_min 0.081 

5 pkt_size_avg 0.011 pkt_size_avg_std 0.078 

6 port_src_unique 0.009 hdrs_payload_ratio_avg 0.078 

Table 6.5: Gini feature importances upon feature-reduced mixed dataset. 

Minimum Number of Features 

After failing to intentionally lower the models' performance by dropping the most impor­
tant biasing features, we will now look onto the minimum number of required features for 
successful classification results. For this purpose, 3 models: neural network, random forest, 
and XGBoost, were chosen as the best performing estimators based on their times and 
classification performance. Additionally, a decision tree model was added as the one with 
the best scoring times and solid performance for comparison. Cross-validation classification 
performance expressed with an f-score with regard to the number of features is shown in 
Figure 6.17. Features were obtained using sequential forward feature selection based on 
random forest with 100 estimators. A n f-score was used as the target scoring parameter. 
Features were selected in the following order: 

1. hdrs_payload_ratio_avg 7. bytes_total_std 

2. pkt_size_std 8. hdrs_payload_ratio_avg_std 

3. port_src_unique 9. pkt_size_std_std 

4. c onn_pkt s _ avg 10. port_src_entropy 

5. dominant_proto_ratio_std 11. byte_rate 

6. pkt_arrivals_avg 12. intrawindow_activity_ratio 

According to the results, it is apparent that a single feature - hdrs_payload_ratio_avg 
is able to provide enough information so the models can classify attacking and nonattacking 
hosts with an astonishing f-score higher than 0.9. Wi th another feature added, the score 
for tree-based models jumps to 0.98. Four to five features have then practically achieved 
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Figure 6.17: F-score classification performance based on the number of features. 

the same performance of > 0.995 as they with all the available data. Adding additional 
features increases the score only very slightly. As it can be seen, the neural network model 
initially performed much worse than the tree-based models. This is most probably caused 
by hyper parameters that used their default values from the Scientific learn library. Tuning 
them for the specific task would undoubtedly increase a prediction score to be comparable 
with other models. 

Although achieving such a good performance with a single feature was surprising, the 
features selected by the model make perfect sense in order to determine attacking hosts 
in practice. As all the features represent rates, standard deviations, and other statistical 
characteristics gathered throughout multiple windows, their generalization in real-world 
scenarios should be acceptable. However, the used dataset will still need to be slightly 
updated or modified, so a single feature will not be able to achieve such good results. 

Decreasing Data-Collection Time 

A l l the previously performed experiments used data summarized across 6 seconds (6 win­
dows of 1 second) of the host's traffic. However, with such astonishing results achieved 
previously, it may be considered to lower this time to make the detection process faster. 
Intuitively, collecting data over a shorter period of time should lead to lowered performance, 
as fewer samples for statistics computation would be collected. In such cases, sudden traffic 
bursts or legitimate flash events may produce numerous false positives. This theory was 
tested with the configuration of 1-second windows, 4-window blocks, and 15 or 20 mini­
mum packets per window, as outlined at the start of Section 6.4. The minimum number of 
packets per window was slightly increased to lower the amount classifications since smaller 
window blocks will now produce classifiable data more often. 

As usual, the evaluation was performed with cross-validation upon various models, with 
results displayed in Figure 6.18. Biasing and redundant features such as protocol rates 
and packet sizes were again dropped dropped prior to the evaluation process. According 
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Model 

scikit.adaboost 

scikit.bayes 

scikit.extra_trees 

scikit.grad_boosting 

scikit.logreg 

scikit.Ida 

scikit.mlp 

scikit.nearest_centroid 

scikit.svm 

scikit.tree 

scikit.random_forest 

xgboost.xgboost 

fit_time 

3.2352 

0.0526 
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0.2157 
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0.9369 
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0.9960 
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0.9944 

0.9989 

0.9985 
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0.9932 

0.4672 
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0.9968 
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0.9315 

0.9957 

0.8609 

0.9734 

0.9949 

0.9970 

0.9984 

Figure 6.18: Model comparison with cross-validation upon a feature-decimated mixed 
dataset with 4-second traffic blocks. Trained on Lenovo Yoga 460. 

to achieved results, it may be stated that attacking and benign traffic may be recognized 
with high precision even if only 4 seconds are given to collect the data. This fact would 
make the detection mechanism especially competent during real-time mitigation in various 
environments. 

Slow DoS Attacks 

Slow DoS attacks were excluded from all the experiments performed so far. This was done 
due to the reason that the system was primarily designed against volumetric DDoS attacks. 
Therefore, the proposed system may not be able to detect them based on the various specific 
characteristics they have. This series of tests will try to answer whether such attacks can 
be detected. 

Currently, our biggest problem with slow DoS attacks is the data. The only available 
slow DoS data were extracted from CIC-IDS2017 Dataset and contain 361 entries (Ta­
ble 6.2). On top of that, all the attacking traffic comes from a single IP address. The 
grouping mechanism used during train/test data splitting would then not separate these 
samples but keep them as a whole in either train or test dataset subset. For this reason, 
IP addresses in the slow DoS dataset were randomized. This removes the above-mentioned 
problem but causes that statistically dependent samples (from the same IP) will be present 
in both test and train datasets. IP randomization may slightly skew the results towards 
higher scores, but it is the only possible option that can be done without obtaining more 
data. 

After IP randomization, the data was appended to the existing mixed dataset used 
throughout the previous tests. In order to balance this new dataset, 361 additional synthetic 
samples of legitimate traffic were also added. As usual, columns pkts_total, bytes_total, 
proto_tcp_share, proto_udp_share, and proto_icmp_share to prevent bias of badly 
generalizable features. As the slow DoS traffic represents only 1.6% of the whole dataset, 
the results will be presented upon a concrete model and its confusion matrix. This allows 
us to see the exact number of classifications instead of a single score, which would not 
represent the required information due to the small slow DoS sample size. 

As the best performing model in most of the previous tests, XGBoost was chosen for the 
task. Its confusion matrix on the dataset not containing any slow DoS packets is displayed 
in Figure 6.19a. Figure 6.19b then represents the classification results after slow DoS attack 
data were added. As it may be seen, adding several Slow DoS samples caused the false 
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(a) Dataset without DoS confusion matrix. (b) Dataset with DoS confusion matrix. 

Figure 6.19: Comparison of DoS and non-DoS datasets performance. 

negatives to increase by 0.9% and false positives by 0.1%. Matthews correlation coefficient 
for slow DoS traffic was 0.9578, whereas a value of 0.9815 was computed for non-slow DoS 
traffic. 

6.4.3 Experiments Summary 

The experiments performed throughout this section aimed to evaluate the performance of 
the machine learning system as a whole, regardless of the particular model or its hyper-
parameters. According to achieved results, it may be concluded that almost any machine 
learning model performs exceptionally well when inappropriate data are given to its input. 
This might be seen in Figure 6.6, where most of the models achieved an f-score of > 0.998. 
Only trivial models like Naive Bayes or nearest centroid achieved a lesser score than 0.99. 

As shown during the analysis, the real attack dataset was primarily comprised of I C M P 
messages, and thus an almost linear decision boundary could be drawn to determine whether 
the IP is an attacker or not (Figure 6.5b). Features utilizing this ability, alongside packet 
sizes, were then dropped to increase trained models' generalization capabilities. This process 
has fairly reduced the score of trivial methods, but more complex ones were affected only 
minimally (Figure 6.11), and an f-score of > 0.998 was kept. 

Real dataset flaws were partially healed by mixing them with synthetic traffic from CIC 
datasets. This fact has significantly reduced the number of available training samples (from 
788 k to around 22 k), but this seemed not to affect the models' ability to learn. The mixed 
dataset partially removed some unhealthy features correlations, but few strong correlations, 
like proto_tcp_share with the target, remained (Figure 6.14). Therefore, features leading 
to bias were again dropped, and the experiments repeated. 

Using the mixed dataset with dropped biasing columns lowered the overall f-score 
from the initial 0.999 to 0.996. As revealed by later experiments, a single feature -
hdrs_payload_ratio_avg was typically enough for models to achieve over 0.9 accuracy 
and f-score results. Wi th 4 and more features, the performance improvements were rela­
tively negligible and, in some cases, even dropped (Figure 6.17). 

