
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČN ÍCH TECHNOLOGI Í

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

MITIGATION OF DOS ATTACKS USING MACHINE
LEARNING
POTLAČENÍ DOS ÚTOKŮ S VYUŽITÍM STROJOVÉHO UČENÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. PATRIK GOLDSCHMIDT
AUTOR PRÁCE

SUPERVISOR Ing. JAN KUČERA
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Computer Systems (DCSY) Academic year 2020/2021

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
23613

Student: Goldschmidt Patrik, Be.
Programme: Information Technology and Artificial Intelligence
Specializatio Cybersecurity
n:
Title: Mitigation of DoS Attacks Using Machine Learning
Category: Networking
Assignment:

1. Get acquainted with Denial of Service (DoS) attacks and DDoS Protector, a high-speed
device for network traffic cleaning.

2. Study the theory of Recurrent Neural Networks (RNN), Machine Learning (ML) in general,
and their application in mitigation of DoS Attacks.

3. According to available literature, choose or design a suitable method for mitigation of DoS
attacks using ML.

4. Implement the method using a suitable toolkit.
5. Perform experiments using an available data set and evaluate achieved results.
6. Discuss achieved results and the possibilities of further improvements.

Recommended literature:
• According to the instructions.

Requirements for the semestral defence:
• Points 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Kučera Jan, Ing.
Consultant: Žádník Martin, Ing., Ph.D., UPSY FIT VUT
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2020
Submission deadline: July 30, 2021
Approval date: February 9, 2021

Master's Thesis Specification/23613/2020/xgolds00 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
Distributed Denial of Service (DDoS) attacks are an ever­increasing type of security inci­

dent on modern computer networks. This thesis aims to detect these attacks and provide
relevant information in order to mitigate them in real­time. This functionality is achieved
by data stream mining and machine learning techniques. The output of the work is a series
of tools executing the process of the whole machine learning pipeline ­ from custom feature
extraction through data preprocessing to exporting a trained model ready for deployment.
The experimental results evaluated on various real and synthetic datasets indicate an ac­

curacy of over 99% with an ability to reliably detect an ongoing attack within the first
4 seconds of its start.

Abstrakt
Útoky typu odoprenia služby (DDoS) sú v dnešných počítačových sieťach stále frekvento­

vanejším bezpečnostným incidentom. Táto práca sa zameriava na detekciu týchto útokov
a poskytnutie relevantných informácii za účelom ich mitigácie v reálnom čase. Spomínaná
funkcionalita je dosiahnutá s využitím techník prúdového dolovania z dát a strojového uče­

nia. Výsledkom práce je sada nástrojov zastrešujúca celý proces strojového učenia ­ od
vlastnej extrakcie príznakov cez predspracovanie dát až po export natrénovaného modelu
pripraveného na nasadenie v produkcii. Experimentálne výsledky vyhodnotené na viace­

rých reálnych a syntetických dátových sadách poukazujú na presnosť systému väčšiu ako
99% s možnosťou spoľahlivej detekcie prebiehajúceho útoku do 4 sekúnd od jeho začiatku.

Keywords
DoS attack, DDoS attack, DDoS detection, DDoS mitigation, Machine learning, data
stream mining

Kľúčové slová
DoS útok, DDoS útok, DDoS detekcia, DDoS mitigácia, strojové učenie, prúdové dolovanie
z dát

Reference
G O L D S C H M I D T , Patrik. Mitigation of DoS Attacks Using Machine Learning. Brno,
2021. Master's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Jan Kucera

Rozšírený abstrakt
Problematika bezpečnosti je jeden zo základných faktorov pri návrhu a prevádzke infor­

mačných systémov. V bezpečnostnej terminológii sa typicky snažíme o dosiahnutie troch
základných princípov ­ dôvernosti, integrity a dostupnosti. Odoprenie služby (DoS) a dis­

tribuované odoprenie služby (DDoS) sú v súčasnosti jedny z najčastejších kybernetických
útokov cieliace na narušenie dostupnosti. Ich typické prevedenie je vo forme zasielania
veľkého množstva paketov so zámerom vyčerpať výpočtové alebo sieťové zdroje ich cieľa
a tým narušiť jeho bežnú prevádzku.

Detekcia a mitigácia týchto útokov historicky prebiehala na základe monitorovania
sieťovej prevádzky a hľadania rôznych anomálii na báze signatúr alebo vzorov správa­

nia. Tieto údaje však museli byť manuálne definované na základe expertných znalostí
a skúseností. S pribúdajúcim počtom a rôznorodosťou útokov sa však tento trend časom
stal dlhodobo neudržateľný. Jedno z prípadných riešení tohto problému ponúkajú tech­

nológie umelej inteligencie a strojového učenia. Ich využitie umožňuje odvodenie podob­

ných rozhodovacích pravidiel, a teda automatizované získavanie signatúr s oveľa väčšou
rýchlosťou, škálovateľnosťou a typicky aj presnosťou.

Táto práca sa zaoberá návrhom a implementáciou systému pre detekciu a mitigáciu
týchto typov útokov pomocou strojového učenia. Cieľom práce bolo vyvinúť systém de­

tegujúci DDoS incident v reálnom čase. Projekt bol vyvíjaný s podporou bezpečnostného
výskumu spoločnosti C E S N E T a ich projektu VI20192022137 Adaptivní ochrana před DDoS
útoky s podporou Ministerstva vnitra České republiky.

Súčasná orientácia výskumu na detekciu DDoS útokov smeruje k využívaniu sieťových
tokov za účelom klasifikácie. Tento prístup so sebou však prináša viaceré úskalia, ako
napríklad stratu kontextu medzi paketmi s rozdielnym zdrojovým portom. Z tohto dôvodu
bol navrhnutý detekčný mechanizmus vybudovaný na báze IP adries. Klasifikácia podľa IP
adries prináša vyšší level abstrakcie, čím umožňuje vidieť kontext medzi viacerými spoje­

niami z rovnakej IP adresy. Tento fakt následne umožňuje počítanie rôznych štatistických
údajov využívaných pre účely klasifikácie útočníkov.

Pretože od systému vyžadujeme beh v reálnom čase, klasifikácia každého prichádza­

júceho paketu nie je realizovateľná. Z tohto dôvodu je systém navrhnutý pre zbieranie
štatistických údajov a ich následnú klasifikáciu na pozadí. Výsledok tohto procesu po­

tom môže poslúžiť na odvodenie rýchlych pravidiel, ktoré môžu byť využité pre okamžité
rozhodnutie či paket zahodiť alebo preposlať v ráde nanosekund (Obrázok 1).

Detektor útoku na
báze strojového

učenia

Vzorkované
útočné dáta Odvodzovanie

pravidiel

Paketový tok

Vyhľadanie

Spracovanie prepošl i/za hoď paket

paketov

Obrázok 1: Návrh systému na mitigáciu DDoS.

Keďže blok pre spracovanie paketov a databázu pravidiel môžeme uvažovať ako aktuálny
C E S N E T DDoS Protector (systém, do ktorého je metóda vyvíjaná) a niekoľko algoritmov
na odvodzovanie pravidiel je už implementovaných, tá to práca sa zameriava výhradne na
blok detektoru útoku na báze strojového učenia.

Za účelom výpočtu štatistík je z každého paketu extrahovaných 8 hodnôt: časová značka
príchodu paketu, zdrojová IP, cieľová IP, L4 protokol, zdrojový port, cieľový port, dĺžka
hlavičiek paketu a dĺžka obsahu paketu. Tieto hodnoty sú následne spracovávané pomocou
technológie dolovania prúdových dát ­ princípu časových okien. Extrahované hodnoty
z paketov sú zoskupované na základe svojej zdrojovej IP adresy v konkrétnom časovom okne
daného príchodom paketu. Po uplynutí určitej doby sa aktuálne okno ukončí a je nahradené
novým prázdnym oknom. Tento princíp umožňuje spracovávať teoreticky nekonečný tok dát
v reálnom čase a počítať nad ním štatistické ukazovatele. Za účelom šetrenia pamäti boli
využité ďalšie algoritmy a dátové štruktúry špecifické pre prúdové spracovanie dát, ako
napr. prúdový rozptyl alebo HyperLogLog pre výpočet kardinality.

Po získaní určitého počtu okien pre konkrétnu IP adresu prebehne ich sumarizácia, čím
sa vypočítajú ďalšie medzi­oknové štatistiky užitočné pre klasifikáciu. Takýmto spôsobom
je vypočítaný vektor o veľkosti 32 prvkov obsahujúci údaje ako napr. entropia zdrojových
portov, odchýlka príchodu paketov, alebo priemerný počet zaslaných paketov behom jed­

ného spojenia. Štatistiky v takejto forme sú následne pripravené na klasifikáciu.
Systém bol implementovaný v jazyku Python ako séria niekoľkých skriptov. Každý

skript vykonáva určitú časť procesu strojového učenia (napr. skript pre extrakciu dát
a tvorbu dátovej sady) a poskytuje rôznu funkcionalitu na základe dodaného konfiguračného
súboru a parametrov príkazového riadku. Takýmto spôsobom môže byť systém jednoducho
ovládaný na základe aktuálnych potrieb bez nutnosti zásahov do programového kódu.

Experimentálne vyhodnotenie systému bolo prevedené na siedmich zmiešaných dátových
sadách. Tri z týchto sád pochádzajú z reálneho sieťového záchytu, zvyšné sady boli umelo
generované v laboratórnom prostredí. Na základe dosiahnutých výsledkov (Tabuľka 1)
vyvodzujeme, že systém je schopný detegovať prebiehajúci útok s vysokou úspešnosťou (nad
99%) v priebehu 4 sekúnd od začiatku útoku. Dodatočné experimenty taktiež preukázali
schopnosť klasifikácie pomalých DoS útokov.

Model fit time s time accuracy acc std f­score prec recall
Adaboost 3.2352 0.0820 0.9946 0.0004 0.9946 0.9960 0.9932
Naive Bayes 0.0526 0.0205 0.7231 0.0025 0.6279 0.9573 0.4672
Extra Trees 1.9194 0.1248 0.9979 0.0009 0.9979 0.9989 0.9970
Gradient Boosting 14.1202 0.0258 0.9974 0.0007 0.9974 0.9981 0.9968
Logistic Regression 0.4203 0.0179 0.9366 0.0045 0.9369 0.9316 0.9423
Linear Discriminant An. 0.2157 0.0170 0.9263 0.0051 0.9267 0.9219 0.9315
Multilayer Perceptron 28.3703 0.0290 0.9952 0.0018 0.9952 0.9947 0.9957
Nearest centroid 0.0342 0.0140 0.7939 0.0074 0.8068 0.7592 0.8609
Support Vector Machines 6.8902 2.6329 0.9704 0.0023 0.9705 0.9677 0.9734
Decision Trees 0.6140 0.0147 0.9946 0.0014 0.9946 0.9944 0.9949
Random Forest 6.1454 0.1095 0.9979 0.0009 0.9979 0.9989 0.9970
XGBoost 10.3377 0.0284 0.9985 0.0007 0.9985 0.9985 0.9984

Tabuľka 1: Porovnanie výkonnosti modelov pre klasifikáciu 4­sekundových blokov pomocou
technológie krížovej validácie (s_time = score_time).

M i t i g a t i o n o f D o S A t t a c k s U s i n g M a c h i n e L e a r n ­

i n g

Declaration
I hereby declare that I have authored this Master's thesis independently, under the su­

pervision of Ing. Jan Kučera. I have not used any other than the declared sources and
publications, and that I have explicitly marked all material that has been quoted either
literally or by content from the used sources. According to my knowledge, the thesis or its
parts have not been presented to any examination authority, nor have they been published.
I am aware that the respective work might be considered plagiarism, and legal actions may
be taken if the above statements were not true.

Patrik Goldschmidt
July 30, 2021

Acknowledgements
I would like to express my gratitude towards my supervisor Ing. Jan Kučera, who was
enormously helpful the whole time we were co­working on the DDoS Protector project.
Many thanks also go to my consultant, Ing. Martin Zádník, Ph.D., who had introduced
me to C E S N E T ' s security research projects back in 2017.

Contents
1 Introduction 2

2 Denial of Service Attacks 3
2.1 Types and Techniques 4
2.2 Mitigation Strategies 5
2.3 Traditional and Machine Learning Mitigation 5
2.4 C E S N E T ' s DDoS Protector 8

3 Machine Learning in DDoS Mitigation 9
3.1 Na'ive Bayes 10
3.2 K-means 11
3.3 K-nearest Neighbors 12
3.4 Support Vector Machines 13
3.5 Random Forest 15
3.6 Artificial Neural Networks 20
3.7 Conclusion 29

4 Machine Learning-Based System for DDoS Detection and Mitigation 31
4.1 Existing Research Shortcomings 31
4.2 Design Considerations and Constraints 32
4.3 Feature Engineering 36
4.4 Machine Learning Pipeline 44
4.5 DDoS Datasets 50

5 Implementation and Usage 58
5.1 Configurability 58
5.2 Pipeline Scripts 59
5.3 Running the Pipeline 64

6 Evaluation 67
6.1 Model Evaluation Metrics 67
6.2 Evaluation Criteria 70
6.3 Statistics Computation Parameters 70
6.4 Classification Performance 73

6.5 Final System Considerations and Remarks 92

7 Conclusions 95

Bibliography 96

A Neural Networks Learning 106

B System's Configuration File 109

1

Chapter 1

Introduction

The matter of security is an essential factor to consider when designing and maintaining
a computer system. Many types of cyber-attacks can be performed to compromise a system
or disrupt its regular operation. Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks are among the oldest types of these threats. They aim to disrupt the
system's availability so that regular users are not able to access its resources. Despite their
maturity, they are still becoming increasingly popular as functional computer networks and
services became an essential part of any organization in today's interconnected world.

DDoS attacks have been historically mitigated by monitoring network traffic and per­
forming decisions based on their statistics (such as anomaly detection) or per-packet rules.
These methods are still relatively successful in mitigating attacks with known or predictable
behavioral patterns. However, all of the decision rules and thresholds have to be specified
manually based on expert knowledge or patterns of previously discovered attacks. In recent
years, this approach has become rather problematic to develop and maintain as attackers
perform less predictable types of attacks able to bypass these rules.

As a possible countermeasure, modern mitigation approaches often experiment with var­
ious machine learning (ML) techniques, theoretically able to infer decision rules themselves
and thus not requiring any manual intervention. Most of the research nowadays focuses
on DoS/DDoS detection based on network flows. Such systems rely on a supposition that
attackers use a small number of source IP addresses and ports, and so flows can provide
relevant information for machine learning classifiers. This assumption is generally too re­
stricting, and so flow-based mitigation may fall short when attackers utilize tools generating
malicious traffic with randomized IP addresses and ports.

This work aims to tackle this issue by designing and creating an ML-based mechanism
not reliant on network flows but rather classifying according to per-IP data. Therefore,
a significantly greater generalization of the problem is created, making the method more
usable in practical scenarios as fewer assumptions about the attack have to be made prior.
The work has been supported by C E S N E T ' s security research VI20192022137 Adaptive
Protection Against DDoS Attacks, co-funded by the Ministry of Interior, Czech Republic.

The following document firstly discusses DoS and DDoS attacks principles and presents
concepts of their mitigation with both traditional and machine learning-based approaches
(Chapter 2). Chapter 3 examines various M L principles usable for our purposes and elabo­
rates on their usage in the current research. Chapter 4 proposes our system and a machine
learning pipeline. Chapter 5 takes a brief look at how it is implemented and explains the
usage of created programs. Chapter 6 then presents achieved results, whereas Chapter 7
summarizes the thesis and suggests possible improvements and future work.

2

Chapter 2

Denial of Service Attacks

Denial of Service (DoS) and its distributed variant DDoS are cyber-attacks that aim to
interrupt the regular operation of the network resource or service in order to make it
unavailable for other users. The goal of these attacks is to exhaust the network, memory,
or computing resources of the target so it cannot process more messages from clients. This
state typically causes any incoming requests to be dropped, hence creating a denial of
service situation for regular clients attempting to particular resource.

While DoS attacks can be effective in specific scenarios, such as W i - F i deauthentication
DoS 1 , they are usually restricted and not widely applicable. For this reason, distributed
versions of DoS are more frequently employed when resources on the Internet are targeted.
These can generally cause significantly greater damage and may target almost any publicly
available network resource such as web servers, email servers or online gaming platforms.

DDoS is a structured network attack, typically coming from various sources that are
merged to form a large packet stream able to disrupt the target's operation or its underlying
network infrastructure. The attack is commonly performed using a hierarchical structure.
The attacker typically gives a signal to numerous other computers (handlers), which in turn
command and control a vast quantity of agents to perform an actual attack (Figure 2.1).
Agent computers (called bots or zombies) mostly consist of compromised hosts scattered
across different geographical locations, which are in full control of an attacker. Handler
computers directly issue commands for agents, e.g., to establish a large number of sessions
or generate a certain type of traffic at the same time. If the target network is not explicitly
protected, the tremendous amount of generated traffic is generally enough to make the
target irresponsive.

According to Cisco, the total number of DDoS attacks will double from 7.9 million in
2018 to 15.4 million by 2023 [28]. The study [62] also states that more than 323 thousand
dollars in excess power and added bandwidth consumption was spent by a four-day DDoS
attack executed through a network of hacked Internet of Things (IoT) in 2016. This in­
cluded devices such as Internet routers, security cameras, and digital video recorders. The
technical report from Radware [86] declares that 50% of organizations currently consider
DDoS attacks as the largest threat to their business model. According to these findings,
we may conclude that research in the DDoS attacks detection and mitigation field is a
crucial part of the overall system's cybersecurity and will become increasingly important
in emerging IoT network architectures and the beginnings of Industry 4.0.

An attack during which the attacker floods a Wi-Fi network with deauthentication frames, causing
clients to disconnect from the network.

3

Attacker
--> Command & Control
-> Attack traffic

Handler 1 Handler k

Figure 2.1: DDoS attack architecture.

2.1 Types and Techniques

In general, DDoS attacks can be classified according to the resource they target. By this
definition, three main types of DDoS can be recognized as volumetric, protocol, and appli­
cation attacks [44]. Volumetric attacks attempt to use massive amounts of traffic to exhaust
the underlying architecture of the target. The goal of these pure brute-force attacks is to
saturate the network bandwidth, intermediary network devices' or the target's processing
capabilities, so clients' packets either do not arrive at their destination at all or cannot be
processed by the target due to the lack of resources [74]. The most popular techniques
used to perform these attacks are I C M P flood, I P / I C M P fragmentation, U D P flood, IPSec
flood, or reflection amplification attacks.

Protocol attacks do not aim to exhaust network bandwidth but rather try to utilize
characteristics of network or transport layer protocols to perform DoS in a more efficient
way. The most popular technique for this attack type is the T C P S Y N Flood attack, which
takes advantage of a limited number of T C P connections the machine can query. The attack
still requires large amounts of segments, but its required amount for a successful denial of
service situation is significantly lower than in volumetric attacks due to the T C P properties.
In some literature such as [116], protocol and volumetric attacks are not explicitly separated
and are often considered as one type. Alternatively, techniques such as I C M P flood and
fragmentation attacks are sometimes considered to belong to both categories.

In contrast to previous two attack types, application-layer attacks focus on exploiting
weaknesses of the particular applications. These types of attacks are the most sophisticated
and require knowledge about the application's version architecture and behavior in order
to be executed successfully. Detection and mitigation of these attacks is generally harder,
as they are often executed in a low-volume manner and traffic they produce tends to be
indistinguishable from that generated by legitimate users [115]. Attack techniques under
this category include Slowloris, HTTP(s) flooding, Large payload P O S T and others.

The most prevalent DDoS attack type in the last years is T C P S Y N Flood. According
to Kaspersky [63], 78.28% of all attacks were performed as S Y N Flood in Q4 2020. Other
attacks in a given quarter were U D P (15.17%), Other T C P attacks (5.47%), G R E flood
(0.69%), and H T T P flood (0.39%).

4

2.2 M i t i g a t i o n Strategies

DDoS attacks have been traditionally detected using statistical mechanisms and mitigated
either according to their statistical properties (anomaly-based mitigation) or by the us­
age of specific techniques against particular attack types (signature-based mitigation). For
instance, an ongoing attack may be detected using metrics like correlation, entropy, co-
variance, packet rate, average packet size, and others [75]. Packets that trigger a certain
predefined condition are considered to deviate from regular legitimate traffic, and thus the
system marks them as a potential attack and drops them if required. Over the past two
decades, these principles proved to be rather popular, according to numerous research arti­
cles published in the field. Nevertheless, both statistical triggers and anomaly patterns have
to be specified manually by a field expert and fine-tuned for the protected network's specific
properties. These methods are also highly unscalable, badly generalize to various attacks,
and typically cannot react to zero-day threats not specified in the detection databases [79].

On the other hand, newer methods using artificial intelligence (AI) and machine learning
(ML) generally provide a more flexible way for attack detection and mitigation at the cost
of slightly higher utilization of computer resources. Their employment is typically faster
than traditional methods because attack threshold values and modifiers do not need to be
tweaked out after the method is installed. Supposing a balanced dataset representing both
regular and attack traffic, methods based on AI and M L can provide a scalable, robust way
to detect and mitigate DDoS attacks, usually outperforming systems statically programmed
by humans [79].

2.3 Trad i t iona l and M a c h i n e Learn ing M i t i g a t i o n

As briefly outlined in the previous section, traditional DDoS mitigation strategies are often
unscalable and typically cannot generalize well to different attack vectors. This section will
elaborate a little more on these issues by presenting concrete examples of traditional and
M L methods. Both are designed to mitigate the most popular DDoS attack - T C P S Y N
Flood. This attack is based on opening a large number of T C P connections with the server
and not responding to its responses, so the connections stay in a half-open state. The
server's memory eventually gets consumed, and legitimate clients are not able to access its
resources. Mitigation approaches to combat this threat will be described, compared, and
conclusions will be drawn.

2.3.1 Downfalls of Traditional Approaches

A traditional approach to mitigate S Y N Floods includes implementing mechanisms based
on the S Y N Cookies algorithm. These are placed on the server in order to validate the
authenticity of the incoming S Y N segments originated from clients requesting to establish a
connection. This solution is still one of the best ways to prevent the attack, but employing a
separate algorithm on an application server is not always desired. For these reasons, several
network-based mitigation methods to protect against the attack, such as S Y N Cookies
variants, R S T Cookies, or simply policing the maximum number of allowed SYNs per IP
address [40], have also been developed.

Several attempts of network-based mitigation based on packet contents and various
statistical data have also been conducted. A typical example of this approach is [76], which
uses a statistical variation of the S Y N traffic arrival. Packet content analysis detection such

5

as [45] detects a potential S Y N Flood by searching for anomalies based on the payload of
IP and T C P headers such as ToS, IHL, T T L , and T C P flags.

Statistical and header contents analysis may be an efficient way for attack detection but
requires a field expert to specify the correct statistics, modifiers and thresholds so that the
mechanism functions properly. This issue was experienced from the author's own perspec­
tive as he designed a system for automatic S Y N flood mitigation method switching [42]. In
this case, the number of parameters that had to be manually set up was so overwhelming
that the mechanism either worked "rather fine" or did not work at all. This behavior can
be generalized to most of the heuristic approaches, plus the parameters may vary slightly
from environment to environment, making the methods relatively inflexible and hard to en­
hance and maintain. For this reason, manual observation and parameter tweaking may be
replaced by artificial intelligence techniques, which should be able to deduce the parameters
by themselves and even find the patterns in data that a human would not have noticed.

2.3.2 Machine Learning Approach

A recent paper from 2019 [106] shows that the S Y N Flood attack may be mitigated using
K-nearest neighbors algorithm based on a simple principle of source port entropy. While
analyzing the C A I D A 2007 dataset of DDoS attack traffic from August 2007, the researchers
found that each attack source IP opened circa 270 source ports while performing the attack.
A n explanation for this phenomenon is that the attacker typically uses a botnet with several
infected computers in each network. When the attack is launched, all the computers start to
produce large quantities of traffic destined for the same target. Since all of the nodes have
to pass through the Network Address Translation (NAT) gateway, the private IPs of zombie
computers are translated into few (or one) public IPs with different ports (Figure 2.2).

After calculating the port entropy between regular and attack traffic (Figure 2.3), the
results clearly show the difference between the two - entropy for regular connection is mostly
low, whereas the entropy for attacking hosts is predominantly high. According to these
findings, the authors constructed a K-nearest neighbor classifier with an accuracy of 98.2%
on the given dataset. Implemented in Software Defined Networking (SDN) environment,
the authors were able to classify a single packet in 0.4ms, and the legitimate packet delay
averaged 109ms. In contrast, when no mitigation was active, regular traffic often did not
reach the destination or experienced significant latency from 7.5s to 9.5s [106].

6

A vast number of similar machine learning solutions utilizing various statistical and
packet features have also been proposed. These will be discussed in the following chapter.

2.3.3 Discussion

As mentioned in Subsection 2.3.2, the K-nearest Neighbors M L algorithm successfully clas­
sified most of the traffic only according to one feature. This approach could further be
combined with other statistical properties to create an even more robust solution. The
average packet delay of 109ms is not perfect but definitely serves the purpose of mitigating
the attack while providing stable access to resources for regular clients.

In contrast, traditional network-based mitigation methods built upon SYN-authentication
such as T C P Reset Cookies would obtain 100% accuracy due to the nature of spoofed IP
addresses in the dataset. This is because the method requires clients to authenticate be­
fore forwarding their S Y N messages, thus effectively denying all S Y N traffic from spoofed
IPs [41]. Nevertheless, the experiment would not be replicable because the method requires
to interact with the clients. Therefore, replaying a dataset to test the accuracy would not
be possible. According to our previous measurements, the delay added by this method is
less than 1ms after the client successfully authenticates [41]. This time is significantly lower
than in the M L method's case, and the traditional approach also provides better protection
in this particular case. Why would we hence bother with ML-based methods?

As outlined earlier in this chapter, traditional methods do not scale and generalize well.
T C P R S T Cookies and other SYN-authentication mitigation methods may work fine for
most typical S Y N Flood attacks but are significantly less effective against attacks with non-
spoofed IP addresses. In addition, they cannot be used against other T C P DDoS threats,
which are also relatively popular. These attacks do not typically have their associated
bulletproof deflection technique, and thus methods based on statistical properties need to
be used. In their case, defining and fine-tuning thresholds for various statistics is also
not a trivial task - it is often imprecise, time-consuming, and requires adjusting for every
network.

On the other hand, mitigation based on machine learning can cover a much wider
range of attacks, not requiring a specific method for each attack technique, and so might
be developed and employed much faster. For instance, K-nearest Neighbors with entropy
may be generalized to provide several other mitigation capabilities, like protection against
T C P , U D P , and H T T P Floods, which would behave very similarly to S Y N Flood from
the perspective of port entropy. Due to high generalization capabilities, M L approaches
may hence detect even a new type of DDoS attack that has never been seen before. This
would be possible only according to its behavioral patterns (such as packet arrival variance,
average packet length, or mentioned port entropy), similar to other attacks that the method
already encountered during the training phase.

From this perspective, we can clearly see the robustness of the machine learning so­
lutions and why it is beneficial to employ them as detection and mitigation mechanisms.
Nevertheless, this does not disqualify traditional approaches from being used. These solu­
tions often offer excellent mitigation capabilities, and their performance is typically much
better, allowing them to process more packets with lesser latency. Therefore, it is the most
beneficial to use traditional approaches if possible, but their combination with M L methods
can significantly improve the detection and mitigation capabilities of other types of attacks,
for which traditional approaches are either unavailable or unreliable.

7

CESNET's DDoS Protector

Software for malicious traffic detection

Communication and control interface

Ethernet
Hardware accelerator

FPGA
Ethernet

Figure 2.4: C E S N E T ' s DDoS Protector architecture.

2.4 C E S N E T ' s D D o S Pro tec tor

Several existing DDoS protection solutions such as CloudFlare [29], Akamai [3], Imperva [54],
and many others are available. C E S N E T a.I.e., as a Czech operator and developer of na­
tional e-infrastructure for science, research, and education, is also developing its own so­
lution to tackle this problem. The project utilizes a hardware-accelerated traffic filtering
using F P G A technology2, own firmware, and a software-based malicious traffic detection
core (Figure 2.4).

The product was created to mitigate volumetric DDoS attacks such as DNS amplification
DDoS, which produce tremendous amounts of traffic and which needs to be filtered on the
network level before reaching end devices. At the time of writing this thesis, the usage
of F P G A technology allowed traffic processing of up to 400 Gbps [59]. Most of the traffic
is simply forwarded to their destination, but interesting packets like T C P SYNs can be
analyzed to determine whether to forward or drop them. The analysis can be done directly
in the hardware, but more advanced mitigation mechanisms (like R S T Cookies) require the
packet to be software processed.

In order to software-process a packet, it needs to be passed from the network interface
card to the application running in the operating system (OS). This process is done without
the intervention of the OS kernel to maximize the processing performance. For this rea­
son, the C E S N E T ' s DDoS Protector is currently being rebuilt upon D P D K architecture3.
Packets are then polled from input buffers and passed straight to software modules, such
as data loggers or mitigation algorithms.

Currently implemented software mitigation methods focus mostly on T C P S Y N Flood
mitigation. These include mechanisms like R S T Cookies, T C P Handshaker, and S Y N Drop.
The purpose of this thesis is to design and implement a mitigation method based on machine
learning that could detect and mitigate a wider range of attacks and be integrable to the
DDoS Protector in the future.

2Field-Programable Gate Array (FPGA) is a technology of integrated circuits that can be configured by
a customer after manufacturing.

3Data Plane Development Kit (DPDK) is a set of libraries and network interface controller drivers for
offloading packet processing from the operating system kernel to processes running in user space.

8

Chapter 3

Machine Learning in DDoS
Mitigation

Machine learning techniques for DDoS detection and mitigation are almost always based on
supervised learning algorithms. These can be defined as functions mapping an input to an
output based on example input-output pairs [94]. Example pairs are called training data,
which the machine learning method processes during the training phase. This procedure is
supposed to "teach" the method to correlate different input features with desired outputs,
so it will be able to determine the output correctly even for data that were not seen during
the training. More formally, the training process is used to infer the function f(x), where x
is an input feature vector, and the result of fix) is a class to which the data belong to. In
our case, the feature vector will consist of packet contents or statistical information about
the traffic, and the result will define if the packet belongs to the legitimate traffic or an
attack.

Machine learning mechanisms used for this purpose can be classified into three categories
according to the data they use:

• Packet analyzers

• Statistical data analyzers

• Combined

Methods based on packet analysis classify packets only according to their contents.
These values typically include IP addresses, port numbers, T C P flags, T C P window sizes,
IP flags, and various data from application protocols. This approach is a typically used in
non-AI-based systems such as firewalls. Nevertheless, classification of network traffic based
on this principle can be done by M L principles as well. However, a smart attacker may
masquerade an attack as legitimate traffic by setting packet fields in the same way as the
legitimate traffic. Methods based only upon packet analysis may thus fail to detect the
security incident.

Other solutions for DDoS detection do not rely on packet content analysis, but rather on
the statistical behavior of the traffic as a whole. Attack traffic typically shares various be­
havioral patterns that may be used for successful detection. As mentioned in Section 2.3.1,
traditional systems utilizing this approach have to contain various thresholds and modifiers,
which have to be set up manually by a field expert. Machine learning methods are able
to infer these values on their own, thus providing a robust and scalable way of mitigation

9

against various attack types. As discussed later in this chapter, some solutions may utilize
both types of information to perform network traffic classification.

Sections in this chapter will summarize research in the machine learning DDoS detec­
tion and mitigation field. Various M L models commonly used to achieve this goal will
be discussed. For each model, we firstly present its general concepts, mathematical back­
ground, and finally, its usage against DDoS attack with concrete examples based on existing
research. Machine learning methods examined in this chapter include:

• Naive Bayes

• K-means

• K-nearest Neighbors

• Support Vector Machines

• Random Forest

• Artificial Neural Networks

3.1 Na ive Bayes

Naive Bayes (Multinomial naive Bayes in our context) method is one of the simplest al­
gorithms used in the field of machine learning and classification. As the name suggests,
its probabilistic model is built upon the Bayes theorem. Suppose we have an instance to
be classified represented by vector x = (xi,X2, • • • ,xn) and a probability that the given
instance belongs to the class Ck as p(Ck\xi,X2, • • • ,xn). Therefore, we are calculating a
probability that the class Ck contains x, when we know parameters of the instance. When
the Bayes theorem is applied, the conditional probability is decomposed as E q 3.1:

p m m = « ^ m ± (3,)
p(x)

where

• p(Ck\x) is the postterior probability (the probability that the class Ck contains x)

• p(Ck) is the prior probability (the probability of class Ck occurrence)

• p(x\Ck) is the likelihood (the probability that x belongs to C&)

• p(x) is the evidence (the probability of x occurrence)

A classifier that assigns a class label y = Ck for some k can then be constructed according
to Eq. 3.2:

n
y= argmax p(Ck) T\p{xi \ Ck) (3.2)

ke{i,...,K} i = 1

The Bayes hypothesis can be easily mapped into a DDoS traffic classification problem,
where x is the received packet, and Ck represents either attack or legitimate traffic. The
method can be used for off-line packet capture classification and forensics, as suggested

10

4

3
N™ 2

Original unclustered data Clustered data

4

3
N™ 2-

Figure 3.1: K-means algorithm result example. Retrieved from [111].

by [120] and [34]. In this case, the whole dataset can be analyzed, and statistical features
can be computed for each flow during the preprocessing phase. When these statistics are
obtained, the Naive Bayes model should be able to classify particular flows correctly. Nev­
ertheless, we are typically interested in classifying and filtering real-time traffic. In this
case, statistical features for flows cannot be computed exactly, but the method has to work
with statistics per time window, such as via data mining techniques in streams. When deal­
ing with streams, the model may struggle to provide reliable classifications only according
to the Bayes theorem and a training dataset due to its lesser robustness. Therefore, we
conclude that the Naive Bayes may not be the best choice for real-time DDoS protection
and hence will not be examined any further.

3.2 K-means

K-means is an analysis technique used for determining K clusters in the bulk of data. It
is categorized as an unsupervised machine learning algorithm, though K-means for DDoS
detection is typically used in a semi-supervised way. In this case, the context about the
attack or non-attack is provided at least for some data during the training. Therefore,
created clusters may be categorized according to the ratio of labeled samples they contain.
K-means algorithm works by using a centroid 1 as a prototype for a cluster. Initially, all
centroids are selected randomly, and their position is iteratively updated according to the
minimum sum of squares of the points within the cluster.

