
Czech University of Life Sciences Prague 

Faculty of Economics and Management 

Department of Information Engineering 

Bachelor Thesis 

Relational Database Design: Case of Jablotron Group 

Artem Makurin 

©2024 CZU Prague 



CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE 
Faculty of Economics and Management 

BACHELOR THESIS ASSIGNMENT 
Artem Makurin 

Informatics 

Thesis title 

Relational Database Design: Case of Jablotron Group 

Objectives of thesis 

Main objective of the thesis is to propose, build and analyse a database for Jablotron Group's first retail 
store. 
To achieve this objective, several tasks must be first accomplished. These tasks include: 
- Give a definition to the Relational database model. 
- Follow the historical development of the related technology. 
- Explore the business applications of the Relational database model. 
- Design a Conceptual data model of the proposed Jablotron system. 
- Select the most suitable DBMS and build the Logical data model of the future system. 
- Produce the Physical data model using previous findings and build the database system according to it. 
- Test the solution to assure required performance. 

Methodology 

The methodology will consist of such scientific methods of research as analysis, inspection of available 
reading materials and collection of secondary information. 

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol 



The proposed extent of the thesis 

30-40 

Keywords 

database, relational database design, practical database design, database performance analysis, DBMS 
analysis, database ERD 

Recommended information sources 

BAGUI, S. - EARP, R. Database Design Using Entity-Relationship Diagrams, 2011. ISBN 978-1439861769 
HERNANDEZ, M. J. Database Design for Mere Mortals: 25th Anniversary Edition, 2020. ISBN 

978-0136788041 
CHURCHER, C. Beginning Database Design: From Novice to Professional, 2012. ISBN 978-1430242093 

Expected date of thesis defence 

2022/23 S S - F E M 

The Bachelor Thesis Supervisor 

Ing. Martin Pelikan, Ph.D. 

Supervising department 

Department of Information Engineering 

Electronic approval: 27. 2. 2023 Electronic approval: 13. 3. 2023 

Ing. Martin Pelikán, Ph.D. doc. Ing. Tomáš Subrt, Ph.D. 

Head of department Dean 

Prague on 15. 03. 2023 

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha - Suchdol 



Declaration 

I declare that I have worked on my bachelor thesis titled "Relational Database 

Design: Case of Jablotron Group" by myself and I have used only the sources mentioned at 

the end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not 

break any copyrights. 

In Prague on 



Acknowledgement 

I would like to thank Martin Pelikan, my thesis supervisor, for help and support. 



Relational Database Design: Case of Jablotron Group 

Abstract 

Databases are an essential tool for businesses that need to manage large amounts of data 

efficiently. Databases are used by businesses to store customer information, financial data, 

inventory records, and other types of information necessary for their operations. In today's 

business world, it is essential to have a robust and efficient database system that can handle 

complex data structures and provide accurate and timely information. Database systems 

have become an integral part of modern businesses, providing a reliable and secure way to 

manage data. The focus of this paper is to document the development of a functional 

database system that has been designed for Jablotron Group's proposed retail store in 

Prague. The chosen D B M S for the implementation of the database system is MySQL 

8.0.36 The paper also mentions the use of triggers and views to achieve the desired 

behaviour that is necessary for the day-to-day activities of a retail store. The primary 

objective of this project is to explore the relational database model and its different aspects 

in real-life solutions. By designing and implementing a functional database system for a 

retail store, the paper aims to demonstrate the potential of relational database models in 

handling complex data structures and providing a robust and efficient solution for data 

management. Overall, the paper can be considered as a case study that explores the 

application of the relational database model in real-life scenarios. The proposed solution 

can be a valuable resource for businesses that are looking for efficient and reliable data 

management solutions for their retail operations. 

Keywords: database, relational, design, implementation, data, retail, DBMS, triggers, views 

6 



Návrh relační databáze: Případ Jablotron Group 

Abstrakt 

Databáze jsou základním nástrojem pro podniky, které potřebují efektivně spravovat velké 

množství dat. Databáze slouží podnikům k ukládání informací o zákaznících, finančních 

údajích, skladových zásobách a dalších typů informací nezbytných pro jejich činnost. V 

dnešním světě podnikání je nezbytné mít solidní a efektivní databázový systém, který 

dokáže zpracovávat složitá data a poskytovat přesné a včasné informace. Databázové 

systémy se staly nedílnou součástí moderních podniků a poskytují spolehlivý a bezpečný 

způsob správy dat. Tato práce se zaměřuje na dokumentaci vývoje funkčního databázového 

systému, který byl navržen pro vybranou maloobchodní prodejnu společnosti Jablotron 

Group v Praze. Pro implementaci databázového systému byl zvolen D B M S MySQL 

8.0.36. 

Bakalářská práce zmiňuje použití spouštěčů a pohledů k dosažení požadovaného výsledku, 

který je nezbytný pro každodenní činnost maloobchodu. Hlavním cílem tohoto projektuje 

prozkoumat relační databázový model a jeho různé aspekty reálných řešení. Cílem práce je 

na základě návrhu a implementace funkčního databázového systému pro maloobchodní 

prodejnu, demonstrovat potenciál relačních databázových modelů při zpracování složitých 

datových struktur a poskytnutí solidního a efektivního řešení pro správu dat. Celkově lze 

práci považovat za případovou studii, která zkoumá použití relačního databázového 

modelu v reálných scénářích. Navrhované řešení může být cenným zdrojem pro podniky, 

které hledají efektivní a spolehlivé řešení správy dat pro své maloobchodní provozy. 

Klíčová slova: Databáze, relační, návrh, implementace, data, maloobchod, DBMS, 

spouštěče, pohledy 

7 



1 Table of Contents 

2 Introduction 10 

3 Objectives and Methodology 11 
3.1 Objectives H 
3.2 Methodology 1 1 

4 Literature Review 13 
4.1 Defining the Database 13 

4.1.1 Hi stori cal overvi ew 13 
4.1.2 Literature definition analysis 13 
4.1.3 Purpose of the database 14 
4.1.4 Conclusion 15 

4.2 Computer Data Storage 15 
4.2.1 Differences in data storage types 15 
4.2.2 Primary storage 16 
4.2.3 Secondary storage 16 
4.2.4 Offline storage overview 17 
4.2.5 First means of offline storage 17 
4.2.6 Floppy drives 18 
4.2.7 Optical disks 18 
4.2.8 Flash memory 19 

4.3 Relational Database Model 20 
4.3.1 How databases came to exist 20 
4.3.2 Emergence of Relational model 20 
4.3.3 Structured Query Language 21 
4.3.4 Further development 22 

4.4 How and why businesses use databases 22 
4.4.1 Origins of database use 22 
4.4.2 Databases as the core of business 23 

4.5 Database technologies overview 24 
4.5.1 Comparing SQL and NoSQL databases 26 

4.6 Database design theory 28 
4.6.1 Beginning the design 28 
4.6.2 Further analysis 29 
4.6.3 Database implementation 30 

5 Practical Part 32 
5.1 Overview 32 
5.2 Pre-design analysis 32 

8 



5.3 Entity relation diagrams 33 
5.4 Data Dictionary 36 
5.5 DDL: Data Definition Language 37 
5.6 D M L : Data Manipulation Language 38 

6 Analysis and further improvement 43 
6.1 Performance analysis 43 
6.2 Further development 44 

7 Conclusion 45 

8 References 46 
8.1 Table references 47 
8.2 Image references 47 

List of images 

Image 1 A chart comparing usage of various database management systems 27 

Image 2 Overview of Crow's Foot Notation 29 

Image 3 Conceptual ERD 33 

Image 4 Logical ERD 35 

Image 5 Physical ERD 36 

Image 6 Data dictionary definitions 37 

Image 7 A portion of D D L commands used for database creation 38 

Image 8 OrderRange and ProductsOverview views 39 

Image 9 InventoryStockUpdate trigger 40 

Image 10 Triggers for time optimisations 40 

Image 11 InsertltemPrice triggers 41 

Image 12 Triggers for calculating total sum to be paid by client 42 

Image 13 Table statistics of the database 43 

Image 14 Database index statistics 43 

Image 15 Database statement statistics by MySQL Workbench 44 

List of tables 

Table 1 Comparison of NOR and N A N D memory types 19 

9 



2 Introduction 

Throughout history, humans have always needed to somehow store and organise 

information. It should go without saying that learning how to transfer knowledge not from 

one person directly to another, but through a different medium is one of humanity's 

greatest achievements. Be it cave paintings, paper books, or words on a screen, being able 

to communicate thoughts, facts and ideas is extremely important. Historically, banks and 

governmental bodies were always expected to keep track of a lot of information related to 

their clients and citizens respectively, and it has been that way for as long as they've 

existed. Things that we now know as databases have accompanied humanity for a long 

time, greatly preceding the computer era. 

Judging by the remains of the earliest dated libraries, humans have been implementing 

some types of information classification systems for thousands of years, easing the burden 

of librarians. These basic data classification systems, along with the aforementioned bank 

and government archives were the first examples of humankind's usage of databases. As 

humanity evolved, so did the need to record and sort large amounts of data. Starting all the 

way back in 1963 with Charles Bachman's Integrated Data Store (1), computer-aided data 

management has come a long way to reach today's heights of development. New and even 

more advanced database models of the present day are changing the way we expect to 

work with databases. 

The retail industry has witnessed a significant shift in the way business is conducted in 

recent years. The rise of e-commerce, omnichannel retailing, and big data analytics has led 

to a fundamental change in the way customers shop, as well as how retailers manage their 

sales and inventory data. As a result, there is a need for retail stores to have a reliable and 

efficient method of storing and organising their data. A database system can provide a 

solution for storing, organising, and accessing data in a structured and secure way. 

