Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální fyziky



# Studium a možnosti řízení fyzikálních vlastností vzácného polymorfu oxidu železitého - ε-Fe<sub>2</sub>O<sub>3</sub>

Disertační práce

Ing. Michaela Polášková

Vedoucí práce: doc. RNDr. Libor Machala, Ph.D. Konzultant: doc. Mgr. Jiří Tuček, Ph.D.

Olomouc 2023

### Prohlášení

Prohlašuji, že jsem disertační práci vypracovala samostatně. Veškeré literární prameny a informace, které jsem v práci využila, jsou v seznamu použité literatury a literaturu řádně cituji. Dále prohlašuji, že mám většinový autorský přínos v publikacích [i] a [v], uvedených v seznamu autorových publikací, přičemž obsah [v] představuje část prezentované disertační práce.

V Olomouci dne 16.1.2023

podpis studenta

#### Poděkování

V první řadě bych chtěla poděkovat svému prvnímu školiteli doc. Mgr. Jiřímu Tučkovi, Ph.D. za ochotu, čas, velmi vstřícný přístup a cenné rady, které mi během celého studia poskytnul. Zárověň bych chtěla poděkovat i svému nynějšímu školiteli doc. RNDr. Liboru Machalovi, Ph.D. za jeho ochotu, velmi vstřícný přístup a věcné připomínky.

Mé poděkování patří i mé rodině a především svému manželovi za veškerou podporu.

# Bibliografická identifikace:

| Jméno a příjmení autora: | Ing. Michaela Polášková                       |
|--------------------------|-----------------------------------------------|
| Název práce:             | Studium a možnosti řízení fyzikálních         |
|                          | vlastností vzácného polymorfu oxidu           |
|                          | železitého - ε-Fe <sub>2</sub> O <sub>3</sub> |
| Typ práce:               | Disertační                                    |
| Pracoviště:              | Katedra experimentální fyziky                 |
| Studijní program:        | Aplikovaná fyzika                             |
| Vedoucí práce:           | doc. RNDr. Libor Machala, Ph.D.               |
| Konzultant:              | doc. Mgr. Jiří Tuček, Ph.D.                   |
| Rok obhajoby práce:      | 2023                                          |
| Klíčová slova:           | sol-gel metoda, ɛ-Fe2O3 nanočástice           |
| Počet stran:             | 107                                           |
| Počet příloh:            | 3                                             |
| Jazyk:                   | Čeština                                       |

# **Bibliographical identification:**

| Author's first name and surname: | Ing. Michaela Polášková                                                     |
|----------------------------------|-----------------------------------------------------------------------------|
| Title:                           | Study and possibilities of physical                                         |
|                                  | properties control of rare iron oxide                                       |
|                                  | polymorph - ε-Fe <sub>2</sub> O <sub>3</sub>                                |
| Type of thesis:                  | Dissertation                                                                |
| Department:                      | Department of Experimental Physics                                          |
| Study programme:                 | Applied Physics                                                             |
| Supervisor:                      | doc. RNDr. Libor Machala, Ph.D.                                             |
| Consultant:                      | doc. Mgr. Jiří Tuček, Ph.D.                                                 |
| Defence year:                    | 2023                                                                        |
| Key words:                       | sol-gel method, $\varepsilon$ -Fe <sub>2</sub> O <sub>3</sub> nanoparticles |
| Number of pages:                 | 107                                                                         |
| Number of appendices:            | 3                                                                           |
| Language:                        | Czech                                                                       |

## Abstrakt:

Oxidy železa(III) stále přitahují značnou pozornost díky svým příhodným fyzikálním, chemickým a dalším vlastnostem. Jak je známo, oxid železitý vykazuje polymorfismus s existencí čtyř stabilních krystalických polymorfů,  $\alpha$ -,  $\beta$ -,  $\gamma$ - a  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, které se výrazně liší svou krystalickou strukturou, a tedy i fyzikálními vlastnostmi. Polymorf  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> je stále považován za vzácnou fázi oxidu železitého, kterou je obtížné syntetizovat jako samostatnou fázi, bez příměsí ostatních fází oxidu železitého. Navíc, z termodynamického hlediska, může být stabilní pouze v nanoměřítku.  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje vysokou koercitivitu při pokojové teplotě, magnetoelektrické vlastnosti, absorbuje elektromagnetické vlny v milimetrové oblasti a další.

V této práci je představena metoda syntézy čistých nanočástic ε-Fe<sub>2</sub>O<sub>3</sub> a nanočástic ε-Fe<sub>2</sub>O<sub>3</sub> dopovaných atomy Sc a Ga pomocí sol-gel přístupu v kombinaci s vysokoteplotním tepelným zpracováním. Byly studovány a hodnoceny různé faktory ovlivňující přípravu a tím i čistotu připravených nanočástic. Pro určení struktury a složení byla použita rentgenová prášková difrakce, elektronová mikroskopie, <sup>57</sup>Fe Mössbauerova spektroskopie a magnetizační měření. Mimo jiné byl objasněn vliv dopování na změnu magnetických vlastností ε-Fe<sub>2</sub>O<sub>3</sub> a vyhodnocen aplikační potenciál této fáze.

## Abstract:

Iron(III) oxides are still capturing a significant attention due to their favorable physical, chemical and other properties. It is well known that iron(III) oxide shows a polymorphism with existence of four stable crystalline polymorphs,  $\alpha$ -,  $\beta$ -,  $\gamma$ - and  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, differing significantly in their crystal structure and hence physical features. Among them,  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> is still considered as a rare iron(III) oxide phase that is hard to synthesize in a single-phase nature. Moreover, due to the thermodynamic reasons, it can be stable only in the nanosized form.  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> shows a high coercivity at room temperature, coupled magnetoelectric features, absorbs electromagnetic waves in millimeter region and others.

In this thesis the modified method to synthesize pure  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles and  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles doped by Sc and Ga atoms employing a sol-gel approach in combination with high temperature heat treatments is introduced. Various factors influencing the preparation and thus the purity of the prepared nanoparticles have been studied and assessed. For determination of structure and composition, X-ray powder diffraction, electron microscopy techniques, <sup>57</sup>Fe Mössbauer spectroscopy, and magnetization measurements were used. Moreover, the effect of doping on the alternation of magnetic features of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> was understood and assessed its application potential.

# Seznam publikací, na nichž se autor této disertační práce podílel jako hlavní autor nebo spoluautor, za období 2016–2022

- [i] Tomíčková, M., Zbořil, R., Tuček, J., "Mössbauer study of reaction mechanisms of ferrates (Fe<sup>VI</sup>, Fe<sup>V</sup>, and Fe<sup>IV</sup>): Determination of efficiency in water decontamination," *NANOCON 2018 Conference Proceedings, 10th Anniversary International Conference on Nanomaterials Research and Application,* 2019, pp. 235–242.
- [ii] Vassilis Tangoulis, Christina D. Polyzou, Patroula Gkolfi, Nikolia Lalioti, Ondrej Malina and Michaela Polaskova, "2-D spin crossover materials at the nanometric scale: the effects of the size-reduction on the magnetic properties," *Dalton Trans.*, 2021, 50, 3109.
- [iii] Patroula Gkolfi, Dimitra Tsivaka, Ioannis Tsougos, Katerina Vassiou, Ondřej Malina, Michaela Polášková, Christina D. Polyzou, Christos T., "Chasapis and Vassilis Tangoulis, "A facile approach to prepare silica hybrid, spincrossover water-soluble nanoparticles as potential candidates for thermally responsive MRI agents," *Dalton Trans.*, 2021, 50, 13227.
- [iv] Christina D. Polyzou, Ondřej Malina, Michaela Polášková, Manoj Tripathi, Alan B. Dalton, John Parthenios and Vassilis Tangoulis, "Extreme downsizing of spin crossover nanoparticles towards stable colloids in water: a detailed nano-topographic study," J. Mater. Chem. C, 2021, 9, 15671.
- [v] Polášková M., Malina O., Tuček J., Jakubec P., "An Effect of Scandium Substitution on the Phase Purity and Structural, Magnetic, and Elelctrochemical Features of ε-Fe<sub>2</sub>O<sub>3</sub> Nanoparticle Systems," *Nanoscale*, 2022, 14(14), pp. 5501–5513.

## SEZNAM SYMBOLŮ A ZKRATEK

Néelova teplota -  $T_N$ Teplota Morinova přechodu - T<sub>M</sub> Curieova teplota -  $T_C$ Relativní permeabilita -  $\mu_r$ Magnetická susceptibilita -  $\chi$ Intenzita magnetického pole - H Koercitivní magnetické pole -  $H_c$ Saturační magnetizace -  $M_s$ Remanentní magnetizace -  $M_r$ Blokovací teplota -  $T_B$ Charakteristická doba měření -  $\tau_m$ Relaxační čas -  $\tau$ Trasmisní elektronová mikroskopie - TEM Trasmisní elektronová mikroskopie s vysokým rozlišením - HRTEM Rentgenová prášková difrakce - XRD Magnetometrie s vibračním vzorkem - VSM Metoda chemického napařování - CVD Plazmaticky asistovaná CVD - PA-CVD Plazmaticky aktivováná CVD - PE-CVD Chemická depozice z organokovových prekurzorů – MOCVD Molekulární svazková epitaxe – MBE Metoda depozice atomárních vrstev - ALD

# SEZNAM OBRÁZKŮ

| <b>Obrázek 1.</b> Klasifikace nanomateriálů [4]2                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Obrázek 2. Klasifikace oxidů železa s důrazem na nehydratované formy oxidu železa.                                                                                  |
| Převzato z práce [28]7                                                                                                                                              |
| <b>Obrázek 3.</b> Krystalové struktury polymorfů oxidu železitého: (a) $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> , (b) $\beta$ -Fe <sub>2</sub> O <sub>3</sub> , (c) |
| γ-Fe <sub>2</sub> O <sub>3</sub> a (d) ε-Fe <sub>2</sub> O <sub>3</sub> . Převzato z práce [28]                                                                     |
| <b>Obrázek 4.</b> Závislost spontanní magnetizace na teplotě [121]14                                                                                                |
| Obrázek 5. Uspořádání jednotlivých magnetických momentů v různých typech materiálů                                                                                  |
| [31]                                                                                                                                                                |
| <b>Obrázek 6.</b> Magnetické domény v objemovém materiálu [31]                                                                                                      |
| <b>Obrázek 7.</b> Schematické znázornění chování "superspinu" neinteragujících nanočástic v (a)                                                                     |
| blokovacím a (b) superparamagnetickém stavu bez přítomnosti vnějšího magnetického pole.                                                                             |
| Převzato z práce [28], [29] 17                                                                                                                                      |
| <b>Obrázek 8.</b> Princip "top-down" a "bottom-up" přístupů syntézy nanomateriálů [3] 18                                                                            |
| <b>Obrázek 9.</b> Princip metody CVD [135]                                                                                                                          |
| <b>Obrázek 10.</b> Hydrotermální syntéza nanočástic Fe <sub>3</sub> O <sub>4</sub> [161]22                                                                          |
| Obrázek 11. Schematické znázornění syntézy nanočástic v mikroemulzích (a) smícháním                                                                                 |
| dvou mikroemulzí, (b) přidáním redukčního činidla a (c) probubláváním plynu mikroemulzí                                                                             |
| [31]25                                                                                                                                                              |
| <b>Obrázek 12.</b> Reakční schéma přípravy nanostruktur oxidů kovů metodou sol-gel [214]27                                                                          |
| <b>Obrázek 13.</b> Schéma jednotlivých kroků přípravy nanočástic pomocí sol-gel                                                                                     |
| <b>Obrázek 14.</b> Diagram znázorňující proces tepelného zpracování dopovaných ε-A <sub>x</sub> Fe <sub>2-x</sub> O <sub>3</sub>                                    |
| (A=Sc, Ga) nanočástic                                                                                                                                               |
| <b>Obrázek 15.</b> Celkové množství jednotlivých fází oxidů železa pro nedopované $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub>                                        |
| systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050, 1 100 °C) a hmotnostní                                                                             |
| koncentrací (a) 25 hmot. %, (b) 35 hmot. % a (c) 45 hmot. % ε-Fe <sub>2</sub> O <sub>3</sub> /SiO <sub>2</sub>                                                      |
| <b>Obrázek 16.</b> (a) XRD spektrum nedopovaných ε-Fe <sub>2</sub> O <sub>3</sub> nanočástic zabudovaných v SiO <sub>2</sub>                                        |
| matrici (1. série – 25 hmot. %, teplota zpracování 1 100 °C). (b) TEM snímek totožného                                                                              |
| reprezentativního ε-Fe <sub>2</sub> O <sub>3</sub> vzorku a (c) velikostní distribuce částic odvozená ze statistické                                                |

Obrázek 23. Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050, 1 100 °C) a hmotnostní koncentrací 35 hmot. % ε-Fe2O3/SiO2. Vložené grafy znázorňují přiblížené **Obrázek 24.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050, 1 100 °C) a hmotnostní koncentrací 45 hmot. % ε-Fe2O3/SiO2. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercitivity a remanence. ...... 50 Obrázek 25. (a) Saturační magnetitazace, (b) remanentní magnetizace a (c) koercitivní pole pro nedopované ɛ-Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050, 1 100 °C), všechny tři série s hmotnostními koncentracemi 25, 35 a 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, pro teplotu 5 i 300 K. ..... 51 **Obrázek 26.** <sup>57</sup>Fe Mössbauerovské spektrum nedopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku naměřené v **Obrázek 27.** Celkové množství jednotlivých fází oxidu železitého série vzorků  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0,02; 0,1; 0,2; 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici s hmotnostní koncentrací (a) 25 **Obrázek 28.** (a) Reprezentativní XRD spektra 1. série dopovaných  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorků (x = 0.02; 0.1; 0.2; 0.3 a 0.4, tj. 1, 5, 10, 15 a 20 at. % Ga) zabudovaných v SiO<sub>2</sub> matrici **Obrázek 29.** (a) TEM snímek z vybraného vzorku ε-Ga<sub>0.4</sub>Fe<sub>1.6</sub>O<sub>3</sub> (20 at. % Ga) nanočástic zabudovaných v matrici SiO<sub>2</sub> (teplota zpracování = 1 100 °C, 1. série 25 hmot. % ε-Ga<sub>x</sub>Fe<sub>2-</sub>  $_xO_3/SiO_2$ ). (b) Velikostní distribuce částic odvozená ze statistické analýzy reprezentativního TEM snímku vzorku ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub> s fitováním pomocí log-normální křivky rozdělení **Obrázek 30.** Průměrná velikost nanočástic ve vzorcích  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0,02; 0,1; 0,2; 0,3) a 0,4) zabudovaných v SiO<sub>2</sub> matrici s hmotnostní koncentrací (a) 25 hmot. %, (b) 35 hmot. Obrázek 31. ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1 000 a (c) 10 000 Oe pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou

atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>......60

**Obrázek 34.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

**Obrázek 35.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 35 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

**Obrázek 36.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

**Obrázek 46.** (a) Ilustrativní TEM snímky z (a)  $\varepsilon$ -Ru<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub> (1 at. % Ru), (b)  $\varepsilon$ -Au<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub> (1 at. % Au) a (c)  $\varepsilon$ -Ag<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub> (1 at. % Ag) nanočástic zabudovaných v

| matrici SiO <sub>2</sub> (teplota zpracování = 1 100 °C, 25 hmot. % $\epsilon$ - $A_{0,02}$ Fe <sub>1,98</sub> O <sub>3</sub> /SiO <sub>2</sub> , kdy $A = $ Ru, |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Au, Ag)                                                                                                                                                          |
| <b>Obrázek 47.</b> Hysterezní smyčky měřené při teplotě 300 K pro dopované ε-Ru <sub>x</sub> Fe <sub>2-x</sub> O <sub>3</sub>                                    |
| vzorky s rozdílnou atomární koncentrací Ru (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a                                                                    |
| 0,4) a hmotnostní koncentrací 25 hmot. % ε-Ru <sub>x</sub> Fe <sub>2-x</sub> O <sub>3</sub> /SiO <sub>2</sub>                                                    |

#### SEZNAM TABULEK

**Tabulka 1.** Hodnoty atomární koncentrace  $c_A$  a odpovídající molekulový (souhrnný) vzorec.

<sup>57</sup>Fe **Tabulka 5.** Hodnoty hyperjemných parametrů, odvozené z fitovaných mössbauerovských spektrech měřených při pokojové teplotě pro nedopovaný a Gadopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém (10 at. % Ga,  $\varepsilon$ -Ga<sub>0.2</sub>Fe<sub>1.8</sub>O<sub>3</sub>), kde  $\delta$  je izomerní posun,  $\Delta E_O$  značí kvadrupólové štěpení, B<sub>hf</sub> představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitováním jednotlivých spekter. FeA, FeB, FeC a FeD označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ɛ-Fe2O3, respektive Fe 6. Hodnoty hyperjemných parametrů, odvozené z fitovaných <sup>57</sup>Fe Tabulka mössbauerovských spektrech měřených při pokojové teplotě pro nedopovaný a Sc-dopovaný  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém, kde  $\delta$  je izomerní posun,  $\Delta E_O$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitováním jednotlivých spekter. FeA, FeB, FeC a FeD označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. 

| 1. Úvod                                                                                        |
|------------------------------------------------------------------------------------------------|
| 2. Teoretická část                                                                             |
| 2.1. Železo a oxidy železa                                                                     |
| 2.1.1. α-Fe <sub>2</sub> O <sub>3</sub>                                                        |
| 2.1.2. β-Fe <sub>2</sub> O <sub>3</sub>                                                        |
| 2.1.3. γ-Fe <sub>2</sub> O <sub>3</sub>                                                        |
| 2.1.4. $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub>                                              |
| 2.2. Magnetismus a magnetické jevy v nanosvětě 12                                              |
| 2.3. Techniky přípravy nanomateriálů18                                                         |
| 3. Experimentální část 30                                                                      |
| 3.1. Metodika přípravy nanočástic ε-Fe <sub>2</sub> O <sub>3</sub> pomocí sol-gel              |
| 3.2. Výpočet navážek                                                                           |
| 3.3. Použité techniky                                                                          |
| 3.4. Charakterizace ε-Fe <sub>2</sub> O <sub>3</sub> /SiO <sub>2</sub> systému                 |
| 3.4.1. Chemická, strukturní a morfologická charakterizace                                      |
| 3.4.2. Magnetické vlastnosti a mössbauerovská studie41                                         |
| 3.5. Charakterizace Ga-dopovaného ε-Fe <sub>2</sub> O <sub>3</sub> /SiO <sub>2</sub> systému   |
| 3.5.1. Chemická, strukturní a morfologická charakterizace55                                    |
| 3.5.2. Magnetické vlastnosti a mössbauerovská studie                                           |
| 3.6. Charakterizace Sc-dopovaného ε-Fe <sub>2</sub> O <sub>3</sub> /SiO <sub>2</sub> systému69 |
| 3.6.1. Chemická, strukturní a morfologická charakterizace                                      |
| 3.6.2. Magnetické vlastnosti a mössbauerovská studie74                                         |
| 3.7. Diskuze                                                                                   |
| 4. Závěr                                                                                       |
| LITERATURA                                                                                     |
| PŘÍLOHY108                                                                                     |
| PŘÍLOHA A109                                                                                   |
| PŘÍLOHA B128                                                                                   |
| PŘÍLOHA C                                                                                      |

#### 1. Úvod

Velká část současného výzkumu se zaměřuje na nanomateriály a zkoumání jejich fyzikálně-chemických vlastností, které jsou odlišné ve srovnání s objemovými materiály. Cílem této práce je příprava nanočástic, které se obecně řadí do skupiny nanomateriálů. Definice a klasifikace nanomateriálů ponechává příliš mnoho prostoru pro výklad. Definovat, co je myšleno pod pojmem nanomateriál, není úplně jednoduché. Pro někoho by velikost materiálu měla být několik nanometrů, pro jiného menší než několik desítek nanometrů, pro dalšího stačí cokoli menšího než mikrometr. Někomu také stačí jeden rozměr v nanoměřítku, jinému minimálně dva nebo dokonce všechny tři.

Pro různé materiály a sloučeniny se vlastnosti pozorované v nanorozměrech liší s těmi pozorovanými u stejných, ale objemových materiálů. Tyto nové vlastnosti se projevují při různých rozměrech materiálu, tzv. kritické velikosti. Přechod je zřídkakdy náhlý a vlastnosti se mění z objemové do nanorozměrné velikosti kontinuálně, takže stanovení prahové velikosti je ne vždy přesné. Navíc, fyzikální a chemické vlastnosti nanomateriálů závisí na přesném tvaru, složení a také na velikosti.

Všechny výše uvedené faktory činí nalezení univerzální definice a klasifikace nemožným úkolem, zejména ve srovnání s chemickými látkami, které lze v zásadě klasifikovat pouze podle jejich chemického vzorce. V této práci se budeme držet definice, kdy nanomateriál má alespoň v jednom směru velikost menší než 100 nm. Potom můžeme nanostrukturované materiály rozdělit na čtyři skupiny, a to podle rozměrů materiálu [1].

Pokud jde o dimenzi materiálu, uvažujeme ten rozměr, velikost materiálu, který je větší než 100 nm. Materiál s velikostí ve všech třech souřadnicových osách menší než 100 nm se označuje jako tzv. 0D (0-dimenzionální) materiál. Nanočástice, kvantové tečky, nanoklastry a nanodisperze jsou 0D nanostrukturované materiály. Materiál, který má v jedné souřadnicové ose velikost větší než 100 nm, se označuje jako 1D (1-dimenzionální) nanostrukturovaný materiál. Do této skupiny patří nanovlákna a nanotrubičky. Materiál s jednou velikostí materiálu menší než 100 nm je 2D (2-dimenzionální) nanomateriál. Jedná se o tenké filmy či nanovrstvy. Jako 3D (3-dimenzionální) nanomateriály označujeme prášky, multivrstvy a polykrystalické materiály, v nichž jsou 0D, 1D a 2D strukturní prvky

v těsném vzájemném kontaktu a tvoří rozhraní (viz obr. 1), různé nanokompozity, přičemž výsledný materiál má všechny rozměry větší než 100 nm [2], [3].



Obrázek 1. Klasifikace nanomateriálů [4].

V posledních dvou desetiletích je nanotechnologiím věnována značná pozornost, a to v mnoha oblastech výzkumu pro vývoj nových technologií a materiálů v nanometrických rozměrech. Tyto nanomateriály lze získat různými způsoby, hlavně fyzikálními nebo chemickými metodami. Díky své velikosti vykazují nanočástice specifické vlastnosti, které se liší od vlastností pozorovatelných v makroskopickém měřítku, což rozšiřuje možnosti aplikace [5–7]. Změna vlastností je způsobena dvěma hlavními jevy pozorovatelnými v nanosvětě, a to (i) povrchovými jevy, které jsou pozorovatelné při zmenšení velikosti částic (to je dáno tím, že při zmenšení velikosti částic se větší část atomů nachází na povrchu, než v objemu částice) a (ii) kvantovým omezením, kdy dochází ke změně elektronové struktury [7], [8].

Je známo, že poměr mezi počtem atomů na povrchu a počtem atomů v objemu se výrazně zvyšuje se zmenšováním velikosti částic. Protože povrchové atomy mají menší vzájemné uspořádání, oproti atomům v objemu částice, vykazují nanostrukturované materiály výrazně odlišné fyzikální, chemické, optické, mechanické, elektrické a také magnetické vlastnosti [6], [9]. Větší energie povrchových atomů pak přispívá k projevení mnoha unikátních vlastností nanočástic [6]. Materiály připravené v nanorozměrech tak představují velký potenciál pro aplikace v řadě technologických oblastí, jako je nanoelektronika a výpočetní technika, medicína, letectví nebo i kosmickém inženýrství, biotechnologiích, zemědělství a mnoha dalších [7].

V posledních letech je věnována pozornost přechodu oxidů kovů do nanometrických rozměrů. Jedná se např. o oxidy železa, včetně  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (mineralogicky znám jako hematit), Fe<sub>3</sub>O<sub>4</sub> (mineralogicky znám jako magnetit),  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> (mineralogicky znám jako maghemit),  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> i  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, které vykazují v nanorozměrech jedinečné elektrické, optické, multiferoické a magnetické vlastnosti uplatnitelné v celé řadě aplikací, jako je výroba anorganických pigmentů, magnetických paměťových médií, vývoj plynových senzorů, elektronických a optických zařízení, barevné zobrazování, magnetokalorické chlazení, biotechnologie, ferrofluidní technologie, adsorbenty pro čištění odpadních vod a podobně [10–12]. Železo a jeho oxidy jsou tedy stále velmi vyhledávanými pro přípravu nanomateriálů, díky své snadné dostupnosti, cenové nenáročnosti na přípravu, a přesto velmi oceňovanými vlastnostmi.

Tato práce je zaměřena na přípravu a charakterizaci nanočástic oxidu železitého. Oxid železitý vykazuje polymorfismus a běžně v přírodě se můžeme setkat s formami  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>. Tyto formy mohou být připraveny jak v objemovém měřítku, tak v nanoměřítku, na rozdíl od forem  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> a  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, které mohou být připraveny prakticky pouze v laboratoři a v nanoměřítku. Fáze  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> je termodynamicky méně stabilní, než ostatní faze a je poměrně obtížné připravit čistou  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> fázi, bez přítomnosti ostatních fází oxidu železitého. Nicméně připravit tuto fázi v co nevyšší výtěžnosti a čistotě je velká výzva, jelikož tato fáze vykazuje jedinečné vlastnosti. Nejslibnějšími vlastnostmi této fáze jsou její obrovská koercitivita, okolo 20 000 Oe (2 T), které dosahuje při pokojové teplotě, její multiferoické vlastnosti a také schopnost absorbce elektromagnetického záření. Zde se jeví velmi slibné použít tento materiál jako vlnový absorbér v různých oblastech záření. Tyto oblasti, ve kterých je schopna  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze absorbovat záření, se dají navíc ladit pomocí dopace této fáze různými atomy. Navíc lze dopací tuto fázi velmi dobře stabilizovat a připravit tak čistou  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> fázi bez dalších příměsí ostatních fází oxidu železitého.

Tato práce má tedy dva hlavní cíle. Tím prvním je příprava čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, její charakterizace a optimalizace podmínek přípravy. Druhým cílem této práce je příprava a charakterizace dopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémů. Konréktně byla struktura  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> dopována atomy galia (Ga) a skandia (Sc) a byl studován vliv dopace na strukturní a magnetické vlastnosti. Pomocí <sup>57</sup>Fe Mössbauerovy spektroskopie byla navíc zjišťována preference obsazování pozic Ga a Sc ionty v  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> krystalové struktuře a tím ovlivňování výsledných

magnetických vlastností, jelikož každá podmřížka v krystalové struktuře ε-Fe<sub>2</sub>O<sub>3</sub> přispívá k výsledné magnetizaci jiným dílem.

Před samotným studiem připravených ε-Fe<sub>2</sub>O<sub>3</sub> vzorků je nejdříve v teoretické části zmíněno několik informací o železe a oxidech železa. Více detailněji je probrána námi studovaná ε-Fe<sub>2</sub>O<sub>3</sub> fáze, tedy jeden z polymorfů oxidu železitého. Další kapitola je zaměřena obecně na magnetismus a jevy, které se projevují v nanosvětě. Jelikož cílem této práce je i samotná příprava nanočástic a optimalizace podmínek přípravy, v poslední části jsou popsány některé metody přípravy nanomateriálů, nanomateriálů na bázi oxidů kovů a více detailněji je popsána metoda sol-gel, která byl použita pro přípravu ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic studovaných v této práci.

#### 2. Teoretická část

#### 2.1. Železo a oxidy železa

Železo je technicky velmi důležitým kovem. Železo je nejznámější kov, se kterým se denně setkáváme, od běžných předmětů, přes betonové konstrukce vyztužené železem, elektrické stroje, včetně transformátorů, automobily, až po nanočástice využité například k sanaci vod a půd. Využití železa, oxidů železa a různých slitin je obrovské. Železo je přechodný kov s chemickou značkou Fe. Chemicky čisté železo je lesklý, poměrně měkký, kujný a tvárný kov. Nicméně už jen přídavek velmi malého množství uhlíku k čistému železu výrazně mění vlastnosti čistého železa, od tvrdých a křehkých slitin obsahujících až 4 % uhlíku až po tvárnější nízkouhlíkové oceli obsahující méně než 0,1 % uhlíku. Železo je chemicky značně nestabilní a reaktivní. V přírodě se železo získává z rud. Nejčastěji se vyskytuje v kombinaci ještě s dalšími prvky ve formě minerálů, jako je hematit (α-Fe<sub>2</sub>O<sub>3</sub>), magnetit (Fe<sub>3</sub>O<sub>4</sub>), limonit (FeO(OH).nH<sub>2</sub>O) a siderit (FeCO<sub>3</sub>) [13]. Železo najdeme například i v pyritu (FeS<sub>2</sub>). Železo je čtvrtým nejčetnějším prvkem zemské kůry (4,6 %), nejhojnějším prvkem na Zemi a také je relativně ve velkém množství zastoupeno i ve hvězdách a Slunci [14].

Průměrné množství železa v lidském těle je asi 4,5 g (0,004 %), z toho asi 65 % je ve formě hemoglobinu, který transportuje kyslík z plic do celého těla, 1 % je ve formě různých enzymů, které řídí intracelulární oxidaci a zbytek najdeme uložený například v játrech, slezině nebo kostní dřeni, určený pro budoucí přeměnu na hemoglobin [13].

Železo se snadno rozpouští s minerálními kyselinami. Atomové jádro železa má nejvyšší vazebnou energii ze všech známých prvků. U železa pozorujeme magnetické přechody definované pomocí Curieovy teploty. Železo je dobrý elektrický vodič, ovšem snižujeme-li velikost částic železa až k určité kritické hodnotě, mění se kov v izolátor, ztrácí tedy své vodivé vlastnosti [15].

Můžeme se setkat s několika alotropickými formami čistého železa, přičemž jejich stabilita závisí na teplotě, tlaku, magnetickém poli a velikosti částic.

Železo má atomové číslo 26. Elektronová konfigurace tohoto prvku je  $3d^6 4s^2$  a jeho valenční elektrony jsou umístěny v *d* orbitalu. Tento prvek má 8 oxidačních stavů (-II, 0, I,

II, III, IV, V, VI). Nejčastěji se železo ve sloučeninách vyskytuje s oxidačním číslem +II a +III. V kyselém roztoku či za přístupu kyslíku,  $Fe^{2+}$  ochotně daruje elektron, takže se jedná o redukční činidlo a sám pak oxiduje na  $Fe^{3+}$ . V alkalickém prostředí, pak tento ion ochotně přijímá elektron, takže se jedná o oxidační činidlo a  $Fe^{3+}$  se redukuje na  $Fe^{2+}$ . Mezi oxidy železa tedy patří oxid železnatý (FeO) a oxid železitý ( $Fe_2O_3$ ). Mezi oxidy železa patří i oxid železnato-železitý ( $Fe_3O_4$ ,  $FeO \cdot Fe_2O_3$ ) [14].

Jednomocné železo najdeme například u jodidu železného (FeI). S nulamocným železem se můžeme setkat například u připravených nanočástic nebo v ocelích. Železičitany [FeO<sub>4</sub>]<sup>4-</sup>, železičnany [FeO<sub>4</sub>]<sup>3-</sup>, železany [FeO<sub>4</sub>]<sup>2-</sup> pak obsahují čtyřmocné, pětimocné a šestimocné železo, ty mohou být využity i k odstraňování různých polutantů z životního prostředí, viz publikace [i] v příloze C.

Tato práce je primárně zaměřena na oxidy železa, přičemž oxidy železa jsou stále jedny z nejvíce studovaných nanomateriálů a díky svým vhodným fyzikálně-chemickým, elektronickým, magnetickým i biochemickým vlastnostem si našly uplatnění v mnoha každodenních aplikacích [17–25]. Mezi nejznámnější krystalické fáze oxidu železitého patří: (i)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>; (ii)  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>; (iii)  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>; a (iv)  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> [23–26]. Existence těchto různých fází je výsledkem polymorfismu oxidu železitého, což je schopnost některých látek krystalovat ve více krystalových strukturách, přičemž jednotlivé polymorfy mohou mít rozdílné fyzikálně-chemické vlastnosti a mohou se vzájemně přeměňovat při určitých teplotách [17– 26]. Mezi oxidy železa spadá i FeO (mineralogicky známý jako wüstit), Fe<sub>3</sub>O<sub>4</sub> a také amorfní fáze Fe<sub>2</sub>O<sub>3</sub> (viz obr. 2).

Oxid železitý ve všech svých formách je jedním z nejpoužívanějších oxidů kovů s uplatněním v mnoha jak vědeckých, tak průmyslových aplikacích. Nejznámější polymorfy oxidu železitého jsou hematit a maghemit, které se běžně vyskytují v přírodě. V nanometrické formě pak kromě těchto polymorfů mohou být připraveny i polymorfy  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> [27].



**Obrázek 2.** Klasifikace oxidů železa s důrazem na nehydratované formy oxidu železa. Převzato z práce [28].

Sloučeniny železa lze velmi dobře charakterizovat pomocí Mössbauerovy spektroskopie, díky využití mössbauerovského efektu (jev, kdy je gama záření absorbované jádrem a znovu vyzářené bez zpětného rázu). V případě železa jev závisí na skutečnosti, že jádro železa <sup>57</sup>Fe může být excitováno do vyššího energetického stavu absorpcí gamma záření o velice dobře definované frekvenci, která je ovlivněna oxidačním stavem, elektronovou konfigurací a chemickým prostředím atomu železa a pak může být použita ke zjištění jeho chemického chování a stavu [13].

Cílem této práce byla příprava ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic, proto v dalších kapitolách bude věnována pozornost polymorfům oxidu železitého.

2.1.1. α-Fe<sub>2</sub>O<sub>3</sub>

Fáze  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> je jednou z nejzkoumanějších a nejstabilnějších fází oxidu železitého. V přírodě ji najdeme jako minerál zvaný hematit.  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> má trigonální neboli romboedrickou centrovanou krystalovou strukturu (viz obr. 3). Struktura  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> je izostrukturní s korundem, kde najdeme nejtěsnější hexagonální uspořádání kyslíkových atomů s ionty železa s oktaedrickým uspořádáním, přižemž 2/3 z těchto oktaedrických pozic jsou obsazeny ionty železa a zbylá 1/3 těchto pozic je vakantní [27], [29]. Prostorová grupa hematitu je  $R\overline{3}c$  a mřížkové parametry jsou a = 5,0356 Å, c = 13,7489 Å.

 $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> se syntetizuje snadněji než ostatní formy oxidů železa, jelikož je konečným produktem fázové transformace ostatních forem oxidů železa [29–31].

Jedná se o oxid se slabým feromagnetickým chováním nad teplotou 260 K (Morinova teplota,  $T_M$ ) a antiferomagnetickým chováním pod touto teplotou. Nad teplotou 956 K (Curieova teplota,  $T_C$ ) vykazuje  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> paramagnetické chování [27], [31].

Magnetické chování  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> závisí na krystalinitě, velikosti částic a na míře substituce kationtů [30], [32], [33]. Morinova teplota hematitu klesá se zmenšující se velikostí částic a má tendenci mizet pro částice menší než 8 až 20 nm [34–36]. Dokonce i špatná krystalinita a substituce kationtů mají tendenci snižovat  $T_C$  a  $T_M$  a mohou způsobit potlačení Morinova přechodu [31]. Mezi kationty, které snižují  $T_M$  polymorfu  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, patří Al, Ga, Cr, In, Mn, Sn a Ti [31], [37–40], zatímco Rh naopak  $T_M$  zvyšuje [41], [42].

 $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> je věnována velká pozornost díky jejím slibným vlastnostem v řadě aplikací, ať už elektronických, optických, tak i fotonických zařízeních. Polymorf  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> náchází uplatnění jako materiál pro fotoelektrické chemické solární články [43–49]. Kromě toho je  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> chemicky stabilní v širokém rozsahu pH, což je vhodné pro fotokatalytické aplikace [50], [51]. Nanodrátky  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> byly použity například jako senzory plynu formaldehydu (HCHO), amoniaku, trimethylaminu, acetonu a ethanolu [52], [53].



**Obrázek 3.** Krystalové struktury polymorfů oxidu železitého: (a)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, (b)  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>, (c)  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> a (d)  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Převzato z práce [28].

#### 2.1.2. $\beta$ -Fe<sub>2</sub>O<sub>3</sub>

β-Fe<sub>2</sub>O<sub>3</sub> je vzácná a metastabilní forma oxidu železitého, která vykazuje kubickou prostorově centrovanou strukturu (bcc) s mřížkovým parametrem a = 9,393 Å a prostorovou grupou  $Ia\overline{3}$  (viz obr. 3). Ionty Fe<sup>3+</sup> zaujímají dvě neekvivalentní oktaedrické krystalografické pozice. Je to jediná forma oxidu železa, která je při pokojové teplotě paramagnetická.

Teplota Néelova  $T_N$  magnetického přechodu se pohybuje mezi 100 a 119 K. Pod touto teplotou je  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> fáze antiferomagneticky uspořádána. Jelikož je tato fáze termodynamicky nestabilní, při zahřívání přechází na  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nebo  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> fázi [29].

 $\beta$ -Fe<sub>2</sub>O<sub>3</sub> nachází uplatnění v oblasti optoelektroniky, jelikož vykazuje vhodné absorbanční a transmitanční vlastnosti ve viditelné oblasti [54] nebo jako sensor chloroformu [55]. β-Fe<sub>2</sub>O<sub>3</sub> fáze může být využita i ve fotokatalytických aplikacích [56].

#### 2.1.3. y-Fe<sub>2</sub>O<sub>3</sub>

 $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> je tepelně nestabilní minerál a vykazuje kubickou krystalovou strukturu (typu inverzního spinelu), která je podobná struktuře Fe<sub>3</sub>O<sub>4</sub>, s výjimkou vakancí v kationtové podmřížce. Mřížkový parametr je roven *a* = 8,351 Å [5], [27], [57].

Ve struktuře  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> najdeme dvě různé krystalografické pozice, tetraedrické a oktaedrické, přičemž dvě třetiny oktaedrických pozic jsou zaplněny ionty Fe<sup>3+</sup> a zbylá jedna třetina je vakantní.  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> je metastabilní oxid v oxidační atmosféře, a tak při zahřátí na teplotu vyšší než ~ 600 K přechází na  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> [10].

γ-Fe<sub>2</sub>O<sub>3</sub> stejně jako Fe<sub>3</sub>O<sub>4</sub> se snadno magnetizují a vykazují velkou magnetickou odezvu jsou-li vystaveny vnějšímu magnetickému poli [5], [30], [31]. γ-Fe<sub>2</sub>O<sub>3</sub> je ferimagnetický při pokojové teplotě [58]. Lze jej stabilizovat dopováním ionty jiných kovů [59]. Například dopováním čtyřmocnými ionty, jako je cín, lze stabilizovat jeho přeměnu na α-Fe<sub>2</sub>O<sub>3</sub> při vyšších teplotách [60]. Jeho Curieovu teplotu  $T_C$  je obtížné experimentálně určit, protože γ-Fe<sub>2</sub>O<sub>3</sub> prochází nevratnou krystalografickou přeměnou na α-Fe<sub>2</sub>O<sub>3</sub> při teplotě okolo 600 K (326,85 °C), což má za následek prudkou ztrátu magnetizace. Předpokládá se však, že Curieova teplota se pohybuje v rozmezí teplot 780 K (506,85 °C) a 980 K (706,85 °C) [27], [28], [30], [61]. Částice γ-Fe<sub>2</sub>O<sub>3</sub> menší než 10 nm jsou při pokojové teplotě superparamagnetické [62].

 $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nachází své uplatnění hlavně v medicínských aplikacích jako kontrastní látky pro magnetickou rezonanci či při hypertermii, a to díky své biokompatibilitě a biodegradabilitě.  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nachází však uplatnění také jako magnetická kapalina, sensor plynu nebo materiál pro magnetooptické součástky [29], [61].

#### 2.1.4. ε-Fe<sub>2</sub>O<sub>3</sub>

Fáze ε-Fe<sub>2</sub>O<sub>3</sub> je považována za nejzajímavější a aplikačně nejperspektivnější fázi ze skupiny polymorfů oxidu železitého. ε-Fe<sub>2</sub>O<sub>3</sub> má ortorombickou krystalovou strukturu se čtyřmi odlišnými pozicemi kationtů železa, tj. třemi různými oktaedrickými a jednou tetraedrickou pozicí. Všechny pozice kationtů železa vykazují různý stupeň distorze a tím následně ovlivňují magnetické vlastnosti této vzácné fáze [24], [63–65]. Z magnetického hlediska se při pokojové teplotě tato fáze chová jako kolineární ferimagnet s hodnotou koercitivity kolem 20 000 Oe a Curievou teplotou  $T_{\rm C}$ , to je teplotou kdy se z magneticky uspořádané látky stává látka paramagnetická, okolo 850 K (576,85 °C) [66–69]. Při nízkých teplotách, v teplotním intervalu od 110 K (-163,15 °C) do 150 K (-123,15 °C), pak dochází k řadě složitým magnetickým přechodům zahrnujících přechody mezi stavy s rozdílným magnetickým uspořádaním [70–79].

 $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze je také často označována jako nejmladší polymorf oxidu železitého. Úplně poprvé tuto nestabilní krystalickou fázi pozorovali Forestier a Guiot-Guillain v roce 1934 [80]. V roce 1963 pak tato fáze byla poprvé označena jako  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, kdy Schrader and Büttner [81] izolovaly tuto tmavě hnědou ferimagnetickou fázi. Ve stejném roce, Walter-Lévy and Quéméneur [82] popsali tuto krystalickou fázi v průběhu formování  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> a identifikovali ji jako  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Přesto největší zájem o tuto fázi nejvíce vzbudila až vědecká studie Tronc a spol. [83] vydaná v roce 1998, kde byla detailně zpracovaná strukturní i magnetická charakterizace této zajímavé fáze. Od té doby následovalo několik významných objevů spojených s  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> fází. [83–92]. Roku 2004, Ohkoshi a spol. [93] objevili, že  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> dosahuje obrovských hodnot koercitivity, okolo 20 000 Oe (2 T), při pokojové teplotě. O dva roky později, Gich a spol. [94] pozorovali vzájemnou závislost magnetických a dielektrických vlastností u této fáze, což nabízí možnost ovlivňování dielektrické permitivity materiálu působením magnetického pole. V roce 2009, Namai a spol. [95] poprvé pozorovali výskyt feromagnetické rezonance  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> v mikrovlnné oblasti, jejíž frekvenci lze efektivně ladit dopováním  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze. Velmi významným objevem, který byl pozorován Gich a spol. [96] pro epitaxní tenké vrstvy  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, byl, že se jedná o feroelektrický materiál s velmi výraznou polarizací a nízkým spínacím napětím. Není divu, že fáze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je považována za velmi slibný a mnohostranně využitelný nanomateriál s širokým rozsahem potenciálních aplikací.  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je považována za novou generaci tvrdých magnetů pro vývoj dalších záznamových médií. Polymorf  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je velmi účinným elektromagnetické pole a zabránit tak elektromagnetickému rušení v bezdrátové komunikaci.  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> byla také použita v hlavních součástích magneto-optických zařízeních jako vlnový izolátor a cirkulátor v sub-THz oblasti. Navíc,  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje nelineární optický magnetoelektrický jev a vykazuje feroelektrické vlastnosti [93], [95], [97], [98].

Získání nových magneto-elektrických vlastností  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> lze dosáhnout substitucí atomů železa Fe<sup>3+</sup> v krystalové struktuře atomy jiných prvků. V literatuře existuje již několik příkladů, kdy substitucí cizích atomů do struktury se výrazně změnily magnetické vlastnosti  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Dosud byla krystalová struktura dopována několika různými kationty včetně Al<sup>3+</sup>, Ga<sup>3+</sup>, In<sup>3+</sup>, Rh<sup>3+</sup> [76], [95], [99–118]. Je-li ovšem valenční číslo kationtů jiné než 3+, pak je substituce ve struktuře  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> obtížná. Navíc bylo zjištěno, že tyto kationty mají různé preference, pokud se jedná o pozici, kterou substituují. Substituce je řízena zejména iontovým poloměrem jednotlivých kationtů. Ga<sup>3+</sup> převážně substituje Fe<sup>3+</sup> v tetrahedrálních D-pozicích, Al<sup>3+</sup> výhradně obsazuje také tetrahedrální D-pozice, In<sup>3+</sup> nahrazuje Fe<sup>3+</sup> zejména v distortovaných oktaedrických B-pozicích (a pravděpodobně také v distortovaných oktaedrických B-pozicích (a pravděpodobně také v distortovaných oktaedrických B-pozicích (a přítomnost Rh<sup>3+</sup> kationtů v krystalové struktuře výrazně zvyšuje magnetickou anizotropii v důsledku velké anizotropie samotných Rh<sup>3+</sup> iontů. To má za následek zvýšení koercitivity Rh<sup>3+</sup>-substituovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systemů, a tím je řadí mezi jedny z nejtvrdších magnetů.

Jestliže Ga<sup>3+</sup> a Al<sup>3+</sup> ionty nahradí některé Fe<sup>3+</sup> ionty v krystalové struktuře, široký magnetický přechod, nacházející se v teplotním intervalu od ~ 80 K (-193,15 °C) do ~ 150 K (-123,15 °C), postupně mizí se zvyšující se koncentrací cizích kationtů a není pozorováno

žádné magnetické změkčení. V případě  $In^{3+}$  je magnetický přechod posunut do vyšších teplot, okolo 200 K a je mnohem ostřejší.

#### 2.2. Magnetismus a magnetické jevy v nanosvětě

Magnetické materiály a především jejich chování v magnetickém poli úzce souvisí s jejich vnitřními momenty hybnosti nebo spiny jejich elektronů. Podle jejich reakcí na přiložené vnější magnetické pole můžeme magnetické materiály rozdělit na magneticky uspořádané a magneticky neuspořádané. Mezi magneticky neuspořádané materiály patří diamagnetické a paramagnetické látky. Mezi magneticky uspořádané materiály se pak řadí například feromagnetické, ferimagnetické nebo antiferomagnetické látky.

Diamagnetické materiály zeslabují vnější magnetické pole. Mají zápornou magnetickou susceptibilitu, tedy  $\chi < 0$ . Relativní permeabilita těchto materiálů je menší než jedna ( $\mu_r < 1$ ). Susceptibilita diamagnetických materiálů není funkcí teploty *T* ani intenzity magnetického pole *H*. Tyto materiály mají zcela zaplněné elektronové slupky elektrony. Diamagnetickými materiály jsou například vzácné plyny, měď (Cu), stříbro (Ag), zlato (Au), voda a některé další materiály. Paramagnetické materiály slabě zesilují vnější magnetické pole. Mají kladnou susceptibilitu, tedy  $\chi > 0$ , a jejich permeabilita je větší než jedna ( $\mu_r > 1$ ). Jejich susceptibilita není závislá na intenzitě vnějšího magnetického pole *H*, ovšem je závislá na teplotě *T* a platí pro ně Curieův zákon ve tvaru  $\chi = C/T$ . Materiály jako kyslík O<sub>2</sub>, alkalické kovy nebo vzduch jsou paramagnetické.

Zajímavější skupinou z hlediska magnetických vlastností jsou feromagnetické materiály. Tyto materiály mají susceptibilitu mnohem vyšší než nula ( $\chi >> 0$ ). Jejich relativní permeabilita je vyšší než jedna ( $\mu_r >> 1$ ). Susceptibilita je závislá jak na teplotě *T*, tak i na intenzitě magnetického pole *H* a historii vzorku. Susceptibilita feromagnetických materiálů je větší, než susceptibilita paramagnetických materiálů. Feromagnetické materiály několikanásobně zesilují vnější magnetické pole a mají nenulový magnetický moment při nulovém magnetickém poli.

U feromagnetických materiálů můžeme pozorovat oblasti, ve kterých jsou jednotlivé magnetické momenty natočeny v jednom a tomtéž směru. Tyto oblasti se nazývají magnetické domény. Po vložení feromagnetického materiálu do vnějšího magnetického pole proběhnou 3 magnetizační procesy: růst domén, rotace domén a koherentní rotace domén,

kdy se všechny přes anizotropii stočí do směru vnějšího magnetického pole. Postupným zvyšováním intenzity vnějšího magnetické pole a následným snižováním tohoto pole až do záporných hodnot, lze získat závislost magnetizace vzorku na vnějším magnetickém poli, tzv. hysterezní smyčku. Závislosti magnetizace paramagnetických a diamagnetických materiálů na vnějším magnetickém poli jsou lineární. Hysterezní smyčky poskytují některé informace o vlastnostech magnetických materiálů. Hodnota remanentní magnetizace  $M_r$  (remanence) poskytuje informaci o hodnotě magnetizace vzorku při nulovém vnějším magnetickém poli. Hodnota saturační magnetizace  $M_s$  udává informaci o tzv. nasycení materiálu, kdy již magnetizace materiálu nemůže být vyšší i přes zvyšování intenzity vnějšího magnetického pole. Dalším charakteristickým parametrem je koercitivní magnetické pole  $H_c$  (koercitivita), podle nějž jsou materiály rozdělovány na magneticky tvrdé a magneticky měkké.

Magneticky měkké materiály mají úzkou hysterezní smyčku, kdy hodnota koercitivního magnetického pole je řádově  $H_c < 10^3$  A.m<sup>-1</sup>. Takové materiály se používají nejčastěji jako transformátory. Tvrdé magnetické materiály mají širokou hysterezní smyčku a vyšší hodnotu koercitivního pole. Hodnota koercitivního magnetického pole těchto materiálů je  $H_c > 10^4$ A.m<sup>-1</sup>. Demagnetizace tvrdých magnetických materiálů je těžší než demagnetizace měkkých magnetických materiálů. Příkladem magneticky tvrdých materiálů mohou být například permanentní magnety. K demagnetizaci může dojít působením vysoké teploty nebo střídavého pole. Teplota, při které dochází k demagnetizaci materiálu musí být vyšší než tzv. Curieova teplota  $T_c$ . Po aplikaci teploty, která je vyšší než Curieova teplota, bude uspořádání magnetických momentů náhodné. Opačným případem může být stav materiálu při teplotě 0 K, tzv. absolutní nuly. Směry všech magnetických momentů při teplotě 0 K (-273,15 °C) jsou stejné a magnetizace  $M_0$  vzorku je v tomto případě nejvyšší. Tento proces lze pozorovat na obr. 4, tedy závislosti spontánní magnetizace vzorku na teplotě [119], [120].



Obrázek 4. Závislost spontanní magnetizace na teplotě [121].

Atom železa má silný magnetický moment díky čtyřem nepárovaným elektronům umístěným v 3*d* orbitalech. Při tvorbě krystalů z atomů železa mohou vznikat různé magnetické stavy, jak ukazuje obr. 5. V paramagnetickém stavu jsou jednotlivé atomové magnetické momenty vůči sobě náhodně uspořádány a krystal má výsledný magnetický moment nulový. Pokud je tento krystal vystaven vnějšímu magnetickému poli, některé z těchto momentů se natočí do směru vnějšího magnetického pole a krystal pak vykazuje slabý magnetický moment. Ve feromagnetickém krystalu jsou všechny jednotlivé momenty natočeny ve stejném směru i bez vnějšího magnetického pole. Ve ferimagnetickém stavu je výsledný magnetický moment složen ze dvou typů atomů s různě velkými magnetickými momenty, které jsou uspořádány antiparalelně. Pokud jsou antiparalelní magnetické momenty stejně velké a vzájemně opačně orientované, pak je krystal antiferomagnetický a jeho výsledný magnetický moment je nulový [31].



**Obrázek 5**. Uspořádání jednotlivých magnetických momentů v různých typech materiálů [31].

V objemovém feromagnetickém materiálu je magnetizace *M* dána vektorovým součtem všech magnetických momentů atomů v materiálu a je vztažena na jednotku objemu. Skutečná velikost magnetizace *M* je obecně menší než její saturační hodnota *M*<sub>s</sub>, kdy jsou všechny atomové momenty dokonale vyrovnané. Tyto stejným směrem natočené magnetické momenty se nachazí v doménách, jak již bylo zmíněno výše, přičemž každá doména má svůj vlastní vektor magnetizace, který vzniká vyrovnáním atomových magnetických momentů v doméně (obr. 6). Vektory magnetizace všech domén v materiálu nemusí být vyrovnány, tedy natočeny do stejného směru, což vede ke snížení celkové magnetizace [31]. Když se však velikost materiálu zmenší, počet domén se sníží. U tzv. kritické velikosti, je velikost materiálu taková, že materiál je tvořen jedinou doménou. Magnetický materiál s jednou doménou, který ztrácí pod jistou kritickou velikostí hysterezi, se nazývá superparamagnetický. Nanočástice oxidu železa menší než asi 20 nm často vykazují superparamagnetické chování při pokojové teplotě [30].



Obrázek 6. Magnetické domény v objemovém materiálu [31].

Uspořádaní magnetických momentů se s rostoucí teplotou snižuje v důsledku teplotních fluktuací jednotlivých momentů. Po překročení Néelovy nebo Curieovy teploty se materiál stává neuspořádaným a ztrácí magnetizaci. Teplota přechodu se u feromagnetických a ferimagnetických látek označuje jako Curieova teplota  $T_C$  a u antiferomagnetických látek jako Néelova teplota  $T_N$  [31].

Jak již bylo řečeno, snížením rozměrů materiálu, obvykle pod 100 nm, docílíme změny vlastností. Tato změna je způsobena dvěma hlavními jevy pozorovatelnými v nanosvětě, a

to (i) povrchovými jevy, které jsou pozorovatelné při zmenšení velikosti částic (to je dáno tím, že při zmenšení velikosti částic se větší část atomů nachází na povrchu než v objemu částice) a (ii) kvantovým omezením (jevy spojené s konečným rozměrem částic), kdy dochází ke změně elektronové struktury [7], [8].

Povrchové efekty mají silný vliv na magnetické vlastnosti nanočástic oxidu železa [122]. V důsledku toho jejich výsledná magnetizace klesá s rostoucí teplotou rychleji než u stejného, ale objemového materiálu, protože větší část atomů se nachází v blízkosti povrchu, kde je porušená symetrie krystalové mřížky. To se projeví zvýšením povrchové anizotropie, mnohem větší neuspořádaností magnetických momentů na povrchu oproti momentům uvnitř v materiálu a zeslabením výměnných magnetických interakcí mezi těmito magnetickými momenty na povrchu a v objemu nanomateriálu. Na výsledných magnetických vlastnostech odlišných od objemových materiálů se výrazně projevuje i porozita, defekty a přítomnost vakancí v nanomateriálu. Bylo ovšem zjištěno, že modifikace povrchu chemickými úpravami ovlivňuje koercitivitu oxidických nanočástic [31], [123–125]. V důsledku této závislosti na velikosti a povrchové úpravě, lze magnetické vlastnosti nanostrukturovaných magnetických materiálů ovlivňovat způsobem přípravy.

Mezi magnetické jevy, které můžeme pozorovat u nanomateriálů, patří jednodoménovost, superparamagnetismus, kolektivní magnetická excitace, spinové sklánění a spinová frustrace, kolektivní chování blízké spinovým sklům indukované mezičásticovými magnetickými interakcemi, obří magnetorezistance a extraordinární Hallův jev a kvantové tunelování magnetizace.

Jednodoménovost, jak už bylo naznačeno výše, se projevuje při snižování rozměrů materiálu, kdy klesá počet domén, až do tzv. kritické velikosti materiálu, při které už existence více domén není energeticky výhodná a částice se stává jednodoménovou. Magnetické momenty v této jednonoménové částici jsou natočeny do jednoho směru, tzv. snadného směru magnetické anizotropie a vzájemně spolu kooperují skrz celou částici. Taková nanočástice navenek vykazuje obrovský magnetický moment, tzv. superspin.

Dalším projevem magnetických vlastností pozorovaných u nanomateriálů je superparamagnetismus [20], [28]. Velmi zjednodušeně, je superparamagnetismus jev, který je výsledkem soutěžení mezi anizotropní energií nanočástice a energií teplotních fluktuací. S tímto jevem se dále setkáme i v této práci při charakterizaci výsledků. U nanočástice, která se nenachází pod kritickou velikostí, převládá magnetická anizotropie, která drží tzv. superspin ve snadném směru magnetizace. Zmenšujeme-li ovšem velikost nanočástice, anizotropní energie se stane srovnatelnou s energií teplotních fluktuací a dojde k překonání energetické bariéry, která drží magnetizaci v daném směru. Superspin nanočástice se tak snadno překlopí z jednoho snadného směru magnetizace do druhého snadného směru magnetizace i bez přítomnosti vnějšího magnetické pole a magnetický moment tak vykazuje stav, který je podobný teplotním fluktuacím (viz obr. 7).



**Obrázek 7.** Schematické znázornění chování "superspinu" neinteragujících nanočástic v (a) blokovacím a (b) superparamagnetickém stavu bez přítomnosti vnějšího magnetického pole. Převzato z práce [28], [29].

K upřesnění se ještě zavádí tzv. relaxační čas  $\tau$ , který označuje dobu, jak dlouho setrvá superspin v jednom snadném směru magnetizace, než se vlivem teplotních fluktuací překlopí do dalšího snadného směru osy magnetizace. Zavádí se i tzv. charakteristická doba měření  $\tau_m$  použité experimentální techniky. Jestliže je  $\tau_m \gg \tau$ , pak je superparamagnetická relaxace rychlá. V průběhu měření se superspin nanočástice několikrát překlopí a natočení superspinu je pak dáno jako průměr všech změřených natočení za celou dobu měření. Tomuto stavu nanočástice se říká superparamagnetický. Může ovšem nastat případ, kdy  $\tau_m \ll \tau$  a překlápění spinu je velmi pomalé, navenek tak pozorujeme podobné vlastnosti, jako vykazují magneticky uspořádané látky, tedy pozorujeme nenulovou koercitivitu, remanenci i spontánní magnetizaci. To znamená, že v rámci doby měření nemá superspin čas na překlopení z jednoho snadného směru magnetizace do druhého. Nanočástice se tak navenek v rámci doby měření nachází v blokovacím stavu. Pro oddělení obou těchto magnetických stavů je zavedena tzv. blokovací teplota  $T_B$ , při které je  $\tau = \tau_m$  [28].

#### 2.3. Techniky přípravy nanomateriálů

Nanomateriály se syntetizují různými metodami podle typu a povahy nanomateriálů. V širším smyslu existují dva hlavní přístupy syntézy nanomateriálů, "top-down" neboli "shora dolů" a "bottom-up" neboli "zdola nahoru" (viz obr. 8). Při syntéze nanomateriálů metodami "top-down" se objemné materiály redukují na nanomateriály a při metodách spadajících do "bottom-up" přístupu se nanomateriály syntetizují od elementární úrovně (atomů, klastrů, atd.).

"Top-down" přístup (fyzikální) většinou používá statické zpracování materiálů a zahrnuje rozbití materiálu na menší částice pomocí fyzikálních procesů, jako je drcení, mletí nebo broušení. Patří zde i naprašování, laserová ablace nebo litografie. Obecně tento přístup není vhodný pro přípravu rovnoměrně tvarovaných nanomateriálů a je velmi obtížné získat nanočástice velmi malých rozměrů i při aplikování vysoké energie. Hlavní nevýhodou této metody je absence povrchové struktury, která má značný vliv na fyzikální vlastnosti a povrchovou chemii nanomateriálů. Kromě toho tento přístup také způsobuje značnou ztrátu krystalografie zpracovávaných útvarů [2].



Obrázek 8. Princip "top-down" a "bottom-up" přístupů syntézy nanomateriálů [3].