Mathematically, suppose a set of observations x\, X2, • • •, xn, whereas each observation
Xi is represented by a d-dimensional vector. K-means aims to partition the n observations
into k sets S = {Si, 52 , . . . , Sk} so that the within-cluster sum of squares (i.e. variance) is
minimal. Formally, the algorithm is defined by Eq. 3.3, where is the mean of points in
Si. A n example of the K-means clustering algorithm is shown in Figure 3.1.

k k
a r g m i n ^ ^ ||x — /x^112 = a r g m i n \ S j \ Var S (3-3)

s i=l x&Si s i=l

She, Wen, Zheng, and Lyu used K-means to detect Application-Layer DDoS attacks [100].
Authors state that user webpage browsing behavioral patterns are rather deterministic.

1Mean position of all the points in all of the coordinate directions [5].

11

Statistical features of sessions like the total number of H T T P requests, the total size of all
requests, request rate, and an average access frequency of the request can distinguish le­
gitimate traffic from application-level flood attacks. The mechanism firstly creates clusters
from legitimate browsing sessions in the training dataset. Since the created clusters are in
the form of spheres, a single instance can be validated whether it belongs to a particular
sphere or not. If the analyzed instance is not matched with an existing sphere, it is con­
sidered an anomaly and probably represents an attack. The best result was achieved for
K = 9, which provided a 97.56% detection rate and a 2.67% rate of false positives.

Similar results with a 98% detection rate were achieved by [84] with modified K-means
on D A R P A 98 dataset. As in the previously mentioned article, a windowing principle was
used to compute statistics for the stream of data. In this case, the author used landmark
windowing for which 9 features were collected.

As shown in the previous paragraphs, the K-means method can be used to classify
traffic relatively reliably. When a principle of time windows is implemented, statistics can
be collected on-the-go, and therefore providing real-time DDoS protection. However, the
collected statistics still need to be specified manually. Inappropriate features may create
too many overlapping clusters and degrade detection capabilities.

3.3 K-nearest Neighbors

The classification with K-nearest neighbors is based on finding K nearest instances to
the analyzed instance /. This is most commonly done by calculating Euclidean metric d
between instances x and x' (Eq. 3.4). Other types of metrics like Manhattan, Chebyshev,
and Hamming can be considered according to the type of solved problem. Nevertheless,
the majority of solutions for DDoS detection use the Euclidean metric.

More formally, suppose a positive integer K, an unseen observation x, and a similarity
metric d. The K N N classifier firstly runs through the whole dataset computing d with x for
each training observation. Let A be a set consisting of K nearest instances to observation x.
Conditional probability for each class is then estimated as the fraction of points in A with
that given class label. Let I{x) be the indicator function that evaluates to 1 when the
argument x is true and 0 otherwise. K N N classifier can then be expressed as Eq. 3.5 [121].

For the classifier to function properly, the value K must also be appropriately set.
Small K restrains the region of a given prediction, thus forces the classifier to ignore the
context of other nearby instances. This provides the most flexible fit with low bias but
high variance. Higher K averages more neighboring instances, making it more resilient
to outliers. Larger values of K will have smoother decision boundaries, which mean lower
variance but increased bias (Figure 3.2) [121]. Typically, K is set between 7 and 15, but
again, this is highly dependent on a given task.

Apart from [106] discussed in Section 2.3.2, many other studies utilized K-nearest neigh­
bors to classify network traffic and detect anomalies. [73] used K N N to detect DDoS
proactively in the early stages of the attack. For this purpose, the entropy of source and
destination IPs/ports with packet type entropy, number of packets, and other statistics

(3.4)

(3.5)

12

1-nearest neighbours 20-nearest neighbours

Figure 3.2: K-nearest neighbors K value comparison. Retrieved from [121].

were used. A l l of these can be collected and computed in real-time, thus allowing an al­
gorithm to be integrated into IDS/IPS systems. Achieved detection accuracy was 92%.
Similarly, other research projects like [32] and [78] use K N N with entropy and statistical
data to detect an attack with promising results as well.

As outlined in this subsection, K-nearest neighbors classification allows robust detection
and mitigation of DDoS attacks. Due to low computational demands, the method can be
employed in real-world scenarios as a part of IDS/IPS systems or implemented on SDN-
based networks. The detection mechanism for these methods is based on statistical traffic
properties. These have to be observed and specified by a field expert, but many publications
in the field have mostly done the job already.

3.4 Suppor t Vec tor Machines

Support Vector Machines (SVMs) are a sophisticated M L technique used for both classifi­
cation and regression tasks. The main idea of the S V M classification is to construct a linear
decision boundary, so the gap (margin) between the classified classes is as large as possible.
The decision boundary is generally an N-dimensional hyperplane2 (Figure 3.3), theoreti­
cally reaching up to infinite dimensions. Since it is not always possible to classify data
using a hyperplane, the elements are internally classified in higher-dimensional space as
they are originally observed. Using this method, the data that would normally be linearly
inseparable can be classified using a linear classifier. The relationship between the elements
in higher-dimensional space is computed by kernel functions (such as radial or polynomial),
which allow efficient computation without performing the actual transformation. If the
classified data partially overlap, a soft margin variant, which does not try to separate two
groups strictly but allows a small number of misclassifications, could be used.

If we consider perfectly separable data, the S V M searches for a hyperplane that has
the maximum margin from the closest points of different classes (hard-margin). Defining a
hyperplane as H : wT(p(x) + 6 = 0, the problem of finding the best decision boundary can
be represented according to Eq. 3.6.

2Subspace whose dimension is one less than that of its ambient space (space surrounding an object.)

13

Figure 3.3: S V M maximum-margin hyperplane.

,\w\r n
where:

w* = a rgmax-—^ [min yn[wT4>(xn) + b]\ (3-6)

• w is a normal vector to the hyperplane (hyperplane parameter)

• Expression min yn[wT 4>{xn) + b] represents a distance of the closest point to H.
n

• yn defines the class (1 or -1) to which the point xn belongs.

• Function (j)(x) is the transformation of the point x. (j)(x) : W1 —> W1, x £ M m .

The above equation can be solved by the steps of normalization, transformation, and
Lagrange multipliers 3 application. Two different views on the optimization problem - primal
or dual form, may be taken. There, dual form is preferred because it provides a lower bound
to the solution [10]. By applying a kernel trick 1 upon it, we receive an optimization problem
fully independent of (f)(x) terms, which can be efficiently calculated to make a classification
prediction. In practice, primal and dual forms are not computed directly, but many modern
approaches for finding S V M classifiers utilize techniques like sub-gradient descent [98] or
coordinate descent methods [52].

In the context of DDoS detection, many research articles employed SVMs in Software-
defined networks (SDNs) utilizing SDN switches to collect data and perform S V M com­
putations on the controller. For example, [117] uses S V M data classification in the SDN
environment based on the statistical properties of the flows. Statistics like the number
of unique IP addresses, number of unique ports, standard deviation of packets, standard
deviation of bytes, and others, are computed in time windows of length T. Several of these
windows are then used to classify the flow cts ct rc gular or potential attack. The authors
achieved around 95% accuracy for a custom dataset. Similar results were also obtained

3Strategy for finding the local maxima and minima of a function subject to equality constraints (such as
the condition that one or more equations have to be satisfied by the chosen variable values) [50].

4 Computation that allows operating in higher dimensional feature space without the need for transfor­
mation from the original feature space.

14

by [61]. This work also employed the S V M method in the SDN environment and measured
about 95% accuracy in two combined public datasets in an off-line mode.

Non-SDN applications of SVMs comprise several research papers such as [89], which
utilizes Enhanced Support Vector Machine (ESVM) and string kernels to detect ongoing
DDoS in real-time. The traffic is classified into one of the 7 classes (normal or a particular
DDoS type, e.g., I C M P Flood) according to statistical data such as the number of packets,
session rate, and a protocol type. Classification accuracy of 99% was achieved on a live
generated attack using common DDoS tools. A n intriguingly similar article [103] also uses
E S V M to classify the traffic into 10 classes represented by different attack types. The
authors use 14 statistical features collected per flow for the classification. The model was
trained on K D D 9 9 ' as well as a custom dataset, achieving over 90% accuracy in both
cases. Another interesting approach by [112] uses S V M in conjunction with Random Forest
(RDF) (discussed in Subsection 3.5). R D F algorithm is used to identify the most significant
features out of 42 provided in the KDD99 dataset and train the S V M model with them.
This way, the presented solution has achieved high classification precision and F-score6.

As outlined in this subsection, Support Vector Machines are a robust M L model usable
mostly for classification tasks. Its principles allow us to process multi-dimensional data in
a relatively fast way while achieving rather fast convergence. Several conducted research
projects mentioned in previous paragraphs successfully used SVMs in DDoS detection per­
formed offline and online with fair results. Therefore, SVMs are definitely a mechanism
that may be considered for our needs as well.

3.5 R a n d o m Forest

Random Forest is an M L technique especially popular in the computer networking field since
it provides a way to visualize decisions made by the model. Therefore, the model does not
act like a black-box that receives an input and produces an output, but the end-user is able
to follow the model's decision flow. This is indeed useful when dealing with packets because
features (packet fields) and their thresholds contributing to the classification process may be
analyzed. This fact allows to tweak or modify them if the model's behavior is undesired or
additional fine-tuning is needed. When discussing the Random Forest technique, a method
called Decision trees has to be examined first. Therefore, this section will firstly examine
Decision trees and their flaws, which will eventually lead to the Random Forest algorithm
and its usage in modern DDoS mitigation systems.

3.5.1 Decision Trees

Classification with a decision tree is done by constructing an n-ary tree based on a training
dataset and then performing the tree traversal for each analyzed data sample. Initially,
only the prior probabilities of the particular classes are known. The main idea of decision
trees is to increase the probability of a successful classification with each new level of the
tree. Therefore, we need to define a sequence of features and their associated thresholds to
perform these splits on. After the split on some feature is defined, the dataset is divided into
several subsets according to the number of thresholds of that feature. This process is then
repeated for every subset, each time with a different splitting feature. The mechanism thus
constructs a tree, in which each node consists of a dataset subset and defines probabilities

5kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
statistical measure of the test's accuracy.

15

http://ics.uci.edu/databases/kddcup99/kddcup99

Protocol Port Packet size SEQ Number Attack
T C P 80 1500 9999 True
T C P 443 719 55634117 False
T C P 13401 1301 143577913 False
T C P 21 512 9999 True
U D P 53 240 - True
U D P 53 240 - True
U D P 53 314 - False
U D P 10005 1500 - False

Table 3.1: Packet classification dataset example.

Figure 3.4: Decision tree based on Table 3.1 example.

of the observed classes based on its subset contents. The resulting probability of the data
being classified is given by a leaf node or a node at a certain predefined level.

For example, consider a simple packet classification problem consisting of the dataset
with 4 features and 8 samples given by Table 3.1. Our task is to construct a decision tree
that classifies a new unseen packet as either an attack or regular traffic. A n example decision
tree for the given dataset is shown in Figure 3.4. The values of the tree nodes represent
the probability that a classified packet belongs to an attack. As it may be seen, the first
split on the protocol feature does not improve the accuracy but allows precise classification
in the following tree levels. Some features were not used in certain tree branches at all
because the mechanism does not consider them essential for classification purposes.

The learning phase of the Decision Tree model comprises the estimation of features
on the particular tree levels and the definition of thresholds used to branch the tree. For
this purpose, either information gain based on entropy or Gini impurity index is typically
used. Entropy, originally defined by Shanon, is a measure of information, choice, and uncer­
tainty [99]. Supposing a random discrete variable X with possible outcomes x\, X2, • • •, xn

and their probabilities P(xi), P{xi), • • •, P(xn), the entropy H(X) is computed according
to Eq. 3.7. Based on logarithm properties, the entropy is also often calculated as Eq. 3.8.

16

In the original Shanon's proposal and for the purposes of classification trees, a logarithm
of base 2 is used. The computed value is hence in bits.

n

H(X) = -Y/P(xi) log P(Xi) (3.7)
i=l

H(X) = J2 P{xi) log — (3 . 8)
i=i %

Entropy can be used to describe (im) purity of the analyzed subset of the dataset. Low
entropy signifies that the dataset contains mostly data classified into the same class. On
the other hand, data from many different classes would produce high entropy. Therefore,
given entropy as a measure of impurity in a collection of training examples, we can measure
the effectiveness of a feature (attribute) in classifying the training data using information
gain. Information gain is simply the expected reduction in entropy caused by partitioning
the examples according to this attribute [70]. Formally, information gain IG(S,A) of an
attribute A relative to the collection of examples S is computed according to Eq. 3.9.

IG(S,A) = H(S)- W ^ ") (3- 9)
v e Values(A)

where:

• Values(A) is the set of all possible values for attribute A

• Sv is the subset of S for which attribute A has value v

• H(S) is the entropy for S

With the concept of information gain, we are able to rate the splits upon different
features and choose the one with the biggest value. If we applied this technique for the
training dataset in Table 3.1, a tree different from Figure 3.4 would be generated because
the first split does not provide any information gain. This is because the probabilities of
correct classification are the same in the root node and the first level of the tree (greedy-
splitting). However, non-greedy heuristic techniques considering more splits are once may
be used, which may generate the same tree as in the example.

Another popular way to determine tree splits is by using the Gini impurity index.
Instead of measuring entropy, Gini impurity works with variance in the class allocation. In
other words, it is a measure of how often a randomly chosen element from the set would
be incorrectly labeled if it was randomly labeled according to the distribution of labels in
the subset [114]. Therefore, Gini impurity for category K would be calculated according to
Eq. 3.10.

Gini(K) = Pi,K(l ~ Pi,K) = 1~Y.PIK (3-10)

ie N ie N

where:

• N is the list of classes

• PiTK is the probability that category K has class i

17

Features for tree splitting are then determined by computing weighted sums of Gini
impurities for all categ ories across all features (Gini impurity indexes). Considering Pk,a
as a fraction of category k in feature a and M as a list of all feature a categories, the
Gini impurity index is computed as Eq. 3.11. The index with the lowest value signifies
the best purity of the data (most samples are matched to the correct class), and thus its
corresponding feature should be used for splitting on the current tree level.

In addition to the tree split determination, entropy and Gini index can also be used for
feature selection. Note that both methods compute how pure a subset of a dataset is in
slightly different ways. The purity of the dataset describes a portion of records that are
classified correctly. Therefore, these metrics can be used to select features that contribute
to the successful classification the most. When we select only top N features with the
highest informative value, the classified problem's dimensionality is effectively reduced.
This strategy can be used in the preprocessing phase for various classification tasks, such
as when a method that can not work with a large number of dimensions is used.

As discussed in many articles, the chosen metric for splitting is not significant because
both the Gini impurity index and information gain produce somewhat similar results. As
observed by [87], they differ only in approximately 2% of cases. However, Gini impurity does
not require calculating the logarithm, thus being a little faster and a slightly more popular
variant used in implementations such as Classification and Regression Trees (CART) .

Decision Trees Drawbacks and Solutions

The most common problem with decision trees is overfitting. The tree may be theoretically
split up to the point that only 1 record in their associated dataset subset remains. This
behavior is undesirable, and therefore a cut-off condition denying further tree splitting is
typically defined. The condition is commonly defined by minimum records in the subset of
the dataset, and of course, by subset purity. If all subset data are classified into the same
class, there is no point in splitting the tree anymore. Other techniques, such as pruning, can
also be applied to further reduce the number of splits by eliminating unnecessary branches.

Another severe problem of decision trees is their variance. Models with high variance
tend to react very sensitively against small changes in the training dataset. According to
the calculation of tree split metrics, it may be seen that adding/removing a single record
from the dataset would produce slightly different values, which may, in turn, construct a
completely different tree as before. This behavior is also highly undesirable because the
model may have problems generalizing and may provide poor or inefficient classification
results.

For these reasons, multiple decision trees are commonly grouped together as a single
ensemble learning technique. Ensemble techniques combine several weak learners (such as
shallow trees) with the goal of achieving similar or better results as more complex strong
learners8, while considerably reducing learning variance and bias [11]. Common ensemble
learning algorithms include Random Forest or Extra Trees based on the bagging technique
(explained below), and AdaBoost and Gradient Boosting algorithms based on technique of
boosting.

7Classifier only slightly correlated with the true classification
8 Classifier well-correlated with the true classification.

k e M

18

Random Forest is an ensemble learning method assembled of multiple decision trees that
process the classified element independently. The classification result is then determined
by combining results from all trees (such as majority vote or mean). This approach is
based on the wisdom of the crowd principle 9. According to this concept, we can say that
a large number of relatively uncorrelated models (trees) operating as a committee will
outperform any of the individual constituent models [118]. Therefore, the fundamental
idea is to generate many random uncorrelated trees that will participate in the classification
process. Generation of these trees is done with boostrap aggregating and random feature
selection techniques.

Bootstrap aggregating (bagging) is a mechanism used to generate new datasets by ran­
domly resampling the original one. Each resampled dataset is then used to train a decision
tree that will be a part of the random forest. This technique takes advantage of the deci­
sion trees' high variance and supposes that each dataset will generate a unique tree with
minimal correlation to the others. Another way to minimize the correlation is to randomly
reduce the number of features in each of these datasets (random feature selection). This
way, each tree will classify only according to the random features subset while being trained
on the random dataset subset. Combining these two techniques provide the generation of
relatively random trees with low correlation. After constructing a number of these trees
(forest), each tree performs classification on its own, and the final result is determined by
combining their result, such as with the arithmetic mean formula in Eq. 3.12.

• p (c l v) is t n e probability of class c for vector feature v

• T is the number of trees in the forest

• Pt(c\v) is the probability of class c for feature vector v computed in tree t

Other ways of determining the final result can also be employed. Alongside the presented
arithmetic mean, geometric or harmonic means can be used. Another popular technique
of result determination is the majority vote - the class on which the most trees agree on
wins. One way or the other, the random forest principle enhances classification accuracy,
reduces the variance, and helps to avoid overfitting when compared to regular decision tree
classification. Random Forest is a popular method in bioinformatics, data mining, finance,
and many more for both classification and regression tasks.

3.5.2 Random Forest in D D o S Mitigation

The Random forest model is often a favored way for DDoS detection and network data
processing in general. Its overall popularity is mostly based on the model's robustness and
properties, such as the ease of implementation and visualization. For example, [35] pre­
sented an IDS system based on Random Forest, trained and evaluated on the N S L - K D D
dataset 1 0 with 42 features. The authors performed a feature selection using symmetrical
uncertainty (based on information gain). The model was able to detect several types of

9 A collective opinion of a group of individuals rather than that of a single expert.
10https: //www.unb.ca/cic/datasets/nsl.html

(3.12)
t=i

where:

19

http://www.unb.ca/cic/datasets/nsl.html

attacks, including DoS, with a 99.6% accuracy. Similar research was also conducted by [39],
which also used the N S L - K D D dataset, Random forest, and information gain metric, achiev­
ing over 99% accuracy. Both of these papers described an off-line detection; however, the
problem can be transformed into an on-line attack detection task using data mining tech­
niques in data streams, similar to the research presented in previous subsections.

Random forest was also used by [23] to protect DNS servers against DNS DDoS Water
Torture Attack with 99.2% accuracy. Jia et al. [57] used Random Forest as a part of the
heterogeneous ensemble model with 41 features. Although the ensemble learning achieved
over 99% accuracy on the KDD99 dataset, it was outperformed by a single Random forest
model. As outlined, the Random forest algorithm can be used for feature selection as well.
This functionality was utilized by [112] in conjunction with an S V M model, as discussed in
Section 3.4.

3.5.3 Summary

As discussed in this subsection, Random forest consisting of multiple decision trees is a
powerful model for not only classification but regression tasks as well. It is especially
popular for network data processing since it allows simple visualization and fine-tuning.
The collected features have to be specified manually, but the mechanism can select the
most important features on its own, allowing to be deployed either standalone or as a part
of a more robust M L solution. Features selected by the model can be viewed by the user,
providing further intelligence about the solved problem.

3.6 A r t i f i c i a l N e u r a l Networks

Artificial neural networks (ANNs) are computational systems which attempt to simulate
the decision process in networks of nerve cell of the biological central nervous system.
Simulating a biological system, ANNs are designed to perform elementary computational
operations to solve complex, nonlinear, stochastic, or mathematically ill-defined problems
in a highly parallelized manner [43]. According to these properties, they are often able to
carry out tasks such as detection and recognition, in which humans and animals excel, but
conventional systems perform poorly.

This subsection will introduce the concept of a biological and artificial neuron, present
various types of artificial neural networks and discuss their usability for real-time DDoS
detection and mitigation.

3.6.1 Biological Neuron

The biological networks of humans are composed of approximately 100 billion nerve cells
(neurons) that are densely interconnected with thousands of connections per cell. A neuron
(Figure 3.5) is a simple processing unit that combines signals from other neurons through
input paths called dendrites. The signals from all dendrites are combined in the cell core
(nucleus). If this combined signal is strong enough, the neuron "fires", producing an output
signal along a path called the axon. The axon splits up and connects to thousands of
dendrites of other neurons through synapses. Synapses, located in dendrites, are junctions
controlling the flow of electrical signals. Each synaptic junction has a specific conductance
strength that defines the magnitude of the signal. This strength is modified as the brain
learns new information. Therefore, synapses act as the brain's basic "memory units" [109].

20

dendrites

Figure 3.5: Simplified structure of the biological neuron. Retrieved from [1] (modified).

Figure 3.6: Artificial neuron scheme.

3.6.2 Artificial Neuron

Artificial neurons are essential building blocks of artificial neural networks discussed in this
section. Their general model (Figure 3.6) is built upon biological neuron concepts presented
in the previous subsection. The artificial neuron can hence be viewed as a mathematical
model with N inputs Xi representing dendrites. Each input has an associated weight pa­
rameter Wi modifying the input value. The "firing" process is represented by summing all
inputs multiplied with their corresponding weights and running the result through the acti­
vation function ip. Therefore, the output y of the artificial neuron can be defined according
to Eq. 3.13. The result of summation before activation function application is called the
neuron's internal state.

N
y = <p(y^J

 xiwi) (3.13)
i=0

Activation function (p is a non-linear function defining the output of the neuron. Its
essential idea is to produce a reaction of the neuron according its internal state. If the in­
put value exceeds the threshold defined by the activation function (typically 0), the neuron
output is a positive value. Otherwise, the output is 0 or a negative value, as defined by
an employed function. This process is an analogy to operations in the biological neuron's
nucleus and impulse transfer through the axon. Historically, the most commonly used ac­
tivation function was sigmoid (o~(x) =) (Figure 3.7a) due to a friendly interpretation
of neuron firing rate: from not firing at all (0) to fully-saturated firing at an assumed maxi­
mum frequency (1). However, other activation functions such as hyperbolic tangent (tanh)
(Figure 3.7b), Maxout (f(x) = max(wfx + bijivjx + 62)) (Figure 3.7c), Rectified Linear

21

6 8 10

(a) Sigmoid. (b) Hyperbolic tangent. (c) Maxout (n = 2).

Figure 3.7: Examples of various activation functions.

Unit (ReLU(x) = max(0,x)), and others are used nowadays due to sigmoid's limitations
in modern A N N learning algorithms [2].

As illustrated in Figure 3.6, the neuron contains a hidden input XQ associated with
a trainable weight WQ. The input is commonly set to —1 (as in the figure) or 1. Together,
they form a bias O. Therefore, an alternative way to define neuron output instead of

N
Eq. 3.13 is y = <p(^2 XiWi + O). Whereas input weights influence the steepness of the

i=i
activation function, the bias is used to shift it on the horizontal axis. Both the steepness
and shift extents are learned by adjusting corresponding weights during training [67].

The Perceptron 1 1 (Rosenblatt 1958 [92]) is one of the first artificial neuron models that
was proposed. The model computes its output as given by Eq. 3.13, while being activated
by the Heaviside step function (Eq. 3.14), thus producing a binary output of either 0
or 1. Training is performed by updating its weights based on the class classification error.
Today's neuron models also compute their output according to Eq. 3.13 but use continuous
activation functions, such as in Figure 3.7. The output of these functions enhances the
training process by allowing the usage of more sophisticated algorithms. Nevertheless,
a single neuron of any type can only produce a hyperplane decision boundary. Therefore,
it can only be used for binary classification problems that are linearly separable. More
advanced (linearly inseparable) problems have to be solved using neural networks.

H(x)
0 if x < 0
1 if x > 0

(3.14)

3.6.3 Neural Networks

As outlined at the end of previous subsection, ANNs were created to tackle the issue of
linearly inseparable tasks, which cannot be solved by a single neuron. However, when we
put several neurons together to form a layer and interconnect at least two of these layers
together, a M L model able to learn complex non-linear patterns is created. This property
of multilayer neural networks is known as Universal Aproximation Theorem [30] [51].

11Note that the term Perceptron often refers a general artificial neuron model in some literature. Multilayer
Perceptron networks may thus refer to general feedforward ANNs. In this thesis, the perceptron represents
only a neuron model proposed by Rosenblatt in 1958.

22

Figure 3.8: A simple 3-layer feed-forward artificial neural network.

The simplest neural network architecture is a network consisting of two neural network
layers. According to conventions, the first layer always represents the input to the network.
This way, the simplest N N is commonly represented as a 3-layer acyclic graph (Figure 3.8).
In our case, the network receives three inputs (xi, X2, £ 3) and produces two outputs (yi,
y2). The network thus solves a binary classification problem for three input features. The
numbers of input and output neurons are given by the solved problem, whereas the number
of hidden neurons is chosen with the network design. Network layers that are not input
nor output are called hidden layers. When training a network, each neuron in each layer
updates its weights so that the output of a layer as a whole is some representation of the
original vector the network received as its input. Neural network layer is thus a function
I>nm_i —>• Mn™, where nm represents the number of neurons in the m t h layer.

In classification problems, we typically want neurons in the last (output) layer to rep­
resent the probabilities of the classes the input vector may belong to. For this reason, the
activation function Softmax (Eq. 3.15) is commonly used. Softmax turns the internal states
of neurons into probabilities that sum to one. The function thus outputs a vector repre­
senting probability distributions of a list of potential outcomes. Top K classes (typically
one) with the biggest value are then chosen and presented as the final classification result.

a(z)i = 6 ' for i = l,...,K and z = (zu ..., zK) € MK (3.15)

E e Z j

The simplest neural network architecture presented in this section belongs to the cate­
gory of feed-forward networks. These types of networks do not contain cycles, so each layer
works only with the output of the previous layer. Nevertheless, networks with different
architectures that allow loops - Recurrent Neural Networks, also exist. These two main
architectures can be modified by certain functions and neuron types, creating even more
combinations of various NNs. The following subsections will discuss a few of these main
network types and elaborate on their usability for DDoS detection.

3.6.4 Feedforward Architectures

As outlined at the end of Subsection 3.6.3, the example network in Figure 3.8 belongs to
the feedforward neural networks (FNN) category. The essential building blocks of these

23

networks are fully-connected layers, which connect output of each neuron in the previous
layer to every neuron in that layer. Connections between neurons in the same layer do not
exist. Information from the input is thus "fed forward" from one layer to the next.

Neural networks with one hidden layer are considered to be shallow machine learning
models. According to Universal Aproximation Theorem [30], they should be able to ap­
proximate any function. Nevertheless, it was found out that shallow models typically do
not achieve desired accuracy for complex tasks, such as image recognition. For this rea­
son, many M L models nowadays utilize principles of deep learning, which perform multiple
levels of non-linear operations before producing the output [8]. In the context of neural
networks, the principles of deep learning are represented by deep neural network (DNN)
architectures, which have more than one hidden layer. Such networks are typically able to
learn more complex patterns in the data and thus achieve better accuracy. Nevertheless,
these types of networks are generally harder to train, requiring more training samples and
more computing time. DNNs are also generally prone to overfitting due to additional layers
of abstractions that allow the model to pick rare dependencies in the training data [8].

Both shallow and deep feedforward neural networks are mostly used for supervised
learning tasks such as classification. Therefore, they may be suitable for DDoS detection.
Nevertheless, only a detection based on statistical data without other context is possible
because these networks do not have any "memory". For this reason, sequential or time-
dependent data (such as network packets as they come) can not be processed by FNNs. To
tackle this issue, recurrent neural networks, presented in Subsection 3.6.5, are used.

3.6.5 Recurrent Architectures

In contrast to feedforward networks, recurrent neural network (RNN) architectures do not
form an acyclic oriented graph but rather allow cycles composed of neuron connections.
Wi th this design, the network gains the ability to model time or sequential dependencies
of the input data. Sequential data are fed into the network by steps, one element (vector)
of the sequence at the time. Computations in RNNs are performed in a cyclic manner,
where the same operation is applied to every element of the processed sequence. The
fundamental idea of these networks is to propagate the result computed at time t into
the next computation at t + 1. The propagation is achieved by mentioned cycles, either
self-loops for delay by one timestep or larger cycles across multiple layers.

A simple three-layer R N N is represented in Figure 3.9. The input layer acts the same as
in the feedforward architecture - just passes its values to the next layer. R N N neurons in
the hidden layers contain self-loops to pass its previous result to the current computation.
The output layer is composed of regular linear neurons, typically activated with Softmax
for classification tasks. Note that neurons with a self-loop need an extra trainable weight
matrix to represent the importance of the past information for the computation process.

R N N networks are often unfolded in time/steps for better demonstration purposes. If
we unfold the network from Figure 3.9, Figure 3.10 is obtained. From this representation,
equations 3.16 and 3.17 to calculate outputs of hidden R N N and output neurons become
more apparent.

h < l > = y^Vh**-1* + Wrx<l> + br) (3.16)

y<t> = ¥ , 0 (W 0 / » < t > + b0) (3.17)

where the upper index < t > represents a computation made in the timestep t. Therefore:

24

hi

-> yi

-> y2

Figure 3.9: Simple 3-layer recurrent neural network.

h<o>

y<l> y<2> y<t> y<t+l>
-

t t \
h<t-l> „<t>

> — • • •
j

h<t+l>
>

t t t t
V<1> „<2> x<t> x<t+l>

Figure 3.10: Unfolded R N N from Figure 3.9.

• x < l > , y<l> are network input and output vectors in t

• h<l>, / i < i _ 1 > are the recurrent layer outputs in t and t — 1

• tpr, (p0 are activation functions for the recurrent and the output layer

• Wr, WQ are weight vectors for the recurrent and the output layer

• V is the weight vector for self-loops in the recurrent layer

• br, bQ are biases for neurons in recurrent and output layers

In addition to the simple R N N variant presented in previous paragraphs (also known as
Elman Recurrent Neural Network), numerous other architectures also exist. For instance,
this network can be expanded into a deep recurrent neural network by adding one or more
hidden layers to the existing model. Such networks have been confirmed to outperform the
conventional, shallow RNNs [81]. RNNs can also act as memory cells. For example, the
Hopfield network can be used as robust content-addressable memory, resistant to connec­
tion alteration. Similarly, Bidirectional Associative Memory (BAM) network architecture
provides associative memory functionality. In the context of DDoS detection, classic archi­
tectures based on Elman Recurrent Networks and their variants are typically used.

R N N architectures can be generally classified into four categories according to the length
of their input (Tx) and output (Ty) sequences. Traditional networks can be considered one-
to-one model, in which Tx = Ty = 1. In this case, the network receives one input vector and
an initial state, for which it produces one output vector. Other models like one-to-many
(Tx = 1, Ty > 1), many-to-one (Tx > 1, Ty = 1), and many-to-many (Tx > 1, Ty > 1) in
variants Tx = Ty and Tx ^ Ty also exists. The architecture type mainly depends on the task

25

"t-1

'• ° t

a a tanh a

Figure 3.11: Long-Short Term Memory cell structure.

for which the network is built for. In the context of DDoS detection and mitigation, many-
to-many models are typically used due to processing many packets (flows) and labeling each
of them as either attack or non-attack.

Shallow R N N network architectures were a great success initially, but it was shortly dis­
covered that they could memorize only the last few inputs and thus struggled heavily when
longer dependencies had to be processed. This was primarily caused by a simple structure of
the original R N N cells, which contain only one hyperbolic tangent block. These standard
types of cells cause problems for learning long data sequences by forgetting information
about the network prediction error, formally defined as vanishing gradient problem [48].
Similar situation - gradient exploding happens when information about network prediction
errors exponentially increases and thus loses its informative value. This issue has been tack­
led by new R N N cell designs like L S T M and G R U , discussed in the following paragraphs.

Vanishing and Exploding Gradient Solutions — L S T M & G R U

Vanishing and exploding gradient problems can be solved by numerous means, such as mod­
ifying the network training algorithm, gradient clipping, or architecture modification [47].
The most popular solutions in practice are Long-Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) architecture types. These replace the regular recurrent cell design
with a custom structure, which prevents discussed gradient problems. For this reason, net­
works employing these architectures can work with significantly longer sequences (dozens
to hundreds) with relative ease by design [49].

A single L S T M cell is composed of an input gate, output gate, and forget gate (Fig­
ure 3.11). When the input in the current timestep (xt) enters the cell, it is concatenated
with the previous cell state ht-\ and processed in this form by these gates. The forget
gate ft squashes its input into the number between 0 and 1, representing how much in­
formation from the previous cell state should be forgotten (Eq. 3.18). Similarly, the input
gate it defines values that should be updated. When multiplied with the candidate vector
ct, the new information that should be added to the cell is obtained. The new cell state is
determined by multiplying the old cell state with the forget gate's output to forget some
information and adding it to it • c~t in order to obtain new information (Eq. 3.19). The cell
output ht is computed by combining the new cell state with the output gate ot (Eq. 3.20).

ft = a(Wr[ht-1,xt} + bf) (3.18)

26

Ct = ff Ct-1 +ifCt (3.19)

ht = ot- tanh(c t) (3.20)

Gated Recurrent Unit (GRU) cells are relatively similar to the L S T M architecture. They
are composed of an update gate and reset gate. As in L S T M , the update gate controls what
part of the current input should be remembered for the next cell state. Updating is done
by an additive operation, enabling to keep specific features from the input and allowing an
effective error propagation without gradient vanishing. Similarly, the reset gate is used to
forget the past cell state information via multiplication with the sigmoid operation result.
In contrast to L S T M , the G R U cell does not contain an output gate. For this reason, the
GRU's memory content is fully exposed without any control, the cell state in timestep t thus
being the same as its output in t. The computation of candidate value in L S T M and G R U is
also slightly different. As evident from Figure 3.11, candidate q is computed independently
of the previous cell state ct-i- On the other hand, G R U computes its candidate value by
considering both the input and the previous state.

In theory, L S T M s should be able to remember longer sequences and train slightly slower
due to their more complex structure. Nevertheless, empirical evaluations such as [26] have
shown that both L S T M and G R U perform similarly, while significantly outperforming reg­
ular RNNs. The choice of the cell type should therefore depend on a particular task. In
practice, both architectures are typically tested, and the one performing better is employed.