In this diploma paper, we aim to develop a database for a retail store and evaluate its 

performance and effectiveness. The practical part of the thesis is focusing on the 

implementation, while the theoretical part is providing necessary context and explaining 

the logic of database design. The resultant database should check all marks of a successful 

and correct design. 

10 



3 Objectives and Methodology 

3.1 Objectives 

Jablotron Group is a successful Czech company employing over 500 people, distributing 

products in 73 countries, and with a turnover of over 134 million €. Its product line 

includes but is not limited to security and smart home systems. While being a successful 

business, Jablotron Group doesn't have any retail stores. The way the products are 

distributed is through retail shops operated by different companies and through official 

distributors. This thesis' main objective is to propose, build and analyse a theoretical 

database system for Jablotron Group's first retail store in Prague. 

To achieve this objective, several tasks must be first accomplished. These tasks include: 

• Give a definition of the Relational database model. 

• Explore the business applications of the Relational database model. 

• Analyse the requirements and data of a retail store. 

• Design a database schema for the retail store using entity-relationship (ER) 

modelling. 

• Select the most suitable DBMS and build the Logical data model of the future 

system. 

• Produce the Physical data model using previous findings and build the database 

system according to it. 

• Test and validate the database using SQL queries and reporting tools. 

• Draw conclusions from performed work. 

• Propose suggestions for future improvements and extensions. 

3.2 Methodology 

The research methodology of this project is a combination of qualitative and quantitative 

research methods. The qualitative research methods include observations which will be 

used to gather the requirements and data of the retail store. The quantitative research 

11 



methods consist of experiments which will be used to evaluate the performance and 

effectiveness of the developed database. 

The data collection process will involve observing the systems of rival businesses. The 

data will be used to develop the ER model and the sample data for the database. 

The ER model will be used to design the database schema, which will include the entities, 

attributes, and relationships of the retail store data. The database schema will be 

implemented using D B M S of choice, which will involve creating the tables, columns, 

keys, and constraints. The sample data will be populated into the database using SQL 

statements and scripts. 

The database will be tested and validated using SQL queries and reporting tools, such as 

MySQL Workbench. The testing will involve checking the correctness and completeness 

of the data, as well as the efficiency and scalability of the database. 

12 



4 Literature Review 

4.1 Defining the Database 

One of the tasks that this work seeks to accomplish is forming our own solid definition of 

the database, using existing materials by other authors as a basis. The reasoning for this 

task is simple, and it's because, as it will become obvious further into this work, there are 

no two different definitions that would be focusing on the same aspects of the database 

concept. Some of these upcoming definitions will, naturally, be more tailored to fit the 

context of the book that we find them in, but that doesn't matter too much within the scope 

of this work, as we only need them as general guidelines to base our own thoughts on. 

4.1.1 Historical overview 

According to the Oxford English Dictionary, the word database has been first used in 

printed media to describe the technology all the way back in 1962. Generally, the word 

database is used to describe information tracking systems found in our everyday lives and 

in our computers, but that definition is too broad in scope of this thesis, so we'll have to 

thoroughly narrow it down as we progress. Certainly, databases in a modern meaning of 

the word have existed for as long as humanity has been storing data, but historically, 

they've been called different things, like archives. One of the reasons researchers, 

engineers and linguists have not been able to come up with a solid unchangeable definition 

that everyone agrees on yet is quite simply the fact that the word is so young. It must be 

taken into consideration that due to the close link between the two, the word database is 

casually used to describe both the database itself and the database management system 

(hereinafter referred to as DBMS) that is used to manage it. We, however, must not 

confuse these two terms, as the sheer difference between the two will become quite clear 

progressing further into this work. 

4.1.2 Literature definition analysis 

How is the term database usually defined? In order to put down a water-tight definition of 

the database, we must first take a look at some definitions put in place by various entities. 

Chris J. Dale, a prominent relational database theory researcher and author on many books 

on the subject, defines the database as a collection of persistent data that is used by the 
13 



application systems of a given enterprise in his monumental work that is still widely used 

by colleges for teaching database design: An Introduction to Database Systems (2). 

Moreover, Robert Sheldon and Geoff Moes give a similar definition in their book called 

Beginning MySQL (3). They write: a database is a collection of related data organised 

and classified in a structural format that is defined by metadata. Moving a bit away from 

researchers, Merriam-Webster's dictionary describes the database as a usually large 

collection of data organised especially for rapid search and retrieval and the Cambridge 

dictionary says it's a large amount of information stored in a computer system in such a 

way that it can be easily looked at or changed. According to a Czech web marketing 

specialist Jan Strafelda, a database is a sophisticated software system for data storage and 

subsequent processing. Finally, we'll take a look at how database software vendors 

describe their work process to get a first-hand perspective. According to Oracle, one of the 

database industry's leaders and a business which was once the third biggest software 

company in the world by market capitalization and revenue; a database is an organised 

collection of structured information, or data, typically stored electronically in a computer 

system. 

As we can see, each of these definitions focuses on a slightly different aspect of database 

technology. This is certainly due to the fact that no universal definition of the database 

exists. In order to put down our own definition we must first analyse, which of these 

aspects are, in fact, purposes of the database. 

4.1.3 Purpose of the database 

One thing all aforementioned definitions have in common is obvious, and it would serve as 

the foundation for ours as well. The main purpose of any database is first and foremost to 

collect and store data. Certainly, there is a massive variety of different information that can 

be stored, and, as we know, not all databases are computer-based. Remembering that, let's 

dig deeper into the definitions. The next important thing to recognise is that the database is 

not just a simple collection of data. Indeed, it's the organised, structured nature of the 

collection that makes it a database. But is the organised structure of the database its 

purpose? Hardly, as it's merely a consequence of information being stored in an organised 

fashion, which a database is. The result of having that organised structure, though, is the 

ease of retrieving, manipulating, and updating information that is contained within the 

14 



database, which is definitely a purpose. What the aforementioned definitions fail to address 

is the extended period of time for which the database serves its purpose. The permanent, or 

at least continuous nature of data storage is definitely the purpose of the database as well. 

4.1.4 Conclusion 

So, what did this analysis achieve? We have drawn out three purposes of the database. 

Let's put them together: the purpose of the database is to store information for a long time 

in a manner that makes manipulating it easy. Now, there is only one thing that separates us 

from building that final definition. Only one author that has been referenced before in this 

work has mentioned this vital part. A database, computer or paper-based, never consists of 

a single element, on the contrary, it's always a system that has many parts interacting with 

each other in some way. So, our final definition is a database is a system that continuously 

stores information in a manner that makes manipulating it easy. 

4.2 Computer Data Storage 

Since we have established that a database is a concept that is best characterised by its use 

in computer-based systems, it would be helpful to explore how computers have started to 

be used as data processing machines in the first place. In order to describe data storage as 

fully as possible, we must separate three different ways a computer can read and store data. 

4.2.1 Differences in data storage types 

The storage of data on contemporary personal computers is a complex and multifaceted 

process that involves a variety of different types of storage media and technologies. At its 

core, the structure of computer data storage can be divided into three primary categories: 

primary, secondary, and offline storage. More generally, data storage can be described as 

either volatile (destroyed or corrupted upon computer reset) or non-volatile (independent 

and long-term memory). 

15 



4.2.2 Primary storage 

Primary storage or Random Access Memory is the only space directly accessible by the 

Central Processing Unit (hereinafter referred to as CPU), but it is also the only volatile data 

source of the computer. It is usually much smaller compared to long-term storage options. 

As a result of a close link between Random Access Memory and CPU, this type of 

memory is the fastest for read and write operations and is most commonly used for real­

time computer calculations. Earliest computers used obsolete technologies for this, such as 

delay lines, drum memory, Williams (cathode ray vacuum) tubes, and magnetic tape 

storage. Later, with the emergence of a more advanced magnetic-core memory, it 

completely overtook the market and became the go-to solution for primary storage on 

computers for 20 years from about 1955 to 1975 (4). In 1970, however, metal-oxide-

semiconductor field effect (or MOS) transistor-based memory started to take over as 

semiconductor production increased following Intel's development of their dynamic 

random access memory chip in 1966. In fact, this same metal oxide semiconductor 

technology is the foundation of the modern commonplace dynamic random-access memory 

(or D R A M for short). 

4.2.3 Secondary storage 

Contemporary secondary memory usually is based on magnetic disk storage devices or on 

some kind of solid-state drive (hereinafter referred to as SSD) technology, mSATA and 

M.2 formats based on Flash memory are currently leading. Historically, computers didn't 

always have secondary, non-volatile storage. First computers only had their primary 

memory and were programmed either by wire switches or by off-line data sources such as 

punch tapes. Secondary memory only started to appear in commonplace computers in the 

1960s, following IBM's development of the first ever commercially available hard disk 

drive in 1956. The first SSDs came to the computer memory market in 1991. It was a 20 

M B drive by SanDisk, intended to be used with an I B M ThinkPad laptop. At the same 

time as the general capacity of computers' primary storage was growing linearly, the 

capacity of secondary storage grew exponentially. 

16 



4.2.4 Offline storage overview 

To work with data, a computer must read it. Nowadays, there is a wide variety of off-line 

non-volatile data storage mediums, from flash drives and memory cards to optical discs, 

but what humanity used in the early days of computing was much more primitive. Data 

storage has started with punch cards, which are pieces of cardboard with holes that are 

punched out by special machines. The holes represent sequences of instructions that can be 

interpreted by a machine. This invention has been used since 1725, when Basile Bouchon, 

a French textile worker, came up with an idea to automate his loom to do patterns. He 

would use punch cards to program his loom, but nothing more. No widespread use was 

seen for this invention, however, and even the 1837 proposal of the idea of the Analytical 

Engine, by English inventor and mathematician Charles Babbage, did little to change this 

fact. 