The end of the section then elaborated on detecting an attack within a shorter time 
period of only 4 seconds, which achieved similar performance to 6-second captures. This 
indicates that the attacking sources can be theoretically detected within 4 seconds of the 
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mitigation process started. Experiments with lower values were not performed, but a 3-
second time block may provide similarly good performance as well. 

Although the findings regarding Slow DoS attacks have revealed that the performance 
was worsened by 0.9% in false negatives and by 0.1% in false positives, the model could 
pick the most important traits of the slow DoS attack and thus successfully detect its 
originating IP addresses. However, this experiment is a little biased by design because not 
enough diverse samples were available for both evaluation and training. 

In general, the best performing models were XGBoost, Random forest, Gradient boost­
ing, and Extra trees. The neural network model with Adaboost performed slightly worse, 
followed by a Decision tree. However, no hyperparameter tuning for these models was 
performed, so it is possible that they would have very similar results in the end. 

Best scoring times were achieved by Logistic regression, L D A , Naive Bayes, Nearest 
Centroid, and Decision trees. However, all mentioned methods except Decision trees were 
rather sensitive for dropping biasing features and their fl-score typically more or less de­
creased. On the other hand, the Decision tree model has kept its high precision and perfect 
estimation times throughout all of the experiments. 

The overall winner of the comparison would be XGBoost, providing an excellent trade­
off between classification performance and scoring times. Similar results to XGBoost were 
also achieved by the Gradient Boosting algorithm. Nevertheless, XGBoost often performed 
slightly better, is a popular choice in the machine learning community nowadays, can be 
visualized, and most importantly, also offers implementation in C++, which can even ac­
cept dumped trained models from its Python A P I . Therefore, real-world deployment and 
experiments continuation is suggested with the XGBoost algorithm. 

6.5 F i n a l Sys tem Considerat ions and Remarks 

The previous section has performed several experiments comparing various machine learning 
models in different scenarios. At the end of the section, the XGBoost algorithm was chosen 
as the suggested model to use with the system due to its classification performance and 
speed of the execution. This section will discuss the tuning of such model, present a 
simulated model deployment and discuss a possible future work. 

6.5.1 Hyperparameter Tuning 

As discussed throughout the previous subsection, hyperparameter tuning was mostly not 
performed initially due to models having exceptionally high scores already. These assump­
tions were proven true by several performed tests showing that hyperparameters have little 
to no impact on the overall classification performance if the scores are so high. The only 
parameters intentionally set to very low or very high values have the actual potential to 
change the result - typically to worse, as shown in Figure 6.20. In this setup, the hyperpa­
rameter max_depth was set to 1, which indeed produced too simple models suffering from 
higher variance and thus achieving the lower classification score. 

6.5.2 Simulated Mode l Deployment 

The simulation of model deployment can be done with the provided script mitigator .py. 
The script computes the number of allowed and denied packets, as it would be in the real 
network where all packets (even from attackers) have to be allowed at first before a sufficient 
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Figure 6.20: Influence of max depth parameter for XGBoost performance. 

amount of statistics is collected. Therefore, the method evaluates the "true" accuracy, as 
it does not evaluate the results by IP addresses but by packets. A test scenario with 5 
attackers and 9 legitimate hosts was set up. Attacking hosts were extracted from C A I D A 
2007 DDoS dataset and legitimate hosts from C A I D A 2016 Anonymized Internet traces. 
A l l entries corresponding to given IPs were removed from the training dataset to prevent 
mutually dependent samples from skewing the results. 

The script was then run with the XGBoost model configured. According to the results, 4 
of 5 attackers were detected successfully, and no false positives were produced. The method 
made a total number of 321 classifications, with 4 classifications being incorrect. The total 
number of denied packets for attackers was 40 914 out of 43 520, achieving accuracy for 
successfully denied packets of 0.940. No benign packets were denied, so the overall accuracy 
for benign clients was 1.00. This evaluation process can be replicated by running the whole 
M L pipeline with python run.py command. 

6.5.3 Future Work 

The most urgent issue to address in future work would be the data. As outlined numerous 
times throughout the document, the data with DDoS traffic in their raw P C A P form are very 
hard to come by. Although few such datasets exist, their quality is often unsuitable for the 
needs of the proposed mechanism. For this reason, the system was evaluated on sub-optimal 
data, causing models to get biased towards features with smaller generalization capabilities. 
Although this issue was tried to be solved by dropping such features, the quality of fitted 
models may be questionable due to the given data. A well-defined, modern, and diverse 
dataset resembling DDoS traffic characteristics is thus needed to prevent such biases and 
make the method usable in real-world scenarios. A discussion regarding dataset generation 
is further briefly conducted in Subsection 4.5.5. 

Additional focus may be put on the data extraction and overall system pipeline con­
figuration. Most of the experiments were performed upon dataset collected throughout 6 

93 



seconds of the client's communication. Nevertheless, tests in Subsection 6.4.2 have shown 
that the method works reliably even for 4-second traffic captures. Collecting statistics over 
a lesser number of windows (such as 3, 2, or even 1 second) was not performed, but it might 
be interesting to see models' behavior in such conditions as well. 

Numerous other possibilities to "play" with the system also exist. One may try to im­
plement other statistical features or other ways of stream data mining techniques. Although 
the window model proved to be efficient, other stream-processing algorithms may also be 
tried. Stream processing can also be offloaded to solutions like Apache Fl ink 2 , which would 
allow distributed processing as well as collecting data from multiple network sources at 
once. 

Lastly, for the method to be usable in practice, the overall pipeline needs to be accel­
erated in lower-level technologies such as compiled languages or F P G A to allow real-time 
packet processing without significantly decreasing the network throughput. The current 
implementation is done in Python, whereas almost no emphasis was put on the processing 
performance. Offloading feature extraction and statistics computation into F P G A would 
surely provide a significant performance boost. Data processing and utilization of machine 
learning models can also be reimplemented in lower-level languages such as C++, providing 
numerous machine learning frameworks working with much bigger overall performance. 

2 Stream-processing and batch-processing framework for stateful computations over data streams. Home­
page: https://flink.apache.org/. 
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Chapter 7 

Conclusions 

The primary goal of this thesis was to design, implement, and evaluate a method for the 
mitigation of DDoS attacks using machine learning. Instead of implementing such a method 
in a hard-coded manner, this work aimed to create a highly configurable set of tools and 
scripts for that purpose. The leading idea behind the project was to provide a simple 
interface for anyone with minimal machine learning knowledge to use. 

The ease of usability is achieved by 6 programs and supplementary scripts, which provide 
the complete functionality of a typical M L pipeline, including custom feature extraction, 
data preprocessing, and model training and evaluation. Typical M L tasks like dataset 
exploratory analysis and model deployment simulation are also highly automated. These 
programs allow to easily create own datasets from supplied P C A P files and evaluate various 
models with specified hyperparameters. A fitted model can then be exported and used for 
further experiments or deployment in the production environment. 

Based on the analysis of several dozens of existing researches within a field, an attack 
detection mechanism based on the statistical features and packet metadata was proposed. 
In total, 8 features are extracted from every received packet. These are then processed 
within the windowed computational model, which computes relevant stream statistics upon 
them. Such statistics are summarized for several windows, and a 32-element feature vector 
is produced for classification. Evaluation of several publicly available datasets indicates the 
system's accuracy of over 99%, with an ability to detect an ongoing attack within the first 
4 seconds of its start. 

Although several real and synthetic datasets were used within the project, the data 
quality was still suboptimal. In general, there is a huge shortage of quality DDoS datasets 
in the raw P C A P format. Existing datasets are mainly available as C S V files with already 
pre-extracted features. However, these could not be utilized due to the specific needs of the 
proposed extraction mechanism. Therefore, several available P C A P datasets were used, but 
they were often corrupted, mislabeled, had a low attack diversity or very vague specification. 