3.6.6 Convolutional Architectures

Convolutional Neural Networks (ConvNets, CNNs) are a subclass of deep feedforward neural
networks. CNNs consist of multiple fully-connected layers as regular feedforward networks
but also add several CNN-specific layers. The most important, convolutional layer, then
gives a name for this network architecture type. These networks are mostly used to pro­
cess large multidimensional data, such as images, which cannot be efficiently processed by
regular FNNs due to low parameter scalability with such inputs.

Convolutional networks implicitly expect high-dimensional data at its input. For this
reason, neurons in layers are also arranged in several dimensions, such as 3D for image
processing. A n example of a handwritten digits C N N classifier is shown in Figure 3.12.
As it may be seen, the network is composed of convolutional, pooling, ReLU, and fully-
connected layers, which are the core of every C N N .

Convolutional layers are composed of a set of learnable filters (kernels). Performing the
convolution involves sliding these filters across the width and height of the input volume and
compute dot products between filters' values and the given position of the input. Sliding
produces 2-dimensional activation maps that give the responses of the particular filter at
every spatial position [66]. This way, the network is able to learn filters that cause the
activations on certain positions of the input, such as vertical lines (edges) and others. Used
kernels can be of different sizes (such as 3x3x1), with additional hyperparameters such as
stride, zero-padding, and output depth.

Pooling layers are designed to reduce the spatial size of their inputs. They operate
independently on every depth dimension with the purpose of resizing it spatially. Pooling
is typically done with maximum or average functions, which process several elements given
by the filter's size and output their maximum or average. Similar to convolution, the filter
is moved across the whole input, resulting in a reduced-size output.

27

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

n3 units

Figure 3.12: Example C N N for handwritten digits recognition. Retrieved from [95].

Other layers that can be found in CNNs include fully-connected layers and R e L U layers.
ReLU layers perform element-wise R e L U operations to remove negative values that may be
created as the convolution's result. Fully-connected layers are typically placed at the end of
the network to classify the output produced by the convolutional, pooling, and R e L U layers.
Neurons in this layer are fully connected and behave exactly like neurons in feedforward
neural networks described before.

C N N s for Sequence Processing

Although CNNs have been initially designed and used to process image data primarily, it
was soon discovered that their use could be much broader. Data representable in the form
of the image (set of 2D objects) may be fed to regular CNNs to learn patterns in them in a
relatively efficient way. Alternatively, one-dimensional CNNs that operate on ID data may
also be constructed.

CNNs have been successfully used in traditional sequence modeling tasks such as text
classification [122]. [4] further empirically evaluated that CNNs perform similarly or may
even outperform RNNs in several sequence modeling problems in a way more efficient
manner. For these reasons, the usage of CNNs may be considered in the field of DDoS
detection and mitigation as well.

3.6.7 Attention Architectures

The current state-of-the-art sequence-to-sequence models for tasks such as natural language
processing or computer vision include neural networks based on an attention mechanism.
It allows the identification of relevant data with respect to the presented query. In contrast
to RNNs, which need to process the whole input sequentially, attention allows the input
to be processed at once in parallel, significantly improving both training and operation
times. Attention also allows working with longer sequences than L S T M or G R U cells can.
Although its widespread adoption in the text and speech processing areas, the author is
not aware of any evidence of their usage in DDoS detection or mitigation at the time of
writing this document (December 2020).

28

3.6.8 Learning

Neural networks typically learn in a supervised manner. Firstly, an output estimate for a
given input is computed. A Loss function L is then computed for this estimation based on
a ground truth label. L is then used to determine an error E the network made during the
estimation process. The goal of learning is to minimize these errors by computing gradients
WE. This process, alongside a network parameter update, is performed by an optimizer,
such as the gradient descent algorithm. The process is repeated for each sample within the
training dataset over several training epochs. Network learning, alongside its mathematical
definition, is further examined in Appendix A .

3.6.9 Artificial Neural Networks for D D o S Mitigation

As one of the most popular machine learning methods nowadays, ANNs have been used
in numerous research papers to detect and mitigate DDoS attacks. For example, [96] used
knowledge of the tools commonly used by attackers to design a set of three neural networks
with one hidden layer that could detect DDoS using T C P , UDP, and I C M P protocol. This
was achieved by extracting 3-5 features from each packet's protocol header and feeding
them into the network corresponding to the analyzed protocol. The system achieved real­
time accuracy of 98% for both known and unknown types of attacks manually generated
by publicly-available DDoS tools using a simulated botnet.

A n influential publication DeepDefense [119] from 2017 suggested using deep neural
network with both backward and forward recurrent layers to enhance DDoS detection ca­
pabilities. Instead of per-packet classification, the proposed system utilized per-window
classification. In this case, the last packet of the window was classified by also supplying
T previous packets (authors suggest 100), so the R N N with L S T M cells can make better
predictions. The paper states that DeepDefense outperform Random Forest and gener­
alizes better on bigger and unknown datasets. In [65], the authors of DeepDefense then
implemented it to SDN environment and used to deflect real-time generated attack.

Other approaches, such as [123] and [27], utilize DNNs to perform the selection of the
most important features automatically. These methods are more convenient but bring
relatively no innovation nor improved accuracy when compared to methods described in
previous paragraphs. Many other, either feedforward, recurrent, shallow or deep network
implementation exists. They typically process statistical and packet features and are mostly
employed as cloud IDS or a part of the SDN network.

3.6.10 Summary

Neural networks are undoubtedly one of the machine learning methods with the best gen­
eralization abilities. Their architectures and usage are still a subject to extensive scientific
experimentation and research. For these reasons, they could be a perfect match for DDoS
traffic classification. Nevertheless, they are not applicable in all cases due to high classi­
fication latency (further discussed in Section 3.7) and unrepresentability of their internal
states, unlike decision tree and random forest algorithms.

3.7 Conc lus ion

As discussed in previous sections, almost all machine-learning methods can be used to
successfully detect and, in a way, prevent DDoS attacks. However, for our purpose of

29

Algorithm Prediction
Naive Bayes o(P)
K-means 0(pndusts)
K-nearest Neighbors 0(klog(n))
Support Vector Machines 0(pnsv)
Decision Tree o(P)
Random Forest 0(pntrees)
Feedforward Neural Network Q(pnh + nhnh + ••• + nlm_jilm)

Table 3.2: M L methods theoretical predictions complexities comparison. Legend:

• k - number of K neighbors

• n - number of training samples

• ndusts ~ number of clusters

• nii - number of neurons in layer i

• ntrees ~ number of decision trees

• nsv - number of support vectors

• m - number of N N layers

• p - number of features

real-time detection, robust models with the ability to make a decision without a significant
delay are required. As shown in Table 3.2, the theoretical prediction complexities of various
algorithms differ. Empirical measurements of several classification algorithms such as [88]
also confirmed that even usage of a simple 3-layer neural network with fully-connected layers
classifies samples significantly slower than algorithms such as S V M or Random forest. In
practice, the classification time is mostly influenced by the M L method implementation
and various optimizations, but classification times taking longer than several dozens of
milliseconds are generally unacceptable for our purposes.

According to these findings, we conclude that the M L method for our purposes will
have to be chosen very carefully, and several of them may be tried during the process. At
first, the requirements on the classification accuracy of a non-trivial network traffic analysis
problem need to be satisfied. However, at the same time, restrictions on the method's
performance also need to be considered. Despite neural networks' superior capabilities,
other alternative methods such as Random Forest or Support Vector Machines may need
to be experimented with in order to meet these criteria. The issue of choosing the method
will further be elaborated on in the following chapter discussing the proposed mitigation
mechanism design.

30

Chapter 4

Machine Learning-Based System
for DDoS Detection and Mitigation

This chapter will build upon the theoretical foundations of DDoS attacks and their way of
M L mitigation discussed in previous chapters. Based on this knowledge, a machine learning
system capable of detecting and mitigating DDoS attacks in real-time will be proposed. The
system was designed in a way that it addresses various flaws of other current research in
the field, aiming to provide accurate decisions during an ongoing attack in order to lower
or completely mitigate its impact.

The following sections will firstly elaborate on current research imperfections and discuss
constraints put on the proposed system before the design phase. The chapter will further
look at the whole M L pipeline, present its pros and cons, and finally, will examine available
datasets usable for our purposes.

4.1 E x i s t i n g Research Shortcomings

A considerable part of the M L DDoS detection research in recent years works with statistical
features of network flows. These include already cited papers from the previous chapter
like [112] (2017), [39] (2017), or [27] (2021), but also others like [97] (2020), [107] (2020),
and many more. This source of statistics makes sense because architecture for collecting
information about flows is typically included on most of the Internet Service Providers' and
larger campus networks by design. The flow information collection is done via NetFlow
exporters and collectors.

The definition of a network traffic flow is rather loose and not standardized - an artificial
logical equivalent to a call or connection (RFC 2722 [12]) or as a set of IP packets passing an
observation point in the network during a certain time interval. (RFC [85]). However, the
defacto standard for network monitoring - NetFlow, defines a flow as a 7-tuple consisting of
the source IP address, destination IP address, source port number, destination port number,
layer 3 protocol type (e.g. T C P , UDP) , ToS (type of service) byte, and input logical
interface. Therefore, a significant share of today's DDoS detection research is centered
around identifying malicious traffic grouped by these values.

At this point, one may see that the phenomenon described in the previous paragraph
may become somewhat problematic. If a perpetrator manages to utilize these NetFlow
properties, an attack with a small number of packets per flow, or ideally, one packet-flows,
may be conducted. This can be achieved by traffic with ever-changing source ports, IP

31

addresses, ToS fields, or managing to change the routing of a packet, so it enters the
network via a different interface. For this reason, machine learning algorithms would be
unable to make an accurate decision due to the insufficient amount of traffic collected from
each flow.

Even though there are still various popular types of DDoS where threat actors cannot
control the source port (such as amplification attacks), many other attacks are performable
with these properties in mind. Attackers have already taken advantage of this fact and
create more and more sophisticated tools to trick similar mechanisms. As an example, an
infamous tool Low Orbit Ion Cannon (LOIC) 1 popular between 2010 and 2015 did not
provide port randomization and instead used a single or a limited set of ports and a single
non-spoofed IP address to send traffic from. On the other hand, its newer improvements
High Orbit Ion Cannon (HOIC) and XOIC also use a single IP address, but with increment­
ing port numbers according to our tests. Therefore, each packet creates its unique NetFlow
entry, and so estimators based on flow data would struggle to make a correct decision.

Another problem with NetFlow flows for real-time DDoS mitigation is that they are
not exported from NetFlow exporters instantly. Firstly, a flow has to timeout before it is
marked as completed. This may take up to several seconds based on the exporter settings.
Also, completed flows are not sent to the NetFlow collector at once but rather in batches
with several others to improve performance. Wi th batching enabled, few more seconds until
the flow statistics reach the NetFlow collector are added. Only there can they be retrieved
by machine learning methods and processed.

As apparent, reliance on network flows can be too restricting and may significantly
decrease mitigation capabilities against certain types of attacks in the real world. For this
reason, this work will aim to design a system not reliant on network flows, which should
be able to provide a better generalization of the problem and thus be used against a wider
variety of DDoS attacks in practice.

4.2 Des ign Considerat ions and Constra ints

As outlined in the previous section, the machine learning system proposed in this thesis aims
to provide DDoS mitigation functionality independent of the NetFlow flow data. In order
to achieve such a goal, the generalization of the classification problem needs to be moved
one level higher. This section will discuss how it is achieved, as well as what advantages
and disadvantages it hides. Expected requirements on the system's performance will also
be outlined.

4.2.1 Generalized Traffic Statistics Estimation

In order to make the system more robust and allow working on a higher level of abstraction,
we need to redefine how is the traffic coming from clients grouped and analyzed. We aim
to design a system resilient to changes in most of the variables defining a NetFlow flow so
that the traffic may still be grouped regardless of the packet's content sent by the same
host. The common grouping value unique for each host on the network is indeed its source
IP address. Therefore, we do not try to separate legitimate (benign) flows from malicious
DDoS flows but rather look at the client's communication as a whole. The input for the
machine learning method is thus grouped based on the client's IP address, and so the

xhttps: //en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon

32

http://wikipedia.org/wiki/Low_Orbit_Ion_Cannon

method's expected output will be whether the particular IP address produced malicious
traffic or not.

Machine learning methods working with flows look on the flow as a whole - from its
start to its end since only flows marked as completed are exported from a NetFlow exporter
to a collector. However, this principle does not apply to per-IP collected statistics because
we cannot tell whether the IP address will send more data or not. Also, waiting for a
host to stop communicating (such as with a timeout) and classifying its data afterward is
counterproductive since we want to reveal an ongoing attack and mitigate malicious traffic
as soon as possible. For these reasons, we want a processing technique able to process a
stream of data in real-time and produce relevant statistics so that our machine learning
model will be able to make a proper decision.

Despite the fact that the per-IP principle generalizes much better than per-flow clas­
sification, it is important to add that it is not entirely bulletproof. Recall that a per-flow
system may be fooled by spoofing IP addresses, randomizing source or destination ports,
randomizing the ToS field, or tampering with a packet routing. Although the per-IP system
addresses most of these issues, the attacker has one and the only way to deny the system to
collect enough data - IP spoofing2. This way, malicious traffic can again be spread across
multiple statistics entries or intermixed into communication of other IP hosts, creating a
hard time for the machine learning method to make an accurate conclusion.

Regardless of the previously mentioned setback, note that IP address spoofing is not
necessarily performable in all situations. Randomization of source or destination ports or a
ToS field can be performed by any client by design. Although there are various mechanisms
that may mark such communication as suspicious, it does not necessarily need to indicate
any threat activity, and such traffic is typically forwarded within the Internet without a
problem. On the other hand, IP address spoofing is considered harmful in a vast majority of
cases, and some Internet Service Providers (ISPs) and bigger network operators are actively
taking precautions to prevent such behavior from happening.

The process of spoofed IP addresses filtering is defined in R F C 2827, currently marked as
Best Current Practice (BCP) #38. The document briefly explains the problem of IP address
spoofing, its connection to DDoS attacks and suggests a solution for filtering inbound traffic
on network edge routers. Supposing these routers would restrict transit traffic originating
from a downstream network to known and intentionally advertised prefix(es), the problem
of source address spoofing would be virtually eliminated [37]. In other words, all traffic
that does not match its source network prefix should be dropped before it is forwarded on
the Internet. As efficient as this technique is, it would require adoption on the majority
of Internet providers, which cannot be generally relied on. Even if traffic filtering was
adopted, an adversary might still forge packets that match the source network prefix and
thus partially circumvent this principle.

Another thing to take into account in per-IP systems is N A T for IPv4. Network Address
Translation (NAT) is a process of translating a set of private IP addresses to one or more
public IP addresses and alternatively changing a source port (Port Address Translation
(PAT)). When the packet leaves an internal network, its source IP is translated into a
public IP address according to the translation table. When a packet with a spoofed IP
address arrives on the NAT-enabled interface, one of three scenarios typically occurs:

1. Reverse path filtering, as explained in the previous paragraph, is applied and the
packet is dropped.

2 A process of crafting a packet with a different source IP address as the original IP of the sender.

33

2. The packet is treated like any other L A N packet, thus being translated by N A T .

3. Filtering nor N A T are not applied, and so the packet is forwarded to the Internet as
it is.

As discussed previously, reverse path filtering cannot be relied on. Some routers may
treat a packet with a spoofed IP address as any other packet and thus perform NAT-ing,
which efficiently denies distribution of DDoS traffic across multiple IP addresses. This is
indeed beneficial for the proposed method because attack traffic will be grouped under the
same IP, allowing it to be analyzed in a M L model together. Nevertheless, the described
behavior is also not provided on the majority of routers by default [71], and so packets with
forged IP addresses may still reach the Internet in some cases. Therefore, we consider IP
address spoofing as a relevant drawback with a possibility to affect the proposed method
negatively, but the extent of its use is significantly limited compared to other perpetrator's
possibilities against flow-based detection systems.

The second consideration about N A T is the possibility of mixing legitimate and mali­
cious traffic under one IP address. Suppose there are more hosts in a single network com­
municating simultaneously, and P A T is employed. In that case, their resulting IP addresses
will be the same, with only a source port changed after the translation. This process may
create a problem for our M L method since both legitimate and malicious packets could be
included in the traffic statistics for a given IP. When considering high-volume attacks based
on flooding a large number of packets, the problem of merging multiple data streams under
one IP address is negligible. This supposition lies in the fact that tremendous amounts of
malicious traffic would significantly outweigh legitimate traffic, and so its share upon the
whole computed statistics for a given IP would be minimal. However, flow merging can
considerably affect low-volume attacks such as slow H T T P G E T / P O S T DoS since they can
easily become statistically insignificant when mixed with other legitimate traffic. For these
reasons, we suspect that the presented method will be limited for detection and mitiga­
tion of high-volume DDoS threats, but experiments with low-volume attacks will still be
conducted.

4.2.2 Real-Time Performance

During the real-time DDoS mitigation, performance is one of the key aspects. Through­
put of the network cannot be significantly degraded during the ongoing mitigation, so the
security device does not create a bottleneck on the network. For this reason, it is compu­
tationally infeasible to analyze each incoming packet in the M L method and wait with its
forwarding until a decision is made. This would limit the throughput so significantly that
DoS situation for the majority of the clients could still occur because their packet would be
timeouted while waiting for the M L algorithm to draw a conclusion.

For these reasons, the mitigation itself needs to be performed in a way that the packet
forwarding engine can do a quick lookup whether to forward a packet based on single,
easily computable rules so that the incoming data are processed with minimal latency. This
principle applies on both forwarded and dropped traffic. Therefore, our machine learning
method cannot aim at executing a deep per-packet inspection, but rather analyze data that
describe the traffic as a whole - such as metadata, various statistical features, etc.

Therefore, the method needs to be designed to predict malicious activity based on
the obtained statistical information about the network data, grouped by IP addresses.
However, in order to compute these statistics, some samples of the traffic need to be collected

34

_ ML-based attack
detector

Sampled attack
traffic Rule-inferring

engine

Update

Packet flow Rule
database

Lookup

Packet processing forward/drop packet Packet processing forward/drop packet
engine

Figure 4.1: ML-based DDoS mitigation system high-level overview.

first. As it may be seen, we will not be able to decide whether the particular packet is
malicious or not with M L , but we will have to focus on inferring quick lookup rules that
will identify the malicious traffic. Another consequence of this design is that the ML-based
decision making cannot be truly performed real-time, but some time to sample enough data,
compute their statistics and make the actual prediction will be necessary. By relaxing these
time requirements on the machine learning method itself, we admit that 100% mitigation
accuracy cannot be achieved by design. This lies in the fact that some data need to be
collected first and data that are not explicitly dropped must be implicitly forwarded to its
destination. Nevertheless, if we are able to infer rules that are generic enough, a rule for
malicious traffic detected for IP A might be used to drop packets from other IPs B, C, D,
if they resemble the same packet structure, without the need of evaluating them in M L
method.

4.2.3 System Proposal

Based on the problem definition and terms clarification in the previous subsection, a high-
level concept of the system is proposed in Figure 4.1. ML-based attack detection mechanism
will receive network data from the input, extract their statistics and save them to internal
structures. If a sufficient amount of data is collected for a particular IP, it feeds these
statistics into the underlying M L model and generates a prediction. If such a prediction
detects a malicious activity for a given IP address, some of its data are sampled, and
these samples are passed to the Rule-inferring engine. Based on a rule-inferring setup (e.g.,
signature creation), a rule to drop packets with specific characteristics will be generated.
Such rule is then saved to Rule database, which is used for quick lookups from Packet
processing engine, determining the following action for a concrete packet. According to this
lookup, the packet is dropped or forwarded.

When mapping this high-level overview on the current C E S N E T ' s DDoS protector ar­
chitecture, we may consider it to be the Packet processing engine with an A P I to control
its rule database. As there are also several solutions for rule-inferring already available,
such as [56], this work will discuss the design, implementation, and evaluation of only the
ML-based Attack Detector block hereafter if not explicitly stated otherwise.

The M L detection block (Figure 4.2) is composed of three main logical parts - Feature
extractor, Statistics logger, and Machine learning manager. Feature extractor processes
packets and retrieves relevant features from them. It is currently implemented in software

35

packet Feature
extraction

Feature extractor

36.99.14.2 :

180.92.8.99: |̂ ™T^J

Current window per-IP data

window
data

Windowing

window
data

window stats

36.99.14.2 | t | | t-1 | | t-2 | ...

180.92.8.99 | t | | t-1 | | t-2 | ...

Per-IP all windows statistics

all windows
stats

trigger

trigger

Window
statistics

computation

Data pulling

all windows
stats Wndow

statistics
summarization

Statistics logger
window

summary stats

attack/legitimate Machine learning
classifier

preprocessed
stats Transformation,

standardization,
& cleaning

Machine learning manager

Figure 4.2: Detailed machine learning pipeline of the DDoS detection system.

for demonstration purposes, but its functionality can be entirely replaced with a hardware-
accelerated solution such as F P G A .

Statistics logger is supposed to store extracted features and compute summary statistics
upon them. It also exports these statistics in a format suitable for M L processing. Finally,
the Machine learning manager module is responsible for preprocessing the computed statis­
tics and managing the machine learning process as such model creation, training, and
evaluation. A l l of these concepts are described later in this chapter.

4.3 Feature Engineer ing

With requirements, constraints, and leading design ideas of the system already clarified, let
us look at the first step of any machine learning project - the data. As the system will be
working with network packets, we will aim to retrieve relevant features from these data and
transform them into a form useful for the machine learning model. This section will hence
discuss what features are extracted and how are various statistics based on them computed.
Derived statistical features are then used as the input for preprocessing module and the
machine learning classifier, as further examined in Section 4.4.

4.3.1 Packet Feature Extraction

In order to achieve as generic use-case as possible, the proposed system aims to mainly
utilize traffic metadata instead of the actual packet contents. This metadata is then used to
compute various statistical features used for classification, as described in Subsection 4.3.2.

36

Feature name Data type
Timestamp Integ ;cr
Source IP String
Destination IP String
L4 protocol Integ ;cr
Source port Integ ;cr
Destination port Integ ;cr
Headers length Integ ;cr
Payload length Integ ;cr

Table 4.1: List of extracted features from each packet.

The extracted features have been chosen based on the needs of computed statistics and
their ease of retrieval, which can be done in hardware with minimal additional overhead.
These include the packet arrival timestamp that allows the computation of timing statistics.
Since we need to know the communicating hosts, source and destination IPs are retrieved
as well. Furthermore, some statistics also require layer 4 port numbers, and thus the
transport layer protocol and port extraction are also performed. The complete list of
extracted features from each packet is displayed in Table 4.1.

Timestamps are extracted as 64-bit unsigned integers, representing the number of
nanoseconds elapsed since the Unix epoch (1 January 1970). IP addresses are extracted as
strings to ease their manipulation without extra conversions later in the pipeline. However,
byte representation is also possible if optimization of the extractor's memory usage would be
desired. L4 protocol is represented by its protocol number assigned by I A N A [55], I C M P for
IPv4 and I C M P for IPv6 both represented by same value of 1 for simplicity. Port numbers
are extracted as integers as they are directly extracted from L4 headers. Headers without
port numbers (ICMP) leave their port field values at 0. The packet length is not extracted
directly, but each packet is instead split into header length and payload length, which allow
for computation of more advanced statistics, as described in the following subsections.

By design, data are only extracted from IPv4 and IPv6 packets. Other types of traffic
would not provide any relevant information for our purposes and would unnecessarily dimin­
ish the performance. For this reason, non-IP traffic should not be passed to the extractor
at all. Nevertheless, if such scenario occurs, a NULL-l ike value must be returned.

4.3.2 From Packet Features to Traffic Statistical Features

Extracted packet features in their raw form are still not much of a use for machine learning
methods. They provide a little informational value on their own, and there are too many
of them as well. For these reasons, several data mining algorithms can be applied to
obtain information useful for learning and classification. Extracted features are then further
processed in the Statistics logger module (Figure 1.2). At this point, we want to control
which part of the continuous packet flow contributes to computed statistics and other
data mining patterns. Several data mining techniques for streams could be considered:
however, the best fitting for our purpose is the window model. The window model divides a
theoretically infinite data stream into sequences of a specified length and computes statistics
upon them independently.

37

0 1 2 1-2 H I 0 1 2 1-2 H I 0 1 2 ••• ••• 1-2 t-1 t

(a) Landmark. (b) Damped. (c) Sliding.

Figure 4.3: Window models visualization. The intensity of the background color represents
an object's weight.

Window Models

A few variants of windowing principles can be used throughout multiple use-cases. These
include landmark windowing (Figure 4.3a), damped windowing (Figure 4.3b), sliding win­
dowing (Figure 4.3c), and a few others. Landmark window clusters (groups) features from
a starting time-point (landmark) up to the current time-point. When a new landmark
starts, all items from the previous one are removed. As we are interested in the history of
the host's communication and want to see how this communication changed over time, this
model is not particularly useful for our use case.

In a damped window model, each object is associated with a weight depending on its
arrival time. The first arrived object is assigned the highest possible weight, decreasing over
time according to some aging function [69]. This windowing principle could be useful if we
were interested at the start of the host's communication and less interested in its activity
later on. Although this principle may be interesting in some networking applications, we
aim to describe the overall host's communication over time, and so putting less weight upon
the samples received later on could cause detection algorithms to perform poorly.

The sliding window model splits the stream by windows of constant length w and groups
objects in the same window together. Each object belongs only to one window, and each
window contains objects from the interval [wn, w(n + l)), where n is the window's identifier
starting from 0. The window hence "slides" from one part of the stream to the other as
time progresses. When we relax the condition of disjunct windows and allow an object to
exist in more windows simultaneously, a concept of overlapping sliding windows is received.
In contrast to damped variant, all objects within the same window are of equal importance.

As we want to monitor the client's activity over time and compute statistics upon them,
a non-overlapping sliding window model is a perfect choice. Therefore, we will group the
incoming data by their IP address, whereas each IP address will have an associated list of
windows, in which the statistics for a particular IP will be stored. Storing only a single (last)
window is insufficient because we want to look at the communication process in more detail.
For this reason, several historical windows will need to be kept. This section will further
discuss which statistics are computed and how is the whole windowing system managed.

Collected Statistics

As already indicated, values extracted from each packet (Table 4.1) are not saved into win­
dowing structures as they come. Memory conservation and relevant traffic description are
achieved by statistical features like count, mean, min, max, standard deviation, and others
computed instead. Each of them represented by a single value, achieving an acceptable
memory usage even when millions of clients are being processed at the same time.

The Statistics logger module uses 18 unique features (Table 1.2) computed and logged in
each time window for every communicating IP address. This is represented by the "Current
window per-IP data" component in Figure 4.2. However, the classifier would still not be

38

Feature identifier Description

pkts_total

bytes_total

tstamp_start

tstamp_end

pkt_arrivals_avg

pkt_arrivals_std

pkt_size_min

pkt_size_max

pkt_size_avg

pkt_size_std

tcp_pkt_count

udp _pkt _ c ount

i cmp_pkt _ c ount

port_src_unique

port_src_entropy

conn_pkts_avg

hdrs_payload_rat

window id

io_avg

Window identifier
Total number of packets
Sum of bytes of all packets
Timestamp of the first packet
Timestamp of the last packet
Average time between packet arrivals
Standard deviation between packet arrivals
Minimum packet size
Maximum packet size
Average of packet sizes
Standard deviation of packet sizes
Number of T C P packets
Number of U D P packets
Number of I C M P packets
Number of unique source ports
Source port entropy
Average number of socket-to-socket transfers
Average of header to whole packet size ratio

Table 4.2: List of stored window features for each IP address.

able to correctly predict whether the malicious traffic is present or not. If only 1 window
(such as a 1-second timeframe) was analyzed, quick traffic bursts of legitimate traffic could
produce a large number of packets in a short duration, possibly having similar characteristics
as DDoS attacks in such a short period. Therefore, statistics of a single window are not
suitable on their own. However, we may compute advanced characteristics better describing
the traffic if we combine several of these windows together. For this reason, values in each
time window are not fed into the M L model directly but represent only auxiliary values
used to compute more complex statistics.

When several of these windows are combined, a total number of 32 features is produced
(Table 4.3). They can be divided into two logical groups based on their way of computation
as Window summary statistics and Inter-window statistics. Whereas Window summary
statistics were mainly inspired by existing research like [77], and [18], Inter-window statistics
were formed based on the author's domain knowledge of DDoS characteristics.

Window summary statistics summarize the contents of all combined windows. Note that
statistics with the same names as in Table 4.2 (except pkt_size_min and pkt_size_max)
are not a sum but an average of the underlying statistical value over all windows. This
should theoretically allow the classifier to provide relevant results even if it was trained
with a different number of summarized windows than it is estimating because the statistics
over all windows are averaged. Instead of storing flat counts (like T C P , UDP, and I C M P
traffic), we compute their traffic shares, and again, provide an average of their values over
all windows. These groups of statistics aim to capture common characteristics of DDoS in a
short period of time. The rationale behind their usage is explained in the following points:

• pkts_total, bytes_total, pkt_rate, byte_rate - Volumetric attacks will have
these values significantly higher than regular traffic over an extended period of time.
Slow attacks may resemble patterns of regular traffic or be even lower.

39

Feature identifier Description

Window summary statistics
src_ip

window_count

window_span

pkts_total

bytes_total

pkt_rate

byte_rate

pkt_arrivals_avg

pkt_arrivals_std

pkt_size_min

pkt_size_max

pkt_size_avg

pkt_size_std

proto_tcp_share

proto_udp_share

proto_icmp_share

port_src_unique

port_src_entropy

conn_pkts_avg

hdrs_payload_ratio_avg

IP address for the corresponding statistics
Number of summarized windows
Difference between the last and the first window ID
Total number of packets
Sum of bytes of all packets
Estimate of pps value
Estimate of bps value
Average time between packet arrivals
Standard deviation between packet arrivals
Overall minimum (not avg of min) packet size
Overall maximum (not avg of max) packet size
Average of packet sizes
Standard deviation of packet sizes
T C P traffic share
U D P traffic share
I C M P traffic share
Number of unique source ports
Source port entropy
Average number of socket-to-socket transfers
Average of header to whole packet size ratio

Inter-window statistics
pkts_total_std

bytes_total_std

pkt_size_avg_std

pkt_size_std_std

pkt_arrivals_avg_std

port_src_unique_std

port_src_entropy_std

conn_pkt s _avg_ st d

hdrs_payload_ratio_avg_std

dominant_proto_ratio_std

intrawindow_activity_ratio

interwindow_activity_ratio

Std of a total number of packets
Std of a total number of bytes
Std of packet size averages
Std of packet size stds
Std of a packet average time between packet arrivals
Std of number of unique source port number
Std of source port entropy values
Std of number of packets per connection averages
Std of header to whole packet ratios
Std of ratio of the dominant L4 protocol
Host activity estimate within the summarized windows
Host activity estimate during the summarized period

Table 4.3: Complete list of summary statistics over several windows for a single IP.
*Std = standard deviation.

• pkt_rate, byte_rate - ppse = p^ts, bpse = by*es are packets per second (pps)
and bytes per second (bps) estimates. npkts, and nbytes are the total number of
packets/bytes collected over the whole summarized window, whereas t = te — ts, te

being a timestamp of the client's last communication in the last window and ts a
timestamp of the client's first communication in the first window. Note that these
are only estimates because a situation when the client's data are not sampled, or it

40

does not reach the sufficient number of packets to be included in the window statistics
(discussed later), may occur.

• pkt_arrivals_avg, pkt_arrivals_std, pkt_size_std - DDoS attacks are typically
performed by bots running malicious packet-crafting software that produces packets
at a specific rate and sends them to the victim. The packets are often the same, are
produced one after another very shortly, and thus arrive in regular intervals. These
features aim to detect this behavior, where we expect much smaller values for an
attack than for regular traffic.

• proto_tcp_share, proto_udp_share, proto_icmp_share - T C P is the most dom­
inant L4 protocol on the Internet nowadays. According to our measurements from
Apri l 2021 on C E S N E T ' s backbone network, T C P has a share of 78.6% and U D P
20.03% of all traffic. A regular client will, therefore, utilize these protocols with
similar share ratios. Significant deviations from them - like 99% of U D P or I C M P
share may signalize U D P / I C M P flood attack. However, these features are mutually
collinear, so some machine learning methods like Linear or Quadratic Discriminant
Analyses may not be able to provide easily interpretable results.

• port_src_unique, port_src_unique - Malicious software for DDoS packet-crafting
often utilizes port randomization techniques. These two features aim to detect an ex­
ceptionally large number of ports and port entropy on a similar principle as presented
back in Section 2.3.1.

• conn_pkts_avg - A n average number of packets sent per connections. This feature
partially relates to the previous point, as attackers often randomize source ports and
thus send a very small number of packets from them. Recall that socket-to-socket
communication is defined by a (Source IP, Source port, Destination IP, Destination
Port) 4-tuple. If an attacker does port randomization, this value will be significantly
smaller than for regular users.

• hdrs_payload_ratio_avg - Despite its name, this feature describes the ratio between
the header and the whole packet size. Some attacks (such as S Y N flood) typically
send only headers without any payload to maximize possible packet throughput by
not wasting bandwidth on the unnecessary payload. On the other hand, other attacks
aim to exhaust the target's bandwidth by creating packets with large, mostly junk
payloads. Therefore, this value is expected to be either very small (big payloads) or
close to 1 (no payloads) in the case of the attack.

The second logical group, as the name suggests, is computed based on properties be­
tween different windows. Most of these features utilize a standard deviation between all
summarized windows with the rationale that attackers tend to produce malicious traffic
with predictable metadata patterns. Even if the packets' size is randomized and duration
between their sending nondeterministic, the randomization patterns will eventually produce
relatively similar statistics in each analyzed window if we look at the traffic from a longer
perspective. The standard deviation of these statistics should indicate whether the pack­
ets are generated from a legitimate client (high variance between windows) or a malicious
source (lower variance). Another two, activity ratio statistics are also computed:

• intrawindow_activity_ratio - estimates the host's activity within the summarized
window: t e ~ t s where te is the host's communication end timestamp, ts is the com-

41

munication start timestamp, and lw is the length of the window. This gives us an
approximation of how long the host was active within the given window. As already
mentioned, malicious software generating DDoS will typically send packets in small
deterministic intervals. Therefore, its intra-window activity should be close to 1, as
new packets are flowing from the given IP constantly. Whereas legitimate hosts can
hit the start of the window a few times, their burst-based communication should not
achieve values close to 1 in a longer-term. This value is computed for each window,
and an average of them is provided.