4.2.5 First means of offline storage 

The first extensive use of punch cards came half a century later, when for the 1890 U.S. 

Census Herman Hollerith, a statistician and inventor from Buffalo, N Y developed 

Babbage's idea to the point where punch cards' holes meant not only sequences of 

instructions, but rather saved information that then processed by a computer. Using this, he 

developed a punch card data processing system that wasn't only used by the US Census 

Bureau but was in fact so successful that Hollerith went on to form Tabulating Machine 

Company in 1896, which was later renamed I B M and found immense success on the 

market. During the following years, the punch cards have grown to be irreplaceable to 

industries and governmental entities both in America and worldwide. 

The first programmable computers have also resorted to the punch card concept as, despite 

some data storage technologies starting their development before WWII, they were still in 

their infancy, and the punch card was a reliable, proven solution. Z3, a beloved project of 

an independent German scientist and inventor Konrad Zuse which was designed in 1938 

and completed by 1941, effectively the first working programmable computer in existence, 

used punch cards made from a different compound as means of entering data into the 

system. So did the impressive ENIAC and Pilot A C E systems that came after, in 1945. 

17 



Even well before WWII, other storage solutions were already evolving, and new ones were 

starting to appear. Originally developed by a Danish engineer Valdemar Paulsen in 1898 

for his first-of-its-kind telegraphone, which was essentially a sound recorder, magnetic 

wire data storage showed great promise. Austrian engineer and inventor Fritz Pfleumer 

expanded on Paulsen's idea and patented his own development, recording audio on 

magnetic tape in 1928 in Germany (5). This would lead to the creation of magnetic tapes, 

an early storage medium, and subsequently of cassette tapes which are a relatively modern 

storage format that is familiar to most people. 

4.2.6 Floppy drives 

In 1971, IBM, and in the following year, Memorex would release their first attempts at a 

floppy drive and a floppy diskette to the computer storage market. The Memorex model, 

called Memorex 650, was astonishingly for its time capable of writing the data to the 

diskette in addition to reading from it. Other suppliers and manufacturers were quick to 

adopt this new technology to store and load data for key entry, data logging, and for other 

data-related computer activities. 

4.2.7 Optical disks 

Optical disks also predate modern time quite a lot, with the earliest recorded work 

regarding the subject being dated to as early as 1884, when scientists Bell, Bell, and 

Tainter, have managed, as part of an experiment, to record the word barometer on a glass 

disk using a beam of light (6). In 1958, the optical disc that could store video (an early 

form of a digital video disc, hereinafter DVD) was invented and subsequently patented by 

David Paul Gregg, an American engineer. Ten years later, in the Netherlands, Pieter 

Kramer, a physicist working for Philips, invented a videodisc that can be read by a laser 

beam. By 1972 Pieter had filed a patent for his invention (7), and gradually, the physical 

format following his ideas had become dominant in the production of optical discs. Sony 

and Philips were ahead of the competition at that time, and it was these two companies that 

developed the first generation of CD discs in the mid-1980s. 

18 



4.2.8 Flash memory 

Flash memory, an important invention widely used today, has its roots dating back to 1959 

when the floating gate transistor was developed by engineers Mohamed M . Atalla and 

Dawon Kahng. This set the path to the creation of rewritable floating gate memory by 

Japanese engineer Fujio Masuoka in 1980. Masuoka was researching for Toshiba at the 

time, which commercially launched the N A N D flash memory in 1987. Flash memory is 

generally one of two memory architectures: N A N D and NOR. N A N D accesses data 

sequentially, which increases read times but allows for greater storage density. On the 

other hand, NOR is characterised by its random-access method which leads to read times 

but slower data program and erase times much faster. 

Table 1 Comparison of NOR and NAND memory types. 

Parameter NOR NAND 

Density 1 Mbit - 1 Gbit 64 Mbit -16 Gbit 

Read initial access 55 ns 10,000 ns 

Read sequential access 9 ns 50 ns 

Program 0.3 Mbytes/s 2.6 Mbytes/s 

Erase 0.2 Mbytes/s 8.2 Mbytes/s 

Access Method Random Sequential 

Source: Cypress Corporation, 2017 

In 1988, the first commercially available NOR type flash chip was introduced by Intel 

Corporation. Due to the nature of NOR architecture, it soon replaced the dated Read Only 

Memory that was used as early computer firmware storage. The flash chip is also the basis 

for the USB flash drive. The credit for the invention of the USB drive is disputed between 

multiple individuals and companies, including M-Systems, IBM, and Trek 2000 

International. 

So, where and how were databases stored in computers? To answer that question, let's dive 

into how the database came to exist. 

19 



4.3 Relational Database Model 

The need for good data management and storage systems became apparent with the 

development of mankind. The explosion in the volume of stored data must be attributed to 

the invention of the transistor, then of the integrated microchip and subsequent 

computerization of the way companies handle information. As described in the 

introduction to this paper, the history of database development started in 1963 with Charles 

Bachman's proposal of the Integrated Data Store. 

4.3.1 How databases came to exist 

Earliest computer-based databases have followed the flat file model, which is a basic 

consecutive list of entries, uniquely identified by the ID of each record. With the 

development of newer and more advanced navigational data models came parent-child 

pointers (later often used to point to physical addresses on a disk) between records in the 

database. The two dominating navigational database models were the hierarchical model 

developed by I B M and the network model, developed by, and named after C O D A S Y L , the 

Committee on Data Systems Language (8) 

These databases have used sequential loading of data that was recorded on magnetic or 

paper tapes. From the mid-1960s the emerging availability of direct-access storage in the 

form of magnetic disks and drums has made the database an encyclopaedic term, as per 

Oxford English Dictionary. This new type of database has allowed shared access of 

users, which drastically improved usability. 

4.3.2 Emergence of Relational model 

The most important step in database development happened in 1970, when Edgar Codd, 

who was a computer scientist at I B M at the time, proposed the relational database model 

in his groundbreaking publication titled A Relational Model of Data for Large Shared 

Data Banks. He worked at the office that was directly involved in the development of a 

hard disc and learned the shortcomings of the navigational database model first-hand. In 

Codd's papers, he insisted that applications should search for information in the database 

by content, instead of following links. The model proposed by Codd has obsoleted the 

pointers, as now data would have been separated into simple tables, which then would have 

20 



been linked together only by their respective data fields. Relational model made the 

database much more scalable and easier to maintain, so much so that many different 

companies and people have seen the potential of this new architecture way ahead of 

Codd's parent company, IBM, which was reluctant to adopt this new paradigm due to their 

heavy investment in their own database management system - the so-called Information 

Management System, which employed the rapidly facing obsoletion navigational model. 

It took three years for I B M to finally start working in the direction Codd wanted. The 

System R project was IBM's first step in mainstream relational database development. The 

papers published by the group behind the project have ultimately influenced two scientists 

at the University of California in Berkeley, Michael Stonebraker and Eugene Wong to start 

their own relational database project (9). Although INGRES was the first to enter 

development, other companies like Relational Software (now Oracle Corporation) were 

quicker to enter the commercial market (10). 

4.3.3 Structured Query Language 

An original design by I B M for System R, Structured Query Language (hereinafter SQL) 

was intended to simplify user interaction with the database by using plain English language 

where applicable to modify and access database information. SQL is a standard language 

for managing relational databases, which provides a set of commands for creating, 

modifying, querying, and deleting data. Structured Query Language is used to create 

database objects, such as tables, columns, keys, and constraints, as well as to insert, update, 

and delete data. SQL is also used to retrieve data from the database using queries, which 

can join, filter, and aggregate the data based on specific criteria. It is a fundamental tool for 

managing and manipulating data inside of a database system. 

Later, when Relational Software was developing its Oracle Database Version 2 (released in 

1979), they employed an updated version of SQL to serve as a primary protocol of 

communication between users and the database management system. So did many vendors 

that started offering their own database software later in the future, such as open-source 

PostgreSQL, which is based on INGRES ideas and developed by Michael Stonebraker. 

ISO and ANSI standard groups would go on to standardise the SQL Database Language 

definition in 1986. With various additions and updates, SQL is still largely used today. 

21 



4.3.4 Further development 

Naturally, the development of the relational model continued. In 1989, Microsoft partnered 

with Sybase and Ashton-Tate to release Microsoft SQL Server for OS/2, effectively being 

the first largely successful effort in bringing database software to that platform (11). By 

1995, David Axmark, Michael Widenius, and Allan Larsson released MySQL, an open-

source relational database management software, which would go on to quickly gain 

dominating popularity and rival Oracle as the world's most popular database engine due to 

its ease of deployment, scalability, and reconfigurability. It is recognized as a go-to 

solution for most small starting businesses. 

Contemporary database software can be divided into many types, but only a handful of 

radically new approaches have emerged since then. With the development of object-

oriented programming, programmers began to interpret the data stored in databases as 

objects for unity causing the emergence of object-oriented databases. In recent years, the 

organisation of data in the database has been slowly losing its importance, as businesses 

incline towards blazing-fast, modern, and horizontally scalable NoSQL databases. These 

are characterised by not requiring fixed schemas and query statements as a cause of storing 

denormalized data. Bridging the gap between SQL and NoSQL databases, NewSQL 

architecture attempts to produce features of both in one package. 

4.4 How and why businesses use databases 

4.4.1 Origins of database use 

As the popularity of the relational database grew, its use began to shift from mainly 

government bodies and research centres to more mainstream users like businesses of all 

sizes. Back when computers were mainly used for computational tasks of businesses, all 

information that was used to get a result of a specific calculation but had no use on its own 

was considered useless and discarded after the calculation was completed. But as computer 

storage availability and client expectations of service quality increased, companies have 

realised that they can somehow store and use all this massive amount of data that daily 

22 



business activities generate. Current and historical data that the business produces as a by­

product of day-to-day operations can be useful for the business in many ways. 