The above-mentioned issues with datasets were combated by merging the data from 
7 different sources. This process has solved some issues of individual datasets, but many 
flaws and biases towards certain features were still retained. Therefore, the creation of 
a well-defined, modern, and diverse dataset resembling real DDoS traffic characteristics 
should be the top priority for future research. Additional future work, such as the need 
for system acceleration or possibilities of distributed computations, is briefly discussed in 
Subsection 6.5.3. 

95 



Bibliography 

[1] Biological Neuron Structure. Pixabay, 2014. [Online; accessed 18-August-2020]. 
Available at: 
https : //pixabay.com/vectors/neuron-nerve-cell-axon-dendrite-296581/. 

[2] Neural Networks Part 1: Setting up the Architecture. Stanford University, 2020. In 
GS231n: Convolutional Neural Networks for Visual Recognition. [Online; accessed 
19-August-2020]. Available at: https://cs231n.github.io/neural-networks-l/. 

[3] A K A M A I T E C H N O L O G I E S . Why Akamai Cloud Security for DDoS Protection? 2021. 
[Online; accessed 13-March-2021]. Available at: 
https://www.akamai. com/uk/en/products/security/ddos-protection-service, j sp. 

[4] B A I , S., K O L T E R , J . Z. and K O L T U N , V . A n Empirical Evaluation of Generic 
Convolutional and Recurrent Networks for Sequence Modeling. CoRR. arXiv. 2018. 

[5] B A R T O N , A . College Calculus with Analytic Geometry. (2nd edition.). The 
Mathematical Gazette. Cambridge University Press. 1972. DOI: 10.2307/3617003. 

[6] B E E R , F. , H O F E R , T., K A R I M I , D. and B Ü H L E R , U . A new Attack Composition for 

Network Security. Bonn: Gesellschaft für Informatik e.V. 2017, p. 11-20. 

[7] B E H A L , S. and K U M A R , K . Trends in Validation of DDoS Research. Procedia 
Computer Science. 2016, vol. 85, p. 7-15. ISSN 1877-0509. International Conference 
on Computational Modelling and Security (CMS 2016). 

[8] B E N G I O , Y . Learning Deep Architectures for A I . Foundations and Trends in 
Machine Learning. January 2009, vol. 2. DOI: 10.1561/2200000006. 

[9] B H A Y A , W . and E B A D Y M A N A A , M . D D O S attack detection approach using an 
efficient cluster analysis in large data scale. In: 2017 Annual Conference on New 
Trends in Information Communications Technology Applications (NTICT). 2017, 
p. 168-173. 

[10] B O Y D , S. and V A N D E N B E R G H E , L . Convex Optimization. The Edinburgh Building, 
Cambridge, CB2 8RU, U K : Cambridge University Press, 2004. ISBN 
978-0-521-83378-3. 

[11] B R E I M A N , L . Bias, Variance, and Arcing Classifiers. University of California. 

[12] B R O W N L E E , N . , M I L L S , C. and R U T H , G. Traffic Flow Measurement: Architecture. 
October 1999. In Request for Comments: 2722. 

96 

https://cs231n.github.io/neural-networks-l/
https://www.akamai


[13] B U C K L A N D , M . and G E Y , F . The relationship between Recall and Precision. 
Journal of the American Society for Information Science. January 1994, vol. 45, 
no. 1, p. 12-19. 

[14] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . NSL-KDD dataset. 2009. Dataset for 
Intrusion detection. [Online; accessed 16-July 2021]. Available at: 
https: //www.unb.ca/cic/datasets/nsl.html. 

[15] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . Intrusion detection evaluation dataset 
(ISCXIDS2012). 2012. Dataset for Intrusion detection. [Online; accessed 16-July 2021]. 
Available at: https://www.unb.ca/cic/datasets/ids.html. 

[16] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . CIC DOS dataset (2017). 2017. 
Dataset for Intrusion detection. [Online; accessed 16-July 2021]. Available at: 
https: //www.unb.ca/cic/datasets/dos-dataset.html. 

[17] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . Intrusion Detection Evaluation 
Dataset (CIC-IDS2017). 2017. Dataset for Intrusion detection. [Online; accessed 16-July 
2021]. Available at: https://www.unb.ca/cic/datasets/ids-2017.html. 

[18] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . CSE-CIC-IDS2018 on AWS. 2018. 
Dataset for Intrusion detection. [Online; accessed 13-July 2021]. Available at: 
https : //www.unb.ca/cic/datasets/ids-2018.html. 

[19] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . DDOS Evaluation Dataset 
(CIC-DDoS2019). 2019. Dataset for Intrusion detection. [Online; accessed 16-July 2021]. 
Available at: https://www.unb.ca/cic/datasets/ddos-2019.html. 

[20] C E N T E R F O R A P P L I E D I N T E R N E T D A T A A N A L Y S I S . The CAIDA UCSD ,JDDoS 
Attack 2007" Dataset. February 2010. [Online; accessed 18-Jun 2021]. Available at: 
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/. 

[21] C E N T E R F O R A P P L I E D I N T E R N E T D A T A A N A L Y S I S . The CAIDA Anonymized 
Internet Traces Dataset (April 2008 - January 2019). Apr i l 2018. [Online; accessed 
18-Jun 2021]. Available at: 
https://www.caida.org/catalog/datasets/passive_dataset/. 

[22] C H A K R A B A R T I , A . , C O R M O D E , G . and M C G R E G O R , A . A near-optimal algorithm 
for computing the entropy of a stream. January 2007. 

[23] C H E N , L . , Z H A N G , Y . , Z H A O , Q . , G E N G , G . and Y A N , Z . Detection of DNS DDoS 
Attacks with Random Forest Algorithm on Spark. Elsevier B . V . 2018, vol. 134, 
p. 310-315. 

[24] C H E N , T. and G U E S T R I N , C. XGBoost: A Scalable Tree Boosting System. 
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2016, p. 785-794. K D D '16. ISBN 978-1-4503-4232-2. 

[25] C H I C C O , D . and J U R M A N , G . The advantages of the Matthews correlation 
coefficient (MCC) over F l score and accuracy in binary classification evaluation. 
BMC Genomics. Jan 2020, vol. 21, no. 1, p. 6. ISSN 1471-2164. 

97 

http://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids.html
http://www.unb.ca/cic/datasets/dos-dataset.html
https://www.unb.ca/cic/datasets/ids-2017.html
http://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/


[26] C H U N G , J. , G U L C E H R E , C , C H O , K . and B E N G I O , Y . Empirical Evaluation of 
Gated Recurrent Neural Networks on Sequence Modeling. arXiv. December 2014. 

[27] C I L , A . E. , Y I L D I Z , K . and B U L D U , A . Detection of DDoS attacks with feed forward 
based deep neural network model. Expert Systems with Applications. 2021, vol. 169. 
DOI: https://doi.Org/10.1016/j.eswa.2020.114520. ISSN 0957-4174. 

[28] C i s c o S Y S T E M S . Cisco Visual Networking Index: Forecast and Trends, 2017-2022 
White Paper. 70 West Tasman Dr., San Jose, C A 95134 USA, Jan 2018. Updated 
on March 9, 2020. Available at: 
https://www.cisco. com/c/en/us/solutions/collateral/executive-perspectives/ 
annual-internet-report/white-paper-cll-741490.html. 

[29] C L O U D F L A R E , I N C . . Comprehensive DDoS Protection. 2021. [Online; accessed 
13-March-2021]. Available at: https://www.cloudflare.com/ddos/. 

[30] C Y B E N K O , G. Approximation by Superpositions of a Sigmoidal Function. 
Mathematics of Control, Signals and Systems. Dec 1989, vol. 2, no. 4, p. 303-314. 
DOI: 10.1007/BF02551274. ISSN 1435-568X. 

[31] D A S , S., M A H F O U Z , A . M . , V E N U G O P A L , D. and S H I V A , S. D D O S Intrusion 

Detection Through Machine Learning Ensemble. In: 2019 IEEE 19th International 
Conference on Software Quality, Reliability and Security Companion (QRS-C). 
2019, p. 471-477. 