• interwindow_activity_ratio - estimates the host's activity between all summa­
rized windows: i d™™ i d g, where nw is the number of summarized windows, ide is the ID
of the last, and ids the ID of the first summarized window. If a host is communicating
continuously, this value is 1. However, if the host does not send enough data or its
data are not sampled at all, no window entry for it will be created, so there may
be gaps in the IDs of windows to be summarized. Gaps will cause the inter-window
activity to be less than 1. Again, attackers continuously sending data will have their
ratio as 1 almost exclusively (except for slow attacks), whereas burst-based traffic of
legitimate traffic should achieve smaller values of this indicator.

4.3.3 Statistical Features Computation

The previous subsection discussed which features are calculated as well as the rationale
behind their use. This part will cover how they are calculated in an online scenario with
an endless data flow.

As it can be seen in Table 4.2, the system collects 5 counts, 4 averages, 2 standard
deviations, 2 unique counts, and 1 entropy estimation for every IP in each window. As
the system may need to process tens of gigabits of traffic per second, it is computationally
infeasible to store extracted features for all packets in each time window. As a result, we
need an effective way to compute these values without storing them in the memory. For
this purpose, stream data mining and processing algorithms will be used.

The most frequent feature - counts, can be computed easily. For each packet that
matches a certain condition, a corresponding counter is incremented by one. For example,
if the packet contains a T C P header, increment the counter for T C P segments. However,
computing other statistics like unique elements or entropies becomes a little more tricky.

The commonly-known form of the mean (Eq. 4.1) and standard deviation (Eq. 4.2)
require to process of the whole dataset before producing a result. This fact becomes prob­
lematic for our case since we cannot save the data for later processing. Therefore, stream
(known as running or moving) algorithm variants need to be used. Later on, this part will
also describe how the system computes stream entropy and the number of unique elements.

i=l

(4.2)

42

Streaming Mean Computation

The computation of the streaming mean is relatively straightforward and can be derived
from its standard form in Eq. 4.1. Assume \x as x. Then:

+ In = - ((n - l) x„_ i + x n) =
I n n

Therefore:

— — . s n — x n _ i . .
XN = X n _ l H (4.3)

n
Given the above computation and the result in Eq. 4.3, we are able to compute the

running mean by keeping a counter of how many elements were processed and the previously
computed mean {xn-\).

Streaming Variance Computation

There are several ways of computing streaming variance. Nevertheless, some of them are
numerically unstable. Welford's algorithm [113] provides a numerically stable way of online
variance computation in a single pass. This is achieved by keeping an auxiliary value s
updated for each new element (Eq. 4.4) along with running mean x (Eq. 4.3). After all the
elements are processed, streaming variance is computed according to Eq. 4.5. Streaming
standard deviation is then a square root of the variance, as usual: a = x / i 2

sn = s„_i + (xn - xn) * (xn - xn-i) (4.4)

s2 = - A r (4.5) n — 1

Number of Unique Elements

Determining the number of unique elements (cardinality estimation) is needed in two places.
These are counting the number of unique ports and the number of unique connections in
order to compute the average number of packets per connection. A typical way of doing
this would be to implement a set-like structure either by hashing or a tree. This principle
would be sufficient for most cases, but in the data-mining world, there is one significant
disadvantage - memory requirements.

Since we are working with data streams, we cannot predict how many elements will be
processed in advance. W i l l it be a hundred or a million? In a regular set structure, each
processed element would need to be saved, thus consuming additional computer memory
after each add operation. This behavior is highly undesirable because memory requirements
to maintain such structure could become unbearably high, eventually leading to significant
performance degradation or even program crashes. This issue is addressed by the use of
probabilistic data structures.

Probabilistic data structures are data structures with a probabilistic component, which
is used to reduce time or space trade-offs. They cannot give a definite answer but rather
provide an approximation within some maximum error range [102]. For the purpose of
cardinality estimation, the HyperLogLog probabilistic algorithm is used.

43

HyperLogLog's fundamental idea is based on the observation that the cardinality of
the multiset of uniformly distributed values can be estimated by calculating the maximum
number of leading zeros of each number in a set. Simulation of the uniform distribution
is achieved by hashing each element and logging its result to one of the multiset subsets
(buckets). A n estimate of distinct elements is then calculated as 2^, where N represents
a harmonic mean of the maximum values of observed leading zeros of each bucket [40] [38].

The standard error of HyperLogLog can be controlled by the number of buckets and
their width. In most available libraries, the bucket's width is determined automatically, and
only the parameter n is accepted. Parameter n defines the number of buckets as m = 2 n ,
and the maximum error is then typically about a = 1.04y /m [38]. This allows us to estimate
cardinalities beyond 109 with a typical accuracy of 2% while using 1.5 kB of memory. In
our case, setting n = 9, and thus achieving a standard error of 4.6%, is totally acceptable.

Entropy Computation

Source port entropy is computed using a mechanism of sampling alongside a standard way
of Shannon's entropy computation specified in Eq. 4.6. Online data stream sampling can
be done by a number of techniques, the proposed system using Reservoir sampling.

Suppose the objective is to maintain a random sample of n elements without replace­
ment from a stream of N elements, where N is not known a priori. Let the elements be
ai, a,2, • • • a a t - In Reservoir sampling, the first n elements of the stream are deterministically
included in the sample. For t > n when a^+i arrives, it is included in the sample with the
probability If an element is selected to be included in the sample, a randomly chosen
element from the current sample is replaced. This way, the resulting sample is equally likely
to be any of the subsets of size n composed of stream elements a\, a<2, • • • ajv [64].

If a sufficient number of samples with respect to the window length was given, this
technique should provide a sufficiently accurate estimate of the source port entropy corre­
sponding to a particular IP address. Accuracy for large streams can further be improved
by utilizing specialized techniques for sample entropy [91] or with techniques designed to
compute entropy directly from streams [22].

4.4 M a c h i n e Lea rn ing P ipe l ine

With respect to various considerations regarding the system design outlined in Section 4.2,
the following pages will present a view of the whole system pipeline. As already discussed,
the ML-based detector will accept (sampled) network packets, compute, store, and group
its relevant statistics, and provide them for further processing after a sufficient amount of
them was collected. The provided statistics will further have to be preprocessed and finally
fed to the M L model, determining whether they are malicious or not (Figure 4.2). The
following section will examine the functionality behind each of these pipeline components
in more detail.

i=l
(4.6)

n

44

4.4.1 Feature Management

The process of how features are extracted and computed has already been described in
Section 4. This subsection will now put these statistics into the M L pipeline and explain
how they are fetched for further analysis and processing.

As shown in Figure 4.2, the extracted packet features are firstly processed in the "Cur­
rent window per-IP data" component of the Statistics logger. This component produces
per-IP window features shown back in Table 4.2. Nevertheless, the pipeline also needs to
control the window creation.

Although this could be done internally, a better approach is to let an external process
handle windowing by issuing external signals (triggers), marking the end of the current
window, as well as starting the new one. This gives more control to the process using the
Logger and allows for easier multithreading, where the management thread is in charge of
windowing, and worker threads handle packet logging and statistics computation.

Upon each window end, we need to determine whether the gathered statistics for a
particular IP address are usable. In this context, usability is considered a simple check
against the threshold of minimum packets per a given window. Consider a scenario when
only a single packet in a window was received. Processing such a window would make
statistics like averages, standard deviations, unique counts, min, max, and others worthless
because 1 sample is simply not enough to generate a representative statistic of the whole
window. Windows with such small values could potentially skew the statistics of the whole
communication, so we want to filter them out prior. Specifying a minimum threshold, say
10 packets per second, will ensure that windows with fewer data will not be included in the
statistics and thus not skew it.

After the window statistics are filtered out, those who satisfy the minimum packets
conditions are recomputed, and Window summary statistics from Table 4.3 are obtained.
They are then saved to the "Per-IP all windows statistics" component in Figure 1.2. As
already mentioned in Section 4.3.2, we want to look at more than one window in order to
provide relevant classification results. For this reason, a data-pulling mechanism needs to
be designed.

Retrieval of all window statistics needs to be controlled similarly to window statistics
for the current window. A threshold of the minimum number of windows is specified, and
statistics are only retrieved if this minimum was reached. Therefore, a "Data pulling"
component is suggested, which lets the caller know if there are any available IP addresses
with a sufficient number of windows to be processed. If yes, the caller may utilize its
interface to retrieve those window statistics.

After all of the window statistics for a particular IP are pulled, they are summarized,
primarily by computing averages of all processed windows. Inter-window statistics (Ta­
ble 4.3) are computed as well. Finally, after all these steps, statistical features for a given
IP are returned for further processing and classification.

4.4.2 Data Analysis

Although not a direct part of the M L pipeline itself, data analysis is necessary for most
machine learning projects. Data analysis aims to reveal relationships between data and
thus provide valuable intelligence for the machine learning engineer. In general, there are
three types of data analyses according to the number of variables considered: univariate,
bivariate, and multivariate.

45

Univariate data analysis aims to describe only one variable. Univariate statistical de­
scriptors used in this project include the mean, median, variance, kurtosis, and others. The
visual univariate analysis utilizes boxplots, empirical cumulative distribution functions, his­
tograms, and kernel density estimates.

Bivariate data analysis examines the relationship between two variables. These can be
two features, or a feature and a target variable. It is often beneficial to add target variable y
to traditional univariate plots like boxplots, histograms, or kernel density functions, which
will then display the distribution of the variable with respect to y. The proposed system also
utilizes this feature. Another possibility is to display bivariate relationships are scatterplots.

Multivariate data analysis compares multiple variables to each other. This creates 3D
(for 3 variables), or generally N D plots. Due to low interpretability by humans, this type
of analysis is not used.

4.4.3 Data Preprocessing

Data preprocessing is a set of data filtering and transformation techniques applied to the
data before passing them to the machine learning method. Preprocessing is used to im­
prove the quality of data, which simplifies their processing and enhances the learning and
classification capabilities of the M L algorithm. Typical actions performed in these steps
include data cleaning, encoding categorical and non-numeric types, data standardization,
and alternatively performing feature projection or selection. This subsection will further
present some of these techniques performed in the proposed system's pipeline to achieve
maximum performance.

Cleaning

Data cleaning generally includes handling the entries with missing values and optionally
removing redundant features or entries with outliers 3. These practices are typically crucial
for noisy data or data coming from measurements prone to error. Missing values and
outliers removal are not relevant for the proposed system since all features are generated by
the Statistics logger module. Therefore, we do not expect any missing values on the input.
Outliers are also not a problem since we know that they originate from a valid source and
thus are not a product of an invalid measurement or other error.

Nevertheless, not all statistical features from the Statistics logger's output are us­
able for classification. Therefore, the cleaning phase drops src_ip, window_count, and
window_count columns before further processing described later in this section. The
src_ip column is used for feature grouping (Section 4.4.4), whereas window_count and
window_span are only informational and are not used for any specific purpose in the cur­
rent version of the system.

Variable Encoding

Variable encoding procedures are used for non-numeric values or numeric categorical values.
In these qualitative 1 variable type has to be converted to a quantitative type, so that
machine learning algorithms will be able to process it. There are many types of encodings
based on the use-case, one of the most popular being dummy encoding. Nevertheless,

3 An observation that lies an abnormal distance from other values in a random population sample.
4 A property that cannot be numerically measured.

46

as our input features are produced internally, they have been intentionally chosen to be
representable by quantitative numerical types, and thus no variable encodings are required.

Standardization and Normalization

Some machine learning models such as neural networks or SVMs require their input features
to be in the same interval. In some cases, unsealed input variables can result in a slow,
unstable learning process or even causing learning to fail. These problems can be avoided
by input features scaling. Scaling can be done by the standardization or normalization
techniques applied as a part of the preprocessing pipeline.

Normalization is the process of rescaling the original data into the specified interval,
most typically [0,1]. Normalizing the value x is done via the MinMax function shown in
Eq. 4.7, where xmin and x m a x represent the minimum and maximum values of the given
feature across the whole training dataset.

Standardization (whitening) means rescaling the distribution so that the mean of ob­
served values is 0 and the standard deviation is 1. Standardization assumes that the scaled
data fit the Gaussian distribution. If this condition is not met, the reliability of results or
the M L model's learning ability may be negatively affected. Standardization is achieved by
the Standard function according to Eq. 4.8. Similar to MinMax, statistical features mean
\xx and standard deviation ox have to be computed across the training dataset in prior.

o-x

The proposed system implemented and experimented with both of these techniques.
The currently preferred one is MinMax, although no significant differences between models'
performance have been discovered, as further discussed in Chapter 6.

Dimensionality Reduction

One of the last steps of M L preprocessing is dimensionality reduction. This set of procedures
is used when working with very high-dimensional data in order to prevent the curse of
dimensionality . In machine learning, the curse of dimensionality is closely related to the
peaking phenomenon. This phenomenon states that for a fixed number of training samples
N, an initial improvement of the classifier's predictive power is achieved by increasing the
number of dimensions, but increases beyond a critical value result in predictive power to
deteriorate instead [105]. This issue is tackled by techniques of feature projection and
feature selection.

Feature projection algorithms like Principal Component Analysis (PCA) or Linear Dis­
criminant Analysis (LDA) aim to transform the data from high-dimensional space into a
space of fewer dimensions. For example, P C A performs linear transformation, but other
non-linear transformations are available as well.

Instead of projecting features from one space to the other, the process of feature selection
selects a subset of the most relevant features without transformation. The selection is
primarily beneficial for the model's interpretability, as we exactly know which features were

5 With an increase of dimensionality, the volume of the space increases so fast that the data are becoming
sparse, causing numerous problems.

X — X.
(4.7)

47

selected and how they contribute to the overall model decision-making. This is unavailable
in projection techniques since the methods transform the state space, causing it to lose
information about the particular dimensions.

The selection process may be performed by numerous means. The most straightforward
principle depends on removing features with very low variance. More complex, already
mentioned feature selection principle with decision trees (Section 3.5) works with Gini
impurity or information gain (entropy) principles. In this case, features with the highest
decrease in the Gini index or entropy are selected as the most relevant features providing
the most information gain. Several other, like sequential feature selection and recursive
feature elimination, can also be used.

Due to the fact that the M L system uses only 32 features (Table 4.3), dimensionality
reduction techniques are not used as a part of the pipeline by default. However, the system
was designed so their functionality can be easily plugged in and turned on and off as
required, as further discussed in Chapter 5.

4.4.4 Mode l Training

After extracting, analyzing, and preprocessing the data, they can finally be fed to the
machine learning model. After the model is trained, we typically want to evaluate its per­
formance on yet-unseen data. For this reason, the dataset is typically split into two separate
parts - train data and test data. Train data are used to fit the model parameters and test
data to evaluate the model's performance, such as by computing prediction accuracy. See
Chapter 6 for further information about model evaluation.

In our case, one additional action with the data must be performed before the training.
In general, M L methods expect that training samples are not mutually dependent. This
assumption is almost always wrong, but we can improve classification capabilities if we
have information about their dependence. Recall the functionality of the Statistics Logger
module from 4.4.1. After a sufficient amount of windows for a particular IP address are
collected, they can be pulled from the structure. Such pulled windows are then summarized,
additional statistics are computed, and so a new dataset sample is created. However, the
given IP address will probably communicate longer, creating new windows containing its
particular statistics. Again, after sufficient numbers of these windows are collected, they
may be pulled, processed, and another dataset sample created. This can become somewhat
problematic because we obtain several highly dependent dataset samples (coming from the
same IP).

If such highly dependent samples were present in both training and the test dataset, the
M L method would perform excellently during the evaluation phase but might fail miserably
in the real world. This is based on the fact that if a yet-unseen but highly dependent element
is classified, a M L algorithm should have an easy time because it resembles very similar
characteristics to the data used during the training. This phenomenon could significantly
skew the method evaluation results and thus needs to be avoided.

The above-mentioned situation could be solved by defining a common feature for each
strongly dependent sample and grouping them based on it. Such a common grouping
feature is the IP address, which is prepended to each created sample (Table 4.3). The
dataset splitting mechanism then needs to respect these groups and ensure that samples
from the same group will not be split between train and test dataset subsets. By enforcing
this splitting policy, more accurate and unskewed results of dataset evaluation may be
obtained.

18

All data

Train data Test data

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Fold 1 Fold 2 Fold 3

Model fitting

Final evaluation Test data

Figure 4.4: 3-fold cross validation with additional test split.

4.4.5 Mode l Selection

When the dataset is fully prepared, and its elements are properly grouped, we may finally
select the most appropriate machine learning model. This process is known as model selec­
tion. The model can be chosen according to different criteria. In our case, the concerning
parameters are accuracy, low false-positives ratio, and computational complexity.

In an ideal ("data-rich") scenario, the dataset would not be split into two but rather
into three disjunct subsets - training, validation, and test. The candidate models would be
fit on the training set, evaluated and selected on the validation set, and the performance of
the final model reported on the test set [46].

Nevertheless, splitting the dataset into three parts is often too data-demanding, which is
a problem in most M L projects. For this reason, approximation techniques like probabilistic
measures and resampling methods are used for the model selection. Probabilistic methods
are only applicable for simpler linear models, so resampling methods are typically preferred.

This project compares and selects models using Cross-validation (CV), a popular method
based on resampling. This procedure splits the dataset into k subsets (called k-fold C V) ,
performs the training on k — 1 of them, and evaluates the fitted model on the remaining
one. The process is then repeated for every combination of k — 1 subsets. The final model's
evaluation result is computed as an average over the results of all combinations. Similar
to regular train-test splitting, the technique determines the model's ability to predict yet-
unseen data during the training. However, since the performance evaluation is run multiple
times across different dataset subsets, the final performance estimation is generally more
accurate and thus better represents real-world scenarios while being very efficient with the
data it uses. In some cases, the available data is split before the C V is applied (Figure 4.4).
This creates another test dataset subset, which may be used for final evaluation after the
best model with its hyperparameters is selected based on the C V procedure.

In the system, cross-validation is used for model performance comparison as well as
model evaluation like validation and learning curves plotting.

4.4.6 Hyper-Parameters Optimization

The process of hyper-parameter fine-tuning is typically interleaved with or as a part of
the model selection process. Hyper-parameters are parameters of the model that are not
directly learned within estimators. Typical examples are the number of neighbors in K -
nearest neighbors or the number of neurons in the hidden layer of a neural network. During

49

the optimization procedure, we aim to find the values for these parameters that perform
the best upon the analyzed dataset.

A n approach to solve this problem is to define a parameter space to be explored and
use the Cross-validation technique, as explained in Subsection 4.4.5. In such a scenario, the
model is trained with combinations of hyper-parameters from the parameter space, and its
performance is estimated with C V . The combination of parameters with the best score is
chosen as the best model configuration.

There are numerous ways of how to search the parameter space and thus find the
best combination. This project uses the technique called GridSearch, which exhaustively
generates candidates from a grid of parameter values and evaluates the model for each
such combination. This method provides the best results but might be computationally
costly because the whole state space needs to be explored in a "brute-force" manner. Other
techniques like RandomizedSearch or various heuristics also exist. These do not explore the
whole parameter space but only its subset, resulting in a much faster search process at the
cost of typically finding a local maximum instead of the global one.

4.5 D D o S Datasets

Despite all design considerations discussed throughout this chapter, the machine learning
system would not be able to provide relevant decisions without quality balanced datasets.
Such datasets are required to resemble patterns of both legitimate and attack traffic re­
alistically. Additionally, datasets in their raw P C A P form are required since the project
utilizes a custom feature extractor. As discussed further in this section, obtaining such
datasets proved to be quite problematic. The section further looks at various publicly
available datasets, briefly describes them, and explains why they were or were not used in
the project. Modifications and transformations of used datasets will also be outlined. The
provided datasets list is not exhaustive but covers most of the relevant public datasets to
this day, so its usage as a reference for future research is possible.

4.5.1 Current State of Public Datasets

In general, the field of DDoS detection and mitigation suffers from a severe lack of availabil­
ity of quality datasets resembling the behavior of modern computer networks and threat
actors. Currently, there is no standardized dataset used for testing state-of-the-art de­
tection techniques. This fact has led various research works to utilize various types of
non-standard, sometimes exotic datasets. These are often outdated, irrelevant to the DDoS
field (e.g., datasets for intrusion detection), or publicly unavailable. They are either self-
generated or captured from internal networks and kept in secret.

This phenomenon is mainly caused by privacy issues because packet payloads and IP
addresses cannot be publicly shared. Another reason is the fact that DDoS traffic is not
trivial to capture due to high packet rates and overall overload of network equipment
during an active attack. On top of these setbacks, one has to think about a competitive
struggle between big players in the industry. There is no doubt that the market leaders like
Akamai, Imperva, or Cloudflare have their own DDoS traffic from past attacks captured
but are unwilling to make it public as the data are precious commodities nowadays. As far
as the author of this document is aware, C E S N E T does not have such DDoS attack capture
available.

50

Historically, a to-go variant for DDoS and generally intrusion detection was the K D D -
99 dataset [110] created at The Fifth International Conference on Knowledge Discovery
and Data Mining 1999. The dataset is provided as a file with 41 high-level features de­
scribing the user's session activity like the number of accessed files, opened shells, or bytes
transferred between the communicating parties. Its cleaned and improved variant, NSL-
K D D [104], was, and respectively still is, a popular choice for testing intrusion detection
systems. Although designed for intrusion detection, it also contains several DoS-labeled
sessions and thus was widely used for DDoS detection M L projects as well. However, very
few features from the dataset are actually usable for DoS purposes, and thus the dataset
was mainly used because nothing "better" was available at that time. As reported by [80],
KDD'99 was used in 149 research articles across 65 journals between 2010 and 2015. In
some of the recent DDoS detection-related research, N S L - K D D is still being used [31]. Sev­
eral other datasets for DDoS methods validation created between 1998 and 2014 have also
been mentioned in [7], but most of them are not publicly available to this day anymore.

In recent years, several popular datasets for IDS and D(DoS) detection have been pub­
lished by the Canadian Institute of Cybersecurity (CIC) in cooperation with the University
of New Brunswick. These include datasets ISCXIDS2012 [15], CIC-IDS2017 [17], CIC DoS
dataset 2017 [16], CSE-CIC-IDS2018 [18], and CIC-DDoS2019 [19]. They have become
relatively popular in the community, and most of the published papers nowadays use one
of them for training and evaluation purposes. However, several problems have emerged
during their testing with our system, as described later in the section. Therefore, finding
a non-outdated, well-documented dataset of raw P C A P data with acceptable quality is a
relatively challenging task nowadays.

4.5.2 Attack Traffic Datasets

Due to the higher number of available datasets with questionable quality, the project did not
restrict itself to a single dataset only. Instead, several datasets were downloaded, tested,
and intermixed to produce the final result. This process ensures better generalization
capabilities of the trained model as well as more accurate results with respect to real-world
scenarios. Most of the datasets are publicly available online downloadable by anyone. Two
datasets are available after their owner's approval, and one is a private dataset of legitimate
traffic captured on C E S N E T ' s networks.

C A I D A "DDoS Attack 2007" Dataset

C A I D A "DDoS Attack 2007" Dataset [20] is currently one of the most popular DDoS public
datasets. It contains approximately one hour of anonymized traffic traces from a real DDoS
attack on August 4, 2007 (20:50:08 U T C to 21:56:16 U T C) . The data consist of a volumetric
attack type, which attempts to block access to the target server by consuming computing
resources of the server and underlying network infrastructure.

The one-hour trace is split up into 5-minute P C A P files. The total size of the dataset is
21GB. C A I D A states that it contains only communication between the attackers and the
server, with non-attack traffic removed as much as possible. The dataset is only available
after approval from C A I D A through a data access request form.

After downloading, the dataset was separately split into attacker's requests (to-victim)
and responses (from-victim). For our purpose, only the attacker's traffic was the point of
interest. Therefore, all 5-minute traffic captures were merged into a single P C A P file and

51

processed like that. After these filters were applied, the modified dataset contained 85 M
of packets, 8736 unique IP addresses, and span 36.1 minutes.

Although the dataset is quite old, it contains precious information about real DDoS
attacks and their characteristics. Nevertheless, its older age may cause some characteristics
not to correspond to attacks in modern network environments. These primarily include
timing, as modern networks can transfer data at much higher rates with lower round-trip
times. According to the protocol hierarchy analysis, the dataset is composed of 91.94% of
I C M P traffic, above 8% of T C P traffic and a only a few U D P segments. For these reasons,
it may be need to be combined with other, fresher datasets to resemble as many real-world
characteristics as possible.

CIC-DDoS2019

CIC-DDoS2019 Evaluation Dataset [19] looks very good on the paper at first glance. It is
supposed to contain various DDoS attacks like U D P flood, S Y N flood, WebDDoS, NetBIOS,
and many others. The dataset is split into two days, each containing a series of raw P C A P
files and an associated C S V with per-flow features already extracted.

Although the C S V variant seems to be comprehensive and well-labeled, working with the
P C A P version is not straightforward at all. Firstly, time-interval captures were merged into
one file with the mergecap utility. According to the dataset's webpage and C S V analysis,
the attacks should come from 172.16.0.5, so the merged data were filtered to only include
packets from the given source IP with tcpdump.

Despite limiting the capture to 1 source, malicious and legitimate traffic could still
not be clearly distinguished. This is because the given IP sends various types of traffic,
clearly not limited to attacks only. The other crucial factor is that the P C A P variant of
the dataset does not explicitly specify demarcations between the attacks. Although these
times are specified on the web, a manual analysis has revealed that provided timestamps
do not correspond to P C A P timestamps. At last, the amount of traffic (224 M for the first
day, 55 M for the second) is so enormous that manual analysis was also hardly performable.

Regardless of all the previously mentioned problems, a limited packet analysis was made.
During the process, it was discovered that the S Y N Flood attack, which should begin
at 11:28 and last until 17:35, starts at 16:28:42.58 U T C and only lasts until 16:43:58.06
U T C . Therefore, there is probably a 5-hour shift between actual and declared timestamps.
Nevertheless, since all other attacks are UDP-based, distinguishing their starts and ends
is not always possible. Due to these reasons, attacks were not extracted one by one, but
the whole file captures were used. This approach causes that some legitimate traffic will be
unconditionally included in the final file. This effect was reduced by additionally cleansing
the data by removing around 46 k of T C P traffic, mostly H T T P and SSH, which are indeed
not part of these attacks. The resulting files thus contain only U D P traffic and packets
from the S Y N Flood, but guarantee that no legitimate traffic is included within the capture
cannot be made.

The purpose of previous paragraphs was not to comprehensively review all dataset flaws
but to provide an overview of its state and question its quality and credibility. Despite
all of these setbacks, the dataset was extracted with the proposed logging mechanism and
marked as attacking traffic. However, it will provide sub-optimal results due to the reviewed
problems. Experiments with it will be further described in Chapter 6.

52

CSE-CIC-IDS2018

CSE-CIC-IDS2018 [18] is a dataset focused on anomaly and intrusion detection. It contains
different attack scenarios like Brute-force, Hearthbleed, Botnet, DoS, DDoS, and others
distributed across 10 days. Legitimate synthetic traffic based on profiles is also provided.
The dataset was generated on a topology of almost 500 computers.

Similar to CIC-DDoS2019, the dataset also have contains several flaws. This project
used datasets from days 02-15 (Slowloris & Goldeneye), 02-16 (SlowHTTPtest & H U L K) ,
02-20 (LOIC-HTTP & L O I C - U D P) , and 02-21 (HOIC & L O I C - U D P) . Data within these
days are provided as P C A P captures from particular computers, whereas attack targets
are specified very ambiguously. Fistly, merging of all the captures within one file with
mergecap was tried. This returned various errors probably caused by non-compliant P C A P
creation software or capture file corruption. Therefore, tcpdump -r filename .pcap -w
filename .pcap. fixed command was used to read the files and save them with tcpdump,
which erroneous P C A P captures to be trimmed. These files were then finally merged with
mergecap.

The next step was to separate attacking and legitimate traffic from the single merged
file. According to the dataset's webpage, there should be 10 attacking IP addresses in 02-
20 and 02-21. Therefore, a filter to extract all traffic from these addresses was applied via
tcpdump. While this process managed to extract 208 M of packets for these IP addresses in
02-21, none in 02-20 were extracted.

Manual analysis of traffic from supposedly attacking hosts in 02-21 shows that the
first 203 M corresponded to the first attack that day (DDoS-LOIC UDP) between 10:09
and 10:43. Timestamps were again shifted by 3 hours from U T C as in CIC-DDoS2019,
but otherwise correct. This attack was extracted perfectly - it contains all of the packets
with no other traffic, as found out by tshark analysis. However, the second attack was
apparently conducted from different IP addresses or is not present because a brief inspection
of the remaining 102 M of packets did not reveal possible attacking IPs. Therefore, only 1
attack from this day was extracted.

In the 02-20 file, despite the web stating that 10 IP addresses should be attacking, no
traffic from them was found at all. 02-15 and 02-16 files were also not used due to an
enormous amount of P C A P errors, which rendered these captures unusable.

Despite all the setbacks, extracted traffic from 02-21 was marked as attacking and used
within the project. The one extracted attack has a solid quality, but several other attacks
could not be used due to mislabeling of attackers' IP addresses or P C A P errors.

CIC-IDS2017

Intrusion Detection Evaluation Dataset (CIC-IDS2017) [17] from the Canadian Institute
of Cybersecurity wants to address various flaws from IDS datasets created by 2017. These
include a lack of diversity and volume, anonymization of packet data, and general inability to
address current attack trends. The dataset comprises 5 days of traffic containing abstraction
behavior of 25 legitimate users, Brute-force, DoS and DDoS attacks, Web and Database
attacks, infiltration, and port scanning. In our case, legitimate traffic and DDoS attacks in
the captures from Monday, Wednesday, and Friday are the main point of interest.

As Monday is declared to contain legitimate traffic only, we used this capture file without
any modifications. It contains 11 M packets, including A R P s and control traffic like ICMPv6
messages. IP, IPv6, and I C M P traffic could potentially be filtered with a particular tcpdump

53

command. However, since the M L system is supposed to ignore undesirable input, the file
can safely be processed as is.

The capture from Wednesday is declared to contain Slowloris, Slowhttptest, Hulk, and
Goldeneye attacks from a single IP address. In order to extract these attacks, a tcpdump
filter with source and destination IPs was used. The first attack (Slowloris) is supposed
to start at 9:47. As found out, the times are probably specified in local times as the start
of the attack was found to be 12:48:46 U T C based on the manual analysis. Timestamps
thus approximately correspond to the times declared on the webpage with a 3-hour shift.
However, the last attack - DoS GoldenEye actually ended 3 minutes earlier.

Friday's capture is described to contain A R E S Botnet traffic, port scanning, and DDoS
LOIT traffic between 15:56 and 16:16. The DDoS is declared to come from 3 distinct ma­
chines. Nevertheless, their IPs are merged into one - 172.16.0.1 due to the incomprehensible
use of N A T within the network environment. The victim machine is also under N A T with
a private IP 192.168.10.50. Wi th this knowledge, traffic between attackers and the victim
was filtered.

Similarly to Wednesday, Friday's timestamps were again shifted 3 hours from U T C ,
but otherwise correct. Manual analysis has revealed that the port scan started at 17:51
U T C sent around 162 k packets to various ports, looking more like T C P S Y N Flood with
randomized destination ports. H T T P DDoS attack was started at 18:56:31 U T C and lasted
until 16:16:12 U T C with around 926 k packets.

Although an acceptable quality, the problem with this dataset is that all attacks come
from a single IP. Therefore, they will not produce many dataset entries and could not be
used in both train and test dataset subsets due to entries grouping (Subsection 4.4.4).

4.5.3 Legitimate Traffic Datasets

As discovered, datasets of legitimate traffic are much easier to come by than datasets
containing DDoS attacks. These are available in several places, either as unrestricted public
or public on request. This subsection will present a few datasets of legitimate traffic that
were used within the project.

C A I D A Anonymized Internet Traces Dataset

CAIDA Anonymized Internet Traces Dataset [21] contains traces collected from high-speed
monitors on a commercial backbone link. Data are provided by C A I D A to encourage
research on the characteristics of Internet traffic like including application breakdown, se­
curity events, geographic and topological distribution, flow volume, and duration. Data are
collected regularly since 2008. Similar to C A I D A ' s "DDoS Attack 2007" Dataset, data are
also available only after a data access request is made.

This project utilizes anonymized traces from the 2016 Equinix Chicago passive moni­
tor. In this case, the captured traffic is split into 1-minute traffic intervals. Each file has
around 1 G B of size when compressed, containing between 20 and 40 million packets with
anonymized IPs and trimmed L4 payloads. 3 such files from January 2016 and 3 files from
March 2016 have been merged, creating a small sample of legitimate traffic. Many more files
could have been used, but legitimate traffic from other sources was also used, so additional
samples from this dataset were not needed.

54

C E S N E T i—> A C O N E T Traffic Capture

More samples of legitimate traffic were retrieved from a private capture between C E S N E T
and A C O N E T networks. The capture has been made on June 18 2018, lasts 29 m and
26 s, contains over 509 M packets, and its uncompressed size is 393 G B . IP addresses are
anonymized and payloads encrypted to preserve privacy. Since there have been no re­
ported attacks at the time of capture, we suppose all the traffic is legitimate, although this
statement cannot be interpreted ground truth.

CIC Synthetic Data

Some datasets from CIC contain legitimate synthetic traffic generated using user profiles.
Although it is generally non-trivial to distinguish legitimate and malicious traffic in these
datasets, some dataset parts are marked as "legitimate only" and thus can be safely used
as legitimate traffic samples. These include June 11, 2010, in ISCXIDS2012, and July 3,
2017, in CIC-IDS2017. Therefore, synthetic traffic from CIC datasets was also extracted to
complement real legitimate traffic from C A I D A and C E S N E T - A C O N E T captures, although
real-world traffic will always be preferred.

4.5.4 Other Datasets

This subsection will briefly describe other available DDoS datasets that were not used
within this project but may be helpful in other circumstances or as future work.

D A R P A 2009 Intrusion Detection Dataset

DARPA 2009 Intrusion Detection Dataset [68] looks ideal for our purposes. It is a syn­
thetically generated dataset with H T T P , SMTP, and DNS legitimate background traffic
to emulate hosts' behavior on the Internet. It is composed of over 7000 P C A P files with
around 6.5 T B of the total size. However, it is available only by request via the I M P A C T
project [53]. The requests are only available for researchers in the United States and several
other approved locations, the Czech republic not being on the list. Therefore, this dataset
was unable to be obtained.