4.4.2 Databases as the core of business 

How are databases useful for businesses? Database management systems are specifically 

made to accurately store large amounts of data, with scalability in mind, which is greatly 

beneficial for the enterprise market with its never-ending expansion (12). Database is 

responsible for keeping accurate and always updated transaction info so a business can see 

which client has paid and which hasn't. Sales transactions, inventory changes, 

manufacturing schedules and billing reports are managed with databases. 

Sales and inventory management is a critical aspect of retail operations, which involves the 

tracking and analysis of sales and inventory data. Sales data includes information on the 

products sold, the customers who bought them, and the time and location of the 

transactions. Inventory data includes information on the quantities, locations, and statuses 

of the products in the store. Effective sales and inventory management can help retail 

stores optimise their supply chain, reduce waste and loss, and improve customer 

satisfaction. A database system can provide a solution for storing, analysing, and utilising 

the sales and inventory data. 

The sorted and centralised structure of the database transforms indifferent data into 

knowledge while enhancing data consistency and quality. Information contained in the 

database is much easier to obtain quickly when an employee needs it, and the information 

is guaranteed to be accurate, with less room for human error due to implemented 

constraints for data. Managing personnel has analysis tools to work with data captured by 

the database. Billing, payroll, and scheduling reports can be formed this way and analysed 

by managers. 

While businesses are under legal obligations to treat customers' personal data carefully, 

it's still possible to freely record speculated information like customers' age range and 

income, buying preferences and interests. This information would then help to customise 

the buying experience for customers: when you know what a specific client likes to buy, 

you're more likely to predict what they'll want to buy next. Judging by the information in 

the database, the sales department can provide special offers to clients who buy most 

23 



frequently or try to win back clients who haven't purchased recently. The customer 

database has a monetary value which is inherited from its ability to produce sales. 

For some businesses like law and accounting firms an updated knowledge database is 

important. It is an internal knowledge management system compiled and maintained by 

experts in the field which can always be consulted in case of questions arising from the 

normal day-to-day operation of the business. This type of database is usually not accessible 

by normal customers of the company as the information it contains is priceless for business 

activities and is very valuable to competitors. 

Inventory databases provide much useful information that is much broader than just the 

amount of goods in stock. Customers can make great use of the database management 

system's data search and sort features with virtually no performance hit for the company 

that owns the database. Inventory database access doesn't have to be limited to employees 

only: suppliers can monitor the stock to know when to make a restock offer to the business, 

while customers can look at the status, content, and history of their orders. Keeping the 

database of a company updated saves a tremendous amount of time for the employees who 

are responsible for the website - they benefit from not having to tediously update web 

content by hand and being able to simply use the data from the database. 

4.5 Database technologies overview 

Modern database management systems generally adopt one of a few database paradigms 

that vary from an architectural point of view. As previously mentioned in this work, 

relational database model is a rather old invention. So, naturally, there exists a constant 

effort to design new and improved models that don't necessarily follow old conventions, 

which makes classifying database somewhat more difficult. Some of the different 

paradigms include but are not limited to: 

• Hierarchical Database Paradigm: Has data organised in a tree-like structure, 

where one parent record can have multiple child records. It is often used in 

mainframe applications and is useful for certain types of data with fixed and 

predictable structure. 

24 



• Network Database Paradigm: Similar to hierarchical model but allows for more 

complex relationships between records. Data is stored in sets, with each set 

having a parent and multiple children. It is useful for building complex data 

relationships but is difficult to support and maintain. 

• Object-Oriented Database Paradigm: Data is stored in objects, following how 

object-oriented programming languages work. Objects contain both data and 

methods, allowing a wide variety of data types and encapsulation. It is useful 

for modelling real world but can be more difficult to query and maintain than 

other databases. 

• Document Database Paradigm: Stores data in document formats such as JSON 

or X M L instead of tables. Each document can have its own schema, allowing 

for more flexibility in data storage. Often used for storing unstructured data, 

such as social media posts or sensor readings. 

• Key-Value Database Paradigm: Data is being stored in form of key-value pairs, 

where each value is associated with a unique key. It is a simple and fast 

database paradigm, often used for caching and real-time applications. 

• Graph Database Paradigm: Characterised by storing data in nodes and edges, 

similar to how graphs are represented in mathematics. Each node represents an 

entity, while edges represent relationships between entities. Useful for handling 

very complex data relationships and graph-based queries, such as social 

network analysis or recommendation systems. 

As previously mentioned, not every existing database management system can be 

characterised by one of these paradigms. The two main directions that are currently seeing 

most of development are NoSQL and Hybrid model databases, both of which are blanket 

terms covering a number of various implementations. 

• NoSQL Databases: NoSQL, or "not only SQL" databases are a broad category 

of databases that do not use the traditional table-based relational model. Instead, 

they use a variety of data models, such as document-based, key-value, graph-

based, or column-family databases. These databases are often used for large-

scale web applications, where performance and scalability are critical. They can 

be useful for handling unstructured or semi-structured data, such as social 

25 



media feeds, sensor data, or log files. Some popular NoSQL databases include 

MongoDB, Cassandra, and Redis. 

• Hybrid Model Databases: Hybrid model databases combine elements of 

different database paradigms, such as relational, object-oriented, and NoSQL 

databases, to create a more flexible and scalable database solution. For 

example, a hybrid database might use a document-based model for unstructured 

data, a relational model for structured data, and a graph-based model for 

relationship data. These databases are often used for complex data structures, 

such as social networks or recommendation systems, where multiple data 

models are needed. Some examples of hybrid databases include Apache 

CouchDB and ArangoDB. 

4.5.1 Comparing SQL and NoSQL databases 

While relational databases were a definite improvement over older and more basic data 

models, businesses of today have a choice of either sticking with a relational or a newer 

non-relational database, also known as a NoSQL database. These two architectures were 

designed at different times and for different things, and naturally, there is a distinction 

between the two in the level of support. SQL is an older and standardised technology, thus 

there is a supply of experienced developers and great documentation regarding it, while 

NoSQL database management systems are oftentimes dependent on community support 

due to a lack of proper documentation arising from the much shorter history of the NoSQL 

concept. The SQL database management software can have various levels of compliance 

with the SQL standard, but the syntax of general commands is usually pretty similar 

throughout. On the other hand, having experience in one of the NoSQL carries no value 

when the user is presented with another NoSQL system, as there is no standardisation 

between different NoSQL-based database systems. NoSQL's development has taken place 

due to the restrictive nature of relational model's constraints and structure, which is a pro 

and con on its own. 

As expected, the strict table definition language which is SQL provides data redundancy, 

rule enforcement and security at the cost of ease of scalability and convenience of storing 

large amounts of data. At the same time, NoSQL systems offer various sub-models to tailor 

to the specific use of the database. NoSQL provides the most benefits when used by a 

26 



business for which the speed of loading data and the number of concurrent users is most 

important. NoSQL can also prove useful for rapidly expanding companies, as its 

denormalized and non-standardised structure allows the database servers to be upgraded 

horizontally, by adding more servers to the pool, while relational databases can only be 

easily scaled by adding more performance power to a single main server, hence called a 

vertical upgrade. 

So, choosing a SQL or NoSQL database for businesses comes down to their use case, 

whether data integrity of normalised tables that are minimising data repetition is needed or 

the benefits NoSQL provides, such as fast access for non-normalised information or 

scalability (13). Database management systems based on both ideas are still being 

developed and maintained, with many concepts and features usually reserved for one or the 

other making their way to their counterparts. Many NoSQL database management systems, 

such as MongoDB support regular SQL functions, like joins and other commands, and the 

trend of systems different by nature incorporating features they haven't originally had is 

expected to continue (14). 

Image 1 A chart comparing usage of various database management systems. 

All Respondents P r o f e s s i o n a l Dev 1*1 Up 53,312 responses 

MySQL 

PostgreSQL 44.08% 

SQLite B 30.86% 

Microsoft SQL 5erver .1 29.43% 

Mang,oDB 28.03% 

Redfs - 1 24.51*. 

MariaDB 1 17.14% 

Firebase • ) 15.89% 

Elasticseardn • 15.72% 

Oracle 1 12.89% 

DynamoDB I ).7% 

Cassandra • 
IBM DBZ 1 2.14% 

Couchbase 1 1.72% 

Source: Stack Overflow, 2022 

According to Stack Overflow's (a question-answer type website for developers with more 

than 14 million active users worldwide) 2022 developer survey, relational databases are 
27 



still being used the most, with 4 first places on the survey being SQL based systems. 

However, the gap between relational and non-relational models is expected to shrink with 

the continuous development of more complex NoSQL systems in the future. However, as 

both SQL and NoSQL databases have their respective use cases, the relational model is not 

going to go extinct just yet. 

4.6 Database design theory 

4.6.1 Beginning the design 

What does the design of the database system begin with? Different database specialists and 

book authors have differing opinions regarding that. Some prefer to start their design 

process by thoroughly analysing the requirements, some are inclined to believe that the 

first step should be defining a mission statement and objectives of the database. Others say 

that the first thing to do is to build an ERD: an entity relationship diagram of the proposed 

design (15). Entity-relationship (or ER) modelling is a technique for designing the 

conceptual schema of a database, which describes the entities, attributes, and relationships 

in the domain of interest. An entity is a thing or object that exists independently, such as a 

product, customer, or sale. An attribute is a characteristic or property of an entity, such as 

the price, name, or date. A relationship is an association between two entities, such as a 

product that is bought by a customer, or an order that includes multiple products. In 

database design, it's important to keep track of the number of relationships that will exist 

between entities, as correct constraints need to be set up. For example, a user can be 

registered in the system and not have any orders, but an existing order is always associated 

with one and only one user. This is a mutual relationship and should be properly recorded 

in an ERD. For this purpose, a number of different relationship notations exist. Entity 

relationship diagrams built for this project follow Crow's Foot Notation. 