"Bottom-up" přístup (chemický) využívá syntézy atom po atomu nebo molekula po molekule k získání většího množství materiálu. Tento přístup se používá častěji pro přípravu nanomateriálů, protože je jím možné připravit nanomateriály jednotné velikosti, tvaru a dobře distribuované. V zásadě je proces chemické syntézy přesně řízen, aby se zabránilo nežádoucímu růstu částic. Tento přístup hraje důležitou roli při syntéze a zpracování nanomateriálů s lepší distribucí velikosti částic a jejich lepší morfologií. Další důležitou vlastností je, že jde o ekologicky šetrný a ekonomický proces výroby nanočástic [126]. Řadí se zde několik metod syntézy nanomateriálů, jako jsou reakce v plynné fázi užitím odporového ohřevu, laserem nebo plazmatem [127], [128], hydrotermální syntéza [129], [130], solvotermální syntéza, superkritické hydrotermální nebo fluidní procesy, syntézy solgel [131], syntézy s mikrovlnným ohřevem, syntézy v mikroemulzích nebo reverzních micelách nebo například sonochemické syntézy [2].

Metody přípravy se dají rozdělit také podle povahy přípravy na fyzikální, chemické a biologické nebo mohou být rozlišeny na základě použitého zdroje energie (elektrický výboj, laser, plamen, plazma, iontové naprašování, elektronový svazek, mikrovlnné záření, vysokoenergetické mletí, atd.).

Další možností jak rozdělit metody přípravy nanomateriálů je podle skupenství, ve kterém se prekurzor pro přípravu nanomateriálů nachází. Rozlišujeme metody přípravy z pevné fáze, metody přípravy z kapalné fáze a metody přípravy z plynné fáze. Příkladem metod přípravy z pevné fáze je mechanochemická syntéza nebo **metoda tepelného rozkladu** a **pulzní laserová ablace.** Dopované kovy lze vyrábět pomocí rozkladu alkoxidů kovů, solí, a to s použitím tepla nebo elektrického výboje. Vlastnosti nanomateriálů silně závisí na průtoku a koncentraci prekurzorů při reakci a prostředí, ve kterém reakce probíhá. Nicméně nevýhodou této metody jsou vysoké náklady, nízká výtěžnost a obtížné řízení struktury a morfologie připravených nanomateriálů [2], [31].

Pomocí metody tepelného rozkladu z pevné fáze byly připraveny magnetické nanočástice  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> s malou příměsí  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>. Jako prekurzor byl použit octan železitý [132].

Mezi metody z plynné fáze pak spadá chemická depozice par (Chemical Vapor Depostion – CVD) a od ní odvozené metody PA-CVD (Plasma Assisted-CVD), plazmaticky aktivováná CVD (Plasma Enhanced CVD, PE-CVD), mikrovlnná plazmatická CVD (Microvawe Plasma-Assisted CVD), chemická depozice z organokovových prekurzorů
(Metal Organic CVD, MOCVD), molekulární svazková epitaxe (Molecular Beam Epitaxy, MBE), metoda depozice atomárních vrstev (Atomic Layer Deposition, ALD) a další [133].

Metoda chemického napařování (CVD) se používá k výrobě vysoce kvalitních tenkých nanovrstev. Při této metodě se substrát v podstatě ošetřuje těkavými prekurzory, které na jeho povrchu reagují a vytvářejí požadované vrstvy. Těkavé vedlejší produkty se obvykle odstraňují prouděním plynu přes reakční komoru. Kvalita deponovaných materiálů na povrchu výrazně závisí na několika faktorech, jako je teplota, rychlost reakce a množství prekurzorů [134]. Výhodou této metody je získání jednotné nanovrstvy, ale tato metoda má i mnoho omezení, jako jsou vyšší teploty potřebné pro chemické reakce a náročné podmínky pro syntézu neumožňující přípravu vrstev ve velkém množství [2].



Obrázek 9. Princip metody CVD [135].

Metody chemické přípravy nanomateriálů v plynné fázi jsou závislé na tepelném rozkladu (pyrolýze), redukci, hydrolýze, disproporcionaci, oxidaci nebo jiných reakcích, při nichž se z plynné fáze vysráží pevné produkty [136]. V procesu chemické přípravy v plynné fázi je proud nosného plynu s prekurzory nepřetržitě přiváděn systémem pro přívod plynu do reakční komory, ve které je udržováno vakuum a vysoká teplota (>900 °C, viz obr. 9) [137], [138]. Reakce CVD probíhají ve vyhřáté reakční komoře a produkty se tvoří ve formě klastrů nebo nanočástic. Růst a aglomerace částic jsou zmírňovány rychlou expanzí dvoufázového proudu plynu na výstupu z reakční komory. Následné tepelné zpracování syntetizovaných nanoprášků v různých proudech vysoce čistého plynu umožňuje modifikaci složení a struktury, včetně čištění a krystalizace částic, jakož i transformaci na žádoucí velikost [136], [137]. CVD byla použita k depozici oxidu železa reakcí halogenidů, jako je např. trichlorid, s vodou při 800 – 1000 °C [139]. Úspěch této metody závisí nejen na nízké

koncentraci prekurzoru v nosném plynu, ale i na rychlé expanzi a ochlazování vzniklých nanočástic při jejich výstupu z reaktoru [137], [138].

Použití organokovových látek jako prekurzorů (v procesu MOCVD) umožňuje, aby reakce probíhaly při poněkud nižších teplotách (300 – 800 °C) a tlacích nižších než 1 Torr až po tlak okolního prostředí (atmosférický tlak) [136]. Tenké vrstvy oxidu železitého byly získány rozkladem acetylacetonu při 400 – 500 °C a trifluoracetylacetonu železa při 300 °C v kyslíkové atmosféře [140], [141]. Mezi další prekurzory patří i tri(2,2,6,6-tetramethyl-3,5-heptadionato) Fe(III) a tri(tbutyl-3-oxo-butanoato)Fe(III) [142]. Nedávno Park a spol. [143] deponovali tenké vrstvy Fe<sub>3</sub>O<sub>4</sub> pomocí Fe(II)dihydridových komplexů H<sub>2</sub>Fe[P(CH<sub>3</sub>)<sub>3</sub>]<sub>4</sub> při 300 °C v kyslíkové atmosféře. Přímého růstu Fe<sub>3</sub>O<sub>4</sub> bylo dosaženo pomocí nízkotlaké CVD s použitím organokovového dipivaloylmethanu železitého jako prekurzoru. Po oxidaci se tyto filmy transformovaly na γ-Fe<sub>2</sub>O<sub>3</sub> [144].

Další MOCVD reakce využívá mikrovlnné plazmy k rozkladu cyklopentadienu železa nebo acetylacetonu železa v kyslíkové atmosféře při teplotách 300 - 500 °C a tlacích 1 - 20 Torr [136], [145].

Laserová pyrolýza organokovových prekurzorů [137], [146–148] je založena na interakci mezi fotony laseru a alespoň jedním plynným reaktantem nebo senzibilizátorem. Senzibilizátor je látka přenášející energii, která je excitována absorpcí laserového záření CO<sub>2</sub> a srážkou přenáší absorbovanou energii reaktantům [149]. Metoda spočívá v zahřívání proudící směsi plynů kontinuálním vlnovým CO<sub>2</sub> laserem, který iniciuje a udržuje chemickou reakci, dokud není v reakční zóně dosaženo kritické koncentrace zárodků (nukleů) a dochází k homogenní nukleaci, tvorbě částic [150]. Vzniklé nanočástice jsou během reakce unášeny proudem plynu a jsou shromažďovány na výstupu [151].

Dobře krystalizované a uniformní nanočástice oxidu železitého, včetně nanočástic  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>, byly získány v jednom kroku pomocí laserové pyrolýzy [146], [148], [152–156]. Jako prekurzor se při této metodě běžně používá pentakarbonyl železa [154] a jako nosný plyn pro přenos par karbonylu do reakční zóny se používá ethen, protože ethen neabsorbuje záření laseru s danou vlnovou délkou [151]. Pentakarbonyl železa se rozkládá na železo a oxid uhelnatý [151], [154], které oxidují za přítomnosti vzduchu, který se přivádí do systému s parami pentakarbonylu železa nebo ve směsi s argonem [151]. Laserovou pyrolýzou směsi pentakarbonylu železa a ethenu s následnou řízenou postupnou pasivací

byly vyrobeny částice oxidu železa o středním průměru 14 nm a tloušť ce oxidového obalu přibližně 4 nm. Vliv podmínek přípravy na strukturní a magnetické vlastnosti  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic připravených laserovou pyrolýzou studovali Veintemillas-Verdaguer a spol. [157]. Ovlivňování množství kyslíku může být použito k ladění velikosti a krystalinity částic.

Přestože metody plynné fáze jsou schopny poskytovat vysoce kvalitní produkty, výtěžky jsou obvykle nízké a rozšiřování zařízení je náročné. Proměnné, jako je koncentrace kyslíku, nečistoty v plynné fázi a doba zahřívání, musí být přesně kontrolovány, aby bylo možné získat čisté produkty. Zařízení používaná při těchto metodách bývají navíc drahá.

Naproti tomu **metody přípravy z kapalné fáze** jsou obecně levnější, nabízí vyšší výtěžnost produktů a také jejich snadnou povrchovou úpravu. Mezi metody z kapalné faze patří hydrotermální syntéza, solvotermální syntéza, sol-gel metoda, koprecipitační metody, mikroemulzní procesy, polymerní metody, a další [2], [31], [158].

**Hydrotermální metoda** se obvykle provádí v tlakové nádobě, která se nazývá "autokláv", kde lze regulovat teplotu a tlak. Tato metoda je tedy založena na chemických reakcích ve vodném roztoku, které probíhají při zvýšené teplotě a tlaku v autoklávu. Při syntéze nanomateriálů lze zvýšit teplotu na bod varu vody, což umožní nasycení par. Výhodou této metody je, že lze během přípravy regulovat velikost materiálu, morfologii částic, krystalickou fázi a chemismus povrchu pomocí řízení reakční teploty, tlaku, volbou rozpouštědla, složení roztoku a aditiv [2], [159], [160]. Tato metoda byla použita například pro přípravu Fe<sub>3</sub>O<sub>4</sub> nanočástic (viz obr. 10) [161].



**Obrázek 10.** Hydrotermální syntéza nanočástic Fe<sub>3</sub>O<sub>4</sub> [161].

Solvotermální metoda je podobná hydrotermální metodě, liší se pouze tím, že se

používají jiná rozpouštědla než voda. Zajímavé je, že tato metoda je účinnější při syntéze nanomateriálů s úzkou velikostní distribucí, zejména pokud jsou zvolena organická rozpouštědla nebo chemické látky s vysokým bodem varu. Kromě toho tato metoda umožňuje lepší kontrolu nad získáním optimální velikosti a tvaru nanomateriálů než u hydrotermální metody. Touto metodou se syntetizují nanočástice nebo nanodrátky s přídavkem povrchově aktivních látek i bez nich [2].

Většina nanočástic dosud připravených metodami z kapalné fáze byla připravena koprecipitací z vodných roztoků, i když lze použít i jiná kapalná rozpouštědla. Bylo prokázáno, že reakcí soli Fe(II), zásady a mírného oxidačního činidla (dusičnanových iontů) ve vodných roztocích lze získat sférické částice Fe<sub>3</sub>O<sub>4</sub> s velikostí od 30 do 100 nm [162]. Stechiometrické směsi železnatých a železitých hydroxidů mohou rovněž reagovat ve vodném prostředí za vzniku homogenních sférických částic Fe<sub>3</sub>O<sub>4</sub> nebo  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> [150], [151]. Fáze a velikost částic závisí na koncentraci kationtů a pH roztoku [163–167].

Vzhledem k velkému poměru plochy povrchu k objemu mají nanočástice vytvořené koprecipitací v kapalné fázi tendenci v roztoku agregovat, aby se snížila jejich povrchová energie [168]. Suspenzi nanočástic lze stabilizovat přidáním aniontových povrchově aktivních látek jako například dispergačních činidel. Charakter protiiontů, pH a iontová síla pak mohou být využity ke stabilizaci nabitých částic prostřednictvím interakcí mezi elektrickými dvojvrstvami [169], [170]. Zvýšení koncentrace inertního elektrolytu v systému podpoří koagulaci [30]. Suspenze oxidu železitého, které jsou stabilizovány výhradně elektrostatickým odpuzováním, jsou však příliš citlivé na vnější podmínky, jako je pH a iontová síla, než aby nabízely jakoukoli flexibilitu při vytváření povrchových vlastností částic [170]. Stabilizace lze dosáhnout také potažením povrchu částic proteiny [171–173], škroby [174] nebo polyelektrolyty [169], [175]. Adsorpce těchto látek stabilizuje částice při koncentracích elektrolytů, které by jinak byly natolik vysoké, že by došlo ke koagulaci. [30] Khalafalla a Reimers [176] vyrobili stabilní vodné magnetické kapaliny s použitím kyseliny dodekanové jako dispergačního činidla. Použitím nasycených a nenasycených mastných kyselin ke stabilizaci magnetických kapalin se zabývali Wooding a spol. [177].

Vysoce kvalitní monodisperzní a monokrystalické nanočástice oxidu železa lze vyrobit tepelným rozkladem organokovových prekurzorů v organických rozpouštědlech

obsahujících stabilizační povrchově aktivní látky, jako je oleylamin [178], [179], kyselina olejová [179–184] a kyselina sterová [185].

Mezi zkoumané prekurzory patří acetylacetonát železa [180–182] a karbonyly železa [185], [186]. Fe<sub>3</sub>O<sub>4</sub> nanočástice o průměru od 3 do 20 nm byly syntetizovány tepelným rozkladem acetylacetonátu Fe(III) ve fenyl/benzyletheru a 2-pyrrolidonu [179], [187], [188].

V nedávné době Stefanescu a spol. zkoumali syntézu γ-Fe<sub>2</sub>O<sub>3</sub> termickým rozkladem některých komplexních kombinací Fe(III) s ligandy karboxylátového typu získanými z redoxní reakce mezi polyoly a dusičnanem železitým. γ-Fe<sub>2</sub>O<sub>3</sub> byl získán při teplotě 250 -300 °C a α-Fe<sub>2</sub>O<sub>3</sub> při teplotě 400 - 500 °C. Sun a spol. připravili monodisperzní nanočástice oxidu železitého termickým rozkladem acetylacetonátu železa [179]. Navrhli také jednoduchou metodu přeměny hydrofobních nanočástic na hydrofilní přidáním bipolárních povrchově aktivních látek a rozkladem acetylacetonátu Fe(III) ve směsi fenyletheru, 1,2hexadekandiolu, kyseliny olejové a oleylaminu syntetizovali Fe<sub>3</sub>O<sub>4</sub> nanočástice o velikosti 4 nm [187]. Bylo také publikováno, že γ-Fe<sub>2</sub>O<sub>3</sub> nanočástice o velikosti 6-7 nm lze získat reakcí kupferonátů železa s trioktylaminem při teplotě 300 °C [189]. γ-Fe<sub>2</sub>O<sub>3</sub> nanočástice s velikostí od 4 do 16 nm byly vyrobeny rozkladem pentakarbonylu železa v oktyletheru a kyselině olejové nebo laurové [190]. Tyto výsledky ukazují účinnost metody tepelného rozkladu pro syntézu nanočástic oxidu železa. Přítomnost zbytkových povrchově aktivních látek však může bránit účinnosti následné povrchové modifikace syntetizovaných nanočástic. Použití toxických rozpouštědel a povrchově aktivních látek může navíc negativně ovlivnit biokompatibilitu produktu [185], [191].

Další možností jsou **dvoufázové metody**. Mikroemulze typu voda v oleji (v/o) sestávající z kapiček vody o nanorozměrech rozptýlených v olejové fázi a stabilizovaných molekulami povrchově aktivních látek na rozhraní voda/olej byly široce používány k získání nanočástic oxidu železa [137], [192–195]. Kapičky vody pokryté povrchově aktivní látkou nabízejí jedinečné mikroprostředí pro tvorbu nanočástic a pro omezení jejich růstu. Velikost kapiček v mikroemulzi je určena poměrem vody a povrchově aktivní látky, ačkoli konečná velikost nanočástic může být ovlivněna také dalšími faktory, jako je koncentrace reaktantů (zejména povrchově aktivní látky) a pružností povrchově aktivní vrstvy [195]. Existuje několik způsobů využití mikroemulzí k syntéze nanočástic (viz obr. 11). V jednom z nich je způsob, kde jsou reaktanty A a B rozpuštěny ve vodných fázích dvou identických

mikroemulzí s daným poměrem voda/olej (v/o) a po smíchání se vytvoří precipitát AB. Takto vysrážená látka je uzavřena uvnitř kapek, čímž je omezena velikost a tvar vznikajících částic [193].

V další metodě se nanočástice vytvářejí přidáním redukčního nebo srážecího činidla do mikroemulze obsahující reaktant rozpuštěný ve vodné fázi. Redukčním nebo srážecím činidlem může být kapalina, jako např. hydrazin nebo plyn, jako je např. vodík.

Další způsob tvorby oxidových, hydroxidových nebo uhličitanových sraženin, je probubláváním plynů jako O<sub>2</sub>, NH<sub>3</sub> nebo CO<sub>2</sub> mikroemulzí obsahující rozpustné soli kationtů [193].



**Obrázek 11.** Schematické znázornění syntézy nanočástic v mikroemulzích (a) smícháním dvou mikroemulzí, (b) přidáním redukčního činidla a (c) probubláváním plynu mikroemulzí [31].

Mikroemulze typu voda v oleji (v/o) byly použity k syntéze oxidu železitého [193], [195–204], kovových nanočástic železa [193], [195], magnetických polymerních nanočástic oxidu železitého [201-204] a nanočástic oxidu železitého s vrstvou oxidu křemičitého [205-207]. Při přípravě těchto materiálů byla použita řada povrchově aktivních látek, včetně bis(2ethylhexyl) sulfosukcinátu (AOT), dodecylsulfátu sodného (SDS), cetyltrimethylamoniumbromidu (CTAB), polyvinylpyrrolidonu (PVP), diethylsulfosukcinátu (DES) [195], [196], [198], [199], [201], [205-209]. Směsné oxidy železa a manganu byly připraveny také ve studii Herranz a spol. [210] pomocí mikroemulzí. Larpent a spol. [211] dosáhli katalytické oxidace alkanů ve vodných mikrokapičkách obsahujících sůl železa a peroxid vodíku dispergované v alkalické kontinuální fázi.

Bylo také studováno použití mikroemulzí pro přípravu magnetických nanokompozitů uzavřených v obalu z oxidu křemičitého [150], [211], [212]. Významnou nevýhodou mikroemulzních metod jsou obtíže při jejich provádění ve větší míře a nepříznivé účinky zbytkových povrchově aktivních látek na vlastnosti částic.

Další metodou a v této práci stěžejní, jelikož byla využita pro přípravu ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic, je metoda **sol-gel**. Tato metoda je jednou z osvědčených metod pro přípravu oxidů kovů i kompozitů směsných oxidů kovů. Sol-gel má velký potenciál při kontrole strukturních i povrchových vlastností připravovaných materiálů. Principem metody je příprava koloidní suspenze, solu, ze které vzniká gel a následnou úpravou pevný materiál. Metoda sol-gel se skládá z několika kroků. Prvním krokem je hydrolýza, následují polykondenzační reakce a nakonec probíhá zrání a sušení gelu. Pomocí sol-gel můžeme připravit jemné prášky, nanočástice jednotných velikostí, aerogely nebo xerogely (viz obr. 12).

Xerogely vznikají tepelným zpracováním za normálního tlaku, zatímco aerogely vznikají tepelným zpracováním za nadkritických podmínek rozpouštědla (autokláv, tlak 200 atm.) [213].

Metoda sol-gel může být rozdělena do dvou přístupů, a to buď na hydrolytické metody sol-gel nebo bezvodé metody sol-gel, podle typu použitého rozpouštědla. Pokud je jako reakční médium použita voda, jedná se o hydrolytické metody sol-gel. Je-li použito organické rozpouštědlo jako reakční médium, jedná se o bezvodý přístup sol-gel. Při použití

metody sol-gel při syntéze nanočástic oxidů kovů hraje významnou roli povaha rozpouštědla a prekurzoru [214].



**Obrázek 12.** Reakční schéma přípravy nanostruktur oxidů kovů metodou sol-gel [214].

Při hydrolytickém přístupu sol-gel je nezbytný kyslík k formování oxidu kovu, který je obsažen právě v rozpouštědle, tedy ve vodě. Jako prekurzory kovů se obecně používají dusičnany, sírany, chloridy, amidy či alkoxidy kovů (R = přechodný kov). Alkoxidy kovů jsou široce používány jako prekurzory pro syntézu nanočástic oxidů kovů, díky jejich vysoké reakční afinitě k vodě. Při prvním kroku, tedy hydrolýze prekurzoru kovu, vznikají hydroxylové skupiny. Následuje polykondenzace [214], [215].

$$SiOR + H_2O \leftrightarrow SiOH + ROH$$
(1)

$$2 \operatorname{SiOH} \leftrightarrow \operatorname{Si} - 0 - \operatorname{Si} + \operatorname{H}_2 0 \tag{2}$$

$$SiOH + SiOR \leftrightarrow Si - 0 - Si + ROH [215]$$
(3)

Celý proces je ovlivňován hodnotou pH, kterou se určuje i rychlost procesu. U přechodu tetraethyl orthosilikátu (TEOS) na SiO<sub>2</sub> v kyselém prostředí, je rychlost hydrolýzy tím vyšší, čím je hodnota pH nižší. To pozorujeme až do hodnoty izoelektrického bodu, kdy se pH pohybuje v rozmezí 1,5 - 2 pro SiO<sub>2</sub> gel [215].

Nicméně s touto metodou jsou spojeny i některé nevýhody, a to hlavně při přípravě směsných oxidických materiálů, kdy je pozorovatelný velký rozdíl v rychlosti hydrolýzy alkoxidů přechodných kovů a pomalejší rychlosti reakce alkoxidů křemíku. Materiál pak může být nehomogenní, a to kvůli rychlejšímu vylučování oxidu kovu. Tento problém se dá řešit pomocí chelatace přechodných kovů či prehydrolýzy alkoxidů křemíku [215].

Klíčové kroky procesu jako hydrolýza, kondenzace probíhají při hydrolytických metodách sol-gel s vysokou a špatně kontrolovatelnou rychlostí a často současně. To má za následek špatné řízení morfologie částic a reprodukovatelnost celého procesu i konečného produktu. Tyto obtíže se však netýkají přípravy větších částic a objemových materiálů oxidů kovů, pouze nanočástic oxidů kovů [2]. Přístup bezvodé metody sol-gel eliminuje problém s kontrolou rychlostí reakcí při hydrolýze a kondenzaci u hydrolytických metod sol-gel. V tomto případě je kyslík potřebný k formování oxidu kovů získáván z rozpouštědel jako alkoholy, ketony, aldehydy nebo z prekurzoru daného kovu. Navíc organická rozpouštědla slouží nejen jako zdroj kyslíku, ale slouží také jako univerzální nástroj ke kontrole morfologie, povrchu, velikosti částic a jejich složení. Ačkoli tento přístup není tak rozšířený jako vodný přístup sol-gel, vykazuje bezvodý přístup vynikající výsledky při produkci nanočástic oxidů ve srovnání s vodnou technikou sol-gel. Bezvodou sol-gel techniku lze pak rozdělit ještě do dvou přístupů, a to přístup s povrchově aktivními látkami a přístup řízený rozpouštědlem. Přístup s povrchově aktivními látkami zahrnuje přímou transformaci prekurzoru kovu na oxid kovu za vyšší teploty (v metodě vstřikování za tepla). Tato metoda umožňuje vynikající kontrolu nad tvarem nanočástic, jejich růstem a zabraňuje aglomeraci částic [214].

Rychlost hydrolýzy a kondenzace jsou důležité parametry, které ovlivňují vlastnosti konečných produktů. Menší velikosti částic se dosahuje při pomalejších a kontrolovanějších rychlostech hydrolýzy. Velikost částic závisí také na složení roztoku, pH a teplotě.

Magnetické uspořádání v systému sol-gel závisí na vytvořených fázích, objemovém podílu částic a je také velmi citlivé na distribuci velikosti částic. V případě nanokompozitů získaných z gelů jsou strukturní parametry a pórovitost materiálu určeny rychlostí hydrolýzy, kondenzací gelových prekurzorů a také dalšími oxidačně-redukčními reakcemi, které probíhají během gelování a následného tepelného zpracování [137].

Aerogelové kompozity oxidu železitého a oxidu křemičitého byly připraveny metodou sol-gel [216–218] a bylo zjištěno, že jsou o 2 až 3 řády reaktivnější než konvenční oxid železitý [219]. Zvýšení reaktivity bylo přisouzeno velké ploše povrchu nanočástic oxidu železitého zabudovaných v aerogelu oxidu křemičitého [220], [221]. Komerční prekurzory (TEOS a Fe(III) roztok) byly rozpuštěny v alkoholovém vodném prostředí a vzniklé gely byly po několika dnech tepelně zpracovány za vzniku výsledných produktů oxidů železitého [137], [222], [223]. Jako prekurzory oxidů kovů byly použity dusičnan železitý, acetylacetonát železitý a chlorid železitý [216], [218], [220], [222–225]. Dokonce bylo publikováno i použití kovového komplexu FeNa(EDTA) a směsi tohoto kovového komplexu s dusičnanem železitým [226]. Při experimentech pouze s čistým kovovým komplexem byly získány nanočástice oxidů železa s velikostí v rozsahu 20 - 160 nm. Nízká rozpustnost soli EDTA v rozpouštědle zabránila syntéze aerogelů s vysokým obsahem železa, v případě, kdy byl tento komplex použit jako prekurzor [226].

Ve většině metod syntézy kompozitů oxidů železa a oxidu křemičitého byly výchozí prekurzory oxidů železa nejprve smíchány s prekurzory oxidu křemičitého k vytvoření "solu" [216], [218], [220], [222–232]. Nedávno Popovici a spol. [233] připravili kompozity oxidů železa a oxidu křemičitého pomocí nového způsobu syntézy, který spočívá v nasycování mokrých gelů oxidu křemičitého bezvodými prekurzory Fe(II) s následným superkritickým sušením gelů ethanolem. Jednofázové γ-Fe<sub>2</sub>O<sub>3</sub> dispergované nanočástice zapuštěné do křemíkových aerogelů byly získány bez následného tepelného zpracování. Nanokompozity vykazovaly vysokou hodnotu saturační magnetizace a byly superparamagnetické při pokojové teplotě. Předpokládá se, že na tyto výsledky má největší vliv to, že impregnace prekurzorů proběhla až po gelování, před impregnací byla opatrně vyměněna voda za ethanol a místo hydratované soli byla použita bezvodá železitá sůl [219], [226], [233]. Metoda solgel byla rovněž použita k syntéze tenkých vrstev Fe<sub>3</sub>O<sub>4</sub> a γ-Fe<sub>2</sub>O<sub>3</sub> [234–236], transparentních tenkých vrstev oxidů titaničitých dopovaných železem [237], feromagnetických vrstev bismuto-železitých oxidů [238], směsí oxidů železa [239–244] a nanokompozitů oxidu železa a hliníku. [245]

V této práci byla tato technika využita pro přípravu ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic a detailnější podmínky přípravy jsou popsány v experimentální části.

### 3. Experimentální část

Tato práce má dva hlavní cíle. Tím prvním je příprava čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, její charakterizace a optimalizace podmínek přípravy. Druhým cílem této práce je příprava a charakterizace dopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémů. Konréktně je  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze dopována atomy galia (Ga) a skandia (Sc) a je studován vliv dopace na strukturní a magnetické vlastnosti. První kapitola experimentální části je věnována samotné přípavě nedopovaných i dopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic. V další kapitole jsou studovány nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémům. Následující kapitoly jsou věnovány Ga- a Sc-dopovaným  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémům, přičemž poslední kapitola (3.4.), je volným komentářem k již publikované studii [v].

#### 3.1. Metodika přípravy nedopovaných i dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic

Pomocí sol-gel metody byly připraveny nanočástice  $\varepsilon$ - $A_x$ Fe<sub>2-x</sub>O<sub>3</sub> (x = 0; 0,02; 0,1; 0,2; 0,3; 0,4; A = Ga, Sc) zabudované do křemíkové matrice. Proces syntézy nanočástic byl obdobný jako u práce od Gich a spol. [94] a Savii a spol. [232].

Hydrolýza a kondenzační reakce probíhaly v kyselém hydroethanolovém prostředí. Molární poměr mezi tetraethylorthoslikátem (TEOS), vodou (H<sub>2</sub>O) a ethanolem (CH<sub>3</sub>CH<sub>2</sub>OH) byl 1 : 6 : 6. Nejprve byla smíchána voda s ethanolem. U dopovaných vzorků byl dále do roztoku přidán odpovídající prekurzor pro danou dopaci. V případě dopace  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic atomy skandia (Sc), byl do roztoku přidán tetrahydrát dusičnanu skanditého (Sc(NO<sub>3</sub>)<sub>3</sub>·4 H<sub>2</sub>O). Pro dopaci  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic atomy galia (Ga) byl jako prekurzor zvolen dekahydrát dusičnanu galitého (Ga(NO<sub>3</sub>)<sub>3</sub>·10 H<sub>2</sub>O). Roztok se míchal do úplného rozpuštění dusičnanu. Po jeho rozpuštění byl přidán nonahydrát dusičnanu železitého (Fe(NO<sub>3</sub>)<sub>3</sub>·9 H<sub>2</sub>O) jako samotný prekurzor  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic. Po deseti minutách míchání byl po kapkách vmíchán do roztoku TEOS a roztok byl míchán dalších patnáct minut. Následně byl roztok přelit do Petriho misek, kde probíhala gelace roztoku a zrání vzniklého gelu. Tato fáze trvala deset dní. Gely byly poté rozemlety na prášek a sušeny při 60 °C po dobu 24 hodin.

Následovala tepelná úprava takto připravených prášků. U nedopovaných ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanočástic byly připraveny 3 sady vzorků s různou hmotnostní koncentrací ε-Fe<sub>2</sub>O<sub>3</sub> vůči

SiO<sub>2</sub> matrici a to 25 hmot. %, 35 hmot. % a 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub> vůči SiO<sub>2</sub>. U těchto nedopovaných vzorků se v každé sérii zvyšovala teplota zpracování, a to od 900 až po 1 100 °C s krokem 50 °C (viz obr. 13). Na základě výsledků o složení připravených nedopovaných vzorků pak byla zvolena optimální teplota zpracování, která byla použita u tepelné úpravy všech dopovaných vzorků. V tomto případě to byla teplota 1 100 °C. U nedopovaných vzorků se tedy lišila teplota tepelného zpracování, v případě dopovaných vzorků byl program teplotného zpracování stejný u všech připravených vzorků, zvyšovala se však atomární koncentrace dopace v každé sadě vzorků.



Obrázek 13. Schéma jednotlivých kroků přípravy nanočástic pomocí sol-gel.

V případě tepelného zpracování dopovaných vzorků byl nejprve připravený prášek zahřátý z pokojové teploty na teplotu 450 °C při rychlosti ohřevu 200 °C za hodinu. Z teploty 450 °C byl prášek zahřátý na teplotu 1 100 °C s rychlostí ohřevu 80 °C za hodinu. Při teplotě 1 100 °C byl prášek udržován po dobu tří hodin a následně byl samovolně ochlazen zpátky na pokojovou teplotu (viz obr. 14).

Tímto postupem byly připraveny  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> vzorky s obsahem  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> 25 hmot. %, 35 hmot. % i 45 hmot. % vůči SiO<sub>2</sub> matrici (3 série - různé hmotnostní koncentrace). Vzorky v jednotlivých sériích se lišily atomární koncentrací Ga (0, 1, 5, 10, 15, a 20 at. %, tj., *x* = 0; 0,02; 0,1; 0,2; 0,3 a 0,4).

Stejným postupem syntézy byla připravena i série  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> vzorků s obsahem  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> 25 hmot. % vůči křemíkové matrici. Vzorky se opět lišily v atomární koncentraci Sc (0, 1, 5, 10, 15, a 20 at. %, tj., *x* = 0; 0,02; 0,1; 0,2; 0,3 a 0,4).

Jak již bylo řečeno, teplota 1 100 °C byla zvolena na základě připravených pěti identických vzorků  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> s 25 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, které byly vystaveny rozdílné teplotě při tepelném zpracování, a to 900, 950, 1 000, 1 050 a 1 100 °C. Nejvyššího obsahu  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze na úkor ostatních fází oxidu železitého bylo dosaženo právě při zvolené teplotě tepelného zpracování 1 100 °C. Navíc byla pozorována závislost, kdy se zvyšující se teplotou tepelného zpracování se obsah  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze zvyšoval (viz další kapitola).



**Obrázek 14.** Diagram znázorňující proces tepelného zpracování dopovaných  $\varepsilon$ -A<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (A=Sc, Ga) nanočástic.

### 3.2. Výpočet navážek

Pro přípravu vzorků je třeba vypočítat hmotnost vody  $m(H_2O)$ , hmotnost ethanolu  $m(C_2H_6O)$  a hmotnost tetraethyl orthosilikátu (TEOS)  $m(Si(OC_2H_5)_4)$  se zachováním molárního poměru jednotlivých složek  $n(Si(OC_2H_5)_4)$ :  $n(C_2H_6O)$ :  $n(H_2O)$  odpovídajícímu 1 : 6 : 6. Dále pro přípravu čistých nanočástic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je třeba znát množství prekurzoru, tedy množství nonahydrátu dusičnanu železitého  $m(Fe(NO_3)_3 \cdot 9 H_2O)$ . Navíc, v případě dopovaných vzorků, musíme znát i množství prekurzoru obsahující atomy prvku, kterými chceme čistou  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fázi dopovat. V případě dopace atomy Sc je prekurzorem tetrahydrát dusičnanu skanditého Sc(NO<sub>3</sub>)<sub>3</sub>·4 H<sub>2</sub>O. Prekurzorem využitým pro dopaci atomy Ga je dekahydrát dusičnanu galitého Ga(NO<sub>3</sub>)<sub>3</sub>·10 H<sub>2</sub>O.

Při výpočtech vyjdeme z obecného vzorce  $\varepsilon$ -A<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>, kde *A* značí prvek zvolený k dopaci a *x* odpovídá množství dopovaných atomů, které nahradily atomy železa ve struktuře  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Pro přípravu čisté fáze epsilon je vzorec jednodušší, jelikož *x* = 0, tedy  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Čistá fáze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je vždy dopována odpovídajícími atomy s atomární koncentrací 1 at. %, 5 at. %, 10 at. %, 15 at. % a 20 at. %. V následující tabulce jsou obecně uvedeny připravené vzorky pro dané atomární koncentrace (viz tab. 1).

| $A_x$ Fe <sub>2-x</sub> O <sub>3</sub>              | <i>c</i> <sub>A</sub> [at. %] | X                       | 2- <i>x</i>            |  |  |
|-----------------------------------------------------|-------------------------------|-------------------------|------------------------|--|--|
|                                                     |                               | počet molů atomu A ve 2 | počet molů atomu Fe ve |  |  |
|                                                     |                               | molech oxidu železa     | 2 molech oxidu železa  |  |  |
| Fe <sub>2</sub> O <sub>3</sub>                      | 0                             | 0,00                    | 2,00                   |  |  |
| A <sub>0,02</sub> Fe <sub>1,98</sub> O <sub>3</sub> | 1                             | 0,02                    | 1,98                   |  |  |
| A <sub>0,1</sub> Fe <sub>1,9</sub> O <sub>3</sub>   | 5                             | 0,10                    | 1,90                   |  |  |
| A <sub>0,2</sub> Fe <sub>1,8</sub> O <sub>3</sub>   | 10                            | 0,20                    | 1,80                   |  |  |
| A <sub>0,4</sub> Fe <sub>1,6</sub> O <sub>3</sub>   | 20                            | 0,40                    | 1,60                   |  |  |

**Tabulka 1.** Hodnoty atomární koncentrace  $c_A$  a odpovídající molekulový (souhrnný) vzorec.

Nedopované vzorky a vzorky s Ga navíc byly připraveny v různých hmotnostních koncentracích  $w(A_x \text{Fe}_{2-x} \text{O}_3)$  vůči hmotnostní koncentraci  $w(\text{SiO}_2)$ , a to  $w(A_x \text{Fe}_{2-x} \text{O}_3) = 25$  hmot. %, 35 hmot. %, 45 hmot. %.

Objem TEOSu *V*(TEOS) je dopředu znám a volíme si jej sami. Hustota TEOSu při 20 °C je  $\rho$ (TEOS) = 0,933 g/ml [28]. Pro další výpočty musíme znát hmotnost oxidu křemičitého *m*(SiO<sub>2</sub>) a hmotnost oxidu železitého *m*(*A*<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>).

$$m(\mathrm{SiO}_2) = \frac{M(\mathrm{SiO}_2)}{n(\mathrm{SiO}_2)} = \frac{M(\mathrm{SiO}_2)}{n(\mathrm{TEOS})} = \frac{M(\mathrm{SiO}_2)}{\frac{M(\mathrm{TEOS})}{m(\mathrm{TEOS})}} = \frac{M(\mathrm{SiO}_2)}{\frac{M(\mathrm{TEOS})}{\rho(\mathrm{TEOS}).V(\mathrm{TEOS})}} \left[g\right] \tag{4}$$

$$m(A_{x}\operatorname{Fe}_{2-x}O_{3}) = w(A_{x}\operatorname{Fe}_{2-x}O_{3})m(A_{x}\operatorname{Fe}_{2-x}O_{3} + \operatorname{SiO}_{2}) = w(A_{x}\operatorname{Fe}_{2-x}O_{3})\frac{m(\operatorname{SiO}_{2})}{w(\operatorname{SiO}_{2})} = w(A_{x}\operatorname{Fe}_{2-x}O_{3})\frac{m(\operatorname{SiO}_{2})}{100 - w(A_{x}\operatorname{Fe}_{2-x}O_{3})} = \frac{w(A_{x}\operatorname{Fe}_{2-x}O_{3}).m(\operatorname{SiO}_{2})}{100 - w(A_{x}\operatorname{Fe}_{2-x}O_{3})} [g]$$
(5)

Pro výpočty množství navážek jednotlivých prekurzorů, tedy  $m(Fe(NO_3)_3 \cdot 9 H_2O)$ ,  $m(Sc(NO_3)_3 \cdot 4 H_2O)$ ,  $m(Ga(NO_3)_3 \cdot 10 H_2O)$ , musíme znát počet molů oxidů daného kovu  $n(A_xFe_{2-x}O_3)$ , dále počet molů Fe  $n(Fe_{2-x})$  v oxidu železa a počet molů dopantu  $n(A_x)$ . Molární hmotnost oxidu kovu (viz tab. 2) vypočteme podle následující rovnice.

$$M(A_x Fe_{2-x}O_3) = (2-x)M(Fe) + (x)M(A) + 3M(O) [g/mol]$$
(6)

| Eee 4 Oc                                          | $M(Sc_xFe_{2-x}O_3)$ [g/mol] | M(Ga <sub>x</sub> Fe <sub>2-x</sub> O <sub>3</sub> ) [g/mol] |  |  |
|---------------------------------------------------|------------------------------|--------------------------------------------------------------|--|--|
| Fe2-xAxO3                                         | A=Sc                         | A=Ga                                                         |  |  |
| Fe <sub>2</sub> O <sub>3</sub>                    | 159,70                       | 159,98                                                       |  |  |
| $A_{0,02}Fe_{1,98}O_3$                            | 159,48                       | 161,09                                                       |  |  |
| $A_{0,1}Fe_{1,9}O_3$                              | 158,61                       | 162,47                                                       |  |  |
| $A_{0,2}Fe_{1,8}O_3$                              | 157,52                       | 163,86                                                       |  |  |
| A <sub>0,4</sub> Fe <sub>1,6</sub> O <sub>3</sub> | 156,43                       | 165,25                                                       |  |  |

**Tabulka 2.** Molární hmotnosti pro jednotlivé vzorky s rozdílnou atomární koncentrací dopovaného prvku *A*, kde x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4.

$$n(A_x \operatorname{Fe}_{2-x} O_3) = \frac{M(A_x \operatorname{Fe}_{2-x} O_3)}{m(A_x \operatorname{Fe}_{2-x} O_3)} \text{ [mol]}$$
(7)

$$n(Fe_{2-x}) = n(A_x Fe_{2-x} O_3)(2-x) \text{ [mol]}$$
(8)

$$n(A_x) = n(A_x \operatorname{Fe}_{2-x} O_3)(x) \text{ [mol]}$$
 (9)

$$m(\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}) = \frac{M(\text{Fe}(\text{NO}_3)_3.9\text{H}_2\text{O})}{n(\text{Fe}_{2-x})} [g]$$
(10)

$$m(\mathrm{Sc}(\mathrm{NO}_3)_3 \cdot 4\mathrm{H}_2\mathrm{O}) = \frac{M(\mathrm{Sc}(\mathrm{NO}_3)_3 \cdot 4\mathrm{H}_2\mathrm{O})}{n(\mathrm{Sc}_x)} [\mathrm{g}]$$
(11)

$$m(\text{Ga}(\text{NO}_3)_3 \cdot 10\text{H}_2\text{O}) = \frac{M(\text{Ga}(\text{NO}_3)_3 \cdot 10\text{H}_2\text{O})}{n(\text{Ga}_x)} [g]$$
(12)

| Vzorec           | M [g/mol] | Vzorec                                                  | M [g/mol] |
|------------------|-----------|---------------------------------------------------------|-----------|
| Fe               | 55,85     | $Sc(NO_3)_3 \cdot 4 H_2O$                               | 303,05    |
| 0                | 16,00     | Ga(NO <sub>3</sub> ) <sub>3</sub> · 10 H <sub>2</sub> O | 435,94    |
| Sc               | 44,96     | $Fe(NO_3)_3 \cdot 9 H_2O$                               | 404,00    |
| Ga               | 69,72     | $Si(OC_2H_5)_4$                                         | 208,33    |
| H <sub>2</sub> O | 18,02     | C <sub>2</sub> H <sub>6</sub> O                         | 46,07     |
| $SiO_2$          | 60,08     | -                                                       | -         |

Tabulka 3. Molární hmotnosti látek potřebných pro výpočet navážek [13].

Při výpočtu množství TEOSu, vody a ethanolu musíme zachovat poměr jednotlivých složek 1 : 6 : 6. Veškeré molární hmostnoti jednotlivých prvků i sloučenin potřebných pro výpočty jsou uvedeny v tab. 3. Ve výpočtech vyjdeme ze znalosti počtu molů jednotlivých složek, přičemž  $n_c(H_2O)$  značí celkový počet molů vody, tedy i vody, kterou obsahují prekurzory pro přípravu. Abychom dostali počet molů vody  $n(H_2O)$  potřebný pro výpočet vody, která ještě musí být přidána při přípravě vzorků, musíme nejdřív odečíst počet molů vody, které jsou obsaženy v prekurzorech  $n_p(H_2O)$ , tedy v hydrátech solí.

$$n(\text{TEOS}) = \frac{m(\text{TEOS})}{M(\text{TEOS})} = \frac{V(\text{TEOS})\rho(\text{TEOS})}{M(\text{TEOS})} \text{ [mol]}$$
(13)

 $n(C_2H_6O) = 6n(TEOS) [mol]$ (14)

 $n_c(\mathrm{H}_2\mathrm{O}) = 6n(\mathrm{TEOS}) \,[\mathrm{mol}] \tag{15}$ 

$$n(H_20) = n_c(H_20) - n_p(H_20) \text{ [mol]}$$
(16)

Počet molů vody v prekurzorech pak vypočteme podle následujících rovnic 17 a 18. Prekurzorem pro oxid železitý je Fe(NO<sub>3</sub>)<sub>3</sub>·9 H<sub>2</sub>O, tedy musíme počet molů železa n(Fe<sub>2-x</sub>) vynásobit devíti. Dále musíme započíst počet molů vody od prekurzorů použitých pro dopaci, tedy buď Sc(NO<sub>3</sub>)<sub>3</sub>·4 H<sub>2</sub>O nebo Ga(NO<sub>3</sub>)<sub>3</sub>·10 H<sub>2</sub>O. V případě dopace skandiem Sc násobíme látkové množství pro skandium n(Sc<sub>x</sub>) čtyřmi. Při dopaci Ga násobíme látkové množství galia n(Ga<sub>x</sub>) desíti. Následující rovnice demonstrují výpočty pro Fe(NO<sub>3</sub>)<sub>3</sub>·9 H<sub>2</sub>O při dopaci Sc a následně i Ga.

 $n_p(H_2O) = 9n(Fe_{2-x}) - 4n(Sc_x) \text{[mol]}$  (17)

$$n_p(H_2O) = 9n(Fe_{2-x}) - 10n(Ga_x) \text{ [mol]}$$
 (18)

Označíme-li obecně počet molekul vody v prekurzoru pro oxid železitý jako *X* a počet molekul vody v prekurzoru pro dopanty jako *Y*, pak můžeme rovnici napsat ve tvaru

$$n_p(H_2O) = Xn(Fe_{2-x}) - Yn(A_x) \text{ [mol]}.$$
 (19)

Pak pro výpočet hmotnosti vody  $m(H_2O)$  a ethanolu  $m(C_2H_6O)$  využijeme vypočtených látkových množství a molární hmotnosti vody a ethanolu.

$$m(H_20) = n(H_20)M(H_20) [g]$$
(20)

$$m(C_2H_60) = n(C_2H_60)M(C_2H_60) [g]$$
(21)

### 3.3. Použité techniky

Snímky z transmisní elektronové mikroskopie (TEM) byly pořízeny pomocí elektronového mikroskopu JEM-2100 (JEOL). Transmisní elektronová mikroskopie s vysokým rozlišením (HRTEM) byla použita pro získání mapy prvkového složení pomocí transmisního elektronového mikroskopu FEI Titan 60-300 kV.

Rentgenová difrakční (XRD) spektra z nanometrických fází oxidu železitého byly zaznamenány pomocí difraktometru PANalytical X'Pert PRO (iron-filtered Co K $\alpha$  radiation:  $\lambda = 0.178901$  nm, 40 kV, and 30 mA, charakteristické záření K $\alpha$ :  $\lambda = 0,178901$  nm, 40 kV a 30 mA) s Bragg-Brentanovým uspořádáním, vybaveném detektorem X'Celerator, programovatelnou divergencí a štěrbinami proti rozptylu difrakčního svazku. Příslušný vzorek byl umístěn na křemíkové sklíčko s nulovým pozadím, jemně přitlačen a skenován v rozsahu  $2\theta$  od 10° do 105°. Fázová identifikace a Rietveldova kvantitativní fázová analýza byly provedeny pomocí softwaru PANalytical HighScore Plus s databázemi PDF-4+ a ICSD.

Mössbauerovská spektra byla měřena pomocí <sup>57</sup>Fe mössbauerovského spektrometru pracujícího v režimu konstantního zrychlení a transmisní geometrie, vybaveného radioaktivním zdrojem γ-záření z izotopu <sup>57</sup>Co v Rh matrici s výchozí intenzitou 50 mCi. Transmisní mössbauerovská spektra <sup>57</sup>Fe byla zaznamenána při pokojové teplotě bez působení vnějšího magnetického pole. <sup>57</sup>Fe Mössbauerovská spektra byla poté zpracována a analyzována pomocí softwaru MossWinn a jeho dostupných nástrojů ke zpracování.

Před fitováním bylo odečteno pozadí a zohledněny instrumentální vlastnosti daného Mössbauerovského spektrometru, které ovlivňují výsledný signál. Hodnoty izormerního posunu byly vztaženy k fólii α-Fe při pokojové teplotě.

Měření magnetizace bylo realizováno pomocí magnetometru PPMS Quantum Design. Magnetizační křivky ZFC (Zero-Field-Cooled) neboli teplotní závislosti magnetizace měřené po vychlazení vzorku z 300 K na 5 K v nulovém magnetickém poli, pak byly měřeny od 5 do 300 K při aplikovaném vnějším magnetickém poli (100, 1000 a 10 000 Oe). Při měření FC křivek (Field-Cooled) byly vzorky ochlazeny z 300 K na 5 K při daném vnějším magnetickém poli (100, 1000 a 10 000 Oe) a poté byly získány teplotní závislosti magnetizace v odpovídajícím vnějším magnetickém poli v teplotním rozsahu od 5 do 300 K. Hysterezní smyčky byly získány při teplotách 5 a 300 K při vnějším magnetickém poli v rozsahu –50 000 Oe až 50 000 Oe.

## 3.4. Charakterizace ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systému

U nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanočástic byly připraveny 3 série vzorků s různou hmotnostní koncentrací  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vůči SiO<sub>2</sub> matrici a to 25 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, 35 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> a 45 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>. U těchto nedopovaných vzorků se v každé sérii zvyšovala teplota zpracování od 900 až po 1 100 °C s krokem 50 °C.

Tyto série vzorků byly primárně připraveny k optimalizování podmínek přípravy čisté ε-Fe<sub>2</sub>O<sub>3</sub> fáze a získání nejvyššího možného obsahu ε-Fe<sub>2</sub>O<sub>3</sub> fáze na úkor ostatních fází oxidů železa.

### 3.4.1. Chemická, strukturní a morfologická charakterizace



**Obrázek 15.** Celkové množství jednotlivých fází oxidů železa pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050 a 1 100 °C) a hmotnostní koncentrací (a) 25 hmot. %, (b) 35 hmot. % a (c) 45 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Obrázek 15 znázorňuje celkové množství jednotlivých fází oxidů železa odpovídající 3 sériím (25, 35 a 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>) nedopovaných ε-Fe<sub>2</sub>O<sub>3</sub> systémů. V rámci každé série bylo připraveno 5 vzorků s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050 a 1 100 °C). U 1. série, tedy 25 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, je ve všech vzorcích zastoupena ε-Fe<sub>2</sub>O<sub>3</sub> fáze jako majoritní a  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> fáze jako minoritní. Vyjímkou je první vzorek s nejnižší teplotou zpracování (900 °C), kde namísto  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> fáze je ve vzorku přítomna fáze Fe<sub>3</sub>O<sub>4</sub>. U 2. a 3. série (35 a 45 hmot. %), je situace obdobná, ε-Fe<sub>2</sub>O<sub>3</sub> fáze je zde majoritní a  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> fáze je minoritní. Ve všech sériích je pozorovatelný trend, kdy se zvyšující se teplotou zpracování, se zvyšuje i množství ε-Fe<sub>2</sub>O<sub>3</sub> fáze. Vyjímku představuje pouze vzorek z poslední série s nejvyšší teplotou zpracování (45 hmot. %, 1 100 °C). Nejvyššího obsahu ε-Fe<sub>2</sub>O<sub>3</sub> fáze na úkor ostatních fází oxidů železa a tedy i neoptimálnějších podmínek syntézy, bylo dosaženo pro ε-Fe<sub>2</sub>O<sub>3</sub> systém s 25 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> a teplotou zpracování 1 100 °C. Konkrétně, pro tento ε-Fe<sub>2</sub>O<sub>3</sub> vzorek bylo dosaženo 93,9 % ε-Fe<sub>2</sub>O<sub>3</sub> fáze a níže je vyobrazen záznam z RTG práškové difrakce, snímek z TEM mikroskopu a odpovídající velikostní distribuce pro tento reprezentativní vzorek (viz obr. 16).



**Obrázek 16.** (a) XRD spektrum nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic zabudovaných v SiO<sub>2</sub> matrici (1. série – 25 hmot. %, teplota zpracování 1 100 °C). (b) TEM snímek totožného reprezentativního  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorku a (c) velikostní distribuce částic odvozená ze statistické analýzy odpovídajících TEM snímků vzorku  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, s fitováním pomocí Gaussovy křivky pravděpodobnostního rozdělení.

XRD spektrum (viz obr. 16 (a)) obsahuje difrakční píky odpovídající ε-Fe<sub>2</sub>O<sub>3</sub> fázi a α-Fe<sub>2</sub>O<sub>3</sub> fázi. Jsou-li ve vzorku obsaženy i jiné fáze oxidu železitého, pak jsou v tomto vzorku obsaženy v tak malém množství, že se nachází pod detekčním limitem XRD techniky. Proto jsou zvoleny pro fyzikálně-chemickou charakterizaci i další techniky.



**Obrázek 17.** Průměrná velikost nanočástic pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050 a 1 100 °C) a hmotnostní koncentrací (a) 25 hmot. %, (b) 35 hmot. % a (c) 45 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>.

TEM snímek (viz obr. 16 (b)) z reprezentativního nedopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorku ilustruje téměř sférické částice zabudované v matrici oxidu křemičitého. Velikostní distribuce byla získána z TEM snímků s použitím programu ImageJ fitováním pomocí Gaussovy křivky pravděpodobnostního rozdělení. Velikostní distribuce byla vyhodnocena pro všechny vzorky obdobným způsobem a výsledkem je informace o průměrné velikosti nanočástic (viz obr. 17).

Průměrná velikost nanočástic pro vzorky z 1. série i s jejich standardní odchylkou je 4,1  $\pm$  0,04; 5,8  $\pm$  0,06; 14,3  $\pm$  0,3; 10,1  $\pm$  0,1 a 14,3  $\pm$  0,3 nm, odpovídající vzorkům s rostoucí teplotou zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Pro vzorky z 2. série je průměrná velikost nanočástic 6,4  $\pm$  0,1; 6,5  $\pm$  0,2; 10,9  $\pm$  0,2; 11,4  $\pm$  0,2 a 17,1  $\pm$  0,5 nm, odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Průměrná velikost nanočástic pro vzorky ze 3. série je pak 10  $\pm$  0,2; 11,4  $\pm$  0,3; 9,3  $\pm$  0,3; 12,6  $\pm$  0,8; 21,8  $\pm$  0,8 nm, pro 900, 950, 1 000, 1 050 a 1 100 °C. Z obrázku 17 lze říct, že průměrná velikost nanočástic se zvyšuje s rostoucí teplotou zpracování.

Jak je již dobře známo,  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje ortorhombickou krystalovou strukturu s prostorovou grupou *Pna*2<sub>1</sub> a mřížkovými parametry a = 5,072 Å, b = 8,736 Å, c = 9,418 Å a  $\alpha = \beta = \gamma = 90^{\circ}$  [88]. Mřížkové parametry nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> získané z XRD měření pro vzorky z 1. série jsou a = 5,223; 5,071; 5,083; 5,094; 5,098 Å, b = 8,712; 8,948; 8,849; 8,818; 8,808 Å, c = 9,222; 9,394; 9,489; 9,479; 9,476 Å, odpovídající vždy vzorkům s rostoucí teplotou zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Pro vzorky z 2. série jsou mřížkové parametry a = 5,086; 5,095; 5,099; 5,100; 5,100 Å, b = 8,816; 8,807; 8,800; 8,799;

8,796 Å, *c* = 9,504; 9,486; 9,480; 9,476; 9,472 Å, odpovídající vzorkům s rostoucí teplotou zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Pro vzorky ze 3. série jsou mřížkové parametry *a* = 5,092; 5,099; 5,099; 5,100; 5,101 Å, *b* = 8,802; 8,801; 8,795; 8,794; 8,796 Å, *c* = 9,492; 9,483; 9,477; 9,473; 9,472 Å, odpovídající vždy vzorkům s rostoucí teplotou zpracování 900, 950, 1 000, 1 050 a 1 100 °C.

# 3.4.2. Magnetické vlastnosti a mössbauerovská studie



**Obrázek 18.** (a) Diagram znázorňující ferimagnetické uspořádání magnetických momentů atomů Fe (Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub>) obsazujících různá krystalografická místa v krystalové

struktuře  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze včetně velikostí magnetických momentů železa a hodnot parametrů  $Z_{ij}J_{ij}$  při 300 K, kde  $Z_{ij}$  (i, j = A, B, C, D) zahrnuje počet výměnných drah,  $J_{ij}$  (i, j = A, B, C, D) představují efektivní výměnné integrály a  $m_{\rm HT}$ (Fe<sub>i</sub>), i = A, B, C, D značí magnetické momenty Fe<sup>3+</sup> iontů z A-, B-, C- a D-podmřížek (převzato z Tuček a spol. [24] a Ohkoshi a spol. [64]). (b) Magnetický fázový průběh  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s teplotou, s dosud identifikovanými důležitými teplotami magnetických přechodů a magnetickými režimy (vložené obrázky převzaty z Muñoz a spol. [66] a Tadic a spol. [246]).

Před samotným rozborem výsledků z magnetických měření je třeba zdůraznit, že magnetické chování samotné ε-Fe<sub>2</sub>O<sub>3</sub> fáze je velmi komplikované a v posledních dvou desetiletích je předmětem rozsáhlých diskusí [24]. Dosud bylo navrženo několik hypotéz založených na teoretickém modelování i experimentálních pozorováních, které popisují magnetický stav ε-Fe<sub>2</sub>O<sub>3</sub> a jeho průběh v závislosti na teplotě. Od významné studie provedené na konci devadesátých let minulého století let, Tronc a spol. [83], je E-Fe<sub>2</sub>O<sub>3</sub> popisována jako ferimagnet se 4 magnetickými podmřížkami. Čtyři magnetické podmřížky vychází z existence 4 neekvivalentních pozic Fe v  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> krystalové struktuře, tj. 3 oktaedrické (Fe<sub>A</sub>, Fe<sub>B</sub>, a Fe<sub>C</sub>) pozice a 1 tetraedrická (Fe<sub>D</sub>) pozice [24]. Oktaedrické pozice se výrazně odlišují stupněm distorze, kdy největší stupeň distorze byl zjištěn pro Fe<sub>A</sub> a Fe<sub>B</sub> pozice a zanedbatelný pro pozici Fe<sub>C</sub>. Pozice Fe<sub>A</sub> a Fe<sub>B</sub> vykazují distortované okraedrické uspořádání, zatímco pozice Fec vykazuje regulární oktaedrické uspořádání. V rámci tohoto často používaného modelu jsou magnetické momenty podmřížek Fe<sub>B</sub> a Fe<sub>C</sub> orientovány v opačném směru než magnetické momenty paralelních podmřížek Fe<sub>A</sub> a Fe<sub>D</sub> [24], [64]. Nedokonalé antiferomagnetické uspořádání pak vede ke vzniku výsledné magnetizace orientované podél krystalografického směru ve směru a-osy (viz obr. 18 (a)) [24], [64]. Magnetická struktura  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje velmi zajímavé vlastnosti závislé na teplotě (viz obr. 18 (b)), což je způsobeno především uspořádáním Fe kationtů a nanometrickými rozměry ε-Fe<sub>2</sub>O<sub>3</sub>. Magnetické vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub> jsou často považovány za důsledek silné magnetokrystalové a tvarové anizotropie (způsobené krystalografickou strukturou a tvarem nanoobjektu), jednodoménovosti (vzhledem k limitním rozměrům termodynamicky stabilních ε-Fe<sub>2</sub>O<sub>3</sub> nanoobjektů) a nenulovému orbitálnímu momentu Fe<sup>3+</sup> iontů s výraznou spin-orbitální vazbou [24]. Přičemž všechny tyto příspěvky působí současně. Vlivem teploty se však jejich jednotlivé působení na výsledné vlastnosti posiluje nebo potlačuje. V důsledku toho bylo dosud identifikováno několik magnetických režimů, přičemž každý z nich má charakteristický teplotní interval, ve kterém se nachází (viz obr. 18 (b)).