[32] D O N G , S. and S A R E M , M . D D O S Attack Detection Method Based on Improved 
K N N With the Degree of DDoS Attack in Software-Defined Networks. IEEE Access. 
2020, vol. 8, p. 5039-5048. 

[33] E R H A N , D. and A N A R I M , E . Bogazigi University Distributed Denial of Service 
Dataset. Data in Brief. August 2020, vol. 32. 

[34] F A D L I L , A . , R I A D I , I. and A J I , S. DDoS Attacks Classification using Numeric 
Attribute-based Gaussian Naive Bayes. International Journal of Advanced 
Computer Science and Applications. The Science and Information Organization. 
2017, vol. 8, no. 8. DOI: 10.14569/IJACSA.2017.080806. 

[35] F A R N A A Z , N . and J A B B A R , M . Random Forest Modeling for Network Intrusion 
Detection System. Procedia Computer Science. Elsevier B . V . 2016, vol. 89, 
p. 213-217. 

[36] F A W C E T T , T. A n introduction to R O C analysis. Pattern Recognition Letters. 2006, 
vol. 27, no. 8, p. 861-874. ISSN 0167-8655. R O C Analysis in Pattern Recognition. 

[37] F E R G U S O N , P. and S E N I E , D. Network Ingress Filtering: Defeating Denial of Service 
Attacks Which Employ IP Source Address Spoofing. R F C Editor, May 2000. Request 
For Comments 2827. 

[38] F L A J O L E T , P., F U S Y , E . , G A N D O U E T , O. and M E U N I E R , F . HyperLogLog: the 
analysis of a near-optimal cardinality estimation algorithm. Discrete Mathematics 
and Theoretical Computer Science. June 2007, D M T C S Proceedings vol. A H , 2007 
Conference on Analysis of Algorithms (AofA 07), p. 137-156. D M T C S Proceedings. 

98 

https://doi.Org/10.1016/j.eswa.2020.114520
https://www.cisco
https://www.cloudflare.com/ddos/


[39] G A V R I L I S , D. , D E R M A T A S , E. , A L R A S H D A N , W . K . , W A N G , D. and K A T K A R , V . D. 
Denial of Services Attack Detection using Random Forest Classifier with 
Information Gain. 2017. 

[40] G O L D S C H M I D T , P. Heuristic Methods for the Mitigation of DDoS Attacks That 
Abuse TCP Protocol. May 2019. Bachelor thesis. Faculty of Information Technology, 
Brno University of Technology. Available at: 
https: //www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f ile_id=197664. 

[41] G O L D S C H M I D T , P. T C P Reset Cookies - a Heuristic Method for T C P S Y N Flood 
Mitigation. In: ExceWFIT 2019. Apr 2019. 

[42] G O L D S C H M I D T , P. Adaptive S Y N Flood Mitigation Based on Attack Vector 
Detection and Mitigation Process Monitoring. In: ExceWFIT 2020. May 2020. 

[43] G R A U P E , D . Principles of Artificial Neural Networks. 3rd ed. World Scientific 
Publishing Co. Pte. Ltd. , 2013. Advanced Series in Circuits and Systems. 

[44] G U P T A , B . B . and B A D V E , O. P. Taxonomy of DoS and DDoS attacks and desirable 
defense mechanism in a Cloud computing environment. Neural Computing and 
Applications. Dec 2017, vol. 28, no. 12, p. 3655-3682. DOI: 
10.1007/s00521-016-2317-5. 

[45] H A R I S , S. H . C , A H M A D , R. B . and G H A N I , M . A . H . A . Detecting T C P S Y N 

Flood Attack Based on Anomaly Detection. In: Second International Conference on 
Network Applications, Protocols and Services. September 2010, p. 240-244. DOI: 
10.1109/NETAPPS.2010.50. ISBN 978-0-7695-4177-8. 

[46] H A S T I E , T., T I B S H I R A N I , R. and G R I E D M A N , J . The Elements of Statistical 

Learning: Data Mining Inference, and Prediction. 2ndth ed. Springer, January 
2016. ISBN 978-0387848570. 

[47] H O C H R E I T E R , S. The Vanishing Gradient Problem During Learning Recurrent 
Neural Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness 
and Knowledge-Based Systems. Apr i l 1998, vol. 6, p. 107-116. DOI: 
10.1142/S0218488598000094. 

[48] H O C H R E I T E R , S., B E N G I O , Y . , F R A S C O N I , P. and S C H M I D H U B E R , J . Gradient Flow 

in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies. In: A Field 
Guide to Dynamical Recurrent Neural Networks. I E E E Press, March 2001. 

[49] H O C H R E I T E R , S. and S C H M I D H U B E R , J . Long Short-Term Memory. Neural 
Computation. Cambridge, M A , USA: M I T Press. November 1997, vol. 9, no. 8, 
p. 1735-1780. DOI: 10.1162/neco.l997.9.8.1735. ISSN 0899-7667. Available at: 
https://doi.org/10.1162/neco.1997.9.8.1735. 

[50] H O F F M A N N , L . D. and B R A D L E Y , G . L . Calculus For Business, Economics, and the 
Social and Life Sciences. 10th ed. Avenue of the Americas, New York, N Y 10020: 
McGraw-Hill , 2010. ISBN 978-0-07-353231-8. 

[51] H O R N I K , K . Approximation Capabilities of Multilayer Feedforward Networks. 
Neural Networks. 1991, vol. 4, no. 2, p. 251 - 257. ISSN 0893-6080. 

99 

http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f
https://doi.org/10.1162/neco


[52] H S I E H , C. -J . , C H A N G , K . - W . , L I N , C. -J . , K E E R T H I , S. S. and S U N D A R A R A J A N , S. A 

Dual Coordinate Descent Method for Large-Scale Linear S V M . In: Proceedings of 
the 25th International Conference on Machine Learning. Association for Computing 
Machinery, 2008, p. 408-415. I C M L '08. ISBN 9781605582054. 

[53] I M P A C T . DARPA 2009 Intrusion Detection Dataset - Dataset Details. 2009. 
Online; accessed 17-July 2021]. Available at: 
https : //www.impactcybertrust.org/dataset_view?idDataset =742. 

[54] I M P E R V A , I N C . . DDoS Protection. 2021. [Online; accessed 13-March-2021]. Available at: 
https : //www.imperva.com/products/ddos-protection-services/. 

[55] I N T E R N E T A S S I G N E D N U M B E R S A U T H O R I T Y . Protocol Numbers. Last Updated: 
2021-02-26. [Online; accessed 12-July 2021]. Available at: 
https : //www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml. 

[56] J A C K O , D. Inference of DDoS Mitigation Rules. Brno, 2021. Master's thesis. Brno 
University of Technology. (Slovak). 

[57] J I A , B. , H U A N G , X . , L i u , R. and M A , Y . A DDoS Attack Detection Method Based 
on Hybrid Heterogeneous Multiclassifier Ensemble Learning. Journal of Electrical 
and Computer Engineering. March 2017, vol. 2017, p. 1-9. DOI: 
10.1155/2017/4975343. 

[58] K A G G L E C O N T R I B U T O R S . DDOS Botnet Attack on IOT Devices. 2020. Online; 
accessed 17-July 2021]. Available at: 
https : //www.kaggle.com/siddharthml698/ddos-botnet-attack-on-iot-devices. 

[59] K E K E L Y , L . , C A B A L , J . , Pus, V . and K O R E N E K , J . Mufti Buses: Theory and 
Practical Considerations of Data Bus Width Scaling in F P G A s . In: 2020 23rd 
Euromicro Conference on Digital System Design (DSD). 2020, p. 49-56. DOI: 
10.1109/DSD51259.2020.00020. 

[60] K I O U R K O U L I S , S. DDoS Datasets: Use of Machine Learning to Analyse Intrusion 
Detection Performance. 971 87 Lulea, Sweden, 2020. Master's thesis. Lulea 
University of Technology. Supervisor: Dr. A l i Ismail Awad. 

[61] K O K I L A R T , T H A M A R A I S E L V I , S. and G O V I N D A R A J A N , K . D D O S detection and 

analysis in SDN-based environment using support vector machine classifier. In: 2014 
Sixth International Conference on Advanced Computing (ICoAC). I E E E , 2014, 
p. 205-210. 