In this notation, a circle means zero, three diverging lines mean zero, and a line represents 

one. Combining these symbols, complex relationships can be described as per image 2. 

28 



Image 2 Overview of Crow's Foot Notation. 

\— One 

^ Many 

H- One (and only one) 

0+ Zero or one 

K One or many 

Zero or many 

Source: Author, 2023 

Generally, the ER model is used to create a graphical representation of the database, which 

helps to visualise the structure and relationships of the future system. 

4.6.2 Further analysis 

While all mentioned early steps of database design are indeed important, they're not 

mutually exclusive to one another and a good database design should go through all of 

them. Requirement analysis is a technique which includes going through all the things the 

future database should and should not be like. For this task, specifying the details and 

requirements of the database as thoroughly as possible is crucial (16). To define what the 

mission statement of the database is means to determine its true purpose, whether it's to 

solve a particular business problem or to manage the organisation's day-to-day activities. 

On the contrary, defining the mission objectives is performed by compiling statements 

representing the general tasks users might accomplish using the database. An entity 

relationship diagram of the proposed database is a type of flowchart that describes the 

inner structure of the future system, the entities, attributes, and their relationships. The 

ERE) can be of three types, depending on the level of generalisation, who are the diagrams 

prepared by and who is going to use them. When the future system is entering 

development, conceptual ERE) is used to compile together information gathered from 

analysing business requirements. This model is furthest from the actual physical 

implementation of the database and is aimed to mostly describe what business needs from 

the database as opposed to describing fine details of the future system. Moving forward 

with the design process, logical ERE) is built by expanding the conceptual model and 
29 



putting down column types, as well as some logical optimisation of tables and columns. 

Finally, a physical ERD is constructed. It goes into more detail about the actual 

implementation of the future database in a specific DBMS, including finalising columns' 

& rows' names and data types, adding join tables i f necessary, selecting primary keys and 

appropriate constraints. 

The existing database must be analysed, i f applicable, to perform a successful database 

design process. It might be a legacy database or a paper-based database. Still, the way the 

organisation currently uses and manages its data can give the database designer a lot of 

information vital for the development process. A different vital step in the design process 

is to conduct interviews with future platform users from all the departments that would 

have access to the database to find out more about how they enter and manage data and 

what the project requires in their eyes. From their answers, the database designer complies 

a list of required attributes, compares it with their own list of assumed required attributes 

and presents the following result to users and management. Upon presentation, comments 

and suggestions may arise, and it's up to the designer to acknowledge these things and 

modify the structure accordingly i f deemed necessary. 

4.6.3 Database implementation 

The next step in the design process is to begin creating table structures according to the 

ERD and set their respective fields according to the prior database and user analysis. This 

separate process starts with identifying subjects of the future database and establishing 

them as tables in the database, Subsequently, each table is populated with fields. The exact 

number and type of fields in each table come from prior discussions and distinct 

characteristics of the table subject. A particular field or fields that uniquely identify each 

record in the table are designated the primary key of the table. 

After tables are created, their relationships need to be identified and properly established. 

This is achieved via a logical connection using primary and foreign keys or through the use 

of linking tables. The physical implementation of relationships between entities depends on 

the type of relationship a designer needs to implement. Sometimes the relationship is 

obvious, but sometimes thorough interviews with database users are required in order to 

correctly identify it. 

30 



Subsequently, business rules are implemented into the database. These are a set of various 

nuances regarding the actual database use, such as uniqueness or non-nullability of certain 

fields and other limitations. For the business rules to be accurate and up to-date, frequent 

user and management consultation is necessary, as the database designer might have no 

understanding of the way various areas of the company function. The managers' 

knowledge needs to be transformed into a set of general business rules, while users will 

reveal area-specific rules that need to be implemented. It's up to the database designer to 

make these business rule into real field constraints in the database. Ultimately, it's these 

constraints and validation tables with fixed values that are maintaining the data integrity of 

the database. 

After the constraints are established, time comes to determine views. A view is a collection 

of specific database entities selected by a query that is stored in the database's dictionary. It 

is dynamically updated with relevant entries each time access to a view is requested. 

Certainly, users from different parts of the company need different information. And again, 

most commonly the database designer simply doesn't know specifically what each user 

needs, which leads to interviews having to be conducted. Some users require summary 

information to enable them to make strategic decisions, while others need detailed data. 

When this survey is concluded, the developer implements the required database 

information selections via queries and records them for constant use as views. 

Finally, a review is concluded. At this step assuring that tables, fields, relationships, and 

business rules meet the criteria of good design is important. Every found error that arises 

must be fixed before the logical structure design is considered over. 

31 



5 Practical Part 

The goal of this thesis is to go through all the steps of creating a database system, including 

triggers and views that would be necessary for daily operation of a real business, in this 

case a typical retail store for Jablotron Group. The resulting system should be instantly 

recognisable as belonging to Jablotron brand and should follow all principles of correct 

database design. 

5.1 Overview 

Jablotron Group a. s., a Jablonec-nad-Nisou based company sells complicated 

manufactured goods and intellectual goods in the form of on-line services across many 

European countries. The company is successful in its field without operating any retail 

stores, due to its broad reseller network. Thus, we assume that the proposed retail store is 

not going to be very big as there is no great immediate demand for Jablotron products. In 

this case, there is no need for keeping track of employee records in the database that this 

thesis seeks to design. The system starts development as a primarily inventory-focused 

database, with more functionality that is deemed necessary at a workplace added further 

throughout the development cycle. For these reasons and for reasons discussed in the 

literature review, MySQL 8.0.36 was selected as a D B M S of choice for this project. 

5.2 Pre-design analysis 

Expanding from the overview, a list of necessary entities must be drawn in order to 

propose an inventory database with sale transaction recording and support for online 

orders. Jablotron sells alarms, cameras, smart home systems, vehicle security and 

monitoring products, cooling and heating units, phones, and baby respiratory monitors, but 

the list of required items does not stop there. Since the retail store has to sell items ordered 

online as well as from the physical shelfs, order tables, customer, and payment info tables, 

as well as shopping carts must be implemented. Moreover, database tables will be designed 

according to what a typical business would need to store about their products and clients. 

32 



The mission statement of the system we are designing would be to ensure productive day-

to-day operations of a retail store using the database. Objectives include recording sale 

transactions, saving user-specific information to help the business and giving customers a 

way to interact with the store online. 

5.3 Entity relation diagrams 

When creating a database, the first step is to analyse the requirements and identify what 

data needs to be stored and how it will be used. This process involves identifying all the 

relevant entities and their attributes and determining the relationships between them. 

The conceptual model is the first ERD that needs to be created. This diagram focuses on 

the high-level representation of the system and identifies the main entities, their attributes, 

and the relationships between them. In this model, the emphasis is on understanding the 

business needs of the system, not the technical implementation details. 

Image 3 Conceptual ERD. 

-OS 

Transaction 

ID 

Order 

Amount 

Order 

-HJID 
User 

Status 

_ _ q ^ Total 

Address 

User 

ID 

First Name 

Last Name 

Phone 

Email 

Address 

-H--
A 

Product 

ID 
Title 

Price 

Stock 

-ff 

Cart 

ID 

User 

Total 

Address 

7K  
Category 

Title 

Description 

Source: Author, 2024 

33 



The six main entities in the conceptual model are Product, Category, Order, User, Cart, 

and Transaction. These entities represent the main objects that the system will manage, 

and each entity has its own attributes that define the characteristics of the object. For 

example, the Product entity might have attributes such as Product ID, Name, Description, 

and Price at this time. In order to capture future relationships between entities, the diagram 

employs Crow's Foot Notation which was explained in article 4.6.1 of this work. We are 

establishing that a user can be responsible for zero or many orders, but each existing order 

is associated with one and only one user. One user can have one and only one cart while a 

single cart is owned by one and only one user. User can have made zero or many 

transactions, but each existing transaction is associated with one and only one user. Order 

is paid by zero or many transactions, but a single transaction can only be associated with a 

single order. Finally, at current, conceptual level we allow a special type of relationship -

many-to-many, which is the case for orders - products, categories - products and carts -

products. Naturally, we want many products to be in many orders, but implementing this 

exact scenario in the D B M S without being careful will cause problems. 

Once the Conceptual Model is complete, the next step is to transform it into a Logical 

Model. This step involves refining the entity relationships and defining all the attributes for 

each table. In the Logical Model, each table has its own set of attributes that define the data 

that is stored in it. This includes not only the attributes defined in the Conceptual Model 

but also any additional attributes that are added to meet the business needs of the system. 

34 



Image 4 Logical ERD. 

Order 

ID 

User ID 

Status 

Subtotal 

Tax 

Grand Total 

First Name 

Last Name 

Mobile 

Email 

Line 1 

Line 2 

Postal Code 

City 

Country 

Description 

Created At 

Modified At 

ID 

UserlD 

Payment Type 

Account 

Expiry 

Provider 

Category 

ID 

Parent ID 

Title 

Descriptior 

Created At 

Modified 

Contain! 

Order ID 

User ID 

Provider 

Account 

Amount 

Payment Type 

Status 

Created At 

—0< Modified At 
,ade by1  

- e x 

s making 

ID 

First Name 

Last Name 

Phone 

Email 

P a s s Hash 

Description 

Registered At 

Modified At 

ID 
Product ID 

Stock 

Created At 

Modified At 

-\D 
Title 

Price 

Summary 

Description 

Created At 

Modified At 

User ID 

Subtotal 

Status 

- First Name 

Last Name 

Mobile 

Email 

L i n e l 

Line2 
Postal Code 

City 

Country 

Created At 

Modified At 

Description 

Source: Author, 2024 

It is important to note that the logical model is still independent of any specific DBMS. 