Dříve byla Curieova teplota ε-Fe<sub>2</sub>O<sub>3</sub>, která odděluje magneticky uspořádaný stav a paramagnetický stav, stanovena na ~ 490 K (216,85 °C) [24], [65], [83]. Nedávné práce však uvádějí, že magneticky uspořádaný stav může přetrvávat až do teploty ~ 850 K (576,85 °C), při které se již ε-Fe<sub>2</sub>O<sub>3</sub> fáze stává paramagnetickou [66–69]. Při teplotě ~ 480 K (206,85 °C) pak dochází k magnetickému přechodu, který odděluje dvě odlišné ferimagnetické fáze. Předpokládá se, že nad teplotou ~ 480 K (206,85 °C) je ferimagnetický stav dán pouze dvěmi magnetickými podmřížkami (Fe<sub>A</sub> a Fe<sub>B</sub>), které jsou stále magneticky uspořádané, zatímco magnetické uspořádání v ostatních podmřížkách je narušeno (Fe<sub>C</sub> a Fe<sub>D</sub> pozice) [66]. V teplotním intervalu od ~ 480 K (206,85 °C) do ~ 850 K (576,85 °C), se ε-Fe<sub>2</sub>O<sub>3</sub> nachází v tzv. měkkém ferimagnetickém stavu. V tomto stavu, dosahuje magnetizace a koercitivita mnohem menších hodnot, než které jsou pozorovány pro magnetický stav pod teplotou ~ 480 K (206,85 °C) [66], [69]. Od teploty ~ 150 K (-123,15 °C) do ~ 480 K (206,85 °C), se  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nachází v tzv. tvrdém ferimagnetickém stavu a ε-Fe<sub>2</sub>O<sub>3</sub> fáze je v tomto stavu často označována jako kolineární ferimagnet se čtyřmi plně uspořádánými magnetickými podmřížkami [24], [64], [70], [83], [91], [93]. Podle dalšího modelu se ε-Fe<sub>2</sub>O<sub>3</sub> chová jako vychýlený antiferomagnet (antiferomagnet se skloněnými magnetickými momenty) až do teploty ~ 150 K (-123,15 °C) [71]. Dosud však nebyl vypracován žádný teoretický model, který by takovou magnetickou strukturu dostatečně vysvětloval. V teplotním intervalu od  $\sim$ 80 K do ~ 150 K (-123,15 °C) se objevuje široký magnetický přechod doprovázený velmi výraznou změnou koercitivity a magnetizace [24], [65], [71–79]. Tento přechod je popisován buď jako dvoustupňový nebo jako třístupňový proces [24], [65], [247]. V obou případech je ale tento proces důsledkem strukturních deformací krystalové mřížky. Ve směru klesající teploty, ochlazování, dvoustupňový proces zahrnuje spinovou reorientaci lokálních magnetických momentů v magnetických podmřížkách (od ~ 130 K (-143,15 °C) do ~ 150 K (-123,15 °C)), po které následuje přechod ze spinového stavu S = 3/2 do stavu S = 5/2 Fe<sup>3+</sup> kationtů umístěných v tetraedrických pozicích (od ~ 100 K do ~ 130 K) [247]. U třístupňového modelu je vznik nové nízkoteplotní magnetické struktury podmíněn změnami uspořádání v oktaedrických A-pozicích a tetraedrických D-pozicích, změnou síly spinorbitální vazby a spinovou reorientací [24], [65], [248], [249]. Někteří autoři proto předpokládají existenci Morinova přechodu, který je typický hlavně pro α-Fe<sub>2</sub>O<sub>3</sub> [250].

Pod ~ 80 K (-193,15 °C) se projevuje nesouměřitelná magnetická struktura [24], [65], [66], [73]. Nicméně některé práce uvádí, že se může jednat i o jiný nízkoteplotní magnetický stav, který se podobá vlastnostem vychýleného antiferomagnetu, ovšem s jiným úhlem vychýlení, než je tomu při teplotách nad ~ 150 K (-123,15 °C) [24], [71].

Nedávno bylo vysloveno tvrzení, že v důsledku silné frustrace magnetické struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> se při ochlazení z ~ 150 K (-123,15 °C) na ~ 80 K (-193,15 °C) objevuje řada magnetických přechodů, které vedou ke vzniku nekolineárního spirálního magnetického uspořádání [251]. Kromě toho byl v teplotním intervalu od ~ 50 K (-223,15 °C) do ~ 80 K (-193,15 °C) pozorován přechod vyvolaný polem [252]. Nicméně, jeho příčina však dosud nebyla jednoznačně objasněna. V jedné dřívější studii se předpokládalo, že k metamagnetickému přechodu dochází okolo 50 K (-223,15 °C) [71]. Systematickému studiu tohoto jevu však dosud nebyla věnována pozornost, a proto zůstává diskutabilním.

Výše popsaný komplexní magnetický fázový průběh je často pozorován u nanoobjektů  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> (nanočástice, nanofilmy, nanodrátky, atd.) s rozměrem větším než ~ 8 nm. Pokud však velikost nanočástic  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> klesne pod 8 nm, pozorujeme superparamagnetické chování. Bylo pozorováno, že limitní velikost, pod kterou se nanočástice  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> stávají superparamagnetickými, je zhruba 7,5 nm [67], [77], [78], [98], [253]. U takto malých částic  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> mizí charakteristický široký přechod, který se nachází v teplotním intervalu od ~ 80 K do ~ 150 K (-123,15 °C) a je pravděpodobně posunut níže pod teplotu 4,2 K (-268,95 °C). Ultrajemné  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástice vykazují blokovaný magnetický stav, který přetrvává až do teploty 800 K (526,85 °C). Toto neobvyklé chování bylo přisuzováno redistribuci Fe<sup>3+</sup> kationtů v krystalografických pozicích, a to zejména zvýšení jejich počtu v tetraedrických pozicích [78].

Stejně tak, jako velikost částic, může i dopování cizími atomy výrazně ovlivňovat magnetické vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub>. [76], [95], [99–118].



**Obrázek 19.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1000 a (c) 10 000 Oe pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1000, 1050, 1100 °C) a hmotnostní koncentrací 25 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Za účelem studia magnetických vlastností ε-Fe<sub>2</sub>O<sub>3</sub> systémů v jednotlivých sériích, byly pro všechny vzorky změřeny ZFC/FC teplotní křivky a hysterezní smyčky. Výsledky jsou znázorněny na obr. 19, 20 a 21.

Jak je zřetelně vidět z výsledků měření pro nedopovanou  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fázi pro 1. sérii (viz obr. 19) u magnetizačních ZFC i FC křivek, pro vyšší teploty zpracování, 1000, 1050 a 1100 °C, měřených ve vnějších magnetických polích 100 a 1000 Oe, jsou pozorovány dva výrazné skoky, jeden okolo ~100 K (-173,15 °C) a druhý okolo ~140 K (-133,15 °C). Tyto skoky odpovídají širokému magnetického přechodu typickému pro  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Tento přechod je spojen s přechodem z kolineárního ferimagnetického stavu do stavu s vlastnostmi nesouměřitelné magnetické struktury. Magnetizační křivky ZFC/FC se od sebe v oblasti velmi nízkých teplot odchylují, což představuje přítomnost velmi malých částic se superparamagnetickými/magneticky blokovanými vlastnostmi. Dá se usuzovat, že se jedná o velmi malé nanočástice  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s velikostí menší, než je limitní velikost pro superparamagnetické chování, tedy s velikostí zhruba 7,5 nm, což je potvrzeno z velikostní distribuce odvozené z TEM obrázků (viz obr. 16 (c)) a/nebo se jedná o  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástice, jejichž množství ve vzorku je tak malé, že se nachází pod detekčním limitem XRD měření a <sup>57</sup>Fe Mössbauerovy spektroskopie (viz výše a níže).

Ve vnějším magnetickém poli 10 000 Oe je oddělení magnetizačních křivek u nízkoteplotního magnetického průběhu ZFC křivky znatelnější. Toto oddělení je typické pro systémy se superparamagnetickým chováním, v tomto případě s odpovídající blokovací teplotou někde v teplotním intervalu od ~ 100 K (-173,15 °C) do ~ 147 K (-126,15 °C). Nejlépe lze výše popsáné chování, hlavně typické 2 skoky v průběhu magnetizačních ZFC i FC křivek, pozorovat při vnějším magnetickém poli 1000 Oe pro nedopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorek s teplotou zpracování 1100 °C (viz obr. 19 (b)). Tento vzorek je pak použit jako referenční vzorek v dalších kapitolách s dopovanými systémy.



**Obrázek 20.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1000 a (c) 10 000 Oe pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1000, 1050, 1100 °C) a hmotnostní koncentrací 35 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Z výsledků měření pro 2. sérii nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémů (viz obr. 20), lze u magnetizačních ZFC i FC křivek, především pro vyšší teploty zpracování, 1050 a 1100 °C (vyšší obsah  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, viz výsledky XRD, obr. 15), měřených ve vnějších magnetických polích 100 a 1000 Oe, pozorovat dva typické skoky stejně, jako tomu bylo u 1. série. Tentokrát jsou tyto skoky posunuty k vyšším teplotám, přibližně o ~10 K. Jeden skok se nachází okolo ~110 K (-163,15 °C) a druhý okolo ~149 K (-124,15 °C). Jak již bylo zmíněno, skoky odpovídají širokému magnetického přechodu značící transformaci z kolineárního ferimagnetického stavu do stavu s vlastnostmi nesouměřitelné magnetické struktury. U magnetizačních křivek ZFC/FC lze opět pozorovat odchylení ZFC křivky při nízkých teplotách. Toto odchýlení je spojeno s výskytem velmi malých částic se superparamagnetickými nebo magneticky blokovanými vlastnostmi, v tomto případě velmi malých nanočástic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s velikostí menší, než je limitní velikost pro superparamagnetické chování (7,5 nm) nebo s výskytem  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, jejichž množství ve vzorku je tak

malé, že není detekovatelné v rámci XRD měření, ani <sup>57</sup>Fe Mössbauerovy spektroskopie (viz výše a níže).

Oddělení magnetizačních křivek u nízkoteplotního magnetického průběhu ZFC křivky je při větším vnějším magnetickém poli (viz obr. 20 (c)) opět výraznější, což značí, že se jedná o systém se superparamagnetickým chováním s blokovací teplotou někde v teplotním intervalu od ~ 110 (-163,15 °C) do ~ 149 K (-124,15 °C).



**Obrázek 21.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1000 a (c) 10 000 Oe pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1000, 1050, 1100 °C) a hmotnostní koncentrací 45 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Výsledky měření nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémů ze 3. série (viz obr. 21) ze své podstaty kopírují výsledky z obou předchozích sérií. U magnetizačních ZFC i FC křivek, měřených ve vnějších magnetických polích 100 a 1000 Oe, se objevují dva typické skoky související s magnetickým přechodem. První skok se nachází okolo ~118 K (-155,15 °C) a druhý okolo ~151 K (-122,15 °C). Tentokrát je změna pouze u prvního skoku, který je oproti předchozí sérii posunut k vyšším teplotám, přibližně o ~8 K.

Odchýlení ZFC křivky při nižších teplotách značí přítomnost velmi malých částic se superparamagnetickými/magneticky blokovanými vlastnostmi. Toto odchýlení je výraznější při vnějším magnetickém poli 10 000 Oe (viz obr. 21 (c)). Blokovací teplota takového systému se superparamagnetickým chováním se nachází v teplotním intervalu od ~ 116 (-157,15 °C) do ~ 151 K (-122,15 °C).

Při srovnání všech třech sérií se třemi rozdílnými hmotnostními koncentracemi lze říct, že se zvyšující se hmotnostní koncentrací ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> se oba typické skoky pro ε-Fe<sub>2</sub>O<sub>3</sub> fázi posouvají k vyšším teplotám. Nicméně ve všech systémech byla pozorována přítomnost velmi malých částic s velikostí menší, než je limitní velikost pro superparamagnetické chování. Navíc jednotlivé vzorky nemají totožné složení, což se taky může projevit mírnými odchylkami v jednotlivých magnetických průbězích.



**Obrázek 22.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1000, 1050, 1100 °C) a hmotnostní koncentrací 25 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

Hysterezní smyčky změřené při 5 a 300 K (-268,15 a 26,85 °C, dále v textu používáno pouze 5 a 300 K) pro nedopované systémy vykazují pro vyšší hodnoty tepelného zpracování schodovitý průběh, nikoli hladký (viz obr. 22). Takové chování může být zapříčiněno (i) kombinací tvrdých a měkkých magnetických fází, resp. kombinací fází s vyšší a nižší koercitivitou nebo (ii) koexistencí superparamagnetické a jednonoménové fáze s nulovou koercitivitou a náhlou změnou hodnot magnetizace okolo nulového aplikovaného vnějšího magnetického pole nebo (iii) superpozicí jedno a více-doménových fází s vysokou, respektive nízkou koercitivitou [254]. V případě nedopovaného  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému, konkrétně systému s teplotou zpracování 1100 °C (dále použit jako srovnávací vzorek v další kapitole se skandiem i galiem), pozorovaný profil odráží přítomnost tvrdé a měkké (nebo superparamagnetické) fáze, přičemž první (s mnohem vyšší koercitivitou) pochází od

nanočástic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> v jednodoménovém stavu a s velikostí větší, než je limitní velikost superparamagnetismu a druhá (s velmi malou nebo nulovou koercitivitou) pochází od  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nebo  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, které se chovají magneticky blokovaně (při 5 K) a superparamagneticky (při 300 K). Tento předpoklad je v souladu s výsledky vyplývajících ze ZFC/FC magnetizačních měření.

Nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s nižší teplotou zpracování vykazují vyšší hodnoty saturační magnetizace, oproti systémům s vyšší teplotou zpracování, jak je vidět na obr. 22 (a) a 22 (b). Nicméně pro hodnoty remanentní magnetizace a koercitivního pole lze pozorovat přesně opačnou závislost, kdy oba tyto parametry dosahují vyšších hodnot pro systémy s vyšší teplotou zpracování. Konkrétně hodnoty saturační magnetizace pro 1. sérii jsou 8,3; 8,3; 6,5; 5,4 a 5,1 emu/g (± 0,1 Oe, pro 5 K) a dále 5,0; 5,3; 4,7; 4,3 a 4,4 emu/g (± 0,1 Oe, pro 300 K), odpovídající teplotě zpracování v pořadí 900, 950, 1000, 1050 a 1100 °C. Hodnoty remanentní magnetizace pro 1. sérii jsou 2,3; 2,7 ; 2,5 a 2,2 emu/g (± 0,1 Oe, pro 5 K), 0,1; 0,1; 0,6; 1,5 a 2,3 emu/g (± 0,1 Oe, pro 300 K), odpovídající teplotě zpracování pole dosahuje hodnot 787, 441, 1 522, 6 084, 4 886 Oe (± 10 Oe, pro 5 K) a hodnot 225, 472, 589, 7 684 a 16 498 Oe (± 10 Oe, pro 300 K), odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C.



**Obrázek 23.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050, 1 100 °C) a

hmotnostní koncentrací 35 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

Pro 2. sérii (viz obr. 23) dosahuje saturační magnetizace hodnot 7,5; 8,0; 7,8; 6,7 a 6,5 emu/g ( $\pm$  0,1 Oe, pro 5 K), 5,1; 5,8; 6,0; 5,6 a 5,3 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Hodnoty remanentní magnetizace jsou 2,3; 3,1; 3,1; 3,1 a 3,0 emu/g ( $\pm$  0,1 Oe, pro 5 K), 1,0; 1,4; 2,1; 2,6; 2,8 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Koercitivní pole pak nabývá hodnot 1 458, 1 999, 3 676, 8 077 a 8 573 Oe ( $\pm$  10 Oe, pro 5 K), 2 579, 3 501, 7 060, 15 816, 19 789 Oe ( $\pm$  10 Oe, pro 300 K).



**Obrázek 24.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1 000, 1 050 a 1 100 °C) a hmotnostní koncentrací 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

Saturační magnetizace pro 3. sérii (viz obr. 24) nabývá hodnot 6,6; 7,8; 7,5; 7,4; 5,0 emu/g ( $\pm 0,1$  Oe, pro 5 K), 4,9; 5,2; 5,8; 6,2 a 4,2 emu/g ( $\pm 0,1$  Oe, pro 300 K), odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Hodnoty remanentní magnetizace pro 3. sérii dosahují hodnot 2,1; 2,7; 2,9; 3,1; 2,1 emu/g ( $\pm 0,1$  Oe, pro 5 K), 1,6; 1,9; 2,3; 2,9 a 2,1 emu/g ( $\pm 0,1$  Oe, pro 300 K), odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C. Koercitivní pole nabývá hodnot 3 927, 5 015, 6 683, 8 003, 8 393 Oe ( $\pm 10$  Oe, pro

5 K), 12 014, 14 841, 15 259, 20 088, 21 795 Oe (± 10 Oe, pro 300 K), odpovídající teplotě zpracování 900, 950, 1 000, 1 050 a 1 100 °C.

Přehlednější vyobrazení závislostí hodnot saturační magnetizace, remanentní magnetizace a koercitivního pole je znázorněno na obr. 25.



**Obrázek 25.** (a) Saturační magnetitazace, (b) remanentní magnetizace a (c) koercitivní pole pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy s rozdílnou teplotou zpracování (900, 950, 1000, 1050, 1100 °C), všechny tři série s hmotnostními koncentracemi 25, 35 a 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, pro teplotu 5 i 300 K.

Z obr. 25 (a) lze soudit, že hmotnostní koncentrace nemá na hodnotu saturační magnetizace výrazný vliv a pro všechny 3 série nabývá velmi podobných hodnot při 5 i 300 K. Pro většinu vzorků, lze pozorovat pokles saturační magnetizace s rostoucí teplotou zpracování. Opačný trend lze pozorovat u remanentní magnetizace i koercitivního pole, kdy s rostoucí teplotou zpracování se zvyšují obě tyto hodnoty (viz obr. 25 (b), (c)). Stejné závisloti těchto magnetických parametrů byly pozorovány i ve studii [255].

Magnetické vlastnosti lze vysvětlit z hlediska fázového složení a velikosti částic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Při nižších teplotách zpracování je znát podíl měkké magnetické fáze  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> (i když stále pod detekčním limitem XRD) s hodnotou *M<sub>S</sub>* mnohem vyšší, než u  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, kdy navíc  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> má velikost částic blízkou jeho superparamagnetické hranici 7,5 nm (tj. má nízkou *H<sub>C</sub>*) [98]. Vzorky získané při 900, 950 °C se tedy vyznačují vyššími hodnotami saturační magnetizace a nižšími koercitivitami. Se zvyšováním teploty zpracování až na 1100 °C klesá podíl měkké magnetické fáze  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>, zatímco částice  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> se zvětšují. To vede ke snížení magnetizace a na druhé straně k nárůstu koercitivity. Ve vzorcích je také přítomna hematitová fáze ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>). Magnetické vlastnosti vzorků tím ale nejsou znatelně ovlivněny, protože  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, který má vlastnosti vychýleného antiferomagnetu (nebo slabého feromagnetu) [256], má velmi nízkou magnetickou susceptibilitu a nepřispívá významně k magnetizaci vzorků. Na koercitivitu by tedy mohla mít větší vliv rozdílná velikost částic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Vliv velikosti částic na koercitivitu  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je spojen s pravděpodobností, že částice o určitém objemu bude spontánně demagnetizovat, tato pravděpodobnost je tím vyšší, čím menší je velikost částic [257], což vede k poklesu koercivity v souboru částic. Také různá kvalita krystalových struktur připravených částic, stejně tak jako povrchový příspěvek malých a velkých částic, mohou být příčinou rozdílné koercitivity.



**Obrázek 26.** <sup>57</sup>Fe Mössbauerovské spektrum nedopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                         | Polymorf<br>Fe <sub>2</sub> O <sub>3</sub> | Komponenta | δ±<br>0,01<br>(mm/s) | $\Delta E_Q \pm 0,01$ (mm/s) | $B_{\rm hf} \pm 0,3$ (T) | RA<br>± 1<br>(%) | Přiřazení              |
|------------------------------------------------|--------------------------------------------|------------|----------------------|------------------------------|--------------------------|------------------|------------------------|
|                                                | ε-Fe <sub>2</sub> O <sub>3</sub>           | Sextet 1   | 0,38                 | -0,25                        | 45,0                     | 23               | Fe <sub>A</sub> pozice |
| Nedopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> |                                            | Sextet 2   | 0,36                 | -0,25                        | 43,9                     | 11               | Fe <sub>B</sub> pozice |
|                                                |                                            | Sextet 3   | 0,38                 | -0,02                        | 38,9                     | 25               | Fe <sub>C</sub> pozice |
|                                                |                                            | Sextet 4   | 0,21                 | -0,16                        | 25,8                     | 18               | Fe <sub>D</sub> pozice |
|                                                | α-Fe <sub>2</sub> O <sub>3</sub>           | Sextet 5   | 0,37                 | -0,21                        | 51,8                     | 2                | Fe pozice              |
|                                                | ε-Fe <sub>2</sub> O <sub>3</sub>           |            |                      |                              |                          |                  | Relaxační              |
|                                                | a/nebo                                     | Singlet 1  | 0,40                 |                              |                          | 21               | komponenta             |
|                                                | γ-Fe <sub>2</sub> O <sub>3</sub>           |            |                      |                              |                          |                  | Komponenta             |

**Tabulka 4.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra, měřeného při pokojové teplotě, pro nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém, kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitováním jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.

Na obr. 26 je znázorněno <sup>57</sup>Fe mössbauerovské spektrum měřené při pokojové teplotě z nedopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> referenčního vzorku (1. série, teplota zpracování 1100 °C). Hodnoty hyperjemných parametrů vyhodnocené z tohoto spektra jsou uvedeny v tab. 4. Spektrum bylo fitováno pomocí 5 magneticky odlišných komponent, 1 sextetu odpovídající  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and 4 sextetů patřící  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. V rámci sestaveného fyzikálně-chemického modelu nebyla žádná spektrální komponenta identifikována jako  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>, což znamená, že její přítomnost ve vzorku je pod detekčním limitem (~ 2 % spektrální plochy) Mössbauerovy spektroskopie a stejně tak u XRD. U tohoto nedopovaného vzorku  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> se navíc uplatnila ve fitu i další komponenta, singlet, odpovídající výskytu velmi malých nanočástic  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> a/nebo  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s relaxačními časy jejich superspinů, které jsou velmi podobné nebo o něco rychlejší než doba života jádra <sup>57</sup>Fe v excitovaném stavu. Jeho široký profil naznačuje široké rozdělení relaxačních časů superspinů patřících malým nanočásticím  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> a/nebo  $\varepsilon$ -

Fe<sub>2</sub>O<sub>3</sub>, jak se očekávalo již z širokého rozdělení velikostní distribuce. Při vyhodnocování byly použity obecně používané fyzikálně-chemické modely pro  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, které byly vhodně upraveny [25], [258]. Vzhled mössbauerovského spektrálního profilu  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> odpovídá jeho krystalové struktuře, kdy každý sextet odpovídá určitým krystalografickým pozicím  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. V dalších kapitolách budou porovnávána spektra dopovaných vzorků s tímto referenčním vzorkem, kvůli objasnění preference substituce jednotlivých dopací, tedy atomů Sc a Ga.

### 3.5. Charakterizace Ga-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systému

V této části byly pro přípravu dopovaných vzorků  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> (x = 0,02; 0,1; 0,2;0,3 a 0,4) využity znalosti získáné z předchozí kapitoly, tedy znalosti získané z přípravy nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémů. Nejoptimálnějších podmínek pro získání nejvyššího obsahu  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze bylo dosaženo pro vzorek s koncentrací 25 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> a teplotou zpracování 1 100 °C. Tato teplota byla využita pro přípravu všech dopovaných systémů a opět byly připraveny 3 série s rozdílnou hmotnostní koncentrací. Konrétně byly připraveny 3 série s koncentracemi 25, 35 a 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. V této kapitole bude dále studován vliv dopace na strukturní a fyzikální vlastnosti  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze.

## 3.5.1. Chemická, strukturní a morfologická charakterizace



**Obrázek 27.** Celkové množství jednotlivých fází oxidu železitého série vzorků  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0,02; 0,1; 0,2; 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici s hmotnostní koncentrací (a) 25 hmot. %, (b) 35 hmot. % a (c) 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Obrázek 27 znázorňuje celkové množství jednotlivých fází oxidu železitého, stanovené z kvantifikace XRD záznamů, odpovídající 3 sériím (25, 35 a 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>) dopovaných  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorků. V rámci každé sériie bylo připraveno 5 vzorků s koncentrací Ga (1, 5, 10, 15 a 20 at. %, tedy *x* = 0,02; 0,1; 0,2; 0,3 a 0,4). U 1. série, tedy 25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>, je ve všech vzorcích zastoupena pouze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze bez přítomnosti ostatních fází, které by byly detekovatelné pomocí XRD. U 2. a 3. série (35 a 45 hmot. %) se se zvyšující koncentrací atomů Ga zvyšuje i obsah  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze až do maximálního možného množství, tedy 100 %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze. Při porovnání s nedopovanými  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy lze říct, že substitucí atomů Ga do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> bylo dosaženo zastabilizování této fáze a získání čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, bez přítomnosti ostatních fází


**Obrázek 28.** Reprezentativní XRD spektra 1. série dopovaných  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorků ( $x = 0,02; 0,1; 0,2; 0,3 a 0,4, tj. 1, 5, 10, 15 a 20 at. % Ga) zabudovaných v SiO<sub>2</sub> matrici s hmotnostní koncentrací 25 hmot. % <math>\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Nejvyššího maximálního obsahu ε-Fe<sub>2</sub>O<sub>3</sub> fáze bylo dosaženo pro většinu vzorků a v 1. sérii (25 hmot. % ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>) dokonce pro všechny vzorky s rozdílnou koncentrací dopace atomy Ga, jak je možné vidět i na reprezantativním snímku z XRD pro tuto sérii (viz obr. 28). Všechna spektra obsahují difrakční píky odpovídající ε-Fe<sub>2</sub>O<sub>3</sub> fázi a také typický oblouk v přední části spektra představující amorfní křemíkovou matrici. Jsou-li ve vzorku obsaženy i jiné fáze oxidu železitého, pak jsou v tomto vzorku obsaženy v tak malém množství, že se nachází pod detekčním limitem XRD techniky. Proto jsou použity i další techniky pro detailnější fyzikálně-chemickou charakterizaci.



**Obrázek 29.** (a) TEM snímek z vybraného vzorku  $\varepsilon$ -Ga<sub>0.4</sub>Fe<sub>1.6</sub>O<sub>3</sub> (20 at. % Ga) nanočástic zabudovaných v matrici SiO<sub>2</sub> (teplota zpracování = 1 100 °C, 1. série 25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>). (b) Velikostní distribuce částic odvozená ze statistické analýzy reprezentativního TEM snímku vzorku  $\varepsilon$ -Ga<sub>0.4</sub>Fe<sub>1.6</sub>O<sub>3</sub> s fitováním pomocí log-normální křivky rozdělení pravděpodobnosti.

TEM snímek (viz obr. 29 (a)) ilustrativního ε-Ga<sub>0.4</sub>Fe<sub>1.6</sub>O<sub>3</sub> (20 at. % Ga) vzorku znázorňuje téměř sférické nanočástice zabudované v matrici oxidu křemičitého. TEM snímky byly pořízeny pro všechny připravené vzorky, přičemž pro všechny vzorky byly typické sférické částice zabudované v křemíkové matrici, proto jsou zde ukázány výsledky z TEM a velikostní distribuce pouze jednoho ilustrativního, náhodně zvoleného vzorku. Velikostní distribuce (viz obr. 29 (b)) byla získána z TEM snímků s použitím programu ImageJ fitováním pomocí log-normální křivky rozdělení pravděpodobnosti. Velikostní distribuce byla vyhodnocena pro všechny vzorky obdobným způsobem a výsledkem je informace o průměrné velikosti nanočástic (viz obr. 30).



**Obrázek 30.** Průměrná velikost nanočástic ve vzorcích  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0,02; 0,1; 0,2; 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici s hmotnostní koncentrací (a) 25 hmot. %, (b) 35 hmot. % a (c) 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Průměrná velikost nanočástic pro vzorky z 1.série i s jejich standardní odchylkou je 11,2  $\pm$  0,2; 12,3  $\pm$  0,2; 14,5  $\pm$  0,2; 15,0  $\pm$  0,2 a 14,7  $\pm$  0,3 nm, odpovídající vzorkům s rostoucí atomární koncentrací Ga, tj. 1, 5, 10, 15 a 20 at. %. Pro vzorky z 2. série je průměrná velikost nanočástic 19,5  $\pm$  0,4; 17,6  $\pm$  0,2; 18,8  $\pm$  0,3; 18,1  $\pm$  0,3 a 17,5  $\pm$  0,5 nm, odpovídající vzorkům s rostoucí atomární koncentrací Ga, tedy v pořadí 1, 5, 10, 15 a 20 at. %. Průměrná velikost nanočástic pro vzorky z 3. série je pak 21,8  $\pm$  0,9; 17,4  $\pm$  0,6; 19,6  $\pm$  0,8; 16,8  $\pm$  0,3; 19,7  $\pm$  0,9 nm pro vzorky s rostoucí atomární koncentrací Ga od 1, 5, 10, 15 do 20 at. %. Jak je vidět, u 1. série, s nejnižší hmotnostní koncentrací, nepřesahuje průměrná velikost nanočástic okolo 18 nm (35 hmot.%) a 19 nm (45 hmot. %). Dá se tedy usuzovat, že s vyšší hmotnostní koncentrací ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> roste i průměrná velikost připravených nanočástic.

U nedopovaných vzorků byl pozorovatelný totožný trend, kdy v 1. sérii byla průměrná velikost nanočástic menší než u 2. série a v 2. sérii byla průměrná velikost částic menší než ve 3. sérii. Nicméně průměrné velikosti nanočástic v jednotlivých sériích pro nedopované vzorky byly 9, 10 a 13 nm, což je znatelně menší než u dopovaných systémů. Dá se tedy usuzovat, že zabudování Ga<sup>3+</sup> iontů do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je termodynamicky výhodné a nanočástice  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> pak mohou existovat ve větší velikosti.

Jak už bylo zmíněno v předchozí kapitole,  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje ortorhombickou krystalovou strukturu s prostorovou grupou *Pna*2<sub>1</sub> a mřížkovými parametry a = 5,072 Å; b = 8,736 Å; c = 9,418 Å a  $\alpha = \beta = \gamma = 90^{\circ}$  [88]. Mřížkové parametry Ga-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> získané z XRD měření pro vzorky z 1. série jsou a = 5,098; 5,096; 5,096; 5,094; 5,093 Å, b

= 8,803; 8,802; 8,795; 8,793; 8,789 Å, c = 9,474; 9,468; 9,456; 9,449; 9,438 Å, odpovídající vždy vzorkům s rostoucí atomární koncentrací Ga od 1, 5, 10, 15 do 20 at. %. Pro vzorky z 2. série jsou mřížkové parametry a = 5,101; 5,098; 5,098; 5,096; 5,095 Å, b = 8,801; 8,797; 8,791; 8,788; 8,785 Å; c = 9,471; 9,462; 9,455; 9,447; 9,438 Å, odpovídající vzorkům rostoucí atomární koncentrací Ga od 1, 5, 10, 15 do 20 at. %. Pro vzorky ze 3. série jsou mřížkové parametry a = 5,101; 5,099; 5,098; 5,096 Å; b = 8,794; 8,795; 8,787; 8,784; 8,778 Å; c = 9,470; 9,462; 9,453; 9,444; 9,436 Å, odpovídající vždy vzorkům s rostoucí atomární koncentrací Ga od 1, 5, 10, 15 do 20 at. %.

Pro snažší porovnání jsou mřížkové parametry z předchozí kapitoly uvedeny i zde, a tedy mřížkové parametry pro nedopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorek z 1. série (25 hmot. %) s teplotou zpracování 1 100 °C jsou a = 5,098 Å; b = 8,808 Å; c = 9,476 Å. Pro nedopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorek z 2. série (35 hmot. %) s teplotou zpracování 1 100 °C jsou mřížkové parametry rovny a = 5,100 Å; b = 8,796 Å; c = 9,472 Å. Pro nedopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorek z 3. série (45 hmot. %) s teplotou zpracování 1 100 °C jsou mřížkové parametry a = 5,101 Å; b = 8,796 Å; c = 9,472 Å.

Porovnají-li se mřížkové parametry Ga-dopovaných systémů s mřížkovými parametry pro nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy odpovídající stejné teplotě zpracování (1 100 °C), tak z pozorovatelných změn mřížkových parametrů pro nedopované a Ga-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy lze říct, že atomy Ga byly zabudovány do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Jedná se hlavně o změny v mřížkových parametrech *b* a *c*, které u Ga-dopaných vzorků s rostoucí atomární koncentrací Ga klesají. Nicméně, změny v mřížkových parametrech dopovaného a nedopovaného systému nejsou příliš výrazné vzhledem k podobným iontovým poloměrům Fe<sup>3+</sup> a Ga<sup>3+</sup> kationtů v oktaedrálních pozicích. Iontový poloměr Ga<sup>3+</sup> je 62 pm [259]. Dá se usuzovat, že zabudování Ga<sup>3+</sup> iontů do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je termodynamicky výhodné a nanočástice  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> navíc mohou existovat ve větší velikosti, jak bylo potvrzeno z výsledků velikostní distribuce.

Pro pochopení vlivu dopace Ga na fyzikální vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub>, zejména pak na preferenci pozice v krystalové struktuře ε-Fe<sub>2</sub>O<sub>3</sub>, do které atomy Ga přednostně substituují a výsledné změny v magnetických vlastnostech, byly vzorky dále charakterizovány pomocí Mössbauerovy spektroskopie a pomocí magnetizačních měření (viz následující kapitola).

# 3.5.2. Magnetické vlastnosti a mössbauerovská studie



**Obrázek 31.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1 000 a (c) 10 000 Oe pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Za účelem objasnění vlivu dopace Ga na magnetické vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub> systému, byly změřeny ZFC/FC teplotní křivky a hysterezní smyčky pro všechny Ga-dopované systémy (viz obr. 31, 32, 33).

U Ga-dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> vzorků dochází k výrazné změně u magnetizačních ZFC/FC křivek. Došlo k vymizení obou magnetických přechodů pro křivky ZFC i FC u všech aplikovaných vnějších magnetických polí i všech hmotnostních koncentrací.

Magnetizační křivky ZFC/FC měřené ve vnějším magnetickém poli 100 a 1 000 Oe se od sebe odchylují, a to nejen v oblasti nízkých teplot, ale pro větší koncentrace dopace Ga se křivky ZFC i FC od sebe odchylují v celém teplotním intervalu. To potvrzuje přítomnost velmi malých ε-Fe<sub>2</sub>O<sub>3</sub> a/nebo γ-Fe<sub>2</sub>O<sub>3</sub> nanočástic se superparamagnetickým/magnetickyblokovaným chováním. Jejich odezva, typicky výraznější při větších aplikovaných vnějších magnetických polích v důsledku polem ovlivnitelného blokování superspinu nanočástic [20], je mnohem více zřetelná na magnetizačních křivkách ZFC/FC při aplikovaném magnetickém poli 10 000 Oe, kdy se průběhy jednotlivých křivek výrazně odchylují.



**Obrázek 32.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1 000 a (c) 10 000 Oe pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 35 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Zajímavé je, že u Ga-dopovaných systémů dochází k potlačení magnetického přechodu, ke kterému dochází v nedopovaných systémech ε-Fe<sub>2</sub>O<sub>3</sub> a je pozorován monotónní nárůst magnetizace se snižující se teplotou, a to téměř bez anomálií, s vyjímkou dopace 1 at. % Ga.

Kromě toho nanosystémy  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> substituované Ga<sup>3+</sup> nevykazují žádné magnetické měkčení pod ~ 150 K (-123,15 °C), ale s klesající teplotou se magneticky vytvrzují, což dokazují zvýšené hodnoty koercivity při 5 K ve srovnání s hodnotami pozorovanými při 300 K. Substituce Ga<sup>3+</sup> zabraňuje kolapsu koercitivity a magnetickému měknutí  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze při nízkých teplotách.



**Obrázek 33.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole (a) 100, (b) 1 000 a (c) 10 000 Oe pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

Dále bylo zjištěno, že rozdíl mezi hodnotami koercitivního pole při 5 a 300 K se zvětšuje s rostoucí mírou substituce iontů Ga<sup>3+</sup>. To naznačuje, že míra substituce Ga<sup>3+</sup> řídí stupeň magnetického vytvrzení nanosystémů ε-Fe<sub>2</sub>O<sub>3</sub> dopovaných Ga<sup>3+</sup> při nízkých teplotách.



**Obrázek 34.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, *x* = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercitivity a remanence.

Konkrétně hodnoty saturační magnetizace pro 1. sérii jsou 5,4; 6,8; 9,0; 10,7 a 11,2 emu/g ( $\pm$  0,1 Oe, pro 5 K), dále 4,7; 4,4; 6,1; 5,9 a 5,4 emu/g (pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %. Hodnoty remanentní magnetizace pro 1. sérii jsou 2,3; 3,0; 4,3; 4,9 a 5,0 emu/g ( $\pm$  0,1 Oe, pro 5 K), 1,3; 1,9; 2,89; 2,7; 1,1 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %. Koercitivní pole dosahuje hodnot 3 742, 1 760, 8 261, 6 990, 4 588 ( $\pm$  10 Oe, pro 5 K), hodnot 1 024, 8 370, 9 105, 6 538, 936 Oe ( $\pm$  10 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. % (viz obr. 34).



**Obrázek 35.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 35 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercitivity a remanence.

Pro 2. sérii (viz obr. 35) dosahuje saturační magnetizace hodnot 6,7; 7,4; 12,9; 15,7; 17,0 emu/g ( $\pm$  0,1 Oe, pro 5 K), 4,9; 5,3; 8,1; 8,6 a 8,6 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %. Hodnoty remanentní magnetizace jsou 3,2; 4,0; 6,8; 8,2; 8,9 emu/g ( $\pm$  0,1 Oe, pro 5 K), 2,4; 2,8; 4,1; 4,3; 4,1 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %. Koercitivní pole pak nabývá hodnot 10 197, 15 348, 16 035, 14 410, 13 417 Oe ( $\pm$  10 Oe, pro 5 K), 18 505, 15 667, 13 239, 9 875, 7 469 Oe ( $\pm$  10 Oe, pro 300 K).



**Obrázek 36.** Hysterezní smyčky měřené při teplotě (a) 5 a (b) 300 K pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0,02; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercitivity a remanence.

Saturační magnetizace pro 3. sérii (viz obr. 36) nabývá hodnot 7,3; 9,3; 17,4; 20,8; 23,0 emu/g ( $\pm$  0,1 Oe, pro 5 K), 5,9; 6,5; 10,6; 12,3; 11,2 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %. Hodnoty remanentní magnetizace pro 3. sérii dosahují hodnot 3,3; 4,9; 8,7; 10,5; 11,6 emu/g ( $\pm$  0,1 Oe, pro 5 K), 3,0; 3,3; 5,0; 5,7; 5,3 emu/g ( $\pm$  0,1 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %. Koercitivní pole nabývá hodnot 9 939, 15 491, 15 079, 13 399, 12 624 Oe ( $\pm$  10 Oe, pro 5 K), 21 342, 16 678, 13 214, 9 838, 7 614 Oe ( $\pm$  10 Oe, pro 300 K), odpovídající rostoucí atomární koncentraci Ga od 1, 5, 10, 15 do 20 at. %.

Přehlednější schéma závislostí hodnot saturační magnetizace, remanentní magnetizace a koercitivního pole je znázorněno na obr. 37.



**Obrázek 37.** (a) Saturační magnetitazace, (b) remanentní magnetizace a (c) koercitivní pole pro pro dopované  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ga (1, 5, 10, 15, 20 at. %, x = 0.02; 0,1; 0,2; 0,3 a 0,4), všechny 3 série s hmotnostními koncentracemi 25, 35 a 45 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, pro teplotu 5 i 300 K.

K objasnění vlivu dopace Ga<sup>3+</sup> do ε-Fe<sub>2</sub>O<sub>3</sub> krystalové struktury můžeme srovnat hodnoty Ga-dopovaných systémů s nedopovanými ε-Fe<sub>2</sub>O<sub>3</sub> systémy se stejnou teplotou zpracování, která byla použita pro přípravu dopovaných vzorků, tedy 1 100 °C. Z předchozí kapitoly je známo, že saturační magnetizace pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy s teplotou zpracování 1 100 °C dosahovala hodnot 5,1; 6,5; 5,0 (25, 35 a 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>,  $\pm$ 0,1 Oe, pro 5 K) a 4,4; 5,3 a 4,2 emu/g (25, 35 a 45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>,  $\pm$  0,1 Oe, pro 300 K). Celkově se tedy saturační magnetizace pohybovala mezi hodnotami 4,2 a 6,5 emu/g. V podobném rozmezí, konkrétně od 4,7 do 7,3 emu/g ( $\pm$  0,1 Oe), se pohybují i hodnoty saturační magnetizace s koncentrací Ga 1 at. %, což se nejvíce přibližuje nedopovaným systémům a tomu odpovídají i velmi podobné hodnoty *M*<sub>S</sub>. S rostoucí koncentrací Ga však narůstá i hodnota *M*<sub>S</sub>. Dopací atomy Ga lze dosáhnout i vyšších hodnot remanentní magnetizace *M*<sub>r</sub>, ve srovnání s nedopovanými vzorky odpovídající stejné teplotě zpracování.

Jednou z nejzásadnějších vlastností dopovaní  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> struktury Ga atomy je zvýšení krystalové stability, což má za následek vznik termodynamicky stabilní fáze  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>, která se liší od metastabilní fáze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Další, ne méně významnou vlasností Ga-dopovaných systémů je růst hodnot magnetizace při 5 i 300 K.



**Obrázek 38.** <sup>57</sup>Fe Mössbauerovská spektra (a) nedopovaného a (b) Ga-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> (10 at. % Ga, ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>) vzorku z 1. série (25 hmot. % ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                         | Polymorf<br>Fe <sub>2</sub> O <sub>3</sub> |            | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA         |                        |
|------------------------------------------------|--------------------------------------------|------------|--------------|------------------|------------------|------------|------------------------|
|                                                |                                            | Komponenta | 0,01         | 0,01             | 0,3              | <u>+</u> 1 | Přiřazení              |
|                                                |                                            |            | (mm/s)       | (mm/s)           | (T)              | (%)        |                        |
| Nedopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub>           | Sextet 1   | 0,38         | -0,25            | 45,0             | 23         | Fe <sub>A</sub> pozice |
|                                                |                                            | Sextet 2   | 0,36         | -0,25            | 43,9             | 11         | Fe <sub>B</sub> pozice |
|                                                |                                            | Sextet 3   | 0,38         | -0,02            | 38,9             | 25         | Fe <sub>C</sub> pozice |
|                                                |                                            | Sextet 4   | 0,21         | -0,16            | 25,8             | 18         | Fe <sub>D</sub> pozice |
|                                                | α-Fe <sub>2</sub> O <sub>3</sub>           | Sextet 5   | 0,37         | -0,21            | 51,8             | 2          | Fe pozice              |

|                                  | ε-Fe <sub>2</sub> O <sub>3</sub><br>a/nebo<br>γ-Fe <sub>2</sub> O <sub>3</sub> | Singlet 1 | 0,40 |       |      | 21 | Relaxační<br>komponenta |
|----------------------------------|--------------------------------------------------------------------------------|-----------|------|-------|------|----|-------------------------|
| Ga-                              | ε-Fe <sub>2</sub> O <sub>3</sub>                                               | Sextet 1  | 0,39 | -0,31 | 41,4 | 22 | Fe <sub>A</sub> pozice  |
| dopovaný                         | -                                                                              | Sextet 2  | 0,37 | -0,24 | 43,7 | 28 | Fe <sub>B</sub> pozice  |
| ε-Fe <sub>2</sub> O <sub>3</sub> | -                                                                              | Sextet 3  | 0,34 | -0,02 | 36,5 | 39 | Fe <sub>C</sub> pozice  |
| (10 at.%                         | -                                                                              | Sextet 4  | 0,28 | -0,16 | 23,6 | 11 | Fe <sub>D</sub> pozice  |
| Ga)                              | α-Fe <sub>2</sub> O <sub>3</sub>                                               | Sextet 5  |      |       |      |    | Fe pozice               |

**Tabulka 5.** Hodnoty hyperjemných parametrů, odvozené z fitovaných <sup>57</sup>Fe mössbauerovských spekter měřených při pokojové teplotě pro nedopovaný a Ga-dopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém (10 at. % Ga,  $\varepsilon$ -Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.

K objasnění preference obsazení pozice ionty Ga<sup>3+</sup> v krystalové struktuře ε-Fe<sub>2</sub>O<sub>3</sub> byly vzorky změřeny pomocí <sup>57</sup>Fe Mössbauerovy spektroskopie. <sup>57</sup>Fe Mössbauerovská spektra při pokojové teplotě nedopovaného a Ga-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku jsou znázorněny na obr. 38 a hodnoty hyperjemných parametrů vyhodnocené z těchto spekter jsou uvedeny v tab. 5. <sup>57</sup>Fe Mössbauerovské spektrum nedopovaného vzorku bylo fitováno pomocí 5 magneticky odlišných komponent, tedy 1 sextetu odpovídající  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and 4 sextetů patřící ε-Fe<sub>2</sub>O<sub>3</sub>. Ga-dopovaný vzorek byl fitován obdobně, tedy pomocí 4 sextetů patřící ε-Fe<sub>2</sub>O<sub>3</sub>, ovšem ve vzorku se nevyskytovala  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> fáze, proto v tomto fitu není sextet odpovídající této fázi. V rámci sestaveného fyzikálně-chemického modelu nebyla žádná spektrální komponenta identifikována jako γ-Fe<sub>2</sub>O<sub>3</sub>, což znamená, že její přítomnost ve vzorku je pod detekčním limitem (~ 2 % spektrální plochy) Mössbauerovy spektroskopie a stejně tak u XRD. Jak již bylo zmíněno v předchozí kapitole, u nedopovaného vzorku ε-Fe<sub>2</sub>O<sub>3</sub> se ve fitu uplatnila i další komponenta, doublet, odpovídající výskytu velmi malých nanočástic γ-Fe<sub>2</sub>O<sub>3</sub> a/nebo ε-Fe<sub>2</sub>O<sub>3</sub> s relaxačními časy jejich superspinů, které jsou velmi podobné nebo o něco rychlejší

než doba života jádra <sup>57</sup>Fe v excitovaném stavu. Jeho široký profil naznačuje široké rozdělení relaxačních časů superspinů patřících malým nanočásticím  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> a/nebo  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, jak se očekávalo již z širokého rozdělení velikostní distribuce. Tato spektrální komponenta již není pozorovaná u Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorku, a to pravděpodobně v důsledku užšího rozdělení velikostní distribuce velmi malých částic  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> a/nebo  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic a tím tedy i užšího rozdělení relaxačních časů superspinů, jak již bylo vyvozeno z analýzy magnetizačních měření. Při vyhodnocování byly použity obecně používané fyzikálně-chemické modely pro  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, které byly vhodně upraveny [25], [258]. Vzhled mössbauerovského spektrálního profilu  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> odpovídá jeho krystalové struktuře, kdy každý sextet odpovídá určitým krystalografickým pozicím  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

U Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému je sextet odpovídající regulárním oktaedrickým (Fe<sub>C</sub>) pozicím intenzivnější, než sextety odpovídající tetraedrickým (Fe<sub>D</sub>) a oběma distortovaných oktaedrickým pozicím (Fe<sub>A</sub> a Fe<sub>B</sub>). Ionty Ga<sup>3+</sup> tedy převážně obsazují tetraedrické D pozice, případně distortované oktaedrické pozice A a B.

Jelikož je výsledná saturační magnetizace Ga-dopovaného systému vyšší, než nedopovaného sytému, dá se předpokládat, že Ga<sup>3+</sup> ionty přednostně obsazují tetraedrické D-pozice a distortované oktaedrické A-pozice. Zajímavé je, že v rámci experimentální chyby Mössbauerovy spektroskopie, jsou spektrální plochy sextetu Fe<sub>A</sub> a Fe<sub>B</sub> identické, což naznačuje, že ionty Ga<sup>3+</sup> obsazují tato místa se stejnou pravděpodobností. Jelikož magnetické momenty iontů Fe<sup>3+</sup> na distortovaných oktaedrických pozicích A jsou orientovány antiparalelně k magnetickým momentům iontů Fe<sup>3+</sup> na distortovaných oktaedrických pozicích B, rovnoměrná substituce pak nemá vliv na výsledný magnetický moment struktury. Z tohoto důvodu, se příspěvky k magnetizaci od A- a B-pozic vzájemně ruší a celková magnetizace Ga-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> (10 at. % Ga, 1. série) je dána magnetizací pocházející od tetraedrických D-pozic, které jsou přednostně obsazovány. V příloze A jsou pak vyhodnoceny <sup>57</sup>Fe mössbauerovská spektra ostatních připravených Ga-dopovaných systémů.

# 3.6. Charakterizace Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systému

Pomocí sol-gel metody byla připravena série vzorků  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4) nanočástic zabudovaných do křemíkové matrice s obsahem  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vůči SiO<sub>2</sub> matrici 25 hmot. %. Jednotlivé vzorky se mezi sebou lišily v množství dopace skandiem (Sc), tedy v atomární koncentraci Sc (0, 1, 5, 10, 15, and 20 at. %, tj., x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4). Tepelné zpracování probíhalo u všech vzorků při teplotě 1100 °C. Primárním cílem dopace bylo zastabilizování čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze a získání informací o tom, jak dopace ovlivní výsledné strukturní a magnetické vlastnosti dopovaných systémů, oproti vlastnostem nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze.



### 3.6.1. Chemická, strukturní a morfologická charakterizace

**Obrázek 39.** (a) XRD spektra série vzorků  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici. (b) Celkové množství jednotlivých fází oxidu železa a (c) průměrná velikost nanočástic ve vzorcích  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> (x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4).

Obrázek 39 znázorňuje XRD spektra odpovídající  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> vzorkům s rozdílným obsahem Sc. Všechna spektra obsahují difrakční píky odpovídající fázi  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a fázi  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nebo  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>. U všech spekter je také viditelný typický oblouk představující amorfní křemíkovou matrici. Podle výsledků z XRD, vzorek s obsahem 5 at. % skandia se

skládá pouze z ε-Fe<sub>2</sub>O<sub>3</sub>, přičemž ostatní fáze oxidu železitého jsou v tomto vzorku obsaženy v tak malém množství, že se nachází pod detekčním limitem XRD techniky. Pro pochopení vlivu dopace skandiem na fyzikální vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub>, zejména pak na preferenci pozice v krystalové struktuře ε-Fe<sub>2</sub>O<sub>3</sub>, do které atomy Sc přednostně substituují a výsledné změny v magnetických vlastnostech, byl právě vzorek s koncentrací 5 at. % Sc vybrán pro detailnější fyzikálně-chemickou charakterizaci. U vzorků s obsahem Sc do 15 at. % byla vždy jako majoritní fáze ε-Fe<sub>2</sub>O<sub>3</sub> a α-Fe<sub>2</sub>O<sub>3</sub> fáze byla minoritní. U vzorku s obsahem 20 at. % Sc pak byla opět jako majoritní ε-Fe<sub>2</sub>O<sub>3</sub> fáze, ovšem jako minoritní byla β-Fe<sub>2</sub>O<sub>3</sub> fáze.

Jak již bylo zmíněno výše,  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje ortorhombickou krystalovou strukturu s prostorovou grupou *Pna*2<sub>1</sub> a mřížkovými parametry a = 5,072 Å; b = 8,736 Å; c = 9,418 Å a  $\alpha = \beta = \gamma = 90^{\circ}$  [88]. Mřížkové parametry nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> získané z XRD měření byly a = 5,098 Å; b = 8,808 Å; c = 9,476 Å. Mřížkové parametry Sc-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (tj.,  $\varepsilon$ -Sc<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>3</sub>, 5 at. % Sc) vyhodnocené pomocí XRD měření byly a = 5,114 Å; b = 8,811 Å; c = 9,501 Å.

Změna mřížkových parametrů pro nedopovaný a Sc-dopovaný  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém potvrzuje, že atomy Sc byly zabudovány do krystalové struktury  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Změny v mřížkových parametrech dopovaného a nedopovaného systému však nejsou příliš výrazné vzhledem k podobným iontovým poloměrům Fe<sup>3+</sup> a Sc<sup>3+</sup> kationů v oktaedrických pozicích.



**Obrázek 40.** (a) TEM snímek z vybraného vzorku  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>, zabudovaného v matrici SiO<sub>2</sub> (teplota zpracování = 1 100 °C). (b) Velikostní distribuce částic odvozená ze statistické analýzy reprezentativního TEM snímku vzorku  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> s fitováním pomocí lognormální křivky rozdělení pravděpodobnosti. (c) Snímek TEM nedopovaného vzorku  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, zabudovaného v SiO<sub>2</sub> matrici (teplota zpracování = 1 100 °C). (d) Velikostní distribuce částic odvozená ze statistické analýzy odpovídajících TEM snímků vzorku  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s fitováním pomocí Gaussovy křivky pravděpodobnostního rozdělení.

TEM snímky (viz obr. 40 (a) a 40 (c)) ze vzorků  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> a nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (referenční vzorek, viz výše) ilustrují téměř sférické částice zabudované v matrici oxidu křemičitého. Velikostní distribuce vzorku  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> (viz obr. 40 (b)) byla získána z TEM snímků s použitím programu ImageJ s log-normálním fitováním. Velikostní distribuce byla vyhodnocena také pro vzorek nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze (viz obr. 40 (d)), kde bylo využito pro fitování Gaussovské pravděpodobnostní rozdělení. Průměrná velikost nanočástic  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> systému byla přibližně 16,5 nm se standardní odchylkou 0,2 nm. Průměrná

velikost nanočástic nedopovaného  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému byla 14,3 nm se standardní odchylkou 0,3 nm.

Dá se tedy usuzovat, že zabudování  $Sc^{3+}$  iontů do krystalové struktury  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> je termodynamicky výhodné a nanočástice  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> pak mohou existovat ve větší velikosti. Přítomnost  $Sc^{3+}$  iontů pravděpodobně mění stabilizační energii  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, která je dána hlavně Gibbsovou volnou energií. Elementární mapy pořízené pomocí HR-TEM mikroskopu (viz obr. 41) potvrzují rozložení atomů Sc v krystalové mřížce nanočástic oxidu železitého zabudovaných v křemíkové matrici.



**Obrázek 41.** HRTEM snímek ε-Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> a odpovídající prvkové mapy Sc, Si, O a Fe.



3.6.2. Magnetické vlastnosti a mössbauerovská studie

**Obrázek 42.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole 100, 1 000 a 10 000 Oe pro (a) nedopovaný a (b) Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek. Hysterezní smyčky měřené při teplotě 5 a 300 K pro (c) nedopovaný a (d) Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

Za účelem objasnění vlivu dopace skandiem na magnetické vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub> systému, byly změřeny ZFC/FC teplotní křivky a hysterezní smyčky, jak pro Sc-dopovaný, tak pro nedopovaný vzorek (vzorek z 1. série, 25 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, teplota zpracování 1 100 °C). Výsledky jsou znázorněny na obr. 42. Jak je zřetelně vidět z výsledků měření pro nedopovanou fázi (viz obr. 42 (a)), u obou magnetizačních ZFC i FC křivek měřených ve vnějších magnetických polích 100 a 1000 Oe, jsou pozorovány dva výrazné skoky, jeden okolo ~100 K (-173,15 °C) a druhý okolo ~140 K (-133,15 °C). Tyto skoky jsou projevem širokého magnetického přechodu typického pro  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, který značí přechod z kolineárního ferimagnetického stavu do stavu s vlastnostmi nesouměřitelné magnetické struktury. Magnetizační křivky ZFC/FC se od sebe odchylují, což predikuje přítomnost velmi malých částic se superparamagnetickými/magneticky blokovanými vlastnostmi. Jejich původ by mohl pocházet od velmi malých nanočástic  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> s velikostí menší, než je právě limitní velikost pro superparamagnetické chování, tedy s velikostí zhruba 7,5 nm, jak je vidět z velikostní distribuce odvozené z TEM obrázků nebo od  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, jejichž množství ve vzorku je tak malé, že se nachází pod detekčním limitem XRD měření a <sup>57</sup>Fe Mössbauerovy spektroskopie (viz výše a níže).

Ve vnějším magnetickém poli 10 000 Oe, u nízkoteplotního magnetického průběhu ZFC křivky, je oddělení magnetizačních křivek výraznější, což je typické pro systémy se superparamagnetickým chováním (s odpovídající blokovací teplotou někde v teplotním intervalu od ~ 100 K (-133,15 °C) do ~ 147 K (-126,15 °C)).

U Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorku dochází k výrazné změně u magnetizačních ZFC/FC křivek (viz obr. 42 (b)). Obě křivky ZFC i FC u všech aplikovaných vnějších magnetických polí vykazují pouze jedno maximum, které odpovídá nástupu magnetického přechodu při ochlazování. Zejména ve vnějším magnetickém poli 100 a 1 000 Oe začíná magnetický přechod při ~ 160 K (-113,15 °C) a končí při ~ 120 K (-153,15 °C). Ve srovnání s nedopovaným  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémem, Sc<sup>3+</sup> substituce způsobuje zúžení oblasti magnetického přechodu a posunutí jeho začátku k vyšší teplotě, asi o 20 K. Analogické chování bylo pozorováno i u dopace In<sup>3+</sup> kationty [102]. Magnetizační křivky ZFC/FC měřené ve vnějších magnetických polích 100 a 1000 Oe, se od sebe odchylují podobně, jako tomu bylo u křivek pro nedopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorek, což opět potvrzuje přítomnost velmi malých  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a/nebo  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic se superparamagnetickým/magneticky blokovaným chováním. Jejich odezva, typicky výraznější při větších aplikovaných vnějších magnetických polích v důsledku polem ovlivnitelného blokování superspinu nanočástic [20], je mnohem více zřetelná na magnetizačních křivkách ZFC/FC při aplikovaném magnetickém poli 10 000 Oe, kdy se průběhy jednotlivých křivek výrazně odchylují. Nicméně nástup magnetického

přechodu při ~ 156 K (-117,15 °C) je stále pozorovatelný. Interval blokovacích teplot velmi malých  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nebo  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic je mnohem užší a ostřejší, což predikuje jejich užší velikostní rozdělení ve srovnání s velikostním rozdělením nanočástic v nedopovaném  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému. Předpokládá se tak, že průměrná blokovací teplota těchto nanočástic by se mohla pohybovat někde mezi 140 a 160 K (-133,15 a -113,15 °C).

Hysterezní smyčky změřené při 5 a 300 K pro oba studované systémy vykazují schodovitý průběh, nikoli hladký (viz obr. 42 (a) a (b)). Takové chování může být zapříčiněno (i) kombinací tvrdých a měkkých magnetických fází, resp. kombinací fází s vyšší a nižší koercitivitou nebo (ii) koexistencí superparamagnetické a jednodoménové fáze s nulovou koercitivitou a náhlou změnou hodnot magnetizace okolo nulového aplikovaného vnějšího magnetického pole nebo (iii) superpozicí jedno a více-doménových fází s vysokou, respektive nízkou koercitivitou [254]. V případě nedopovaného a Sc-dopovaného ɛ-Fe<sub>2</sub>O<sub>3</sub> systému, pozorovaný profil odráží přítomnost tvrdé a měkké (nebo superparamagnetické) fáze, přičemž první (s mnohem vyšší koercitivitou) pochází od nanočástic E-Fe2O3 v jednodoménovém stavu a s velikostí větší, než je limitní velikost superparamegnetismu a druhá (s velmi malou nebo nulovou koercitivitou) pochází od ε-Fe<sub>2</sub>O<sub>3</sub> nebo γ-Fe<sub>2</sub>O<sub>3</sub> nanočástic, které se chovají magneticky blokovaně (při 5 K) a superparamagneticky (při 300 K). Tento předpoklad je v souladu s výsledky vyplývajícími z ZFC/FC magnetizačních měření. U Sc-dopovaného vzorku je zúžení izotermické hysterezní smyčky při 5 K těsně kolem nulové hodnoty intenzity magnetického pole, což svědčí o úzké velikostní distribuci měkké magnetické fáze, jak již bylo vyvozeno z analýzy odpovídajících ZFC/FC profilů magnetizace při 10 000 Oe. Po zavedení  $Sc^{3+}$  do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> se hodnoty koercitivity snížily. Konkrétně, při 300 K se koercitivita snížila z 16 495 Oe (± 10 Oe, nedopovaný ɛ-Fe<sub>2</sub>O<sub>3</sub>) na 11 068 Oe (Sc-dopovaný ɛ-Fe<sub>2</sub>O<sub>3</sub>; viz obr. 42 (c), 42 (d)). Pokles koercitivity po substituci Sc<sup>3+</sup> byl také pozorován při 5 K, a to z hodnoty 4 886 Oe na hodnotu 3 470 Oe ( $\pm$  10 Oe, viz obr. 42 (c), 42 (d)). Dopací Sc<sup>3+</sup> do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> se magnetokrystalová anizotropie, která primárně řídí koercitivitu, výrazně snižuje. Podobný efekt byl pozorován i po substituci Sc<sup>3+</sup> iontů do (M-typu) barium feritu a byl vysvětlen z hlediska preference obsazení trigonálních bipyramidálních pozic, které se v těchto systémech nejvíce podílejí na anizotropii pole [260]. V našem případě se zdá, že dopování ionty Sc3+ pravděpodobně mění distorze v oktaedrických pozicích krystalové struktury εFe<sub>2</sub>O<sub>3</sub>, které spolu s dalšími parametry hrají významnou roli při ovlivňování anizotropie pole, a tedy i magnetokrystalové anizotropie. Zajímavé je, že maximální magnetizace při 50 kOe je pro 5 K i 300 K pro Sc-dopovaný i pro nedopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorek velmi podobná. Konkrétně při 5 K dosahuje hodnoty 5,1 emu/g a 5,3 emu/g (± 0,1 Oe) pro nedopovaný a Scdopovaný systém  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a při 300 K se rovná 4,4 emu/g a 4,2 emu/g (± 0,1 Oe) pro nedopovaný a Sc-dopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém. Z toho vyplývá, že (i) Sc<sup>3+</sup> ionty pravděpodobně substituují do dvou krystalografických pozic se vzájemně opačnou orientací magnetizace (magnetických momentů) a že (ii) Sc<sup>3+</sup> ionty obsazují tyto pozice téměř rovnocenně.