[62] K R E B S , B . Study: Attack on KrebsOnSecurity Cost IoT Device Owners $323K. May 
2018. Available at: https://krebsonsecurity.com/2018/05/study-attack-on-
krebsonsecurity-cost-iot-device-owners-323k. 

[63] K U P R E E V , O., B A D O V S K A Y A , E . and G U T N I K O V , A . DDoS attacks in Q4 2020. 
Kaspersky Lab, February 2021. [Online; accessed 27-February-2021]. Available at: 
https://securelist.com/ddos-attacks-in-q4-2020/100650/. 

[64] L A H I R I , B . and T I R T H A P U R A , S. Stream Sampling. In: Encyclopedia of Database 
Systems. Boston, M A : Springer US, 2009, p. 2838-2842. ISBN 978-0-387-39940-9. 

100 

http://www.impactcybertrust.org/dataset_view?idDataset
http://www.imperva.com/products/ddos-protection-services/
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.kaggle.com/siddharthml698/ddos-botnet-attack-on-iot-devices
https://krebsonsecurity.com/2018/05/study-attack-on-
https://securelist.com/ddos-attacks-in-q4-2020/100650/


[65] L i , C , W U , Y . , Y U A N , X . , S U N , Z., W A N G , W . et al. Detection and defense of 
DDoS attack-based on deep learning in OpenFlow-based SDN. International 
Journal of Communication Systems, vol. 31, no. 5, p. e3497. 

[66] L i , F . -F . et al. Convolutional Neural Networks (CNNs / ConvNets). 2020. In 
Standford's course CS231n Convolutional Neural Networks for Visual Recognition. [Online; 
accessed 14-January-2021]. Available at: 
https : //cs231n.github.io/convolutional-networks/. 

[67] L U G E R , G. F . Artificial Intelligence: Structures and Strategies for Complex Problem 
Solving. 5th ed. Pearson Addison Wesley, 2005. ISBN 0 321 26318 9. 

[68] M A N A F G H A R A I B E H . DARPA 2009 Intrusion Detection Dataset. July 2016. Online; 
accessed 17-July 2021]. Available at: http://www.darpa2009.netsec.colostate.edu/. 

[69] M A N S A L I S , S., N T O U T S I , E . , P E L E K I S , N . and T H E O D O R I D I S , Y . A n evaluation of 
data stream clustering algorithms. Statistical Analysis and Data Mining: The ASA 
Data Science Journal. June 2018, vol. 11. DOI: 10.1002/sam.ll380. 

[70] M I T C H E L L , T. M . Machine Learning. 1st ed. USA: McGraw-Hill , Inc., 1997. ISBN 
0070428077. 

[71] M U T U A L L Y A G R E E D N O R M S F O R R O U T I N G S E C U R I T Y . MANRS Implementation 
Guide - Anti-Spoofing. January 2017. [Online; accessed 11-Jul 2021]. Available at: 
https : //www.manrs.org/isps/guide/antispoof ing/. 

[72] N E T W O R K A N D D A T A S E C U R I T Y G R O U P H O C H S C H U L E F U L D A . NDSec-1 Dataset 
Website. 2016. [Online; accessed 20-Jun 2021]. Available at: 
https://www2.hs-fulda.de/NDSec/NDSec-l/. 

[73] N G U Y E N , H . -V. and C H O I , Y . Proactive detection of DDoS attacks utilizing k -NN 
classifier in an anti-DDoS framework. World Academy of Science, Engineering and 
Technology. March 2009, vol. 39, p. 640-645. 

[74] N O G U E I R A , M . , S A N T O S , A . A . and M O U R A , J . M . F . Early Signals from 
Volumetric DDoS Attacks: A n Empirical Study. arXiv. Sep 2017. 

[75] N O O R I B A K H S H , M . and M O L L A M O T A L E B I , M . A review on statistical approaches for 
anomaly detection in DDoS attacks. Information Security Journal: A Global 
Perspective. Taylor & Francis. 2020, vol. 29, no. 3, p. 118-133. DOI: 
10.1080/19393555.2020.1717019. 

[76] O H S I T A , Y . , A T A , S. and M U R A T A , M . Detecting distributed denial-of-service 
attacks by analyzing T C P S Y N packets statistically. In: IEEE Global 
Telecommunications Conference, 2004. GLOBECOM '04 . 2004, vol. 4, p. 2043-2049 
Vol.4. 

[77] Oo, T. and P H Y U , T. A Statistical Approach to Classify and Identify DDoS 
Attacks using U C L A Dataset. International Journal of Advanced Research in 
Computer Engineering & Technology (IJARCET). May 2013, vol. 5. 

[78] Oo, T. T. and P H Y U , T. Statistical Anomaly Detection of DDoS Attacks Using 
K-Nearest Neighbour. January 2014. 

101 

http://www.darpa2009.netsec.colostate.edu/
http://www.manrs.org/isps/guide/antispoof
https://www2.hs-fulda.de/NDSec/NDSec-l/


[79] O S A N A I Y E , O., C H O O , K . - K . R. and D L O D L O , M . Distributed denial of service 
(DDoS) resilience in cloud: Review and conceptual cloud DDoS mitigation 
framework. Journal of Network and Computer Applications. 2016, vol. 67, 
p. 147-165. DOI: https://doi.Org/10.1016/j.jnca.2016.01.001. ISSN 1084-8045. 

[80] Ö Z G Ü R , A . and E R D E M , H . A review of KDD99 dataset usage in intrusion detection 
and machine learning between 2010 and 2015. Peer J Prepr. Apr i l 2016, vol. 4. 

[81] P A S C A N U , R., G U L C E H R E , C., C H O , K . and B E N G I O , Y . H O W to Construct Deep 
Recurrent Neural Networks. arXiv. December 2013. 

[82] P E D R E G O S A , F. , V A R O Q U A U X , G. , G R A M F O R T , A . , M I C H E L , V . , T H I R I O N , B . et al. 

Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 
2011, vol. 12, p. 2825-2830. 

[83] P O W E R S , D. M . W . Evaluation: From Precision, Recall and F-Factor to R O C , 
Informedness, Markedness & Correlation. International Journal of Machine 
Learning Technology. January 2008, vol. 2. 

[84] P R A M A N A , M . I. W . , P U R W A N T O , Y . and S U R A T M A N , F . Y . D D O S detection using 
modified K-means clustering with chain initialization over landmark window. 
In: 2015 International Conference on Control, Electronics, Renewable Energy and 
Communications (ICCEREC). 2015, p. 7-11. 

[85] Q U I T T E K , J. , Z S E B Y , T., C L A I S E , B . and Z A N D E R , S. Requirements for IP Flow 
Information Export (IPFIX). October 2004. In Request for Comments: 3917. 

[86] R A D W A R E I N C . . Global application & network security report 2015-2016. 2016. 

[87] R A I L E A N U , L . E . and S T O F F E L , K . Theoretical Comparison between the Gini Index 
and Information Gain Criteria. Annals of Mathematics and Artificial Intelligence. 
May 2004, vol. 41, no. 1, p. 77-93. 

[88] R A I N A , H . and S H A F I , O. Analysis Of Supervised Classification Algorithms. 
International Journal of Scientific & Technology Research. September 2015, vol. 4. 
ISSN 2277-8616. 

[89] R A M A M O O R T H I , A . , S U B B U L A K S H M I , T. and S H A L I N I E , S. M . Real time detection 
and classification of DDoS attacks using enhanced S V M with string kernels. 
In: 2011 International Conference on Recent Trends in Information Technology 
(ICRTIT). 2011, p. 91-96. 

[90] R E J I M O L R O B I N S O N , R. R. and T H O M A S , C. Ranking of machine learning 
algorithms based on the performance in classifying DDoS attacks. In: 2015 IEEE 
Recent Advances in Intelligent Computational Systems (RAICS). 2015, p. 185-190. 