CIC DoS Dataset 2017

CIC DoS dataset 2017 [16] is supposed to contain Slow H T T P attacks generated using
different tools. Nevertheless, similar to other CIC datasets, it is highly disorganized and
hard to interpret. The dataset is composed of a 4.4 G B P C A P file and the text document
attacks.txt describing the attacks. The file contains 26 lines in the following form:

slowread to 74.55.1.4 after 11:02 662 minutes

As it may be seen, an example line from the file specifies the type of attack, the tar­
get, and the starting timestamp. However, there is no information about attack source
IP addresses, and the timestamp is highly ambiguous as there is no ending of the attack
specified. On top of that, the dataset's webpage states that attack traffic is intermixed with
legitimate one, but there is no information about how such traffic can be identified. Sup­
posed attack traffic (with a destination IP defined by the file) was extracted with a custom
script. After the extraction, the file containing packets only with destination IPs specified

55

by attacks.txt contained 788k packets with a size of only 9 5 M B . Although manual in­
spection has shown signs of the attack, it was still unclear whether such extracted data
contain only attack traffic or some regular was still present. However, only-attack traffic
could not be extracted due to the lack of information, so dataset usage was abandoned.

CIC ISCXIDS2012

ISCXIDS2012 [15] was the first dataset from the Canadian Institute of Cybersecurity, which
utilized models and profiles to facilitate the reproduction of certain real-world behaviors on
the network [101]. The dataset is split into 7 days of over 83GB of raw packet data. Each
day contains normal activity, and some contain intrusion data like brute-force, network
infiltration, and DDoS. However, its interpretability is not optimal again.

Due to labeling by flows using X M L files, a custom X M L parser distinguishing attacking
and legitimate IPs was written. However, the dataset uses a very limited scope of source IP
addresses, which are even usually the same for both attack and legitimate traffic. Therefore,
attack traffic cannot be easily extracted from the P C A P by IP addresses, but per-flow
extraction needs to be made. The dataset contains only slightly above 40 thousand DDoS
flows, out of which some were found to be mislabeled by manual analysis. Therefore, we
conclude that writing a custom per-flow packet extractor is undesirable due to low possible
benefits for our use case. Although attack traffic was not used, legitimate synthetic packets
from the 11th of June 2010 were extracted for complement already-collected legitimate
samples, as mentioned in Subsection 4.5.3.

NDSec-1

NDSec-1 [72] is a synthetic dataset created by incorporating traces and log files of various
cyber-attacks performed at Fulda University in Germany. It was created in 2016 to bench­
mark existing intrusion detection systems and support research in new detection techniques.
Attacks were performed using state-of-the-art tools in three distinct attack scenarios [6].

NDSec-1 covers a set of classic and novel attack vectors encapsulated within simple but
realistic scenarios that can be adopted to most network environments easily. The dataset
includes raw network traces, including pay load along with Syslog and Windows logs. Data
are labeled by bidirectional flows as either legitimate or malicious with additional labels
specifying an attack category (such as DoS, brute-force, probe) and optionally additional
information about a particular service being attacked.

Although the dataset contains several DoS labeled flows, it was not used within this
project. Similar to CIC ISCXIDS2012, labeling is done by flows, and so malicious DoS
packets would need to be extracted with a custom script. Since only 2330 flows are con­
sidered a malicious DDoS [60], no attempt to extract them was made due to low possible
gains by such an action.

C S V Datasets

The following datasets could not be used because they provide only comma-separated-
values data (often only on a per-flow basis) with an insufficient amount of information for
our purposes:

• KDD-99 [110]

• N S L - K D D [14]

56

• Bogazigi University Distributed Denial of Service Dataset [33]

There are also a few datasets on a M L community webpage www.kaggle.com such as [58].
However, these are either in unusable for our purposes (CSVs) or provide absolutely no
descriptive information, so their usage and interpretability would be highly questionable.

4.5.5 A Note on Generating Custom Datasets

As discussed throughout this section, out of all examined datasets, only a few suffice. The
lack of information, a different purpose, or incorrect or flow-based only labeling caused
that a majority of public datasets could have been used only partially or not at all. Since
the proposed mechanism does not need the attack and legitimate data to be intermixed,
generating an own DDoS dataset may also be considered. Although not a direct part of the
project, this subsection will briefly suggest how such a dataset could be generated. This
could be helpful for further development or as future work.

As already indicated, there is enough synthetic and even real legitimate traffic available.
The biggest problem is the attack data. When generating them, one must ensure that their
properties are realistic with respect to modern computer networks and other technologies.
This can be ensured by using commonly-used operating systems, real-wo rid networking
equipment, and software commonly used by threat actors.

Popular choices for generating simple volumetric DDoS attacks are High Orbit Ion
Cannon (HOIC), its predecessor LOIC, and updated variant X O I C . These provide a simple
graphical interface, allowing to launch of a D(DoS) attack for almost anyone. Depending
on the type of attack, various Linux command-line tools like hping3 or Scapy can also
be used to craft custom packets by more advanced attackers. Slow DDoS attacks may be
generated by utilities like HULK, Slowloris, RUDY, Tor's Hammer, and many more. It may
also be desired to simulate amplification attacks with services like DNS, N T P , and I C M P
(Smurf attack) to cover a wider range of attack vectors.

When creating a custom dataset, note that it is important to generate longer-lasting
attacks from multiple IP addresses. According to the extraction mechanism functionality,
a single dataset sample is created for several time windows for 1 IP address. Therefore, a
quality dataset would contain at least several minutes of traffic from 10 or more IP addresses.
Of course, more traffic with more IP addresses would create more dataset entries.

57

http://www.kaggle.com

Chapter 5

Implementation and Usage

After outlining the motivation, presenting theoretical background, and discussing design
concepts, this chapter will take a look at selected parts of the system's implementation.
The project's purpose was not to implement a method instantly usable in the production
but rather to ensure the functionality of the designed M L system proposal. Therefore, no
big emphasis was put on the system's performance, although several memory optimizations
have been made. Instead, the focus was shifted on flexibility so that future experiments
can be performed without the need for significant code changes.

Due to excellent support for data processing and various machine learning libraries,
Python was chosen as the implementation language. Machine learning functionality is
provided by Scientific Learn (Scikit) [82] and XGBoost [24] libraries.

The whole system was split into a series of 5 independent scripts, which resemble the
machine learning pipeline described throughout Chapter 4. A l l of these scripts are highly
configurable with an attached Y A M L file, allowing for replication, modification, and fine-
tuning of the pipeline's functionality without the need to touch the code. For demonstration
purposes, a single-command run script is also provided. It executes the whole pipeline with
a single command and presents the results to the user. The following chapter will now
examine the above-mentioned concepts in more detail.

5.1 Conf igurabi l i ty

Most of the machine learning projects in the development phase are typically hard-coded
solutions fit for a certain purpose according to the dataset they use. In this project, the
dataset will always have the same structure regardless of the input traffic. This is because
input packets are processed by the custom extraction mechanism usable for any P C A P or
P C A P N G files. One may thus supplement different capture files, creating a completely
new dataset with the structure the pipeline already understands. This fact allows for much
greater flexibility, as users unaware of machine learning principles may still use the model
by plugging different P C A P files at the extractor's input and observing the results.

For this reason, the project was developed to be as flexible and configurable as possible.
The aim was to provide a solution, which can be used, evaluated, and modified by anyone
with none to minimal machine learning knowledge. This is achieved with a Y A M L config­
uration file and various command-line options for each script. Options for each script can
be viewed with -h or —help options.

58

library Name:
modelNamel:

paraml: value

paramN: value

modelName2:
param: value

Figure 5.1: Models' hyperparameters configuration syntax.

Furthermore, all scripts comprising the system are configurable by a single file in
src/conf ig/conf ig.yml. Its default version is shown in Appendix B. Top-level keys define
the configured module, while the keys on the second level specify a particular module's set­
ting. Every script module can be configured with the configuration, so one script may have
(and typically has) numerous configuration keys. Configuration keys used by the particular
script are included in its help message.

For example, the user may have control over how are the IP addresses logged, such as
by specifying the length of a time window, the minimum number of packets per window,
and the minimum number of time windows to log the host. When such a dataset in
the form of a C S V file is created, aspects like feature exploration and data preprocessing
techniques can also be configured. The user may further choose a particular machine
learning model for the training and evaluation. A l l configuration options can be viewed in
src/conf ig/conf ig.yml or Appendix B.

The goal of most machine learning projects is to find a suitable model and its hyperpa­
rameters best for the solved task. As mentioned in the previous paragraph, the model can
be chosen simply by changing the system's configuration file. The model hyperparameters
can be provided in a similar manner through a Y A M L configuration. For this purpose,
the src/conf ig/models .yml file is provided with the syntax as displayed in Figure 5.1.
The top-level key is defined by library name, currently either scikit for Scientific Learn
and xgboost for XGBoost. The second-level keys specify a particular model from that
library, and the third-level keys its particular parameters. Several libraries and models can
be placed within a single file, while the system always picks only the relevant configuration
according to the specified model according to conf ig.yml.

To facilitate the creation of such hyperparameters configuration files, the system script
model_manager .py allows exporting such configuration using the —params-save option
after performing grid search, as further elaborated on in Subsection 5.2.4.

5.2 P ipe l ine Scripts

The machine learning pipeline is not implemented as a simple monolithic program but rather
split into 5 independent scripts: dataset_creator, dataset_editor, dataset_explorer,
model_manager, and mitigator. Each script implements a part of the pipeline, so the
output of one is typically used as an input for another. Their typical pipelined usage is
depicted in Figure 5.2. The section will briefly describe each of these scripts' features,
functionality, and submodules.

59

Attack traffic PCAP

Legitimate traffic PCAP
dataset_creator

Attack traffic CSV Legitimate traffic CSV

dataset_editor

Merged balanced
traffic CSV

Merged traffic CSV
dataset_exp1orer

Dataset stats & plots

model_manager

Fitted model,
fitted preprocessors

Evaluation traffic PCAP

(Attackers information)

Training, evaluation
statistics & graphs

mi tigator
Mitigation statistics

Figure 5.2: Implementation of the system pipeline through scripts.

5.2.1 Dataset Creator

The Dataset Creator stands at the start of the pipeline. It is used to transform an input
P C A P file into C S V samples according to its configuration and supplied command-line
arguments. It thus incorporates the Extractor and Statistical logger modules to retrieve
relevant features from P C A P s and compute their statistics using the windowing mechanism,
as explained in Section 4.3. The script can accept a single P C A P file, which has to be
marked with command-line argument "-p" for positive (attack) traffic or "-n" for negative
(benign) traffic. Both options can also be provided at once. In this case, the script merges
positive and negative traffic into a single output file.

Packet Processing

Packet processing includes reading each packet from the input, extracting its features, and
logging them to the Statistical logger. This functionality is provided by the packet_handler
module inside the dataset_creator package. Packet reading and feature extraction are
achieved with Scapy, a packet manipulation library for Python.

Extracted features are processed within the Statistical logger's log method. In addition
to managing feature extraction and logging, the Packet handler module also handles the
logger's windowing. As briefly depicted in Subsection 4.4.1. The windowing is performed
by checking the time of each processed packet and keeping the value of the last started
window. If the difference between the last started window and the currently processed
packet is greater than the specified window's length, a window length value is added to the
last started window variable, and the end_window() logger's method is called.

60

Statistical Logger

According to design matters considered in Section 4.3 and Subsection 4.4.1, the primary
purpose of the Statistical logger is to log processed packets in the windowing structures and
compute their relevant statistical features. For this purpose, a data structure containing
window statistics (Table 4.2), a list of source port samples, and two HyperLogLog structures
are stored for each IP address. HyperLogLogs are used for logging the number of unique
source ports and connections. In addition, another data structure containing the last packet
arrival timestamp and two auxiliary values for running variance computation, as defined
by Subsection 4.3.3, is also needed.

Based on the current design, a statistical entry is created for every communicating
IP with enough data sent in each window. When enough of these entries are collected,
the particular IP's data can be pulled by an external call. During the pull, summary
statistics are computed and returned, whereas processed window statistics for the given
IP are removed. However, if an IP host does not communicate for extended time periods,
its statistics may get stuck in the dictionary structure, never be retrieved, and thus never
be deleted. This phenomenon may cause undesired memory demands. This issue can be
addressed by data structures with a limited number of entries. Therefore, window statistics
storage is implemented as TTLCache from the cachetools library. Time-to-live (TTL)
cache is a regular dictionary structure with a limited number of entries expiring after a
specific time has elapsed. Using this structure thus guarantees that old window statistics
entries will be removed if they are not pulled within the T T L timeout.

To signalize which IPs are ready to be pulled, the Logger maintains a list of "ready"
IP addresses, which have communicated with enough traffic in at least iV windows, so a
sufficient amount of statistics was collected. Logger's A P I can then be used to retrieve this
list. When a pull for a particular IP is made, its entry from the list is removed. However,
the code using Logger may not wish to retrieve statistics for some particular IP, and a
similar situation as for window statistics - memory overflow, may occur. Therefore, this
ready list is implemented via LRUCache from the cachetools library. This structure is
similar to TTLCache with a limited number of entries. However, they do not automatically
timeout, but the least recently used entry is removed when the structure is full and a new
entry is being added. This process also helps to control the memory consumption of the
module.

Although the module is not implemented with respect to performance, another huge
memory optimization is achieved by logging the statistics in the form of numpy arrays.
These structures provide very efficient storage with C-like datatypes and padding. Wi th all
these considerations in place, the module's memory usage can be efficiently limited, thus
not exceeding the memory on regular systems or various system limits. However, packet
extraction, logging, and statistics computation in Python are very inefficient and thus not
suitable for real-time traffic processing at all.

5.2.2 Dataset Editor

The purpose of the Dataset Editor script is to modify the dataset in order to prepare it
for further processing. Its primary goals are to remove redundant fields obtained from
P C A P processing and merge two independent datasets obtained from the Dataset Cre­
ator. As already mentioned during the design discussion, features src_ip, window_count,
window_span are not used for classification purposes but are removed during the prepro­
cessing phase. Since src_ip is used for the feature grouping, it cannot be removed before

61

the dataset is split to test and train parts, so only window_count and window_span features
are dropped in this state by default. Additional features may be dropped by changing the
cleaning configuration key.

Datasets can be merged using the -m option. In this situation, one has to consider
a scenario when IP addresses from both datasets are the same. In this case, merging the
datasets without changing these IPs could create somewhat undesirable behavior since they
would be considered as coming from the same source and thus never be split between train
and test datasets. This would not be a problem if only a negligible percentage of IPs were
affected. However, if a significant portion of IPs would be the same in both datasets, the
resulting dataset splits could miss some important data features, possibly affecting overall
performance. To mitigate this issue, option -u (—unique-ips) is provided. If the option is
present, conflicting IPs are not merged as they are, but the IP with fewer samples is changed
to a random one, thus preventing the above-mentioned phenomenon from occurring.

A n additional important feature of the Dataset Editor is the ability to balance datasets.
A balanced dataset is a dataset with the same number of elements in all classes. Keeping the
balance is vital to prevent the model from being biased towards one of the classes during
the training. In practice, datasets created by extracting P C A P files are almost always
unbalanced since input P C A P s have a different amount of source IP addresses, number of
packets, and timing properties. Therefore, the option -b (—balance) is provided, which
ensures that the number of elements corresponding to attack and benign traffic is exactly
the same. By default, this is achieved by undersampling - dropping data from the class with
more elements. However, oversampling methods like duplicating the rows multiple times
or creating synthetic data are also supported. The balancing behavior can be changed by
modifying the resampling configuration top-level key.

Additional features provided by the script are dataset trimming (-t) and shuffling (-s).
Trimming functionality trims the dataset (after merging and balancing) to the specified
number of elements. This is achieved by undersampling. Shuffling simply randomly shuffles
the dataset entries.

5.2.3 Dataset Explorer

Dataset Explorer script's functionality corresponds to design concerns mentioned in Sub­
section 4.4.2. The module provides an easy interface to perform exploratory data analysis
upon the dataset retrieved from the Dataset Editor. The script may be used to print dataset
information (

_

i), print or save feature statistics to file -s, plot various graphs according to
design (-p), and determine the feature importance (-f).

Graph plotting may be controlled by the configuration's file key feature_plotter.
There, a user may specify the plots' target directory, file format, types of graphs to be
plotted, and even specify feature pairs to be plotted as multivariate scatter plots. Since
plotting all graphs may take significant time, types of created graphs can be controlled by
toggling True/False values in various second-level keys.

As it is often desired to know how to interpret the model, determining feature impor­
tance is also provided as a part of the script. By default, a "direct" method using the
Random Forest algorithm is applied. This method uses tree-based models to determine
feature importance directly from the model according to information gain or Gini impurity
reduction, similarly to feature selection principles.

Another commonly used technique for this purpose is the method of Permutation im­
portance. This algorithm utilizes an already-fitted classifier and a test dataset. Firstly, a

62

classification's performance baseline upon the dataset with the given classifier is established.
Then, iteratively for each feature, one at a time, its state space is randomly permuted. Clas­
sifications are then performed on a dataset with such permuted features. The permuted
feature for which the classifier achieved the biggest deviation from the baseline is considered
important because its modification influenced the model the most.

5.2.4 Mode l Manager

The Model Manager script incorporates element grouping (explained in Subsection 4.4.4),
data preprocessing like standardization and dimensionality reduction, and various actions
with the machine learning model itself. These actions include training of the concrete
model (~t), comparison of models' performances (-C), estimation of model parameters
using grid search (-e), and evaluation of the already fitted model (-1).

A l l of the mentioned actions are highly configurable using the configuration file. The
trained model can be selected using the model_source and model_type subkeys of the
model configuration top-level key. Model source specifies the model's source library -
scikit or xgboost, whereas model type specifies the concrete model like "bayes". Path
to model hyperparameters can be specified by the models_cf g_f i l e subkey. In case the
file does not exist or the desired model is not included within it, default model parameters
from the underlying library are used. The training and evaluation process of the model can
further be plotted with the -P option, configured via the model_plotter top-level key.

A trained model instance can also be dumped to a binary file (-d) and later loaded with
the -1 option or within the Mitigator script. The ability to perform feature selection or
projection and dump the fitted transformation objects to the file is also provided. Another
important thing that needs to be saved is data statistics for feature standardization. By
default, the statistics are computed within each run upon the training set and applied
to the whole dataset afterward. However, one may want to use statistics that have been
already precomputed or simply save the statistics for the model deployment. Saving of
the computed statistics can be achieved with the -g option, which creates a Y A M L with
average, max, mean, and standard deviation computed for all dataset features.

Hyperparameter estimation is achieved by a grid search technique. Grid search simply
takes all hyperparameter combinations from the specified hyperparameter space, trains the
model with them, and performs evaluation using cross-validation. In the end, the best
parameters are printed to standard output or saved to the hyperparameter configuration
file with the -p (—params-save) option.

Model comparison is performed via 5-fold cross-validation. Models to compare can be
specified in the comparison_models subkey within the model top-level key. Each compared
model then provides statistics about its training (fitting) time, scoring time, accuracy, F l -
score, precision, and recall by default. A n example of such output is shown in Figure 5.3.
Displayed statistical values can further be customized with the score_metrics subkey.

5.2.5 Mitigator

The Mitigator script simulates the deployment of the model in the real world. Its inputs are
a dumped model and saved feature statistics Y A M L file generated by the Model Manager.
Alternatively, the script can also accept dumped feature selector and projector files from
Model Manager if feature dimensionality functionality is required.

The primary purpose of the Mitigator is to check how the model would perform in
practice. During the evaluation in Model Manager, the model performance statistics are

63

Model
scikit.bayes
scikit.mlp
scikit.svm
scikit.random_forest
xgboost.xgboost

CROSS VALIDATION RESULTS
fit_time score_time accuracy accur_std f l
0.0163
1.5644
0.0868
0.1405

73.2325

0.0089
0.0145
0.0269
0.0152
0.1826

0.9947
0.9991
0.9987
0.9991
0.9994

0.0014
0.0006
0.0011
0.0011
0.0004

0.9947
0.9991
0.9987
0.9991
0.9994

precision recal l
0.9932 0.9962
0.9986
0.9978
0.9996
0.9994

0.9996
0.9996
0.9986
0.9994

Figure 5.3: Output of model comparison using cross-validation in the Model manager script.

computed upon already computed statistical features. In this case, one such entry can
consist of hundreds of packets scattered across multiple seconds. Labeling such entries as
attacking or legitimate provides information about the classifier's performance, but not
about how many packets were actually dropped and how many of them were forwarded.
For this reason, the Mitigator script works with packets and logs statistics related to them
instead. This approach provides a more accurate view of the mitigation progress itself.

The Mitigator uses a Statistics Logger instance in the same way as during a regular
dataset creation. However, instead of creating new dataset entries, the statistical features
are sent for preprocessing and to the classifier to make a prediction. If this prediction
signifies that an attacking IP is present, the IP is added to a deny list (implemented as
LRUCache), which simulates that traffic from a particular IP is being denied. Traffic from
both legitimate and attack sources is logged. In the end, statistics of how many packets
were allowed and denied, alongside the success rate and others, are printed.

The script is primarily supposed to read the data from P C A P files (offline) with -r. In
addition, the ability to read packets and perform classifications from a specified interface
(online mode) with - i is also included. This functionality is provided by a Scapy sniffer,
which has been implemented to run in a separate thread. In this case, the program enters
an infinite loop and is stopped by entering a Ctrl+C into the command line. The emitted
Interrupt signal is caught, sniffer stopped, and statistics printed to the standard output.
However, keep in mind that despite the included online functionality, the program is not
designed to work in online mode due to high processing inefficiencies, leading to significant
decreases in network throughput. Instead, it is provided for demonstration purposes only.

In order to print mitigation statistics in the end, the script needs to know the classifi­
cation ground truth. Such information can be supplied as a list of attackers with the -e
(—evaluate) option. The list of attackers is supposed to be in the form of I P l \ n IP2 \n ,
etc.

5.3 R u n n i n g the P ipe l ine

So far, this chapter has briefly presented how the pipeline is implemented and outlined the
most important command-line options and configuration parameters of each script. Let us
now apply this knowledge and take a look at an example of how such a M L pipeline could
be run. Firstly, a step-by-step example of its usage will be introduced (Subsection 5.3.1).
However, this process may be too complex for some users at first, so a single-command
demonstration solution is provided in Subsection 5.3.2.

64

1 dataset_creator.py -c config.yml -p traffic_attack.pcap attack.csv
2 dataset_creator.py -c config.yml -n traffic_legit.pcap legit.csv
3 dataset_editor.py -c config.yml -m attack.csv legit.csv -u -b -s dataset.csv
4 dataset_explorer.py -c config.yml - i -s stats.txt -p dataset.csv
5 model_manager.py -c config.yml -C dataset.csv
6 model_manager.py -c config.yml -v -e -p estimation_params.yml dataset.csv
7 model_manager.py -c config.yml -t -s -P -g std_params.yml -d model.bin

dataset.csv
8 mitigator.py -c config.yml -e attackers.txt -E export_stats.txt

-s std_params.yml -r traffic_verify.pcap model.bin

Figure 5.4: Sequence of commands for manual pipeline run.

5.3.1 Manual Example

Suppose we have filtered our legitimate and attack traffic into files traf fic_legit .pcap
and traffic_attack.pcap placed in the same path as the scripts. Already prepared con­
figuration file is located in relative path config.yml. We have a Python > 3.9 with all the
required modules and libraries installed. The process of executing the pipeline manually
then is depicted in Figure 5.4.

As the first step, P C A P files are converted into CSVs by extracting relevant features,
performing windowing, and computing relevant statistics (lines 1-2). Next, the created
CSVs are merged into a single dataset file while keeping the IPs unique, balancing the
dataset, and shuffling it at the end. The resulting dataset is saved as dataset.csv. Wi th
the data prepared, the exploratory analysis is performed by querying the basic information
about the dataset, calculating features statistics to stats.txt, and plotting various graphs
according to the supplied configuration (line 4).

As we gathered enough information about the dataset, several machine learning models
are chosen and written to the comparison_models subkey of the model top-level key in the
system configuration file. At this point, cross-validation is run to determine the model we
will use (line 5). According to the output analysis, we determine that a simple decision tree
model has the best decision-making times with acceptable accuracy. Therefore, we decide
to use this model for future classification. We change the model's model_source subkey to
scikit and model_type to tree. The next step is to determine the best hyperparameter
values for min_samples_leaf and max_depth parameters. We thus update the model's
estimation_params .yml subkey with the hyper parameters' names and the values to be
tried. After this, a grid search to estimate the best parameters in a verbose mode is run,
and its results are saved to the models_params.yml file (line 6).

After the best parameters are estimated, we can finally train the model with them.
Since we will also be interested in using the model later, the trained model is saved to the
file model.bin and features statistics for standardization to std_params.yml. Advanced
statistics about model evaluation alongside various plots are also requested (line 7).

In the end, we want to simulate a deployment of the trained model against a validation
P C A P dataset traffic_verify.pcap. Suppose we have specified attacking IP addresses
from the given dataset in the attackers.txt file. Mitigator script can thus be run to
perform such evaluation upon the saved model and standardization data while exporting
the mitigation information into the export_stats.txt file (line 8).

65

By executing the commands according to Figure 5.4, we have managed to successfully
extract statistics from training P C A P files, preprocessed them, chose the model and deter­
mined its best hyperparameters, fit such model, and verified its functionality in a simulated
model deployment scenario.

5.3.2 Automated Demonstration

In order to facilitate the pipeline execution for demonstration purposes, the run.py script is
provided. The script utilizes files in its default locations to perform a quick overview of the
main system parts' functionality described in Section 5.2. When run without arguments,
the pipeline execution starts from line 4 in Figure 5.4. This process prints statistics and
plots feature graphs, compares multiple models, estimates parameters, trains and saves the
model into the file, and finally performs an evaluation with the Mitigator.

Lines 1-3 are not executed by default since dataset creation may take a significant
amount of time, so its inclusion within the demonstration may be inappropriate. If the
user wishes to execute this part of the pipeline as well, the option -f (—full) can be
used. In this case, own traf f ic_attack.pcap and traf f ic_legit .pcap files used for the
extraction and traffic_verify.pcap along with attackets.txt for validation have to be
supplied. These are not included in the final submission due to their immense size and
limited space conditions.

Note that some filenames from Figure 5.4 were shortened in order to fit the figure's
width and thus may not need to correspond to the filenames used within the system's code.
Please consult run.py's lines 26-54 for the naming of demonstration files within the project.

66

Chapter 6

Evaluation

Ability to evaluate the performance of the machine learning model and alternatively inter­
pret its decisions is crucial for the practical usability of the system. Depending on the usage,
different criteria may be put on the model. Therefore, interpretation of the "best" model
may also differ across various scenarios. When choosing the final model or the final M L
pipeline as a whole, numerically expressible metrics may not be the only relevant factor,
but other requirements such as fitting time, estimation time, interpretability, scalability,
and others may also need to be taken into account.

When evaluating the system as a whole, considering only the model is not sufficient.
The process of how the data are retrieved and preprocessed must be incorporated into the
evaluation process as well. This is especially important in our case since feature extraction
and statistics computation is very flexible due to all possible configuration options.

In this chapter, a discussion on all of the above-mentioned issues will be conducted.
Firstly, relevant criteria for the system evaluation will be specified (Section 6.2). This will
be followed by the introduction of standard numerical evaluation metrics for M L models
(Section 6.1), discussion about hyperparameters during dataset creation (Section ??), and
finally, the evaluation of the model based on various experiments with available datasets
(Section 6.4). Section 6.5 will then summarize these results and discuss the suggested form
of the M L pipeline concerning performance and other relevant factors.

6.1 M o d e l Eva lua t ion M e t r i c s

As briefly outlined at the start of this chapter, there are various evaluation metrics and
criteria to determine the performance of a M L system. This section will focus on the most
commonly used numerical and visual evaluation metrics for binary classification problems.
For these purposes, terms True positives, True negatives, False positives, and False negatives
need to be firstly defined:

• True positives (tp) - outcomes where the model correctly predicts the positive class.

• True negatives (tn) - outcomes where the model correctly predicts the negative class.

• False positives (fp) - outcomes where the model incorrectly predicts the positive class.

• False negatives (fn) - outcomes where the model incorrectly predicts the negative
class.

Wi th respect to these definitions, other model classification metrics can now be defined.

67

6.1.1 Numerical Metrics

Numerical metrics for model evaluation aim to describe the model's performance by a single
numerical value. These are typically in the range [0,1], with 0 as the worst score, whereas
1 represents the perfect score. Metrics presented in this section include accuracy, precision,
recall, f-score, and Matthews correlation coefficient.

Accuracy (Eq. 6.1) represents the portion of successful classifications out of all that were
made. In order words, it gives a probability estimate of a correct prediction. This metrics
works only with balanced datasets since high class imbalance may provide a false sense of
high accuracy. This happens if the model classifies most elements of significantly smaller
classes wrongly. However, high accuracy is achieved regardless due to the influence of other
populous classes. This issue can be tackled by the Balanced accuracy metric.

Accuracy = — (6-1)
tp + tn + jp + jn

Precision (Eq. 6.2) is defined as a ratio of correctly classified elements in the positive
class to all positively classified elements. Therefore, the metric describes the ability of the
estimator not to make mistakes when classifying an object as positive. For this reason, it is
a helpful indicator in scenarios with false positives being one of the main points of interest.

Precision = (6.2)
tp + fp

Recall (Eq. 6.3) describes a relationship between correctly classified elements in the
positive class and all positive class elements. Intuitively, it is an ability of the estimator to
recognize objects that should be classified positively.

Recall = —— - (6.3)
tp + fn v '

Precision and recall metrics are rarely used separately because they have little informa­
tive value on their own. In fact, precision and recall are often in an inverse relationship,
where it is possible to increase one at the cost of reducing the other [13]. For this reason,
they are typically compared for a fixed level at the other measure (e.g., recall at a precision
level of 0.9) or both combined into a single measure such as the F-score.

F-score (Eq. 6.4) in the M L context typically represents Fl-score, which the harmonic
mean 1 of the precision and recall. By combining these metrics, F-score provides a compre­
hensive evaluation measure for M L systems, for which simple accuracy is not descriptive
enough. These include systems with imbalanced datasets or systems with differing costs of
false positives and false nagatives. A more generic F-score variant - Fp also exists, which
applies additional weights, valuing precision or recall more than the other.

precision-1 + recall-1 precision + recall

Application of recall, precision, and f-score is sometimes argued to provide a biased
estimate, and should not be used without understanding these biases [83]. Instead, [25]
suggests to use Matthews correlation coefficient (MCC) (Eq. 6.5), as it is more reliable

l r r _ '± _ 1 1

J _ _ i _ J _ _ i _ J _ n
X I :E2 ' ' ' xn "y | .

i=l

68

tp fn
fp tn

Figure 6.1: Confusion matrix layout for binary classification problem.

statistical rate which produces a high score only if the prediction obtained good results in
all of the four possible classification results: tp, tn, fp, and fn.

MCC = tp-tn-fp.fn ^
V (tP + fp) (tP + fn) (tn + fp) (tn + fn)

6.1.2 Performance Visualization

In addition to numerical metrics, the model's performance can also be visualized. Per­
formance or behavior visualization allows presenting numerous important quantities in a
single, easily interpretable plot. Techniques presented in this subsection include confusion
matrix, R O C , A U C , validation, and learning curves.

The confusion matrix (Figure 6.1) is used to visualize true positives, true negatives,
false positives, and false negatives values. It is a matrix of N x N elements (2x2 for binary
classification), in which rows represent actual class instances, whereas columns represent
predicted class instances.

The receiver operating characteristics (ROC) curve depicts a relationship between the
true positive rate (TPR) and the false positive rate (FPR) . T P R is a rate of correct positive
results among all positive samples, computed the same way as precision in E q 6.2. There­
fore, tpr = precision. On the other hand, F P R defines a rate of incorrect positive results
among all negative samples (Eq. 6.6). Plotting these values against each other (F P R =
x, T P R = y) shows relative trade-offs between true positives (benefits) and false positives
(costs). A n ideal classifier would yield a point in the coordinate (0,1), representing no
false negatives nor false positives. This scenario is rather unlikely in practice, so the model
hyper parameters are tweaked to reach the desired performance instead.

fp fpr = t — — (6.6) fp + tn

The area under (the) curve (AUC) is a value representing the area under R O C curve
(JQROC(X) dx). A U C can be interpreted as the probability that the model ranks a random
positive example higher than a random negative one [36]. A U C value of 1.0 would then
represent a model with 100% correct classifications.

Although estimation of the model's parameters should be achieved by techniques like
Grid search (Subsection 4.4.6), it may be sometimes helpful to measure the influence of a
single hyper parameter on both training and test scores. Plotting such a relationship can be
done with the validation curve, typically used to determine whether the model is overfitting
or underfitting at specific parameter values. Axis x on the plot is thus a hyperparameter
space, whereas y represents a specified evaluation metric, typically accuracy for classifiers.

Lastly, the learning curve can be used to show the validation and training scores of an
estimator for varying numbers of training samples. This tool can determine the benefit of
adding more training data or whether the model suffers from a variance or a bias error.

69

6.2 Eva lua t ion C r i t e r i a

In the case of an online M L DDoS mitigation system, the most crucial feature is the ability
to determine and mitigate the attack traffic. However, this process needs to be fast, so
network throughput will not be significantly impacted, and so the model's decisions could
affect the mitigation process as soon as possible. For this reason, we aim to pick only
high-performance models with as low classification time as possible. Since the model can
be trained offline and deployed later, the estimator's fitting time is of no importance.

Wi th timing requirements clear, let us have a look at what a high-performance model
represents. Typically, one of the key determining factors of the model performance is its
accuracy. Since the proposed system generates a dataset by itself, inbalance will not be a
concern. Therefore, the accuracy will not be biased. However, this metric only describes
an ability to estimate the correct class in general. In the context of DDoS mitigation and
generally in cybersecurity, more strict standards are typically in place.

The purpose of attack mitigation is to block the attacker's messages so the victim's
infrastructure and end-users will not be affected. Therefore, ongoing mitigation must affect
an end-user as little as possible. Ideally, it would be completely transparent. Wi th this in
mind, we require the model to work with a small ratio of false positives (higher precision),
even at the cost of slightly more false negatives (lower recall). In other words, we do
not mind if the model misses a few attacking IP addresses that much, but misclassifying
legitimate users and denying their traffic is highly undesired.

Concrete values of precision and recall should be specified according to the network
environment and additional requirements on the system. However, it is reasonable to
demand the precision of at least 0.95 with recall above 0.8. One way to tweak these values
is to modify the model's hyperparameters. Some models may also have the ability to
return classes' probabilities instead of directly estimated class labels. In these scenarios,
the threshold can be manually adjusted to limit the number of false positives. Visualization
tools such as a R O C curve may be helpful for this purpose.