Entities are becoming more defined, with some attributes being expanded into multiple. 

Some additional entities have been added as a result of this step - PayDetails, Address and 

Inventory. Many-to-many relationships are still allowed, but the logic of many-to-many 

relationships and other relationships between entities needs to be established and recorded. 

For example, user can have none or many addresses, but each address is owned by only 

one user. On the contrary, only one Inventory record is associated with each Product 

record. 

The final stage, physical ERD, will leave us with a ready for implementation database 

system overview with details of specific DBMS, such as MySQL, in mind. In this stage, 

the limitations of the specific D B M S are taken into consideration, any optimizations that 

could be needed are performed and exact attribute types are selected. For example, Order 

is a reserved keyword in MySQL and the table must be renamed. The process also includes 

setting up primary and foreign keys. 

35 



Image 5 Physical ERD. 

• 

ID B IGINT 

ProductID B IGINT 

5tock INT 

Inventory Created At T I M E S T A M P 

Inventory Modified At T I M E S T A M P 

BIGINT 

BIGINT 

Status 
Subtotal 

GrandTutal 

OrclerCompanyNaiT 

OrderFirstName 
OrderLastName 

OtdetMobile 

OtdetEmail 

OrderLinel 
Ordorl inn/ 

OrderPostalCode 

OtdetCity 

OrderCcuntry 

OrderDescription 
OrderCreatedAt 

OtdetModitiedAt 

TINYINT 
FLOAT 
FLOAT 
FLOAT 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(15) 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(6| 
VARCHAR(50) 
VARCHAR(50) 
TEXT 

TIMESTAMP 
TIMESTAMP 

Address Unci 
AddressLine2 
AddressCity 

AddressPostalCode VARCHAR(6) 

AddressCountry VARCHAR(50) 

AddressLandline VARCHARflS) 

PK ID 
FK ProductID 
FK OrderlE 

OrderQuantity 
Item Price 
Item Description 
Item Created At 
Item Modified At 

BIGINT 
BIGINT 
BIGINT 
SMALLINT 
FLOAT 

TEXT 

TIMESTAMP 
TIMESTAMP 

BIGINT 

Tran Provider 

TranAccount 

BIGINT 
BIGINT 
VARCHAR(30] 
Fl OAT 
VARCHAR(lľ) 

Tran Pay m entType VAR C H AR (1 OJ 
TranStaius TINYINT 
TranCreatedAt TI MESTÁM F 
TranModifiedAt TIMESTAMP 

Product 
PK ID 

ProductTitle 
ProduetPrice 
ProductSummary 
P r nd uctDescri ption 
ProductCreatedAi 

BIGINT 
BIGINT 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(50) >Q-

User_Paydetails 

BIGINT 

ID BIGINT 
UserPaymentType VARCHAR(IO) >0-

UserAccount VARCHAR(17) 

Expiry DATE 
UserProvider VARCHAR(30) 

BIGINT 
VARCHAR(75) | 
FLOAT 
TINYTEXT 
TEXT 
TIMESTAMP 

Product_Caterjory 

ProductModifiedAt TIMESTAMP 

PK ID 
FK ProductID 
FK Cartl D 

C art Quantity 
CartPrice 

BIGINT 
BIGINT 
BIGINT 
SMALLINT 
FLOAI 

ItemDescription TEXT 
ItemCreatedAt TIMESTAMP >Q 

ItemModifiedAt TIMESTAMP 

PK ID 
UserFirstName 
UserLastName 
UserPhone 
UserEmail 
PassHash 

U sc rC o m pany Name 
UserDescription 

U se r R eg i ste re d At 

UserModifiedAt 

BIGINT 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(15) 
VARCHAR(50) 
VARCHAR(50) 
VARCHAR(50) 
TEXT 

TIMESTAMP 
TIMESTAMP 

FK ProductID 

FK CategorylD 

BIGINT 

SMALLINT 

PK ID 

FK Parent ID 
Gate gory Title 
CaiegoryDescripiion 
CategoryCreatedAt 
Cate g • ry M od ifi e d At 

SM AI I INT 
SMALLINT 
VARCHAR(75) 
TEXT 
TIMESTAMP 
TIMESTAMP 

Cart 

PK ID BIGINT 
FK UserlD BIGINT 

CartS ubtotal FLOAT 

CartStatus TINYINT 
CartCompanyName VARCHAR(50) 

Cart First Name VARCHAR(50) 
CartLastName VARCHAR(50) 

CartMobile VARCHAR(15) 

Cart Email VARCHAR(SO) 
CarlLinel VARCHAR[50) 

Cart Line 2 VARCHAR(50) 

Cart Postal Code VAR CHAR (6) 
CartC ity VARCHAR(50) 

CartCountry VARCHAR(50) 

CariCreaiedAt TIMESTAMP 
CartModifiedAt TIMESTAMP 

Cart Description TEXT 

Source: Author, 2024 

In the end, all many-to-many relationships were replaced by one-to-many with help of 

association tables. Due to the fact that some items stored in the Products table will be 

services, there is a possibility that no Inventory records with specific ProductID will exist 

in the database. Product Category table will use a combination of two foreign keys for 

unique record identification. Each Category table record contains an attribute storing the 

ParentID of this record. As there are multiple category levels, categories that are root-level 

will have ParentID of null. Each category can only have zero or one parent, but each 

category can have zero or many children. By following this systematic and detailed 

approach, we have created a database that is efficient, flexible, and able to meet the needs 

of the organisation or project. 

5.4 Data Dictionary 

A data dictionary is a centralised repository of metadata that contains information about 

the data elements in a database. It typically includes a collection of entities, attributes, and 

their properties, with detailed explanations about their role and purpose. The entities refer 

to the objects or concepts in a database, while the attributes refer to the characteristics or 

36 



properties of those objects. The data dictionary also contains information about the 

relationships between the entities, such as the cardinality and participation constraints. 

The purpose of a data dictionary is to provide a clear and concise definition of the data 

elements in a database, ensuring consistency and accuracy in data usage. It serves as a 

reference for database designers, developers, and end-users, enabling them to understand 

the structure and meaning of the data. The data dictionary also facilitates communication 

between different stakeholders involved in the database development and maintenance 

process. Additionally, it can be used to generate reports, documentation, and data 

dictionaries for various applications and systems that use the database. 

Image 6 Data dictionary definitions. 

A B C D E F G H 1 
Entity Name Entity Descr ipt ion Column Name Column Descr ipt ion Data Type Length Pr imary Ke- Nu ab e Un que 

Product 
A product is an item or 
service so ld by the store ID 

For un ique ident i f icat ion 
of product records bigint 15 TRUE N/A N /A 

ProductTit le Name of p roduct /serv ice varchar 75 FALSE FALSE FALSE 
ProductPr ice Pr ice of p roduct /serv ice f loat 9,2 FALSE TRUE FALSE 
ProductSummary Short descr ip t ion tinytext FALSE TRUE FALSE 
ProductDescr ipt ion Long detai led descr ipt ion text FALSE TRUE FALSE 
ProductCreatedAt Record creat ion t ime t imestamp FALSE TRUE FALSE 
ProductMod i f iedAt Last record mod i f ica t ion t imestamp FALSE TRUE FALSE 

Inventory Inventory is a table for stor ID For un ique ident i f icat ion c bigint 15 TRUE N/A N/A 

ProductID Associated product identif bigint 15 FALSE FALSE TRUE 
Stock Quant i ty of in stock items int 4 FALSE FALSE FALSE 
InventoryCreatedAt Record creat ion t ime t imestamp FALSE TRUE FALSE 
rr.enter'. Vied •" edA-Last record mod i f ica t ion t imestamp FALSE TRUE FALSE 

Join table for stor ing 
Product_Categ Product - Category pai rs ProductID Product ident i f icat ion d ig bigint 15 FALSE FALSE FALSE 

CategorylD Category ident i f icat ion sma l l i n t 4 FALSE FALSE FALSE 

Category 
for easier ident i f icat ion by 
user ID 

For unique ident i f icat ion 
of categories sma l l i n t 4 TRUE N/A N/A 

ParentID Lower level of category sma l l i n t 4 FALSE TRUE FALSE 
CategoryTitle Name of category varchar 75 FALSE FALSE FALSE 
CategoryDescr ipt ion Detai ls about category text FALSE TRUE FALSE 
CategoryCreatedAt Record creat ion t ime t imestamp FALSE TRUE FALSE 
CategoryModi f iedAt Last record mod i f ica t ion t imestamp FALSE TRUE FALSE 

Source: Author, 2024 

Now that the details of database entities are clearly set, building the system can continue. 

5.5 DDL: Data Definition Language 

The process of creating a database in MySQL typically begins with the execution of the 

command CREATE DATABASE name, where name is replaced with the desired name of 

the new database. This command instructs the MySQL D B M S to create a new empty 

database with the specified name. 

37 



Once the database has been created, the next step is to inform the D B M S that we want to 

work with this database. This is achieved using the command USE name. This command 

sets the default database for the current MySQL session, so that any subsequent commands 

will be executed within the context of this database. 

After the database schema has been created and selected, the next step is to create 

appropriate tables and columns using Data Definition Language (DDL) commands such as 

Create Table, Alter Table, and Drop Table. These commands allow us to define the 

structure of the tables within our database, including the names and data types of columns, 

constraints on the data, and relationships between tables. 