Remanentní magnetizace byla ovlivněna po substituci  $Sc^{3+}$  ionty. Hodnoty remanence byly 2,2 emu/g a 1,4 emu/g (± 0,1 Oe) pro nedopovaný a Sc-dopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém při 5 K a 2,3 emu/g a 1,5 emu/g (± 0,1 Oe) pro nedopovaný a Sc-dopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém při 300 K. Takovou změnu hodnot remanentní magnetizace u těchto dvou systémů lze vysvětlit především z hlediska mírně odlišného množství podílu superparamagnetických/magneticky blokovaných nanočástic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> s různou distribucí velikosti částic (viz výše). Nepředpokládá se tedy, že by ionty Sc<sup>3+</sup> substituované do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, měly výrazný vliv na magnetickou remanenci dopovaných systémů  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzhledem k jejich převážně paramagnetické odezvě.

K objasnění preference obsazení pozice ionty Sc<sup>3+</sup> v krystalové struktuře ε-Fe<sub>2</sub>O<sub>3</sub> byly vzorky změřeny pomocí <sup>57</sup>Fe Mössbauerovy spektroskopie. <sup>57</sup>Fe Mössbauerovská spektra při pokojové teplotě nedopovaného a Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku jsou znázorněny na obr. 43 a hodnoty hyperjemných parametrů vyhodnocené z těchto spekter jsou uvedeny v tab. 6. Obě <sup>57</sup>Fe mössbauerovská spektra byla fitována pomocí 5 magneticky odlišných komponent, tedy 1 sextetu odpovídající  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> a 4 sextetů patřící ε-Fe<sub>2</sub>O<sub>3</sub>. V rámci sestaveného fyzikálně-chemického modelu nebyla žádná spektrální komponenta identifikována jako γ-Fe<sub>2</sub>O<sub>3</sub>, což znamená, že její přítomnost ve vzorku je pod detekčním limitem (~ 2 % spektrální plochy) Mössbauerovy spektroskopie a stejně tak u XRD. V případě nedopovaného vzorku ε-Fe<sub>2</sub>O<sub>3</sub> se navíc uplatnila ve fitu i další komponenta – singlet, odpovídající výskytu velmi malých nanočástic γ-Fe<sub>2</sub>O<sub>3</sub> a/nebo ε-Fe<sub>2</sub>O<sub>3</sub> s relaxačními časy jejich superspinů, které jsou velmi podobné nebo o něco rychlejší než doba života jádra <sup>57</sup>Fe v excitovaném stavu. Jeho široký profil naznačuje široké rozdělení relaxačních časů superspinů patřících malým nanočásticím γ-Fe<sub>2</sub>O<sub>3</sub> a/nebo ε-Fe<sub>2</sub>O<sub>3</sub>, jak se očekávalo již z širokého rozdělení velikostní

distribuce. Tato spektrální komponenta již není pozorovaná u Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorku, a to pravděpodobně v důsledku užšího rozdělení velikostní distribuce velmi malých částic  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> a/nebo  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic a tím tedy i užšího rozdělení relaxačních časů superspinů, jak již bylo vyvozeno z analýzy magnetizačních měření. Při vyhodnocování byly použity obecně používané fyzikálně-chemické modely pro  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, které byly vhodně upraveny [25], [258]. Vzhled mössbauerovského spektrálního profilu  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> odpovídá jeho krystalové struktuře, kdy každý sextet odpovídá určitým krystalografickým pozicím  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

U Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému, jsou sextety z regulárních oktaedrických (Fe<sub>c</sub>) a tetraedrických (Fe<sub>D</sub>) pozic intenzivnější, než sextety od obou distortovaných oktaedrických pozic (Fe<sub>A</sub> a Fe<sub>B</sub>). Ionty Sc<sup>3+</sup> tedy převážně obsazují distortované oktaedrické pozice A a B. Ještě zajímavější je, že v rámci experimentální chyby Mössbauerovy spektroskopie jsou spektrální plochy sextetu Fe<sub>A</sub> a Fe<sub>B</sub> identické, což naznačuje, že ionty Sc<sup>3+</sup> obsazují tato místa se stejnou pravděpodobností. Jelikož magnetické momenty iontů Fe<sup>3+</sup> na distortovaných oktaedrických pozicích A jsou orientovány antiparalelně k magnetickým momentům iontů Fe<sup>3+</sup> na distortovaných oktaedrických pozicích B, rovnoměrná substituce pak nemá vliv na výsledný magnetický moment struktury. Z tohoto důvodu, se příspěvky k magnetizaci od A-a B-pozic vzájemně ruší a celková magnetizace Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je dána magnetizací pocházející od tetraedrických D-pozic, které nejsou ovlivněny dopováním Sc.

To dokonale odpovídá téměř nezměněným hodnotám maximální magnetizace nedopovaného a dopovaného systému  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> při 50 kOe (viz výše), a to i přes mírně odlišné množství superparamagnetických/magneticky blokovaných částic v těchto dvou vzorcích. Zde je třeba zdůraznit, že preference obsazení místa se řídí iontovým poloměrem. Protože iontový poloměr Sc<sup>3+</sup> je ~ 74,5 pm (v oktaedrické koordinaci) [81], tedy větší než u Fe<sup>3+</sup> (~ 64,5 nm), má tendenci nahradit Fe<sup>3+</sup> spíše na oktaedrických pozicích A a B. Ionty Sc<sup>3+</sup> se tedy do těchto pozic substituují snadněji, což prakticky nemění mřížkové parametry  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> krystalické mřížky, jak dokazuje XRD analýza (viz výše).



**Obrázek 43.** <sup>57</sup>Fe Mössbauerovská spektra (a) nedopovaného a (b) Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku, naměřené v nulovém magnetickém vnějším poli.

| Vzorek                           | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA         | Přiřazení              |
|----------------------------------|----------------------------------|------------|--------------|------------------|------------------|------------|------------------------|
|                                  | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | <u>+</u> 1 |                        |
|                                  |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)        |                        |
| Nedopovaný                       | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,38         | -0,25            | 45,0             | 23         | Fe <sub>A</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 2   | 0,36         | -0,25            | 43,9             | 11         | Fe <sub>B</sub> pozice |

|                                  | _                                | Sextet 3  | 0,38 | -0,02  | 38,9 | 25 | Fe <sub>C</sub> pozice |
|----------------------------------|----------------------------------|-----------|------|--------|------|----|------------------------|
|                                  |                                  | Sextet 4  | 0,21 | -0,16  | 25,8 | 18 | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5  | 0,37 | -0,21  | 51,8 | 2  | Fe pozice              |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub> | Singlet 1 | 0,40 |        |      | 21 | Relaxační              |
|                                  | a/nebo                           |           |      |        |      |    | komponenta             |
|                                  | γ-Fe <sub>2</sub> O <sub>3</sub> |           |      |        |      |    |                        |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1  | 0.37 | - 0.19 | 43.5 | 18 | Fe <sub>A</sub> pozice |
| Sc-                              |                                  | Sextet 2  | 0.40 | - 0.33 | 42.0 | 17 | Fe <sub>B</sub> pozice |
| dopovaný                         |                                  | Sextet 3  | 0.39 | -0.04  | 36.9 | 31 | Fe <sub>C</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 4  | 0.28 | -0.02  | 23.7 | 32 | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5  | 0.37 | - 0.21 | 51.4 | 2  | Fe pozice              |

**Tabulka 6.** Hodnoty hyperjemných parametrů, odvozené z fitovaných <sup>57</sup>Fe mössbauerovských spektrech měřených při pokojové teplotě pro nedopovaný a Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém, kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.

#### 3.7. Diskuze

Cílem této práce bylo optimalizovat podmínky přípravy  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, které byly získány metodou sol-gel. U dopovaných systémů bylo navíc cílem sledovat vliv dopace na strukturní, chemické a fyzikální vlastnosti  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze. Experimentální část tedy byla rozdělena na 3 kapitoly, kdy v první kapitole byly studovány nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémy, ve druhé Ga-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémy a ve třetí Sc-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémy.

U nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> nanočástic byly připraveny 3 série vzorků s různou hmotnostní koncentrací  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vůči SiO<sub>2</sub> matrici a to 25, 35 a 45 hmot. %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>. U těchto nedopovaných vzorků se v každé sérii zvyšovala teplota zpracování od 900 až po 1 100 °C. Neoptimálnějších podmínek přípravy bylo dosaženo pro  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém s 25 hmot.

% ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> a teplotou zpracování 1 100 °C. Konkrétně tento ε-Fe<sub>2</sub>O<sub>3</sub> vzorek dosahoval množství 93,9 % ε-Fe<sub>2</sub>O<sub>3</sub> fáze. Navíc byla prokázana závislost, kdy s rostoucí teplotou zpracování se zvyšovalo i množství ε-Fe<sub>2</sub>O<sub>3</sub> fáze. TEM snímky potvrdily, že pomocí metody sol-gel bylo možné připravit sférické částice zabudované v matrici oxidu křemičitého. Mimoto bylo dosaženo možnosti kontroly a řízení velikosti částic pomocí teploty zpracování. Čím vyšší byla teplota zpracování, tím byly získány nanočástice s větším průměrem.

Z magnetického hlediska byly pro nedopovanou  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fázi, pozorovány dva výrazné skoky. Tyto skoky odpovídaly širokému magnetického přechodu, který byl spojen s přechodem z kolineárního ferimagnetického stavu do stavu s vlastnostmi nesouměřitelné magnetické struktury. Z odchýlení magnetizačních ZFC/FC křivek, v oblasti velmi nízkých teplot, byla vyvozena přítomnost velmi malých částic se superparamagnetickými/ magneticky blokovanými vlastnostmi. Jednalo se o velmi malé nanočástice  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s velikostí menší, než je limitní velikost pro superparamagnetické chování, tedy s velikostí zhruba 7,5 nm, což bylo potvrzeno z velikostní distribuce a/nebo o  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástice, jejichž množství ve vzorku je tak ovšem tak malé, že se nachází pod detekčním limitem XRD měření a <sup>57</sup>Fe Mössbauerovy spektroskopie.

Při srovnání všech třech sérií se třemi rozdílnými hmotnostními koncentracemi lze říct, že se zvyšující se hmotnostní koncentrací ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, se oba typické skoky pro ε-Fe<sub>2</sub>O<sub>3</sub> fázi posouvají k vyšším teplotám. Pro většinu vzorků byl pozorován pokles saturační magnetizace s rostoucí teplotou zpracování. U remanentní magnetizace i koercitivního pole byla pozorována opačná závislost, kdy s rostoucí teplotou zpracování se zvyšovaly hodnoty těchto parametrů.

Ve druhé části byly studovány Ga-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémy, kdy byly obdobně jako u nedopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémů připraveny 3 série s rozdílnou hmotnostní koncentrací (25, 35 a 45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>).

U 1. série bylo dosaženo zastoupení pouze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze. U 2. a 3. série (35 a 45 hmot. %) se se zvyšující koncentrací atomů Ga zvyšoval i obsah  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze až do maximálního možného množství, tedy 100 %  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze. Při porovnání s nedopovanými  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémy lze říct, že substitucí atomů Ga do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, bylo dosaženo zastabilizování této fáze a získání tak čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, bez přítomnosti ostatních fází oxidů železa.

Průměrná velikost Ga-dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic pro 1. sérii nepřesahovala hodnotu 15 nm, kdežto u ostatních sérií byla průměrná velikost nanočástic okolo 18 nm (2. série) a 19 nm (3. série). Bylo tedy usouzeno, že s vyšší hmotnostní koncentrací ε-Ga<sub>x</sub>Fe<sub>2x</sub>O<sub>3</sub>/SiO<sub>2</sub> rostla i průměrná velikost připravených nanočástic. U nedopovaných vzorků tomu bylo obdobně, nicméně průměrné velikosti nanočástic v jednotlivých sériích pro nedopované vzorky byly 9, 10 a 13 nm, což bylo zřetelně méně než u dopovaných systémů. Zabudování Ga<sup>3+</sup> iontů do krystalové struktury ε-Fe<sub>2</sub>O<sub>3</sub> je tedy termodynamicky výhodné a nanočástice ε-Fe<sub>2</sub>O<sub>3</sub> pak mohou existovat ve větší velikosti.

U Ga-dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> vzorků došlo k vymizení obou magnetických přechodů, které byly typické pro nedopované ε-Fe<sub>2</sub>O<sub>3</sub> systémy, a to u všech aplikovaných vnějších magnetických polí i všech hmotnostních koncentrací. Magnetizační křivky ZFC/FC, měřené ve vnějším magnetickém poli 100 a 1 000 Oe, se od sebe odchylovaly nejen v oblasti nízkých teplot, ale kolikrát v celém teplotním intervalu. To opět potvrdilo přítomnost velmi malých ε-Fe<sub>2</sub>O<sub>3</sub> a/nebo γ-Fe<sub>2</sub>O<sub>3</sub> nanočástic se superparamagnetickým/magneticky blokovaným chováním. Kromě toho nanosystémy ε-Fe<sub>2</sub>O<sub>3</sub> substituované Ga<sup>3+</sup> nevykazovaly žádné magnetické měkčení pod ~ 150 K (-123,15 °C), ale s klesající teplotou se magneticky vytvrzovaly, což prokázaly zvýšené hodnoty koercivity při 5 K (-123,15 °C) ve srovnání s hodnotami pozorovanými při 300 K (-26,85 °C). Substituce Ga<sup>3+</sup> tak zabraňuje kolapsu koercitivity a magnetickému měkčení ε-Fe<sub>2</sub>O<sub>3</sub> fáze při nízkých teplotách. S rostoucí koncentrací Ga však narůstala hodnota saturační magnetizace  $M_r$ , ve srovnání s nedopovanými vzorky odpovídající stejné teplotě zpracování.

Jedním z největších přínosů substituce Ga<sup>3+</sup> iontů do ε-Fe<sub>2</sub>O<sub>3</sub> struktury bylo zvýšení krystalové stability, což vedlo ke vzniku termodynamicky stabilní fáze ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>. Další, ne méně významnou vlasností Ga-dopovaných systémů, byl nárust hodnot magnetizace při 5 i 300 K. To bylo potvrzeno i pomocí <sup>57</sup>Fe Mössbauerovy spektroskopie, kdy byla potvrzena preference Ga<sup>3+</sup> iontů substituovat převážně do tetraedrických D-pozic, případně distortovaných oktaedrických A- a B-pozic. Jelikož byla výsledná saturační magnetizace Ga-dopovaného systému vyšší než nedopovaného sytému, byl vyvozeno, že Ga<sup>3+</sup> ionty přednostně obsazují tetraedrické D-pozice a distortované oktaedrické A-pozice.

V poslední kapitole byl detailně studován vliv dopování atomů skandia do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> na výsledné strukturní a magnetické vlastnosti. Kromě toho bylo zjištěno, že množství atomů skandia přítomných v reakční směsi do značné míry ovlivňuje fázovou čistotu systému. Při změně koncentrace atomů skandia bylo pozorováno rozdílné zastoupení ostatních polymorfů oxidu železitého, tedy  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>,  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> fáze. Atomy skandia tak mohou určitým způsobem působit jako stabilizátory  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, podobně jako tomu bylo u již studovaných dopací ionty Ca<sup>2+</sup> a Ba<sup>2+</sup> [24] a také Ga-dopovaných systémů v této práci.

Ze strukturního hlediska výsledky z <sup>57</sup>Fe Mössbauerovy spektroskopie ukázaly, že ionty  $Sc^{3+}$  přednostně nahrazují ionty  $Fe^{3+}$  v distortovaných oktaedrických A- a B-pozicích krystalové struktury  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, a to téměř se stejnou pravděpodobností.

Z pohledu magnetických vlastností Sc-dopovaného  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému dopování iontů Sc<sup>3+</sup> do krystalové struktury  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> vedlo ke snížení hodnot koercitivity, a tím došlo i ke změně magnetické tvrdosti. Navíc bylo zjištěno, že dopování atomy Sc mělo za následek snížení magnetokrystalové anizotropie, a to pravděpodobně změnilo distorze v oktaedrických místech krystalové struktury  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

U Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> systému došlo opět ke změně magnetické odezvy v závislosti na teplotě, přičemž se výrazně změnila řada nízkoteplotních magnetických přechodů, jejich výskyt se posunul k vyšším teplotám a do užšího teplotního intervalu. Průběh magnetických přechodů se tedy výrazně lišil od průběhu typického pro nedopovanou ε-Fe<sub>2</sub>O<sub>3</sub> fázi.

### 4. Závěr

Dosažené výsledky zřetelně prokázaly značný vliv dopování na fyzikálně-chemické vlastnosti systémů ε-Fe<sub>2</sub>O<sub>3</sub>. To otevírá dveře k testování využitelnosti dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> systémů v širokém spektru aplikací, které zahrnují oblasti magnetismu pevných látek s využitím substitucí řízené magnetické odezvy, stínění elektromagnetických vln v dané oblasti vlnových délek díky možnosti ladění feromagnetické rezonance nebo v oblasti multiferoických nanomateriálů. Dopování jak Ga<sup>3+</sup> ionty tak i Sc<sup>3+</sup> ionty do ε-Fe<sub>2</sub>O<sub>3</sub> systému lze považovat za velmi zajímavé a perspektivní, a to hlavně z hlediska možného ladění vlastností pomocí substituce s ohledem na požadavky potenciálních budoucích aplikací, hlavně jako elektromagnetické absorbéry a multiferoické materiály.

V rámci možnosti dalšího studia  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémů a rozšíření portfolia atomů, kterými by se dala dopovat  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, byly připraveny i Au, Ag i Ru-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémy. Zde je alespoň nástin výsledků potvrzujících možnost řízení výsledných vlastností  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> pomocí substituce Fe<sup>3+</sup> iontů jinými ionty ostatních prvků.



**Obrázek 44.** Celkové množství jednotlivých fází oxidů železa a dalších složek vzorků  $\varepsilon$ -A<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0,02, 0,1, 0,2, 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici s 25 hmot. %  $\varepsilon$ -A<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>., kdy (a) A = Ru (b) A = Au a (c) A = Ag.



**Obrázek 45.** Průměrná velikost nanočástic ve vybraných vzorcích  $\varepsilon$ -A<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0,02, 0,1, 0,2, 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici s 25 hmot. %  $\varepsilon$ -A<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>., kdy (a) A =Ru (b) A =Au a (c) A =Ag.



**Obrázek 46.** (a) Ilustrativní TEM snímky z (a)  $\varepsilon$ -Ru<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub> (1 at. % Ru), (b)  $\varepsilon$ -Au<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub> (1 at. % Au) a (c)  $\varepsilon$ -Ag<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub> (1 at. % Ag) nanočástic zabudovaných v matrici SiO<sub>2</sub> (teplota zpracování = 1 100 °C, 25 hmot. %  $\varepsilon$ -A<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>/SiO<sub>2</sub>, kdy *A* = Ru, Au, Ag).



**Obrázek 47.** Hysterezní smyčky měřené při teplotě 300 K pro pro dopované  $\varepsilon$ -Ru<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vzorky s rozdílnou atomární koncentrací Ru (1, 5, 10, 15, 20 at. %, *x* = 0,02,; 0,1; 0,2; 0,3 a 0,4) a hmotnostní koncentrací 25 hmot. %  $\varepsilon$ -Ru<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>.

U Ag-dopovaných systémů byla potvrzena skutečnost, že valenční číslo substituovaného iontu 3+ hraje významnou roli. Jelikož Ag ionty mají valenční číslo 1+, subtituce Fe<sup>3+</sup> iontů těmito ionty byla mnohem obtížnější až nemožná. Tato skutečnost je dobře viditelná z výsledků fázového složení, kde většina vzorků nebyla tvořena ε-Fe<sub>2</sub>O<sub>3</sub> fází (viz obr. 44 (c)).

Nicméně z TEM výsledků (viz obr. 45, 46) lze vyvodit závěr, že metoda sol-gel je vhodná pro přípravu sférických nanočástic s úzkou velikostní distribucí.

V této práci bylo prokázáno, že nejenom fázové složení vzorků, ale i substituce, tím i míra substituovaných atomů, výrazně ovlivňují výsledné strukturní i magnetické vlastnosti. To otevírá široké portfolio možností pro další studim a pro řízení vlastností připravených systémů různou volbou substituovaných atomů, dle požadavků na možné aplikace.

# LITERATURA

- [1] "Nanomaterials definition matters," *Nat Nanotechnol*, vol. 14, no. 3, p. 193, Mar. 2019, doi: 10.1038/s41565-019-0412-3.
- [2] F. A. Khan, Applications of Nanomaterials in Human Health. Springer.
- [3] N. Baig, I. Kammakakam, and W. Falath, "Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges," *Mater Adv*, vol. 2, no. 6, pp. 1821–1871, Mar. 2021, doi: 10.1039/d0ma00807a.
- [4] E.-A. Moustafa, A. Noah, K. Beshay, L. Sultan, M. Essam, and O. Nouh, "Investigating the Effect of Various Nanomaterials on the Wettability of Sandstone Reservoir," *World Journal of Engineering and Technology*, vol. 03, no. 03, pp. 116– 126, 2015, doi: 10.4236/wjet.2015.33013.
- [5] E. A. Campos, D. V. B. S. Pinto, J. I. S. de Oliveira, E. da C. Mattos, and R. de C. L. Dutra, "Synthesis, characterization and applications of iron oxide nanoparticles A short review," *Journal of Aerospace Technology and Management*, vol. 7, no. 3, pp. 267–276, Jul. 2015, doi: 10.5028/jatm.v7i3.471.
- [6] R. A. Yetter, G. A. Risha, and S. F. Son, "Metal particle combustion and nanotechnology," *Proceedings of the Combustion Institute*, vol. 32 II, pp. 1819–1838, 2009, doi: 10.1016/j.proci.2008.08.013.
- [7] M. Srivastava, S. Chaubey, and A. K. Ojha, "Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods," *Mater Chem Phys*, vol. 118, no. 1, pp. 174–180, Nov. 2009, doi: 10.1016/j.matchemphys.2009.07.023.
- [8] A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," *Biomaterials*, vol. 26, no. 18, pp. 3995– 4021, Jun. 2005, doi: 10.1016/j.biomaterials.2004.10.012.
- [9] S. Chaturvedi, P. N. Dave, and N. K. Shah, "Applications of nano-catalyst in new era," *Journal of Saudi Chemical Society*, vol. 16, no. 3, pp. 307–325, Jul. 2012, doi: 10.1016/j.jscs.2011.01.015.
- [10] H. Xu, X. Wang, and L. Zhang, "Selective preparation of nanorods and microoctahedrons of Fe<sub>2</sub>O<sub>3</sub> and their catalytic performances for thermal decomposition of ammonium perchlorate," *Powder Technol*, vol. 185, no. 2, pp. 176–180, Jul. 2008, doi: 10.1016/j.powtec.2007.10.011.
- [11] C. Gregor *et al.*, "The effect of surface area and crystal structure on the catalytic efficiency of Iron(III) oxide nanoparticles in hydrogen peroxide decomposition," *Eur J Inorg Chem*, no. 16, pp. 2343–2351, Jun. 2010, doi: 10.1002/ejic.200901066.

- [12] M. Mohapatra and S. Anand, "Synthesis and applications of nano-structured iron oxides/hydroxides - a review," *International Journal of Engineering, Science and Technology*, vol. 2, no. 8, pp. 127–146, 2010, [Online]. Available: www.ijest-ng.com
- [13] K. Rogers, "Iron," Encyclopædia Britannica, Inc.
- [14] J. B. Calvert, "Iron. The metal of Mars gives us magnetism and life.," 2003.
- [15] H. K. D. H. Bhadeshia, "Physical Metallurgy of Steels," in *Physical Metallurgy: Fifth Edition*, vol. 1, Elsevier Inc., 2014, pp. 2157–2214. doi: 10.1016/B978-0-444-53770-6.00021-6.
- [16] M. Tomíčková, J. Tuček, and R. Zbořil, "MOSSBAUER STUDY OF REACTION MECHANISMS OF FERRATES (Fe<sup>-VI</sup>, Fe<sup>-V</sup>, and Fe<sup>-IV</sup>): DETERMINATION OF EFFICIENCY IN WATER DECONTAMINATION. NANOCON," *Proceedings* 10th International Conference on Nanomaterials - Research & Application, pp. 235– 242, 2019.
- [17] R. M. Cornell and Udo. Schwertmann, *The iron oxides : structure, properties, reactions, occurrences, and uses.* Wiley-VCH, 2003.
- [18] A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," *Biomaterials*, vol. 26, no. 18. pp. 3995– 4021, Jun. 2005. doi: 10.1016/j.biomaterials.2004.10.012.
- [19] S. Laurent *et al.*, "Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications," *Chem Rev*, vol. 108, no. 6, pp. 2064–2110, Jun. 2008, doi: 10.1021/cr068445e.
- [20] J. L. Dormann, D. Fiorani, and E. Tronc, "Magnetic relaxation in fine-particle systems," J. Wiley, 1997.
- [21] X. Teng, D. Black, N. J. Watkins, Y. Gao, and H. Yang, "Platinum-maghemite coreshell nanoparticles using a sequential synthesis," *Nano Lett*, vol. 3, no. 2, pp. 261– 264, Feb. 2003, doi: 10.1021/nl025918y.
- [22] M. Gich, A. Roig, E. Taboada, E. Molins, C. Bonafos, and E. Snoeck, "Stabilization of metastable phases in spatially restricted fields: The case of the Fe<sub>2</sub>O<sub>3</sub> polymorphs," *Faraday Discuss*, vol. 136, pp. 345–354, 2007, doi: 10.1039/b616097b.
- [23] R. Zboril, M. Mashlan, and D. Petridis, "Iron(III) oxides from thermal processessynthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications," *Chemistry of Materials*, vol. 14, no. 3. pp. 969– 982, 2002. doi: 10.1021/cm0111074.
- [24] J. Tuček, R. Zbořil, A. Namai, and S. I. Ohkoshi, "ε-Fe<sub>2</sub>O<sub>3</sub>: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling," *Chemistry of Materials*, vol. 22, no. 24, pp. 6483–6505, Dec. 2010, doi: 10.1021/cm101967h.

- [25] J. Tuček *et al.*, "Iron(III) oxide polymorphs and their manifestations in in-field <sup>57</sup>Fe Mössbauer spectra," in *AIP Conference Proceedings*, 2012, vol. 1489, pp. 56–74. doi: 10.1063/1.4759474.
- [26] O. Malina *et al.*, "Magnetic ground state of nanosized  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> and its remarkable electronic features," *RSC Adv*, vol. 5, no. 61, pp. 49719–49727, 2015, doi: 10.1039/c5ra07484c.
- [27] R. Zboril, M. Mashlan, and D. Petridis, "Iron(III) oxides from thermal processessynthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications," *Chemistry of Materials*, vol. 14, no. 3, pp. 969– 982, 2002, doi: 10.1021/cm0111074.
- [28] J. Tuček, "Nanometrické polymorfy oxidu železitého, jejich magnetické vlastnosti a aplikační potenciál," UNIVERZITA PALACKÉHO V OLOMOUCI, 2012.
- [29] L. Machala, J. Tuček, and R. Zbořil, "Polymorphous transformations of nanometric iron(III) oxide: A review," *Chemistry of Materials*, vol. 23, no. 14, pp. 3255–3272, Jul. 2011, doi: 10.1021/cm200397g.
- [30] R. M. Cornell and U. Schwertmann, *The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses.* WILEY-VCH Verlag GmbH & Co. KGaA, 2003.
- [31] A. S. Teja and P. Y. Koh, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles," *Progress in Crystal Growth and Characterization of Materials*, vol. 55, no. 1–2, pp. 22–45, Mar. 2009, doi: 10.1016/j.pcrysgrow.2008.08.003.
- [32] T. P. Raming, A. J. A. Winnubst, C. M. van Kats, and A. P. Philipse, "The synthesis and magnetic properties of nanosized hematite (α-Fe<sub>2</sub>O<sub>3</sub>) particles," *J Colloid Interface Sci*, vol. 249, no. 2, pp. 346–350, 2002, doi: 10.1006/jcis.2001.8194.
- [33] F. Bødker and S. Mørup, "Size dependence of the properties of hematite nanoparticles," *Europhys. Lett*, vol. 52, no. 2, pp. 217–223, 2000.
- [34] R. D. Zysler, D. Fiorani, and A. M. Testa, "Investigation of magnetic properties of interacting Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *J Magn Magn Mater*, vol. 224, pp. 5–11, 2001.
- [35] N. Amin and S. Arajs, "Morin temperature of annealed submicronic α-Fe<sub>2</sub>O<sub>3</sub> particles," *Phys Rev B*, vol. 35, no. 10, pp. 4810–4811, 1987.
- [36] R. C. Nininger and D. Schroeer, "MOSSBAUER STUDIES OF THE MORIN TRANSITION IN BULK AND MICROCRYSTALLINE α-Fe<sub>2</sub>0<sub>3</sub>," *I Phyr Chrm. Sohdr*, vol. 39, p. 137, 1978.
- [37] F. J. Morin, "Magnetic Susceptibility of  $\alpha Fe_20_3$  and  $\alpha Fe_20_3$  with Added Titanium," *Letters to the Editor*, pp. 819–820, 1950.
- [38] E. Sváb and E. Krén, "NEUTRON DIFFRACTION STUDY OF SUBSTITUTED HEMATITE," *Journal of Magnetism and Magnetic Matermls*, vol. 14, pp. 184–186, 1979.

- [39] R. E. Vandenberghe, A. E. Verbeeck, E. de Grave, and W. Stierst, "<sup>57</sup>Fe MOSSBAUER EFFECT STUDY OF Mn-SUBSTITUTED GOETHITE AND HEMATITE," *Hyperfine Interact*, vol. 29, pp. 1157–1160, 1986.
- [40] A. H. Morrish, G. B. Johnston, and N. A. Curry, "MAGNETIC TRANSITION IN PURE AND Ga DOPED α-Fe<sub>2</sub>0<sub>3</sub>," *Physics Letters*, vol. 7, no. 3, pp. 177–178, 1963.
- [41] A. H. Morrish and J. A. Eaton, "Magnetic transition in rhodium-doped hematite single crystals," *J Appl Phys*, vol. 42, no. 4, pp. 1495–1496, 1971, doi: 10.1063/1.1660315.
- [42] J. M. D. Coey and G. A. Sawatzkyt, "A study of hyperfine interactions in the system (Fe<sub>1-x</sub>Rh<sub>x</sub>)<sub>2</sub>O<sub>3</sub> using the Mossbauer effect (Bonding parameters)," J. Phys. C: Solid St. Phys, vol. 4, 1971.
- [43] V. A. N. de Carvalho, R. A. D. S. Luz, B. H. Lima, F. N. Crespilho, E. R. Leite, and F. L. Souza, "Highly oriented hematite nanorods arrays for photoelectrochemical water splitting," *J Power Sources*, vol. 205, pp. 525–529, May 2012, doi: 10.1016/j.jpowsour.2012.01.093.
- [44] S. Grigorescu *et al.*, "Thermal air oxidation of Fe: Rapid hematite nanowire growth and photoelectrochemical water splitting performance," *Electrochem commun*, vol. 23, no. 1, pp. 59–62, Sep. 2012, doi: 10.1016/j.elecom.2012.06.038.
- [45] C. Zhu, C. Li, M. Zheng, and J. J. Delaunay, "Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation," ACS Appl Mater Interfaces, vol. 7, no. 40, pp. 22355–22363, Oct. 2015, doi: 10.1021/acsami.5b06131.
- [46] R. Rajendran, Z. Yaakob, M. Pudukudy, M. S. A. Rahaman, and K. Sopian, "Photoelectrochemical water splitting performance of vertically aligned hematite nanoflakes deposited on FTO by a hydrothermal method," *Journal of Alloys and Compounds*, vol. 608. Elsevier Ltd, pp. 207–212, Sep. 25, 2014. doi: 10.1016/j.jallcom.2014.04.105.
- [47] H. K. Mulmudi *et al.*, "Controlled growth of hematite (α-Fe<sub>2</sub>O<sub>3</sub>) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties," *Electrochem commun*, vol. 13, no. 9, pp. 951–954, Sep. 2011, doi: 10.1016/j.elecom.2011.06.008.
- [48] S. Shen *et al.*, "Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting," *Sci Rep*, vol. 4, 2014, doi: 10.1038/srep06627.
- [49] S. S. Shinde, R. A. Bansode, C. H. Bhosale, and K. Y. Rajpure, "Physical properties of hematite α-Fe<sub>2</sub>O<sub>3</sub> thin films: Application to photoelectrochemical solar cells," *Journal of Semiconductors*, vol. 32, no. 1, Jan. 2011, doi: 10.1088/1674-4926/32/1/013001.
- [50] Z. Zhang, M. F. Hossain, and T. Takahashi, "Self-assembled hematite (α-Fe<sub>2</sub>O<sub>3</sub>) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar

light irradiation," Appl Catal B, vol. 95, no. 3-4, pp. 423-429, Apr. 2010, doi: 10.1016/j.apcatb.2010.01.022.

- [51] T. S. Atabaev, "Facile hydrothermal synthesis of flower-like hematite microstructure with high photocatalytic properties," *Journal of Advanced Ceramics*, vol. 4, no. 1, pp. 61–64, Mar. 2015, doi: 10.1007/s40145-015-0133-5.
- [52] F. Zhang *et al.*, "Controlled synthesis and gas-sensing properties of hollow sea urchinlike α-Fe<sub>2</sub>O<sub>3</sub> nanostructures and α-Fe<sub>2</sub>O<sub>3</sub> nanocubes," *Sens Actuators B Chem*, vol. 141, no. 2, pp. 381–389, Sep. 2009, doi: 10.1016/j.snb.2009.06.049.
- [53] M. Muhajir, P. Puspitasari, and J. A. Razak, "Synthesis and Applications of Hematite α-Fe<sub>2</sub>O<sub>3</sub>: a Review," *Journal of Mechanical Engineering Science and Technology*, vol. 3, no. 2, pp. 51–58, Nov. 2019, doi: 10.17977/um016v3i22019p051.
- [54] C. W. Lee, K. W. Lee, and J. S. Lee, "Optoelectronic properties of β-Fe<sub>2</sub>O<sub>3</sub> hollow nanoparticles," *Mater Lett*, vol. 62, no. 17–18, pp. 2664–2666, Jun. 2008, doi: 10.1016/j.matlet.2008.01.008.
- [55] M. M. Rahman, A. Jamal, S. B. Khan, and M. Faisal, "Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *Superlattices Microstruct*, vol. 50, no. 4, pp. 369–376, Oct. 2011, doi: 10.1016/j.spmi.2011.07.016.
- [56] G. Carraro *et al.*, "Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe<sub>2</sub>O<sub>3</sub> polymorphs," *Adv Funct Mater*, vol. 24, no. 3, pp. 372–378, Jan. 2014, doi: 10.1002/adfm.201302043.
- [57] L. C. A Oliveira, J. D. Fabris, and M. C. Pereira, "ÓXIDOS DE FERRO E SUAS APLICAÇÕES EM PROCESSOS CATALÍTICOS: UMA REVISÃO," *Quim. Nova*, vol. 36, no. 1, pp. 123–130, 2013.
- [58] R. Dronskowski, "The Little Maghemite Story: A Classic Functional Material," *Adv Funct Mater*, vol. 11, no. 1, 2001.
- [59] O. Helgason, J.-M. Greneche, F. J. Berry, and F. Mosselmans, "The influence of ruthenium on the magnetic properties of γ-Fe<sub>2</sub>O<sub>3</sub> (maghemite) studied by Mössbauer spectroscopy," *Journal of Physics: Condensed Matter*, vol. 15, pp. 2907–2915, 2003.
- [60] F. J. Berry, C. Greaves, O. Helgasonc, and J. McManusa, "Materials Synthesis and characterisation of tin-doped iron oxides," *Journal of Material Chemistry*, vol. 9, pp. 223–226, 1999.
- [61] J. Tuček, R. Zboril, and D. Petridis, "Maghemite nanoparticles by view of Mössbauer spectroscopy," *J Nanosci Nanotechnol*, vol. 6, no. 4, pp. 926–947, Apr. 2006, doi: 10.1166/jnn.2006.183.
- [62] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, and B. von Rechenberg, "Superparamagnetic nanoparticles for biomedical applications: Possibilities and
limitations of a new drug delivery system," *J Magn Magn Mater*, vol. 293, no. 1, pp. 483–496, May 2005, doi: 10.1016/j.jmmm.2005.01.064.

- [63] E. Tronc, C. Chaneác, and J. P. Jolivet, "Structural and Magnetic Characterization of-Fe<sub>2</sub>O<sub>3</sub>," *J Solid State Chem*, vol. 139, pp. 93–104, 1998.
- [64] S. I. Ohkoshi, A. Namai, and S. Sakurai, "The origin of ferromagnetism in ε-Fe<sub>2</sub>O<sub>3</sub> and ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets," *Journal of Physical Chemistry C*, vol. 113, no. 26, pp. 11235–11238, Jul. 2009, doi: 10.1021/jp901637y.
- [65] M. Gich *et al.*, "Large coercivity and low-temperature magnetic reorientation in ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *J Appl Phys*, vol. 98, no. 4, Aug. 2005, doi: 10.1063/1.1997297.
- [66] J. L. García-Muñoz, A. Romaguera, F. Fauth, J. Nogués, and M. Gich, "Unveiling a New High-Temperature Ordered Magnetic Phase in ε-Fe<sub>2</sub>O<sub>3</sub>," *Chemistry of Materials*, vol. 29, no. 22, pp. 9705–9713, Nov. 2017, doi: 10.1021/acs.chemmater.7b03417.
- [67] S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, and O. N. Martyanov, "Magnetic properties of few nanometers ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles supported on the silica," *J Appl Phys*, vol. 111, no. 4, Feb. 2012, doi: 10.1063/1.3686647.
- [68] A. A. Dubrovskiy, D. A. Balaev, A. A. Krasikov, S. S. Yakushhkin, V. L. Kirillov, and O. N. Martyanov, "Magnetodielectric effect in a metamaterial consisting of xerogel with embedded ε-Fe<sub>2</sub>O<sub>3</sub> iron oxide nanoparticles," *Solid State Commun*, vol. 289, pp. 27–29, Feb. 2019, doi: 10.1016/j.ssc.2018.11.020.
- [69] D. A. Balaev, A. A. Dubrovskiy, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, "Temperature of the Magnetic Ordering of the Trivalent Iron Oxide ε-Fe<sub>2</sub>O<sub>3</sub>," *Physics of the Solid State*, vol. 61, no. 3, pp. 345–349, Mar. 2019, doi: 10.1134/S1063783419030053.
- [70] J. Tucek, S. I. Ohkoshi, and R. Zboril, "Room-temperature ground magnetic state of ε-Fe<sub>2</sub>O<sub>3</sub>: In-field Mössbauer spectroscopy evidence for collinear ferrimagnet," *Appl Phys Lett*, vol. 99, no. 25, Dec. 2011, doi: 10.1063/1.3671114.
- [71] M. Kurmoo *et al.*, "Formation of nanoparticles of ε-Fe<sub>2</sub>O<sub>3</sub> from yttrium iron garnet in a silica matrix: An unusually hard magnet with a Morin-like transition below 150 K," *Chemistry of Materials*, vol. 17, no. 5, pp. 1106–1114, Mar. 2005, doi: 10.1021/cm0482838.
- [72] D. A. Balaev, S. S. Yakushkin, A. A. Dubrovskii, G. A. Bukhtiyarova, K. A. Shaikhutdinov, and O. N. Martyanov, "Study of the high-coercivity material based on ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles in the silica gel matrix," *Technical Physics Letters*, vol. 42, no. 4, pp. 347–350, Apr. 2016, doi: 10.1134/S1063785016040039.
- [73] M. Gich *et al.*, "High- and low-temperature crystal and magnetic structures of ε-Fe<sub>2</sub>O<sub>3</sub> and their correlation to its magnetic properties," *Chemistry of Materials*, vol. 18, no. 16, pp. 3889–3897, Aug. 2006, doi: 10.1021/cm0609931.

- [74] S. Sakurai, J. ichi Shimoyama, K. Hashimoto, and S. ichi Ohkoshi, "Large coercive field in magnetic-field oriented ε-Fe<sub>2</sub>O<sub>3</sub> nanorods," *Chem Phys Lett*, vol. 458, no. 4– 6, pp. 333–336, Jun. 2008, doi: 10.1016/j.cplett.2008.04.121.
- [75] S. Sakurai, A. Namai, K. Hashimoto, and S. I. Ohkoshi, "First observation of phase transformation of all four Fe<sub>2</sub>O<sub>3</sub> phases ( $\gamma \rightarrow \epsilon \rightarrow \beta \rightarrow \alpha$ -phase)," *J Am Chem Soc*, vol. 131, no. 51, pp. 18299–18303, Dec. 2009, doi: 10.1021/ja9046069.
- [76] A. I. Dmitriev, O. v. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, "Spin-reorientation transition in ε-In<sub>0.24</sub>Fe<sub>1.76</sub>O<sub>3</sub> nanowires," *Physics of the Solid State*, vol. 56, no. 9, pp. 1795–1798, 2014, doi: 10.1134/S1063783414090091.
- [77] S. S. Yakushkin *et al.*, "ɛ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles embedded in silica xerogel Magnetic metamaterial," *Ceram Int*, vol. 44, no. 15, pp. 17852–17857, Oct. 2018, doi: 10.1016/j.ceramint.2018.06.254.
- [78] A. A. Dubrovskiy *et al.*, "Size effects in the magnetic properties of ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *J Appl Phys*, vol. 118, no. 21, Dec. 2015, doi: 10.1063/1.4936838.
- [79] D. A. Balaev *et al.*, "Dynamic magnetization of ε-Fe<sub>2</sub>O<sub>3</sub> in pulse field: Evidence of surface effect," *J Appl Phys*, vol. 117, no. 6, Feb. 2015, doi: 10.1063/1.4907586.
- [80] H. Forestier and G. Guiot-Guillain, "Une nouvelle variété ferromagnétique de sesquioxyde de fer," *ACADÉMIE DES SCIENCES*, vol. 193, 1934.
- [81] V. R. Schrader and G. Büttner, "Eine neue Eisen(III)-oxidphase:ɛ-Fe<sub>2</sub>O<sub>3</sub>," *Zeitschrifht für anorganische und allgemeine*, vol. 320, 1963.
- [82] L. Walter-Lévy and E. M. Quéméneur, "Sur la thermolyse du sulfate ferrique basique 6Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, nH<sub>2</sub>O," ACADÉMIE DES SCIENCES, pp. 3410–3413, 1963.
- [83] E. Tronc, C. Chaneác, and J. P. Jolivet, "Structural and Magnetic Characterization of ε-Fe<sub>2</sub>O<sub>3</sub>," *J Solid State Chem*, vol. 139, pp. 93–104, 1998.
- [84] I. Dézsi and J. M. D. Coey, "Magnetic and Thermal Properties of ε-Fe<sub>2</sub>O<sub>3</sub>," *phys. stat. sol.*, vol. 15, no. 681, pp. 681–685, 1973.
- [85] J.-M. Trautmann and H. Forestier, "Nouvelle préparation et étude de l'oxyde ε-Fe<sub>2</sub>O<sub>3</sub>," C. R. Acad. Sc. Paris, vol. 261, no. 8, pp. 4423–4425, 1965.
- [86] C. Chanéac, E. Tronc, and J. P. Jolivet, "Magnetic iron oxide-silica nanocomposites. Synthesis and characterization," *J Mater Chem*, vol. 6, no. 12, pp. 1905–1911, 1996, doi: 10.1039/JM9960601905.
- [87] I. K. Battisha, H. H. Afify, and I. M. Hamada, "Structural and magnetic susceptibility studies of SiOFe<sub>2</sub>O<sub>3</sub>: Fe<sub>2</sub>O<sub>3</sub> nano-composites prepared by sol-gel technique," *J Magn Magn Mater*, vol. 292, pp. 440–446, Apr. 2005, doi: 10.1016/j.jmmm.2004.10.121.
- [88] K. Kelm and W. Mader, "Synthesis and structural analysis of ε-Fe<sub>2</sub>O<sub>3</sub>," *Z Anorg Allg Chem*, vol. 631, no. 12, pp. 2383–2389, 2005, doi: 10.1002/zaac.200500283.

- [89] J. L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes, and M. Kurmoo, "A temperature and magnetic field dependence Mössbauer study of ε-Fe<sub>2</sub>O<sub>3</sub>," *Hyperfine Interact*, vol. 166, no. 1–4, pp. 475–481, Nov. 2005, doi: 10.1007/s10751-006-9311-8.
- [90] M. Yoshikiyo, K. Yamada, A. Namai, and S. I. Ohkoshi, "Study of the electronic structure and magnetic properties of ε-Fe<sub>2</sub>O<sub>3</sub> by first-principles calculation and molecular orbital calculations," *Journal of Physical Chemistry C*, vol. 116, no. 15, pp. 8688–8691, Apr. 2012, doi: 10.1021/jp300769z.
- [91] E. Tronc, C. Chańac, J. P. Jolivet, and J. M. Grenche, "Spin collinearity and thermal disorder in ε-Fe<sub>2</sub>O<sub>3</sub>," *J Appl Phys*, vol. 98, no. 5, Sep. 2005, doi: 10.1063/1.2034653.
- [92] H. Tokoro, A. Namai, and S. I. Ohkoshi, "Advances in magnetic films of epsilon-iron oxide toward next-generation high-density recording media," *Dalton Transactions*, vol. 50, no. 2, pp. 452–459, Jan. 2021, doi: 10.1039/d0dt03460f.
- [93] J. Jin, S. I. Ohkoshi, and K. Hashimoto, "Giant Coercive Field of Nanometer-Sized Iron Oxide," *Advanced Materials*, vol. 16, no. 1, pp. 48–51, Jan. 2004, doi: 10.1002/adma.200305297.
- [94] M. Gich *et al.*, "Magnetoelectric coupling in ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *Nanotechnology*, vol. 17, no. 3, pp. 687–691, Feb. 2006, doi: 10.1088/0957-4484/17/3/012.
- [95] A. Namai *et al.*, "Synthesis of an electromagnetic wave absorber for high-speed wireless communication," *J Am Chem Soc*, vol. 131, no. 3, pp. 1170–1173, Jan. 2009, doi: 10.1021/ja807943v.
- [96] M. Gich et al., "Multiferroic iron oxide thin films at room temperature," Advanced Materials, vol. 26, no. 27, pp. 4645–4652, Jul. 2014, doi: 10.1002/adma.201400990.
- [97] M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, "Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field," *Opt Express*, vol. 18, no. 17, pp. 18260–18268, 2010.
- [98] S. I. Ohkoshi *et al.*, "Nanometer-size hard magnetic ferrite exhibiting high opticaltransparency and nonlinear optical-magnetoelectric effect," *Sci Rep*, vol. 5, Oct. 2015, doi: 10.1038/srep14414.
- [99] A. Namai *et al.*, "Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation," *Nat Commun*, vol. 3, 2012, doi: 10.1038/ncomms2038.
- [100] S. I. Ohkoshi and H. Tokoro, "Hard magnetic ferrite: ε-Fe<sub>2</sub>O<sub>3</sub>," *Bull Chem Soc Jpn*, vol. 86, no. 8, pp. 897–907, 2013, doi: 10.1246/bcsj.20130120.
- [101] S. I. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, "A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets," *Angewandte Chemie - International Edition*, vol. 46, no. 44, pp. 8392–8395, 2007, doi: 10.1002/anie.200703010.

- [102] S. Sakurai, S. Kuroki, H. Tokoro, K. Hashimoto, and S. I. Ohkoshi, "Synthesis, crystal structure, and magnetic properties of ε-In<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanorod-shaped magnets," *Adv Funct Mater*, vol. 17, no. 14, pp. 2278–2282, Sep. 2007, doi: 10.1002/adfm.200600581.
- [103] A. Namai, S. Sakurai, and S. I. Ohkoshi, "Synthesis, crystal structure, and magnetic properties of ε-Ga<sup>III</sup><sub>x</sub>Fe<sup>III</sup><sub>2-x</sub>O<sub>3</sub> nanorods," *J Appl Phys*, vol. 105, no. 7, 2009, doi: 10.1063/1.3056584.
- [104] S. I. Ohkoshi, K. Imoto, A. Namai, S. Anan, M. Yoshikiyo, and H. Tokoro, "Large Coercive Field of 45 kOe in a Magnetic Film Based on Metal-Substituted ε-Iron Oxide," J Am Chem Soc, vol. 139, no. 38, pp. 13268–13271, Sep. 2017, doi: 10.1021/jacs.7b07087.
- [105] S. I. Ohkoshi, A. Namai, and S. Sakurai, "The origin of ferromagnetism in ε-Fe<sub>2</sub>O<sub>3</sub> and ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets," *Journal of Physical Chemistry C*, vol. 113, no. 26, pp. 11235–11238, Jul. 2009, doi: 10.1021/jp901637y.
- [106] L. Kubíčková *et al.*, "Magnetic properties, <sup>57</sup>Fe Mössbauer spectroscopy and 1H NMR relaxometry of ε-Fe<sub>2-x</sub>Ga<sub>x</sub>O<sub>3</sub> nanoparticles: The effect of gallium doping on magnetic and MRI performance," *J Alloys Compd*, vol. 856, Mar. 2021, doi: 10.1016/j.jallcom.2020.158187.
- [107] L. Kubíčková *et al.*, "The ε-Al<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets as MRI contrast agents: Factors influencing transverse relaxivity," *Colloids Surf A Physicochem Eng Asp*, vol. 589, Feb. 2020, doi: 10.1016/j.colsurfa.2020.124423.
- [108] M. Yoshikiyo, A. Namai, M. Nakajima, K. Yamaguchi, T. Suemoto, and S. I. Ohkoshi, "High-frequency millimeter wave absorption of indium-substituted ε-Fe<sub>2</sub>O<sub>3</sub> spherical nanoparticles (invited)," in *Journal of Applied Physics*, May 2014, vol. 115, no. 17. doi: 10.1063/1.4870168.
- [109] A. I. Dmitriev, O. v. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, "Magnetic phase transition in ε-In<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanowires," *Physics of the Solid State*, vol. 55, no. 11, pp. 2252–2259, Nov. 2013, doi: 10.1134/S1063783413110073.
- [110] M. Yoshikiyo, A. Namai, M. Nakajima, T. Suemoto, and S. I. Ohkoshi, "Anomalous behavior of high-frequency zero-field ferromagnetic resonance in aluminumsubstituted ε-Fe<sub>2</sub>O<sub>3</sub>," in *Journal of Applied Physics*, Apr. 2012, vol. 111, no. 7. doi: 10.1063/1.3677763.
- [111] A. Namai *et al.*, "The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance," *J Mater Chem C Mater*, vol. 1, no. 34, pp. 5200– 5206, Sep. 2013, doi: 10.1039/c3tc30805g.
- [112] T. Katayama, S. Yasui, Y. Hamasaki, T. Osakabe, and M. Itoh, "Chemical tuning of roomerature ferrimagnetism and ferroelectricity in ε-Fe<sub>2</sub>O<sub>3</sub>-type multiferroic oxide thin films," *J Mater Chem C Mater*, vol. 5, no. 47, pp. 12597–12601, 2017, doi: 10.1039/c7tc04363e.

- [113] A. Namai and S. ichi Ohkoshi, "Crystal Structure and Magnetic Properties of ε-Ru<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> Nanosize Hard Ferrite," *Chemistry - A European Journal*, vol. 24, no. 46, pp. 11880–11884, Aug. 2018, doi: 10.1002/chem.201802771.
- [114] S. ichi Ohkoshi *et al.*, "Multimetal-Substituted Epsilon-Iron Oxide ε-Ga<sub>0.31</sub>Ti<sub>0.05</sub>Co<sub>0.05</sub>Fe<sub>1.59</sub>O<sub>3</sub> for Next-Generation Magnetic Recording Tape in the Big-Data Era," Angewandte Chemie - International Edition, vol. 55, no. 38, pp. 11403– 11406, Sep. 2016, doi: 10.1002/anie.201604647.
- [115] K. Yamada, M. Yoshikiyo, A. Namai, and S. ichi Ohkoshi, "Mössbauer study of ε-Al<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets," *Hyperfine Interact*, vol. 205, no. 1–3, pp. 117–120, Mar. 2012, doi: 10.1007/s10751-011-0442-1.
- [116] L. Corbellini, C. Lacroix, D. Ménard, and A. Pignolet, "The effect of Al substitution on the structural and magnetic properties of epitaxial thin films of epsilon ferrite," *Scr Mater*, vol. 140, pp. 63–66, Nov. 2017, doi: 10.1016/j.scriptamat.2017.07.005.
- [117] Y. Hamasaki *et al.*, "Crystal structure and magnetism in κ-Al<sub>2</sub>O<sub>3</sub>-type Al<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> films on SrTiO<sub>3</sub>(111)," *J Appl Phys*, vol. 122, no. 1, Jul. 2017, doi: 10.1063/1.4990947.
- [118] T. Katayama, S. Yasui, Y. Hamasaki, and M. Itoh, "Control of crystal-domain orientation in multiferroic Ga<sub>0.6</sub>Fe<sub>1.4</sub>O<sub>3</sub> epitaxial thin films," *Appl Phys Lett*, vol. 110, no. 21, May 2017, doi: 10.1063/1.4984211.
- [119] H. Szymczak, "Magnetic Materials and Applications," in *Encyclopedia of Condensed Matter Physics*, 2005, pp. 204–211.
- [120] M. Ohring, "MAGNETIC PROPERTIES OF MATERIALS," in Engineering Materials Science, Elsevier, 1995, pp. 711–746. doi: 10.1016/b978-012524995-9/50038-6.
- [121] J. Luňáček, "Základní magnetické veličiny a základní vztahy." Studijní materiál VŠB-TUO.
- [122] E. Tronc *et al.*, "Surface-related properties of γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," J Magn Magn Mater, vol. 221, pp. 63–79, 2000.
- [123] F. Spada, F. Parker, C. Nakakura, and A. Berkowitz, "Studies of anisotropy mechanisms in polyphosphate-treated magnetic iron oxide particles," *J Magn Magn Mater*, vol. 120, pp. 129–135, 1993.
- [124] F. Itoh, M. Satou, and Y. Yamazaki, "ANOMALOUS INCREASE OF COERCIVITY IN IRON OXIDE POWDER COATED WITH SODIUM POLYPHOSPHATE," LE= Transactions on Magnetics, vol. 13, no. 5, 1977.
- [125] F. E. Spada, A. E. Berkowitz, and N. T. Prokey, "Hc enhancement in partially reduced γ-Fe<sub>2</sub>O<sub>3</sub> via surface treatment with sodium polyphosphate (revisited)," *J Appl Phys*, vol. 69, no. 8, pp. 4475–4477, 1991, doi: 10.1063/1.348383.

- [126] H. Hahn, "GAS PHASE SYNTHESIS OF NANOCRYSTALLINE MATERIALS," F&via Sciaroc Ltd, vol. 9, pp. 3–12, 1997.
- [127] A. C. Jones and P. R. Chalker, "Some recent developments in the chemical vapourdeposition of electroceramic oxides," *J Phys D Appl Phys*, vol. 36, pp. R80– R95, 2003.
- [128] W. N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim, and K. Okuyama, "One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors," *Mater Sci Eng B Solid State Mater Adv Technol*, vol. 123, no. 3, pp. 194–202, Nov. 2005, doi: 10.1016/j.mseb.2005.08.006.
- [129] H. Cheng, J. Ma, Z. Zhao, and L. Qi, "Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles," *Chem. Mater*, vol. 7, pp. 663–671, 1995, [Online]. Available: https://pubs.acs.org/sharingguidelines
- [130] H. Yin *et al.*, "Hydrothermal synthesis of nanosized anatase and ruffle TiO<sub>2</sub> using amorphous phase TiO<sub>2</sub>," *J Mater Chem*, vol. 11, no. 6, pp. 1694–1703, 2001, doi: 10.1039/b008974p.
- [131] S. Watson, J. Scott, D. Beydoun, and R. Amal, "Studies on the preparation of magnetic photocatalysts," *Journal of Nanoparticle Research*, vol. 7, no. 6, pp. 691–705, Dec. 2005, doi: 10.1007/s11051-005-7520-8.
- [132] "Příprava, charakterizace a porovnání nanočástic připravených tepelným rozkladem v pevné fázi a nanočástic vzniklých biomineralizací (bakteriální magnetické nanočástice)," https://fyzika.upol.cz/cs/system/files/Praktikum\_magnetozomy.pdf.
- [133] T. Panchartková, "Metody příprav tenkých vrstev biomateriálů," UNIVERZITA PARDUBICE, 2018.
- [134] C. S. Kim, K. Okuyama, K. Nakaso, and M. Shimada, "Direct Measurement of Nucleation and Growth Modes in Titania Nanoparticles Generation by a CVD Method," *Journal of Chemical Engineering of Japan*, vol. 37, no. 11, pp. 1379–1389, 2004.
- [135] K. V. Madhuri, "Thermal protection coatings of metal oxide powders," in *Metal Oxide Powder Technologies*, Elsevier, 2020, pp. 209–231. doi: 10.1016/b978-0-12-817505-7.00010-5.
- [136] H. O. Pierson, *Handbook of Chemical Vapor Deposition*, Second. William Andrew, 1999.
- [137] A. Tavakoli, M. Sohrabi, and A. Kargari, "A review of methods for synthesis of nanostructured metals with emphasis on iron compounds," *Chemical Papers*, vol. 61, no. 3, pp. 151–170, Jun. 2007, doi: 10.2478/s11696-007-0014-7.
- [138] C. C. Koch, Nanostructured Materials, Second edition. William Andrew, 2007.