6.3 Statistics C o m p u t a t i o n Parameters

Before quantified the system's performance, the parameters of the used data should be
specified first. Recall that the Statistical logger module uses a concept of time windows to
group packets' features and compute statistics upon them independently. It is thus crucial
to set these parameters carefully so that the attack detection can be achieved with high
precision in a reasonable amount of time. Referring to Appendix B, top-level key logger,
the following statistics logging parameters can be configured:

• window_ length - length of the window in seconds

• history_min - minimum number of collected windows for a given IP

• history_size - maximum number of history elements in memory

• history_timeout - validity of history entries duration in seconds

• packet s_min - minimum number of packets in the window to log it

• samples_size - number of samples to collect for entropy estimation

70

Parameter history size

Although history_size is mostly a memory optimization parameter, it may affect the
computation of some history entries upon massive loads of traffic. In such a case, so many
history entries are created within each window so that the memory will not be sufficient,
causing some valid entries (least recently used due to implementation) to be dropped.

During the experiments, the default parameter of 0 was used. This setting allowed
around 5 G B of memory to be available, so almost 48 M history entries would be required
in order for valid entries removal due to full memory to happen. This corresponds to almost
8 M IP addresses with 6 history entries communicating simultaneously in the worst case.
Although this scenario is possible in backbone network deployments, we can ignore this
parameter as it cannot influence the produced statistics.

Parameter history timeout

Parameter history_timeout defines for how long are the collected statistics valid in history.
Invalid history entries are not used for summary statistics computation and are deleted
instead. This parameter thus specifies how old statistics for a communicating host are we
willing to accept in order to determine whether it generates malicious traffic or not.

DDoS attacks typically produce a continuous stream of data, so in their case, the time­
out could be equal to window_length x history_min. However, regular clients typically
communicate in bursts, so some reserve needs to be held if a client does not manage to
communicate with at least packets_min packets within a particular window, so its traffic
will not be logged at all.

A reasonable parameter value could be 10-20 times of window_length x history_min
to not keep the old statistics in the memory for too long and not miss any possible burst-
based attacks. The experiments were performed with this value set to 240 seconds, as
we are not generally limited by the memory in offline mode (disk swapping is not such a
performance issue) but want to keep the experiments realistic.

Parameter samples size

Modifying the samples_size parameter only influences the precision of source port entropy
estimation. Smaller value provides lesser memory consumption, whereas bigger value a
better estimate. In the experiments in this chapter, the value of 40 was predominantly
used. This was chosen based on tests with various parameter values and standard deviation
computation across 5 such runs upon both legitimate and attack dataset subsets. Legitimate
dataset normalized entropies reached a standard deviation of 0.05 at the threshold of 25
samples, whereas 0.1 std was achieved at 50 samples for attack traffic. Value 40 was thus
chosen as a compromise, providing a reasonable entropy estimate and relatively low memory
consumption.

Parameters window length and history min

Parameters window_length, history_min, and packets_min are closely related, as they
define the minimum length of the host's communication and the number of packets it is
supposed to send. They also influence the generated statistics the most. Generally, we want
to detect an attack as soon as possible but also achieve high detection precision and recall.
As one may notice, there is a trade-off between these two - the sooner we want to detect
an attack, the fewer data we can collect, and thus the detection performance is worse.

71

CAIDA2016 Equnix sample pps ECDF
1.0-

0.8-

u_ 0.6-
Q U UJ

0.4-

0.2 -

0.0 -I—I 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140
pps

Figure 6.2: Packets-per-second empirical cumulative distribution function for C A I D A 2016
Internet Traces sample.

According to the project requirements, the reaction to the attack needs to be done
within 10 seconds of its start. This includes attack detection, perpetrator's IP addresses
determination, mitigation rule creation, and its application in the database. Since rule
creation requires to sample some of the attacker's data and rule inferring and database
update taking some time as well, this leaves us with a space of 6-8 seconds to detect
attacking IP addresses. For this reason, the experiments use window_length of 1 or 2
seconds and history_min of 3 to 6 depending on the previous parameter.

Parameter packets min

The last not-yet discussed parameter is packets_min. It defines the minimum number of
packets that needs to be sent by the client in order to log its data. By tweaking it, we aim
to limit the number of classified IP addresses, so entries from clients sending low amounts
of traffic are not considered. Statistical data such as mean or standard deviation may be
significantly skewed if computed on a small set of data. Therefore, by setting this number
sufficiently high, the system makes sure that only clients with relevant statistical data will
be classified. This ensures statistical features of finer quality, leading to better classification
results. As a positive side-effect, the state space of analyzed entries is significantly limited,
the model needs to perform a lesser number of classifications, leading to improved packet
throughput and better system reaction times.

The value of this parameter was chosen according to packets-per-seconds (PPS) analy­
sis of the several legitimate captures with respect to the window_length parameter (Fig­
ure 6.2). Based on these results, a P P S value of 10 corresponds to roughly 0.89-percentile
(CAIDA Traces) to 0.93-percentile (C E S N E T <—> A C O N E T capture) of all the legitimate
clients over the length of their active communication. Therefore, by specifying a minimum
of 10 packets per a 1-second time window, we filter out approximately 90% of all legitimate
clients' traffic uninteresting for our purposes. Since (D)DoS attacks typically produce much
larger traffic volumes, the ability to detect them will not be negatively affected.

72

Parameter name Values

window_length 1, 2
history_min 4, 6, 8
history_size 0 (unlimited)
history_timeout 240
packets_min 10, 15, 20, 30, 40
samples_size 40, 50

Table 6.1: Parameter values tried throughout experiments.

Parameters Configuration Summary

In order to bring a little diversity and perform various experiments not only for the machine
learning model itself but for statistics computation as well, the data were extracted by
various parameter settings, as suggested by Table 6.1. However, not all combinations from
the given table were tried, but the state space was rather reduced only to a subset of the
most relevant combinations.

The limited scope of experiments with various dataset creation settings is caused by
the complexity of computation. Processing 1 M of packets standardly takes between 7
(cider.liberouter.org) to 25 minutes (pinot.liberouter.org), so processing files with
tens to hundreds of millions of packets gets computationally very expensive. Achieved
classification results with various parameter combinations are discussed in Section 6.4.

6.4 Classif icat ion Performance

This subsection covers several picked experiments with the system, provides their analysis,
results, and a brief commentary. Experiments cover the detection performance of both
volumetric and slow (D)DoS attacks, comparison of various machine learning models and
data modifications and transformations. As outlined in Table 6.1, various parameters were
used during the data extraction process. Statistical logging mechanism was then further
applied on datasets from Section 4.5 with various parameters combinations.

A l l the described datasets were created by dataset_creator .py script and merged
using dataset_editor.py. Further data processing steps are described in their particu­
lar subsection. A l l datasets have 4 different variants according to the Statistical logger's
configuration during the data extraction process. These include:

1. window_ length = 1, history_ min = 6, packets_ min = 10, samples_ _size = 40

2. window_ length = 1, history_ min = 6, packets_ min = 15, samples_ _size = 40

3. window_ length = 1, history_ min = 4, packets_ min = 15, samples_ _size = 40

4. window_ length = 1, history_ min = 4, packets_ min = 20, samples_ _size = 40

Most of the described experiments were performed with the first dataset variant con­
taining at least 10 packets per window with minimum 6 windows to generate a single data
sample. If not explicitly stated otherwise, this variant is used. C S V datasets created with
this configuration are displayed in Table 6.2. Note that P C A P files extracted from CIC
datasets use a significantly limited number of IP addresses, and thus the windowing system
in Statistics logger produced a relatively small amount of C S V entries.

73

http://cider.liberouter.org
http://pinot.liberouter.org

Dataset name Samples
C A I D A Internet Traces 338310
C E S N E T <—• A C O N E T 361666
CIC-IDS2017 Benign 14649
CIC-ISCXIDS2012 96025

(a) Benign datasets (Subsection 4.5.3).

Dataset name Samples
C A I D A "DDoS Attack 2007" 394200
CIC-DDoS2019 1877
CSE-CIC-IDS2018 3363
CIC-IDS2017 (all) 586
CIC-IDS217 (Slow DoS) 361

(b) Attack datasets (Subsection 4.5.2).

Table 6.2: Dataset sizes for 1-sec windows, 10-packets per window minimum, 6-windows
size and 40-sized samples.

Dataset class distribution
700000

600000

500000

» 400000

300000

100000

Benign
Target class

Figure 6.3: Distribution of classes in dataset extracted from real data.

The following section will firstly present experimental results with available real (non-
synthetic) datasets (Subsection 6.4.1) and mixed datasets (Subsection 6.4.2).

6.4.1 Real Data

First performed experiments were performed with real (non-synthetic) data. These include
merged C E S N E T <—> A C O N E T capture, C A I D A anonymized traces from Subsection 4.5.3
as legitimate data and C A I D A DDoS Attack 2007 from Subsection 4.5.2 as attack traffic.

Initial analysis of the merged dataset has shown rather significant data imbalance (Fig­
ure 6.3). For this reason, the dataset was balanced for processing in M L methods by ran­
domly sampling values from benign class, until the same number of entries in both classes
was reached. This process yielded a dataset with over 788 k of elements. In addition, all
the feature graphs are plotted based on a balanced sample of 50 000 elements to keep the
file sizes low.

74

Feature Correlation

As the first analysis step, the feature correlation heatmap was plotted (Figure 6.4). Ac­
cording to this analysis, it may be seen that pkts_total, bytes_total, pkt_rate, and
byte_rate are almost perfectly positively correlated. This makes sense, as pkts_total
and bytes_total are an average over all summarized windows, whereas pkt_rate and
byte_rate and an average over the whole time the client communicated (even including
inter-windows not logged in the system). However, when there are no window gaps between
the communication, the values will be approximately the same. Another highly correlated
features with them are pkts_total_std and bytes_total_std. This is most likely caused
by the burst communication character, so the number of packets/bytes between different
windows is highly unbalanced.

Other understandable correlations like between the maximum size of the seen packet and
standard deviation of its sizes are shown. These have a strong positive correlation. Medium
positive correlations between the client's inter-window and intra-window activity signify
that suppositions about their possible usefulness were fulfilled - if the client communicates
continuously throughout a more extended period, it may be an attacker. However, this
cannot be considered ground truth because regular clients can achieve similar characteristics
using data streaming services.

Nevertheless, the analysis has also shown that the maximum size of the packet and
T C P protocol share a relatively strong negative correlation with the target. In contrast,
I C M P protocol share has a perfect positive correlation. These findings are rather intriguing
since the mentioned features could provide some degree of information in combination with
others but should not correlate with the target so strongly. Therefore, the legitimate data
either do not contain enough I C M P traffic or I C M P share in attack traffic is so predominant
that it may cause a classifier to become biased and generalize poorly upon out-of-dataset
data.

Correlation analysis has provided valuable insights, leading to the conclusion that
columns with the total number of packets and bytes may be dropped, as they have the
same relationship with all other features and the target variable. Protocol shares may also
become relatively problematic, as they correlate relatively strongly with the target, and ac­
cording to expert knowledge, this correlation is rather unfounded. Dropping these features
will also be tried in order to increase the generalization capabilities of the final model.

Feature Analysis

Another step to better understand the data is feature analysis. Generally, we aim to know
more about features whose values cannot be estimated by expert knowledge or which help
us to get to know the unique properties of the processed dataset. This part includes a few
picked plots (Figure 6.5) alongside their short descriptions.

Figures 6.5a and 6.5b confirm our thoughts from the previous section. Attack data are
primarily composed of I C M P traffic, and real benign data contain almost none of it. For
this reason, classifiers will probably have an easy time because the two classes are separable
by a simple linear decision boundary with this feature.

Figure 6.5c also aligns with the statement described earlier and confirms our hypothesis
that attackers send large amounts of packets continuously. Therefore, there is a minimal
inactivity period between the window start and the host's first packet and its last packet
and the window end. A very similar distribution was achieved for the intra-window activity
ratio as well.

75

U N N I W W W M M W W M H H H H H H H H H H

p
l-i

o
as
h -

s

2

C
0

pkts_total: 1
bytes total: 2

pktrate : 3
byte rate: 4

pkt_arrivals_avg: 5
pkt_arrivals_std: 6

pkt_size_min: 7
pkt_size_max: 8
pkt_size_avg: 9

pkt_size_std: 10
proto jxpshare : 11

proto_udp_share: 12
protojcmpshare: 13

port_src_unique: 14
port_src_entropy: 15

conn_pkts_avg: 16
hdrs_payload_ratio_avg: 17

pkts_total_std: 18
bytes_total_std: 19

pkt_size_avg_std: 20
pkt_size_std_std: 21

pkt_arrivals_avg_std: 22
port_src_unique_std: 23

port_src_entropy_std: 24
conn_pkts_avg_std: 25

hdrs_payload_ratio_avg_std: 26
dominant_proto_ratio_std: 27

intrawindow_activity_ratio: 28
interwindow_activity_ratio: 29

target: 30

£
i
i
i

1 1 1 1
B 8 S I

0.3
0.3

0.3
0.3

1
1
1
j £

£
2
£

1
1
8
1

1
1
i I !

0.4
0.3

0.4
0.3

1 2

i 1
I 2

I I

£
£
£
£

8
I
8
8

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

!
£
£
£
£

-0.2
-0.2

-0.2
-0.2

s 1 i 2 e £ P £ £ £ £ £ t t B £ £ £ £ £ £ s B £ 2 £
2 t i 2 £ i £ £ £ £ £ £ £ £ i £ £ 1 £ s B £ £ £ 2
i i l l s £ i i £ 1 £ 1 i i £ 8 £ P £ 8 i 8 8 1

t 5 £ 1 s £ £ £ £ 1 B £ £ £ £ £ 2 2
t 2 E 1 £ £ 1 1 £ £ £ £ £ £ 1 P £ 1 £ £ £ £ £

i t 1 P 1 £ £ £ £ 1 £ 1 1 s 2 £ £ £ £ £ • 1 £ £ £ £ £ P £ £ £ 1 £ £ • £ B p 2 £ 2 £ £ 2 2
2 s £ 1 8 i i £ I I I £ I 8 1 2 £ I 1 £ 1 1 £ 8 8 8 8

2 S £ S £ s S 2 £ £ s £ 2 2 S 2 £ £ 2 2 2 2

1 1 s 1 i s 1 1 1 I £ i £ £ 1 t I i £ 2 1 £ 1 2

s | P P I S £ £ £ 1 8 £ £ £ p 1 P £ i 2 i 2 2 i 1 1 1
1 1 i i 1 £ i S £ £ i 1 1 i £ 8 I £ £ 2 P 2 £
£ 1 £ £ £ £ £ 1 i £ £ £ £ £ 2 2 £ £ £ £ £ £ 2 £ £
£
£ [j ! £

8
S
p

1 1
s 1

£

= m
p

£
1 1 £

£
!
1

£
£

£
£

£
£

£
2 j £ £

£ £
£ £ 1 P P s 2 £ 1 £ l p S s 2 2 8 8 1 1

* £ £ 1 £ £ £ 1 £ £ • g £ £ 1 8 8 I
t P £ 2 P 1 P p i i 5 £ £ 1 2 i 2 2 2 2 2 2 2
i I s S £ 5 a s 1 i £ 2 1 £ 1 t 1 i i 1 1 1 8
p 2 t P s P p i i £ £ £ 6 8 £ P i £ £ 2 i i i i I
2 1 e § s a 1 £ 1 £ S £ 8 £ 1 2 £ £ £ £ s £ £
£ P ! £ 1 £ £ 1 £ I £ 1 £ £ £ £ £ 1 1 I I
i I p 1 p £ £ £ £ 1 1 1 1 £ 1 t £ 8 £ 1 £ 1 1 1 8 8 1
s fl s £

I
£ £ 1 i 1 1 1 i S £ p £ £ i £ £ 8 i 8 1

1 £ I £

0.01

0.02 £ 8 1 I P p £ 2 2 = p 1 £ 1 8
B p s £ J £ j 1 £ t 6 £ £ 1 £ 8 £ £ £ £ £ £ £ 2 2

U 1

171

U1

Histogram for proto_tcp_share Histogram for proto_icmp_share

Attack
wmm Benign

i 1
0.0 0.2 0.4 0.6 0.!

proto_tcp_share

(a) TCP Protocol share.

„ 15000

Attack
Benign

D.4 0.6 O.E
proto_icmp_share

(b) ICMP Protocol share.

KDE for interwindow_activity_ratio KDE for port_src_entropy

6
^ 5

! «

3

2

1

0

CZ] Attack f
i i •

L / \ - - * V
D.O 0.2 0.4 0.6 0.8 1.0

interwindow_activity_ratio

(c) Inter-window activity ratio.

Histogram for pkt_arrivals_std

Attack
Benign

0.4 0.6 0.8
pkt_arrivals_std

» loo
E

a bo

.2 60

J 40

20

rZZl Attack

i i Benign

1

1 I ; I-
0.2 0.4 0.6

port_src_entropy

(d) Source port entropy density.

® Benign
e Attack

• • •

• *. • *
• •

-. > •
• ••

. A
".'

* •

pkt_arrivals_avg (ms)

(e) Packet arrivals standard deviation density.

Figure 6.5: Real dataset feature analysis.

(f) Relationship between packet arrivals average
and standard deviation.

Figure 6.5d is a direct consequence of I C M P traffic share predominance. Since I C M P
does not use port numbers, the resulting port is 0, and thus its entropy is also 0.

A n interesting insight is displayed in Figure 6.5c. As it may be seen, the attack traffic
does not actually have its packet arrivals standard deviations close to 0 but is somewhat

77

Model f i t . _time score_time accuracy accur_std f 1 precision recall

scikit adaboost 184 4754 1 7544 0 9996 0 0 0 9996 0 9996 0 9995

scikit bayes 1 2891 0 2852 0 9640 0 001 0 9652 0 9358 0 9965

scikit extra_trees 83 2605 2 2573 0 9998 0 0 0 9998 1 0 0 9996

scikit grad_boosting 680 1072 0 3994 0 9998 0 0 0 9998 0 9999 0 9996

scikit logreg 18 3962 0 1693 0 9987 0 0 0 9987 0 998 0 9994

scikit Ida 26 5794 0 2798 0 9972 0 0001 0 9972 0 9986 0 9958

scikit mlp 149 9141 1 4796 0 9991 0 0004 0 9991 0 9993 0 9990

scikit nearest_centroid 1 1646 0 2108 0 9779 0 0003 0 9774 0 9979 0 9577

scikit svm 862 7121 29 1655 0 9992 0 0 0 9992 0 9988 0 9995

scikit tree 27 1975 0 1733 0 9997 0 0 0 9997 0 9997 0 9997

scikit random_forest 232 4759 1 4291 0 9998 0 0 0 9998 1 0 0 9997

xgboost.xgboost 435 8562 0 9845 0 9999 0 0 0 9999 1 0 0 9997

Figure 6.6: Model comparison with cross-validation upon the real dataset containing 788 k
samples. Trained on Fujitsu Esprimo Q920.

Codename Full name Codename Full name

scikit.adaboost AdaBoost scikit.mlp Multilayer Perceptron*
scikit.bayes Naive Bayes scikit.nearest_centroid Nearest Centroid Classifier
scikit.extra_trees Extra trees scikit.svm Support Vector Machines
grad_boosting Gradient Boosting scikit . tree Decision Tree
scikit . logreg Logistic Regression scikit.random_forest Random Forest
scikit .Ida Linear Disc. Analysis xgboost.xgboost XGBoost

Table 6.3: Explanation of machine learning model codenames.
*Regular neural network with 1 hidden layer.

centered around 30 ms, which is quite a lot for DDoS traffic. However, the attack capture
is from 2007, so networks and packets rates were significantly lower back then.

Figure 6.5f displays a relationship between packet arrivals averages and standard devi­
ations. According to seen data, a relatively accurate quadratic or even linear boundary can
be drawn to distinguish both classes. This fact aligns with our previous prediction that IP
addresses with bigger arrivals deviation would most likely resemble legitimate clients, as
packets are not generated periodically by some malicious software.

Classification Results

After reviewing the dataset and obtaining an idea of its characteristics, we may try to fit
a machine learning model onto them and review its performance. As stated in previous
subsections, the I C M P share should be the most important factor, as the data are almost
perfectly linearly separable according to its value. A l l available models with their default
parameter settings were reviewed with cross-validation (Figure 6.6). Dataset columns with
values not within the range [0,1] were standardized with the MinMax function. Model
codenames in Figure 6.6 used throughout this section are explained in Table 6.3.

As it may be seen, all models have achieved outstanding performance. This was probably
caused by the task character, as the two classes were so easily separable. Performance
evaluation was performed on Fujitsu Esprimo Q920. The "weaker" workstation was chosen
instead of the server on purpose, so fitting and scoring times are amplified, and timing
differences between them thus becoming more apparent. The k-nearest neighbors model
could not be used because the dataset is so extensive that the model consumes a vast
amount of memory, causing the operating system to terminate the process.

78

Dataset features' importance
interwindow_activity_ratio
intrawindow_activity_ratio
dominant_proto_ratio_std

hdrs_payload_ratio_avg_std
conn_pkts_avg_std

port_src_entropy_std
port_src_u n i q ue_std
pkt_a rri va I s_a vg_std

pkt_size_std_std
pkt_size_avg_std

bytes_total_std
pkts_total_std

hdrs_payload_ratio_avg
connpk t savg

port_src_entropy
por tsrcunique

proto_udp_share
proto_tcp_share

pkt_size_std
pkt_size_avg

pkt_size_max I
pkt_size_min

pkt_arrivals_std
pkt_arrivals_avg

byte_rate
pkt_rate

bytes_total
pkts_total

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.7: Decision Tree Gini features' importance for real dataset.

At this point, performing hyperparameter tuning or other data preprocessing techniques
would have no purpose since all the models classify the data so well already. To confirm
our assumptions, a process to determine feature importance (Figure 6.7) was executed.
Importance was estimated directly from a tree classifier according to the mean decrease in
impurity (Gini importance) technique. As it may be seen, a decision tree is able to decide
almost exclusively based only on a single feature - the share of I C M P traffic, with almost
perfect accuracy.

Since a bigger share of I C M P than usual may signify a network anomaly, deciding only
according to it is nonsense because it definitely cannot generalize on different kinds of
traffic. This result was somewhat expected after the first dataset analysis. Therefore, some
less-generalizing features need to be removed in order to remove these skewed results.

Enhanced Dataset Features for Better Generalization

In order to achieve better generalization, we may try to remove irrelevant and obviously
skewed features, which may affect the generalization performance negatively. These features
include:

• pkts_total and bytes_total - irrelevant as found out with the correlation analysis

• proto_tcp_share, proto_udp_share, proto_icmp_share - provide skewed results
according to the processed dataset

Similar to the whole dataset's case, cross-validation was run upon such modified data
as well (Figure 6.8). As apparent, removing features allowing linear-separability caused
less sophistical models (Naive Bayes, Nearest Centroid) to decrease their performance,
especially the precision. However, more complex models such as neural network or ensemble

79

Model fit_time score_time accuracy accur_std f 1 precision recall

scikit .adaboost 167 .3584 1. .5803 0 .9983 0 .0001 0. .9983 0 .9978 0 .9988

scikit .bayes 1. .4161 0. .4063 0 .9401 0 .0004 0. .9427 0 .9039 0 .9849

scikit .extra_trees 144. .1588 3. .4363 0 .9996 0 .0001 0. .9996 0 .9996 0 .9995

scikit .grad_boosting 627. .6410 0. .4925 0 .9993 0 .0001 0. .9993 0 .9991 0 .9995

scikit •logreg 14. .3863 0. .2113 0 .9798 0 .0005 0. .9801 0 .9675 0 .9930

scikit .Ida 11. .6721 0. .2315 0 .9498 0 .0006 0. .9519 0 .9132 0 .9940

scikit . mlp 292 .2500 1. .6201 0 .9983 0 .0002 0. .9983 0 .9973 0 .9994

scikit .nearest_centroid 1. .1571 0. .2366 0 .8534 0 .0004 0. .8642 0 .8048 0 .9329

scikit . svm 3664 .7791 215. .5575 0 .9945 0 .0001 0. .9946 0 .9899 0 .9993

scikit . tree 28 .5166 0. .2055 0 .9993 0 .0001 0. .9993 0 .9993 0 .9993

scikit .random_f orest 319 .4423 1. .9953 0 .9996 0 .0001 0. .9996 0 .9996 0 .9996

xgboost.xgboost 441 .6553 0. .8398 0 .9997 0 .0001 0. .9997 0 .9996 0 .9997

Figure 6.8: Model comparison with cross-validation upon the feature-reduced dataset con­
taining 788 k samples. Trained on Fujitsu Esprimo Q920.

interwindowactivityratio
intrawindowactivityratio
dominantpratoratiostd

h d r sp a y I o a drati o_a vgstd
c o n r ip ktsa vgstd

po r t s rce ntropystd
po r t s r c u n i q u es td
p k t a rri v a I s a vgstd

pkts izestdstd
pkts izeavgstd

bytestotalstd
pktstotalstd

hdrspayloadratioavg
connpktsavg

portsrcentropy
portsrcunique

pktsizestd
pktsizeavg

pktsizemax
pktsizemin

pktarrivalsstd
pktarrivalsavg

byterate
pktrate

-0.04

Figure 6.9: Feature importance for a neural network in feature-reduced dataset. Based on
feature permutation importance technique.

techniques could still achieve excellent results. To our surprise, the performance of a single
decision tree classifier also did not drop significantly. Feature importance analysis was thus
performed again.

As apparent, more sophisticated methods have managed to find other important features
with which they could successfully classify the given traffic. Whereas more sophisticated
models were able to find many complex relationships such as the neural network (Figure 6.9)
or random forest (Figure 6.10). Simple models such as the decision tree managed to provide
similar performance with only 3 used features: pkt_size_max (0.84), pkt_size_avg (0,11),
and port_source_entropy (0.02).

Reacting to these results, a closer look at the features has confirmed that the majority of
attack traffic is composed of small packets, so almost perfect performance can be achieved
almost purely based on them. This behavior is, indeed, undesired, as it biases towards

-0.03 -0.02 -0.01 0.00 0.01 0.02

80

interwindowactivityratio
intrawindowactivityratio
d o m i n a n t_p ra tora t i ostd

h d r sp a y I o a drati o_a vgstd
c o n r ip ktsa vgstd

po r t s rce ntropystd
po r t s r c u n i q u estd
p k t a rri v a I s a vgstd

pkts izestdstd
pkts izeavgstd

bytestotalstd
pktstotalstd

hdrspayloadratioavg
connpktsavg

portsrcentropy
portsrcunique

pktsizestd
pktsizeavg

pktsizemax
pktsizemin

pktarrivalsstd
pktarrivalsavg

byterate
pktrate

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Figure 6.10: Feature importance for a random forest in feature-reduced dataset. Based on
feature permutation importance technique.

a concrete dataset heavily and would thus provide very poor classification performance
in general. Therefore, as the last attempt to increase generalization abilities and make
the estimator's performance "more realistic", features pkt_size_min, pkt_size_max, and
pkt_size_avg were dropped in addition to those mentioned at the start of this subsection.
Cross-validation with default hyperparameters was again run, as shown in Figure 6.11.

Apparently, more sophisticated methods were still able to achieve astonishing results
despite removing 8 out of 29 features used for classifications. A l l of the left features are
mostly based on standard deviations, ratios, and rates, so they should generalize rather
well on other types of traffic as well. The 6 most important features determined by the
permutation feature importance technique for the XGBoost and neural network models
are listed in Table 6.4. As it may be seen, two models working on different principles are
affected by completely different features. Although due to the character of the permutation
importance method, one has to keep in mind that this result is only an importance estimate.
Figure 6.12 displays empirical feature (permutation) importance for a single decision tree.
Gini impurity importance signified pkt_size_std_std to be the most significant with the
value of 0.7684 and hdrs_payload_ratio_avg as the second with 0.1716.

Real Data Experiments Summary

This subsection has presented several of the picked experiments' results performed upon
the real dataset. The tests were executed on the data extracted with the configuration
of 1-second windows, 10-packet minimum per window, 6-window entry minimum, and 40
entropy samples. Cross-validation was run on data extracted with other configurations as
well (e.g., 15-packet per window minimum with 6 windows or 20-packet minimum with 4
windows). Obtained results were very similar, all achieving over 0.995 f-score with high
accuracy as well for more complex models. However, such high scores are nothing unusual.

81

Model fit_time score_time accuracy accur_std f 1 precision recall

scikit adaboost 150.98 1.5022 0 9948 0 0005 0 9948 0 9940 0 9955

scikit bay es 0.7383 0.2699 0 9290 0 0009 0 9324 0 8902 0 9788

scikit extra_trees 156.3544 3.5291 0 9994 0 0001 0 9994 0 9993 0 9994

scikit grad_boosting 581.0599 0.4709 0 9988 0 0001 0 9988 0 9983 0 9994

scikit logreg 15.3653 0.2006 0 9482 0 0004 0 9502 0 9149 0 9883

scikit Ida 11.3532 0.2339 0 8899 0 0006 0 9000 0 8248 0 9902

scikit mlp 317.4023 1.2292 0 9984 0 0002 0 9985 0 9974 0 9995

scikit nearest_centroid 0.7684 0.2428 0 8085 0 0006 0 8263 0 7559 0 9113

scikit svm 2896.6739 259.16 0 9948 0 0001 0 9948 0 9904 0 9992

scikit tree 29.4183 0.2507 0 9989 0 0001 0 9989 0 9989 0 9989

scikit random_forest 428.4336 2.1473 0 9994 0 0001 0 9994 0 9993 0 9995

xgboost.xgboost 443.5139 0.6792 0 9994 0 0000 0 9994 0 9993 0 9996

Figure 6.11: Model comparison with cross-validation upon a feature-decimated real dataset
containing 788 k samples. Trained on Fujitsu Esprimo Q920.

Rank
XGBoost

Feature Value

Neural Network (MLP)

Feature Value

1 hdrs_payload_ratio_avg 0.273 byte_rate 0.024

2 pkt_size_std_std 0.224 pkt_arrivals_std -0.014

3 pkt_size_std 0.015 bytes_total_std 0.012

4 dominant_proto_ratio_std 0.012 pkt_arrivals_avg_std 0.002

5 port_src_entropy 0.008 pkt_arrivals_avg_std 0.001

6 conn_pkts_avg 0.001 pkt_size_std_std 0.000

Table 6.4: Permutation feature importance for various models upon feature-decimated real
dataset.

interwi ndo w_acli vity_ratio

intrawindow_aclivity_ratio |

dominant_prolo_ratio_std I

hdrs_payload_ratio_avg_std |

conn_pkts_avg_std I

port_src_entropy_std

port_src_unique_std |

pkt_arrivals_avg_5td |

pkt_size_sld_std I

pkl_size_avg_std |

bytes_total_std |

pkts_total_std I

hdrs_payload_ratio_avg I

conn_pkts_avg

port_src_entrapy

port_src_unique

pkl_size_stti

pkt_arrivals_std

pkt_arrivals_avg

byte_rate

pkl_rate

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 6.12: Feature importance for decision tree classifier based on feature permutation
importance upon a feature-decimated real dataset.

82

Learning curve for XGBCIassifier Learning curve for MLPCIassifier

100000 200000 300000 400000 500000 600000
Training examples

100000 200000 300000 400000 500000 600000
Training examples

(a) Learning curve for an XGBoost model. (b) Learning curve for a neural network model.

Figure 6.13: Effect of number of dataset samples on models' performance.

Similar research papers working with the CAIDA2007 DDoS attack dataset such as [108], [9],
or [90] also declared similar accuracy with completely different classification approaches.

Since most of the models provide such perfect results, hyperparameter tuning was not
performed, as it would be time-consuming with none to minimal benefits and may even
lead to undesired overfitting in some cases.

As evident from the results, even a single decision tree model achieved almost perfect
accuracy, fl-score, and other relevant metrics above 0.998 for all cases. These scores were
obtained even after dropping most of the "bad" features, which were either unsuitable for
generalization or suffered from being skewed based on the used dataset. The dataset itself
was indeed not perfect - most of the data was ICMP, packets were mostly small, and the
average number of packets/bytes sent by a single host was also relatively low for a DDoS
scenario. For this reason, the dataset will be combined with synthetic data and experiments
performed once again, as further described in Subsection 6.4.2.

Since the experimental results were obtained from a regular workstation P C , fitting and
scoring times (in seconds) were relatively high. However, this fact amplified the models'
performance, crucial for our online classification scenario. Therefore, despite some models
performing with solid results, such as SVMs, random forest, or extra trees, their usage for
our purposes is significantly limited due to their scoring times. As already noted, fitting
times are not critical as there are no limits on them. These times can be shortened by
not processing the dataset as a whole but only its representative sample of a limited size.
However, significant dataset trimming was not performed because additional data may still
increase the model's performance very slightly (Figure 6.13).

6.4.2 Mixed Data

The last subsection has performed system evaluation on real data. As discovered, the real
DDoS dataset is mainly composed of I C M P traffic and thus is highly biased towards L4
protocol share features. Therefore, this subsection will mix the given dataset with synthetic
data from CIC datasets and perform the evaluation process once again.

CIC datasets are mostly comprised of high-volume traffic with both T C P and U D P
protocols. However, due to limited number of source addresses, a number of created dataset
entries is rather low (Table 6.2). For this reason, all datasets cannot be simply merged

83

together because a high imbalance between them would cause the real datasets to dominate
other entries, and thus a bias towards I C M P traffic would still be a threat. Therefore, real
datasets were undersampled to include exactly as many entries as synthetic CIC data, so
biasing should be significantly limited. Slow DoS attacks were not used in this series of
experiments due to their specificity, as briefly outlined in the last paragraph of 4.2.1. The
final balanced dataset used in the presented results thus contains 21860 entries of benign
and attack traffic from both real and synthetic sources.

Feature Correlation

Similar to analysis in Subsection 6.4.1, a feature correlation analysis was performed first, as
depicted in Figure 6.14. As in the real dataset, features describing the total number of bytes,
the total number of packets, and their rates are correlated very strongly among themselves.
In fact, pairs (pkts_total, pkt_rate) and (bytes_total, byte_rate) correlate exactly
the same with all other features. Therefore, one of each can be considered redundant
and dropped as in the previous case. As rates commonly generalize better than sums,
pkts_total and bytes_total features can be safely dropped.

As can be observed from the correlation heatmap, many strong correlations are very
similar to the real dataset. Since half of the mixed dataset is comprised of the previ­
ously analyzed one, strong correlations not ultimately negated by the synthetic dataset
will still be present. A n example of such negated relationship can be seen between the
proto_icmp_share and target. In the real dataset, the correlation between them was 1.0.
After supplying synthetic data, its value dropped to 0.6 since synthetic data contained no
I C M P attacks.