Image 7 A portion of DDL commands used for database creation. 
Admrastratton - Server Status 

U H f A O I 0 0 | LmUolOOOrow. - ^ * Q, \Vj 

56 • CREATE TABLE User(ID BIGINT(IS) NOT NULL AUTO_INCREMENT, 

UserFirstNaae VARCHAR(56)> 

UserlastHaae VARCHAR(S0), 

UserPhone VARCHAR(IS) NOT NULL, 

UserEmail VARCHAR(50) NOT NULL, 

PassHash VfiRfHAR( ) NOT NULL, 

UserCMpanytiaae VAHCHAR(50), 

UserQescription TEXT DEFAULT NULL, 

UserRegisteredAt TIMESTAMP DEFAULT CURRENTTIMESTAMP, 

UserLastHodified TIMESTAMP DEFAULT CURRENTTIMESTAMP ON UPDATE CURRENT_TIMESTAMP, 

PRIMARY KEY (ID))j H 
67 • CREATE TABLE User_PayDetails(IO BIGINT(IS) NOT NULL AUTO_INCREMENT, 

68 UserlD BIGINT(15) NOT NULL, 

69 UserPayrentType VARCHAR(lö) NOT NULL, 

User-Account VARCHAR(17) NOT NULL UNIQUE, 

Expiry DATE, 

UserProvider VARCHAR(30) NOT NULL, 

Output 

[5 AcUonOutpU 

# Time Action " e i ; i ; ; 
© 27 04:55:01 ALTER TABLE Cart Jtem ADD CONSTRAINT FK_CartCart... 0 rowW affected Records: 

O 28 04 5501 ALTER TABLE Category ADD CONSTRAINT FK_ParentC 0 row(s) affected Records: 

© 29 04 55 01 ALTER TABLE Product .Category ADD CONSTRAINT FK. 0row<3)<rffected Records: 

0 Duplicates. 0 Wamngs 0 

0 Dupicates 0 Wamngs 0 

0 Duplicates: 0 Wamngs 0 

Source: Author, 2024 

5.6 DML: Data Manipulation Language 

Once the necessary tables are created and any relevant constraints are put in place to 

ensure data integrity, it is desirable to set up additional tools and instruments that can make 

working with the database easier and more efficient. 

One such tool is the use of views, which allow a great deal of customisation to be enjoyed 

by users. Views can be customized to display only the columns and rows that are relevant 

38 



to a particular task, and they can be updated as necessary to reflect changes in the 

underlying data, thus providing you a schema-free database experience. For example, 

OrderRange view from Image 8 selects all orders from the OrderTable that were created 

within a given period. This view can be used by managers and analysts to quickly obtain a 

list of orders placed during a specific period for. The Products Overview view selects 

information about each product from the Product table and groups them by their creation 

date. This demonstrates how views can be used by marketing and sales teams to review the 

products offered by the retail business and make informed decisions about promotions or 

product retirements. 

Image 8 OrderRange and ProductsOverview views. 

1 # S h m o r d e r s f o r a n y g i v e n t i i i e p e r i o d 

2 • C R E A T E V I E W O r d e r R a n g e A S 

3 S E L E C T * F R O M O r d e r T a b l e 

4 W H E R E ( O r d e r C r e a t e d A t >= d a t e ' 2 0 2 3 - 9 1 - 9 1 ' ) A N D ( O r d e r C r e a t e d A t <= d a t e 1 2 0 2 3 - 0 2 - 2 6 ' ) S 

5 

6 tfDisplay l i s t o f p r o d u c t s 

7 • C R E A T E V I E W P r o d i i c t s _ O v e r v i e w A S 

S S E L E L I P r o d u c t C r e a t e d A t , P r o d u c t T i t l e , P r o d u c t S u m m a r y , P r o d u c t D e s c r - i p t i c n 

9 F R O M P r o d u c t ; 

10 

1 1 • S E L E C T • F R O M P r o d u c t s _ O v e r v i e w ; 

Output Output 

0 Admn Output 

# T im« 

O 95 13:39:19 CREATE VIEW ProduotsjDvervlevi AS SELECT ProductOwtedrt, ProduotTsie. PnoductSummary, ... 0 row (3) affeded 

© 9S 18:39:33 select 'from pfDduct9_overvjew LIMIT 0. 1000 retimed 

Q 97 13:39:54 sdect 'from adetrenge LIMIT0.1000 flrow(s)retuined 

Source: Author, 2024 

Another important feature of D M L is the use of triggers, which are actions that are 

automatically performed by the database in response to specific events or changes in the 

data. They allow automation of a lot of user interaction with the database. 

39 



Image 9 InventoryStockUpdate trigger. 
1 3 5 # T h i s t r i g g e r u p d a t e s t h e i n v e n t o r y a f t e r a n i t e m i s s o l d 

1 3 6 D E L I M I T E R / / 

1 3 7 • C R E A T E T R I G G E R I n v e n t o r y S t o c k U p d a t e B E F O R E I N S E R T ON O r d e r _ I t e r a 

1 3 8 FOR E A C H ROW 

1 3 9 B E G I N 

1 4 9 U P D A T E I n v e n t o r y 

1 4 1 S E T S t o c k = S t o c k - n e w . O r d e r - Q u a n t i t y 

1 4 2 WHERE P r o d u c t I D = n e w . P r o d u c t I D ; 

1 4 3 E N D / / 

1 4 4 d e l i m i t e r ; 

Output ::-m*xxwx:̂  
[ J Action Output 

m Timt Action M t s s j g t 

O 925 16:14:04 ALTER TABLE Cart ADD ... 0 tow(s) affected Records: 0 Duplicates: 0 Warnings 0 

© 926 16:14:04 ALTER TABLE Transactio... 0 row(s) affected Records: 0 Duplicates: 0 Warnings: 0 

Source: Author, 2024 

This trigger is used to automatically update the Inventory table when a sale has been 

successfully completed, simply using the information that is already stored by the database. 

Since the database knows precisely which and how much of goods were sold, it feels very 

natural to use that knowledge and let the database quietly update itself when a shopping 

cart turns into an order. 

Image 10 Triggers for time optimisations. 
SET N E W . O r d e r P o s t a l C o d e := (SELECT A d d r e s s P o s t a l C o d e FROM U s e r _ A d d r e s s WHERE U s e r A d d r e s s . U s e r l D = N E W . U s e r l D ) ; 

END I F J 

IF N E W . O r d e r C o u n t r y I S NULL THEN 

SET N E W . O r d e r C o u n t r y =• ( S E L E C T A d d r e s s C o u n t r y FROM U s e r A d d r e s s WHERE U s e r A d d r e s s . U s e r l D » N E W . U s e r l D ) ; 

END I F j 

E N D / / 

d e l i m i t e r ; 

175 

176 

177 

1 7 8 

179 

1 8 0 

1 8 1 

182 

183 # T h i s t r i g g e r l o a d s m i s s i n g i n f o r m a t i o n when a l o g g e d i n u s e r c r e a t e s a c a r t 

1 8 4 d e l i m i t e r / / 

185 • CREATE TRIGGER L o a d D e f a u l t C a r t D a t a BEFORE INSERT ON C a r t FOR EACH ROW 

186 BEGIN 

I 
1 8 7 I F N E W . C a r t F i r s t N a m e I S NULL THEN 

1 8 8 SET N E W . C a r t F i r s t N a m e ( S E L E C T U s e r F i r s t N a m e FROM U s e r WHERE U s e r . I D - n e w . U s e r l D ) ; 

189 END I F ; 

19« H I F N E W . C a r t L a s t N a m e I S NULL THEN 

1 9 1 SET N E W . C a r t L a s t N a m e := ( S E L E C T U s e r L a s t N a m e FROM U s e r WHERE U s e r . I D • n e w . U s e r l D ) ; 

Source: Author, 2024 

As the retail store that is being designed throughout this thesis is targeting long term user 

commitments, it is safe to assume that all clients will be registered in our system. So, 

40 



naturally, when the company and the user are old friends, the company is already well 

aware of who they are, why spend time by going over the same details again? 

As per my project, I've implemented two triggers that load the user information if that data 

is already saved in the system. One trigger covers carts and another finalised orders. A 

good rule of thumb is to never try to force these efforts in automatization to other users -

after all, they might have different opinion of what is convenient. So, for these triggers, 

I've decided that they should only activate and quietly complete the form if a user 

purposely sends that form with missing information - this way nobody gets upset over 

improvements they've never wanted. 

Image 11 InsertltemPrice triggers. 

!19 # T h i s t r i g g e r l o a d s t h e p r i c e o f i t e m s when a n o r d e r i s c r e a t e d 

!20 D E L I M I T E R / / 

121 • CREATE TRIGGER I n s e r t l t e m P r i c e O r d e r BEFORE INSERT ON O r d e r l t e m FOR EACH ROW 

!22 Q BEGIN 

•23 O I F n e w . O r d e r - Q u a n t i t y I S NOT NULL THEN 

!24 SET n e w . I t e m P r i c e = ( n e w . O r d e r Q u a n t i t y * ( S E L E C T P r o d u c t P r i c e FROM P r o d u c t WHERE P r o d u c t . I D = n e w . P r o d u c t I D ) ) ; 

125 E N D I F j 

•26 E N D / / 

!27 d e l i m i t e r ; • 

£28 

!29 # T h i s t r i g g e r l o a d s t h e p r i c e o f i t e m s when a c a r t i s u p d a t e d 

139 D E L I M I T E R / / 

! 3 I • CREATE TRIGGER I n s e r t l t e m P r i c e C a r t BEFORE INSERT ON C a r t _ I t e m FOR EACH ROW 

!32 - B E G I N 

!33 0 I F n e w . C a r t Q u a n t i t y I S NOT NULL THEN 

!34 SET n e w . C a r t P r i c e = ( n e w . C a r t Q u a n t i t y * ( S E L E C T P r o d u c t P r i c e FROM P r o d u c t WHERE P r o d u c t . I D = n e w . P r o d u c t I D ) ) ; 

! 35 END I F j 

!36 E N O / / 

!37 d e l i m i t e r ; 

'38 

Source: Author, 2024 

The idea behind these two triggers is quite simple. First of all, again, there are two because 

we need to implement the same thing for both shopping carts and shipped orders. So, what 

is happening here is that we want to see a monetary equivalent of things in the cart or in 

the order, but due to the architecture of the system that is not going as straightforward as it 

seems. When an item is added into the shopping cart, it is not the same exact item that is 

stored in the database. More specifically, it is an intermediate object, something between a 

cart and an item. This is usually done to avoid many-to-many entity relations. In our case, 

just before a cart item is added to the Cart Item table, the trigger quickly checks that the 

number of items added to the cart is not zero, then collects the price of items from another 

41 



entity in the database and finally, updates the price of cart item itself. From this point 

onwards, two different triggers will take over. 