- [139] F. Teyssander and A. Dollet, "Chemical Vapor Deposition," in *Non-equilibrium Processing of Materials*, Suryanarayana, C., vol. 2, Pergamon, 2005, pp. 257–285.
- [140] W. Kern and V. S. Ban, *Thin film processes*. Academic Press, 1978.
- [141] S. Radelaar *et al.*, "Electrochromic Properties of Iron Oxide Thin Films Prepared by Chemical Vapor Deposition," *J. Electrochem. Soc*, vol. 143, no. 5, p. 1, 1996.
- [142] K. Shalini, G. N. Subbanna, S. Chandrasekaran, and S. A. Shivashankar, "Thin films of iron oxide by low pressure MOCVD using a novel precursor: tris(t-butyl-3-oxobutanoato)iron(III)," *Thin Solid Films*, vol. 424, pp. 56–60, 2003.
- [143] S. Park, S. Lim, and H. Choi, "Chemical vapor deposition of iron and iron oxide thin films from Fe(II) dihydride complexes," *Chemistry of Materials*, vol. 18, no. 22, pp. 5150–5152, Oct. 2006, doi: 10.1021/cm0601990.
- [144] S. Dhara *et al.*, "Parametric investigation for direct chemical vapour deposition of magnetite films," *J Magn Magn Mater*, vol. 134, pp. 29–33, 1994.
- [145] E. Fujii, H. Torii, A. Tomozawa, R. Takayama, and T. Hirao, "Iron oxide films with spinel, corundum and bixbite structure prepared by plasma-enhanced metalorganic chemical vapor deposition," *J Cryst Growth*, vol. 151, pp. 134–139, 1995.
- [146] S. Martelli *et al.*, "Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors," *Appl Surf Sci*, vol. 154, pp. 353–359, 2000, [Online]. Available: www.elsevier.nlrlocaterapsusc
- [147] R. Alexandrescu *et al.*, "Iron-oxide-based nanoparticles produced by pulsed infrared laser pyrolysis of Fe(CO)<sub>5</sub>," *Mater Chem Phys*, vol. 55, pp. 115–121, 1998.
- [148] I. Morjan *et al.*, "Nanoscale powders of different iron oxide phases prepared by continuous laser irradiation of iron pentacarbonyl-containing gas precursors," *Materials Science and Engineering C*, vol. 23, pp. 211–216, 2003, [Online]. Available: www.elsevier.com/locate/msec
- [149] F. Dumitrache *et al.*, "Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation," *Appl Surf Sci*, vol. 247, no. 1–4, pp. 25– 31, Jul. 2005, doi: 10.1016/j.apsusc.2005.01.037.
- [150] P. Tartaj, M. P. Morales, T. González-Carreño, S. Veintemillas-Verdaguer, and C. J. Serna, "Advances in magnetic nanoparticles for biotechnology applications," *J Magn Magn Mater*, vol. 290-291 PART 1, pp. 28–34, Apr. 2005, doi: 10.1016/j.jmmm.2004.11.155.
- [151] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C. Carreño, and C. J. Serna, "The preparation of magnetic nanoparticles for applications in biomedicine," *Journal of Physics D: Applied Physics TOPICAL REVIEW J. Phys. D: Appl. Phys*, vol. 36, pp. 182–197, 2003.

- [152] S. Veintemillas-Verdaguer, M. P. Morales, and C. J. Serna, "Continuous production of γ-Fe<sub>2</sub>O<sub>3</sub> ultrafine powders by laser pyrolysis," *Mater Lett*, vol. 35, pp. 1998–227, 1998.
- [153] O. Bomatí-Miguel, L. Mazeina, A. Navrotsky, and S. Veintemillas-Verdaguer, "Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis," *Chemistry of Materials*, vol. 20, no. 2, pp. 591–598, Jan. 2008, doi: 10.1021/cm0711780.
- [154] R. Alexandrescu *et al.*, "Combining resonant/non-resonant processes: Nanometerscale iron-based material preparation via CO<sub>2</sub> laser pyrolysis," *Appl Surf Sci*, vol. 248, no. 1–4, pp. 138–146, Jul. 2005, doi: 10.1016/j.apsusc.2005.03.016.
- [155] M. P. Morales, O. Bomati-Miguel, R. Pérez de Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, and K. O'Grady, "Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis," *J Magn Magn Mater*, vol. 266, no. 1–2, pp. 102–109, Oct. 2003, doi: 10.1016/S0304-8853(03)00461-X.
- [156] M. P. Morales, ) S Veintemillas-Verdaguer, and C. J. Serna, "Magnetic properties of uniform-Fe<sub>2</sub>O<sub>3</sub> nanoparticles smaller than 5 nm prepared by laser pyrolysis," *J Mater Res*, vol. 14, no. 7, pp. 3066–3072, 2015, [Online]. Available: http://journals.cambridge.org
- [157] S. Veintemillas-Verdaguer, O. Bomat I I-Miguel, and M. P. Morales, "Effect of the process conditions on the structural and magnetic properties of γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles produced by laser pyrolysis," *Scr Mater*, vol. 47, pp. 589–593, 2002, [Online]. Available: www.actamat-journals.com
- [158] E. Čípová, "SYNTÉZA FUNKČNÍCH KERAMICKÝCH PRÁŠKOVÝCH MATERIÁLŮ," VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ, 2011.
- [159] O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide," *Progress in Solid State Chemistry*, vol. 32, no. 1–2, pp. 33–177, 2004, doi: 10.1016/j.progsolidstchem.2004.08.001.
- [160] M. Lepičová, "FOTOKATALYTICKÁ AKTIVITA HYDROTERMÁLNÍHOOXIDU TITANIČITÉHO," VYSOKÉ UČENÍ TECHNICKÉ V BRN, FAKULTA CHEMICKÁ ÚSTAV FYZIKÁLNÍ A SPOTŘEBNÍ CHEMIE, 2012.
- [161] M. Bustamante-Torres *et al.*, "Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review," 2022, doi: 10.3390/polym.
- [162] T. Sugimoto and E. Matijevic, "Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels," 1980.

- [163] A. A. Khaleel, "Nanostructured Pure γ-Fe<sub>2</sub>O<sub>3</sub> via Forced Precipitation in an Organic Solvent," *Chemistry - A European Journal*, vol. 10, no. 4, pp. 925–932, Feb. 2004, doi: 10.1002/chem.200305135.
- [164] M. Chastellain, A. Petri, and H. Hofmann, "Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles," *J Colloid Interface Sci*, vol. 278, no. 2, pp. 353–360, Oct. 2004, doi: 10.1016/j.jcis.2004.06.025.
- [165] Y. Tamaura, K. Ito, and T. Katsura, "Transformation of y-FeO(OH) to Fe<sub>3</sub>O<sub>4</sub> by Adsorption of Iron(II) Ion on y-FeO(OH)," J. Chem. Soc. Dalton Trans., pp. 189–194, 1983.
- [166] E. Tronc, P. Belleville, J.-P. Jolivet, and J. Livage, "Transformation of Ferric Hydroxide into Spinel by Fe(II) Adsorption," *Langmuir*, vol. 8, pp. 313–319, 1992, [Online]. Available: https://pubs.acs.org/sharingguidelines
- [167] J. Jolivet and E. Tronc, "Interfacial Electron Transfer in Colloidal Spinel Iron Oxide. conversion of Fe<sub>3</sub> O<sub>4</sub> -γFe<sub>2</sub>O<sub>3</sub> in Aqueous Medium," *J Colloid Interface Sci*, vol. 125, no. 2, 1988.
- [168] D. K. Kim, Y. Zhang, W. Voit, K. v Rao, and M. Muhammed, "Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles," *J Magn Magn Mater*, vol. 225, pp. 30–36, 2001.
- [169] D. K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed, "Protective coating of superparamagnetic iron oxide nanoparticles," *Chemistry of Materials*, vol. 15, no. 8, pp. 1617–1627, Apr. 2003, doi: 10.1021/cm021349j.
- [170] C. L. Lin, C. F. Lee, and W. Y. Chiu, "Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid," *J Colloid Interface Sci*, vol. 291, no. 2, pp. 411–420, Nov. 2005, doi: 10.1016/j.jcis.2005.05.023.
- [171] Z. P. Xu, Q. H. Zeng, G. Q. Lu, and A. B. Yu, "Inorganic nanoparticles as carriers for efficient cellular delivery," *Chem Eng Sci*, vol. 61, no. 3, pp. 1027–1040, 2006, doi: 10.1016/j.ces.2005.06.019.
- [172] H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong, and S. Jon, "Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging," *J Am Chem Soc*, vol. 128, no. 22, pp. 7383–7389, Jun. 2006, doi: 10.1021/ja061529k.
- [173] P. Pramanik, S. Mohapatra, N. Pramanik, S. Mukherjee, and S. K. Ghosh, "A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications," *J Mater Sci*, vol. 42, no. 17, pp. 7566–7574, Aug. 2007, doi: 10.1007/s10853-007-1597-7.
- [174] D. K. Kim *et al.*, "Starch-Coated Superparamagnetic Nanoparticles as MR Contrast Agents," *Chemistry of Materials*, vol. 15, no. 23, pp. 4343–4351, Nov. 2003, doi: 10.1021/cm031104m.

- [175] M. Mikhaylova *et al.*, "Superparamagnetism of Magnetite Nanoparticles: Dependence on Surface Modification," *Langmuir*, vol. 20, no. 6, pp. 2472–2477, Mar. 2004, doi: 10.1021/la035648e.
- [176] S. E. Khalafalla and G. W. Reimers, "PREPARATION OF DILUTION-STABLE AQUEOUS MAGNETIC FLUIDS," *IEEE Trans Magn*, vol. 16, no. 2, 1980.
- [177] A. Wooding, M. Kilner, and D. B. Lambrick, "Studies of the Double Surfactant Layer Stabilization of Water-Based Magnetic Fluids," *Journal of Colloid Interface Science*, vol. 144, no. 1, 1991.
- [178] S. G. Kwon et al., "Kinetics of monodisperse iron oxide nanocrystal formation by 'heating-up' process," J Am Chem Soc, vol. 129, no. 41, pp. 12571–12584, Oct. 2007, doi: 10.1021/ja074633q.
- [179] S. Sun *et al.*, "Monodisperse MFe<sub>2</sub> O<sub>4</sub> (M = Fe, Co, Mn) Nanoparticles," *J Am Chem Soc*, vol. 126, no. 1, pp. 273–279, Jan. 2004, doi: 10.1021/ja0380852.
- [180] A. G. Roca, M. P. Morales, K. O'Grady, and C. J. Serna, "Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors," *Nanotechnology*, vol. 17, no. 11, pp. 2783– 2788, May 2006, doi: 10.1088/0957-4484/17/11/010.
- [181] A. G. Roca, M. P. Morales, and C. J. Serna, "Synthesis of Monodispersed Magnetite Particles From Different Organometallic Precursors," *IEEE Trans Magn*, vol. 42, no. 10, pp. 3025–3029, 2006, doi: 10.1109/TMAG.2006.880111.
- [182] L. Zhang, R. He, and H. C. Gu, "Oleic acid coating on the monodisperse magnetite nanoparticles," *Appl Surf Sci*, vol. 253, no. 5, pp. 2611–2617, Dec. 2006, doi: 10.1016/j.apsusc.2006.05.023.
- [183] L. M. Bronstein *et al.*, "Influence of iron oleate complex structure on iron oxide nanoparticle formation," *Chemistry of Materials*, vol. 19, no. 15, pp. 3624–3632, Jul. 2007, doi: 10.1021/cm062948j.
- [184] H. Jung *et al.*, "Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation," *Environ Sci Technol*, vol. 41, no. 13, pp. 4741–4747, Jul. 2007, doi: 10.1021/es0702768.
- [185] P. Majewski and B. Thierry, "Functionalized Magnetite Nanoparticles Synthesis, Properties, and Bio-Applications," *Critical Reviews in Solid State and Materials Sciences*, vol. 32, no. 3–4, pp. 203–215, Dec. 2007, doi: 10.1080/10408430701776680.
- [186] C. Amiens and B. Chaudret, "ORGANOMETALLIC SYNTHESIS OF NANOPARTICLES," *Modern Physics Letters B*, vol. 21, no. 18, pp. 1133–1141, 2007, [Online]. Available: www.worldscientific.com
- [187] S. Sun and H. Zeng, "Size-controlled synthesis of magnetite nanoparticles," J Am Chem Soc, vol. 124, no. 28, pp. 8204–8205, Jul. 2002, doi: 10.1021/ja026501x.

- [188] Z. Li, L. Wei, M. Gao, and H. Lei, "One-pot reaction to synthesize biocompatible magnetite nanoparticles," *Advanced Materials*, vol. 17, no. 8, pp. 1001–1005, Apr. 2005, doi: 10.1002/adma.200401545.
- [189] J. Rockenberger, E. C. Scher, and A. P. Alivisatos, "A new nonhydrolytic singleprecursor approach to surfactant-capped nanocrystals of transition metal oxides," J Am Chem Soc, vol. 121, no. 49, pp. 11595–11596, Dec. 1999, doi: 10.1021/ja993280v.
- [190] T. Hyeon, Su Seong Lee, J. Park, Y. Chung, and Hyon Bin Na, "Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process," *J Am Chem Soc*, vol. 123, no. 51, pp. 12798–12801, Dec. 2001, doi: 10.1021/ja016812s.
- [191] N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, "Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility," 2005, doi: 10.1021/cm050060.
- [192] Y. X. Pang and X. Bao, "Aluminium oxide nanoparticles prepared by water-in-oil microemulsions," J Mater Chem, vol. 12, no. 12, pp. 3699–3704, Dec. 2002, doi: 10.1039/b206501k.
- [193] V. Pillai, P. Kumar, M. J. Hou, P. Ayyub, and D. O. Shah, "PREPARATION OF NANOPARTICLES OF SILVER HALIDES, SUPERCONDUCTORS AND MAGNETIC MATERIALS USING WATER-IN-OIL MICROEMULSIONS AS NANO-REACTORS," Adv Colloid Interface Sci, vol. 55, pp. 241–269, 1995.
- [194] P. Tartaj and L. C. de Jonghe, "Preparation of nanospherical amorphous zircon powders by a microemulsion-mediated process," *J Mater Chem*, vol. 10, no. 12, pp. 2786–2790, 2000, doi: 10.1039/b002720k.
- [195] I. Capek, "Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions," Advances in Colloid and Interface Science, vol. 110, no. 1–2. pp. 49–74, Jun. 30, 2004. doi: 10.1016/j.cis.2004.02.003.
- [196] V. Chhabra, P. Ayyub, S. Chattopadhyay, and A. N. Maitra, "Preparation of acicular y-Fe<sub>2</sub>O<sub>3</sub> particles from a microemulsion-mediated reaction," *Mater Lett*, vol. 26, pp. 21–26, 1996.
- [197] A. B. Chin and I. I. Yaacob, "Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure," *J Mater Process Technol*, vol. 191, no. 1–3, pp. 235–237, Aug. 2007, doi: 10.1016/j.jmatprotec.2007.03.011.
- [198] N. Nassar and M. Husein, "Preparation of iron oxide nanoparticles from FeCl<sub>3</sub> solid powder using microemulsions," *Physica Status Solidi (A) Applications and Materials Science*, vol. 203, no. 6, pp. 1324–1328, May 2006, doi: 10.1002/pssa.200566154.
- [199] J. Vidal-Vidal, J. Rivas, and M. A. López-Quintela, "Synthesis of monodisperse maghemite nanoparticles by the microemulsion method," *Colloids Surf A*

*Physicochem Eng Asp*, vol. 288, no. 1–3, pp. 44–51, Oct. 2006, doi: 10.1016/j.colsurfa.2006.04.027.

- [200] J. A. López Pérez, M. A. López Quintela, J. Mira, J. Rivas, and S. W. Charles, "Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method," *J Phys Chem B*, vol. 101, no. 41, pp. 8045–8047, 1997, [Online]. Available: https://pubs.acs.org/sharingguidelines
- [201] Y. Deng, L. Wang, W. Yang, S. Fu, and E. Issari, "Preparation of magnetic polymeric particles via inverse microemulsion polymerization process," *J Magn Magn Mater*, vol. 257, pp. 69–78, 2003.
- [202] P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, "Preparation and properties of magnetite and polymer magnetite nanoparticles," *Langmuir*, vol. 15, no. 6, pp. 1945–1951, Mar. 1999, doi: 10.1021/la980971g.
- [203] J. Zhi, Y. Wang, Y. Lu, J. Ma, and G. Luo, "In situ preparation of magnetic chitosan/Fe<sub>3</sub>O<sub>4</sub> composite nanoparticles in tiny pools of water-in-oil microemulsion," *React Funct Polym*, vol. 66, no. 12, pp. 1552–1558, Dec. 2006, doi: 10.1016/j.reactfunctpolym.2006.05.006.
- [204] Z. Z. Xu, C. C. Wang, W. L. Yang, Y. H. Deng, and S. K. Fu, "Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization," *J Magn Magn Mater*, vol. 277, no. 1–2, pp. 136–143, Jun. 2004, doi: 10.1016/j.jmmm.2003.10.018.
- [205] P. Tartaj and C. J. Serna, "Microemulsion-assisted synthesis of tunable superparamagnetic composites," *Chemistry of Materials*, vol. 14, no. 10, pp. 4396– 4402, Oct. 2002, doi: 10.1021/cm021214d.
- [206] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. Tan, "Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants," *Langmuir*, vol. 17, no. 10, pp. 2900–2906, May 2001, doi: 10.1021/la0008636.
- [207] M. Zhang, B. L. Cushing, and C. J. O'Connor, "Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles," *Nanotechnology*, vol. 19, no. 8, 2008, doi: 10.1088/0957-4484/19/8/085601.
- [208] A. K. Ganguli and T. Ahmad, "Nanorods of iron oxalate synthesized using reverse micelles: Facile route for α-Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> nanoparticles," *J Nanosci Nanotechnol*, vol. 7, no. 6, pp. 2029–2035, Jun. 2007, doi: 10.1166/jnn.2007.763.
- [209] J. Esquivel, I. A. Facundo, M. E. Treviño, and R. G. López, "A novel method to prepare magnetic nanoparticles: Precipitation in bicontinuous microemulsions," J Mater Sci, vol. 42, no. 21, pp. 9015–9020, Nov. 2007, doi: 10.1007/s10853-007-1834-0.

- [210] T. Herranz et al., "Synthesis, structural features, and reactivity of Fe-Mn mixed oxides prepared by microemulsion," *Chemistry of Materials*, vol. 18, no. 9, pp. 2364–2375, May 2006, doi: 10.1021/cm052568i.
- [211] Ch. Larpent and H. Patin, "Oxidation of alkanes with hydrogen peroxide catalyzed by iron salts or iron oxide colloids in reverse microemulsions," *Journui of Molecular Catalysis*, vol. 72, pp. 315–329, 1992.
- [212] P. Tartaj and C. J. Serna, "Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites," *J Am Chem Soc*, vol. 125, no. 51, pp. 15754–15755, Dec. 2003, doi: 10.1021/ja0380594.
- [213] J. Mrazek, I. Kasik, O. Podrazky, and V. Matejec, "Technologie sol-gel a vybrané aplikace," 2012.
- [214] B. G. Rao, D. Mukherjee, and B. M. Reddy, "Nanostructures for Novel Therapy NOVEL APPROACHES FOR PREPARATION OF NANOPARTICLES," 2017. doi: 10.1016/B978-0-323-46142-9/00001-3.
- [215] Z. Moravec, "Studium nových nehydrolytických metod přípravy oxidických a fosfátových materiálů," Brno, 2011.
- [216] M. Tadić *et al.*, "Synthesis and magnetic properties of concentrated α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles in a silica matrix," *J Alloys Compd*, vol. 441, no. 1–2, pp. 291–296, Aug. 2007, doi: 10.1016/j.jallcom.2006.09.099.
- [217] Z. Z. Xu, C. C. Wang, W. L. Yang, and S. K. Fu, "Synthesis of superparamagnetic Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> composite particles via sol-gel process based on inverse miniemulsion," J Mater Sci, 2005.
- [218] Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang, and S. K. Fu, "Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach," *Colloids Surf A Physicochem Eng Asp*, vol. 262, no. 1–3, pp. 87–93, Jul. 2005, doi: 10.1016/j.colsurfa.2005.04.009.
- [219] U. T. Lam, R. Mammucari, K. Suzuki, and N. R. Foster, "Processing of Iron Oxide Nanoparticles by Supercritical Fluids," *Ind. Eng. Chem. Res.*, vol. 47, pp. 599–614, 2008, doi: 10.1021/ie070494.
- [220] C. T. Wang and S. H. Ro, "Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation," *Appl Catal A Gen*, vol. 285, no. 1–2, pp. 196–204, May 2005, doi: 10.1016/j.apcata.2005.02.029.
- [221] C.-T. Wang and R. J. Willey, "Oxidation of methanol over iron oxide based aerogels in supercritical CO<sub>2</sub>," J Non Cryst Solids, vol. 225, pp. 173–177, 1998.
- [222] G. Ennas *et al.*, "Characterization of Iron Oxide Nanoparticles in an Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> Composite Prepared by a Sol-Gel Method," 1998, [Online]. Available: https://pubs.acs.org/sharingguidelines

- [223] S. Bruni et al., "IR AND NMR STUDY OF NANOPARTICLE-SUPPORT INTERACTIONS IN A Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> NANOCOMPOSITE PREPARED BY A SOL-GEL METHOD," NanoStructured Materials, 1999.
- [224] B. Heinrichs et al., "Iron(III) species dispersed in porous silica through sol-gel chemistry," J Non Cryst Solids, vol. 354, no. 2–9, pp. 665–672, Jan. 2008, doi: 10.1016/j.jnoncrysol.2007.07.071.
- [225] M. Soufyani, D. Bourret, A. Sivade, and R. Sempéré, "Mixed silica-iron oxide aerogels," J Non Cryst Solids, vol. 145, pp. 60–62, 1992.
- [226] L. Casas, A. Roig, E. Rodríguez, E. Molins, J. Tejada, and J. Sort, "Silica aerogel-iron oxide nanocomposites: structural and magnetic properties," *J Non Cryst Solids*, vol. 285, pp. 37–43, 2001, [Online]. Available: www.elsevier.com/locate/jnoncrysol
- [227] A. Braileanu et al., "THERMAL BEHAVIOUR STUDY OF SOME SOL–GEL IRON-SILICA NANOCOMPOSITES," J Therm Anal Calorim, vol. 88, pp. 163–169, 2007.
- [228] C. Caizer, C. Savii, and M. Popovici, "Magnetic behaviour of iron oxide nanoparticles dispersed in a silica matrix," *Materials Science and Engineering B*, vol. 97, pp. 129– 134, 2003, [Online]. Available: www.elsevier.com/locate/mseb
- [229] S. A. Corr, Y. K. Gun'ko, A. P. Douvalis, M. Venkatesan, R. D. Gunning, and P. D. Nellist, "From nanocrystals to nanorods: New iron oxide-silica nanocomposites from metallorganic precursors," *Journal of Physical Chemistry C*, vol. 112, no. 4, pp. 1008–1018, Jan. 2008, doi: 10.1021/jp076871d.
- [230] D. Predoi et al., "Iron oxide in a silica matrix prepared by the sol-gel method," Thin Solid Films, vol. 515, no. 16 SPEC. ISS., pp. 6319–6323, Jun. 2007, doi: 10.1016/j.tsf.2006.11.148.
- [231] P. P. C. Sartoratto, K. L. Caiado, R. C. Pedroza, S. W. da Silva, and P. C. Morais, "The thermal stability of maghemite-silica nanocomposites: An investigation using X-ray diffraction and Raman spectroscopy," *J Alloys Compd*, vol. 434–435, no. SPEC. ISS., pp. 650–654, May 2007, doi: 10.1016/j.jallcom.2006.08.208.
- [232] C. Savii *et al.*, "Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> composites obtained by sol-gel synthesis," 2002, [Online]. Available: www.elsevier.com/locate/ssi
- [233] M. Popovici *et al.*, "Ultraporous Single Phase Iron Oxide-Silica Nanostructured Aerogels from Ferrous Precursors," *Langmuir*, vol. 20, no. 4, pp. 1425–1429, Feb. 2004, doi: 10.1021/la035083m.
- [234] H. S. W. Chang, C.-C. Chiou, Y.-W. Chen, and S. R. Sheen, "Synthesis, Characterization, and Magnetic Properties of Fe<sub>3</sub>O<sub>4</sub> Thin Films Prepared via a Sol-Gel Method," *J Solid State Chem*, vol. 128, pp. 87–92, 1997.

- [235] B. Orel, M. Ma~ek, F. ~vegl, and K. Kalcher, "Electrochromism of iron oxide films prepared via the sol-gel route by the dip-coating technique," *Thin Solid Films*, vol. 246, pp. 131–142, 1994.
- [236] M. Sedlar, "The Preparation and Magnetic Properties of Sodium-Modified Iron Oxide Thin Films by a Sol-Gel Method," *Ceramics hlternational*, vol. 20, pp. 73–78, 1994.
- [237] K.-S. Hwang, Y.-S. Jeon, K.-O. Jeon, and B.-H. Kim, "Transparent (1-x)TiO<sub>2-x</sub>Fe<sub>2</sub>O<sub>3</sub> (x = 0, 5, 10, 15 and 20 mol%) thin films prepared by sol-gel process," *Optica Applicata*, vol. XXXV, no. 2, 2005.
- [238] H. Liu, Z. Liu, Q. Liu, and K. Yao, "Ferroelectric properties of BiFeO3 films grown by sol-gel process," *Thin Solid Films*, vol. 500, no. 1–2, pp. 105–109, Apr. 2006, doi: 10.1016/j.tsf.2005.11.041.
- [239] R. Zhang, J. Huang, J. Zhao, Z. Sun, and Y. Wang, "Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization," *Energy and Fuels*, vol. 21, no. 5, pp. 2682–2687, Sep. 2007, doi: 10.1021/ef070064w.
- [240] A. A. Ismail, "Synthesis and characterization of Y(2)O(3)/Fe(2)O(3)/TiO(2) nanoparticles by sol-gel method," *Appl Catal B*, vol. 58, pp. 115–121, 2005, doi: 10.1016/j.apcath.2004.11.022.
- [241] C. D. E. Lakeman and D. A. Payne, "Sol-gel processing of electrical and magnetic ceramics," *Material Chemistry and Physics*, vol. 38, pp. 305–324, 1994.
- [242] S. Y. An, I. B. Shim, and C. S. Kim, "Synthesis and magnetic properties of LiFe<sub>5</sub>O<sub>8</sub> powders by a sol-gel process," *J Magn Magn Mater*, vol. 290-291 PART 2, pp. 1551– 1554, Apr. 2005, doi: 10.1016/j.jmmm.2004.11.244.
- [243] R. J. Willey, S. A. Oliver, G. Oliveri, and G. Busca, "Chemistry and structure of mixed magnesium ferric oxide aerogels," *J. Mater. Res.*, vol. 8, pp. 1418–1427, 2015, [Online]. Available: http://journals.cambridge.org
- [244] K. Yamaguchi, T. Fujii, S. Kuranouchi, Y. Yamanobe, and A. Ueno, "MAGNETIC PROPERTIES OF IRON-BORON-OXIDE AND IRON-PHOSPHOR-OXIDE GLASSES PREPARED BY SOL-GEL METHOD," *IEEE Trans Magn*, vol. 25, no. 5, 1989.
- [245] M. Liu, H. Li, L. Xiao, W. Yu, Y. Lu, and Z. Zhao, "XRD and Mössbauer spectroscopy investigation of Fe<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> nano-composite," *J Magn Magn Mater*, vol. 294, no. 3, pp. 294–297, Jul. 2005, doi: 10.1016/j.jmmm.2004.12.026.
- [246] M. Tadic *et al.*, "Synthesis of metastable hard-magnetic ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles from silica-coated akaganeite nanorods," *Nanoscale*, vol. 9, no. 30, pp. 10579–10584, Aug. 2017, doi: 10.1039/c7nr03639f.
- [247] J. Kohout *et al.*, "The magnetic transition in ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles: Magnetic properties and hyperfine interactions from Mössbauer spectroscopy," J Appl Phys, vol. 117, no. 17, May 2015, doi: 10.1063/1.4907610.

- [248] Y. C. Tseng *et al.*, "Nonzero orbital moment in high coercivity ε-Fe<sub>2</sub>O<sub>3</sub> and lowtemperature collapse of the magnetocrystalline anisotropy," *Phys Rev B Condens Matter Mater Phys*, vol. 79, no. 9, Mar. 2009, doi: 10.1103/PhysRevB.79.094404.
- [249] R. Jones, R. Nickel, P. K. Manna, J. Hilman, and J. van Lierop, "Temperature and field evolution of site-dependent magnetism in ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *Phys Rev B*, vol. 100, no. 9, Sep. 2019, doi: 10.1103/PhysRevB.100.094425.
- [250] S. Sakurai, J. Jin, K. Hashimoto, and S. I. Ohkoshi, "Reorientation phenomenon in a magnetic phase of ε-Fe<sub>2</sub>O<sub>3</sub> Nanocrystal," *J Physical Soc Japan*, vol. 74, no. 7, pp. 1946–1949, Jul. 2005, doi: 10.1143/JPSJ.74.1946.
- [251] Y. v. Knyazev *et al.*, "Nuclear forward scattering application to the spiral magnetic structure study in ε-Fe<sub>2</sub>O<sub>3</sub>," *Phys Rev B*, vol. 101, no. 9, Mar. 2020, doi: 10.1103/PhysRevB.101.094408.
- [252] A. A. Dubrovskiy *et al.*, "The Low-Temperature Magnetic State and Magnetic Ordering Temperature of  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> Iron Oxide Nanoparticles," *IEEE Magn Lett*, vol. 10, 2019, doi: 10.1109/LMAG.2019.2956674.
- [253] D. A. Balaev *et al.*, "Surface effects and magnetic ordering in few-nanometer-sized ε-Fe<sub>2</sub>O<sub>3</sub> particles," *J Appl Phys*, vol. 114, no. 16, Oct. 2013, doi: 10.1063/1.4827839.
- [254] P. A. Roberts, Y. Cui, and L. K. Verusob, "Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems," *J Geophys Res*, vol. 100, no. B9, pp. 17909–17924, 1995.
- [255] E. Gorbachev *et al.*, "Tuning the particle size, natural ferromagnetic resonance frequency and magnetic properties of ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles prepared by a rapid solgel method," *J Mater Chem C Mater*, vol. 9, no. 19, pp. 6173–6179, May 2021, doi: 10.1039/d1tc01242h.
- [256] S. Pickart, R. Nathans, H. Alperin, B. S. J Pickart, and H. A. Alperin, "Spin density of the canted moment in α-Fe<sub>2</sub>O<sub>3</sub>," *Journal de Physique*, vol. 25, no. 5, 1964, doi: 10.1051/jphys:01964002505054200ï.
- [257] T. B. Shirk and W. R. Buessem, "Theoretical and Experimental Aspects of Coercivity Versus Particle Size for Barium Ferrite," *IEEE Trans Magn*, pp. 659–663, 1971.
- [258] J. Tuček, L. Machala, J. Frydrych, J. Pechoušek, and R. Zbořil, "Mössbauer Spectroscopy in Study of Nanocrystalline Iron Oxides From Thermal Processes," in *Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology*, wiley, 2013, pp. 349–392. doi: 10.1002/9781118714614.ch18.
- [259] R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," *Acta Cryst.*, vol. 32, pp. 751–767, 1976.
- [260] Y. Wang *et al.*, "Influence of Sc<sup>3+</sup> substitution on magnetic properties of c-axis textured M-type barium ferrite," *Mater Res Express*, vol. 5, no. 6, Jun. 2018, doi: 10.1088/2053-1591/aac98c.

## PŘÍLOHY

## Příloha A.

<sup>57</sup>Fe Mössbauerovská spektra



**Obrázek 1.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**1 at. % Ga, \varepsilon-Ga<sub>0</sub>,02Fe<sub>1</sub>,98O<sub>3</sub>) vzorku z <b>1. série** (25 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                           | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | $RA \pm$ | Přiřazení              |
|----------------------------------|----------------------------------|------------|--------------|------------------|------------------|----------|------------------------|
|                                  | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1        |                        |
|                                  |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)      |                        |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,38         | -0,24            | 44,8             | 32       | Fe <sub>A</sub> pozice |
| Ga-<br>dopovaný                  |                                  | Sextet 2   | 0,36         | -0,25            | 43,9             | 11       | Fe <sub>B</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,38         | -0,02            | 38,8             | 32       | Fe <sub>C</sub> pozice |
| (1 at. % Ga)                     |                                  | Sextet 4   | 0,21         | -0,17            | 25,5             | 24       | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,47         | -0,37            | 51,6             | 1        | Fe pozice              |

**Tabulka 1.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**1 at. % Ga, ε-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>**, 25 hmot. % ε-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>/SiO<sub>2</sub> – **1. série**), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 2.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**5 at. % Ga, \varepsilon-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>) vzorku z <b>1. série** (25 hmot. %  $\varepsilon$ -Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                           | Polymorf                         | Komponenta | δ             | $\Delta E_Q$  | $B_{ m hf}$ | RA         | Přiřazení              |
|----------------------------------|----------------------------------|------------|---------------|---------------|-------------|------------|------------------------|
|                                  | Fe <sub>2</sub> O <sub>3</sub>   |            | <u>± 0,01</u> | <u>±</u> 0,01 | ± 0,3       | <u>+</u> 1 |                        |
|                                  |                                  |            | (mm/s)        | (mm/s)        | (T)         | (%)        |                        |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37          | -0,22         | 44,5        | 27         | Fe <sub>A</sub> pozice |
| Ga-<br>dopovaný                  |                                  | Sextet 2   | 0,39          | -0,32         | 43,0        | 17         | Fe <sub>B</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,38          | -0,06         | 38,0        | 36         | Fe <sub>C</sub> pozice |
| (5 at. % Ga)                     |                                  | Sextet 4   | 0,25          | -0,13         | 23,6        | 17         | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,41          | -0,25         | 51,7        | 3          | Fe pozice              |

**Tabulka 2.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**5 at. % Ga, ε-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>**, 25 hmot. % ε-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>/SiO<sub>2</sub> – **1. série**), kde δ je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 3.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**10 at. % Ga, \varepsilon-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>) vzorku z <b>1. série** (25 hmot. %  $\varepsilon$ -Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,39         | -0,31            | 41,4             | 22   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,37         | -0,24            | 43,7             | 28   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,34         | -0,02            | 36,5             | 39   | Fe <sub>C</sub> pozice |
| (10 at.% Ga)                               |                                  | Sextet 4   | 0,28         | -0,16            | 23,6             | 11   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka 3.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**10 at. % Ga, ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>, 25** hmot. % ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub> – **1. série**), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 4.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**15 at. % Ga, \varepsilon-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>) vzorku z <b>1. série** (25 hmot. %  $\varepsilon$ -Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                           | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|----------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                  | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                  |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,38         | -0,28            | 42,0             | 23   | Fe <sub>A</sub> pozice |
| Ga-                              |                                  | Sextet 2   | 0,36         | -0,30            | 39,2             | 28   | Fe <sub>B</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,28         | -0,07            | 34,6             | 34   | Fe <sub>C</sub> pozice |
| (15 at.% Ga)                     |                                  | Sextet 4   | 0,16         | -0,18            | 26,8             | 15   | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka 4.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**15 at. % Ga, ε-Ga**<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>, 25 hmot. % ε-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>/SiO<sub>2</sub> – **1. série**), kde δ je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 5.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**20 at. % Ga, \varepsilon-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>) vzorku z <b>1. série** (25 hmot. %  $\varepsilon$ -Ga<sub>0,4</sub>Fe<sub>1,4</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,29            | 39,5             | 27   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,34         | -0,25            | 36,1             | 28   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,26         | -0,03            | 32,1             | 23   | Fe <sub>C</sub> pozice |
| (20 at.% Ga)                               |                                  | Sextet 4   | 0,19         | -0,20            | 26,1             | 22   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka 5.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**20 at. % Ga, ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>, 25** hmot. % ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>/SiO<sub>2</sub> – **1. série**), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 6.** <sup>57</sup>Fe Mössbauerovské spektrum nedopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku z **2. série** (35 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>), teplota zpracování **1 100** °C, naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                         | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|------------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                                | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                                |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
| Nedopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,39         | -0,22            | 44,8             | 24   | Fe <sub>A</sub> pozice |
|                                                |                                  | Sextet 2   | 0,35         | -0,26            | 44,1             | 24   | Fe <sub>B</sub> pozice |
|                                                |                                  | Sextet 3   | 0,38         | -0,03            | 38,7             | 24   | Fe <sub>C</sub> pozice |
|                                                |                                  | Sextet 4   | 0,21         | -0,16            | 25,5             | 24   | Fe <sub>D</sub> pozice |
|                                                | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,42         | -0,26            | 51,1             | 4    | Fe pozice              |

**Tabulka 6.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek z **2. série** (35 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>), teplota zpracování **1 100** °C, kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 7.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**1 at. % Ga, \varepsilon-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>) vzorku z <b>2. série** (35 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                           | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|----------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                  | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                  |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,21            | 44,8             | 24   | Fe <sub>A</sub> pozice |
| Ga-<br>dopovaný                  |                                  | Sextet 2   | 0,37         | -0,29            | 43,8             | 15   | Fe <sub>B</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,37         | -0,03            | 38,7             | 29   | Fe <sub>C</sub> pozice |
| (1 at. % Ga)                     |                                  | Sextet 4   | 0,20         | -0,18            | 25,6             | 20   | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,38         | -0,21            | 51,0             | 12   | Fe pozice              |

**Tabulka** 7. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (1 at. % Ga, ε-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>, 35 hmot. % ε-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>/SiO<sub>2</sub> – 2. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 8.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**5 at. % Ga, \varepsilon-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>) vzorku z <b>2. série** (35 hmot. %  $\varepsilon$ -Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta$ + | $\Delta E_{O}$ + | $B_{\rm hf}$ + | RA + | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|------------|------------------|----------------|------|------------------------|
|                                            |                                  |            | · _        | <u>v</u> -       | - m <u>-</u>   |      |                        |
|                                            | $Fe_2O_3$                        |            | 0,01       | 0,01             | 0,3            | 1    |                        |
|                                            |                                  |            | (mm/s)     | (mm/s)           | (T)            | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,39       | -0,29            | 44,8           | 27   | Fe <sub>A</sub> pozice |
| Ga-<br>dopovaný                            |                                  | Sextet 2   | 0,38       | -0,25            | 43,3           | 20   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,36       | -0,01            | 38,6           | 36   | Fe <sub>C</sub> pozice |
| (5 at. % Ga)                               |                                  | Sextet 4   | 0,26       | -0,11            | 25,5           | 17   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |            |                  |                |      | Fe pozice              |

**Tabulka 8.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**5 at. % Ga, ε-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>**, 35 hmot. % ε-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>/SiO<sub>2</sub> – **2. série**), kde δ je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitováním jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 9.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**10 at. % Ga, \varepsilon-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>) vzorku z <b>2. série** (35 hmot. %  $\varepsilon$ -Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,22            | 43,3             | 32   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,36         | -0,28            | 41,1             | 22   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,33         | -0,03            | 36,3             | 39   | Fe <sub>C</sub> pozice |
| (10 at.% Ga)                               |                                  | Sextet 4   | 0,25         | -0,14            | 28,6             | 7    | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka 9.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (**10 at. % Ga, ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>, 35** hmot. % ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub> – **2. série**), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 10.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**15 at. % Ga, \varepsilon-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>) vzorku z <b>2. série** (35 hmot. %  $\varepsilon$ -Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,36         | -0,25            | 42,3             | 38   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,30         | -0,20            | 39,3             | 23   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,28         | -0,05            | 35,2             | 25   | Fe <sub>C</sub> pozice |
| (15 at.% Ga)                               |                                  | Sextet 4   | 0,23         | -0,18            | 28,5             | 14   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka** 10. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (15 at. % Ga, ε-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>, 35 hmot. % ε-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>/SiO<sub>2</sub> – 2. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 11.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**20 at. % Ga, \varepsilon-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>) vzorku z <b>2. série** (35 hmot. %  $\varepsilon$ -Ga<sub>0,4</sub>Fe<sub>1,4</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,36         | -0,25            | 40,5             | 20   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,34         | -0,28            | 37,8             | 33   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,29         | -0,05            | 33,6             | 23   | Fe <sub>C</sub> pozice |
| (20 at.% Ga)                               |                                  | Sextet 4   | 0,31         | -0,12            | 27,1             | 24   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka** 11. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (20 at. % Ga, ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>, 35 hmot. % ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>/SiO<sub>2</sub> – 2. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 12.** <sup>57</sup>Fe Mössbauerovské spektrum nedopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku z **3. série** (45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>), teplota zpracování **1 050** °C, naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                         | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|------------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                                | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                                |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
| Nedopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,19            | 44,1             | 20   | Fe <sub>A</sub> pozice |
|                                                |                                  | Sextet 2   | 0,35         | -0,32            | 43,4             | 20   | Fe <sub>B</sub> pozice |
|                                                |                                  | Sextet 3   | 0,37         | -0,06            | 38,0             | 20   | Fe <sub>C</sub> pozice |
|                                                |                                  | Sextet 4   | 0,20         | -0,20            | 25,1             | 20   | Fe <sub>D</sub> pozice |
|                                                | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,37         | -0,18            | 50,6             | 20   | Fe pozice              |

**Tabulka 12.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek z **3. série** (45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>), teplota zpracování **1 050** °C, kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 13.** <sup>57</sup>Fe Mössbauerovské spektrum nedopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku z **3. série** (45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>), teplota zpracování **1100** °C, naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                         | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|------------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                                | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                                |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
| Nedopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,38         | -0,23            | 44,8             | 12   | Fe <sub>A</sub> pozice |
|                                                |                                  | Sextet 2   | 0,37         | -0,28            | 44,1             | 12   | Fe <sub>B</sub> pozice |
|                                                |                                  | Sextet 3   | 0,38         | -0,05            | 39,0             | 12   | Fe <sub>C</sub> pozice |
|                                                |                                  | Sextet 4   | 0,25         | -0,14            | 26,0             | 12   | Fe <sub>D</sub> pozice |
|                                                | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,38         | -0,22            | 50,9             | 52   | Fe pozice              |

**Tabulka 13.** Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek z **3. série** (45 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>), teplota zpracování **1 100** °C, kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 14.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**1 at. % Ga, \varepsilon-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>) vzorku z <b>3. série** (45 hmot. %  $\varepsilon$ -Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                              | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|-----------------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                                     | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                                     |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
| Ga-<br>dopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,19            | 45,5             | 16   | Fe <sub>A</sub> pozice |
|                                                     |                                  | Sextet 2   | 0,38         | -0,31            | 44,7             | 17   | Fe <sub>B</sub> pozice |
|                                                     |                                  | Sextet 3   | 0,37         | -0,01            | 39,4             | 22   | Fe <sub>C</sub> pozice |
| (1 at. % Ga)                                        |                                  | Sextet 4   | 0,21         | -0,18            | 26,2             | 17   | Fe <sub>D</sub> pozice |
|                                                     | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,38         | -0,21            | 51,6             | 28   | Fe pozice              |

**Tabulka** 14. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (1 at. % Ga, ε-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>, 45 hmot. % ε-Ga<sub>0,02</sub>Fe<sub>1,98</sub>O<sub>3</sub>/SiO<sub>2</sub> – 3. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{\rm hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 15.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**5 at. % Ga, \varepsilon-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>) vzorku z <b>3. série** (45 hmot. %  $\varepsilon$ -Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                              | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|-----------------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                                     | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                                     |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
| Ga-<br>dopovaný<br>ε-Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,25            | 44,8             | 29   | Fe <sub>A</sub> pozice |
|                                                     |                                  | Sextet 2   | 0,37         | -0,26            | 43,5             | 15   | Fe <sub>B</sub> pozice |
|                                                     |                                  | Sextet 3   | 0,37         | -0,03            | 38,3             | 37   | Fe <sub>C</sub> pozice |
| (5 at. % Ga)                                        |                                  | Sextet 4   | 0,26         | -0,12            | 24,5             | 16   | Fe <sub>D</sub> pozice |
|                                                     | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,42         | -0,28            | 51,0             | 3    | Fe pozice              |

**Tabulka** 15. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (5 at. % Ga, ε-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>, 45 hmot. % ε-Ga<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>/SiO<sub>2</sub> – 3. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 16.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**10 at. % Ga, \varepsilon-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>) vzorku z <b>3. série** (45 hmot. %  $\varepsilon$ -Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| <b>X</b> 7 1                               | D 1 C                            | T7 .       | C 1          |                  |                  |             |                        |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|-------------|------------------------|
| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | КА <u>+</u> | Přířazení              |
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1           |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)         |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,39         | -0,26            | 40,8             | 21          | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,37         | -0,24            | 43,9             | 39          | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,34         | -0,02            | 36,5             | 30          | Fe <sub>C</sub> pozice |
| (10 at.% Ga)                               |                                  | Sextet 4   | 0,25         | -0,14            | 23,1             | 7           | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   | 0,32         | -0,21            | 51,4             | 3           | Fe pozice              |

**Tabulka** 16. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (10 at. % Ga, ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>, 45 hmot. % ε-Ga<sub>0,2</sub>Fe<sub>1,8</sub>O<sub>3</sub>/SiO<sub>2</sub> – 3. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 17.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**15 at. % Ga, \varepsilon-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>) vzorku z <b>3. série** (45 hmot. %  $\varepsilon$ -Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|------------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,37         | -0,25            | 42,6             | 28   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,35         | -0,28            | 40,0             | 33   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,30         | -0,06            | 35,4             | 25   | Fe <sub>C</sub> pozice |
| (15 at.% Ga)                               |                                  | Sextet 4   | 0,30         | -0,07            | 29,0             | 14   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                  |      | Fe pozice              |

**Tabulka** 17. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (15 at. % Ga, ε-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>, 45 hmot. % ε-Ga<sub>0,3</sub>Fe<sub>1,7</sub>O<sub>3</sub>/SiO<sub>2</sub> – **3. série**), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.



**Obrázek 18.** <sup>57</sup>Fe Mössbauerovské spektrum Ga-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (**20 at. % Ga, \varepsilon-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>) vzorku z <b>3. série** (45 hmot. %  $\varepsilon$ -Ga<sub>0,4</sub>Fe<sub>1,4</sub>O<sub>3</sub>/SiO<sub>2</sub>), naměřené v nulovém magnetickém vnějším poli.

| Vzorek                                     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{ m hf} \pm$ | RA ± | Přiřazení              |
|--------------------------------------------|----------------------------------|------------|--------------|------------------|-----------------|------|------------------------|
|                                            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3             | 1    |                        |
|                                            |                                  |            | (mm/s)       | (mm/s)           | (T)             | (%)  |                        |
|                                            | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,35         | -0,28            | 37,5            | 37   | Fe <sub>A</sub> pozice |
| Ga-                                        |                                  | Sextet 2   | 0,36         | -0,26            | 40,4            | 21   | Fe <sub>B</sub> pozice |
| $\epsilon$ -Fe <sub>2</sub> O <sub>3</sub> |                                  | Sextet 3   | 0,31         | -0,14            | 33,3            | 21   | Fe <sub>C</sub> pozice |
| (20 at.% Ga)                               |                                  | Sextet 4   | 0,32         | -0,10            | 27,1            | 21   | Fe <sub>D</sub> pozice |
|                                            | α-Fe <sub>2</sub> O <sub>3</sub> | Sextet 5   |              |                  |                 |      | Fe pozice              |

**Tabulka** 18. Hodnoty hyperjemných parametrů, odvozené z fitovaného <sup>57</sup>Fe mössbauerovského spektra měřeného při pokojové teplotě pro Ga-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém (20 at. % Ga, ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>, 45 hmot. % ε-Ga<sub>0,4</sub>Fe<sub>1,6</sub>O<sub>3</sub>/SiO<sub>2</sub> – 3. série), kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.
# Příloha B.

# An effect of scandium substitution on the phase purity and structural, magnetic, and electrochemical features of ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticle systems

Michaela Polášková, Ondřej Malina, Jiří Tuček, Petr Jakubec

Nanoscale, 2022, 14, 5501-5513.

# Nanoscale





View Article Online View Journal | View Issue

Check for updates

Cite this: Nanoscale, 2022, 14, 5501

# An effect of scandium substitution on the phase purity and structural, magnetic, and electrochemical features of $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticle systems

Michaela Polášková,<sup>a,b</sup> Ondřej Malina, 💷 a Jiří Tuček\*<sup>c</sup> and Petr Jakubec 🕮 \*a

A series of Sc-substituted e-Fe<sub>2</sub>O<sub>3</sub> nanoparticles embedded in a silica matrix were synthesized by a solgel process. It was found that the preparation of a pure  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase without any other iron(III) oxide phases as admixtures was achieved for  $\epsilon$ -Sc<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>3</sub> (5 at% of Sc) as documented by analyses of X-ray powder diffraction (XRD) results. Extensive physicochemical characterization of the e-Sco.1Fe1.9O3 sample was performed employing transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), magnetization measurements, <sup>57</sup>Fe Mössbauer spectroscopy, and electrochemical impedance spectroscopy (EIS). Magnetization vs. temperature plots showed vanishing of the two-step magnetic transition for the Sc-doped  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> sample; a decrease in the magnetization profile was observed only once upon the change in the temperature. The Sc3+ substitution was found to cause a constriction of the magnetic transition region and a shift of the onset of the magnetic transition to a higher temperature in comparison with the undoped e-Fe<sub>2</sub>O<sub>3</sub> system. Moreover, upon the introduction of  $Sc^{3+}$  ions in the  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> crystal lattice, a magnetic hardness was altered accompanied by a decrease in the coercivity. With <sup>57</sup>Fe Mössbauer spectroscopy, it was identified that Sc<sup>3+</sup> predominantly substitutes Fe<sup>3+</sup> in the distorted octahedral A- and B-sites and with almost equivalent occupation probability at both positions. Moreover, the electrochemical measurements confirmed the increase in the resistivity in the Sc-doped  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systems. Thus, the results, achieved within the present study, demonstrated an effect of Sc $^{3+}$  substitution on the preparation purity of  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systems without the presence of any other iron (III) oxide admixtures and on the change in its magnetic and electrochemical features, proving their feasible tuning with respect to the requirements of potential future applications.

Received 20th January 2022, Accepted 8th March 2022 DOI: **10.1039/d2nr00392a** 

rsc.li/nanoscale

# Introduction

Iron oxides belong to the group of the most studied nanomaterials and have found exploitations in many everyday applications so far. Their biggest benefit stems from the suitable physicochemical, electronic, magnetic, and biochemical properties they exhibit.<sup>1–9</sup> Up to now, four crystalline iron(m) oxide phases have been identified: (i)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (hematite); (ii)  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>; (iii)  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> (maghemite); and (iv)  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>.<sup>7–10</sup> The existence of these iron(m) oxide phases is a result of polymorphism; it is a feature of some chemical compounds when it is thermodynamically feasible to form two or more phases that are of isochemical nature but have different physical behaviour originating from different crystal structures they possess.<sup>1–10</sup>

The rare  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase is considered as the most exciting and promising phase within the family of iron(m) oxide polymorphic members. The  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase possesses the orthorhombic crystal structure with four distinct non-equivalent iron cation sites, *i.e.*, three different octahedral and one tetrahedral positions. All the iron cation sites exhibit different degrees of distortion of local iron surroundings, which subsequently influence and control the unusual magnetic properties of the rare  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase.<sup>8,11-13</sup> From the magnetic point of view, the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase behaves as a collinear ferrimagnetic material at room temperature with a large value of the coercivity of about 2 T and with the Curie transition temperature (*i.e.*, a transition from a magnetically ordered state to a paramagnetic regime) of around 850 K.<sup>14-17</sup> A series of complex magnetic transitions, involving passages between

<sup>&</sup>lt;sup>a</sup>Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Czech Republic, F-mail: p.jakubec@upol.cz

<sup>&</sup>lt;sup>b</sup>Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic <sup>c</sup>Department of Mathematics and Physics, Faculty of Electrical Engineering and Informatics, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic, E-mail: iiri.tucek@unce.cz

magnetically ordered states with distinct nature, occurs at low temperatures within the temperature interval from 110 and 150 K.  $^{\rm 18-27}$ 

 $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is frequently termed the youngest iron(m) oxide polymorph. Its first observation falls back to 1934, when Forestier and Guiot-Guillain<sup>28</sup> reported an unstable crystalline structure of Fe<sub>2</sub>O<sub>3</sub> nature with properties distinct from those of two iron(III) oxide forms, *i.e.*,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>, well known at that time. In 1963, Schrader and Büttner<sup>29</sup> isolated a dark brown ferrimagnetic Fe<sub>2</sub>O<sub>3</sub> phase and named it ε-Fe<sub>2</sub>O<sub>3</sub> for the first time. In the same year, Walter-Lévy and Quéméneur<sup>30</sup> described a new crystalline intermediate phase emerging during a formation of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and identified it as  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>. The interest of the scientific community to explore the features and application potential of *ɛ*-Fe<sub>2</sub>O<sub>3</sub> was highly encouraged after the work of Tronc et al.<sup>11</sup> in 1998, where the detailed structural and magnetic characterization of this intriguing phase was presented for the first time. Since then, several important discoveries have followed.<sup>11,31-39</sup> In 2004, Ohkoshi et al.<sup>40</sup> showed that *ɛ*-Fe<sub>2</sub>O<sub>3</sub> exhibits an extremely high coercivity amounting to about 2 T at room temperature. In 2006, Gich et al.41 reported the coupling of magnetic and dielectric properties of ε-Fe<sub>2</sub>O<sub>3</sub>, a feature related to the possibility to vary the dielectric permittivity by applying a magnetic field. In 2009, Namai et al.42 firstly observed the occurrence of ferromagnetic resonance in ɛ-Fe<sub>2</sub>O<sub>3</sub> in the microwave domain, the frequency of which can be effectively tuned by doping. Finally, in 2014, Gich et al.43 described ferroelectric switching with pronounced polarization and low switching voltages in epitaxial E-Fe2O3 thin layers. Thus, E-Fe2O3 is regarded as an advanced multifunctional nanomaterial with a broad spectrum of potential/ future applications. It is frequently classified as a new generation of hard magnets for exploration in future recording media. ε-Fe<sub>2</sub>O<sub>3</sub> has been found effective as a millimetre range electromagnetic wave absorber for avoiding electromagnetic interference in wireless communications. It has also been successively tested as a principal component in magneto-optical devices as a sub-THz wave isolator and circulator. Moreover, it has been shown that E-Fe2O3 can be used in processes involving a nonlinear optical-magnetoelectric effect due to its high optical transparency and size-tuned magnetic characteristics. Finally, a phenomenon of ferroelectric switching opens the doors to apply E-Fe<sub>2</sub>O<sub>3</sub> as a multiferroic material in various electromagnetically coupled fields.40,42,44,45

The altering and boosting of the extraordinary magnetoelectric properties of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> can be achieved by the substitution of Fe<sup>3+</sup> atoms in the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> crystal structure by other elements. There are many examples in the literature where the introduction of foreign cations can significantly modify the magnetic properties of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. So far, the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> crystal structure has been doped with several non-iron cations including Al<sup>3+</sup>, Ga<sup>3+</sup>, In<sup>3+</sup>, and Rh<sup>3+</sup>;<sup>24,42,46-65</sup> if the valence of the ions differs from +3, the substitution in  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is otherwise difficult. It has been found that these cations have different preferences regarding the substitution site, governed by their ionic radius. Ga<sup>3+</sup> has been observed to predominantly substi-

#### View Article Online

#### Nanoscale

tute Fe<sup>3+</sup> in the tetrahedral D-sites, Al<sup>3+</sup> exclusively occupies tetrahedral D-sites, In<sup>3+</sup> mainly substitutes Fe<sup>3+</sup> in the distorted octahedral B-sites (and possibly also in the distorted octahedral A-sites), and Rh<sup>3+</sup> prefers regular octahedral C-sites. Much attention has been devoted to Rh<sup>3+</sup> substitution; the presence of Rh3+ in the crystal structure of E-Fe2O3 enhances magnetic anisotropy due to the large single-ion anisotropy carried by Rh<sup>3+</sup>. This, in turn, increases the coercivity of Rh<sup>3+</sup>substituted E-Fe2O3 systems, positioning them among one of the hardest magnets ever prepared. Surprisingly, if Ga<sup>3+</sup> and Al<sup>3+</sup> ions replace some Fe<sup>3+</sup> ions in the crystal structure, the broad transition from ~80 K to ~150 K gradually disappears upon increasing the concentration of the foreign cations; there is no magnetic softening observed for these systems. In the case of In<sup>3+</sup>, the transition is shifted to higher temperatures (around 200 K) and is much sharper.

Recently, scandium (Sc) substitution has been identified as an appealing strategy to alter the physicochemical properties of ferrite structures and rare-earth metal containing materials. For example, Sc<sup>3+</sup> doping was found to positively modify the magnetic features of M-type barium ferrite (BaM) with  $BaSc_xFe_{12-x}O_{19}$  (x = 0.2, 0.5, 0.7, 0.9, and 1.1) nominal configuration. More specifically, increasing the content of Sc3+ ions in the crystal structure of BaM ferrite caused a decrease in the magneto-crystalline anisotropy field, saturation magnetization, and coercivity, and reduction of the squareness ratio.<sup>66</sup> Furthermore, from the perspective of magnetic behaviour, the introduction of scandium ions in the crystal lattice of the R5T4 systems (where R is the rare-earth element and T represents the Group 13-15 elements) was reported to change the strength of ferromagnetic interactions among magneticallyactive centres, resulting in an increase in the Curie temperature and the presence of the first-order magnetostructural transitions, boosting the magnetocaloric effect.<sup>67</sup> Finally, the structures of spinel nature with increasing level of Sc<sup>3+</sup> ions substituting relevant elements were proposed as effective candidates for applications as electrode materials in rechargeable Li-ion batteries due to stabilization of spinel phases and enhancement of electrochemical performance.68,69 Therefore, scandium is widely recognized as an interesting magnetic and electrochemical tuner. However, no study on doping of Sc<sup>3+</sup> ions into the E-Fe2O3 crystal structure and its effect on physicochemical characteristics has been conducted yet.

In the present work, we thus expand the portfolio of potential doping elements in the crystal structure of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase with Sc. By employing a broad spectrum of experimental techniques including standard and high-resolution transmission electron microscopy (TEM and HRTEM), X-ray powder diffraction (XRD), Mössbauer spectroscopy, magnetization measurements, and electrochemical impedance spectroscopy (EIS), we studied its fundamental effect on the structural, magnetic, and electrochemical features of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. In brief, from the analyses of the experimental results, we found that Se<sup>3+</sup> ions occupy distorted octahedral sites in the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> crystal structure. While they do not alter the magnetic response under high applied fields, they, however, influence the coercivity; as

### Nanoscale

the concertation of  $\mathrm{Sc}^{3+}$  ions in the crystal structure of  $\epsilon\text{-}\mathrm{Fe_2O_3}$  increases, a decrease in its coercivity is observed, thereby decreasing the magnetic hardness of the Sc-substituted  $\epsilon\text{-}\mathrm{Fe_2O_3}$ . Moreover, they modify the character of the low-temperature magnetic transitions, shifting their onset to higher temperatures. Finally, the introduction of  $\mathrm{Sc}^{3+}$  ions in the  $\epsilon\text{-}\mathrm{Fe_2O_3}$  crystal lattice resulted in an increase in the resistivity of Sc-doped  $\epsilon\text{-}\mathrm{Fe_2O_3}$  systems, as witnessed from the electrochemical measurements.

# Materials and methods

The nanoparticles of  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (where x = 0, 0.02, 0.1, 0.2, 0.3, 0.4) embedded in a silica matrix were synthesized using the sol-gel method. The synthetic route was adopted from the work by Gich *et al.*<sup>41</sup> and Savii *et al.*<sup>70</sup>

Hydrolysis and condensation reactions were carried out in an acidic hydroethanol medium. The mole ratio of tetraethyl orthosilicate (TEOS): water  $(H_2O)$ : ethanol (CH<sub>3</sub>CH<sub>2</sub>OH) was equal to 1:6:6.

First, water and ethanol were mixed. Then, scandium(m) nitrate tetrahydrate was added to the solution. The solution was stirred until the nitrate dissolved. Subsequently, iron(m) nitrate nonahydrate was added to the solution as a precursor for  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles. The solution was again stirred for 10 minutes. Tetraethyl orthosilicate (TEOS) was added to the solution dropwise. The solution was stirred for another 15 minutes and then spilled over to Petri dishes.

After gelation, the samples were left to age for 10 days. Then, the gels were ground into a powder and dried for 24 hours at 60 °C. Next, the samples were exposed to heat treatment in air, according to the procedure shown in Fig. 1. First, the powder was heated from room temperature to 450 °C at a rate of 200 °C per hour. Then, the powder was heated from 450 °C to 1100 °C at a rate of 80 °C per hour. At 1100 °C, the powder was held for 3 hours and then left to cool down spontaneously to room temperature.