Characteristics describing flat packet size (packet_size_min, packet_size_max, and
packet_size_avg) now correlate with the target rather weakly. This is an optimistic finding
because they correlated rather strongly in the real dataset, thus significantly decreasing the
model's generalization. However, with such weak correlations like these, the features will
probably not need to be dropped, as their impact on the model decision-making would not
be that big.

A definitely unhealthy correlation can be found between T C P protocol share and the
target. This relationship was strong even in the real dataset at the value of —0.8. Since
the synthetic traffic did not provide enough T C P attacking data, the negative correlation
strengthened. A strong negative correlation like this signifies a low probability of the attack
if the traffic is of the T C P type. Although most of the T C P traffic on the Internet is indeed
not malicious, the feature cannot be used as an ultimate deciding factor during traffic
classification on its own.

By analyzing other correlations between features and the target, we may see that all
others correlate expectedly according to expert knowledge and initial suppositions presented
in Subsection 4.3.2. This is a relatively good sign, as the skewed real dataset was partially
healed by merging it with the synthetically generated traffic. However, correlations between
the target and protocols' shares will probably still need to be dropped.

Feature Analysis

After reviewing the features' correlation, some more exciting feature distributions and rela­
tionships are listed in Figure 6.15. Most of the features are the same as for the real dataset
- primarily to illustrate the effects of dataset mixing, but also because they are relatively
significant in this case as well.

81

U M M M U U N J U U N M H P H H H P M H M H

Ol

TO
pi

CD

p

o

O'

pi i-i -OD
n c
CD

c 2

pktsjotal : 1
bytes_total: 2

pkt_rate: 3
byte rate: 4

pkt_arrivals_avg: 5
pkt_arrivals_std: 6

pkt_size_min: 7
pkt_size_max: 8
pkt_size_avg: 9

pkt_size_std: 10
proto_tcp_share: 11

proto_udp_share: 12
proto_icmp_share: 13

port_src_unique: 14
port_src_entropy: 15

conn_pkts_avg: 16
hdrs_payload_ratio_avg: 17

pkts_total_std: 18
bytes_total_std: 19

pkt_size_avg_std: 20
pkt_size_std_std: 21

pkt_arrivals_avg_std: 22
port_src_unique_std: 23

port_src_entropy_std: 24
conn_pkts_avg_std: 25

hdrs_payload_ratio_avg_std: 26
dominant_proto_ratio_std: 27

intrawindow_activity_ratio: 28
interwindow_activity_ratio: 29

target: 30

O
O

I
0

1
o
In
0

1
o
k)

O
O

O

M

O

->1
Ln

O
O

Histogram for proto_tcp_share

Attack
Benign

•
0.4 0.6

proto_tcp_share

(a) TCP Protocol share.

Histogram for proto_udp_share

Attack
Benign

proto_udp_share

(b) UDP Protocol share.

KDE for pkt_arrivals_std

0.025

0.020

0.010

Attack
] Benign

0 50 100 150 200 250
pkt_arrivals_std (ms)

(e) Packet arrivals standard deviation density.

• ® Benign
m Attack

•
• •

• • • • ••

* • • ** •

0 200 400 600 800 1000 1200 1400
conn_pkts_avg

(f) Average number of packets per connections
vs. inter-window standard deviation.

Figure 6.15: Real dataset feature analysis.

Figure 6.15a and Figure 6.15b illustrate T C P and U D P protocol shares across the attack
and benign traffic. Compared to the real's dataset T C P share histogram (Figure 6.5a), it
looks almost the same. Although there is some legitimate traffic at 0.0 share and some
attack traffic at 1.0 share, their amount is so negligible that classification can be done

86

almost linearly with relatively good accuracy. On the other hand, U D P share ratio 1.0
is mostly associated with attack traffic, and a ratio of 0.0 dominates the legitimate class.
However, there is a significant portion of attack traffic at a 0.0 ratio as well.

Inter-window and intra-window ratios (Figure 6.15c) distributions are almost identical
to each other and very similar to the real dataset's case. Mixing the dataset thus has not
affected this feature as much, but its density was somewhat increased due to volumetric
attack characteristics behavior.

Source port entropy density (Figure 6.15d) and packet arrivals standard deviation (Fig­
ure 6.15c) clearly show the effects of mixing the datasets when compared to their equivalents
in Figure 6.5. In the original dataset, attack traffic port entropy was predominant at 0.0
value due to I C M P traffic with no ports. Although port entropy of 0.0 is still predominant
in attack traffic (due to the real dataset still comprising a significant portion), other 2 peaks
around 0.6 and 1.0 for attack traffic were added. This is a sign of synthetic volumetric at­
tacks, which often contain randomized ever-changing port numbers. The packet arrivals
standard deviation was also updated by introducing a big peak at 0.0, again caused by
high-volume attacking traffic.

A n interesting relationship was found between the average number of packets per con­
nection and their standard deviation between various windows (Figure 6.15f). These results
actually counter our initial suppositions, which expected bigger numbers of packets per con­
nection to be typical behavior of legitimate traffic. However, such connections with larger
traffic amounts are almost exclusively related to attacking traffic. This can be explained
in two scenarios: the attacker does not utilize port randomization, and so tremendous
amounts of traffic may arrive from the same port, thus under a single connection. The
second explanation lies within the real's dataset I C M P traffic. Since I C M P does not use
port numbers, all of its traffic is labeled to come from a port 0 and thus may create an
illusion that all data come from a single connection.

Classification Results

The evaluation of the classification performance was firstly performed by cross-validation
upon all data without dropping any features. Since more sophisticated models again
achieved over 0.998 performance similar to the real dataset, the specified features with lower
generalization abilities or redundancy were again dropped. These include pkts_total,
bytes_total, proto_tcp_share, proto_udp_share, and proto_icmp_share. Classifica­
tion results upon mixed datasets with these features dropped are then displayed in Fig­
ure 6.16.

As apparent, the results of simple models (Bayes, nearest centroid) dropped significantly,
but more complex models are still performing extraordinary well even without parameter
tuning. Feature importance for a decision tree and random forest models is given in Ta­
ble 6.5. As seen, these tree-based techniques were still able to pick the most relevant features
based on packet sizes, which do not correlate with the target very strongly. As these are
less generalizing for the real world, they were again dropped as in the real's dataset case.
Although the dropping affected simpler methods like Bayes, L D A , logistic regression, and
Nearest centroid, which achieved between 0.6266 and 0.8772 of F-score, more sophisticated
methods like Random Forest, XGBoost, or Extra trees did not change their performance
at all. To our surprise, a simple decision tree also achieved a 0.9921 F-score with the best
scoring times overall.

87

Model fit_time score_time accuracy accur_std f 1 precision recall

scikit adaboost 3 2352 0 082 0 9946 0 0004 0 9946 0 996 0 9932

scikit bayes 0 0526 0 0205 0 7231 0 0025 0 6279 0 9573 0 4672

scikit extra_trees 1 9194 0 1248 0 9979 0 0009 0 9979 0 9989 0 9970

scikit grad_boosting 14 1202 0 0258 0 9974 0 0007 0 9974 0 9981 0 9968

scikit logreg 0 4203 0 0179 0 9366 0 0045 0 9369 0 9316 0 9423

scikit Ida 0 2157 0 0170 0 9263 0 0051 0 9267 0 9219 0 9315

scikit mlp 28 3703 0 0290 0 9952 0 0018 0 9952 0 9947 0 9957

scikit nearest_centroid 0 0342 0 0140 0 7939 0 0074 0 8068 0 7592 0 8609

scikit svm 6 8902 2 6329 0 9704 0 0023 0 9705 0 9677 0 9734

scikit tree 0 614 0 0147 0 9946 0 0014 0 9946 0 9944 0 9949

scikit random_forest 6 1454 0 1095 0 9979 0 0009 0 9979 0 9989 0 9970

xgboost.xgboost 10 3377 0 0284 0 9985 0 0007 0 9985 0 9985 0 9984

Figure 6.16: Model comparison with cross-validation upon a feature-reduced mixed dataset
containing 21 860 samples. Trained on Lenovo Yoga 460.

Decision Tree Random Forest
Rank Feature Value Feature Value

i pkt_size_max 0.609 pkt_size_max 0.154

2 pkt_rate 0.206 hdrs_payload_ratio_avg 0.096

3 hdrs_payload_ratio_avg 0.097 pkt_size_std_std 0.092

4 pkt_size_std 0.019 pkt_size_min 0.081

5 pkt_size_avg 0.011 pkt_size_avg_std 0.078

6 port_src_unique 0.009 hdrs_payload_ratio_avg 0.078

Table 6.5: Gini feature importances upon feature-reduced mixed dataset.

Minimum Number of Features

After failing to intentionally lower the models' performance by dropping the most impor­
tant biasing features, we will now look onto the minimum number of required features for
successful classification results. For this purpose, 3 models: neural network, random forest,
and XGBoost, were chosen as the best performing estimators based on their times and
classification performance. Additionally, a decision tree model was added as the one with
the best scoring times and solid performance for comparison. Cross-validation classification
performance expressed with an f-score with regard to the number of features is shown in
Figure 6.17. Features were obtained using sequential forward feature selection based on
random forest with 100 estimators. A n f-score was used as the target scoring parameter.
Features were selected in the following order:

1. hdrs_payload_ratio_avg 7. bytes_total_std

2. pkt_size_std 8. hdrs_payload_ratio_avg_std

3. port_src_unique 9. pkt_size_std_std

4. c onn_pkt s _ avg 10. port_src_entropy

5. dominant_proto_ratio_std 11. byte_rate

6. pkt_arrivals_avg 12. intrawindow_activity_ratio

According to the results, it is apparent that a single feature - hdrs_payload_ratio_avg
is able to provide enough information so the models can classify attacking and nonattacking
hosts with an astonishing f-score higher than 0.9. Wi th another feature added, the score
for tree-based models jumps to 0.98. Four to five features have then practically achieved

88

Figure 6.17: F-score classification performance based on the number of features.

the same performance of > 0.995 as they with all the available data. Adding additional
features increases the score only very slightly. As it can be seen, the neural network model
initially performed much worse than the tree-based models. This is most probably caused
by hyper parameters that used their default values from the Scientific learn library. Tuning
them for the specific task would undoubtedly increase a prediction score to be comparable
with other models.

Although achieving such a good performance with a single feature was surprising, the
features selected by the model make perfect sense in order to determine attacking hosts
in practice. As all the features represent rates, standard deviations, and other statistical
characteristics gathered throughout multiple windows, their generalization in real-world
scenarios should be acceptable. However, the used dataset will still need to be slightly
updated or modified, so a single feature will not be able to achieve such good results.

Decreasing Data-Collection Time

A l l the previously performed experiments used data summarized across 6 seconds (6 win­
dows of 1 second) of the host's traffic. However, with such astonishing results achieved
previously, it may be considered to lower this time to make the detection process faster.
Intuitively, collecting data over a shorter period of time should lead to lowered performance,
as fewer samples for statistics computation would be collected. In such cases, sudden traffic
bursts or legitimate flash events may produce numerous false positives. This theory was
tested with the configuration of 1-second windows, 4-window blocks, and 15 or 20 mini­
mum packets per window, as outlined at the start of Section 6.4. The minimum number of
packets per window was slightly increased to lower the amount classifications since smaller
window blocks will now produce classifiable data more often.

As usual, the evaluation was performed with cross-validation upon various models, with
results displayed in Figure 6.18. Biasing and redundant features such as protocol rates
and packet sizes were again dropped dropped prior to the evaluation process. According

89

Model

scikit.adaboost

scikit.bayes

scikit.extra_trees

scikit.grad_boosting

scikit.logreg

scikit.Ida

scikit.mlp

scikit.nearest_centroid

scikit.svm

scikit.tree

scikit.random_forest

xgboost.xgboost

fit_time

3.2352

0.0526

1.9194

14.1202

0.4203

0.2157

28.3703

0.0342

6.8902

0.6140

6.1454

10.3377

0.0820

0.0205

0.1248

0.0258

0.0179

0.0170

0.0290

0.0140

2.6329

0.0147

0.1095

0.0284

score_time

0.9946

0.7231

0.9979

0.9974

0.9366

0.9263

0.9952

0.7939

0.9704

0.9946

0.9979

0.9985

accuracy
0.0004

0.0025

0.0009

0.0007

0.0045

0.0051

0.0018

0.0074

0.0023

0.0014

0.0009

0.0007

accur_std

0.9946

0.6279

0.9979

0.9974

0.9369

0.9267

0.9952

0.8068

0.9705

0.9946

0.9979

0.9985

f 1 precision
0.9960

0.9573

0.9989

0.9981

0.9316

0.9219

0.9947

0.7592

0.9677

0.9944

0.9989

0.9985

recall

0.9932

0.4672

0.9970

0.9968

0.9423

0.9315

0.9957

0.8609

0.9734

0.9949

0.9970

0.9984

Figure 6.18: Model comparison with cross-validation upon a feature-decimated mixed
dataset with 4-second traffic blocks. Trained on Lenovo Yoga 460.

to achieved results, it may be stated that attacking and benign traffic may be recognized
with high precision even if only 4 seconds are given to collect the data. This fact would
make the detection mechanism especially competent during real-time mitigation in various
environments.

Slow DoS Attacks

Slow DoS attacks were excluded from all the experiments performed so far. This was done
due to the reason that the system was primarily designed against volumetric DDoS attacks.
Therefore, the proposed system may not be able to detect them based on the various specific
characteristics they have. This series of tests will try to answer whether such attacks can
be detected.

Currently, our biggest problem with slow DoS attacks is the data. The only available
slow DoS data were extracted from CIC-IDS2017 Dataset and contain 361 entries (Ta­
ble 6.2). On top of that, all the attacking traffic comes from a single IP address. The
grouping mechanism used during train/test data splitting would then not separate these
samples but keep them as a whole in either train or test dataset subset. For this reason,
IP addresses in the slow DoS dataset were randomized. This removes the above-mentioned
problem but causes that statistically dependent samples (from the same IP) will be present
in both test and train datasets. IP randomization may slightly skew the results towards
higher scores, but it is the only possible option that can be done without obtaining more
data.

After IP randomization, the data was appended to the existing mixed dataset used
throughout the previous tests. In order to balance this new dataset, 361 additional synthetic
samples of legitimate traffic were also added. As usual, columns pkts_total, bytes_total,
proto_tcp_share, proto_udp_share, and proto_icmp_share to prevent bias of badly
generalizable features. As the slow DoS traffic represents only 1.6% of the whole dataset,
the results will be presented upon a concrete model and its confusion matrix. This allows
us to see the exact number of classifications instead of a single score, which would not
represent the required information due to the small slow DoS sample size.

As the best performing model in most of the previous tests, XGBoost was chosen for the
task. Its confusion matrix on the dataset not containing any slow DoS packets is displayed
in Figure 6.19a. Figure 6.19b then represents the classification results after slow DoS attack
data were added. As it may be seen, adding several Slow DoS samples caused the false

90

2500

2000

1500

1000

500

Benign Attack Benign Attack
Predicted label Predicted label

(a) Dataset without DoS confusion matrix. (b) Dataset with DoS confusion matrix.

Figure 6.19: Comparison of DoS and non-DoS datasets performance.

negatives to increase by 0.9% and false positives by 0.1%. Matthews correlation coefficient
for slow DoS traffic was 0.9578, whereas a value of 0.9815 was computed for non-slow DoS
traffic.

6.4.3 Experiments Summary

The experiments performed throughout this section aimed to evaluate the performance of
the machine learning system as a whole, regardless of the particular model or its hyper-
parameters. According to achieved results, it may be concluded that almost any machine
learning model performs exceptionally well when inappropriate data are given to its input.
This might be seen in Figure 6.6, where most of the models achieved an f-score of > 0.998.
Only trivial models like Naive Bayes or nearest centroid achieved a lesser score than 0.99.

As shown during the analysis, the real attack dataset was primarily comprised of I C M P
messages, and thus an almost linear decision boundary could be drawn to determine whether
the IP is an attacker or not (Figure 6.5b). Features utilizing this ability, alongside packet
sizes, were then dropped to increase trained models' generalization capabilities. This process
has fairly reduced the score of trivial methods, but more complex ones were affected only
minimally (Figure 6.11), and an f-score of > 0.998 was kept.

Real dataset flaws were partially healed by mixing them with synthetic traffic from CIC
datasets. This fact has significantly reduced the number of available training samples (from
788 k to around 22 k), but this seemed not to affect the models' ability to learn. The mixed
dataset partially removed some unhealthy features correlations, but few strong correlations,
like proto_tcp_share with the target, remained (Figure 6.14). Therefore, features leading
to bias were again dropped, and the experiments repeated.

Using the mixed dataset with dropped biasing columns lowered the overall f-score
from the initial 0.999 to 0.996. As revealed by later experiments, a single feature -
hdrs_payload_ratio_avg was typically enough for models to achieve over 0.9 accuracy
and f-score results. Wi th 4 and more features, the performance improvements were rela­
tively negligible and, in some cases, even dropped (Figure 6.17).

The end of the section then elaborated on detecting an attack within a shorter time
period of only 4 seconds, which achieved similar performance to 6-second captures. This
indicates that the attacking sources can be theoretically detected within 4 seconds of the

91

mitigation process started. Experiments with lower values were not performed, but a 3-
second time block may provide similarly good performance as well.

Although the findings regarding Slow DoS attacks have revealed that the performance
was worsened by 0.9% in false negatives and by 0.1% in false positives, the model could
pick the most important traits of the slow DoS attack and thus successfully detect its
originating IP addresses. However, this experiment is a little biased by design because not
enough diverse samples were available for both evaluation and training.

In general, the best performing models were XGBoost, Random forest, Gradient boost­
ing, and Extra trees. The neural network model with Adaboost performed slightly worse,
followed by a Decision tree. However, no hyperparameter tuning for these models was
performed, so it is possible that they would have very similar results in the end.

Best scoring times were achieved by Logistic regression, L D A , Naive Bayes, Nearest
Centroid, and Decision trees. However, all mentioned methods except Decision trees were
rather sensitive for dropping biasing features and their fl-score typically more or less de­
creased. On the other hand, the Decision tree model has kept its high precision and perfect
estimation times throughout all of the experiments.

The overall winner of the comparison would be XGBoost, providing an excellent trade­
off between classification performance and scoring times. Similar results to XGBoost were
also achieved by the Gradient Boosting algorithm. Nevertheless, XGBoost often performed
slightly better, is a popular choice in the machine learning community nowadays, can be
visualized, and most importantly, also offers implementation in C++, which can even ac­
cept dumped trained models from its Python A P I . Therefore, real-world deployment and
experiments continuation is suggested with the XGBoost algorithm.

6.5 F i n a l Sys tem Considerat ions and Remarks

The previous section has performed several experiments comparing various machine learning
models in different scenarios. At the end of the section, the XGBoost algorithm was chosen
as the suggested model to use with the system due to its classification performance and
speed of the execution. This section will discuss the tuning of such model, present a
simulated model deployment and discuss a possible future work.

6.5.1 Hyperparameter Tuning

As discussed throughout the previous subsection, hyperparameter tuning was mostly not
performed initially due to models having exceptionally high scores already. These assump­
tions were proven true by several performed tests showing that hyperparameters have little
to no impact on the overall classification performance if the scores are so high. The only
parameters intentionally set to very low or very high values have the actual potential to
change the result - typically to worse, as shown in Figure 6.20. In this setup, the hyperpa­
rameter max_depth was set to 1, which indeed produced too simple models suffering from
higher variance and thus achieving the lower classification score.

6.5.2 Simulated Mode l Deployment

The simulation of model deployment can be done with the provided script mitigator .py.
The script computes the number of allowed and denied packets, as it would be in the real
network where all packets (even from attackers) have to be allowed at first before a sufficient

92

Validation curve for XGBCIassifier

max_depth

Figure 6.20: Influence of max depth parameter for XGBoost performance.

amount of statistics is collected. Therefore, the method evaluates the "true" accuracy, as
it does not evaluate the results by IP addresses but by packets. A test scenario with 5
attackers and 9 legitimate hosts was set up. Attacking hosts were extracted from C A I D A
2007 DDoS dataset and legitimate hosts from C A I D A 2016 Anonymized Internet traces.
A l l entries corresponding to given IPs were removed from the training dataset to prevent
mutually dependent samples from skewing the results.

The script was then run with the XGBoost model configured. According to the results, 4
of 5 attackers were detected successfully, and no false positives were produced. The method
made a total number of 321 classifications, with 4 classifications being incorrect. The total
number of denied packets for attackers was 40 914 out of 43 520, achieving accuracy for
successfully denied packets of 0.940. No benign packets were denied, so the overall accuracy
for benign clients was 1.00. This evaluation process can be replicated by running the whole
M L pipeline with python run.py command.

6.5.3 Future Work

The most urgent issue to address in future work would be the data. As outlined numerous
times throughout the document, the data with DDoS traffic in their raw P C A P form are very
hard to come by. Although few such datasets exist, their quality is often unsuitable for the
needs of the proposed mechanism. For this reason, the system was evaluated on sub-optimal
data, causing models to get biased towards features with smaller generalization capabilities.
Although this issue was tried to be solved by dropping such features, the quality of fitted
models may be questionable due to the given data. A well-defined, modern, and diverse
dataset resembling DDoS traffic characteristics is thus needed to prevent such biases and
make the method usable in real-world scenarios. A discussion regarding dataset generation
is further briefly conducted in Subsection 4.5.5.

Additional focus may be put on the data extraction and overall system pipeline con­
figuration. Most of the experiments were performed upon dataset collected throughout 6

93

seconds of the client's communication. Nevertheless, tests in Subsection 6.4.2 have shown
that the method works reliably even for 4-second traffic captures. Collecting statistics over
a lesser number of windows (such as 3, 2, or even 1 second) was not performed, but it might
be interesting to see models' behavior in such conditions as well.

Numerous other possibilities to "play" with the system also exist. One may try to im­
plement other statistical features or other ways of stream data mining techniques. Although
the window model proved to be efficient, other stream-processing algorithms may also be
tried. Stream processing can also be offloaded to solutions like Apache Fl ink 2 , which would
allow distributed processing as well as collecting data from multiple network sources at
once.

Lastly, for the method to be usable in practice, the overall pipeline needs to be accel­
erated in lower-level technologies such as compiled languages or F P G A to allow real-time
packet processing without significantly decreasing the network throughput. The current
implementation is done in Python, whereas almost no emphasis was put on the processing
performance. Offloading feature extraction and statistics computation into F P G A would
surely provide a significant performance boost. Data processing and utilization of machine
learning models can also be reimplemented in lower-level languages such as C++, providing
numerous machine learning frameworks working with much bigger overall performance.

2 Stream-processing and batch-processing framework for stateful computations over data streams. Home­
page: https://flink.apache.org/.

94

https://flink.apache.org/

Chapter 7

Conclusions

The primary goal of this thesis was to design, implement, and evaluate a method for the
mitigation of DDoS attacks using machine learning. Instead of implementing such a method
in a hard-coded manner, this work aimed to create a highly configurable set of tools and
scripts for that purpose. The leading idea behind the project was to provide a simple
interface for anyone with minimal machine learning knowledge to use.

The ease of usability is achieved by 6 programs and supplementary scripts, which provide
the complete functionality of a typical M L pipeline, including custom feature extraction,
data preprocessing, and model training and evaluation. Typical M L tasks like dataset
exploratory analysis and model deployment simulation are also highly automated. These
programs allow to easily create own datasets from supplied P C A P files and evaluate various
models with specified hyperparameters. A fitted model can then be exported and used for
further experiments or deployment in the production environment.

Based on the analysis of several dozens of existing researches within a field, an attack
detection mechanism based on the statistical features and packet metadata was proposed.
In total, 8 features are extracted from every received packet. These are then processed
within the windowed computational model, which computes relevant stream statistics upon
them. Such statistics are summarized for several windows, and a 32-element feature vector
is produced for classification. Evaluation of several publicly available datasets indicates the
system's accuracy of over 99%, with an ability to detect an ongoing attack within the first
4 seconds of its start.

Although several real and synthetic datasets were used within the project, the data
quality was still suboptimal. In general, there is a huge shortage of quality DDoS datasets
in the raw P C A P format. Existing datasets are mainly available as C S V files with already
pre-extracted features. However, these could not be utilized due to the specific needs of the
proposed extraction mechanism. Therefore, several available P C A P datasets were used, but
they were often corrupted, mislabeled, had a low attack diversity or very vague specification.

The above-mentioned issues with datasets were combated by merging the data from
7 different sources. This process has solved some issues of individual datasets, but many
flaws and biases towards certain features were still retained. Therefore, the creation of
a well-defined, modern, and diverse dataset resembling real DDoS traffic characteristics
should be the top priority for future research. Additional future work, such as the need
for system acceleration or possibilities of distributed computations, is briefly discussed in
Subsection 6.5.3.

95

Bibliography

[1] Biological Neuron Structure. Pixabay, 2014. [Online; accessed 18-August-2020].
Available at:
https : //pixabay.com/vectors/neuron-nerve-cell-axon-dendrite-296581/.

[2] Neural Networks Part 1: Setting up the Architecture. Stanford University, 2020. In
GS231n: Convolutional Neural Networks for Visual Recognition. [Online; accessed
19-August-2020]. Available at: https://cs231n.github.io/neural-networks-l/.

[3] A K A M A I T E C H N O L O G I E S . Why Akamai Cloud Security for DDoS Protection? 2021.
[Online; accessed 13-March-2021]. Available at:
https://www.akamai. com/uk/en/products/security/ddos-protection-service, j sp.

[4] B A I , S., K O L T E R , J . Z. and K O L T U N , V . A n Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling. CoRR. arXiv. 2018.

[5] B A R T O N , A . College Calculus with Analytic Geometry. (2nd edition.). The
Mathematical Gazette. Cambridge University Press. 1972. DOI: 10.2307/3617003.

[6] B E E R , F. , H O F E R , T., K A R I M I , D. and B Ü H L E R , U . A new Attack Composition for

Network Security. Bonn: Gesellschaft für Informatik e.V. 2017, p. 11-20.

[7] B E H A L , S. and K U M A R , K . Trends in Validation of DDoS Research. Procedia
Computer Science. 2016, vol. 85, p. 7-15. ISSN 1877-0509. International Conference
on Computational Modelling and Security (CMS 2016).

[8] B E N G I O , Y . Learning Deep Architectures for A I . Foundations and Trends in
Machine Learning. January 2009, vol. 2. DOI: 10.1561/2200000006.

[9] B H A Y A , W . and E B A D Y M A N A A , M . D D O S attack detection approach using an
efficient cluster analysis in large data scale. In: 2017 Annual Conference on New
Trends in Information Communications Technology Applications (NTICT). 2017,
p. 168-173.

[10] B O Y D , S. and V A N D E N B E R G H E , L . Convex Optimization. The Edinburgh Building,
Cambridge, CB2 8RU, U K : Cambridge University Press, 2004. ISBN
978-0-521-83378-3.

[11] B R E I M A N , L . Bias, Variance, and Arcing Classifiers. University of California.

[12] B R O W N L E E , N . , M I L L S , C. and R U T H , G. Traffic Flow Measurement: Architecture.
October 1999. In Request for Comments: 2722.

96

https://cs231n.github.io/neural-networks-l/
https://www.akamai

[13] B U C K L A N D , M . and G E Y , F . The relationship between Recall and Precision.
Journal of the American Society for Information Science. January 1994, vol. 45,
no. 1, p. 12-19.

[14] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . NSL-KDD dataset. 2009. Dataset for
Intrusion detection. [Online; accessed 16-July 2021]. Available at:
https: //www.unb.ca/cic/datasets/nsl.html.

[15] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . Intrusion detection evaluation dataset
(ISCXIDS2012). 2012. Dataset for Intrusion detection. [Online; accessed 16-July 2021].
Available at: https://www.unb.ca/cic/datasets/ids.html.

[16] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . CIC DOS dataset (2017). 2017.
Dataset for Intrusion detection. [Online; accessed 16-July 2021]. Available at:
https: //www.unb.ca/cic/datasets/dos-dataset.html.

[17] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . Intrusion Detection Evaluation
Dataset (CIC-IDS2017). 2017. Dataset for Intrusion detection. [Online; accessed 16-July
2021]. Available at: https://www.unb.ca/cic/datasets/ids-2017.html.

[18] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . CSE-CIC-IDS2018 on AWS. 2018.
Dataset for Intrusion detection. [Online; accessed 13-July 2021]. Available at:
https : //www.unb.ca/cic/datasets/ids-2018.html.

[19] C A N A D I A N I N S T I T U T E F O R C Y B E R S E C U R I T Y . DDOS Evaluation Dataset
(CIC-DDoS2019). 2019. Dataset for Intrusion detection. [Online; accessed 16-July 2021].
Available at: https://www.unb.ca/cic/datasets/ddos-2019.html.

[20] C E N T E R F O R A P P L I E D I N T E R N E T D A T A A N A L Y S I S . The CAIDA UCSD ,JDDoS
Attack 2007" Dataset. February 2010. [Online; accessed 18-Jun 2021]. Available at:
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/.

[21] C E N T E R F O R A P P L I E D I N T E R N E T D A T A A N A L Y S I S . The CAIDA Anonymized
Internet Traces Dataset (April 2008 - January 2019). Apr i l 2018. [Online; accessed
18-Jun 2021]. Available at:
https://www.caida.org/catalog/datasets/passive_dataset/.

[22] C H A K R A B A R T I , A . , C O R M O D E , G . and M C G R E G O R , A . A near-optimal algorithm
for computing the entropy of a stream. January 2007.

[23] C H E N , L . , Z H A N G , Y . , Z H A O , Q . , G E N G , G . and Y A N , Z . Detection of DNS DDoS
Attacks with Random Forest Algorithm on Spark. Elsevier B . V . 2018, vol. 134,
p. 310-315.

[24] C H E N , T. and G U E S T R I N , C. XGBoost: A Scalable Tree Boosting System.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2016, p. 785-794. K D D '16. ISBN 978-1-4503-4232-2.

[25] C H I C C O , D . and J U R M A N , G . The advantages of the Matthews correlation
coefficient (MCC) over F l score and accuracy in binary classification evaluation.
BMC Genomics. Jan 2020, vol. 21, no. 1, p. 6. ISSN 1471-2164.

97

http://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/ids.html
http://www.unb.ca/cic/datasets/dos-dataset.html
https://www.unb.ca/cic/datasets/ids-2017.html
http://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/

[26] C H U N G , J. , G U L C E H R E , C , C H O , K . and B E N G I O , Y . Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling. arXiv. December 2014.

[27] C I L , A . E. , Y I L D I Z , K . and B U L D U , A . Detection of DDoS attacks with feed forward
based deep neural network model. Expert Systems with Applications. 2021, vol. 169.
DOI: https://doi.Org/10.1016/j.eswa.2020.114520. ISSN 0957-4174.

[28] C i s c o S Y S T E M S . Cisco Visual Networking Index: Forecast and Trends, 2017-2022
White Paper. 70 West Tasman Dr., San Jose, C A 95134 USA, Jan 2018. Updated
on March 9, 2020. Available at:
https://www.cisco. com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-cll-741490.html.

[29] C L O U D F L A R E , I N C . . Comprehensive DDoS Protection. 2021. [Online; accessed
13-March-2021]. Available at: https://www.cloudflare.com/ddos/.

[30] C Y B E N K O , G. Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals and Systems. Dec 1989, vol. 2, no. 4, p. 303-314.
DOI: 10.1007/BF02551274. ISSN 1435-568X.

[31] D A S , S., M A H F O U Z , A . M . , V E N U G O P A L , D. and S H I V A , S. D D O S Intrusion

Detection Through Machine Learning Ensemble. In: 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion (QRS-C).
2019, p. 471-477.

[32] D O N G , S. and S A R E M , M . D D O S Attack Detection Method Based on Improved
K N N With the Degree of DDoS Attack in Software-Defined Networks. IEEE Access.
2020, vol. 8, p. 5039-5048.

[33] E R H A N , D. and A N A R I M , E . Bogazigi University Distributed Denial of Service
Dataset. Data in Brief. August 2020, vol. 32.

[34] F A D L I L , A . , R I A D I , I. and A J I , S. DDoS Attacks Classification using Numeric
Attribute-based Gaussian Naive Bayes. International Journal of Advanced
Computer Science and Applications. The Science and Information Organization.
2017, vol. 8, no. 8. DOI: 10.14569/IJACSA.2017.080806.

[35] F A R N A A Z , N . and J A B B A R , M . Random Forest Modeling for Network Intrusion
Detection System. Procedia Computer Science. Elsevier B . V . 2016, vol. 89,
p. 213-217.

[36] F A W C E T T , T. A n introduction to R O C analysis. Pattern Recognition Letters. 2006,
vol. 27, no. 8, p. 861-874. ISSN 0167-8655. R O C Analysis in Pattern Recognition.

[37] F E R G U S O N , P. and S E N I E , D. Network Ingress Filtering: Defeating Denial of Service
Attacks Which Employ IP Source Address Spoofing. R F C Editor, May 2000. Request
For Comments 2827.

[38] F L A J O L E T , P., F U S Y , E . , G A N D O U E T , O. and M E U N I E R , F . HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. Discrete Mathematics
and Theoretical Computer Science. June 2007, D M T C S Proceedings vol. A H , 2007
Conference on Analysis of Algorithms (AofA 07), p. 137-156. D M T C S Proceedings.

98

https://doi.Org/10.1016/j.eswa.2020.114520
https://www.cisco
https://www.cloudflare.com/ddos/

[39] G A V R I L I S , D. , D E R M A T A S , E. , A L R A S H D A N , W . K . , W A N G , D. and K A T K A R , V . D.
Denial of Services Attack Detection using Random Forest Classifier with
Information Gain. 2017.

[40] G O L D S C H M I D T , P. Heuristic Methods for the Mitigation of DDoS Attacks That
Abuse TCP Protocol. May 2019. Bachelor thesis. Faculty of Information Technology,
Brno University of Technology. Available at:
https: //www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f ile_id=197664.

[41] G O L D S C H M I D T , P. T C P Reset Cookies - a Heuristic Method for T C P S Y N Flood
Mitigation. In: ExceWFIT 2019. Apr 2019.

[42] G O L D S C H M I D T , P. Adaptive S Y N Flood Mitigation Based on Attack Vector
Detection and Mitigation Process Monitoring. In: ExceWFIT 2020. May 2020.

[43] G R A U P E , D . Principles of Artificial Neural Networks. 3rd ed. World Scientific
Publishing Co. Pte. Ltd. , 2013. Advanced Series in Circuits and Systems.