[91] R I C H M A N , J . S., L A K E , D . E . and M O O R M A N , J . Sample Entropy. In: Numerical 
Computer Methods, Part E. Academic Press, 2004, vol. 384, p. 172-184. Methods in 
Enzymology. ISSN 0076-6879. 

[92] R O S E N B L A T T , F . The perceptron: a probabilistic model for information storage and 
organization in the brain. Psychological review. 1958, 65 6, p. 386-408. 

102 

https://doi.Org/10.1016/j.jnca.2016.01.001


[93] R U M E L H A R T , D . E. , H I N T O N , G . E . and W I L L I A M S , R . J . Learning representations 
by back-propagating errors. Nature. October 1986, vol. 323, no. 6088, p. 533-536. 
DOI: 10.1038/323533a0. ISSN 1476-4687. 

[94] R U S S E L L , S. and N O R V I G , P. Artificial Intelligence: A Modern Approach. Fourth 
editionth ed. Pearson, 2020. ISBN 978-0136042594. 

[95] S A H A , S. A Comprehensive Guide to Convolutional Neural Networks - the ELI5 
way. December 2018. Available at: 
https : //towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2bll64a53. 

[96] S A I E D , A . , O V E R I L L , R . E . and R A D Z I K , T. Detection of known and unknown 
DDoS attacks using Artificial Neural Networks. Neurocomputing. 2016, vol. 172, 
p. 385-393. DOI: https://doi.Org/10.1016/j.neucom.2015.04.101. ISSN 0925-2312. 

[97] S A N T O S , R . , S O U Z A , D., S A N T O , W . , R I B E I R O , A . and M O R E N O , E . Machine 
Learning Algorithms to Detect DDoS Attacks in SDN. Concurrency and 
Computation: Practice and Experience. June 2020, vol. 32, no. 16. DOI: 
https://doi.org/10.1002/cpe.5402. 

[98] S H A L E V S H W A R T Z , S., S I N G E R , Y . , S R E B R O , N . and C O T T E R , A . Pegasos: primal 

estimated sub-gradient solver for S V M . Mathematical Programming. Mar 2011, 
vol. 127, p. 3-30. 

[99] S H A N N O N , C. E . A Mathematical Theory of Communication. Bell System Technical 
Journal. 1948, vol. 27, no. 3, p. 379-423. 

[100] S H E , C , W E N , W . , Z H E N G , K . and L Y U , Y . Application-Layer DDoS Detection by 
K-means Algorithm. In: 2016 4th International Conference on Electrical & 
Electronics Engineering and Computer Science (ICEEECS 2016). Atlantis Press, 
December 2016, p. 75-78. ISBN 978-94-6252-265-7. 

[101] S H I R A V I , A . , S H I R A V I , H . , T A V A L L A E E , M . and G H O R B A N I , A . A . Toward 
developing a systematic approach to generate benchmark datasets for intrusion 
detection. Computers & Security. 2012, vol. 31, no. 3, p. 357-374. ISSN 0167-4048. 

[102] S I N G H , A . , G A R G , S., K A U R , R . , B A T R A , S., K U M A R , N . et al. Probabilistic data 
structures for big data analytics: A comprehensive review. Knowledge-Based 
Systems. 2020, vol. 188, p. 104987. ISSN 0950-7051. 

[103] S U B B U L A K S H M I , T. et al. Detection of DDoS attacks using Enhanced Support 
Vector Machines with real time generated dataset. In: 2011 Third International 
Conference on Advanced Computing. 2011, p. 17-22. 

[104] T A V A L L A E E , M . , B A G H E R I , E . , L U , W . and G H O R B A N I , A . A . A detailed analysis of 

the K D D C U P 99 data set. In: 2009 IEEE Symposium on Computational 
Intelligence for Security and Defense Applications. 2009, p. 1-6. 

[105] T H E O D O R I D I S , S. and K O U T R O U M B A S , K . Pattern Recognition, Fourth Edition. 
4thth ed. USA: Academic Press, Inc., 2008. ISBN 1597492728. 

103 

https://doi.Org/10.1016/j.neucom.2015.04.101
https://doi.org/10.1002/cpe.5402


[106] T U A N , N . N . , H U N G , P. H . , N G H I A , N . D., V A N T H O , N . , P H A N , T. V . et al. A 

Robust T C P - S Y N Flood Mitigation Scheme Using Machine Learning Based on 
SDN. In: 2019 International Conference on Information and Communication 
Technology Convergence (ICTC). 2019, p. 363-368. 

[107] T U A N , N . N . , H U N G , P. H . , N G H I A , N . D., T H O , N . V . , P H A N , T. V . et al. A DDoS 

Attack Mitigation Scheme in ISP Networks Using Machine Learning Based on SDN. 
Electronics. February 2020, vol. 9, no. 3. ISSN 2079-9292. 

[108] T U A N , N . N . , H U N G , P. H . , N G H I A , N . D., T H O , N . V . , P H A N , T. V . et al. A DDoS 
Attack Mitigation Scheme in ISP Networks Using Machine Learning Based on SDN. 
Electronics. 2020, vol. 9, no. 3. ISSN 2079-9292. Available at: 
https://www.mdpi.com/2079-9292/9/3/413. 

[109] U H R I G , R. E . Introduction to artificial neural networks. In: Proceedings of IECON 
'95 - 21st Annual Conference on IEEE Industrial Electronics. 1995, vol. 1, p. 33-37 
vol.1. 

[110] U N I V E R S I T Y O F C A L I F O R N I A , I R V I N E . KDD Cup 1999 Data. October 1999. [Online; 
accessed 16-July 2021]. Available at: 
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 

[Il l] V l S W A R U P A N , N . K-Means Data Clustering. Jul 2017. [Online; accessed 26-June-2020]. 
Available at: 
https : //towardsdatascience.com/k-means-data-clustering-bce3335d2203. 

[112] W A N G , C , Z H E N G , J . and L i , X . Research on DDoS Attacks Detection Based on 
R D F - S V M . In: 2017 10th International Conference on Intelligent Computation 
Technology and Automation (ICICTA). 2017, p. 161-165. 

[113] W E L F O R D , B . P. Note on a Method for Calculating Corrected Sums of Squares and 
Products. Technometrics. Taylor & Francis. 1962, vol. 4, no. 3, p. 419-420. 

[114] W l K l P E D l A C O N T R I B U T O R S . Decision tree learning. 2020. [Online; accessed 
5-August-2020]. Available at: 
https : //en.wikipedia.org/wiki/Decision_tree_learning. 

[115] X I E , Y . and Y u , S. Monitoring the Application-Layer DDoS Attacks for Popular 
Websites. IEEE/ACM Transactions on Networking. 2009, vol. 17, no. 1, p. 15-25. 
DOI: 10.1109/TNET.2008.925628. 

[116] Y A N , Q . , Y U , F . R., G O N G , Q . and L i , J . Software-Defined Networking (SDN) and 
Distributed Denial of Service (DDoS) Attacks in Cloud Computing Environments: 
A Survey, Some Research Issues, and Challenges. IEEE Communications Surveys 
Tutorials. 2016, vol. 18, no. 1, p. 602-622. DOI: 10.1109/COMST.2015.2487361. 

[117] Y E , J. , C H E N G , X . , Z H U , J. , F E N G , L . and S O N G , L . A DDoS Attack Detection 
Method Based on S V M in Software Defined Network. Security and Communication 
Networks. Hindawi. Apr 2018, vol. 2018. 

[118] Y i u , T. Understanding Random Forest. Jun 2019. [Online; accessed 7-August-2020]. 
Available at: 
https: //towardsdatascience.com/understanding-random-f orest-58381e0602d2. 

104 

https://www.mdpi.com/2079-9292/9/3/413
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://en.wikipedia.org/


[119] Y U A N , X . , L i , C. and L i , X . DeepDefense: Identifying DDoS Attack via Deep 
Learning. In: 2017 IEEE International Conference on Smart Computing 
(SMARTCOMP). 2017, p. 1-8. 

[120] Y U D H A N A , A . , R I A D I , I. and R I D H O , F . D D O S Classification Using Neural Network 
and Naive Bayes Methods for Network Forensics. International Journal of Advanced 
Computer Science and Applications. December 2018, vol. 9, p. 177-183. DOI: 
10.14569/IJACSA.2018.091125. 