Fig. 1 A diagram showing the heat treatment procedure of  $\epsilon\text{-}\mathsf{Sc}_x\mathsf{Fe}_{2-x}\mathsf{O}_3$  nanoparticles.

This journal is © The Roval Society of Chemistry 2022

#### **View Article Online**

#### Paper

Following the above described synthetic protocol, a series of  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> samples with a  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> content of 25 wt% were prepared. They differed in the atomic concentrations of Sc (0, 1, 5, 10, 15, and 20 at%, *i.e.*, *x* = 0, 0.02, 0.1, 0.2, 0.3, and 0.4). The heat treatment temperature was set to 1100 °C. The samples were doped with Sc atoms for stabilization of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase.

The temperature of 1100 °C was chosen on the basis of the previous experiments when 5 identical samples ( $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>) were prepared and exposed to different heat treatment temperatures, *i.e.*, 900, 950, 1000, 1050, and 1100 °C. The highest content of the  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase with respect to other iron(m) oxide phase/phases was achieved for the sample with the heat treatment temperature of 1100 °C. The content of the  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase in the samples increased with increasing heat treatment temperature up to 1100 °C.

# Reagents

Iron(III) nitrate nonahydrate, ACS reagent, ≥98%, scandium(III) nitrate hydrate, 99.9% trace metal basis and tetraethyl orthosilicate, ≥99.0% (TEOS) were purchased from Sigma Aldrich (Prague, Czech Republic). Ethanol p.a. was purchased from BC – CHEMSERVIS s.r.o. (Rožnov pod Radhoštěm, Czech Republic). All chemicals were used as supplied without further purification. Hydrofluoric acid 38–40% G.R. was purchased from Lach-Ner, s.r.o. (Neratovice, Czech Republic). For electrochemistry measurements, the SiO<sub>2</sub> matrix from the Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> samples was removed using 38–40% G.R. hydrofluoric acid. Potassium ferricyanide (p.a.) was purchased from Lachema (Brno, Czech Republic) and potassium chloride (p.a.) was obtained from Penta (Prague, Czech Republic). Ultrapure water (18 MΩ cm<sup>-1</sup>) was used for the preparation of all the aqueous electrolytes and dispersions.

# Experimental techniques

Transmission electron microscopy (TEM) images were obtained using a JEM-2100 electron microscope (JEOL). Highresolution transmission electron microscopy (HRTEM) images and maps of elemental distribution were acquired using a FEI Titan 60–300 kV transmission electron microscope.

X-ray diffraction (XRD) patterns of nanosized iron(m) oxide phases were recorded on a PANalytical X'Pert PRO diffractometer (iron-filtered Co K<sub>\alpha</sub> radiation:  $\lambda = 0.178901$  nm, 40 kV, and 30 mA) in the Bragg–Brentano geometry, equipped with an X'Celerator detector, programmable divergence and diffracted beam anti-scatter slits. The respective sample was placed on a zero-background Si slide, gently pressed and scanned in a 2 $\theta$ range from 10° to 105°. Phase identification and Rietveld quantitative phase analysis were performed using a PANalytical HighScore Plus software with PDF-4+ and ICSD databases.

The <sup>57</sup>Fe Mössbauer spectra were measured employing a home-made Mössbauer spectrometer, operating in a constant

Nanoscale, 2022, 14, 5501-5513 | 5503

#### Paper

acceleration regime and transmission geometry, equipped with a  $\gamma$ -rays radioactive source from a  ${}^{57}$ Co isotope in a Rh matrix with an initial intensity of 50 mCi. The transmission  ${}^{57}$ Fe Mössbauer spectra were recorded at room temperature with a zero applied magnetic field. The  ${}^{57}$ Fe Mössbauer spectra were then processed and analysed using the MossWinn software package and its available processing tools. Prior to fitting, background and instrumental features of the respective Mössbauer spectrometer, affecting the Mössbauer signal, were considered. The isomer shift values were referred to  $\alpha$ -Fe foil at room temperature.

Magnetization measurements were performed using a PPMS Quantum Design magnetometer. Zero-field-cooled (ZFC) magnetization curves were measured from 5 to 300 K at a given external magnetic field (100, 1000, and 10 000 Oe), directly after cooling the samples from 300 to 5 K in a zero magnetic field. For field-cooled (FC) magnetization measurements, the samples were cooled from 300 K to 5 K under a given external magnetic field (100, 1000, and 10 000 Oe) and then measured in an identical external magnetic field in the temperature range from 5 to 300 K. Hysteresis loops were recorded at 5 and 300 K under the external magnetic fields ranging from  $-50\ 000$  Oe to 50 000 Oe.

The electrochemical impedance experiments were performed in a three-electrode setup using a Metrohm Autolab PGSTAT128N (Metrohm Autolab B.V., Netherlands) equipped with the NOVA software (version 1.11.2). An aqueous solution of potassium chloride ( $c = 1 \mod L^{-1}$ ) containing potassium ferricyanide ( $c = 5 \mod L^{-1}$ ) as a redox probe served as a testing platform for all the electrochemical impedance experiments. Electrochemical impedance spectroscopy (EIS) was performed in a frequency range from 10 kHz to 1 Hz using an amplitude of 0.01 V and a half-wave potential ( $E_{1/2}$ ) of 0.2 V. All the measurements were performed at ambient laboratory temperature ( $22 \pm 2 \degree$ C).

A commercially available glassy carbon electrode (GCE), platinum wire electrode and Ag/AgCl/3 M KCl electrode (all purchased from 2Theta company, Czech Republic) served as working, auxiliary and reference electrodes, respectively. The modification of the working electrode proceeded as follows: a sample dispersion in distilled water (a concentration of 2 mg mL<sup>-1</sup>) was prepared, then  $1 \times 10 \ \mu$ L of the well-homogenized dispersion was dropped on the surface of GCE and left for drying at a room temperature to form a thin film.

## Results and discussion

# Chemical, structural, and morphological characterization of the prepared $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>-based systems

Fig. 2 illustrates the set of XRD spectra corresponding to  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> samples with different Sc contents. All the XRD spectra contain crystalline diffraction peaks that correspond to  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and/or  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> phases. Moreover, the typical silica glass hump is observed in each XRD pattern. According to the analyses of the respective XRD profiles, the sample with an



#### Nanoscale



**Fig. 2** (a) XRD patterns of  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0, 0.02, 0.1, 0.2, 0.3, and 0.4) systems embedded in the SiO<sub>2</sub> matrix. (b) Total amount of iron oxide phases and (c) average diameter of nanoparticles in  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> (x = 0, 0.02, 0.1, 0.2, 0.3, and 0.4) samples.

Sc content of 5 at% consists of only  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (with other iron(m) oxide polymorphs existing in a fraction below the detection limit of the XRD technique). In order to understand the effect of Sc doping on the physical features of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (especially its substitution site preference and change in the magnetic properties), this sample was chosen for a detailed physicochemical characterization by other relevant techniques.

Other samples with the content of Sc of up to 15 at% are composed of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> as a major phase and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> as a minor phase, showing different ratios of these phases, as shown in Fig. 2. The exception is the sample with an Sc content of 20 at%, which consisted of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> and  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>, not  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, as was the case with the samples with a lower Sc amount.

As it is well known, E-Fe<sub>2</sub>O<sub>3</sub> exhibits an orthorhombic crystal structure with a space group of Pna21 with lattice parameters a = 5.072 Å, b = 8.736 Å, and c = 9.418 Å and  $\alpha = \beta = \gamma =$  $90^{\circ}.^{35}$  The lattice parameters of undoped  $\epsilon\text{-}Fe_2O_3$  obtained from the analysis of the respective XRD pattern were found to be a = 5.098 Å, b = 8.808 Å, and c = 9.476 Å. For Sc-doped  $\varepsilon$ - $Fe_2O_3$  (*i.e.*,  $\varepsilon$ -Sc<sub>0.1</sub> $Fe_{1.9}O_3$ , 5 at% of Sc), XRD analysis yielded a =5.114 Å, b = 8.811 Å, and c = 9.501 Å. The change in the values of the lattice parameters for the Sc-doped e-Fe<sub>2</sub>O<sub>3</sub> system implies that the Sc atoms must have been incorporated into the crystal structure of ε-Fe<sub>2</sub>O<sub>3</sub>. The lattice parameters, derived for the Sc-doped E-Fe2O3 phase, do not differ significantly from those observed for its undoped E-Fe2O3 counterpart due to a similar ionic radius of Fe3+ and Sc3+ in the octahedral coordination (for more details, see discussion on <sup>57</sup>Fe Mössbauer spectroscopy results below).

Fig. 3a and c show the TEM images of the  $\epsilon$ -Sc<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>3</sub> and undoped  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> samples, respectively, illustrating almost



Fig. 3 (a) A representative TEM image of the  $\epsilon\text{-}Sc_{0.1}Fe_{1.9}O_3$  sample, embedded in the SiO<sub>2</sub> matrix (heat treatment temperature = 1100 °C). (b) Particle size distribution, derived from the statistical analysis of the representative TEM images of the  $\epsilon\text{-}Sc_{0.1}Fe_{1.9}O_3$  sample, with a fitting by the log–normal probability distribution curve. (c) A representative TEM image of the undoped  $\epsilon\text{-}Fe_2O_3$  sample, embedded in the SiO<sub>2</sub> matrix (heat treatment temperature = 1100 °C). (d) Particle size distribution, derived from the statistical analysis of the representative TEM images of the  $\epsilon\text{-}Fe_2O_3$  sample, with a fitting by the Gaussian probability distribution curve.

spherical nanoparticles embedded in the silica matrix. The particle size distribution (see Fig. 3b) was calculated from the representative set of TEM images for the  $\epsilon$ -Sc\_{0.1}Fe\_{1.9}O\_3 sample using ImageJ software and fitted by the log normal distribution.

For comparison, the particle size distribution (see Fig. 3d) was also determined for the undoped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> system, this time using the Gaussian distribution function. The average particle diameter in the  $\varepsilon$ -Sc<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>3</sub> system was found to be approximately 16.5 nm with a standard deviation of 0.2 nm. On the other hand, the average diameter of iron(m) oxide nanoparticles in undoped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> was calculated to be about 14.3 nm with a standard deviation of 0.3 nm.

Thus, it seems that with the introduction of  $Sc^{3+}$  ions in the crystal lattice of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, it is thermodynamically favourable for  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>-based nanoparticles to exist with a larger diameter. The presence of  $Sc^{3+}$  ions most probably alters the stabilization barriers of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles, predominantly driven by the Gibbs free energy. The elemental maps shown in Fig. 4 confirm the distribution of Sc atoms in the crystal structure of the iron(m) oxide nanoparticles embedded in the silica matrix.

# Magnetic and site-occupation features of $\epsilon\mbox{-}Fe_2O_3\mbox{-}based$ systems

In order to delineate the effect of scandium doping on the magnetic features of the  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> system, magnetization measurements, involving recording temperature-dependent



Fig. 4 HRTEM image of  $\epsilon$ -Sc<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>3</sub> and respective elemental maps of Sc, Si, O, and Fe.

magnetization curves within the ZFC/FC protocols and isothermal field-dependent hysteresis loops, were performed for both Sc-free and Sc-substituted samples. The results are depicted in Fig. 5.

Prior to the discussion of magnetization measurement results, it should be stressed that the magnetic behaviour of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is very complex and has been a matter of extensive debate over the past two decades.8 Until now, several hypotheses, based on both theoretical modelling and experimental observations, had been proposed to describe the magnetic state of  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> and its evolution with temperature. Since the pioneering work by Tronc et al.<sup>11</sup> in the late nineties of the  $20^{\text{th}}$  century,  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is described as a four-sublattice ferrimagnet; 4 magnetic sublattices stem from the existence of 4 nonequivalent Fe sites in the E-Fe2O3 crystal structure, i.e., 3 octahedral (Fe<sub>A</sub>, Fe<sub>B</sub>, and Fe<sub>C</sub>) positions and one tetrahedral (Fe<sub>D</sub>) site.<sup>8</sup> The octahedral sites differ significantly in the degree of distortion - it was found to be high for FeA and FeB sites and negligible for Fe<sub>C</sub> sites. Thus, Fe<sub>A</sub> and Fe<sub>B</sub> sites show a distorted octahedral coordination while Fec sites are regarded as having a regular octahedral structure. Within the frequently accepted model, the FeB and FeC sublattice magnetizations, lying along each other, are oriented in an opposite direction to mutually-parallel Fe<sub>A</sub> and Fe<sub>D</sub> sublattice magnetizations.<sup>8,12</sup> The imperfect antiferromagnetic ordering gives rise to a net magnetization pointing along the crystallographic a-axis (see Fig. 6a).<sup>8,12</sup> The magnetic structure of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> shows interesting temperature-dependent features (see Fig. 6b), mostly due to the peculiar crystallographic arrangements of Fe cations and nanosized nature of e-Fe2O3. Its intriguing magnetic properties are often believed to be a result of strong magnetocrystalline (and shape) anisotropy (driven by crystallographic structure and nanoobject's shape), single-domain state (due to size limit of thermodynamically-stable &-Fe2O3 nanoobjects) and non-zero orbital moment of Fe3+ ions with significant spinorbit coupling.8 They act synergistically, with strengthened and suppressed roles upon changing the temperature. Consequently, the existence of several magnetic regimes has been identified so far, each having a characteristic temperature interval in which it occurs (see Fig. 6b).

Paper

View Article Online



Fig. 5 The ZFC/FC magnetization curves, recorded under an applied field of 100, 1000, and 10 000 Oe, for (a) undoped and (b) Sc-doped  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> samples. Hysteresis loops, measured at a temperature of 5 and 300 K, for (c) undoped and (d) Sc-doped  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> samples. The insets show the profiles of the hysteresis loops around the origin, highlighting the coercivity and remanence values.

Formerly, the Curie temperature of  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, separating the magnetically ordered and paramagnetic state, was determined at ~490 K.8,11,13 However, recent works reported that the magnetically ordered regime can sustain up to ~850 K, at which  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> becomes paramagnetic.<sup>14–17</sup> Thus, at ~480 K, a magnetic transition occurs, separating the two distinct ferrimagnetic phases. Above ~480 K, it is believed that the ferrimagnetic structure is maintained by only two magnetic sublattices (from Fe<sub>A</sub> and Fe<sub>B</sub> sites) which are still ordered while the magnetic order in other magnetic sublattices (from Fe<sub>C</sub> and Fe<sub>D</sub> sites) is disrupted.14 In the temperature interval from ~480 K to ~850 K, E-Fe<sub>2</sub>O<sub>3</sub> adopts a soft ferrimagnetic state. In this regime, the ferromagnetic component and coercivity are much smaller compared to those found in magnetic states below ~480 K.  $^{14,17}$  From ~150 K to ~480 K,  $\epsilon\text{-Fe}_2\text{O}_3$  is found in a hard ferrimagnetic state and frequently described as a collinear ferrimagnet with all 4 magnetic sublattice fully

ordered.<sup>8,11,12,18,38,40</sup> Other scenarios proposed that down to ~150 K, ɛ-Fe<sub>2</sub>O<sub>3</sub> behaves a canted antiferromagnet;<sup>19</sup> however, no theoretical model has been developed so far satisfactorily explaining such a magnetic structure. In the temperature range from ~80 to ~150 K, a broad magnetic transition appears accompanied by a dramatic change in the coercivity and magnetization.<sup>8,13,19-27</sup> It is described either as a two-step or a three-step process;<sup>8,13,71</sup> in both suggested scenarios, this transition is a consequence of structural distortions of the crystal lattice. On cooling, the two-step transition involves spin reorientation of the local magnetic moments in the magnetic sublattices (from ~130 K to ~150 K), followed by the intermediate-spin-high-spin state transition of Fe<sup>3+</sup> cations present in the tetrahedral D-sites (from ~100 K to ~130 K).<sup>71</sup> On the other, within the three-step transition model, the birth of a new low-temperature magnetic structure is promoted by changes in the coordination of the octahedral A-sites and tetraPublished on 08 March 2022. Downloaded by Univerzita Palackého v Olomouci on 8/22/2022 6:49:50 AM.

View Article Online

Paper



**Fig. 6** (a) A diagram showing the ferrimagnetic arrangement of magnetic moments of Fe atoms occupying various (Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub>, and Fe<sub>D</sub>) crystallographic sites in the crystal structure of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase including the magnitudes of iron magnetic moments and the values of  $Z_{ij}J_{ij}$  parameters at 300 K, where  $Z_{ij}$  (*i*, *j* = A, B, C, D) involves the number of exchange pathways,  $J_{ij}$  (*i*, *j* = A, B, C, D) represents the effective exchange integrals, and  $m_{HT}$ (Fe<sub>j</sub>), *i* = A, B, C, D, stands for magnetic moments of Fe<sup>3+</sup> ions sitting at the A-, B-, C-, and D-site (adapted from Tuček *et al.*<sup>8</sup> and Ohkoshi *et al.*<sup>12</sup>). (b) A magnetic phase pathway of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> with temperature, with important magnetic transition temperatures and magnetic regimes, identified so far (embedded images adapted from Muñoz *et al.*<sup>14</sup> and Tadic *et al.*<sup>78</sup>).

hedral D-sites, alteration of the strength of spin–orbit coupling, and occurrence of spin reorientation.<sup>8,13,72,73</sup> Thus, some authors have suggested the existence of the Morin-like transition, typically appearing in  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>.<sup>74</sup> Below ~80 K, an incommensurate magnetic structure with a square-wave character is established.<sup>8,13,14,21</sup> However, some works reported other low-temperature ground magnetic states which resemble features of a canted antiferromagnet with a canting angle different from that above ~150 K.<sup>8,19</sup> Recently, it was suggested

that as a result of strong frustrations of the  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> magnetic structure, a series of magnetic transitions occur upon cooling from ~150 K down to ~80 K, encouraging the formation of non-collinear magnetic arrangement with the magnetic spiral as a ground magnetic state of the system.<sup>75</sup> Moreover, a field-induced transition was witnessed at a temperature interval from ~50 K to ~80 K;<sup>76</sup> however, its nature has not been clearly understood yet. In an early study, a metamagnetic transition was suggested to occur at around 50 K;<sup>19</sup> however, no

This journal is © The Royal Society of Chemistry 2022

attention has been devoted to systematically study this phenomenon so far and thus, it remains a questionable issue.

The complex temperature-dependent magnetic phase diagram, described above, is frequently observed for  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoobjects (nanoparticles, nanowires, nanorods, *etc.*) with dimensions higher than ~8 nm. However, if the size of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles falls below 8 nm, a superparamagnetic behaviour emerges. It was shown that the superparamagnetic size limit for  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> is about 7.5 nm.<sup>15,25,26,45,77</sup> For such small  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles, the characteristic broad transition, occurring from ~80 K to ~150 K, disappears and is, most probably, shifted down below 4.2 K. The ultrafine  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles show a blocked magnetic state that persists up to at least 800 K. Such a peculiar behaviour was understood in terms of redistribution of Fe<sup>3+</sup> cations over the crystallographic positions, especially, an increase of their population in the tetrahedral sites.<sup>26</sup>

Analogously to the particle size, the doping with foreign cations can significantly modify the magnetic properties of ε-Fe<sub>2</sub>O<sub>3</sub> as heavily reported elsewhere in the literature and mentioned briefly above.<sup>24,42,46-65</sup> As clearly seen from our results for the undoped phase (see Fig. 5a), both ZFC and FC magnetization curves, recorded under an external magnetic field of 100 and 1000 Oe, shows two significant steps, i.e., one at ~100 K and the other one at ~140 K. These steps are signatures of a broad magnetic transition, typical of ɛ-Fe<sub>2</sub>O<sub>3</sub>, indicating a passage from a collinear ferrimagnetic state to a regime with features of an incommensurate magnetic structure. The ZFC/FC magnetization curves departure from each other, implying the presence of the fraction with superparamagnetic/magnetically-blocked properties. Its origin could come from very small *e*-Fe<sub>2</sub>O<sub>3</sub> nanoparticles with sizes below the superparamagnetic limit (~7.5 nm, see size distribution derived from TEM images shown in Fig. 3d) and/or y-Fe2O3 nanoparticles with a portion not detectable in the XRD pattern and the <sup>57</sup>Fe Mössbauer spectrum (see above and below). Under a field of 10 000 Oe, the separation of the ZFC/FC magnetization curves is more pronounced with a low-temperature ZFC magnetization profile typical of systems with superparamagnetic behaviour (with a representative blocking temperature somewhere in the temperature interval range from ~100 to ~147 K). For the Sc-substituted  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> sample, a dramatic change in the ZFC/FC magnetization profile is witnessed (see Fig. 5b). Both ZFC/FC magnetization curves under all applied fields show only one maximum, corresponding to the onset of the magnetic transition upon cooling. Particularly in the fields of 100 and 1000 Oe, the transition starts at ~160 K and is terminated at ~120 K. Compared to the undoped & Fe2O3 system, the Sc<sup>3+</sup> substitution causes narrowing of the transition region and shift of the transition commencement to a higher temperature (by about 20 K). Analogous behaviour has already been reported for In<sup>3+</sup> doping (see above).<sup>49</sup> The ZFC/FC magnetization curves, recorded under a field of 100 and 1000 Oe, depart from each other, similar to the case observed for the undoped ε-Fe<sub>2</sub>O<sub>3</sub> sample, confirming the presence of small ε-Fe<sub>2</sub>O<sub>3</sub> and/ or y-Fe2O3 nanoparticles with superparamagnetic/magnetically-blocked behaviour. Their response, typically more pronounced under higher applied fields due to a field-driven blocking of the nanoparticle's superspin,<sup>4</sup> is more visible in the ZFC/FC magnetization curves, recorded under 10 000 Oe; the ZFC/FC magnetization profiles departure more significantly at lower temperatures. Nevertheless, the onset of the magnetic transition at ~156 K is still observable. The interval of blocking temperatures of either small  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> or  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles is more sharper, implying their narrower size distribution compared to that for those present in the undoped  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> system; it is guessed that the average blocking temperature of these nanoparticles could lie somewhere between 140 and 160 K.

The low- and room-temperature hysteresis loops, measured for both studied systems, show a wasp-waisted (or step-like) appearance (see Fig. 5). Such a feature originates from (i) a mixture of hard and soft magnetic phases with higher and lower coercivity, respectively, (ii) coexistence of superparamagnetic and single-domain phases with zero coercivity and abrupt change in magnetization values around zero applied magnetic fields, respectively, or (iii) superposition of singleand multi-domain phases with high and low coercivity, respectively.79 In the case of undoped and Sc-doped E-Fe<sub>2</sub>O<sub>3</sub> systems, the observed profile of the hysteresis loops reflects the presence of hard and soft (or superparamagnetic) phases, the former (with much higher coercivity) coming from ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles in a single-domain state with sizes well above the superparamagnetic limit and the latter (with much lower or zero coercivity) from either  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> or  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles behaving in a magnetically blocked (at 5 K) and superparamagnetic (300 K) manner. This scenario is in good agreement with observations from ZFC/FC magnetization measurements. For the Sc-doped E-Fe2O3 sample, the necking of the isothermal magnetization curve at 5 K is limited just around the zero value of the applied magnetic field, demonstrating a narrower size distribution of the soft magnetic phase, as already deduced from analysis of the corresponding 10 000 Oe ZFC/FC magnetization profiles. Upon the introduction of Sc<sup>3+</sup> into the crystal structure of ɛ-Fe2O3, a decrease in the coercivity values was witnessed. More specifically, at 300 K, the coercivity decreased from 16 495 Oe (for undoped E-Fe2O3) to 11 068 Oe (for Sc-doped; see Fig. 5c and d). A drop in the coercivity with Sc-substitution was also observed at 5 K, from 4886 Oe to 3470 Oe (see Fig. 5c and d). Thus, with Sc-doping in the crystal structure of *e*-Fe<sub>2</sub>O<sub>3</sub>, the magnetocrystalline anisotropy, primarily governing the E-Fe2O3 coercivity, is significantly reduced. A similar trend has been observed after the substitution of Sc3+ ions into M-type barium ferrite and has been explained in terms of occupation preference of trigonal bipyramidal sites, which mostly contribute to the anisotropy field in these systems.<sup>66</sup> In our case, it seems that doping with Sc<sup>3+</sup> ions most probably alters the distortions in the octahedral sites of the e-Fe<sub>2</sub>O<sub>3</sub> crystal structure, which play, along with other parameters, an eminent role in affecting the anisotropy field and hence, magnetocrystalline anisotropy. Interestingly, the maximum magnetization under 50 kOe, at 5 and 300 K, is

#### Nanoscale

Published on 08 March 2022. Downloaded by Univerzita Palackého v Olomouci on 8/22/2022 6:49:50 AM

very similar for the undoped and Sc-doped E-Fe2O3 samples. More specifically, at 5 K, it amounts to 5.1 emu  $g^{-1}$  and 5.3 emu g<sup>-1</sup> for pristine and Sc-doped e-Fe<sub>2</sub>O<sub>3</sub> systems, respectively, and at 300 K, it is equal to 4.4 emu  $g^{-1}$  and 4.2 emu  $g^{-1}$ for neat and Sc-substituted &-Fe2O3 systems. This implies that (i) Sc<sup>3+</sup> ions most probably substitute two crystallographic sites belonging to sublattices with an opposite orientation of magnetization and (ii) Sc3+ ions occupy them with nearly equivalent probability. Finally, the remanent magnetization was found to change with  $Sc^{3+}$  doping (*i.e.*, 2.2 emu g<sup>-1</sup> and 1.4 emu  $g^{-1}$  for undoped and Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> at 5 K, respectively, and 2.3 emu g<sup>-1</sup> and 1.5 emu g<sup>-1</sup> for undoped and Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> at 300 K). Such a change in the values of the remanent magnetization for these two systems can be understood mostly in terms of slightly different amounts of fractions of superparamagnetic/magnetically blocked &-Fe2O3 and y-Fe2O3 nanoparticles with different particle size distributions (see above). We do not expect that Sc<sup>3+</sup> ions, introduced in the crystal structure of ɛ-Fe2O3, have a dramatic effect on the magnetic remanence of the doped E-Fe2O3 systems, due to their predominantly paramagnetic response.

In order to shed more light on the site-occupation preference of Sc<sup>3+</sup> ions in the crystal structure of ε-Fe<sub>2</sub>O<sub>3</sub>, <sup>57</sup>Fe Mössbauer spectroscopy was employed. The room-temperature <sup>57</sup>Fe Mössbauer spectra of undoped and Sc-doped ε-Fe<sub>2</sub>O<sub>3</sub> samples are depicted in Fig. 7 and the values of the Mössbauer hyperfine parameters, derived from the spectral analyses, are listed in Table 1. Both room-temperature <sup>57</sup>Fe Mössbauer spectra were fitted with 5 magnetically-split components, i.e., one sextet belonging to a-Fe2O3 and 4 sextets ascribed to e-Fe2O3; no spectral components were identified for  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> within the constructed physicochemical model, implying that its presence is below the detection limit (~2% of the spectral area) of the Mössbauer technique similarly as in the case of the XRD method. In addition, a singlet component was applied in the case of spectrum analysis of the undoped e-Fe<sub>2</sub>O<sub>3</sub> sample; its relevance reflects the occurrence of small  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> and/or  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles with the relaxation times of their superspins very similar to or somewhat faster than the life time of <sup>57</sup>Fe nucleus in the excited state. Its broad profile implies a wide distribution in the relation to times of superspins belonging to small γ-Fe<sub>2</sub>O<sub>3</sub> and/or ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles, as expected due to a broad particle size distribution. Such a spectral component is not seen in the Sc-doped &-Fe2O3 sample, most probably as a result of a narrower particle size distribution of small y-Fe2O3 and/or E-Fe2O3 nanoparticles, and hence, narrower distribution in the superspin's relaxation times, as already deduced from the analysis of corresponding magnetization measurement data.

When fitting, widely accepted physicochemical models for  $\epsilon\text{-}Fe_2O_3$  and  $\alpha\text{-}Fe_2O_3$  were adopted and appropriately adjusted.<sup>9,80</sup> The appearance of the Mössbauer spectral profile of  $\epsilon\text{-}Fe_2O_3$  reflects its crystal structure; each sextet corresponds to respective  $\epsilon\text{-}Fe_2O_3$  crystallographic sites. Since all three octahedral and one tetrahedral sites in  $\epsilon\text{-}Fe_2O_3$  are fully occupied with Fe<sup>3+</sup> ions, their sextets show relative spectral areas equal to 1:1:1:1 View Article Online

Paper



Fig. 7 Room-temperature <sup>57</sup>Fe Mössbauer spectrum of (a) undoped and (b) Sc-doped e-Fe<sub>2</sub>O<sub>3</sub> samples, recorded under a zero applied magnetic field.

(with an assumption of an identical Mössbauer-Lamb factor for all the four different sites). As clearly seen from Fig. 7a and Table 1, this picture is valid for the undoped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> sample.

On the other hand, for the Sc-substituted  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> system, the sextets from regular octahedral (Fe<sub>C</sub>) sites and tetrahedral (Fe<sub>D</sub>) sites are more pronounced in intensity than those from the two distorted octahedral sites (Fe<sub>A</sub> and Fe<sub>B</sub>). Thus, Sc<sup>3+</sup> ions predominantly substitute Fe<sup>3+</sup> ions in the distorted octahedral A and B positions. More interestingly, within the experimental error of the Mössbauer technique, the spectral areas of the Fe<sub>A</sub> and Fe<sub>B</sub> sextets are identical, indicating that Sc<sup>3+</sup> ions occupy these sites with an equal probability. Since the magnetic moments of Fe<sup>3+</sup> ions sitting at the distorted octahedral A-sites are oriented in an antiparallel direction to the magnetic moments of Fe<sup>3+</sup> ions at the distorted octahedral B-sites, equivalent substitution does not change the net magnetic moment of the structure. As the magnetization contributions from A-

137

#### Paper

**Table 1** The values of the Mössbauer hyperfine parameters, derived from the least-square fitting of the room-temperature <sup>57</sup>Fe Mössbauer spectrum measured on undoped and Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> samples, where  $\delta$  is the isomer shift,  $\Delta E_O$  represents the quadrupole splitting,  $B_{hf}$  stands for the hyperfine magnetic field, and RA denoted the relative spectral area of individual spectral components, identified during respective spectrum fitting. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub>, and Fe<sub>D</sub> denote distorted octahedral A-sites, distorted octahedral B-sites, regular octahedral C-sites, and tetrahedral D-sites in  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, respectively, and Fe represents octahedral sites in  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>

| Sample                                                 | Phase                                                                    | Component | $\delta \pm 0.01 \ ({ m mm~s^{-1}})$ | $\begin{array}{l} \Delta E_Q \pm 0.01 \\ (\mathrm{mm~s}^{-1}) \end{array}$ | $B_{ m hf} \pm 0.3$ (T) | RA ± 1<br>(%) | Assignment            |
|--------------------------------------------------------|--------------------------------------------------------------------------|-----------|--------------------------------------|----------------------------------------------------------------------------|-------------------------|---------------|-----------------------|
| Undoped ε-Fe <sub>2</sub> O <sub>3</sub>               | ε-Fe <sub>2</sub> O <sub>3</sub>                                         | Sextet 1  | 0.38                                 | -0.25                                                                      | 45.0                    | 23            | Fe <sub>A</sub> sites |
|                                                        | 2 0                                                                      | Sextet 2  | 0.36                                 | -0.25                                                                      | 43.9                    | 11            | Fe <sub>B</sub> sites |
|                                                        |                                                                          | Sextet 3  | 0.38                                 | -0.02                                                                      | 38.9                    | 25            | Fe <sub>c</sub> sites |
|                                                        |                                                                          | Sextet 4  | 0.21                                 | -0.16                                                                      | 25.8                    | 18            | Fe <sub>D</sub> sites |
|                                                        | $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                                 | Sextet 5  | 0.37                                 | -0.21                                                                      | 51.8                    | 2             | Fe sites              |
|                                                        | ε-Fe <sub>2</sub> O <sub>3</sub> and/or γ-Fe <sub>2</sub> O <sub>3</sub> | Singlet 1 | 0.40                                 |                                                                            |                         | 21            | Relaxation component  |
| Sc-doped $\varepsilon$ -Fe <sub>2</sub> O <sub>3</sub> | ε-Fe <sub>2</sub> O <sub>3</sub>                                         | Sextet 1  | 0.37                                 | -0.19                                                                      | 43.5                    | 18            | Fe₄ sites             |
|                                                        | 2 0                                                                      | Sextet 2  | 0.40                                 | -0.33                                                                      | 42.0                    | 17            | Fe <sub>B</sub> sites |
|                                                        |                                                                          | Sextet 3  | 0.39                                 | -0.04                                                                      | 36.9                    | 31            | Fe <sub>C</sub> sites |
|                                                        |                                                                          | Sextet 4  | 0.28                                 | -0.02                                                                      | 23.7                    | 32            | Fe <sub>D</sub> sites |
|                                                        | $\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                                 | Sextet 5  | 0.37                                 | -0.21                                                                      | 51.4                    | 2             | Fe sites              |

and B-sites completely subtract, the total magnetization of Scsubstituted *e*-Fe<sub>2</sub>O<sub>3</sub> is given by the sublattice magnetization from the tetrahedral D-sites, being unaffected by Sc-doping. This perfectly matches with the nearly unchanged values of the maximum magnetization of the undoped and doped ε-Fe<sub>2</sub>O<sub>3</sub> systems under 50 kOe (see above), despite the slightly different amount of superparamagnetic/magnetically blocked fractions in these two samples. Here, it should be stressed that the site-occupation preference is governed by the ionic radius. As the ionic radius of  $Sc^{3+}$  is ~74.5 pm (in the octahedral coordination),<sup>81</sup> which is higher than that of  $Fe^{3+}$  (~64.5 nm), it tends to replace Fe<sup>3+</sup> more likely in the A- and B-sites. Thus, Sc<sup>3+</sup> ions are accommodated at these sites more feasibly due to their distortions, maintaining the crystal parameters of the ε-Fe<sub>2</sub>O<sub>3</sub> lattice almost unchanged, as proved by the analysis of the respective XRD patterns (see above).

#### Electrochemical properties of Sc-doped E-Fe<sub>2</sub>O<sub>3</sub>-based systems

Fig. 8a shows the complex EIS response,  $Z^* = Z' - jZ''$  ( $j = \sqrt{-1}$ ), of GCE modified with pure  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> and  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0.1, 0.2, and 0.4) systems in the form of the Nyquist plots. As shown in Fig. 8b, all the EIS spectra were fitted with a modified equivalent Randles circuit model in order to extract information on the charge transfer limiting and diffusion-limited processes. A constant phase element,  $Z_{\text{CPE}} = 1/A(j\omega) - m$ , where *A* is a constant and *m* describes the distribution of the relaxation time ( $0 \le m \le 1$ ), was used instead of typical double-layer capacitance ( $C_{\text{DL}}$ ) since it better represents the distributed surface reactivity, the roughness of the electrode surface, and different material inhomogeneities.<sup>82,83</sup> Detailed analysis of the Nyquist plots (inset of Fig. 8a) revealed the asymmetric shape of semicircles with their centres lying out of the Z' axis.



Fig. 8 (a) Nyquist plot of pure  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> sample and  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> samples containing different concentrations of scandium ions; Inset: magnified version of the Nyquist plot for high frequency regions. (b) Model of the modified equivalent Randles circuit used for data evaluation. (c) Bode representation of impedance data related to the pure  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> sample and  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> samples with different concentrations of scandium ions in the crystal structure.

This journal is © The Royal Society of Chemistry 2022

#### Nanoscale

Such a phenomenon is usually related to non-ideal Debye behaviour, and thus explains the application of the CPE element for data evaluation. The appropriateness of the CPE element in the circuit model is also visible from the Bode analysis of impedance spectra (Fig. 8c). It should be stressed that ideally polarizable electrodes exhibit an asymptotic value of phase angle -90° in the region of high frequencies. When CPE behaviour is expected, the decrease in the phase angle is observable as shown in Fig. 8c.<sup>84</sup> Further evaluation of impedance data revealed a significant increase in the charge transfer resistance  $(R_{CT})$  after the modification of the working electrode either with undoped ε-Fe<sub>2</sub>O<sub>3</sub> samples or with Sc-doped ε-Fe<sub>2</sub>O<sub>3</sub> samples, as witnessed in Fig. 8a. This trend was also accompanied by a significant increase in diffusion, which has a consequential impact on the electron transfer at the interface between the modified electrode and the electrolyte. Since the ε-Fe<sub>2</sub>O<sub>3</sub> samples with various concentrations of Sc<sup>3+</sup> ions do not differ significantly in the sizes of nanoparticles, one can conclude that this parameter does not play any role in  $R_{\rm CT}$ changes. The different phase composition of tested systems also does not exhibit any visible trend in impedance results. Then, the key variable changing the size of  $R_{\rm CT}$  is connected with the incorporation of Sc<sup>3+</sup> ions into the crystal structure of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. As already mentioned above, Sc<sup>3+</sup> ions with a higher ionic radius preferably substitute Fe3+ ions in distorted octahedral A and B positions. Such a phenomenon could be reflected with increasing separation between Fe<sup>3+</sup> ions in the lattice and thus, can lead to a decrease in the hopping rate of electrons, resulting in an increase of resistivity.

# Conclusions

In the present work, we studied in detail the effect of doping of scandium atoms in the crystal structure of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> on its structural, magnetic, and electrochemical properties. Besides, we found out that the amount of scandium ions, present in the reaction mixture, largely influences the phase purity of the system. Upon changing the concentration level of scandium atoms, a varying fraction of other iron(m) oxide polymorphs (*i.e.*,  $\alpha$ -Fe<sub>2</sub>O,  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>, and  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>) was witnessed. Scandium ions can thus act, in a certain manner, as stabilizers of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> phase, similar to Ca<sup>2+</sup> and Ba<sup>2+</sup> ions as reported earlier,<sup>8</sup> resulting in its highest yield at a given doping degree.

From the structural viewpoint, <sup>57</sup>Fe Mössbauer spectroscopy results confirmed that the Sc<sup>3+</sup> ions predominantly substitute Fe<sup>3+</sup> ions in the distorted octahedral A- and B-sites of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> crystal structure, with almost an equal probability at both distorted octahedral positions. Regarding the magnetic features of the Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systems, the doping of Sc<sup>3+</sup> ions into the crystal lattice of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> resulted in a decrease in the coercivity values, thereby changing the magnetic hardness. Moreover, Sc doping was found to cause the reduction in the magnetocrystalline anisotropy and most probably altered the distortions in the octahedral sites of the  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> crystal structure. The Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> system showed a change in its temperature-dependent magnetic response with a significant alteration of a series of the low-temperature magnetic transitions, shifting their occurrence at higher temperatures and in a narrower temperature interval, thus implying their evolution dramatically distinct from that typical of undoped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. However, to understand the role of Sc<sup>3+</sup> ions, if any, on the possible change in the nature of the magnetically-ordered state in the Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> system, a further insight employing theoretical calculations and other locally sensitive experimental techniques is needed.

Finally, from the electrochemical viewpoint, an increase in the resistivity was observed upon doping the crystal structure of  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> with Sc<sup>3+</sup> ions. This could be understood in terms of a decrease in the hopping rate of electrons due to increasing separation between Fe<sup>3+</sup> ions in the crystal lattice of  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> by Sc<sup>3+</sup> ions with a slightly higher ionic radius than that of Fe<sup>3+</sup> ions.

Thus, the results achieved have clearly demonstrated a significant influence of Sc doping on the physicochemical properties of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>-based systems. This opens up the doorway to test the usability of Sc-doped  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> in a broad spectrum of applications covering the fields of solid-state magnetism, exploiting their substitution-driven magnetic response, shielding of electromagnetic waves in a given wavelength region due to tuning of ferromagnetic resonance or multiferroic nanomaterials. We believe that Sc-substituted  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> could be viewed as an intriguing and competitive member in an extensive family of  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systems, doped with elements of various chemical nature, already applied in several applications.

# Author contributions

Conceptualization, J. T., M. P., P. J., and O. M.; Investigation, M. P., O. M., P. J.; Writing – original draft preparation, M. P., J. T., P. J., and O. M.; writing – review and editing, M. P., J. T., P. J., and O. M. All authors have read and agreed to the published version of the manuscript.

# Conflicts of interest

There are no conflicts to declare.

# Acknowledgements

The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2018124 and internal IGA grant of Palacký University (IGA\_PrF\_2021\_003) and ERDF/ESF project "Nano4Future" (No. CZ.02.1.01/0.0/0.0/16\_019/0000754) of the Ministry of Education, Youth and Sports of the Czech Republic. This project is funded with the state support from the Technology Agency of the Czech Republic and the Ministry of Industry and Trade under the TREND Programme (FW01010267). The authors thank Jana Dzíbelová for XRD anaPaper

lysis, Jana Stráská for TEM analysis, Jan Pauswang for EIS 22 S. Sakurai, J. I. Shimoyama, K. Hashimoto and experiments and Ondřej Tomanec for HRTEM analysis.

# Notes and references

- 1 R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences, and uses, Wiley-VCH, 2003.
- 2 A. K. Gupta and M. Gupta, Biomaterials, 2005, 26, 3995-4021. 3 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst
  - and R. N. Muller, Chem. Rev., 2008, 108, 2064-2110.
- 4 J. L. Dormann, D. Fiorani and E. Tronc, Adv. Chem. Phys., 1997, 98, 283.
- 5 X. Teng, D. Black, N. J. Watkins, Y. Gao and H. Yang, Nano Lett., 2003, 3, 261-264.
- 6 M. Gich, A. Roig, E. Taboada, E. Molins, C. Bonafos and E. Snoeck, Faraday Discuss., 2007, 136, 345-354.
- 7 R. Zboril, M. Mashlan and D. Petridis, Chem. Mater., 2002, 14, 969-982.
- 8 J. Tuček, R. Zbořil, A. Namai and S. I. Ohkoshi, Chem. Mater., 2010, 22, 6483-6505.
- 9 J. Tuček, P. Tuček, J. Čuda, J. Filip, J. Pechoušek, L. Machala and R. Zbořil, AIP Conf. Proc., 2012, 1489, 56-74.
- 10 O. Malina, J. Tuček, P. Jakubec, J. Kašlík, I. Medřík, H. Tokoro, M. Yoshikiyo, A. Namai, S. I. Ohkoshi and R. Zbořil, RSC Adv., 2015, 5, 49719-49727.
- 11 E. Tronc, C. Chaneác and J. P. Jolivet, J. Solid State Chem., 1998, 139, 93-104.
- 12 S. I. Ohkoshi, A. Namai and S. Sakurai, J. Phys. Chem., 2009, 113, 11235-11238.
- 13 M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martín y Marero and J. Nogús, J. Appl. Phys., 2005, 98, 044307, 1-5.
- 14 J. L. García-Muñoz, A. Romaguera, F. Fauth, J. Nogués and M. Gich, Chem. Mater., 2017, 29, 9705-9713.
- 15 S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova and O. N. Martyanov, J. Appl. Phys., 2012, 111, 044312, 1-5.
- 16 A. A. Dubrovskiy, D. A. Balaev, A. A. Krasikov, S. S. Yakushhkin, V. L. Kirillov and O. N. Martyanov, Solid State Commun., 2019, 289, 27-29.
- 17 D. A. Balaev, A. A. Dubrovskiy, S. S. Yakushkin, G. A. Bukhtiyarova and O. N. Martyanov, Phys. Solid State, 2019, 61, 345-349.
- 18 J. Tucek, S. I. Ohkoshi and R. Zboril, Appl. Phys. Lett., 2011, 99, 253108, 1-3,
- 19 M. Kurmoo, J. L. Rehspringer, A. Hutlova, C. D'Orléans, S. Vilminot, C. Estournès and D. Niznansky, Chem. Mater., 2005, 17, 1106-1114.
- 20 D. A. Balaev, S. S. Yakushkin, A. A. Dubrovskii, A. Bukhtiyarova, K. A. Shaikhutdinov G. and O. N. Martyanov, Tech. Phys. Lett., 2016, 42, 347-350.
- 21 M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, V. Hardy, J. Sort, V. Skumryev and J. Nogués, Chem. Mater., 2006, 18, 3889-3897.

- S. I. Ohkoshi, Chem. Phys. Lett., 2008, 458, 333-336.
- 23 S. Sakurai, A. Namai, K. Hashimoto and S. I. Ohkoshi, J. Am. Chem. Soc., 2009, 131, 18299-18303.
- 24 A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. I. Ohkoshi and R. B. Morgunov, Phys. Solid State, 2014, 56, 1795-1798.
- 25 S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman and O. N. Martyanov, Ceram. Int., 2018, 44, 17852-17857.
- 26 A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova and O. N. Martyanov, J. Appl. Phys., 2015, 118, 213901, 1-12.
- 27 D. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov and Y. L. Raikher, J. Appl. Phys., 2015, 117, 063908, 1-6.
- 28 H. Forestier and G. Guiot-Guillain, C. R. Acad. Sci., 1934, 199, 720.
- 29 V. R. Schrader and G. Büttner, Z. Anorg. Allg. Chem., 1963, 320, 220-234.
- 30 L. Walter-Lévy and E. M. Quéméneur, C. R. Acad. Sci., 1963, 3410-3413.
- 31 I. Dézsi and J. M. D. Coey, Phys. Status Solidi, 1973, 15, 681-685.
- 32 J.-M. Trautmann and H. Forestier, C. R. Acad. Sci., 1965, 261, 4423-4425.
- 33 C. Chanéac, E. Tronc and J. P. Jolivet, J. Mater. Chem., 1996, 6, 1905-1911.
- 34 I. K. Battisha, H. H. Afify and I. M. Hamada, J. Magn. Magn. Mater., 2005, 292, 440-446.
- 35 K. Kelm and W. Mader, Z. Anorg. Allg. Chem., 2005, 631, 2383-2389.
- 36 J. L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes and M. Kurmoo, Hyperfine Interact., 2005, 166, 475-481.
- 37 M. Yoshikiyo, K. Yamada, A. Namai and S. I. Ohkoshi, J. Phys. Chem. C, 2012, 116, 8688-8691.
- 38 E. Tronc, C. Chańac, J. P. Jolivet and J. M. Grenche, J. Appl. Phys., 2005, 98, 053901, 1-4.
- 39 H. Tokoro, A. Namai and S. I. Ohkoshi, Dalton Trans., 2021, 50, 452-459.
- 40 J. Jin, S. I. Ohkoshi and K. Hashimoto, Adv. Mater., 2004, 16, 48-51.
- 41 M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, C. Simon and C. Fleta, Nanotechnology, 2006, 17,687-691.
- 42 A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki and S. I. Ohkoshi, J. Am. Chem. Soc., 2009, 131, 1170-1173.
- 43 M. Gich, I. Fina, A. Morelli, F. Sánchez, M. Alexe, J. Gàzquez, J. Fontcuberta and A. Roig, Adv. Mater., 2014, 26, 4645-4652.

5512 | Nanoscale, 2022, 14, 5501-5513

This journal is © The Royal Society of Chemistry 2022

Paper

#### Nanoscale

- 44 M. Nakajima, A. Namai, S. Ohkoshi and T. Suemoto, *Opt. Express*, 2010, **18**, 18260–18268.
- 45 S. I. Ohkoshi, A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka and H. Tokoro, *Sci. Rep.*, 2015, 5, 14414, 1–9.
- 46 A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro and S. I. Ohkoshi, *Nat. Commun.*, 2012, 3, 1–6.
- 47 S. I. Ohkoshi and H. Tokoro, Bull. Chem. Soc. Jpn., 2013, 86, 897–907.
- 48 S. I. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato and S. Sasaki, *Angew. Chem., Int. Ed.*, 2007, 46, 8392–8395.
- 49 S. Sakurai, S. Kuroki, H. Tokoro, K. Hashimoto and S. I. Ohkoshi, *Adv. Funct. Mater.*, 2007, **17**, 2278–2282.
- 50 A. Namai, S. Sakurai and S. I. Ohkoshi, J. Appl. Phys., 2009, 105, 07B516, 1–3.
- 51 S. I. Ohkoshi, K. Imoto, A. Namai, S. Anan, M. Yoshikiyo and H. Tokoro, J. Am. Chem. Soc., 2017, 139, 13268–13271.
- 52 S. I. Ohkoshi, A. Namai and S. Sakurai, *J. Phys. Chem. C*, 2009, **113**, 11235–11238.
- 53 L. Kubíčková, O. Kaman, P. Veverka, V. Herynek, P. Brázda, K. Bernášek, M. Veverka and J. Kohout, J. Alloys Compd., 2020, 856, 158187, 1–12.
- 54 L. Kubíčková, O. Kaman, P. Veverka, V. Herynek, P. Brázda, M. Vosmanská, T. Kmječ, P. Dvořák, D. Kubániová and J. Kohout, *Colloids Surf.*, A, 2020, 589, 124423, 1–11.
- 55 M. Yoshikiyo, A. Namai, M. Nakajima, K. Yamaguchi, T. Suemoto and S. I. Ohkoshi, J. Appl. Phys., 2014, 115, 172613.
- 56 A. I. Dmitriev, O. V. Koplak, A. Namai, H. Tokoro, S. Ohkoshi and R. B. Morgunov, *Phys. Solid State*, 2013, 55, 2252–2259.
- 57 M. Yoshikiyo, A. Namai, M. Nakajima, T. Suemoto and S. I. Ohkoshi, *J. Appl. Phys.*, 2012, **111**, 07A726.
- 58 A. Namai, M. Yoshikiyo, S. Umeda, T. Yoshida, T. Miyazaki, M. Nakajima, K. Yamaguchi, T. Suemoto and S. I. Ohkoshi, *J. Mater. Chem. C*, 2013, 1, 5200–5206.
- 59 T. Katayama, S. Yasui, Y. Hamasaki, T. Osakabe and M. Itoh, *J. Mater. Chem. C*, 2017, 5, 12597–12601.
- 60 A. Namai and S. I. Ohkoshi, *Chem. Eur. J.*, 2018, 24, 11880–11884.
- 61 S. I. Ohkoshi, A. Namai, M. Yoshikiyo, K. Imoto, K. Tamazaki, K. Matsuno, O. Inoue, T. Ide, K. Masada, M. Goto, T. Goto, T. Yoshida and T. Miyazaki, *Angew. Chem.*, *Int. Ed.*, 2016, 55, 11403–11406.
- 62 K. Yamada, M. Yoshikiyo, A. Namai and S. I. Ohkoshi, Hyperfine Interact., 2012, 205, 117-120.
- 63 L. Corbellini, C. Lacroix, D. Ménard and A. Pignolet, Scr. Mater., 2017, 140, 63–66.
- 64 Y. Hamasaki, T. Shimizu, S. Yasui, T. Shiraishi, A. Akama, T. Kiguchi, T. Taniyama and M. Itoh, *J. Appl. Phys.*, 2017, **122**, 015301, 1–7.

- 65 T. Katayama, S. Yasui, Y. Hamasaki and M. Itoh, *Appl. Phys. Lett.*, 2017, **110**, 212905, 1–4.
- 66 Y. Wang, Y. Liu, X. You, C. Wu, Q. Liu, J. Chen, Y. Chen, B. Qi, J. Chen and H. Zhang, *Mater. Res. Express*, 2018, 5, 066105, 1–7.
- 67 Y. Mudryk, D. Paudyal, J. Liu and V. K. Pecharsky, *Chem. Mater.*, 2017, 29, 3962–3970.
- 68 Y. Xie, R. Yang, L. Yan, L. Qi, K. Dai and P. He, J. Power Sources, 2007, 168, 272–277.
- 69 Y. Zhang, C. Zhang, Y. Lin, D. B. Xiong, D. Wang, X. Wu and D. He, J. Power Sources, 2014, 250, 50–57.
- 70 C. Savii, M. Popovici, C. Enache, J. Subrt, D. Niznansky, S. Bakardzieva, C. Caizer and I. Hrianca, *Solid State Ionics*, 2002, **151**, 219–227.
- 71 J. Kohout, P. Brázda, K. Závěta, D. Kubániová, T. Kmječ, L. Kubíčková, M. Klementová, E. Šantavá and A. Lančok, J. Appl. Phys., 2015, 117, 17D505, 1–4.
- 72 Y. C. Tseng, N. M. Souza-Neto, D. Haskel, M. Gich, C. Frontera, A. Roig, M. van Veenendaal and J. Nogués, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2009, **79**, 094404, 1–6.
- 73 R. Jones, R. Nickel, P. K. Manna, J. Hilman and J. van Lierop, *Phys. Rev. B*, 2019, **100**, 094425, 1–10.
- 74 S. Sakurai, J. Jin, K. Hashimoto and S. I. Ohkoshi, J. Phys. Soc. Jpn., 2005, 74, 1946–1949.
- 75 Y. V. Knyazev, A. I. Chumakov, A. A. Dubrovskiy, S. V. Semenov, I. Sergueev, S. S. Yakushkin, V. L. Kirillov, O. N. Martyanov and D. A. Balaev, *Phys. Rev. B*, 2020, **101**, 094408, 1–9.
- 76 A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, S. I. Popkov, S. S. Yakushkin, V. L. Kirillov, O. N. Martyanov and D. A. Balaev, *IEEE Magn. Lett.*, 2016, 7, 1–4.
- 77 D. A. Balaev, A. A. Dubrovskiy, K. A. Shaykhutdinov, O. A. Bayukov, S. S. Yakushkin, G. A. Bukhtiyarova and O. N. Martyanov, J. Appl. Phys., 2013, 114, 163911, 1–5.
- 78 M. Tadic, I. Milosevic, S. Kralj, M. Mitric, D. Makovec, M. L. Saboungi and L. Motte, *Nanoscale*, 2017, 9, 10579– 10584.
- 79 P. A. Roberts, Y. Cui and L. K. Verusob, J. Geophys. Res., 1995, 100, 17909–17924.
- 80 J. Tuček, L. Machala, J. Frydrych, J. Pechoušek and R. Zbořil, Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, Wiley, 2013, pp. 349–392.
- 81 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751–767.
- 82 J. B. Jorcin, M. E. Orazem, N. Pébère and B. Tribollet, *Electrochim. Acta*, 2006, 51, 1473–1479.
- 83 M. R. Shoar Abouzari, F. Berkemeier, G. Schmitz and D. Wilmer, *Solid State Ionics*, 2009, **180**, 922–927.
- 84 S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao and M. E. Orazem, *Nat. Rev. Methods Primers*, 2021, 1, 41.

This journal is © The Royal Society of Chemistry 2022

# Příloha C.

# MÖSSBAUER STUDY OF REACTION MECHANISMS OF FERRATES (FeVI, FeV, and FeIV): DETERMINATION OF EFFICIENCY IN WATER DECONTAMINATION

Michaela Polášková, Jiří Tuček, Radek Zbořil

Proceedings 10<sup>th</sup> International Conference on Nanomaterials - Research & Application, 2019, 978-80-87294-89-5, 235-242.



# MÖSSBAUER STUDY OF REACTION MECHANISMS OF FERRATES (Fe<sup>vi</sup>, Fe<sup>v</sup>, and Fe<sup>iv</sup>): DETERMINATION OF EFFICIENCY IN WATER DECONTAMINATION

Michaela TOMÍČKOVÁ, Radek ZBOŘIL, Jiří TUČEK

Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Palacký University in Olomouc, Olomouc, Czech Republic, EU, michaela.tomickova@upol.cz, radek.zboril@upol.cz, jiri.tucek@upol.cz

# Abstract

At present, treatment of surface, underground and waste water is viewed as a high priority and many studies deal with this issue. Water can be contaminated by organic pollutants, inorganic pollutants, toxic, heavy metals and their compounds, and many other substances that do not degrade to non-toxic compounds in natural waters. Therefore, it is necessary to prevent accumulation of these substances in water and remove them from environment.

In this respect, iron compounds in the high oxidation state (IV, V and VI), called ferrates, are very promising materials to water treatment. Especially, ferrates are able to remove hormones, such as estrogen, or medicines, for example antibiotics, from water. Reactions of ferrates with pollutants occur very quickly and thus, it is difficult to monitor the course of the reaction.

This study brings a deeper insight into the mechanism of ferrate reactions with pollutants because, thanks to Mössbauer spectroscopy, we are able to *in-situ* observe the course of the reaction. Moreover, analyzing the input materials, intermediates and also final products of reaction is possible once this technique is employed. In this regard, the application of Mössbauer spectroscopy for monitoring the reaction of ferrate(VI) with arsenic for removal of arsenic from environment is mentioned.

Keywords: Water treatment, ferrates, Mössbauer spectroscopy

# 1. INTRODUCTION

Currently, many studies are focused on cleaning and treatment of water. There is no wonder as, a large increase in human and industrial activity (i.e., industrial production, traffic, agriculture, extraction, chemical disasters, etc.) leads to increased contamination of groundwater and surface water. In this context, water can be contaminated by toxic, heavy metals and their compounds, organic pollutants (e.g., insecticides, herbicides, petroleum derivatives, solvents, medicaments, etc.) or inorganic pollutants (e.g., acids, ammonia, DDT, polychlorinated biphenyls, nitrogen, phosphorus, mercury, etc.). Many of these pollutants do not naturally decompose to non-toxic compounds in water. For this reason, a significant attention is currently devoted to the search for new methods and materials for the rapid, efficient and, as far as possible, a universal way of decontamination of water. Therefore, iron-based technologies still capture an eminent interest in the scientific community, especially, because they are environmentally friendly and use an Earth-abundant material. In addition, some materials containing iron are magnetic and their removing or recycling after culmination of the treatment process from environment is easier and less problematic. [1,2]

Iron occurs in several valence states (i.e., 0, II, III, IV, V and VI). In other words, it exists as metallic iron (Fe(0)), ferrous (Fe(II)), and ferric (Fe(III)) forms in the nature. Moreover, higher oxidation states of iron, such as +IV, +V and +VI, can be synthesized. These compounds of iron, where the Fe atom is in a higher oxidation state, with oxidation number +IV, +V or +VI, are generally called ferrates. These compounds comprise  $FeO_4^{4-}$  (Fe<sup>+IV</sup>),  $FeO_4^{3-}$  (Fe<sup>+V</sup>), and  $FeO_4^{2-}$  (Fe<sup>+VI</sup>) ions. Recent studies have shown that ferrates are very promising materials for decontamination of water. They have a strong oxidation properties; in this respect, ferrate(VI) is the most



powerful and most used agent. The stability and reactivity of the ferrates is dependent on pH and initial ferrate concentration of the solution, as well as on the presence of foreign ions in solution. Ferrates are the most stable in range of pH from 9.4 to 9.7. More dilute solutions of the ferrate ions are more stable, which means, that the stability of ferrates decreases with increasing concentration of ferrates solutions. Currently, a significant scientific interest is devoted to the +VI oxidation state of iron (Fe(VI)) because of its potential use as a "greener" oxidant for organic synthesis, a water oxidation catalyst and in treatment contaminants and toxins in water and wastewater. [1,3,4,5]

As already mentioned, ferrate(VI) is the most widely used due to strong oxidizing properties. It exhibits a reduction potential of 2.2 V in acidic medium; the reduction potential decrease to 0.7 V in alkaline solution. Maximum performance is thus achieved in an acidic or a neutral environment. Ferrate(VI) can easily oxidize different organic contaminants and effectively inactive microorganisms or bacterial indicators. Ferrate(VI) can also remove metal and metalloid contaminants. Together with the reduction of Fe(VI) to Fe(III), coagulation and precipitation of certain pollutants is observed. The main advantage of the use of ferrates in water treatment is that ferrates have a disinfecting effect and the resulting reaction products are nontoxic. They have a versatile use, always combining several reaction processes. Ferrates remove also micropollutants, estrogens or antibiotics. Small doses of ferrates are enough for their application in water purification. [2,3,6]

Despite a very wide range of possible applications, the real utilization of ferrates in practice in greater amounts is hindered by their instability. Ferrate(VI) salts are comparatively stable for quite a long time in the case they are stored in a dry atmosphere. Otherwise, ferrates are very unstable in water, and ferrate(VI) is reduced to a compound containing iron in oxidation state +III (Fe<sup>+III</sup>), which is much more stable. As already mentioned, ferrates are very promising materials, but for real application of these materials in water treatment and others, is necessary, at first, to understand the reaction mechanisms between these compounds and pollutants. Reactions between pollutants and ferrates are very fast and it is difficult to in-situ monitor their course. Fortunately, this obstacle can be overcome by <sup>57</sup>Fe Mössbauer spectroscopy. This contribution thus introduces <sup>57</sup>Fe Mössbauer spectroscopy as a powerful tool to describe and monitor the reaction mechanisms and also to analyze precursors and intermediate and final products. <sup>57</sup>Fe Mössbauer spectroscopy is presented as a main technique for assessment of sample purity and identifying the intermediate states during transformation from Fe(VI) to Fe(III) as it provides distinguishing between various valence states of iron based on their Mössbauer hyperfine parameters. [3]

More specifically, the methodology of <sup>57</sup>Fe Mössbauer spectroscopy is described here for ferrate research. The Mössbauer parameters of oxidation states (+III, +IV, +V and +VI) of iron are also listed. Further, the preparation of ferrates and characterization of the precursors and reaction products are described. Finally, an example of ferrate(VI) application for removing arsenic from the environment is briefly outlined.