[44] G U P T A , B . B . and B A D V E , O. P. Taxonomy of DoS and DDoS attacks and desirable
defense mechanism in a Cloud computing environment. Neural Computing and
Applications. Dec 2017, vol. 28, no. 12, p. 3655-3682. DOI:
10.1007/s00521-016-2317-5.

[45] H A R I S , S. H . C , A H M A D , R. B . and G H A N I , M . A . H . A . Detecting T C P S Y N

Flood Attack Based on Anomaly Detection. In: Second International Conference on
Network Applications, Protocols and Services. September 2010, p. 240-244. DOI:
10.1109/NETAPPS.2010.50. ISBN 978-0-7695-4177-8.

[46] H A S T I E , T., T I B S H I R A N I , R. and G R I E D M A N , J . The Elements of Statistical

Learning: Data Mining Inference, and Prediction. 2ndth ed. Springer, January
2016. ISBN 978-0387848570.

[47] H O C H R E I T E R , S. The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems. Apr i l 1998, vol. 6, p. 107-116. DOI:
10.1142/S0218488598000094.

[48] H O C H R E I T E R , S., B E N G I O , Y . , F R A S C O N I , P. and S C H M I D H U B E R , J . Gradient Flow

in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies. In: A Field
Guide to Dynamical Recurrent Neural Networks. I E E E Press, March 2001.

[49] H O C H R E I T E R , S. and S C H M I D H U B E R , J . Long Short-Term Memory. Neural
Computation. Cambridge, M A , USA: M I T Press. November 1997, vol. 9, no. 8,
p. 1735-1780. DOI: 10.1162/neco.l997.9.8.1735. ISSN 0899-7667. Available at:
https://doi.org/10.1162/neco.1997.9.8.1735.

[50] H O F F M A N N , L . D. and B R A D L E Y , G . L . Calculus For Business, Economics, and the
Social and Life Sciences. 10th ed. Avenue of the Americas, New York, N Y 10020:
McGraw-Hill , 2010. ISBN 978-0-07-353231-8.

[51] H O R N I K , K . Approximation Capabilities of Multilayer Feedforward Networks.
Neural Networks. 1991, vol. 4, no. 2, p. 251 - 257. ISSN 0893-6080.

99

http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f
https://doi.org/10.1162/neco

[52] H S I E H , C. -J . , C H A N G , K . - W . , L I N , C. -J . , K E E R T H I , S. S. and S U N D A R A R A J A N , S. A

Dual Coordinate Descent Method for Large-Scale Linear S V M . In: Proceedings of
the 25th International Conference on Machine Learning. Association for Computing
Machinery, 2008, p. 408-415. I C M L '08. ISBN 9781605582054.

[53] I M P A C T . DARPA 2009 Intrusion Detection Dataset - Dataset Details. 2009.
Online; accessed 17-July 2021]. Available at:
https : //www.impactcybertrust.org/dataset_view?idDataset =742.

[54] I M P E R V A , I N C . . DDoS Protection. 2021. [Online; accessed 13-March-2021]. Available at:
https : //www.imperva.com/products/ddos-protection-services/.

[55] I N T E R N E T A S S I G N E D N U M B E R S A U T H O R I T Y . Protocol Numbers. Last Updated:
2021-02-26. [Online; accessed 12-July 2021]. Available at:
https : //www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml.

[56] J A C K O , D. Inference of DDoS Mitigation Rules. Brno, 2021. Master's thesis. Brno
University of Technology. (Slovak).

[57] J I A , B. , H U A N G , X . , L i u , R. and M A , Y . A DDoS Attack Detection Method Based
on Hybrid Heterogeneous Multiclassifier Ensemble Learning. Journal of Electrical
and Computer Engineering. March 2017, vol. 2017, p. 1-9. DOI:
10.1155/2017/4975343.

[58] K A G G L E C O N T R I B U T O R S . DDOS Botnet Attack on IOT Devices. 2020. Online;
accessed 17-July 2021]. Available at:
https : //www.kaggle.com/siddharthml698/ddos-botnet-attack-on-iot-devices.

[59] K E K E L Y , L . , C A B A L , J . , Pus, V . and K O R E N E K , J . Mufti Buses: Theory and
Practical Considerations of Data Bus Width Scaling in F P G A s . In: 2020 23rd
Euromicro Conference on Digital System Design (DSD). 2020, p. 49-56. DOI:
10.1109/DSD51259.2020.00020.

[60] K I O U R K O U L I S , S. DDoS Datasets: Use of Machine Learning to Analyse Intrusion
Detection Performance. 971 87 Lulea, Sweden, 2020. Master's thesis. Lulea
University of Technology. Supervisor: Dr. A l i Ismail Awad.

[61] K O K I L A R T , T H A M A R A I S E L V I , S. and G O V I N D A R A J A N , K . D D O S detection and

analysis in SDN-based environment using support vector machine classifier. In: 2014
Sixth International Conference on Advanced Computing (ICoAC). I E E E , 2014,
p. 205-210.

[62] K R E B S , B . Study: Attack on KrebsOnSecurity Cost IoT Device Owners $323K. May
2018. Available at: https://krebsonsecurity.com/2018/05/study-attack-on-
krebsonsecurity-cost-iot-device-owners-323k.

[63] K U P R E E V , O., B A D O V S K A Y A , E . and G U T N I K O V , A . DDoS attacks in Q4 2020.
Kaspersky Lab, February 2021. [Online; accessed 27-February-2021]. Available at:
https://securelist.com/ddos-attacks-in-q4-2020/100650/.

[64] L A H I R I , B . and T I R T H A P U R A , S. Stream Sampling. In: Encyclopedia of Database
Systems. Boston, M A : Springer US, 2009, p. 2838-2842. ISBN 978-0-387-39940-9.

100

http://www.impactcybertrust.org/dataset_view?idDataset
http://www.imperva.com/products/ddos-protection-services/
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.kaggle.com/siddharthml698/ddos-botnet-attack-on-iot-devices
https://krebsonsecurity.com/2018/05/study-attack-on-
https://securelist.com/ddos-attacks-in-q4-2020/100650/

[65] L i , C , W U , Y . , Y U A N , X . , S U N , Z., W A N G , W . et al. Detection and defense of
DDoS attack-based on deep learning in OpenFlow-based SDN. International
Journal of Communication Systems, vol. 31, no. 5, p. e3497.

[66] L i , F . -F . et al. Convolutional Neural Networks (CNNs / ConvNets). 2020. In
Standford's course CS231n Convolutional Neural Networks for Visual Recognition. [Online;
accessed 14-January-2021]. Available at:
https : //cs231n.github.io/convolutional-networks/.

[67] L U G E R , G. F . Artificial Intelligence: Structures and Strategies for Complex Problem
Solving. 5th ed. Pearson Addison Wesley, 2005. ISBN 0 321 26318 9.

[68] M A N A F G H A R A I B E H . DARPA 2009 Intrusion Detection Dataset. July 2016. Online;
accessed 17-July 2021]. Available at: http://www.darpa2009.netsec.colostate.edu/.

[69] M A N S A L I S , S., N T O U T S I , E . , P E L E K I S , N . and T H E O D O R I D I S , Y . A n evaluation of
data stream clustering algorithms. Statistical Analysis and Data Mining: The ASA
Data Science Journal. June 2018, vol. 11. DOI: 10.1002/sam.ll380.

[70] M I T C H E L L , T. M . Machine Learning. 1st ed. USA: McGraw-Hill , Inc., 1997. ISBN
0070428077.

[71] M U T U A L L Y A G R E E D N O R M S F O R R O U T I N G S E C U R I T Y . MANRS Implementation
Guide - Anti-Spoofing. January 2017. [Online; accessed 11-Jul 2021]. Available at:
https : //www.manrs.org/isps/guide/antispoof ing/.

[72] N E T W O R K A N D D A T A S E C U R I T Y G R O U P H O C H S C H U L E F U L D A . NDSec-1 Dataset
Website. 2016. [Online; accessed 20-Jun 2021]. Available at:
https://www2.hs-fulda.de/NDSec/NDSec-l/.

[73] N G U Y E N , H . -V. and C H O I , Y . Proactive detection of DDoS attacks utilizing k -NN
classifier in an anti-DDoS framework. World Academy of Science, Engineering and
Technology. March 2009, vol. 39, p. 640-645.

[74] N O G U E I R A , M . , S A N T O S , A . A . and M O U R A , J . M . F . Early Signals from
Volumetric DDoS Attacks: A n Empirical Study. arXiv. Sep 2017.

[75] N O O R I B A K H S H , M . and M O L L A M O T A L E B I , M . A review on statistical approaches for
anomaly detection in DDoS attacks. Information Security Journal: A Global
Perspective. Taylor & Francis. 2020, vol. 29, no. 3, p. 118-133. DOI:
10.1080/19393555.2020.1717019.

[76] O H S I T A , Y . , A T A , S. and M U R A T A , M . Detecting distributed denial-of-service
attacks by analyzing T C P S Y N packets statistically. In: IEEE Global
Telecommunications Conference, 2004. GLOBECOM '04 . 2004, vol. 4, p. 2043-2049
Vol.4.

[77] Oo, T. and P H Y U , T. A Statistical Approach to Classify and Identify DDoS
Attacks using U C L A Dataset. International Journal of Advanced Research in
Computer Engineering & Technology (IJARCET). May 2013, vol. 5.

[78] Oo, T. T. and P H Y U , T. Statistical Anomaly Detection of DDoS Attacks Using
K-Nearest Neighbour. January 2014.

101

http://www.darpa2009.netsec.colostate.edu/
http://www.manrs.org/isps/guide/antispoof
https://www2.hs-fulda.de/NDSec/NDSec-l/

[79] O S A N A I Y E , O., C H O O , K . - K . R. and D L O D L O , M . Distributed denial of service
(DDoS) resilience in cloud: Review and conceptual cloud DDoS mitigation
framework. Journal of Network and Computer Applications. 2016, vol. 67,
p. 147-165. DOI: https://doi.Org/10.1016/j.jnca.2016.01.001. ISSN 1084-8045.

[80] Ö Z G Ü R , A . and E R D E M , H . A review of KDD99 dataset usage in intrusion detection
and machine learning between 2010 and 2015. Peer J Prepr. Apr i l 2016, vol. 4.

[81] P A S C A N U , R., G U L C E H R E , C., C H O , K . and B E N G I O , Y . H O W to Construct Deep
Recurrent Neural Networks. arXiv. December 2013.

[82] P E D R E G O S A , F. , V A R O Q U A U X , G. , G R A M F O R T , A . , M I C H E L , V . , T H I R I O N , B . et al.

Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011, vol. 12, p. 2825-2830.

[83] P O W E R S , D. M . W . Evaluation: From Precision, Recall and F-Factor to R O C ,
Informedness, Markedness & Correlation. International Journal of Machine
Learning Technology. January 2008, vol. 2.

[84] P R A M A N A , M . I. W . , P U R W A N T O , Y . and S U R A T M A N , F . Y . D D O S detection using
modified K-means clustering with chain initialization over landmark window.
In: 2015 International Conference on Control, Electronics, Renewable Energy and
Communications (ICCEREC). 2015, p. 7-11.

[85] Q U I T T E K , J. , Z S E B Y , T., C L A I S E , B . and Z A N D E R , S. Requirements for IP Flow
Information Export (IPFIX). October 2004. In Request for Comments: 3917.

[86] R A D W A R E I N C . . Global application & network security report 2015-2016. 2016.

[87] R A I L E A N U , L . E . and S T O F F E L , K . Theoretical Comparison between the Gini Index
and Information Gain Criteria. Annals of Mathematics and Artificial Intelligence.
May 2004, vol. 41, no. 1, p. 77-93.

[88] R A I N A , H . and S H A F I , O. Analysis Of Supervised Classification Algorithms.
International Journal of Scientific & Technology Research. September 2015, vol. 4.
ISSN 2277-8616.

[89] R A M A M O O R T H I , A . , S U B B U L A K S H M I , T. and S H A L I N I E , S. M . Real time detection
and classification of DDoS attacks using enhanced S V M with string kernels.
In: 2011 International Conference on Recent Trends in Information Technology
(ICRTIT). 2011, p. 91-96.

[90] R E J I M O L R O B I N S O N , R. R. and T H O M A S , C. Ranking of machine learning
algorithms based on the performance in classifying DDoS attacks. In: 2015 IEEE
Recent Advances in Intelligent Computational Systems (RAICS). 2015, p. 185-190.

[91] R I C H M A N , J . S., L A K E , D . E . and M O O R M A N , J . Sample Entropy. In: Numerical
Computer Methods, Part E. Academic Press, 2004, vol. 384, p. 172-184. Methods in
Enzymology. ISSN 0076-6879.

[92] R O S E N B L A T T , F . The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review. 1958, 65 6, p. 386-408.

102

https://doi.Org/10.1016/j.jnca.2016.01.001

[93] R U M E L H A R T , D . E. , H I N T O N , G . E . and W I L L I A M S , R . J . Learning representations
by back-propagating errors. Nature. October 1986, vol. 323, no. 6088, p. 533-536.
DOI: 10.1038/323533a0. ISSN 1476-4687.

[94] R U S S E L L , S. and N O R V I G , P. Artificial Intelligence: A Modern Approach. Fourth
editionth ed. Pearson, 2020. ISBN 978-0136042594.

[95] S A H A , S. A Comprehensive Guide to Convolutional Neural Networks - the ELI5
way. December 2018. Available at:
https : //towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2bll64a53.

[96] S A I E D , A . , O V E R I L L , R . E . and R A D Z I K , T. Detection of known and unknown
DDoS attacks using Artificial Neural Networks. Neurocomputing. 2016, vol. 172,
p. 385-393. DOI: https://doi.Org/10.1016/j.neucom.2015.04.101. ISSN 0925-2312.

[97] S A N T O S , R . , S O U Z A , D., S A N T O , W . , R I B E I R O , A . and M O R E N O , E . Machine
Learning Algorithms to Detect DDoS Attacks in SDN. Concurrency and
Computation: Practice and Experience. June 2020, vol. 32, no. 16. DOI:
https://doi.org/10.1002/cpe.5402.

[98] S H A L E V S H W A R T Z , S., S I N G E R , Y . , S R E B R O , N . and C O T T E R , A . Pegasos: primal

estimated sub-gradient solver for S V M . Mathematical Programming. Mar 2011,
vol. 127, p. 3-30.

[99] S H A N N O N , C. E . A Mathematical Theory of Communication. Bell System Technical
Journal. 1948, vol. 27, no. 3, p. 379-423.

[100] S H E , C , W E N , W . , Z H E N G , K . and L Y U , Y . Application-Layer DDoS Detection by
K-means Algorithm. In: 2016 4th International Conference on Electrical &
Electronics Engineering and Computer Science (ICEEECS 2016). Atlantis Press,
December 2016, p. 75-78. ISBN 978-94-6252-265-7.

[101] S H I R A V I , A . , S H I R A V I , H . , T A V A L L A E E , M . and G H O R B A N I , A . A . Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection. Computers & Security. 2012, vol. 31, no. 3, p. 357-374. ISSN 0167-4048.

[102] S I N G H , A . , G A R G , S., K A U R , R . , B A T R A , S., K U M A R , N . et al. Probabilistic data
structures for big data analytics: A comprehensive review. Knowledge-Based
Systems. 2020, vol. 188, p. 104987. ISSN 0950-7051.

[103] S U B B U L A K S H M I , T. et al. Detection of DDoS attacks using Enhanced Support
Vector Machines with real time generated dataset. In: 2011 Third International
Conference on Advanced Computing. 2011, p. 17-22.

[104] T A V A L L A E E , M . , B A G H E R I , E . , L U , W . and G H O R B A N I , A . A . A detailed analysis of

the K D D C U P 99 data set. In: 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications. 2009, p. 1-6.

[105] T H E O D O R I D I S , S. and K O U T R O U M B A S , K . Pattern Recognition, Fourth Edition.
4thth ed. USA: Academic Press, Inc., 2008. ISBN 1597492728.

103

https://doi.Org/10.1016/j.neucom.2015.04.101
https://doi.org/10.1002/cpe.5402

[106] T U A N , N . N . , H U N G , P. H . , N G H I A , N . D., V A N T H O , N . , P H A N , T. V . et al. A

Robust T C P - S Y N Flood Mitigation Scheme Using Machine Learning Based on
SDN. In: 2019 International Conference on Information and Communication
Technology Convergence (ICTC). 2019, p. 363-368.

[107] T U A N , N . N . , H U N G , P. H . , N G H I A , N . D., T H O , N . V . , P H A N , T. V . et al. A DDoS

Attack Mitigation Scheme in ISP Networks Using Machine Learning Based on SDN.
Electronics. February 2020, vol. 9, no. 3. ISSN 2079-9292.

[108] T U A N , N . N . , H U N G , P. H . , N G H I A , N . D., T H O , N . V . , P H A N , T. V . et al. A DDoS
Attack Mitigation Scheme in ISP Networks Using Machine Learning Based on SDN.
Electronics. 2020, vol. 9, no. 3. ISSN 2079-9292. Available at:
https://www.mdpi.com/2079-9292/9/3/413.

[109] U H R I G , R. E . Introduction to artificial neural networks. In: Proceedings of IECON
'95 - 21st Annual Conference on IEEE Industrial Electronics. 1995, vol. 1, p. 33-37
vol.1.

[110] U N I V E R S I T Y O F C A L I F O R N I A , I R V I N E . KDD Cup 1999 Data. October 1999. [Online;
accessed 16-July 2021]. Available at:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[Il l] V l S W A R U P A N , N . K-Means Data Clustering. Jul 2017. [Online; accessed 26-June-2020].
Available at:
https : //towardsdatascience.com/k-means-data-clustering-bce3335d2203.

[112] W A N G , C , Z H E N G , J . and L i , X . Research on DDoS Attacks Detection Based on
R D F - S V M . In: 2017 10th International Conference on Intelligent Computation
Technology and Automation (ICICTA). 2017, p. 161-165.

[113] W E L F O R D , B . P. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics. Taylor & Francis. 1962, vol. 4, no. 3, p. 419-420.

[114] W l K l P E D l A C O N T R I B U T O R S . Decision tree learning. 2020. [Online; accessed
5-August-2020]. Available at:
https : //en.wikipedia.org/wiki/Decision_tree_learning.

[115] X I E , Y . and Y u , S. Monitoring the Application-Layer DDoS Attacks for Popular
Websites. IEEE/ACM Transactions on Networking. 2009, vol. 17, no. 1, p. 15-25.
DOI: 10.1109/TNET.2008.925628.

[116] Y A N , Q . , Y U , F . R., G O N G , Q . and L i , J . Software-Defined Networking (SDN) and
Distributed Denial of Service (DDoS) Attacks in Cloud Computing Environments:
A Survey, Some Research Issues, and Challenges. IEEE Communications Surveys
Tutorials. 2016, vol. 18, no. 1, p. 602-622. DOI: 10.1109/COMST.2015.2487361.

[117] Y E , J. , C H E N G , X . , Z H U , J. , F E N G , L . and S O N G , L . A DDoS Attack Detection
Method Based on S V M in Software Defined Network. Security and Communication
Networks. Hindawi. Apr 2018, vol. 2018.

[118] Y i u , T. Understanding Random Forest. Jun 2019. [Online; accessed 7-August-2020].
Available at:
https: //towardsdatascience.com/understanding-random-f orest-58381e0602d2.

104

https://www.mdpi.com/2079-9292/9/3/413
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://en.wikipedia.org/

[119] Y U A N , X . , L i , C. and L i , X . DeepDefense: Identifying DDoS Attack via Deep
Learning. In: 2017 IEEE International Conference on Smart Computing
(SMARTCOMP). 2017, p. 1-8.

[120] Y U D H A N A , A . , R I A D I , I. and R I D H O , F . D D O S Classification Using Neural Network
and Naive Bayes Methods for Network Forensics. International Journal of Advanced
Computer Science and Applications. December 2018, vol. 9, p. 177-183. DOI:
10.14569/IJACSA.2018.091125.

[121] Z A K K A , K . A Complete Guide to K-Nearest-Neighbors with Applications in Python
and R. July 2016. [Online; accessed 26-June-2020]. Available at:
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor.

[122] Z H A N G , X . , Z H A O , J . J . and L E C U N , Y . Character-level Convolutional Networks for
Text Classification. CoRR. arXiv. Apr i l 2015.

[123] Z H U , M . , Y E , K . and X u , C . - Z . Network Anomaly Detection and Identification
Based on Deep Learning Methods. In: L u o , M . and Z H A N G , L . - J . , ed. Cloud
Computing - CLOUD 2018. Springer International Publishing, 2018, p. 219-234.

105

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor

Append i x A

Neural Networks Learning

Learning of the neural networks is typically done in a supervised manner. During the
process, a network receives pairs of (x, y) where x is the input feature vector and y the
expected output. Neural networks firstly compute an output estimation y for x (forward
pass). A Loss (Error, Cost) function L is then used to compute a difference (estimation
error) between y and y. Let T = (x i , yi),..., (xn, yn) be the set of all training pairs. The
goal of the learning is thus to minimize L(T, 9) by modifying network parameters 9. For
this purpose, a gradient VE is firstly computed, and its values are used by one of the
optimizers, such as gradient descent, to perform an actual parameter update.

A n efficient and most popular way to compute gradients in feedforward networks is to use
the Backpropagation (BP) algorithm [93]. The algorithm firstly computes an error function
and gradients for the network's output layer. Gradients of the current layer are then used
for gradient computation in the previous layer and so on. The error is thus propagated
backward from the last to the first layer. Various modifications of the algorithm are used
for other network types, such as Backpropagation Through Time (BPTT) for RNNs. The
following paragraphs will briefly describe the math behind B P for FNNs.

The loss function defined in the original paper and used throughout the following ex­
planation is defined as Eq. A . l , where HL represents the number of neurons in the output
layer (size of the output vector). This function is calculated for each input pair separately
and then summed with other samples to form a total training loss used to compute the gra­
dients. Nowadays, other loss functions, such as Cross-Entropy and Hinge loss, are utilized,
but the principles explained here stay mostly the same.

Network Parameters Update

In order to minimize the function L , the algorithm needs to compute its partial derivatives
of all network parameters 9, called gradient. Since gradient represents the direction of the
function increase, the mechanism needs to update parameters in the opposite direction,
so that L will decrease. For example, the Gradient descent optimizer updates network
parameters according to Eq. A.2, where T is a set of training samples, 9t are network
parameters in time t, and a is a learning constant.

(A.l)

3=1

106

Qt+1 = &t_ JJ^l (A 2)
Ou

Full (batch) gradient descent would require the gradient computed for every sample in
the training set and perform an update from Eq. A.2 afterward. This is highly computa­
tionally inefficient, so in practice, either stochastic (SGD) or mini-batch (MGD) gradient
descent variants are used. SGD does not compute the partial derivatives for each element
but performs an update after each training sample. On the other hand, M G D performs
parameter update only according to the gradients of the training data subset. Other more
sophisticated optimizers like RMSprop, Adam, or A M S G r a d also change the learning rate
dynamically and utilize properties of the gradient (like steepness) to update the network's
parameters even more efficiently, often resulting in faster convergence.

Gradient Computation

Although numerous computing gradient methods exist, the Backpropagation algorithm and
its modifications are used in most neural network applications nowadays. Suppose:

• kWji be a weight between node j in A; t h layer and node i in k — 1 t h layer

• rifc be a number of neurons in the A: t h layer

• kip(x) be an activation function for the fcth layer

kyj be an output of the neuron j in /c t h layer, kyj = kip(ku

«fe - i
• kUj be an internal state of the neuron j in fcth layer: kUj = YJ kWjik~1yi + kQj

i=l

The partial derivative of the particular weight can be computed using the chain rule 1 as:
-S— = S—ah

 3 • The first term is usually called the error and is denoted by 5: 5j = S—•
oKWji aKUj oKWji J J J aKUj

The partial derivative of the second term is = QU~{ k ' w j i k ~ 1 y i + = k~1Ui-

Therefore, the partial derivative of the loss function L with respect to a particular weight
kWji is defined by Eq. A.3. 31

OL
k 5 3

k - l

y i (A.3)
dkWji

We wil l now calculate partial derivatives for the previously defined loss function in
Eq. A . l . Firstly, partial derivatives for the output layer are calculated, and the error is
then propagated back to hidden layers. The loss function can be expressed in terms of

1 n ° 1 n °
the value °Uj as L = - (jjj — yj) = - (°(p(°Uj) — y3)i , where o is the index of the

2 ; | 2 ; |
last (output) network layer. Applying partial derivative with the chain rule then gives:
°5j = (°f(°Uj) — yj)°f'(0Uj) = {ijj — yj)°f'(0Uj). Therefore, the loss function partial
derivative of a weight for a neuron in the last layer can be expressed according to Eq. A.4.

FIT

- V 1 ^ = (yj - VJ) V (%r V (A.4) d°Wji

1Formula to compute the derivative of a composite function: (/ o g)' = (/' o g) .g'.

107

K 5 _ 9 L _ y 8L d^Ul

3 dk

Uj ^ d*+iUl a% { ' J 1=1 J

At this point, the computed error needs to be propagated to other non-output layers.
Using the chain rule, k5j for 1 < k < o can be expressed as Eq. A.5. The first term of the
equation is simply a 5 of the neuron in the next layer. The numerator of the second term

is k+1ui = k+1wiikVi + k+1®i = k+1wu k(f(kUi) + fc+16;. Its partial derivative would
i=l i=l

thus result in Ul = k+1wij k(p'(kUj). Considering these calculations, the error term kdj

for hidden layers may be written as Eq. A.6, called the backpropagation formula. Finally,
Eq. A.7 represents the loss function derivative of a weight in a hidden layer by substituting
the error term into Eq. A.3.

% = E k+1Sik+1wiM%) = V (S) £ k + (A . 6)
i=i i=i

FIT K + 1

M = Oj yi = ip (Uj) yi > ^ = V(S) f c _ 1yi 2J wh• h (A.7)
z=i

As it may be seen in Eq. A.7, in order to compute gradients in any hidden layer k,
error terms (5) need to be calculated for every neuron in the layer k + 1. Backpropagation
takes advantage of this property and thus allows to compute gradients very efficiently in
an iterative manner. After each layer's gradients for every input-output pair are computed,
they are combined to produce the total gradient dgk^ for the entire set T. The total
gradient is then used to update weights based on the used optimizer. This process is
repeated until a predefined criterion, such as the number of training epochs, is met.

108

Append i x B

System's Configuration File

Mitigation of DoS Attacks Using Machine Learning project global configuration f i l e
Author: Patrik Goldschmidt (xgoldsOO@stud.fit.vutbr.cz)
Date: 14.06.2021, last rev. 19.07.2021
Note: Non-required lines can be commented out. In this case default values w i l l be used.

dataset_creator:
(Optional, default: 0) Number of packets to report after during processing. Disable: 0.
report_status_packets: 1000000

cleaning:
Column names to drop from dataset
drop_cols:

- "window_count"
- "window_span"

feature importance:
Method to determine feature importance. Options: permutation I direct
Direct method for tree-based techniques such as adaboost or xgboost represent decrease
in impurity within each tree,
method: "direct"

Library to load the model from. Options: scikitIxgboost
model source: "scikit"

Which particular model from the l ibrary to use. Note that a l l models support
permutation method, but only some can provide feature importance estimation directly
by themselves. Consult model's documentation to learn more.
Models supporting direct method:
Scikit: adaboost, extra_trees, grad_boosting, tree, random_forest
Xgboost: xgboost
Other models without direct feature importance estimation:
Scikit: bayes, kneighbors, logreg, Ida, nearest_centroid, svm
model type: "adaboost"

Scoring to use for importance estimation. Leave commented out for default model scorer
#scoring = "accuracy"

feature_plotter:
Directory to which to save plots
plots dir: "plots"

Resulting plot f i l e s extension

109

mailto:xgoldsOO@stud.fit.vutbr.cz

Options: psIepsIpdfIpnglsvgIjpgIjpegItifItiff
file extension: "pdf"

(Optional, default: True) Whether to remove outliers when plotting histograms
hist rem outliers: True

(Optional, default: True) Plot boxplots for each feature
plot boxplots: False

(Optional, default: True) Plot Empiric distribution functions for each feature
plot ecdfs: False

(Optional, default: True) Plot histograms for each feature
plot histograms: True

(Optional, default: True) Plot Kernel density estimations for each feature
plot kdes: False

(Optional, default: True) Plot all-in-one graphs.
All-in-one graph is a single f i l e containing Boxplot,ECDF, Histogram, and KDE
plot all in ones: True

(Optional, default: True) Plot summary graphs.
Summary graph contains plots for a l l features except target variable in one f i l e
plot summaries: True

(Optional, default: True) Plot correlation heatmap for a l l variables
plot cor heatmap: True

(Optional, default: []) Multivariate plot to show relationship between two features
Enter pairs in the form of the l i s t - ['featurel', 'feature2']
multivariate scatter features:

- ['port_src_unique', 'port_src_entropy']

(Optional, default: False) Cal l custom plotting function for user-defined plots
plot custom: False

(Optional, default: 300) Number of scatterplot samples to plot
scatter samples: 300

feature projection:
Feature projectcion method to use
Options:
fa - Factor Analysis
Ida - Linear Discriminant Analysis
pea - Principal Component Analysis
method: "pea"

Desired number of components after feature projection
n components: 25

feature_selection:
Feature selection configuration. See [1] details.
Options:
varthreshold - Variance Threshold selector
kbest - Select K best features according to s tat i s t ica l test
rfe - Recursive Feature Elimination
model - Select From Model Selection
sfs - Sequential Feature Selector

110

[1] https://scikit-learn.org/stable/modules/feature_selection.html
Note: Due to the complexity and the number of options available, parameters of
selectors cannot be modified using this config f i l e . The only available option is
"n_features_to_select" to specify the number of desired features for Kbest, RFE, model,
and SFS. Varthreshold option may also u t i l i z e 'threshold' option. Selectors that
require model use random forest with 100 estimators, which was empirically proven to
perform relatively sol id. If more advanced configuration is desired, modify the
FeatureSelector's constructor in dataprocessing/feature_modification/selection.py f i l e ,
method: "model"

Number of features to select. Supports a l l selectors except "varthreshold"
n_features_to_select: 20

logger:
Length of the window in seconds
window length: 1

(Optional, default: 6) Minimum number of collected windows to process the given IP
history min: 6

(Optional, default: 0) Maximum number of elements that are stored in memory for
history. 0 refers to "infinity", allowing to store records to up 5GB of computer memory
history_size: 0

(Optional, default: 120) Maximum number of seconds for which his tor ica l logs are val id
history timeout: 240

(Optional, default: 20) Minimum number of packets in the window to log i t
packets min: 15

(Optional, default: 40) Number of samples for entropy estimation per IP per window
samples_size: 40

mitigator:
(Optional, default: 0) Number of packets to report after when running in offline mode
report_status_packets: 1000000

(Optional, default: 1000000) Size of the denylist (blacklist) in entries
denylist_size: 1000000

model:
From which l ibrary is the model loaded. Options: scikitIxgboost
model source: "scikit"

Which model to use from the particular source
Scikit options : adaboostIbayesIextra_treesIgrad_boostingIkneighborsIlogregI Ida I
nearest_centroidIsvmltree Irandom_forest
XGboost options: xgboost
model type: "random_forest"

Relative path to f i l e containing model hyperparameters
models cfg file: "models.yml"

(Optional, default: False). If True, does not raise exception when model config is not
found, but uses empty config instead. This is especially useful when config with the
specified name is generated on-the-go in the pipelined processing
ignore missing config: True

(Optional, default: ' a l l ') List of models to include with -C parameter.

I l l

https://scikit-learn.org/stable/modules/feature_selection.html

Use ' a l l ' for a l l available models or l i s t of model_source.model_type strings, such as
['scikit.kneighbors', s c ik i t . lda , scikit.random_forest]
K Nearest Neighbors is disabled by default due to very poor time and memory performance
upon larger datasets
comparison models:

- "scikit.adaboost"
- "scikit.bayes"
- "scikit.extra_trees"
- "scikit.grad_boosting"
- "scikit.logreg"
- "scikit. lda"
- "scikit.mlp"
- "scikit.nearest_centroid"
- "scikit.svm"
- "scikit.tree"
- "scikit.random_forest"
- "xgboost.xgboost"

(Optional, default: 'accuracy') Metric to tune hyper-parameter against
estimation metric: "accuracy"

Hyperparameters to estimate during the hyperparameter tuning phase. Has to include
names of parameters relevant to the given model + their values to try as a l i s t

estimation params:
n_estimators: [1,5,10,20,40,60,80,100]

(Optional, default: 'default') Metrics to print for cross-validation model comparison.
Takes parameters from:
https://scikit-learn.org/stable/modules/model_evaluation.html
Use l i s t to l i s t desired metrics. "fit_time", and "score_time" to print time required
for classif ier training and data evaluation, "default" represents:
['accuracy', ' f l ' , 'precision', ' r e c a l l ' , 'f it_time', 'score_time']
score metrics: "default"

(Optional, default: 'plots') Directory to save model evaluation plots to.
plots dir: "plots"

model manager:
Which columns to standardize when generating configuration
"default" stands for a l l columns that are not within <0, 1> range already
Otherwise, column names may be specified in the l i s t , "all" or "none"
std_cols: "default"

(Optional, default: 0.2). Test data portion when spl i t t ing the data. Range <0.0, 1.0>
test_size: 0.2

model_plotter:
Directory to which to save plots
plots dir: "plots/model"

Resulting plot f i l e s extension
Options: psIepsIpdfIpnglsvgIjpgIjpegItifItiff
file extension: "pdf"

Plotting for validation curve
Syntax:
validation_curve:
model_name:
arbitrary_name:

112

https://scikit-learn.org/stable/modules/model_evaluation.html

param_name: - Name of the parameter to validate
param_range_low: - Lower bound to start testing at
param_range_high: - Higher bound to stop testing at
param_type: - Parameter type - f loat/ int
param_samples: - Samples num to draw from [param_range_low, param_range_high]
scoring: - (Optional, default: 'accuracy') Scoring metric to use.
validation curve:

scikit. random forest:
n estimators:

param range low: 10
param range high: 100
param type: ' int'
param samples: 10

max depth:
param range low: 1
param range high: 10
param_type: ' int'
param samples: 10

preprocessor:
Additionally dropped columns during mitigation additionally to cleaning config
extra_drop_cols:

- "src_ip"

resampling:
(Optional, default: "undersampling"). Method used i f resampling is performed.
Choices: undersampling, oversampling
method: "undersampling"

(Optional, default: "random"). Resampling algorithm used. Choices:
undersampling: random, nearmiss, tomeklinks, editednn
oversampling: random, smote, adasyn
algorithm: "random"

standardization:
Standardization method to use
method: "minmax"

113