[121] Z A K K A , K . A Complete Guide to K-Nearest-Neighbors with Applications in Python 
and R. July 2016. [Online; accessed 26-June-2020]. Available at: 
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor. 

[122] Z H A N G , X . , Z H A O , J . J . and L E C U N , Y . Character-level Convolutional Networks for 
Text Classification. CoRR. arXiv. Apr i l 2015. 

[123] Z H U , M . , Y E , K . and X u , C . - Z . Network Anomaly Detection and Identification 
Based on Deep Learning Methods. In: L u o , M . and Z H A N G , L . - J . , ed. Cloud 
Computing - CLOUD 2018. Springer International Publishing, 2018, p. 219-234. 

105 

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor


Append i x A 

Neural Networks Learning 

Learning of the neural networks is typically done in a supervised manner. During the 
process, a network receives pairs of (x, y) where x is the input feature vector and y the 
expected output. Neural networks firstly compute an output estimation y for x (forward 
pass). A Loss (Error, Cost) function L is then used to compute a difference (estimation 
error) between y and y. Let T = (x i , yi),..., (xn, yn) be the set of all training pairs. The 
goal of the learning is thus to minimize L(T, 9) by modifying network parameters 9. For 
this purpose, a gradient VE is firstly computed, and its values are used by one of the 
optimizers, such as gradient descent, to perform an actual parameter update. 

A n efficient and most popular way to compute gradients in feedforward networks is to use 
the Backpropagation (BP) algorithm [93]. The algorithm firstly computes an error function 
and gradients for the network's output layer. Gradients of the current layer are then used 
for gradient computation in the previous layer and so on. The error is thus propagated 
backward from the last to the first layer. Various modifications of the algorithm are used 
for other network types, such as Backpropagation Through Time (BPTT) for RNNs. The 
following paragraphs will briefly describe the math behind B P for FNNs. 

The loss function defined in the original paper and used throughout the following ex­
planation is defined as Eq. A . l , where HL represents the number of neurons in the output 
layer (size of the output vector). This function is calculated for each input pair separately 
and then summed with other samples to form a total training loss used to compute the gra­
dients. Nowadays, other loss functions, such as Cross-Entropy and Hinge loss, are utilized, 
but the principles explained here stay mostly the same. 

Network Parameters Update 

In order to minimize the function L , the algorithm needs to compute its partial derivatives 
of all network parameters 9, called gradient. Since gradient represents the direction of the 
function increase, the mechanism needs to update parameters in the opposite direction, 
so that L will decrease. For example, the Gradient descent optimizer updates network 
parameters according to Eq. A.2, where T is a set of training samples, 9t are network 
parameters in time t, and a is a learning constant. 

(A.l) 

3=1 
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Qt+1 = &t_ JJ^l ( A 2 ) 
Ou 

Full (batch) gradient descent would require the gradient computed for every sample in 
the training set and perform an update from Eq. A.2 afterward. This is highly computa­
tionally inefficient, so in practice, either stochastic (SGD) or mini-batch (MGD) gradient 
descent variants are used. SGD does not compute the partial derivatives for each element 
but performs an update after each training sample. On the other hand, M G D performs 
parameter update only according to the gradients of the training data subset. Other more 
sophisticated optimizers like RMSprop, Adam, or A M S G r a d also change the learning rate 
dynamically and utilize properties of the gradient (like steepness) to update the network's 
parameters even more efficiently, often resulting in faster convergence. 

Gradient Computation 

Although numerous computing gradient methods exist, the Backpropagation algorithm and 
its modifications are used in most neural network applications nowadays. Suppose: 

• kWji be a weight between node j in A; t h layer and node i in k — 1 t h layer 

• rifc be a number of neurons in the A: t h layer 

• kip(x) be an activation function for the fcth layer 

kyj be an output of the neuron j in /c t h layer, kyj = kip(ku 

«fe - i 
• kUj be an internal state of the neuron j in fcth layer: kUj = YJ kWjik~1yi + kQj 

i=l 

The partial derivative of the particular weight can be computed using the chain rule 1 as: 
-S— = S—ah

 3 • The first term is usually called the error and is denoted by 5: 5j = S—• 
oKWji aKUj oKWji J J J aKUj 

The partial derivative of the second term is = QU~{ k ' w j i k ~ 1 y i + = k~1Ui-

Therefore, the partial derivative of the loss function L with respect to a particular weight 
kWji is defined by Eq. A.3. 31 

OL 
k 5 3

k - l

y i (A.3) 
dkWji 

We wil l now calculate partial derivatives for the previously defined loss function in 
Eq. A . l . Firstly, partial derivatives for the output layer are calculated, and the error is 
then propagated back to hidden layers. The loss function can be expressed in terms of 

1 n ° 1 n ° 
the value °Uj as L = - (jjj — yj) = - (°(p(°Uj) — y3)i , where o is the index of the 

2 ; | 2 ; | 
last (output) network layer. Applying partial derivative with the chain rule then gives: 
°5j = (°f(°Uj) — yj)°f'(0Uj) = {ijj — yj)°f'(0Uj). Therefore, the loss function partial 
derivative of a weight for a neuron in the last layer can be expressed according to Eq. A.4. 

FIT 

- V 1 ^ = (yj - VJ) V (%r V (A.4) d°Wji 

1Formula to compute the derivative of a composite function: (/ o g)' = (/' o g) .g'. 
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At this point, the computed error needs to be propagated to other non-output layers. 
Using the chain rule, k5j for 1 < k < o can be expressed as Eq. A.5. The first term of the 
equation is simply a 5 of the neuron in the next layer. The numerator of the second term 

is k+1ui = k+1wiikVi + k+1®i = k+1wu k(f(kUi) + fc+16;. Its partial derivative would 
i=l i=l 

thus result in Ul = k+1wij k(p'(kUj). Considering these calculations, the error term kdj 

for hidden layers may be written as Eq. A.6, called the backpropagation formula. Finally, 
Eq. A.7 represents the loss function derivative of a weight in a hidden layer by substituting 
the error term into Eq. A.3. 

% = E k+1Sik+1wiM%) = V (S ) £ k + ( A . 6 ) 
i=i i=i 

FIT K + 1 

M = Oj yi = ip ( Uj) yi > ^ = V(S) f c _ 1yi 2J wh• h (A.7) 
z=i 

As it may be seen in Eq. A.7, in order to compute gradients in any hidden layer k, 
error terms (5) need to be calculated for every neuron in the layer k + 1. Backpropagation 
takes advantage of this property and thus allows to compute gradients very efficiently in 
an iterative manner. After each layer's gradients for every input-output pair are computed, 
they are combined to produce the total gradient dgk^ for the entire set T. The total 
gradient is then used to update weights based on the used optimizer. This process is 
repeated until a predefined criterion, such as the number of training epochs, is met. 
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Append i x B 

System's Configuration File 

# Mitigation of DoS Attacks Using Machine Learning project global configuration f i l e 
# Author: Patrik Goldschmidt (xgoldsOO@stud.fit.vutbr.cz) 
# Date: 14.06.2021, last rev. 19.07.2021 
# Note: Non-required lines can be commented out. In this case default values w i l l be used. 

dataset_creator: 
# (Optional, default: 0) Number of packets to report after during processing. Disable: 0. 
report_status_packets: 1000000 

cleaning: 
# Column names to drop from dataset 
drop_cols: 

- "window_count" 
- "window_span" 

feature importance: 
# Method to determine feature importance. Options: permutation I direct 
# Direct method for tree-based techniques such as adaboost or xgboost represent decrease 
# in impurity within each tree, 
method: "direct" 

# Library to load the model from. Options: scikitIxgboost 
model source: "scikit" 

# Which particular model from the l ibrary to use. Note that a l l models support 
# permutation method, but only some can provide feature importance estimation directly 
# by themselves. Consult model's documentation to learn more. 
# Models supporting direct method: 
# Scikit: adaboost, extra_trees, grad_boosting, tree, random_forest 
# Xgboost: xgboost 
# Other models without direct feature importance estimation: 
# Scikit: bayes, kneighbors, logreg, Ida, nearest_centroid, svm 
model type: "adaboost" 