# 2. METODOLOGY OF MÖSSBAUER SPECTROSCOPY FOR INVESTIGATION OF FERRATES REACTION MECHANISM

## 2.1. Mössbauer spectrum and hyperfine parameters of ferrates

Mössbaeur spectroscopy represents a unique technique to distinguish different oxidation states of iron using the values of the isomer shift ( $\delta$ ). The  $\delta$  values are very sensitive to the oxidation state of iron. Then, the differences in the position of the Mössbauer resonant lines of ferrates(IV, V, VI) and iron(III) in the velocity ranges are observed (**Figure 1a**).

The typical <sup>57</sup>Fe Mössbauer spectrum of iron(III), that is usually the final product of reactions of pollutants with ferrates, is shown in **Figure 1a**) on the top. The spectrum contains a doublet with the value of isomer shift  $\delta = 0.35 \pm 0.05$  mm/s and the value of quadrupole splitting  $\Delta E_Q = 0.70 \pm 0.05$  mm/s. For ferrate(IV), a doublet is typically observed with the value of isomer shift  $\delta = -0.25 \pm 0.05$  mm/s and the value of quadrupole splitting  $\Delta E_Q = 0.20 \pm 0.05$  mm/s. Ferrate(IV) also gives a doublet with the isomer shift  $\delta = -0.45 \pm 0.05$  mm/s and



quadrupole splitting  $\Delta E_Q = 0.80$  mm/s and the ferrate(VI) exhibits singlet with the value of isomer shift  $\delta = -0.90 \pm 0.05$  mm/s. In **Figure 1b**), the diagram with ranges of the isomer shift values observed for ironcontaining compounds is displayed. Information on the values of the Mössbauer hyperfine parameters for each oxidation state is necessary to know to subsequently determine a composition of a characterized compound.



**Figure 1** a) Representative <sup>57</sup>Fe Mössbauer spectrum of Fe(III), Fe(IV), Fe(V) and Fe(VI) at room temperature, without an external magnetic field. In the lower left corner, respective Mössbauer hyperfine parameters, such as isomer shift ( $\delta$ ) and quadrupole splitting ( $\Delta E_{\alpha}$ ) are displayed for each case. b) Diagram of isomer shift values observed for iron-containing compounds in various oxidation states at room temperature. The isomer shift values are referred to metallic  $\alpha$ -Fe at room temperature. [8]



## 2.2. Preparation of ferrates

In general, three methods are often used to synthesize ferrates. The first method involves dry oxidation by heating a mixture of iron(III) oxides under strongly alkaline conditions and in the presence of oxygen. For example, adopting this strategy K<sub>2</sub>FeO<sub>4</sub> (i.e., ferrate(VI)) can be prepared using heating of iron(III) oxides and potassium nitrate over 1100 °C. To synthesize Na<sub>2</sub>FeO<sub>4</sub> (i.e., ferrate(VI)), a protocol involving heating of iron(III) oxides and sodium peroxide at 600 °C can be exploited. Then, the Na<sub>4</sub>FeO<sub>4</sub> (i.e., ferrate(IV)) can be obtained by heating of iron(III) oxide and sodium peroxide at 370 °C. Generally, dry methods involve mixing ferric salt, often iron oxide, with alkali peroxide (Na<sub>2</sub>O<sub>2</sub>, K<sub>2</sub>O<sub>2</sub>) at high temperatures. Depending on the composition of the reaction mixture (Fe, Na, and O<sub>2</sub>) and temperature, ferrate(IV), ferrate(V) or ferrate(IV) can be prepared. The second method to synthesize ferrates is based on wet oxidation, when iron(III) oxides or their salts are oxidized by an oxidant (e.g., potassium hypochlorite, sodium hypochlorite, ozone, etc.) in strong alkaline environment. Na<sub>2</sub>FeO<sub>4</sub> can be synthesized using sodium hydroxide. K<sub>2</sub>FeO<sub>4</sub> can be then precipitated from the solution by subsequent adding of potassium hydroxide to the Na<sub>2</sub>FeO<sub>4</sub> solution. Using dry methods, various ferrates(VI) can be prepared, such as Cs<sub>2</sub>FeO<sub>4</sub>, RbFeO<sub>4</sub>, BaFeO<sub>4</sub>, SrFeO<sub>4</sub>, and others. Third strategy for preparation of ferrates involves electro-chemical methods of anodic oxidation. Iron or iron salts are selected as an anode and sodium or potassium hydroxides are used as an electrolyte. The advantage of this approach for the synthesis of ferrates is often connected with the efficiency and quality, i.e., the yield of the reaction and the phase purity of the final products. The drawbacks include the complexity of the method and financial costs. [1,7]

Based on the study [9] (see the experimental section there for more details) Na<sub>4</sub>FeO<sub>4</sub> - Fe(IV) and K<sub>3</sub>FeO<sub>4</sub> - Fe(V) salts were prepared and the reproducibility of the solid state synthesis has been verified by <sup>57</sup>Fe Mössbauer spectroscopy and X-ray powder diffraction. The following values are referred to metallic  $\alpha$ -Fe at room temperature. At first, ferrate(IV), Na<sub>4</sub>FeO<sub>4</sub>, was synthesized following the reaction **Equation 1**, i.e.,

$$8Na_2O_2 + 2Fe_2O_3 \rightarrow 4Na_4FeO_4 + 3O_2 \tag{1}$$

The reaction took place in a glovebox, where Na<sub>2</sub>O<sub>2</sub> was grinded to a powder. Then, Fe<sub>2</sub>O<sub>3</sub> was added to Na<sub>2</sub>O<sub>2</sub> and homogenized and heated to 400 °C for hour. After cooling down to room temperature, analyzes were performed. The room-temperature <sup>57</sup>Fe Mössbauer spectrum of Na<sub>4</sub>FeO<sub>4</sub> features a doublet with the isomer shift  $\delta$  = - 0.23 ± 0.05 mm/s and the quadrupole splitting  $\Delta E_Q$  = 0.41 ± 0.05 mm/s. Based on the results from <sup>57</sup>Fe Mössbauer spectroscopy, the amount of Fe(IV) was 94 at.% and Fe(III) 6 at.%. The X-ray powder diffraction determined the purity of the sample, i.e., the amount of Fe(IV), higher than 90 at.% in accordance with <sup>57</sup>Fe Mössbauer spectroscopy measurements. At the top of **Figure 2**, <sup>57</sup>Fe Mössbauer spectrum (a)) and X-ray diffraction pattern (b)) of synthesized Na<sub>4</sub>FeO<sub>4</sub> are shown. To prepare Fe(V), the two-steps reaction process was performed (reaction **Equation 2** and **Equation 3**).

$$Fe^{III}O_x(OH)_y + KNO_3 \to KFeO_2 + NO_x$$
<sup>(2)</sup>

$$KFeO_2 + 2KNO_3 \rightarrow K_3FeO_4 + 2NO_2 \tag{3}$$

At first, homogenized mixture of KNO<sub>3</sub> and Fe<sup>III</sup>O<sub>x</sub>(OH)<sub>y</sub> was heated up to 950 °C for 30 minutes. After cooled down, the KFeO<sub>2</sub> was observed and then, in the second step, the KFeO<sub>2</sub> was added to KNO<sub>3</sub>. This mixture was again homogenized and heated up to 1000 °C in presence of nitrogen. After that, the prepared K<sub>3</sub>FeO<sub>4</sub> was frozen using liquid nitrogen. The room-temperature <sup>57</sup>Fe Mössbauer spectrum of K<sub>3</sub>FeO<sub>4</sub> shows a doublet with the isomer shift  $\delta$  = - 0.52 ± 0.05 mm/s and the quadrupole splitting  $\Delta E_Q$  = 0.88 ± 0.05 mm/s. In the middle of **Figure 2**, the <sup>57</sup>Fe Mössbauer spectrum (c)) and X-ray diffraction pattern (d)) of synthesized K<sub>3</sub>FeO<sub>4</sub> are displayed. The X-ray powder diffraction again determined the purity of the sample, i.e. the amount of Fe(V), higher than 90 at.%. Based on the analysis of the respective <sup>57</sup>Fe Mössbauer spectrum, the amount of Fe(V)



was 93 at.% and the amount of Fe(III) was 7 at.%. Using <sup>57</sup>Fe Mössbauer spectroscopy, it is also feasible to check the quality of potassium ferrate(VI), with declared purity higher than 95 %, from Sigma-Aldrich. This ferrate is usually used in applications for water treatment. At the bottom of the **Figure 2**, the <sup>57</sup>Fe Mössbauer spectrum (e)) and X-ray diffraction pattern (f)) of K<sub>2</sub>FeO<sub>4</sub> are shown. The respective <sup>57</sup>Fe Mössbauer spectrum of K<sub>2</sub>FeO<sub>4</sub> features a singlet with the isomer shift  $\delta$  = - 0.89 ± 0.05 mm/s. The X-ray powder diffraction and also <sup>57</sup>Fe Mössbauer spectroscopy determined 96 at.% of Fe(VI) and 4 at.% of Fe(III). [9]





## 2.3. Reactions of ferrates

As already mentioned, ferrates have a high reduction potential. Thus, they are equipped with powerful oxidation properties; among them ferrate(VI) is the most strongest oxidant. Due to this feature, ferrate(VI) is the most used agent from group of ferrates. Ferrate(VI) has a reduction potential of 2.2 V in acidic medium and the reduction potential equals to 0.7 V in alkaline medium. Below, the equations of reactions of ferrate(VI) in the alkaline solution (**Equation 4**) and in the acidic solution (**Equation 5**) are listed. [1,6,7]



$$FeO_4^{2-} + 4H_2O + 3e^- \rightarrow Fe(OH)_3 + 5OH^-$$
(4)

$$FeO_4^{2-} + 8H^+ + 3e^- \to Fe^{3+} + 4H_2O$$
 (5)

Thus, in water, ferrate(VI) immediately decomposes to stable oxidation state of Fe<sup>III</sup>. When an electron is gained in water, ferrate(VI) is reduced to intermediate products, i.e., high valence states of iron, Fe(V) and Fe(IV), through 1-e<sup>-</sup> and 2-e<sup>-</sup> transfer processes. Simultaneously, the final iron-containing compound with iron in oxidation state Fe<sup>III</sup> is also observed. Proof of the formation of intermediate iron species, Fe(V) and Fe(IV), during decomposition of Fe(VI), can be performed by fast freezing of reaction solution and subsequent characterization using <sup>57</sup>Fe Mössbauer spectroscopy (see **Figure 3**). The reaction rate is always based on pH, the concentration of the solution and the presence of foreign ions. The resulting products of ferrate(VI) decomposition in water are always iron(III) oxides or hydroxides (e.g., Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, FeOOH, Fe(OH)<sub>3</sub>). The decomposition is accompanied by a change of color from black-purple to sorrel. Once the color is changed, the substances are no longer usable. [1,10,11]



Figure 3 <sup>57</sup>Fe Mössbauer spectrum of the sample taken during decomposition of Fe(VI) to Fe(III) and characterized using <sup>57</sup>Fe Mössbauer spectroscopy. All possible oxidation states of iron are observed. [9]

# 2.4. Example of application <sup>57</sup>Fe Mössbauer spectroscopy in the removal of arsenic from environment using ferrate(VI)

In aerobic surface water, primarily arsenate ( $As^{V}O_4^3$ , As(V)) occurs. Then, arsenite ( $As^{III}O_3^3$ , As(III)) predominantly exists in anaerobic environment. However, arsenite (As(III)), that is more toxic than arsenate (As(V)), oxides to arsenate under aerobic conditions. One of the arsenic removal options is to use a sorbent, where arsenic is bonded either on the surface or into the sorbent pores. Current technologies are limited by a low sorption capacity of sorbents. The ratio between sorbent and arsenic is usually in the ranges from 1000:1 to 100:1 in weight fraction. The second restriction of available technologies bonding arsenic onto the surface sorbent lies in release of arsenic back to environment due to leaching effect. Thus, exploitation of ferrate(VI) combines the properties of an oxidant, used to oxidizing of As(III) to As(V), and efficient sorbent with a low sorbent/As ratio. More specifically, here we mention an example of removal of arsenic from environment using K<sub>2</sub>FeO<sub>4</sub>, with concentration of iron equal to 0.5 g/L (see more details in study [13]). As sources of As(III) and As(V), NaAsO<sub>2</sub> and Na<sub>2</sub>HAsO<sub>4</sub>·7H<sub>2</sub>O were used, respectively, with a final concentration of arsenic of 100 mg/L. Then, the ratio between Fe:As is 5:1. Three studied samples are shown in **Figure 4**. The "blank" sample was prepared by adding of ferrate(VI) to deionized water, at the "ex-situ" sample was at first added ferrate(VI) to deionized water and subsequently As-containing compound. At the third "in-situ" sample was simultaneously added ferrate(VI) and also As-containing compound to deionized water.





**Figure 4** <sup>57</sup>Fe Mössbauer spectra collected at a temperature of 5 K and in a field of 5 T for a) "blank" sample (sample of ferrate(VI) added to deionized water), b) "ex-situ" sample (As(V)-containing compound was added to mixed deionized water with ferrate(VI)) and c) "in-situ" sample (simultaneously addition of ferrate(VI) and also As(V)-containing compound to deionized water). On the left side, the embedding of As(V) onto the surface nanoparticle (panel (b)), and primarily into the structure of nanoparticle and subsequently onto the surface (panel (c)) is illustrated. [13]

The experiment is based on forming  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles, which can be after the completion of the treatment process, very easily removed from environment using an external magnet. As seen in **Figure 4 c**), the uniqueness of using ferrate(VI) in water treatment is that arsenite is "in-situ" structurally embedded into the tetrahedral sites of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles formed during reaction with water and the pollutant. Thus, As(V) ions are not released back to the environment and they are firmly bonded into the structure of nanoparticles. Moreover, using <sup>57</sup>Fe Mössbauer spectroscopy, the amount of As(V), which are embedded in the nanoparticles (*x* in **Equation 6**) is possible to determine based on the evaluation of spectral ratio of the components belonging to the tetrahedral and octahedral sites in the *y*-Fe<sub>2</sub>O<sub>3</sub> crystal structure, i.e.,

$$\left[Fe_{1-x}^{3+}As_{x}^{5+}\right]^{T}\left[Fe_{5/3-y}^{3+}o_{1/3+y}\right]^{O}O_{4}$$
(6)

In the "blank" sample, the spectral ratio between tetrahedral (T) and octahedral (O) sites is T:O ~ 0.65, in the "ex-situ" sample, T:O ~ 0.7 and in the "in-situ" sample, T:O ~ 1.22. Based on these values, the amount of As(V) in the nanoparticles was estimated to be approximately 25 at.%. [13]



### 3. CONCLUSION

This study highlighted the significance of <sup>57</sup>Fe Mössbauer spectroscopy for studying reaction mechanism of ferrates with pollutants. Ferrates, particularly ferrate(VI) and their preparation and reaction mechanism were described in more details. Finally, the experiment presenting an unique properties of ferrate(VI) for removing of arsenic from environment was reviewed.

## ACKNOWLEDGEMENTS

# The authors acknowledge support from the Ministry of Education, Youth and Sports of the Czech Republic under project No. LO1305.

## REFERENCES

- [1] SHARMA, Virender K., ZBORIL, Radek and VARMA, Rajender S. *Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies*. Acc Chem Res., 2015. pp. 182-191.
- [2] PRUCEK, Robert, TUČEK, Jiří, KOLAŘÍK, Jan, HUŠKOVÁ, Ivana, FILIP, Jan, VARMA, Rajender S., SHARMA, Virender K., ZBOŘIL, Radek. Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides. Environmental Science & Technology, 2015, pp. 2319-2327.
- [3] MACHALA, Libor, ZBORIL, Radek, SHARMA, Virender K., FILIP, Jan, JANCIK, Dalibor and HOMONNAY, Zoltan. Transformation of Solid Potassium Ferrate(VI) (K<sub>2</sub>FeO<sub>4</sub>): Mechanism and Kinetic Effect of Air Humidity. Eur. J. Inorg. Chem., 2009. pp. 1060-1067.
- [4] MACHALA, Libor, ZBORIL, Radek, SHARMA, Virender K., FILIP, Jan, SCHNEEWEISS, Oldrich and HOMONNAY, Zoltán. Mössbauer Characterization and in Situ Monitoring of Thermal Decomposition of Potassium Ferrate(VI), K2FeO4 in Static Air Conditions. J. Phys. Chem. B, 2007. pp. 4280-4286.
- [5] SHARMA, Virender K., PERFILIEV, Yurii D., ZBOŘIL, Radek, MACHALA, Libor and WYNTER, Clive I.. Mössbauer Spectroscopy, Applications in Chemistry, Biology, and Nanotechnology. WILEY. 2013. FERRATES(IV, V AND VI): MÖSSBAUER SPECTROSCOPY CHARACTERIZATION, chapter 24, pp. 505-506.
- [6] DARKO, Beatrice, JIANG, Jia-Qian, KIM, Hyunook, MACHALA, Libor, ZBORIL, Radek, SHARMA, Virender K. Advances Made in Understanding the Interaction of Ferrate(VI) with Natural Organic Matter in Water. Elsevier, 2014. pp.183-197.
- [7] JIANG, Jia-Qian. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J. Chem. Technol. Biotechnol. 2014. pp. 165-177.
- [8] GÜTLICH, Philipp, BILL, Eckhard, TRAUTWEIN, Alfred X. Mössbauer Spectroscopy and Transition Metal Chemistry, Fundamentals and Applications .Springer: Springer-Verlag Berlin Heidelberg, 2011. p. 85.
- [9] ŠIŠKOVÁ, MACHALOVÁ, Karolína, JANČULA, Daniel, DRAHOŠ, Bohuslav, MACHALA, Libor, BABICA, Pavel, ALONSO, Paula G., TRÁVNÍČEK, Zdeněk, TUČEK, Jiří, MARŠÁLEK, Blahoslav, SHARMA, Virender K., and ZBOŘIL, Radek. *High-valent iron (Fe<sup>VI</sup>, Fe<sup>V</sup>, and Fe<sup>IV</sup>) species in water: characterization and oxidative transformation of estrogenic hormones*. Phys. Chem. Chem. Phys., 2016, **18**. pp.18802-18810.
- [10] CUI, Junkui, ZHENG, Lei, and DENG, Yang. Emergency water treatment with ferrate(VI) in response to natural disasters. Environ. Sci.: Water Res. Technol., 2018, 4. pp.359-368.
- [11] DEDUSHENKO, S. K., PERFILIEV, Yu. D., KULIKOV, L. A. Mössbauer spectroscopy and quality control in ferrate technology. Hyperfine Interact, 2013. pp.59-65.
- [12] PRUCEK, Robert, TUČEK, Jiří, KOLAŘÍK, Jan, MARUŠÁK, Zdeněk, SHARMA, Virender K., and ZBOŘIL, Radek. Ferrate(VI)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(III) Oxide Nanoparticles. Environ. Sci. Technol., 2013. pp.3283-3292.

Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální fyziky



# Studium a možnosti řízení fyzikálních vlastností vzácného polymorfu oxidu železitého - ε-Fe<sub>2</sub>O<sub>3</sub>

Disertační práce

Ing. Michaela Polášková

Vedoucí práce: doc. RNDr. Libor Machala, Ph.D. Konzultant: doc. Mgr. Jiří Tuček, Ph.D.

Olomouc 2023

Jméno a příjmení uchazeče:

Ing. Michaela Polášková

| Typ práce:        | Disertační                    |
|-------------------|-------------------------------|
| Pracoviště:       | Katedra experimentální fyziky |
| Studijní program: | Aplikovaná fyzika             |

| Vedoucí práce: | doc. RNDr. Libor Machala, Ph.D. |
|----------------|---------------------------------|
| Konzultant:    | doc. Mgr. Jiří Tuček, Ph.D.     |

Oponenti:

Místo a datum konání obhajoby:

S disertační prací a posudky je možné se seznámit v knihovně Přírodovědecké fakulty Univerzity Palackého v Olomouci alespoň 14 dnů před vykonáním obhajoby.

# Seznam publikací, na nichž se autor této disertační práce podílel jako hlavní autor nebo

# spoluautor, za období 2016–2022

- [i] Tomíčková, M., Zbořil, R., Tuček, J., "Mössbauer study of reaction mechanisms of ferrates (Fe<sup>VI</sup>, Fe<sup>V</sup>, and Fe<sup>IV</sup>): Determination of efficiency in water decontamination," *NANOCON* 2018 - Conference Proceedings, 10th Anniversary International Conference on Nanomaterials - Research and Application, 2019, pp. 235–242.
- [ii] Vassilis Tangoulis, Christina D. Polyzou, Patroula Gkolfi, Nikolia Lalioti, Ondrej Malina and Michaela Polaskova, "2-D spin crossover materials at the nanometric scale: the effects of the size-reduction on the magnetic properties," *Dalton Trans.*, 2021, 50, 3109.
- [iii] Patroula Gkolfi, Dimitra Tsivaka, Ioannis Tsougos, Katerina Vassiou, Ondřej Malina, Michaela Polášková, Christina D. Polyzou, Christos T., "Chasapis and Vassilis Tangoulis, "A facile approach to prepare silica hybrid, spincrossover water-soluble nanoparticles as potential candidates for thermally responsive MRI agents," *Dalton Trans.*, 2021, 50, 13227.
- [iv] Christina D. Polyzou, Ondřej Malina, Michaela Polášková, Manoj Tripathi, Alan B. Dalton, John Parthenios and Vassilis Tangoulis, "Extreme downsizing of spin crossover nanoparticles towards stable colloids in water: a detailed nano-topographic study, " J. Mater. Chem. C, 2021, 9, 15671.
- [v] Polášková M., Malina O., Tuček J., Jakubec P., "An Effect of Scandium Substitution on the Phase Purity and Structural, Magnetic, and Electrochemical Features of ε-Fe<sub>2</sub>O<sub>3</sub> Nanoparticle Systems," *Nanoscale*, 2022, 14(14), pp. 5501–5513.

# OBSAH

| 1. | Úvod                                                                                         | 1  |
|----|----------------------------------------------------------------------------------------------|----|
| 2. | Teoretická část                                                                              | 2  |
|    | 2.1. Oxidy železa                                                                            | 2  |
|    | 2.1.1. ε-Fe <sub>2</sub> O <sub>3</sub>                                                      | 3  |
|    | 2.2. Magnetismus a magnetické jevy v nanosvětě                                               | 5  |
|    | 2.3. Techniky přípravy nanomateriálů                                                         |    |
| 3. | Experimentální část                                                                          | 14 |
|    | 3.1. Charakterizace Sc-dopovaného ε-Fe <sub>2</sub> O <sub>3</sub> /SiO <sub>2</sub> systému | 14 |
|    | 3.1.1. Chemická, strukturní a morfologická charakterizace                                    |    |
|    | 3.1.2. Magnetické vlastnosti a mössbauerovská studie                                         |    |
|    | 3.2. Diskuze                                                                                 |    |
| 4. | Závěr                                                                                        | 26 |
| LI | ITERATURA                                                                                    | 27 |

# 1. Úvod

Velká část současného výzkumu se zaměřuje na nanomateriály a zkoumání jejich fyzikálněchemických vlastností, které jsou odlišné ve srovnání s objemovými materiály. Tyto nové vlastnosti se projevují při různých rozměrech materiálu, tzv. kritické velikosti. Přechod je zřídkakdy náhlý a vlastnosti se mění z objemové do nanorozměrné velikosti kontinuálně, takže stanovení prahové velikosti je ne vždy přesné. Navíc, fyzikální a chemické vlastnosti nanomateriálů závisí na přesném tvaru, složení a také na velikosti.

Změna vlastností je způsobena dvěma hlavními jevy pozorovatelnými v nanosvětě, a to (i) povrchovými jevy, které jsou pozorovatelné při zmenšení velikosti částic (to je dáno tím, že při zmenšení velikosti částic se větší část atomů nachází na povrchu, než v objemu částice) a (ii) kvantovým omezením, kdy dochází ke změně elektronové struktury [1], [2].

Je známo, že poměr mezi počtem atomů na povrchu a počtem atomů v objemu se výrazně zvyšuje se zmenšováním velikosti částic. Protože povrchové atomy mají menší vzájemné uspořádání, oproti atomům v objemu částice, vykazují nanostrukturované materiály výrazně odlišné fyzikální, chemické, optické, mechanické, elektrické a také magnetické vlastnosti [3], [4]. Větší energie povrchových atomů pak přispívá k projevení mnoha unikátních vlastností nanočástic [3]. Materiály připravené v nanorozměrech tak představují velký potenciál pro aplikace v řadě technologických oblastí, jako je nanoelektronika a výpočetní technika, medicína, letectví nebo i kosmickém inženýrství, biotechnologiích, zemědělství a mnoha dalších [1].

V posledních letech je věnována pozornost přechodu oxidů kovů do nanometrických rozměrů. Jedná se např. o oxidy železa, včetně α-Fe<sub>2</sub>O<sub>3</sub> (mineralogicky znám jako hematit), Fe<sub>3</sub>O<sub>4</sub> (mineralogicky znám jako magnetit), γ-Fe<sub>2</sub>O<sub>3</sub> (mineralogicky znám jako maghemit), β-Fe<sub>2</sub>O<sub>3</sub> i ε-Fe<sub>2</sub>O<sub>3</sub> fáze, které vykazují v nanorozměrech jedinečné elektrické, optické, multiferoické a magnetické vlastnosti uplatnitelné v celé řadě aplikací, jako je výroba anorganických pigmentů, magnetických paměťových médií, vývoj plynových senzorů, elektronických a optických zařízení, barevné zobrazování, magnetokalorické chlazení, biotechnologie, ferrofluidní technologie, adsorbenty pro čištění odpadních vod a podobně [5]–[7]. Železo a jeho oxidy jsou tedy stále velmi vyhledávanými pro přípravu nanomateriálů, díky své snadné dostupnosti, cenové nenáročnosti na přípravu, a přesto velmi oceňovanými vlastnostmi.

Tato práce je zaměřena na přípravu a charakterizaci nanočástic oxidu železitého, konkrétně nanočástice ε-Fe<sub>2</sub>O<sub>3</sub>. Fáze ε-Fe<sub>2</sub>O<sub>3</sub> je termodynamicky méně stabilní, než ostatní faze a je poměrně obtížné připravit čistou ε-Fe<sub>2</sub>O<sub>3</sub> fázi, bez přítomnosti ostatních fází oxidu železitého. Nicméně připravit tuto fázi v co nevyšší výtěžnosti a čistotě je velká výzva, jelikož tato fáze vykazuje jedinečné vlastnosti. Nejslibnějšími vlastnostmi této fáze jsou její obrovská koercitivita, okolo 20 000 Oe (2 T), které dosahuje při pokojové teplotě, její multiferoické vlastnosti a také schopnost absorbce elektromagnetického záření. Zde se jeví velmi slibné použít tento materiál jako vlnový absorbér v různých oblastech záření. Tyto oblasti, ve kterých je schopna ε-Fe<sub>2</sub>O<sub>3</sub> fáze absorbovat záření, se dají navíc ladit pomocí dopace této fáze různými atomy. Navíc lze dopací tuto fázi velmi dobře stabilizovat a připravit tak čistou ε-Fe<sub>2</sub>O<sub>3</sub> fázi bez dalších příměsí ostatních fází oxidu železitého.

Disertační práce má tedy dva hlavní cíle. Tím prvním je příprava čisté ε-Fe<sub>2</sub>O<sub>3</sub> fáze, její charakterizace a optimalizace podmínek přípravy. Druhým cílem je příprava a charakterizace dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> systémů. Konréktně byla struktura ε-Fe<sub>2</sub>O<sub>3</sub> dopována atomy galia (Ga) a skandia (Sc) a byl studován vliv dopace na strukturní a magnetické vlastnosti. Pomocí <sup>57</sup>Fe Mössbauerovy spektroskopie byla navíc zjišťována preference obsazování pozic Ga a Sc ionty v ε-Fe<sub>2</sub>O<sub>3</sub> krystalové struktuře a tím ovlivňování výsledných magnetických vlastností, jelikož každá podmřížka v krystalové struktuře ε-Fe<sub>2</sub>O<sub>3</sub> přispívá k výsledné magnetizaci jiným dílem. V rámci tohoto autoreferátu bude pozornost věnováná Sc-dopovaným systémům.

# 2. Teoretická část

# 2.1. Oxidy železa

Oxidy železa jsou stále jedny z nejvíce studovaných nanomateriálů a díky svým vhodným fyzikálně-chemickým, elektronickým, magnetickým i biochemickým vlastnostem si našly uplatnění v mnoha každodenních aplikacích [8]–[16]. Mezi nejznámnější krystalické fáze oxidu železitého patří: (i)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>; (ii)  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>; (iii)  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>; a (iv)  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> [14]–[17]. Existence těchto různých fází je výsledkem polymorfismu oxidu železitého, což je schopnost některých látek krystalovat ve více krystalových strukturách, přičemž jednotlivé polymorfy mohou mít rozdílné fyzikálně-chemické vlastnosti a mohou se vzájemně přeměňovat při určitých teplotách [8]–[17].

Mezi oxidy železa spadá i FeO (mineralogicky známý jako wüstit), Fe<sub>3</sub>O<sub>4</sub> a také amorfní fáze Fe<sub>2</sub>O<sub>3</sub> (viz obr. 1).

Oxid železitý ve všech svých formách je jedním z nejpoužívanějších oxidů kovů s uplatněním v mnoha jak vědeckých, tak průmyslových aplikacích. Nejznámější polymorfy oxidu železitého jsou hematit a maghemit, které se běžně vyskytují v přírodě. V nanometrické formě pak kromě těchto polymorfů mohou být připraveny i polymorfy ε-Fe<sub>2</sub>O<sub>3</sub> a β-Fe<sub>2</sub>O<sub>3</sub> [18].



**Obrázek 1.** Klasifikace oxidů železa s důrazem na nehydratované formy oxidu železa. Převzato z práce [19].

Cílem této práce byla příprava ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic, proto v další kapitole bude věnována pozornost této fázi oxidu železitého.

2.1.1. ε-Fe<sub>2</sub>O<sub>3</sub>

Fáze ε-Fe<sub>2</sub>O<sub>3</sub> je považována za nejzajímavější a aplikačně nejperspektivnější fázi ze skupiny polymorfů oxidu železitého. ε-Fe<sub>2</sub>O<sub>3</sub> má ortorombickou krystalovou strukturu se čtyřmi odlišnými pozicemi kationtů železa, tj. třemi různými oktaedrickými a jednou tetraedrickou pozicí. Všechny pozice kationtů železa vykazují různý stupeň distorze a tím následně ovlivňují magnetické vlastnosti této vzácné fáze [15], [20]–[22]. Z magnetického hlediska se při pokojové teplotě tato fáze chová jako kolineární ferimagnet s hodnotou koercitivity kolem 20 000 Oe a Curievou teplotou *T*<sub>C</sub>, to je teplotou kdy se z magneticky uspořádané látky stává látka paramagnetická, okolo 850 K (576,85 °C) [23]–[26]. Při nízkých teplotách, v teplotním intervalu od 110 K (-163,15 °C) do 150 K (-123,15 °C), pak dochází k řadě složitým magnetickým přechodům zahrnujících přechody mezi stavy s rozdílným magnetickým uspořádáním [27]–[36].

ε-Fe<sub>2</sub>O<sub>3</sub> fáze je také často označována jako nejmladší polymorf oxidu železitého. Úplně poprvé tuto nestabilní krystalickou fázi pozorovali Forestier a Guiot-Guillain v roce 1934 [37]. V roce 1963 pak tato fáze byla poprvé označena jako ɛ-Fe<sub>2</sub>O<sub>3</sub>, kdy Schrader and Büttner [38] izolovaly tuto tmavě hnědou ferimagnetickou fázi. Ve stejném roce, Walter-Lévy and Quéméneur [39] popsali tuto krystalickou fázi v průběhu formování α-Fe<sub>2</sub>O<sub>3</sub> a identifikovali ji jako ε-Fe<sub>2</sub>O<sub>3</sub>. Přesto největší zájem o tuto fázi nejvíce vzbudila až vědecká studie Tronc a spol. [40] vydaná v roce 1998, kde byla detailně zpracovaná strukturní i magnetická charakterizace této zajímavé fáze. Od té doby následovalo několik významných objevů spojených s  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fází. [40]–[49]. Roku 2004, Ohkoshi a spol. [50] objevili, že ɛ-Fe<sub>2</sub>O<sub>3</sub> dosahuje obrovských hodnot koercitivity, okolo 20 000 Oe (2 T), při pokojové teplotě. O dva roky později, Gich a spol. [51] pozorovali vzájemnou závislost magnetických a dielektrických vlastností u této fáze, což nabízí možnost ovlivňování dielektrické permitivity materiálu působením magnetického pole. V roce 2009, Namai a spol. [52] poprvé pozorovali výskyt feromagnetické rezonance ε-Fe<sub>2</sub>O<sub>3</sub> v mikrovlnné oblasti, jejíž frekvenci lze efektivně ladit dopováním ε-Fe<sub>2</sub>O<sub>3</sub> fáze. Velmi významným objevem, který byl pozorován Gich a spol. [53] pro epitaxní tenké vrstvy ɛ-Fe<sub>2</sub>O<sub>3</sub>, byl, že se jedná o feroelektrický materiál s velmi výraznou polarizací a nízkým spínacím napětím. Není divu, že fáze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je považována za velmi slibný a mnohostranně využitelný nanomateriál s širokým rozsahem potenciálních aplikací. ε-Fe<sub>2</sub>O<sub>3</sub> je považována za novou generaci tvrdých magnetů pro vývoj dalších záznamových médií. Polymorf ε-Fe<sub>2</sub>O<sub>3</sub> je velmi účinným elektromagnetickým vlnovým absorbérem v milimetrové oblasti. Dokáže tedy odstínit elektromagnetické pole a zabránit tak elektromagnetickému rušení v bezdrátové komunikaci. ε-Fe<sub>2</sub>O<sub>3</sub> byla také použita v hlavních součástích magneto-optických zařízeních jako vlnový izolátor a cirkulátor v sub-THz oblasti. Navíc, ε-Fe<sub>2</sub>O<sub>3</sub> vykazuje nelineární optický magnetoelektrický jev a vykazuje feroelektrické vlastnosti [50], [52], [54], [55].

Získání nových magneto-elektrických vlastností ε-Fe<sub>2</sub>O<sub>3</sub> lze dosáhnout substitucí atomů železa Fe<sup>3+</sup> v krystalové struktuře atomy jiných prvků. V literatuře existuje již několik příkladů, kdy substitucí cizích atomů do struktury se výrazně změnily magnetické vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub>. Dosud byla krystalová struktura dopována několika různými kationty včetně Al<sup>3+</sup>, Ga<sup>3+</sup>, In<sup>3+</sup>, Rh<sup>3+</sup> [33], [52], [56]–[75]. Je-li ovšem valenční číslo kationtů jiné než 3+, pak je substituce ve struktuře ε-

Fe<sub>2</sub>O<sub>3</sub> obtížná. Navíc bylo zjištěno, že tyto kationty mají různé preference, pokud se jedná o pozici, kterou substituují. Substituce je řízena zejména iontovým poloměrem jednotlivých kationtů. Ga<sup>3+</sup> převážně substituje Fe<sup>3+</sup> v tetrahedrálních D-pozicích, Al<sup>3+</sup> výhradně obsazuje také tetrahedrální D-pozice, In<sup>3+</sup> nahrazuje Fe<sup>3+</sup> zejména v distortovaných oktaedrických B-pozicích (a pravděpodobně také v distortovaných oktaedrických A-pozicích) a Rh<sup>3+</sup> preferuje regulární oktaedrické C-pozice. Největší pozornost byla věnována Rh<sup>3+</sup>-substituci, kdy přítomnost Rh<sup>3+</sup> kationtů v krystalové struktuře výrazně zvyšuje magnetickou anizotropii v důsledku velké anizotropie samotných Rh<sup>3+</sup> iontů. To má za následek zvýšení koercitivity Rh<sup>3+</sup>-substituovaných  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systemů, a tím je řadí mezi jedny z nejtvrdších magnetů.

Jestliže Ga<sup>3+</sup> a Al<sup>3+</sup> ionty nahradí některé Fe<sup>3+</sup> ionty v krystalové struktuře, široký magnetický přechod, nacházející se v teplotním intervalu od ~ 80 K (-193,15 °C) do ~ 150 K (-123,15 °C), postupně mizí se zvyšující se koncentrací cizích kationtů a není pozorováno žádné magnetické změkčení. V případě In<sup>3+</sup> je magnetický přechod posunut do vyšších teplot, okolo 200 K a je mnohem ostřejší.

# 2.2. Magnetismus a magnetické jevy v nanosvětě

Magnetické materiály a především jejich chování v magnetickém poli úzce souvisí s jejich vnitřními momenty hybnosti nebo spiny jejich elektronů. Podle jejich reakcí na přiložené vnější magnetické pole můžeme magnetické materiály rozdělit na magneticky uspořádané a magneticky neuspořádané. Mezi magneticky neuspořádané materiály patří diamagnetické a paramagnetické látky. Mezi magneticky uspořádané materiály se pak řadí například feromagnetické, ferimagnetické nebo antiferomagnetické látky.

V objemovém feromagnetickém materiálu je magnetizace M dána vektorovým součtem všech magnetických momentů atomů v materiálu a je vztažena na jednotku objemu. Skutečná velikost magnetizace M je obecně menší než její saturační hodnota  $M_s$ , kdy jsou všechny atomové momenty dokonale vyrovnané. Tyto stejným směrem natočené magnetické momenty se nachazí v doménách, jak již bylo zmíněno výše, přičemž každá doména má svůj vlastní vektor magnetizace, který vzniká vyrovnáním atomových magnetických momentů v doméně (obr. 2). Vektory magnetizace všech domén v materiálu nemusí být vyrovnány, tedy natočeny do stejného směru, což vede ke snížení celkové magnetizace [76]. Když se však velikost materiálu zmenší, počet domén se sníží. U tzv. kritické velikosti, je velikost materiálu taková, že materiál je tvořen jedinou doménou. Magnetický materiál s jednou doménou, který ztrácí pod jistou kritickou velikostí hysterezi, se nazývá superparamagnetický. Nanočástice oxidu železa menší než asi 20 nm často vykazují superparamagnetické chování při pokojové teplotě [77].



Obrázek 2. Magnetické domény v objemovém materiálu [76].

Uspořádaní magnetických momentů se s rostoucí teplotou snižuje v důsledku teplotních fluktuací jednotlivých momentů. Po překročení Néelovy nebo Curieovy teploty se materiál stává neuspořádaným a ztrácí magnetizaci. Teplota přechodu se u feromagnetických a ferimagnetických látek označuje jako Curieova teplota  $T_C$  a u antiferomagnetických látek jako Néelova teplota  $T_N$  [76].

Jak již bylo řečeno, snížením rozměrů materiálu, obvykle pod 100 nm, docílíme změny vlastností. Tato změna je způsobena dvěma hlavními jevy pozorovatelnými v nanosvětě, a to (i) povrchovými jevy, které jsou pozorovatelné při zmenšení velikosti částic (to je dáno tím, že při zmenšení velikosti částic se větší část atomů nachází na povrchu než v objemu částice) a (ii) kvantovým omezením (jevy spojené s konečným rozměrem částic), kdy dochází ke změně elektronové struktury [1], [2].

Povrchové efekty mají silný vliv na magnetické vlastnosti nanočástic oxidu železa [78]. V důsledku toho jejich výsledná magnetizace klesá s rostoucí teplotou rychleji než u stejného, ale objemového materiálu, protože větší část atomů se nachází v blízkosti povrchu, kde je porušená symetrie krystalové mřížky. To se projeví zvýšením povrchové anizotropie, mnohem větší neuspořádaností magnetických momentů na povrchu oproti momentům uvnitř v materiálu a zeslabením výměnných magnetických interakcí mezi těmito magnetickými momenty na povrchu a v objemu nanomateriálu. Na výsledných magnetických vlastnostech odlišných od objemových materiálů se výrazně projevuje i porozita, defekty a přítomnost vakancí v nanomateriálu. Bylo ovšem zjištěno, že modifikace povrchu chemickými úpravami ovlivňuje koercitivitu oxidických nanočástic [76], [79]–[81]. V důsledku této závislosti na velikosti a povrchové úpravě, lze magnetické vlastnosti nanostrukturovaných magnetických materiálů ovlivňovat způsobem přípravy.

Mezi magnetické jevy, které můžeme pozorovat u nanomateriálů, patří jednodoménovost, superparamagnetismus, kolektivní magnetická excitace, spinové sklánění a spinová frustrace, kolektivní chování blízké spinovým sklům indukované mezičásticovými magnetickými interakcemi, obří magnetorezistance a extraordinární Hallův jev a kvantové tunelování magnetizace.

Jednodoménovost, jak už bylo naznačeno výše, se projevuje při snižování rozměrů materiálu, kdy klesá počet domén, až do tzv. kritické velikosti materiálu, při které už existence více domén není energeticky výhodná a částice se stává jednodoménovou. Magnetické momenty v této jednonoménové částici jsou natočeny do jednoho směru, tzv. snadného směru magnetické anizotropie a vzájemně spolu kooperují skrz celou částici. Taková nanočástice navenek vykazuje obrovský magnetický moment, tzv. superspin.

Dalším projevem magnetických vlastností pozorovaných u nanomateriálů je superparamagnetismus [11], [19]. Velmi zjednodušeně, je superparamagnetismus jev, který je výsledkem soutěžení mezi anizotropní energií nanočástice a energií teplotních fluktuací. S tímto jevem se dále setkáme i v této práci při charakterizaci výsledků. U nanočástice, která se nenachází pod kritickou velikostí, převládá magnetická anizotropie, která drží tzv. superspin ve snadném směru magnetizace. Zmenšujeme-li ovšem velikost nanočástice, anizotropní energie se stane srovnatelnou s energií teplotních fluktuací a dojde k překonání energetické bariéry, která drží magnetizaci v daném směru. Superspin nanočástice se tak snadno překlopí z jednoho snadného směru magnetizace do druhého snadného směru magnetizace i bez přítomnosti vnějšího magnetické pole a magnetický moment tak vykazuje stav, který je podobný teplotním fluktuacím (viz obr. 3).



**Obrázek 3.** Schematické znázornění chování "superspinu" neinteragujících nanočástic v (a) blokovacím a (b) superparamagnetickém stavu bez přítomnosti vnějšího magnetického pole. Převzato z práce [19], [82].

K upřesnění se ještě zavádí tzv. relaxační čas  $\tau$ , který označuje dobu, jak dlouho setrvá superspin v jednom snadném směru magnetizace, než se vlivem teplotních fluktuací překlopí do dalšího snadného směru osy magnetizace. Zavádí se i tzv. charakteristická doba měření  $\tau_m$  použité experimentální techniky. Jestliže je  $\tau_m \gg \tau$ , pak je superparamagnetická relaxace rychlá. V průběhu měření se superspin nanočástice několikrát překlopí a natočení superspinu je pak dáno jako průměr všech změřených natočení za celou dobu měření. Tomuto stavu nanočástice se říká superparamagnetický. Může ovšem nastat případ, kdy  $\tau_m \ll \tau$  a překlápění spinu je velmi pomalé, navenek tak pozorujeme podobné vlastnosti, jako vykazují magnetizaci. To znamená, že v rámci doby měření nemá superspin čas na překlopení z jednoho snadného směru magnetizace do druhého. Nanočástice se tak navenek v rámci doby měření nachází v blokovacím stavu. Pro oddělení obou těchto magnetických stavů je zavedena tzv. blokovací teplota  $T_B$ , při které je  $\tau = \tau_m$  [19].

# 2.3. Techniky přípravy nanomateriálů

Nanomateriály se syntetizují různými metodami podle typu a povahy nanomateriálů. V širším smyslu existují dva hlavní přístupy syntézy nanomateriálů, "top-down" neboli "shora dolů" a "bottom-up" neboli "zdola nahoru" (viz obr. 4). Při syntéze nanomateriálů metodami "top-down" se objemné materiály redukují na nanomateriály a při metodách spadajících do "bottom-up" přístupu se nanomateriály syntetizují od elementární úrovně (atomů, klastrů, atd.).

"Top-down" přístup (fyzikální) většinou používá statické zpracování materiálů a zahrnuje rozbití materiálu na menší částice pomocí fyzikálních procesů, jako je drcení, mletí nebo broušení. Patří zde i naprašování, laserová ablace nebo litografie. Obecně tento přístup není vhodný pro přípravu rovnoměrně tvarovaných nanomateriálů a je velmi obtížné získat nanočástice velmi malých rozměrů i při aplikování vysoké energie. Hlavní nevýhodou této metody je absence povrchové struktury, která má značný vliv na fyzikální vlastnosti a povrchovou chemii nanomateriálů. Kromě toho tento přístup také způsobuje značnou ztrátu krystalografie zpracovávaných útvarů [83].



Obrázek 4. Princip "top-down" a "bottom-up" přístupů syntézy nanomateriálů [84].

"Bottom-up" přístup (chemický) využívá syntézy atom po atomu nebo molekula po molekule k získání většího množství materiálu. Tento přístup se používá častěji pro přípravu nanomateriálů, protože je jím možné připravit nanomateriály jednotné velikosti, tvaru a dobře distribuované. V zásadě je proces chemické syntézy přesně řízen, aby se zabránilo nežádoucímu růstu částic. Tento přístup hraje důležitou roli při syntéze a zpracování nanomateriálů s lepší distribucí velikosti částic a jejich lepší morfologií. Další důležitou vlastností je, že jde o ekologicky šetrný a ekonomický proces výroby nanočástic [85]. Řadí se zde několik metod syntézy nanomateriálů, jako jsou reakce v plynné fázi užitím odporového ohřevu, laserem nebo plazmatem [86], [87], hydrotermální syntéza [88], [89], solvotermální syntéza, superkritické hydrotermální nebo fluidní procesy,
syntézy sol-gel [90], syntézy s mikrovlnným ohřevem, syntézy v mikroemulzích nebo reverzních micelách nebo například sonochemické syntézy [83].

Metody přípravy se dají rozdělit také podle povahy přípravy na fyzikální, chemické a biologické nebo mohou být rozlišeny na základě použitého zdroje energie (elektrický výboj, laser, plamen, plazma, iontové naprašování, elektronový svazek, mikrovlnné záření, vysokoenergetické mletí, atd.).

Další možností jak rozdělit metody přípravy nanomateriálů je podle skupenství, ve kterém se prekurzor pro přípravu nanomateriálů nachází. Rozlišujeme metody přípravy z pevné fáze, metody přípravy z kapalné fáze a metody přípravy z plynné fáze. Příkladem metod přípravy z pevné fáze je mechanochemická syntéza nebo metoda tepelného rozkladu a pulzní laserová ablace. Mezi metody z plynné fáze pak spadá chemická depozice par (Chemical Vapor Depostion – CVD) a od ní odvozené metody PA-CVD (Plasma Assisted-CVD), plazmaticky aktivováná CVD (Plasma Enhanced CVD, PE-CVD), mikrovlnná plazmatická CVD (Microvawe Plasma-Assisted CVD), chemická depozice z organokovových prekurzorů (Metal Organic CVD, MOCVD), molekulární svazková epitaxe (Molecular Beam Epitaxy, MBE), metoda depozice atomárních vrstev (Atomic Layer Deposition, ALD) a další [91].

Mezi metody z kapalné faze patří hydrotermální syntéza, solvotermální syntéza, sol-gel metoda, koprecipitační metody, mikroemulzní procesy, polymerní metody, a další [76], [83], [92].

V této práci je stěžejní metoda sol-gel pro přípravu ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic. Tato metoda je jednou z osvědčených metod pro přípravu oxidů kovů i kompozitů směsných oxidů kovů. Sol-gel má velký potenciál při kontrole strukturních i povrchových vlastností připravovaných materiálů. Principem metody je příprava koloidní suspenze, solu, ze které vzniká gel a následnou úpravou pevný materiál. Metoda sol-gel se skládá z několika kroků. Prvním krokem je hydrolýza, následují polykondenzační reakce a nakonec probíhá zrání a sušení gelu. Pomocí sol-gel můžeme připravit jemné prášky, nanočástice jednotných velikostí, aerogely nebo xerogely (viz obr. 5).

Xerogely vznikají tepelným zpracováním za normálního tlaku, zatímco aerogely vznikají tepelným zpracováním za nadkritických podmínek rozpouštědla (autokláv, tlak 200 atm.) [93].

Metoda sol-gel může být rozdělena do dvou přístupů, a to buď na hydrolytické metody solgel nebo bezvodé metody sol-gel, podle typu použitého rozpouštědla. Pokud je jako reakční médium použita voda, jedná se o hydrolytické metody sol-gel. Je-li použito organické rozpouštědlo jako reakční médium, jedná se o bezvodý přístup sol-gel. Při použití metody sol-gel při syntéze nanočástic oxidů kovů hraje významnou roli povaha rozpouštědla a prekurzoru [94].



Obrázek 5. Reakční schéma přípravy nanostruktur oxidů kovů metodou sol-gel [94].

Při hydrolytickém přístupu sol-gel je nezbytný kyslík k formování oxidu kovu, který je obsažen právě v rozpouštědle, tedy ve vodě. Jako prekurzory kovů se obecně používají dusičnany, sírany, chloridy, amidy či alkoxidy kovů (R = přechodný kov). Alkoxidy kovů jsou široce používány jako prekurzory pro syntézu nanočástic oxidů kovů, díky jejich vysoké reakční afinitě k vodě. Při prvním kroku, tedy hydrolýze prekurzoru kovu, vznikají hydroxylové skupiny. Následuje polykondenzace [94], [95].

$$SiOR + H_2O \leftrightarrow SiOH + ROH$$
 (1)

$$2 \operatorname{SiOH} \leftrightarrow \operatorname{Si} - 0 - \operatorname{Si} + \operatorname{H}_2 0 \tag{2}$$

$$SiOH + SiOR \leftrightarrow Si - 0 - Si + ROH [95]$$
 (3)

Celý proces je ovlivňován hodnotou pH, kterou se určuje i rychlost procesu. U přechodu tetraethyl orthosilikátu (TEOS) na SiO<sub>2</sub> v kyselém prostředí, je rychlost hydrolýzy tím vyšší, čím je hodnota pH nižší. To pozorujeme až do hodnoty izoelektrického bodu, kdy se pH pohybuje v rozmezí 1,5 - 2 pro SiO<sub>2</sub> gel [95].

Nicméně s touto metodou jsou spojeny i některé nevýhody, a to hlavně při přípravě směsných oxidických materiálů, kdy je pozorovatelný velký rozdíl v rychlosti hydrolýzy alkoxidů přechodných kovů a pomalejší rychlosti reakce alkoxidů křemíku. Materiál pak může být nehomogenní, a to kvůli rychlejšímu vylučování oxidu kovu. Tento problém se dá řešit pomocí chelatace přechodných kovů či prehydrolýzy alkoxidů křemíku [95].

Klíčové kroky procesu jako hydrolýza, kondenzace probíhají při hydrolytických metodách sol-gel s vysokou a špatně kontrolovatelnou rychlostí a často současně. To má za následek špatné řízení morfologie částic a reprodukovatelnost celého procesu i konečného produktu. Tyto obtíže se však netýkají přípravy větších částic a objemových materiálů oxidů kovů, pouze nanočástic oxidů kovů [83]. Přístup bezvodé metody sol-gel eliminuje problém s kontrolou rychlostí reakcí při hydrolýze a kondenzaci u hydrolytických metod sol-gel. V tomto případě je kyslík potřebný k formování oxidu kovů získáván z rozpouštědel jako alkoholy, ketony, aldehydy nebo z prekurzoru daného kovu. Navíc organická rozpouštědla slouží nejen jako zdroj kyslíku, ale slouží také jako univerzální nástroj ke kontrole morfologie, povrchu, velikosti částic a jejich složení. Ačkoli tento přístup není tak rozšířený jako vodný přístup sol-gel, vykazuje bezvodý přístup vynikající výsledky při produkci nanočástic oxidů ve srovnání s vodnou technikou sol-gel. Bezvodou sol-gel techniku lze pak rozdělit ještě do dvou přístupů, a to přístup s povrchově aktivními látkami a přístup řízený rozpouštědlem. Přístup s povrchově aktivními látkami zahrnuje přímou transformaci prekurzoru kovu na oxid kovu za vyšší teploty (v metodě vstřikování za tepla). Tato metoda umožňuje vynikající kontrolu nad tvarem nanočástic, jejich růstem a zabraňuje aglomeraci částic [94].

Rychlost hydrolýzy a kondenzace jsou důležité parametry, které ovlivňují vlastnosti konečných produktů. Menší velikosti částic se dosahuje při pomalejších a kontrolovanějších rychlostech hydrolýzy. Velikost částic závisí také na složení roztoku, pH a teplotě.

Magnetické uspořádání v systému sol-gel závisí na vytvořených fázích, objemovém podílu částic a je také velmi citlivé na distribuci velikosti částic. V případě nanokompozitů získaných z gelů jsou strukturní parametry a pórovitost materiálu určeny rychlostí hydrolýzy, kondenzací gelových prekurzorů a také dalšími oxidačně-redukčními reakcemi, které probíhají během gelování a následného tepelného zpracování [96].

Aerogelové kompozity oxidu železitého a oxidu křemičitého byly připraveny metodou sol-gel [97]–[99] a bylo zjištěno, že jsou o 2 až 3 řády reaktivnější než konvenční oxid železitý [100].

Zvýšení reaktivity bylo přisouzeno velké ploše povrchu nanočástic oxidu železitého zabudovaných v aerogelu oxidu křemičitého [101], [102]. Komerční prekurzory (TEOS a Fe(III) roztok) byly rozpuštěny v alkoholovém vodném prostředí a vzniklé gely byly po několika dnech tepelně zpracovány za vzniku výsledných produktů oxidů železitého [96], [103], [104]. Jako prekurzory oxidů kovů byly použity dusičnan železitý, acetylacetonát železitý a chlorid železitý [97], [99], [101], [103]–[106]. Dokonce bylo publikováno i použití kovového komplexu FeNa(EDTA) a směsi tohoto kovového komplexu s dusičnanem železitým [107]. Při experimentech pouze s čistým kovovým komplexem byly získány nanočástice oxidů železa s velikostí v rozsahu 20 - 160 nm. Nízká rozpustnost soli EDTA v rozpouštědle zabránila syntéze aerogelů s vysokým obsahem železa, v případě, kdy byl tento komplex použit jako prekurzor [107].

Ve většině metod syntézy kompozitů oxidů železa a oxidu křemičitého byly výchozí prekurzory oxidů železa nejprve smíchány s prekurzory oxidu křemičitého k vytvoření "solu" [97], [99], [101], [103]–[113]. Nedávno Popovici a spol. [114] připravili kompozity oxidů železa a oxidu křemičitého pomocí nového způsobu syntézy, který spočívá v nasycování mokrých gelů oxidu křemičitého bezvodými prekurzory Fe(II) s následným superkritickým sušením gelů ethanolem. Jednofázové  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> dispergované nanočástice zapuštěné do křemíkových aerogelů byly získány bez následného tepelného zpracování. Nanokompozity vykazovaly vysokou hodnotu saturační magnetizace a byly superparamagnetické při pokojové teplotě. Předpokládá se, že na tyto výsledky má největší vliv to, že impregnace prekurzorů proběhla až po gelování, před impregnací byla opatrně vyměněna voda za ethanol a místo hydratované soli byla použita bezvodá železitá sůl [100], [107], [114]. Metoda sol-gel byla rovněž použita k syntéze tenkých vrstev Fe<sub>3</sub>O<sub>4</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> [115]–[117], transparentních tenkých vrstev oxidů titaničitých dopovaných železem [118], feromagnetických vrstev bismuto-železitých oxidů [119], směsí oxidů železa [120]–[125] a nanokompozitů oxidu železa a hliníku. [126]

V této práci byla tato technika využita pro přípravu ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic a detailnější podmínky přípravy jsou popsány v experimentální části.

## 3. Experimentální část

Tato práce má dva hlavní cíle. Tím prvním je příprava čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, její charakterizace a optimalizace podmínek přípravy. Druhým cílem této práce je příprava a charakterizace dopovaných  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systémů. Konréktně je  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze dopována atomy galia (Ga) a skandia (Sc) a je studován vliv dopace na strukturní a magnetické vlastnosti. V rámci autoreferátu budou představeny Sc-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systémy (volný komentář k již publikované studii [v]).

#### 3.1. Charakterizace Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> systému

Pomocí sol-gel metody byla připravena série vzorků  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4) nanočástic zabudovaných do křemíkové matrice s obsahem  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> vůči SiO<sub>2</sub> matrici 25 hmot. %. Jednotlivé vzorky se mezi sebou lišily v množství dopace skandiem (Sc), tedy v atomární koncentraci Sc (0, 1, 5, 10, 15, and 20 at. %, tj., x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4). Tepelné zpracování probíhalo u všech vzorků při teplotě 1100 °C. Primárním cílem dopace bylo zastabilizování čisté  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze a získání informací o tom, jak dopace ovlivní výsledné strukturní a magnetické vlastnosti dopovaných systémů, oproti vlastnostem nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze.



## 3.1.1. Chemická, strukturní a morfologická charakterizace

**Obrázek 6.** (a) XRD spektra série vzorků  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> (x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4) zabudovaných v SiO<sub>2</sub> matrici. (b) Celkové množství jednotlivých fází oxidu železa a (c) průměrná velikost nanočástic ve vzorcích  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> (x = 0; 0,02; 0,1; 0,2; 0,3 a 0,4).

Obrázek 6 znázorňuje XRD spektra odpovídající  $\varepsilon$ -Sc<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub>/SiO<sub>2</sub> vzorkům s rozdílným obsahem Sc. Všechna spektra obsahují difrakční píky odpovídající fázi  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a fázi  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nebo  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>. U všech spekter je také viditelný typický oblouk představující amorfní křemíkovou matrici. Podle výsledků z XRD, vzorek s obsahem 5 at. % skandia se skládá pouze z  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>,

přičemž ostatní fáze oxidu železitého jsou v tomto vzorku obsaženy v tak malém množství, že se nachází pod detekčním limitem XRD techniky. Pro pochopení vlivu dopace skandiem na fyzikální vlastnosti  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, zejména pak na preferenci pozice v krystalové struktuře  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, do které atomy Sc přednostně substituují a výsledné změny v magnetických vlastnostech, byl právě vzorek s koncentrací 5 at. % Sc vybrán pro detailnější fyzikálně-chemickou charakterizaci. U vzorků s obsahem Sc do 15 at. % byla vždy jako majoritní fáze  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> fáze byla minoritní. U vzorku s obsahem 20 at. % Sc pak byla opět jako majoritní  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, ovšem jako minoritní byla  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> fáze.

Jak již bylo zmíněno výše,  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vykazuje ortorhombickou krystalovou strukturu s prostorovou grupou *Pna*2<sub>1</sub> a mřížkovými parametry a = 5,072 Å; b = 8,736 Å; c = 9,418 Å a  $\alpha = \beta = \gamma = 90^{\circ}$  [45]. Mřížkové parametry nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> získané z XRD měření byly a = 5,098Å; b = 8,808 Å; c = 9,476 Å. Mřížkové parametry Sc-dopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (tj.,  $\varepsilon$ -Sc<sub>0.1</sub>Fe<sub>1.9</sub>O<sub>3</sub>, 5 at. % Sc) vyhodnocené pomocí XRD měření byly a = 5,114 Å; b = 8,811 Å; c = 9,501 Å.

Změna mřížkových parametrů pro nedopovaný a Sc-dopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém potvrzuje, že atomy Sc byly zabudovány do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>. Změny v mřížkových parametrech dopovaného a nedopovaného systému však nejsou příliš výrazné vzhledem k podobným iontovým poloměrům Fe<sup>3+</sup> a Sc<sup>3+</sup> kationů v oktaedrických pozicích.



**Obrázek 7.** (a) TEM snímek z vybraného vzorku  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub>, zabudovaného v matrici SiO<sub>2</sub> (teplota zpracování = 1 100 °C). (b) Velikostní distribuce částic odvozená ze statistické analýzy reprezentativního TEM snímku vzorku  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> s fitováním pomocí log-normální křivky rozdělení pravděpodobnosti. (c) Snímek TEM nedopovaného vzorku  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, zabudovaného v SiO<sub>2</sub> matrici (teplota zpracování = 1 100 °C). (d) Velikostní distribuce částic odvozená ze statistické analýzy odpovídajících TEM snímků vzorku  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s fitováním pomocí Gaussovy křivky pravděpodobnostního rozdělení.

TEM snímky (viz obr. 7 (a) a 7 (c)) ze vzorků  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> a nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> (referenční vzorek, viz výše) ilustrují téměř sférické částice zabudované v matrici oxidu křemičitého. Velikostní distribuce vzorku  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> (viz obr. 7 (b)) byla získána z TEM snímků s použitím programu ImageJ s log-normálním fitováním. Velikostní distribuce byla vyhodnocena také pro vzorek nedopované  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze (viz obr. 7 (d)), kde bylo využito pro fitování Gaussovské pravděpodobnostní rozdělení. Průměrná velikost nanočástic  $\varepsilon$ -Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> systému byla přibližně 16,5 nm se standardní odchylkou 0,2 nm. Průměrná velikost nanočástic nedopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému byla 14,3 nm se standardní odchylkou 0,3 nm.

Dá se tedy usuzovat, že zabudování  $Sc^{3+}$  iontů do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je termodynamicky výhodné a nanočástice  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> pak mohou existovat ve větší velikosti. Přítomnost  $Sc^{3+}$  iontů pravděpodobně mění stabilizační energii  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, která je dána hlavně Gibbsovou volnou energií. Elementární mapy pořízené pomocí HR-TEM mikroskopu (viz obr. 8) potvrzují rozložení atomů Sc v krystalové mřížce nanočástic oxidu železitého zabudovaných v křemíkové matrici.



**Obrázek 8.** HRTEM snímek ε-Sc<sub>0,1</sub>Fe<sub>1,9</sub>O<sub>3</sub> a odpovídající prvkové mapy Sc, Si, O a Fe.



3.1.2. Magnetické vlastnosti a mössbauerovská studie

**Obrázek 9.** ZFC/FC magnetizační křivky naměřené při působení vnějšího magnetického pole 100, 1 000 a 10 000 Oe pro (a) nedopovaný a (b) Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek. Hysterezní smyčky měřené při teplotě 5 a 300 K pro (c) nedopovaný a (d) Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek. Vložené grafy znázorňují přiblížené profily hysterezních smyček a zvýrazňují hodnoty koercivity a remanence.

Za účelem objasnění vlivu dopace skandiem na magnetické vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub> systému, byly změřeny ZFC/FC teplotní křivky a hysterezní smyčky, jak pro Sc-dopovaný, tak pro nedopovaný vzorek (vzorek z 1. série, 25 hmot. % ε-Fe<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>, teplota zpracování 1 100 °C). Výsledky jsou znázorněny na obr. 9. Jak je zřetelně vidět z výsledků měření pro nedopovanou fázi (viz obr. 9 (a)), u obou magnetizačních ZFC i FC křivek měřených ve vnějších magnetických polích 100 a 1000 Oe, jsou pozorovány dva výrazné skoky, jeden okolo ~100 K (-173,15 °C) a druhý okolo ~140 K (-133,15 °C). Tyto skoky jsou projevem širokého magnetického přechodu typického pro  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, který značí přechod z kolineárního ferimagnetického stavu do stavu s vlastnostmi nesouměřitelné magnetické struktury. Magnetizační křivky ZFC/FC se od sebe odchylují, což predikuje přítomnost velmi malých částic se superparamagnetickými/magneticky blokovanými vlastnostmi. Jejich původ by mohl pocházet od velmi malých nanočástic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> s velikostí menší, než je právě limitní velikost pro superparamagnetické chování, tedy s velikostí zhruba 7,5 nm, jak je vidět z velikostní distribuce odvozené z TEM obrázků nebo od  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, jejichž množství ve vzorku je tak malé, že se nachází pod detekčním limitem XRD měření a <sup>57</sup>Fe Mössbauerovy spektroskopie (viz výše a níže).

Ve vnějším magnetickém poli 10 000 Oe, u nízkoteplotního magnetického průběhu ZFC křivky, je oddělení magnetizačních křivek výraznější, což je typické pro systémy se superparamagnetickým chováním (s odpovídající blokovací teplotou někde v teplotním intervalu od ~ 100 K (-133,15 °C) do ~ 147 K (-126,15 °C)).

U Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku dochází k výrazné změně u magnetizačních ZFC/FC křivek (viz obr. 9 (b)). Obě křivky ZFC i FC u všech aplikovaných vnějších magnetických polí vykazují pouze jedno maximum, které odpovídá nástupu magnetického přechodu při ochlazování. Zejména ve vnějším magnetickém poli 100 a 1 000 Oe začíná magnetický přechod při ~ 160 K (-113,15 °C) a končí při ~ 120 K (-153,15 °C). Ve srovnání s nedopovaným ε-Fe<sub>2</sub>O<sub>3</sub> systémem, Sc<sup>3+</sup> substituce způsobuje zúžení oblasti magnetického přechodu a posunutí jeho začátku k vyšší teplotě, asi o 20 K. Analogické chování bylo pozorováno i u dopace In<sup>3+</sup> kationty [59]. Magnetizační křivky ZFC/FC měřené ve vnějších magnetických polích 100 a 1000 Oe, se od sebe odchylují podobně, jako tomu bylo u křivek pro nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek, což opět potvrzuje přítomnost velmi malých ε-Fe<sub>2</sub>O<sub>3</sub> a/nebo γ-Fe<sub>2</sub>O<sub>3</sub> nanočástic se superparamagnetickým/magneticky blokovaným chováním. Jejich odezva, typicky výraznější při větších aplikovaných vnějších magnetických polích v důsledku polem ovlivnitelného blokování superspinu nanočástic [11], je mnohem více zřetelná na magnetizačních křivkách ZFC/FC při aplikovaném magnetickém poli 10 000 Oe, kdy se průběhy jednotlivých křivek výrazně odchylují. Nicméně nástup magnetického přechodu při ~ 156 K (-117,15 °C) je stále pozorovatelný. Interval blokovacích teplot velmi malých ε-Fe<sub>2</sub>O<sub>3</sub> nebo

 $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic je mnohem užší a ostřejší, což predikuje jejich užší velikostní rozdělení ve srovnání s velikostním rozdělením nanočástic v nedopovaném  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému. Předpokládá se tak, že průměrná blokovací teplota těchto nanočástic by se mohla pohybovat někde mezi 140 a 160 K (-133,15 a -113,15 °C).

Hysterezní smyčky změřené při 5 a 300 K pro oba studované systémy vykazují schodovitý průběh, nikoli hladký (viz obr. 9 (a) a (b)). Takové chování může být zapříčiněno (i) kombinací tvrdých a měkkých magnetických fází, resp. kombinací fází s vyšší a nižší koercitivitou nebo (ii) koexistencí superparamagnetické a jednodoménové fáze s nulovou koercitivitou a náhlou změnou hodnot magnetizace okolo nulového aplikovaného vnějšího magnetického pole nebo (iii) superpozicí jedno a více-doménových fází s vysokou, respektive nízkou koercitivitou [127]. V případě nedopovaného a Sc-dopovaného ɛ-Fe2O3 systému, pozorovaný profil odráží přítomnost tvrdé a měkké (nebo superparamagnetické) fáze, přičemž první (s mnohem vyšší koercitivitou) pochází od nanočástic  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> v jednodoménovém stavu a s velikostí větší, než je limitní velikost superparamegnetismu a druhá (s velmi malou nebo nulovou koercitivitou) pochází od ɛ-Fe2O3 nebo  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> nanočástic, které se chovají magneticky blokovaně (při 5 K) a superparamagneticky (při 300 K). Tento předpoklad je v souladu s výsledky vyplývajícími z ZFC/FC magnetizačních měření. U Sc-dopovaného vzorku je zúžení izotermické hysterezní smyčky při 5 K těsně kolem nulové hodnoty intenzity magnetického pole, což svědčí o úzké velikostní distribuci měkké magnetické fáze, jak již bylo vyvozeno z analýzy odpovídajících ZFC/FC profilů magnetizace při 10 000 Oe. Po zavedení Sc<sup>3+</sup> do krystalové struktury ε-Fe<sub>2</sub>O<sub>3</sub> se hodnoty koercitivity snížily. Konkrétně, při 300 K se koercitivita snížila z 16 495 Oe (± 10 Oe, nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub>) na 11 068 Oe (Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub>; viz obr. 9 (c), 42 (d)). Pokles koercitivity po substituci Sc<sup>3+</sup> byl také pozorován při 5 K, a to z hodnoty 4 886 Oe na hodnotu 3 470 Oe ( $\pm$  10 Oe, viz obr. 9 (c), 9 (d)). Dopací Sc<sup>3+</sup> do krystalové struktury ε-Fe<sub>2</sub>O<sub>3</sub> se magnetokrystalová anizotropie, která primárně řídí koercitivitu, výrazně snižuje. Podobný efekt byl pozorován i po substituci Sc<sup>3+</sup> iontů do (M-tvpu) barium feritu a byl vysvětlen z hlediska preference obsazení trigonálních bipyramidálních pozic, které se v těchto systémech nejvíce podílejí na anizotropii pole [128]. V našem případě se zdá, že dopování ionty Sc<sup>3+</sup> pravděpodobně mění distorze v oktaedrických pozicích krystalové struktury ε-Fe<sub>2</sub>O<sub>3</sub>, které spolu s dalšími parametry hrají významnou roli při ovlivňování anizotropie pole, a tedy i magnetokrystalové anizotropie. Zajímavé je, že maximální magnetizace při 50 kOe je pro 5 K i 300 K pro Sc-dopovaný i pro nedopovaný ε-Fe<sub>2</sub>O<sub>3</sub> vzorek velmi podobná. Konkrétně při 5 K

dosahuje hodnoty 5,1 emu/g a 5,3 emu/g ( $\pm$  0,1 Oe) pro nedopovaný a Sc-dopovaný systém  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> a při 300 K se rovná 4,4 emu/g a 4,2 emu/g ( $\pm$  0,1 Oe) pro nedopovaný a Sc-dopovaný  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém. Z toho vyplývá, že (i) Sc<sup>3+</sup> ionty pravděpodobně substituují do dvou krystalografických pozic se vzájemně opačnou orientací magnetizace (magnetických momentů) a že (ii) Sc<sup>3+</sup> ionty obsazují tyto pozice téměř rovnocenně.

Remanentní magnetizace byla ovlivněna po substituci  $Sc^{3+}$  ionty. Hodnoty remanence byly 2,2 emu/g a 1,4 emu/g (± 0,1 Oe) pro nedopovaný a Sc-dopovaný  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém při 5 K a 2,3 emu/g a 1,5 emu/g (± 0,1 Oe) pro nedopovaný a Sc-dopovaný  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> systém při 300 K. Takovou změnu hodnot remanentní magnetizace u těchto dvou systémů lze vysvětlit především z hlediska mírně odlišného množství podílu superparamagnetických/magneticky blokovaných nanočástic  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> s různou distribucí velikosti částic (viz výše). Nepředpokládá se tedy, že by ionty Sc<sup>3+</sup> substituované do krystalové struktury  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub>, měly výrazný vliv na magnetickou remanenci dopovaných systémů  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzhledem k jejich převážně paramagnetické odezvě.

K objasnění preference obsazení pozice ionty  $Sc^{3+}$  v krystalové struktuře  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> byly vzorky změřeny pomocí <sup>57</sup>Fe Mössbauerovy spektroskopie. <sup>57</sup>Fe Mössbauerovská spektra při pokojové teplotě nedopovaného a Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku jsou znázorněny na obr. 10 a hodnoty hyperjemných parametrů vyhodnocené z těchto spekter jsou uvedenv v tab. 1. Obě <sup>57</sup>Fe mössbauerovská spektra byla fitována pomocí 5 magneticky odlišných komponent, tedy 1 sextetu odpovídající α-Fe<sub>2</sub>O<sub>3</sub> a 4 sextetů patřící ε-Fe<sub>2</sub>O<sub>3</sub>. V rámci sestaveného fyzikálně-chemického modelu nebyla žádná spektrální komponenta identifikována jako γ-Fe<sub>2</sub>O<sub>3</sub>, což znamená, že její přítomnost ve vzorku je pod detekčním limitem (~ 2 % spektrální plochy) Mössbauerovy spektroskopie a stejně tak u XRD. V případě nedopovaného vzorku ε-Fe<sub>2</sub>O<sub>3</sub> se navíc uplatnila ve fitu i další komponenta – singlet, odpovídající výskytu velmi malých nanočástic γ-Fe<sub>2</sub>O<sub>3</sub> a/nebo ε-Fe<sub>2</sub>O<sub>3</sub> s relaxačními časy jejich superspinů, které jsou velmi podobné nebo o něco rychlejší než doba života jádra 57Fe v excitovaném stavu. Jeho široký profil naznačuje široké rozdělení relaxačních časů superspinů patřících malým nanočásticím γ-Fe<sub>2</sub>O<sub>3</sub> a/nebo ε-Fe<sub>2</sub>O<sub>3</sub>, jak se očekávalo již z širokého rozdělení velikostní distribuce. Tato spektrální komponenta již není pozorovaná u Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> vzorku, a to pravděpodobně v důsledku užšího rozdělení velikostní distribuce velmi malých částic γ-Fe<sub>2</sub>O<sub>3</sub> a/nebo ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic a tím tedy i užšího rozdělení relaxačních časů superspinů, jak již bylo vyvozeno z analýzy magnetizačních měření. Při vyhodnocování byly použity obecně používané fyzikálně-chemické modely pro ε-Fe<sub>2</sub>O<sub>3</sub> a αFe<sub>2</sub>O<sub>3</sub>, které byly vhodně upraveny [16], [129]. Vzhled mössbauerovského spektrálního profilu ε-Fe<sub>2</sub>O<sub>3</sub> odpovídá jeho krystalové struktuře, kdy každý sextet odpovídá určitým krystalografickým pozicím ε-Fe<sub>2</sub>O<sub>3</sub>.

U Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému, jsou sextety z regulárních oktaedrických (Fe<sub>C</sub>) a tetraedrických (Fe<sub>D</sub>) pozic intenzivnější, než sextety od obou distortovaných oktaedrických pozic (Fe<sub>A</sub> a Fe<sub>B</sub>). Ionty Sc<sup>3+</sup> tedy převážně obsazují distortované oktaedrické pozice A a B. Ještě zajímavější je, že v rámci experimentální chyby Mössbauerovy spektroskopie jsou spektrální plochy sextetu Fe<sub>A</sub> a Fe<sub>B</sub> identické, což naznačuje, že ionty Sc<sup>3+</sup> obsazují tato místa se stejnou pravděpodobností. Jelikož magnetické momenty iontů Fe<sup>3+</sup> na distortovaných oktaedrických pozicích A jsou orientovány antiparalelně k magnetickým momentům iontů Fe<sup>3+</sup> na distortovaných oktaedrických oktaedrických pozicích B, rovnoměrná substituce pak nemá vliv na výsledný magnetický moment struktury. Z tohoto důvodu, se příspěvky k magnetizaci od A- a B-pozic vzájemně ruší a celková magnetizace Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> je dána magnetizací pocházející od tetraedrických D-pozic, které nejsou ovlivněny dopováním Sc.

To dokonale odpovídá téměř nezměněným hodnotám maximální magnetizace nedopovaného a dopovaného systému  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> při 50 kOe (viz výše), a to i přes mírně odlišné množství superparamagnetických/magneticky blokovaných částic v těchto dvou vzorcích. Zde je třeba zdůraznit, že preference obsazení místa se řídí iontovým poloměrem. Protože iontový poloměr Sc<sup>3+</sup> je ~ 74,5 pm (v oktaedrické koordinaci) [81], tedy větší než u Fe<sup>3+</sup> (~ 64,5 nm), má tendenci nahradit Fe<sup>3+</sup> spíše na oktaedrických pozicích A a B. Ionty Sc<sup>3+</sup> se tedy do těchto pozic substituují snadněji, což prakticky nemění mřížkové parametry  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> krystalické mřížky, jak dokazuje XRD analýza (viz výše).



**Obrázek 10.** <sup>57</sup>Fe Mössbauerovská spektra (a) nedopovaného a (b) Sc-dopovaného  $\epsilon$ -Fe<sub>2</sub>O<sub>3</sub> vzorku, naměřené v nulovém magnetickém vnějším poli.

| Vzorek     | Polymorf                         | Komponenta | $\delta \pm$ | $\Delta E_Q \pm$ | $B_{\rm hf} \pm$ | RA         | Přiřazení              |
|------------|----------------------------------|------------|--------------|------------------|------------------|------------|------------------------|
|            | Fe <sub>2</sub> O <sub>3</sub>   |            | 0,01         | 0,01             | 0,3              | <u>+</u> 1 |                        |
|            |                                  |            | (mm/s)       | (mm/s)           | (T)              | (%)        |                        |
| Nedopovaný | ε-Fe <sub>2</sub> O <sub>3</sub> | Sextet 1   | 0,38         | -0,25            | 45,0             | 23         | Fe <sub>A</sub> pozice |

| ε-Fe <sub>2</sub> O <sub>3</sub> |                                          | Sextet 2  | 0,36 | -0,25  | 43,9 | 11 | Fe <sub>B</sub> pozice |
|----------------------------------|------------------------------------------|-----------|------|--------|------|----|------------------------|
|                                  | -                                        | Sextet 3  | 0,38 | -0,02  | 38,9 | 25 | Fe <sub>C</sub> pozice |
|                                  |                                          | Sextet 4  | 0,21 | -0,16  | 25,8 | 18 | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub>         | Sextet 5  | 0,37 | -0,21  | 51,8 | 2  | Fe pozice              |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub>         | Singlet 1 | 0,40 |        |      | 21 | Relaxační              |
|                                  | a/nebo                                   |           |      |        |      |    | komponenta             |
|                                  | $\gamma$ -Fe <sub>2</sub> O <sub>3</sub> |           |      |        |      |    |                        |
|                                  | ε-Fe <sub>2</sub> O <sub>3</sub>         | Sextet 1  | 0.37 | - 0.19 | 43.5 | 18 | Fe <sub>A</sub> pozice |
| Sc-                              | -                                        | Sextet 2  | 0.40 | - 0.33 | 42.0 | 17 | Fe <sub>B</sub> pozice |
| dopovaný                         |                                          | Sextet 3  | 0.39 | -0.04  | 36.9 | 31 | Fe <sub>C</sub> pozice |
| ε-Fe <sub>2</sub> O <sub>3</sub> | -                                        | Sextet 4  | 0.28 | -0.02  | 23.7 | 32 | Fe <sub>D</sub> pozice |
|                                  | α-Fe <sub>2</sub> O <sub>3</sub>         | Sextet 5  | 0.37 | - 0.21 | 51.4 | 2  | Fe pozice              |

**Tabulka 1.** Hodnoty hyperjemných parametrů, odvozené z fitovaných <sup>57</sup>Fe mössbauerovských spektrech měřených při pokojové teplotě pro nedopovaný a Sc-dopovaný ε-Fe<sub>2</sub>O<sub>3</sub> systém, kde  $\delta$  je izomerní posun,  $\Delta E_Q$  značí kvadrupólové štěpení,  $B_{hf}$  představuje hyperjemné magnetické pole a RA odpovídá relativnímu zastoupení spektrálních složek, identifikovaných během fitování jednotlivých spekter. Fe<sub>A</sub>, Fe<sub>B</sub>, Fe<sub>C</sub> a Fe<sub>D</sub> označují distortované oktaedrické A pozice, distortované B pozice, regulární oktaedrické C pozice a tetraedrické D pozice v ε-Fe<sub>2</sub>O<sub>3</sub>, respektive Fe označuje oktaedrické pozice v α-Fe<sub>2</sub>O<sub>3</sub>.

## 3.2. Diskuze

Cílem této práce bylo optimalizovat podmínky přípravy ε-Fe<sub>2</sub>O<sub>3</sub> nanočástic, které byly získány metodou sol-gel. U dopovaných systémů bylo navíc cílem sledovat vliv dopace na strukturní, chemické a fyzikální vlastnosti ε-Fe<sub>2</sub>O<sub>3</sub> fáze.

V poslední kapitole byl detailně studován vliv dopování atomů skandia do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> na výsledné strukturní a magnetické vlastnosti. Kromě toho bylo zjištěno, že množství atomů skandia přítomných v reakční směsi do značné míry ovlivňuje fázovou čistotu systému. Při změně koncentrace atomů skandia bylo pozorováno rozdílné zastoupení ostatních polymorfů oxidu železitého, tedy  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>,  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> a  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> fáze. Atomy skandia tak mohou určitým způsobem působit jako stabilizátory  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> fáze, podobně jako tomu bylo u již studovaných dopací ionty Ca<sup>2+</sup> a Ba<sup>2+</sup> [15] a také Ga-dopovaných systémů v této práci.

Ze strukturního hlediska výsledky z <sup>57</sup>Fe Mössbauerovy spektroskopie ukázaly, že ionty  $Sc^{3+}$  přednostně nahrazují ionty Fe<sup>3+</sup> v distortovaných oktaedrických A- a B-pozicích krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>, a to téměř se stejnou pravděpodobností.

Z pohledu magnetických vlastností Sc-dopovaného  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> systému dopování iontů Sc<sup>3+</sup> do krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub> vedlo ke snížení hodnot koercitivity, a tím došlo i ke změně magnetické tvrdosti. Navíc bylo zjištěno, že dopování atomy Sc mělo za následek snížení magnetokrystalové anizotropie, a to pravděpodobně změnilo distorze v oktaedrických místech krystalové struktury  $\varepsilon$ -Fe<sub>2</sub>O<sub>3</sub>.

U Sc-dopovaného ε-Fe<sub>2</sub>O<sub>3</sub> systému došlo opět ke změně magnetické odezvy v závislosti na teplotě, přičemž se výrazně změnila řada nízkoteplotních magnetických přechodů, jejich výskyt se posunul k vyšším teplotám a do užšího teplotního intervalu. Průběh magnetických přechodů se tedy výrazně lišil od průběhu typického pro nedopovanou ε-Fe<sub>2</sub>O<sub>3</sub> fázi.

#### 4. Závěr

Dosažené výsledky zřetelně prokázaly značný vliv dopování na fyzikálně-chemické vlastnosti systémů ε-Fe<sub>2</sub>O<sub>3</sub>. To otevírá dveře k testování využitelnosti dopovaných ε-Fe<sub>2</sub>O<sub>3</sub> systémů v širokém spektru aplikací, které zahrnují oblasti magnetismu pevných látek s využitím substitucí řízené magnetické odezvy, stínění elektromagnetických vln v dané oblasti vlnových délek díky možnosti ladění feromagnetické rezonance nebo v oblasti multiferoických nanomateriálů. Dopování jak Ga<sup>3+</sup> ionty tak i Sc<sup>3+</sup> ionty do ε-Fe<sub>2</sub>O<sub>3</sub> systému lze považovat za velmi zajímavé a perspektivní, a to hlavně z hlediska možného ladění vlastností pomocí substituce s ohledem na požadavky potenciálních budoucích aplikací, hlavně jako elektromagnetické absorbéry a multiferoické materiály.

V této práci bylo prokázáno, že nejenom fázové složení vzorků, ale i substituce, tím i míra substituovaných atomů, výrazně ovlivňují výsledné strukturní i magnetické vlastnosti. To otevírá široké portfolio možností pro další studim a pro řízení vlastností připravených systémů různou volbou substituovaných atomů, dle požadavků na možné aplikace.

# LITERATURA

- [1] M. Srivastava, S. Chaubey, and A. K. Ojha, "Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods," *Mater Chem Phys*, vol. 118, no. 1, pp. 174–180, Nov. 2009, doi: 10.1016/j.matchemphys.2009.07.023.
- [2] A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," *Biomaterials*, vol. 26, no. 18, pp. 3995– 4021, Jun. 2005, doi: 10.1016/j.biomaterials.2004.10.012.
- [3] R. A. Yetter, G. A. Risha, and S. F. Son, "Metal particle combustion and nanotechnology," *Proceedings of the Combustion Institute*, vol. 32 II, pp. 1819– 1838, 2009, doi: 10.1016/j.proci.2008.08.013.
- [4] S. Chaturvedi, P. N. Dave, and N. K. Shah, "Applications of nano-catalyst in new era," *Journal of Saudi Chemical Society*, vol. 16, no. 3, pp. 307–325, Jul. 2012, doi: 10.1016/j.jscs.2011.01.015.
- [5] H. Xu, X. Wang, and L. Zhang, "Selective preparation of nanorods and microoctahedrons of Fe<sub>2</sub>O<sub>3</sub> and their catalytic performances for thermal decomposition of ammonium perchlorate," *Powder Technol*, vol. 185, no. 2, pp. 176–180, Jul. 2008, doi: 10.1016/j.powtec.2007.10.011.
- [6] C. Gregor *et al.*, "The effect of surface area and crystal structure on the catalytic efficiency of Iron(III) oxide nanoparticles in hydrogen peroxide decomposition," *Eur J Inorg Chem*, no. 16, pp. 2343–2351, Jun. 2010, doi: 10.1002/ejic.200901066.
- [7] M. Mohapatra and S. Anand, "Synthesis and applications of nano-structured iron oxides/hydroxides - a review," *International Journal of Engineering, Science and Technology*, vol. 2, no. 8, pp. 127–146, 2010, [Online]. Available: www.ijest-ng.com
- [8] R. M. Cornell and Udo. Schwertmann, *The iron oxides : structure, properties, reactions, occurrences, and uses.* Wiley-VCH, 2003.
- [9] A. K. Gupta and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," *Biomaterials*, vol. 26, no. 18. pp. 3995– 4021, Jun. 2005. doi: 10.1016/j.biomaterials.2004.10.012.
- [10] S. Laurent *et al.*, "Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications," *Chem Rev*, vol. 108, no. 6, pp. 2064–2110, Jun. 2008, doi: 10.1021/cr068445e.
- [11] J. L., Dormann, D. Fiorani, and E. Tronc, "Magnetic relaxation in fine-particle systems," J. Wiley, 1997.
- [12] X. Teng, D. Black, N. J. Watkins, Y. Gao, and H. Yang, "Platinum-maghemite coreshell nanoparticles using a sequential synthesis," *Nano Lett*, vol. 3, no. 2, pp. 261– 264, Feb. 2003, doi: 10.1021/nl025918y.

- [13] M. Gich, A. Roig, E. Taboada, E. Molins, C. Bonafos, and E. Snoeck, "Stabilization of metastable phases in spatially restricted fields: The case of the Fe<sub>2</sub>O<sub>3</sub> polymorphs," *Faraday Discuss*, vol. 136, pp. 345–354, 2007, doi: 10.1039/b616097b.
- [14] R. Zboril, M. Mashlan, and D. Petridis, "Iron(III) oxides from thermal processessynthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications," *Chemistry of Materials*, vol. 14, no. 3. pp. 969– 982, 2002. doi: 10.1021/cm0111074.
- [15] J. Tuček, R. Zbořil, A. Namai, and S. I. Ohkoshi, "ε-Fe<sub>2</sub>O<sub>3</sub>: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling," *Chemistry of Materials*, vol. 22, no. 24, pp. 6483–6505, Dec. 2010, doi: 10.1021/cm101967h.
- [16] J. Tuček *et al.*, "Iron(III) oxide polymorphs and their manifestations in in-field <sup>57</sup>Fe Mössbauer spectra," in *AIP Conference Proceedings*, 2012, vol. 1489, pp. 56–74. doi: 10.1063/1.4759474.
- [17] O. Malina *et al.*, "Magnetic ground state of nanosized β-Fe<sub>2</sub>O<sub>3</sub> and its remarkable electronic features," *RSC Adv*, vol. 5, no. 61, pp. 49719–49727, 2015, doi: 10.1039/c5ra07484c.
- [18] R. Zboril, M. Mashlan, and D. Petridis, "Iron(III) oxides from thermal processessynthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications," *Chemistry of Materials*, vol. 14, no. 3, pp. 969– 982, 2002, doi: 10.1021/cm0111074.
- [19] J. Tuček, "Nanometrické polymorfy oxidu železitého, jejich magnetické vlastnosti a aplikační potenciál," UNIVERZITA PALACKÉHO V OLOMOUCI, 2012.
- [20] E. Tronc, C. Chaneác, and J. P. Jolivet, "Structural and Magnetic Characterization of-Fe<sub>2</sub>O<sub>3</sub>," *J Solid State Chem*, vol. 139, pp. 93–104, 1998.
- [21] S. I. Ohkoshi, A. Namai, and S. Sakurai, "The origin of ferromagnetism in ε-Fe<sub>2</sub>O<sub>3</sub> and ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets," *Journal of Physical Chemistry C*, vol. 113, no. 26, pp. 11235–11238, Jul. 2009, doi: 10.1021/jp901637y.
- [22] M. Gich *et al.*, "Large coercivity and low-temperature magnetic reorientation in ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *J Appl Phys*, vol. 98, no. 4, Aug. 2005, doi: 10.1063/1.1997297.
- [23] J. L. García-Muñoz, A. Romaguera, F. Fauth, J. Nogués, and M. Gich, "Unveiling a New High-Temperature Ordered Magnetic Phase in ε-Fe<sub>2</sub>O<sub>3</sub>," *Chemistry of Materials*, vol. 29, no. 22, pp. 9705–9713, Nov. 2017, doi: 10.1021/acs.chemmater.7b03417.
- [24] S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, and O. N. Martyanov, "Magnetic properties of few nanometers ε-

Fe<sub>2</sub>O<sub>3</sub> nanoparticles supported on the silica," *J Appl Phys*, vol. 111, no. 4, Feb. 2012, doi: 10.1063/1.3686647.

- [25] A. A. Dubrovskiy, D. A. Balaev, A. A. Krasikov, S. S. Yakushhkin, V. L. Kirillov, and O. N. Martyanov, "Magnetodielectric effect in a metamaterial consisting of xerogel with embedded ε-Fe<sub>2</sub>O<sub>3</sub> iron oxide nanoparticles," *Solid State Commun*, vol. 289, pp. 27–29, Feb. 2019, doi: 10.1016/j.ssc.2018.11.020.
- [26] D. A. Balaev, A. A. Dubrovskiy, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, "Temperature of the Magnetic Ordering of the Trivalent Iron Oxide ε-Fe<sub>2</sub>O<sub>3</sub>," *Physics of the Solid State*, vol. 61, no. 3, pp. 345–349, Mar. 2019, doi: 10.1134/S1063783419030053.
- [27] J. Tucek, S. I. Ohkoshi, and R. Zboril, "Room-temperature ground magnetic state of ε-Fe<sub>2</sub>O<sub>3</sub>: In-field Mössbauer spectroscopy evidence for collinear ferrimagnet," *Appl Phys Lett*, vol. 99, no. 25, Dec. 2011, doi: 10.1063/1.3671114.
- [28] M. Kurmoo *et al.*, "Formation of nanoparticles of ε-Fe<sub>2</sub>O<sub>3</sub> from yttrium iron garnet in a silica matrix: An unusually hard magnet with a Morin-like transition below 150 K," *Chemistry of Materials*, vol. 17, no. 5, pp. 1106–1114, Mar. 2005, doi: 10.1021/cm0482838.
- [29] D. A. Balaev, S. S. Yakushkin, A. A. Dubrovskii, G. A. Bukhtiyarova, K. A. Shaikhutdinov, and O. N. Martyanov, "Study of the high-coercivity material based on ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles in the silica gel matrix," *Technical Physics Letters*, vol. 42, no. 4, pp. 347–350, Apr. 2016, doi: 10.1134/S1063785016040039.
- [30] M. Gich *et al.*, "High- and low-temperature crystal and magnetic structures of ε-Fe<sub>2</sub>O<sub>3</sub> and their correlation to its magnetic properties," *Chemistry of Materials*, vol. 18, no. 16, pp. 3889–3897, Aug. 2006, doi: 10.1021/cm0609931.
- [31] S. Sakurai, J. ichi Shimoyama, K. Hashimoto, and S. ichi Ohkoshi, "Large coercive field in magnetic-field oriented ε-Fe<sub>2</sub>O<sub>3</sub> nanorods," *Chem Phys Lett*, vol. 458, no. 4– 6, pp. 333–336, Jun. 2008, doi: 10.1016/j.cplett.2008.04.121.
- [32] S. Sakurai, A. Namai, K. Hashimoto, and S. I. Ohkoshi, "First observation of phase transformation of all four Fe<sub>2</sub>O<sub>3</sub> phases ( $\gamma \rightarrow \varepsilon \rightarrow \beta \rightarrow \alpha$ -phase)," *J Am Chem Soc*, vol. 131, no. 51, pp. 18299–18303, Dec. 2009, doi: 10.1021/ja9046069.
- [33] A. I. Dmitriev, O. v. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, "Spin-reorientation transition in ε-In<sub>0.24</sub>Fe<sub>1.76</sub>O<sub>3</sub> nanowires," *Physics of the Solid State*, vol. 56, no. 9, pp. 1795–1798, 2014, doi: 10.1134/S1063783414090091.
- [34] S. S. Yakushkin *et al.*, "ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles embedded in silica xerogel Magnetic metamaterial," *Ceram Int*, vol. 44, no. 15, pp. 17852–17857, Oct. 2018, doi: 10.1016/j.ceramint.2018.06.254.
- [35] A. A. Dubrovskiy *et al.*, "Size effects in the magnetic properties of ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *J Appl Phys*, vol. 118, no. 21, Dec. 2015, doi: 10.1063/1.4936838.

- [36] D. A. Balaev *et al.*, "Dynamic magnetization of ε-Fe<sub>2</sub>O<sub>3</sub> in pulse field: Evidence of surface effect," *J Appl Phys*, vol. 117, no. 6, Feb. 2015, doi: 10.1063/1.4907586.
- [37] H. Forestier and G. Guiot-Guillain, "Une nouvelle variété ferromagnétique de sesquioxyde de fer," *ACADÉMIE DES SCIENCES*, vol. 193, 1934.
- [38] V. R. Schrader and G. Büttner, "Eine neue Eisen(III)-oxidphase:ɛ-Fe<sub>2</sub>O<sub>3</sub>," *Zeitschrifht für anorganische und allgemeine*, vol. 320, 1963.
- [39] L. Walter-Lévy and E. M. Quéméneur, "Sur la thermolyse du sulfate ferrique basique 6Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, nH<sub>2</sub>O," *ACADÉMIE DES SCIENCES*, pp. 3410–3413, 1963.
- [40] E. Tronc, C. Chaneác, and J. P. Jolivet, "Structural and Magnetic Characterization of ε-Fe<sub>2</sub>O<sub>3</sub>," *J Solid State Chem*, vol. 139, pp. 93–104, 1998.
- [41] I. Dézsi and J. M. D. Coey, "Magnetic and Thermal Properties of ε-Fe<sub>2</sub>O<sub>3</sub>," phys. stat. sol., vol. 15, no. 681, pp. 681–685, 1973.
- [42] J.-M. Trautmann and H. Forestier, "Nouvelle préparation et étude de l'oxyde ε-Fe<sub>2</sub>O<sub>3</sub>," C. R. Acad. Sc. Paris, vol. 261, no. 8, pp. 4423–4425, 1965.
- [43] C. Chanéac, E. Tronc, and J. P. Jolivet, "Magnetic iron oxide-silica nanocomposites. Synthesis and characterization," *J Mater Chem*, vol. 6, no. 12, pp. 1905–1911, 1996, doi: 10.1039/JM9960601905.
- [44] I. K. Battisha, H. H. Afify, and I. M. Hamada, "Structural and magnetic susceptibility studies of SiOFe<sub>2</sub>O<sub>3</sub>: Fe<sub>2</sub>O<sub>3</sub> nano-composites prepared by sol-gel technique," *J Magn Magn Mater*, vol. 292, pp. 440–446, Apr. 2005, doi: 10.1016/j.jmmm.2004.10.121.
- [45] K. Kelm and W. Mader, "Synthesis and structural analysis of ε-Fe<sub>2</sub>O<sub>3</sub>," Z Anorg Allg Chem, vol. 631, no. 12, pp. 2383–2389, 2005, doi: 10.1002/zaac.200500283.
- [46] J. L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes, and M. Kurmoo, "A temperature and magnetic field dependence Mössbauer study of ε-Fe<sub>2</sub>O<sub>3</sub>," *Hyperfine Interact*, vol. 166, no. 1–4, pp. 475–481, Nov. 2005, doi: 10.1007/s10751-006-9311-8.
- [47] M. Yoshikiyo, K. Yamada, A. Namai, and S. I. Ohkoshi, "Study of the electronic structure and magnetic properties of ε-Fe<sub>2</sub>O<sub>3</sub> by first-principles calculation and molecular orbital calculations," *Journal of Physical Chemistry C*, vol. 116, no. 15, pp. 8688–8691, Apr. 2012, doi: 10.1021/jp300769z.
- [48] E. Tronc, C. Chańac, J. P. Jolivet, and J. M. Grenche, "Spin collinearity and thermal disorder in ε-Fe<sub>2</sub>O<sub>3</sub>," *J Appl Phys*, vol. 98, no. 5, Sep. 2005, doi: 10.1063/1.2034653.
- [49] H. Tokoro, A. Namai, and S. I. Ohkoshi, "Advances in magnetic films of epsiloniron oxide toward next-generation high-density recording media," *Dalton Transactions*, vol. 50, no. 2, pp. 452–459, Jan. 2021, doi: 10.1039/d0dt03460f.

- [50] J. Jin, S. I. Ohkoshi, and K. Hashimoto, "Giant Coercive Field of Nanometer-Sized Iron Oxide," *Advanced Materials*, vol. 16, no. 1, pp. 48–51, Jan. 2004, doi: 10.1002/adma.200305297.
- [51] M. Gich *et al.*, "Magnetoelectric coupling in ε-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *Nanotechnology*, vol. 17, no. 3, pp. 687–691, Feb. 2006, doi: 10.1088/0957-4484/17/3/012.
- [52] A. Namai *et al.*, "Synthesis of an electromagnetic wave absorber for high-speed wireless communication," *J Am Chem Soc*, vol. 131, no. 3, pp. 1170–1173, Jan. 2009, doi: 10.1021/ja807943v.
- [53] M. Gich *et al.*, "Multiferroic iron oxide thin films at room temperature," *Advanced Materials*, vol. 26, no. 27, pp. 4645–4652, Jul. 2014, doi: 10.1002/adma.201400990.
- [54] M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, "Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field," *Opt Express*, vol. 18, no. 17, pp. 18260–18268, 2010.
- [55] S. I. Ohkoshi *et al.*, "Nanometer-size hard magnetic ferrite exhibiting high opticaltransparency and nonlinear optical-magnetoelectric effect," *Sci Rep*, vol. 5, Oct. 2015, doi: 10.1038/srep14414.
- [56] A. Namai *et al.*, "Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation," *Nat Commun*, vol. 3, 2012, doi: 10.1038/ncomms2038.
- [57] S. I. Ohkoshi and H. Tokoro, "Hard magnetic ferrite: ε-Fe<sub>2</sub>O<sub>3</sub>," *Bull Chem Soc Jpn*, vol. 86, no. 8, pp. 897–907, 2013, doi: 10.1246/bcsj.20130120.
- [58] S. I. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, "A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets," *Angewandte Chemie - International Edition*, vol. 46, no. 44, pp. 8392–8395, 2007, doi: 10.1002/anie.200703010.
- [59] S. Sakurai, S. Kuroki, H. Tokoro, K. Hashimoto, and S. I. Ohkoshi, "Synthesis, crystal structure, and magnetic properties of ε-In<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanorod-shaped magnets," *Adv Funct Mater*, vol. 17, no. 14, pp. 2278–2282, Sep. 2007, doi: 10.1002/adfm.200600581.
- [60] A. Namai, S. Sakurai, and S. I. Ohkoshi, "Synthesis, crystal structure, and magnetic properties of ε-Ga<sup>III</sup><sub>x</sub>Fe<sup>III</sup><sub>2-x</sub>O<sub>3</sub> nanorods," *J Appl Phys*, vol. 105, no. 7, 2009, doi: 10.1063/1.3056584.
- [61] S. I. Ohkoshi, K. Imoto, A. Namai, S. Anan, M. Yoshikiyo, and H. Tokoro, "Large Coercive Field of 45 kOe in a Magnetic Film Based on Metal-Substituted ε-Iron Oxide," *J Am Chem Soc*, vol. 139, no. 38, pp. 13268–13271, Sep. 2017, doi: 10.1021/jacs.7b07087.

- [62] S. I. Ohkoshi, A. Namai, and S. Sakurai, "The origin of ferromagnetism in ε-Fe<sub>2</sub>O<sub>3</sub> and ε-Ga<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets," *Journal of Physical Chemistry C*, vol. 113, no. 26, pp. 11235–11238, Jul. 2009, doi: 10.1021/jp901637y.
- [63] L. Kubíčková *et al.*, "Magnetic properties, <sup>57</sup>Fe Mössbauer spectroscopy and 1H NMR relaxometry of ε-Fe<sub>2-x</sub>Ga<sub>x</sub>O<sub>3</sub> nanoparticles: The effect of gallium doping on magnetic and MRI performance," *J Alloys Compd*, vol. 856, Mar. 2021, doi: 10.1016/j.jallcom.2020.158187.
- [64] L. Kubíčková *et al.*, "The ε-Al<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets as MRI contrast agents: Factors influencing transverse relaxivity," *Colloids Surf A Physicochem Eng Asp*, vol. 589, Feb. 2020, doi: 10.1016/j.colsurfa.2020.124423.
- [65] M. Yoshikiyo, A. Namai, M. Nakajima, K. Yamaguchi, T. Suemoto, and S. I. Ohkoshi, "High-frequency millimeter wave absorption of indium-substituted ε-Fe<sub>2</sub>O<sub>3</sub> spherical nanoparticles (invited)," in *Journal of Applied Physics*, May 2014, vol. 115, no. 17. doi: 10.1063/1.4870168.
- [66] A. I. Dmitriev, O. v. Koplak, A. Namai, H. Tokoro, S. Ohkoshi, and R. B. Morgunov, "Magnetic phase transition in ε-In<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanowires," *Physics of the Solid State*, vol. 55, no. 11, pp. 2252–2259, Nov. 2013, doi: 10.1134/S1063783413110073.
- [67] M. Yoshikiyo, A. Namai, M. Nakajima, T. Suemoto, and S. I. Ohkoshi, "Anomalous behavior of high-frequency zero-field ferromagnetic resonance in aluminumsubstituted ε-Fe<sub>2</sub>O<sub>3</sub>," in *Journal of Applied Physics*, Apr. 2012, vol. 111, no. 7. doi: 10.1063/1.3677763.
- [68] A. Namai *et al.*, "The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance," *J Mater Chem C Mater*, vol. 1, no. 34, pp. 5200– 5206, Sep. 2013, doi: 10.1039/c3tc30805g.
- [69] T. Katayama, S. Yasui, Y. Hamasaki, T. Osakabe, and M. Itoh, "Chemical tuning of roomerature ferrimagnetism and ferroelectricity in ε-Fe<sub>2</sub>O<sub>3</sub>-type multiferroic oxide thin films," *J Mater Chem C Mater*, vol. 5, no. 47, pp. 12597–12601, 2017, doi: 10.1039/c7tc04363e.
- [70] A. Namai and S. ichi Ohkoshi, "Crystal Structure and Magnetic Properties of ε-Ru<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> Nanosize Hard Ferrite," *Chemistry - A European Journal*, vol. 24, no. 46, pp. 11880–11884, Aug. 2018, doi: 10.1002/chem.201802771.
- [71] S. ichi Ohkoshi *et al.*, "Multimetal-Substituted Epsilon-Iron Oxide ε-Ga<sub>0.31</sub>Ti<sub>0.05</sub>Co<sub>0.05</sub>Fe<sub>1.59</sub>O<sub>3</sub> for Next-Generation Magnetic Recording Tape in the Big-Data Era," *Angewandte Chemie - International Edition*, vol. 55, no. 38, pp. 11403– 11406, Sep. 2016, doi: 10.1002/anie.201604647.
- [72] K. Yamada, M. Yoshikiyo, A. Namai, and S. ichi Ohkoshi, "Mössbauer study of ε-Al<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> nanomagnets," *Hyperfine Interact*, vol. 205, no. 1–3, pp. 117–120, Mar. 2012, doi: 10.1007/s10751-011-0442-1.

- [73] L. Corbellini, C. Lacroix, D. Ménard, and A. Pignolet, "The effect of Al substitution on the structural and magnetic properties of epitaxial thin films of epsilon ferrite," *Scr Mater*, vol. 140, pp. 63–66, Nov. 2017, doi: 10.1016/j.scriptamat.2017.07.005.
- [74] Y. Hamasaki *et al.*, "Crystal structure and magnetism in  $\kappa$ -Al<sub>2</sub>O<sub>3</sub>-type Al<sub>x</sub>Fe<sub>2-x</sub>O<sub>3</sub> films on SrTiO<sub>3</sub>(111)," *J Appl Phys*, vol. 122, no. 1, Jul. 2017, doi: 10.1063/1.4990947.
- [75] T. Katayama, S. Yasui, Y. Hamasaki, and M. Itoh, "Control of crystal-domain orientation in multiferroic Ga<sub>0.6</sub>Fe<sub>1.4</sub>O<sub>3</sub> epitaxial thin films," *Appl Phys Lett*, vol. 110, no. 21, May 2017, doi: 10.1063/1.4984211.
- [76] A. S. Teja and P. Y. Koh, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles," *Progress in Crystal Growth and Characterization of Materials*, vol. 55, no. 1–2, pp. 22–45, Mar. 2009, doi: 10.1016/j.pcrysgrow.2008.08.003.
- [77] R. M. Cornell and U. Schwertmann, *The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses.* WILEY-VCH Verlag GmbH & Co. KGaA, 2003.
- [78] E. Tronc *et al.*, "Surface-related properties of γ-Fe<sub>2</sub>O<sub>3</sub> nanoparticles," *J Magn Magn Mater*, vol. 221, pp. 63–79, 2000.
- [79] F. Spada, F. Parker, C. Nakakura, and A. Berkowitz, "Studies of anisotropy mechanisms in polyphosphate-treated magnetic iron oxide particles," *J Magn Magn Mater*, vol. 120, pp. 129–135, 1993.
- [80] F. Itoh, M. Satou, and Y. Yamazaki, "ANOMALOUS INCREASE OF COERCIVITY IN IRON OXIDE POWDER COATED WITH SODIUM POLYPHOSPHATE," *LE = Transactions on Magnetics*, vol. 13, no. 5, 1977.
- [81] F. E. Spada, A. E. Berkowitz, and N. T. Prokey, "Hc enhancement in partially reduced γ-Fe<sub>2</sub>O<sub>3</sub> via surface treatment with sodium polyphosphate (revisited)," J Appl Phys, vol. 69, no. 8, pp. 4475–4477, 1991, doi: 10.1063/1.348383.
- [82] L. Machala, J. Tuček, and R. Zbořil, "Polymorphous transformations of nanometric iron(III) oxide: A review," *Chemistry of Materials*, vol. 23, no. 14, pp. 3255–3272, Jul. 2011, doi: 10.1021/cm200397g.
- [83] F. A. Khan, Applications of Nanomaterials in Human Health. Springer.
- [84] N. Baig, I. Kammakakam, and W. Falath, "Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges," *Mater Adv*, vol. 2, no. 6, pp. 1821–1871, Mar. 2021, doi: 10.1039/d0ma00807a.
- [85] H. Hahn, "GAS PHASE SYNTHESIS OF NANOCRYSTALLINE MATERIALS," F&via Sciaroc Ltd, vol. 9, pp. 3–12, 1997.
- [86] A. C. Jones and P. R. Chalker, "Some recent developments in the chemical vapourdeposition of electroceramic oxides," *J Phys D Appl Phys*, vol. 36, pp. R80– R95, 2003.

- [87] W. N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim, and K. Okuyama, "One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors," *Mater Sci Eng B Solid State Mater Adv Technol*, vol. 123, no. 3, pp. 194–202, Nov. 2005, doi: 10.1016/j.mseb.2005.08.006.
- [88] H. Cheng, J. Ma, Z. Zhao, and L. Qi, "Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles," *Chem. Mater*, vol. 7, pp. 663–671, 1995, [Online]. Available: https://pubs.acs.org/sharingguidelines
- [89] H. Yin *et al.*, "Hydrothermal synthesis of nanosized anatase and ruffle TiO<sub>2</sub> using amorphous phase TiO<sub>2</sub>," *J Mater Chem*, vol. 11, no. 6, pp. 1694–1703, 2001, doi: 10.1039/b008974p.
- [90] S. Watson, J. Scott, D. Beydoun, and R. Amal, "Studies on the preparation of magnetic photocatalysts," *Journal of Nanoparticle Research*, vol. 7, no. 6, pp. 691– 705, Dec. 2005, doi: 10.1007/s11051-005-7520-8.
- [91] T. Panchartková, "Metody příprav tenkých vrstev biomateriálů," UNIVERZITA PARDUBICE, 2018.
- [92] E. Čípová, "SYNTÉZA FUNKČNÍCH KERAMICKÝCH PRÁŠKOVÝCH MATERIÁLŮ," VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ, 2011.
- [93] J. Mrazek, I. Kasik, O. Podrazky, and V. Matejec, "Technologie sol-gel a vybrané aplikace," 2012.
- [94] B. G. Rao, D. Mukherjee, and B. M. Reddy, "Nanostructures for Novel Therapy NOVEL APPROACHES FOR PREPARATION OF NANOPARTICLES," 2017. doi: 10.1016/B978-0-323-46142-9/00001-3.
- [95] Z. Moravec, "Studium nových nehydrolytických metod přípravy oxidických a fosfátových materiálů," Brno, 2011.
- [96] A. Tavakoli, M. Sohrabi, and A. Kargari, "A review of methods for synthesis of nanostructured metals with emphasis on iron compounds," *Chemical Papers*, vol. 61, no. 3, pp. 151–170, Jun. 2007, doi: 10.2478/s11696-007-0014-7.
- [97] M. Tadić *et al.*, "Synthesis and magnetic properties of concentrated α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles in a silica matrix," *J Alloys Compd*, vol. 441, no. 1–2, pp. 291–296, Aug. 2007, doi: 10.1016/j.jallcom.2006.09.099.
- [98] Z. Z. Xu, C. C. Wang, W. L. Yang, and S. K. Fu, "Synthesis of superparamagnetic Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> composite particles via sol-gel process based on inverse miniemulsion," *J Mater Sci*, 2005.
- [99] Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang, and S. K. Fu, "Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach," *Colloids Surf A Physicochem Eng Asp*, vol. 262, no. 1–3, pp. 87–93, Jul. 2005, doi: 10.1016/j.colsurfa.2005.04.009.

- [100] U. T. Lam, R. Mammucari, K. Suzuki, and N. R. Foster, "Processing of Iron Oxide Nanoparticles by Supercritical Fluids," *Ind. Eng. Chem. Res.*, vol. 47, pp. 599–614, 2008, doi: 10.1021/ie070494.
- [101] C. T. Wang and S. H. Ro, "Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation," *Appl Catal A Gen*, vol. 285, no. 1–2, pp. 196–204, May 2005, doi: 10.1016/j.apcata.2005.02.029.
- [102] C.-T. Wang and R. J. Willey, "Oxidation of methanol over iron oxide based aerogels in supercritical CO<sub>2</sub>," J Non Cryst Solids, vol. 225, pp. 173–177, 1998.
- [103] G. Ennas et al., "Characterization of Iron Oxide Nanoparticles in an Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> Composite Prepared by a Sol-Gel Method," 1998, [Online]. Available: https://pubs.acs.org/sharingguidelines
- [104] S. Bruni et al., "IR AND NMR STUDY OF NANOPARTICLE-SUPPORT INTERACTIONS IN A Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> NANOCOMPOSITE PREPARED BY A SOL-GEL METHOD," NanoStructured Materials, 1999.
- [105] B. Heinrichs et al., "Iron(III) species dispersed in porous silica through sol-gel chemistry," J Non Cryst Solids, vol. 354, no. 2–9, pp. 665–672, Jan. 2008, doi: 10.1016/j.jnoncrysol.2007.071.
- [106] M. Soufyani, D. Bourret, A. Sivade, and R. Sempéré, "Mixed silica-iron oxide aerogels," J Non Cryst Solids, vol. 145, pp. 60–62, 1992.
- [107] L. Casas, A. Roig, E. Rodríguez, E. Molins, J. Tejada, and J. Sort, "Silica aerogeliron oxide nanocomposites: structural and magnetic properties," *J Non Cryst Solids*, vol. 285, pp. 37–43, 2001, [Online]. Available: www.elsevier.com/locate/jnoncrysol
- [108] A. Braileanu et al., "THERMAL BEHAVIOUR STUDY OF SOME SOL–GEL IRON-SILICA NANOCOMPOSITES," J Therm Anal Calorim, vol. 88, pp. 163– 169, 2007.
- [109] C. Caizer, C. Savii, and M. Popovici, "Magnetic behaviour of iron oxide nanoparticles dispersed in a silica matrix," *Materials Science and Engineering B*, vol. 97, pp. 129–134, 2003, [Online]. Available: www.elsevier.com/locate/mseb
- [110] S. A. Corr, Y. K. Gun'ko, A. P. Douvalis, M. Venkatesan, R. D. Gunning, and P. D. Nellist, "From nanocrystals to nanorods: New iron oxide-silica nanocomposites from metallorganic precursors," *Journal of Physical Chemistry C*, vol. 112, no. 4, pp. 1008–1018, Jan. 2008, doi: 10.1021/jp076871d.
- [111] D. Predoi *et al.*, "Iron oxide in a silica matrix prepared by the sol-gel method," *Thin Solid Films*, vol. 515, no. 16 SPEC. ISS., pp. 6319–6323, Jun. 2007, doi: 10.1016/j.tsf.2006.11.148.
- [112] P. P. C. Sartoratto, K. L. Caiado, R. C. Pedroza, S. W. da Silva, and P. C. Morais, "The thermal stability of maghemite-silica nanocomposites: An investigation using

X-ray diffraction and Raman spectroscopy," *J Alloys Compd*, vol. 434–435, no. SPEC. ISS., pp. 650–654, May 2007, doi: 10.1016/j.jallcom.2006.08.208.

- [113] C. Savii *et al.*, "Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> composites obtained by sol-gel synthesis," 2002,
  [Online]. Available: www.elsevier.com/locate/ssi
- [114] M. Popovici *et al.*, "Ultraporous Single Phase Iron Oxide-Silica Nanostructured Aerogels from Ferrous Precursors," *Langmuir*, vol. 20, no. 4, pp. 1425–1429, Feb. 2004, doi: 10.1021/la035083m.
- [115] H. S. W. Chang, C.-C. Chiou, Y.-W. Chen, and S. R. Sheen, "Synthesis, Characterization, and Magnetic Properties of Fe<sub>3</sub>O<sub>4</sub> Thin Films Prepared via a Sol-Gel Method," *J Solid State Chem*, vol. 128, pp. 87–92, 1997.
- [116] B. Orel, M. Ma~ek, F. ~vegl, and K. Kalcher, "Electrochromism of iron oxide films prepared via the sol-gel route by the dip-coating technique," *Thin Solid Films*, vol. 246, pp. 131–142, 1994.
- [117] M. Sedlar, "The Preparation and Magnetic Properties of Sodium-Modified Iron Oxide Thin Films by a Sol-Gel Method," *Ceramics hlternational*, vol. 20, pp. 73–78, 1994.
- [118] K.-S. Hwang, Y.-S. Jeon, K.-O. Jeon, and B.-H. Kim, "Transparent (1-x)TiO<sub>2-x</sub>Fe<sub>2</sub>O<sub>3</sub> (x = 0, 5, 10, 15 and 20 mol%) thin films prepared by sol-gel process," *Optica Applicata*, vol. XXXV, no. 2, 2005.
- [119] H. Liu, Z. Liu, Q. Liu, and K. Yao, "Ferroelectric properties of BiFeO3 films grown by sol-gel process," *Thin Solid Films*, vol. 500, no. 1–2, pp. 105–109, Apr. 2006, doi: 10.1016/j.tsf.2005.11.041.
- [120] R. Zhang, J. Huang, J. Zhao, Z. Sun, and Y. Wang, "Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization," *Energy and Fuels*, vol. 21, no. 5, pp. 2682–2687, Sep. 2007, doi: 10.1021/ef070064w.
- [121] A. A. Ismail, "Synthesis and characterization of Y(2)O(3)/Fe(2)O(3)/TiO(2) nanoparticles by sol-gel method," *Appl Catal B*, vol. 58, pp. 115–121, 2005, doi: 10.1016/j.apcath.2004.11.022.
- [122] C. D. E. Lakeman and D. A. Payne, "Sol-gel processing of electrical and magnetic ceramics," *Material Chemistry and Physics*, vol. 38, pp. 305–324, 1994.
- [123] S. Y. An, I. B. Shim, and C. S. Kim, "Synthesis and magnetic properties of LiFe<sub>5</sub>O<sub>8</sub> powders by a sol-gel process," *J Magn Magn Mater*, vol. 290-291 PART 2, pp. 1551– 1554, Apr. 2005, doi: 10.1016/j.jmmm.2004.11.244.
- [124] R. J. Willey, S. A. Oliver, G. Oliveri, and G. Busca, "Chemistry and structure of mixed magnesium ferric oxide aerogels," *J. Mater. Res.*, vol. 8, pp. 1418–1427, 2015, [Online]. Available: http://journals.cambridge.org

- [125] K. Yamaguchi, T. Fujii, S. Kuranouchi, Y. Yamanobe, and A. Ueno, "MAGNETIC PROPERTIES OF IRON-BORON-OXIDE AND IRON-PHOSPHOR-OXIDE GLASSES PREPARED BY SOL-GEL METHOD," *IEEE Trans Magn*, vol. 25, no. 5, 1989.
- [126] M. Liu, H. Li, L. Xiao, W. Yu, Y. Lu, and Z. Zhao, "XRD and Mössbauer spectroscopy investigation of Fe<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> nano-composite," *J Magn Magn Mater*, vol. 294, no. 3, pp. 294–297, Jul. 2005, doi: 10.1016/j.jmmm.2004.12.026.
- [127] P. A. Roberts, Y. Cui, and L. K. Verusob, "Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems," *J Geophys Res*, vol. 100, no. B9, pp. 17909–17924, 1995.
- [128] Y. Wang *et al.*, "Influence of Sc<sup>3+</sup> substitution on magnetic properties of c-axis textured M-type barium ferrite," *Mater Res Express*, vol. 5, no. 6, Jun. 2018, doi: 10.1088/2053-1591/aac98c.
- [129] J. Tuček, L. Machala, J. Frydrych, J. Pechoušek, and R. Zbořil, "Mössbauer Spectroscopy in Study of Nanocrystalline Iron Oxides From Thermal Processes," in *Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology*, wiley, 2013, pp. 349–392. doi: 10.1002/9781118714614.ch18.