# Scoring to use for importance estimation. Leave commented out for default model scorer 
#scoring = "accuracy" 

feature_plotter: 
# Directory to which to save plots 
plots dir: "plots" 

# Resulting plot f i l e s extension 
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# Options: psIepsIpdfIpnglsvgIjpgIjpegItifItiff 
file extension: "pdf" 

# (Optional, default: True) Whether to remove outliers when plotting histograms 
hist rem outliers: True 

# (Optional, default: True) Plot boxplots for each feature 
plot boxplots: False 

# (Optional, default: True) Plot Empiric distribution functions for each feature 
plot ecdfs: False 

# (Optional, default: True) Plot histograms for each feature 
plot histograms: True 

# (Optional, default: True) Plot Kernel density estimations for each feature 
plot kdes: False 

# (Optional, default: True) Plot all-in-one graphs. 
# All-in-one graph is a single f i l e containing Boxplot,ECDF, Histogram, and KDE 
plot all in ones: True 

# (Optional, default: True) Plot summary graphs. 
# Summary graph contains plots for a l l features except target variable in one f i l e 
plot summaries: True 

# (Optional, default: True) Plot correlation heatmap for a l l variables 
plot cor heatmap: True 

# (Optional, default: []) Multivariate plot to show relationship between two features 
# Enter pairs in the form of the l i s t - ['featurel', 'feature2'] 
multivariate scatter features: 

- ['port_src_unique', 'port_src_entropy'] 

# (Optional, default: False) Cal l custom plotting function for user-defined plots 
plot custom: False 

# (Optional, default: 300) Number of scatterplot samples to plot 
scatter samples: 300 

feature projection: 
# Feature projectcion method to use 
# Options: 
# fa - Factor Analysis 
# Ida - Linear Discriminant Analysis 
# pea - Principal Component Analysis 
method: "pea" 

# Desired number of components after feature projection 
n components: 25 

feature_selection: 
# Feature selection configuration. See [1] details. 
# Options: 
# varthreshold - Variance Threshold selector 
# kbest - Select K best features according to s tat i s t ica l test 
# rfe - Recursive Feature Elimination 
# model - Select From Model Selection 
# sfs - Sequential Feature Selector 
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# [1] https://scikit-learn.org/stable/modules/feature_selection.html 
# Note: Due to the complexity and the number of options available, parameters of 
# selectors cannot be modified using this config f i l e . The only available option is 
# "n_features_to_select" to specify the number of desired features for Kbest, RFE, model, 
# and SFS. Varthreshold option may also u t i l i z e 'threshold' option. Selectors that 
# require model use random forest with 100 estimators, which was empirically proven to 
# perform relatively sol id. If more advanced configuration is desired, modify the 
# FeatureSelector's constructor in dataprocessing/feature_modification/selection.py f i l e , 
method: "model" 

# Number of features to select. Supports a l l selectors except "varthreshold" 
n_features_to_select: 20 

logger: 
# Length of the window in seconds 
window length: 1 

# (Optional, default: 6) Minimum number of collected windows to process the given IP 
history min: 6 

# (Optional, default: 0) Maximum number of elements that are stored in memory for 
# history. 0 refers to "infinity", allowing to store records to up 5GB of computer memory 
history_size: 0 

# (Optional, default: 120) Maximum number of seconds for which his tor ica l logs are val id 
history timeout: 240 

# (Optional, default: 20) Minimum number of packets in the window to log i t 
packets min: 15 

# (Optional, default: 40) Number of samples for entropy estimation per IP per window 
samples_size: 40 

mitigator: 
# (Optional, default: 0) Number of packets to report after when running in offline mode 
report_status_packets: 1000000 

# (Optional, default: 1000000) Size of the denylist (blacklist) in entries 
denylist_size: 1000000 

model: 
# From which l ibrary is the model loaded. Options: scikitIxgboost 
model source: "scikit" 

# Which model to use from the particular source 
# Scikit options : adaboostIbayesIextra_treesIgrad_boostingIkneighborsIlogregI Ida I 
# nearest_centroidIsvmltree Irandom_forest 
# XGboost options: xgboost 
model type: "random_forest" 

# Relative path to f i l e containing model hyperparameters 
models cfg file: "models.yml" 

# (Optional, default: False). If True, does not raise exception when model config is not 
# found, but uses empty config instead. This is especially useful when config with the 
# specified name is generated on-the-go in the pipelined processing 
ignore missing config: True 

# (Optional, default: ' a l l ' ) List of models to include with -C parameter. 

I l l 
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# Use ' a l l ' for a l l available models or l i s t of model_source.model_type strings, such as 
# ['scikit.kneighbors', s c ik i t . lda , scikit.random_forest] 
# K Nearest Neighbors is disabled by default due to very poor time and memory performance 
# upon larger datasets 
comparison models: 

- "scikit.adaboost" 
- "scikit.bayes" 
- "scikit.extra_trees" 
- "scikit.grad_boosting" 
- "scikit.logreg" 
- "scikit. lda" 
- "scikit.mlp" 
- "scikit.nearest_centroid" 
- "scikit.svm" 
- "scikit.tree" 
- "scikit.random_forest" 
- "xgboost.xgboost" 

# (Optional, default: 'accuracy') Metric to tune hyper-parameter against 
estimation metric: "accuracy" 

# Hyperparameters to estimate during the hyperparameter tuning phase. Has to include 
# names of parameters relevant to the given model + their values to try as a l i s t 

estimation params: 
n_estimators: [1,5,10,20,40,60,80,100] 

# (Optional, default: 'default') Metrics to print for cross-validation model comparison. 
# Takes parameters from: 
# https://scikit-learn.org/stable/modules/model_evaluation.html 
# Use l i s t to l i s t desired metrics. "fit_time", and "score_time" to print time required 
# for classif ier training and data evaluation, "default" represents: 
# ['accuracy', ' f l ' , 'precision', ' r e c a l l ' , 'f it_time', 'score_time'] 
score metrics: "default" 

# (Optional, default: 'plots') Directory to save model evaluation plots to. 
plots dir: "plots" 

model manager: 
# Which columns to standardize when generating configuration 
# "default" stands for a l l columns that are not within <0, 1> range already 
# Otherwise, column names may be specified in the l i s t , "all" or "none" 
std_cols: "default" 

# (Optional, default: 0.2). Test data portion when spl i t t ing the data. Range <0.0, 1.0> 
test_size: 0.2 

model_plotter: 
# Directory to which to save plots 
plots dir: "plots/model" 

# Resulting plot f i l e s extension 
# Options: psIepsIpdfIpnglsvgIjpgIjpegItifItiff 
file extension: "pdf" 

# Plotting for validation curve 
# Syntax: 
# validation_curve: 
# model_name: 
# arbitrary_name: 
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# param_name: - Name of the parameter to validate 
# param_range_low: - Lower bound to start testing at 
# param_range_high: - Higher bound to stop testing at 
# param_type: - Parameter type - f loat/ int 
# param_samples: - Samples num to draw from [param_range_low, param_range_high] 
# scoring: - (Optional, default: 'accuracy') Scoring metric to use. 
validation curve: 

scikit. random forest: 
n estimators: 

param range low: 10 
param range high: 100 
param type: ' int' 
param samples: 10 

max depth: 
param range low: 1 
param range high: 10 
param_type: ' int' 
param samples: 10 

preprocessor: 
# Additionally dropped columns during mitigation additionally to cleaning config 
extra_drop_cols: 

- "src_ip" 

resampling: 
# (Optional, default: "undersampling"). Method used i f resampling is performed. 
# Choices: undersampling, oversampling 
method: "undersampling" 

# (Optional, default: "random"). Resampling algorithm used. Choices: 
# undersampling: random, nearmiss, tomeklinks, editednn 
# oversampling: random, smote, adasyn 
algorithm: "random" 

standardization: 
# Standardization method to use 
method: "minmax" 
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