Image 12 Triggers for calculating total sum to be paid by client. 
239 J t T h i s t r i g g e r c a l c u l a t e s t h e t o t a l p r i c e o f a n o r d e r 

2 4 0 D E L I M I T E R / / 

2 4 1 • CREATE TRIGGER C a l c u l a t e O r d e r T o t a l BEFORE UPDATE ON O r d e r T a b l e FOR EACH ROW 

2 4 2 (-> B E G I N 

2 4 3 SET n e w . S u b t o t a l = ( S E L E C T SU ' ( I t e n P r i c e ) FROM O r d e r _ I t e m WHERE O r d e r l D •= n e w . I D ) ; 

2 4 4 SET n e w . T a x = ( n e w . S u b t o t a l • 0 . 2 1 ) j 

2 4 5 SET n e w . G r a n d T o t a l = ( n e w . S u b t o t a l + n e w . T a x ) ; 

2 4 6 E N D / / 

2 4 7 d e l i m i t e r ; 

248 

2 4 9 # T h i s t r i g g e r c a l c u l a t e s t h e p r i c e o f a n i t e m s i n c a r t w i t h o u t t a x 

2 5 8 D E L I M I T E R / / 

251 • CREATE TRIGGER C a l c u l a t e C a r t T o t a l BEFORE U p d a t e ON C a r t FOR EACH ROW 

2 5 2 H B E G I N 

253 SET n e w . C a r t S u b t o t a l = ( S E L E C T s i ( C a r t P r i c e ) FROM C a r t _ I t e m WHERE C a r t _ I t e m . C a r t I D = n e w . I D ) ; 

2 5 4 L E N D / / 

255 d e l i m i t e r ; 

256 

Source: Author, 2024 

In order to calculate the total monetary sum representing each shopping cart and each 

order, a bit of data manipulation and math is needed. The situation may look easier with 

the shopping cart total, but that is only due to the fact that the shopping cart doesn't include 

taxes. What's actually happening is that each time, just before tables Cart or Order Table 

are updated, MySQL is looking for cart items that our previous triggers have helpfully 

updated with their price multiplied by their quantity. Once the cart items are found, their 

prices are summed up. And for calculating the order total the process would be very 

similar, only with some addition and multiplication. 

42 



6 Analysis and further improvement 

6.1 Performance analysis 

As the retail store is expected to grow and evolve, it is essential to ensure that the database 

is performing optimally to ensure fast and efficient access to data. Previously in this thesis 

we have utilized MySQL Workbench, a visual tool for designing, managing, and 

monitoring MySQL databases. Among other things, Workbench provides a built-in 

dashboard that displays high-level performance metrics, as well as detailed performance 

metrics contained in the sys schema. Author has used this tool to identify and analyse key 

performance metrics such as CPU usage, memory utilization, query performance, and 

index usage. 

Image 13 Table statistics of the database. 
Statements in Highest 5 Percent by Runtime 
List an statements whose average runbme, in microseconds is m highest 5 percent 

Query 

ALTER TABLE O r d e r j t e m ' ADD CONSTRAINT'FK_OrderOrder I tem' FOREIGN KEY ( ' OrderlD' ) REFERENCES. 
ALTER TABLE TRANSACTION ADD CONSTRAINT ' FKJJserTransact ion ' FOREIGN KEY ( ' User lD ' ) REFERENCES... 
ALTER TABLE ' Cart' ADD CONSTRAINT ' F K J J s e r C a r t ' FOREIGN KEY ( ' User lD ' ) REFERENCES SYSTEM JJSER. . . 
ALTER TABLE ' O r d e r j t e m ' ADD CONSTRAINT ' FK_ProductOrderItem' FOREIGN KEY ( ' Product lD ' ) REFEREN . 
ALTER TABLE ' C a r t j t e m ' ADD CONSTRAINT ' F K J a r t C a r t l t e m ' FOREIGN KEY ( 'Cart ID ' ) REFERENCES Cart... 
ALTER TABLE ' Inventory' ADD CONSTRAINT ' FKJnventoryProduct ' FOREIGN KEY ( ' Product lD ' ) REFERENCE 
ALTER TABLE ' Category' ADD CONSTRAINT ' FK_ParentCategory" FOREIGN KEY ( ParentlD' ) REFERENCES '. 
ALTER TABLE ' O r d e r j a b l e ' ADD CONSTRAINT ' FKJJserOrde r ' FOREIGN KEY ( User lD ' ) REFERENCES SYST... 
ALTER T A B L E ' C a r t j t e m ' ADD CONSTRAINT 'FK_ProductCartItem" FOREIGN KEY ( ' P r o d u c t l D ' ) REFERENCE 
ALTER TABLE TRANSACTION ADD CONSTRAINT ' FKJDrderTransaction' FOREIGN KEY ( ' OrderlD' ) REFERENC 
ALTER TABLE ' P r o d u c t J a t e g o r y ' ADD CONSTRAINT ' FK_CategoryProduct ' FOREIGN KEY ( ' Category ID" ) RE. . 
A l T C O T A R I C ' I I r a r AAArvrr' A n n r f i W C T D A I M T " C V I %mmwtkAAwmmw% C n D C T ß M I^CV I ' I I r a r i n ' ^ D C E C O C M r c c C 

Source: Author, 2024 

This project has provided us with an interesting insight into database performance. As it 

turns out, Alter Table operations and foreign key constraints are very expensive, and it 

brings to mind an interesting experiment - try to figure out i f we could go faster with less 

normalisation. 

Image 14 Database index statistics. 

S c h e m a I n d e x S t a t i s t i c s 

Schema Table Index RowsSe.. w Select Time . . . 

jablotronretails... user_address FK_UserAddress 11 275.54 

jablotronretails... user PRIMARY 10 104.45 

jablotronretails... product PRIMARY 10 84.87 

jablotronretails... inventory ProductlD 8 80.16 

jablotronretails... user_paydetails FK_UserPayment 2 76.57 

jablotronretails... order_table FKJJserOrder 2 11.00 

sys sys_config PRIMARY 1 2482.11 

43 



Source: Author, 2024 

In terms of performance, the select time for the tables seems within reason with the largest 

table user address taking only 0.2 milliseconds to select 11 rows. 

Image 15 Database statement statistics by MySQL Workbench. 
Statement S ta t i s t i cs 
Shows statement execution statistics for each user 

Statement 

s h o w _ s t a t u s 

Ping 
se lect 

s h o w _ f i e l d s 

d r o p _ t a b l e 

s h o w _ w a m i n g s 

a l t e r j a b l e 

insert 

c rea te_ tab le 

d r o p _ t r i g g e r 

c r e a t e j n g g e r 

Total Event . . . Total T m e (us) 

9059 8817826.10 

728 

380 

250 

180 

166 

147 

115 

122 

109 

9 7 

56802.00 

2195720.00 

325128.50 

3699031.30 

17837.10 

17967613.90 

1260755.80 

6131212.60 

1210171.80 

1188231.00 

Max T m e (us) 

6113 .00 

378.50 

156182.60 

5215.00 

93673.50 

378.40 

319711.30 

26885.90 

166107.80 

44591.10 

31616.70 

Lock Time (us) 

14662.00 

0.00 

1446.00 

1096.00 

4380.00 

0.00 

11098.00 

1332.00 

3121.00 

1911.00 

2302.00 

Source: Author, 2024 

In conclusion, our analysis using MySQL Workbench revealed several areas where the 

retail store database could be optimized to improve performance, including optimizing 

queries and reducing CPU overhead. With ongoing monitoring and optimization of key 

performance metrics, it is possible to ensure that the database continues to operate at peak 

efficiency and can handle increasing workloads as the retail store continues to grow and 

evolve. To draw a conclusion, MySQL Workbench is an effective tool for development, 

analysing database performance and learning crucial insights about database design. 

6.2 Further development 

A potential and logical upgrade for the built database system would be a connected web 

front for users to purchase and order items, manage their subscriptions. Store workers will 

benefit a lot from a similar web-based system that makes working with orders a more 

trivial and accessible task. Unfortunately, despite author's attempts to receive some kind of 

feedback from Jablotron Group, it does not seem likely that the company is interested in 

opening a retail store at this time. 

44 



7 Conclusion 

The retail industry is constantly evolving, and businesses must stay up to date with the 

latest technologies and trends in order to remain competitive. One of the key technologies 

that has revolutionized the retail industry in recent years is the database. By storing and 

managing large amounts of data on customers, products, and sales, databases have enabled 

retailers to make informed decisions based on accurate and up-to-date information. 

Through this thesis, we have explored the design and implementation of a retail database, 

including the creation of triggers, views, and procedures that can help to automate various 

tasks and ensure data integrity. The database that has been developed has the potential to 

bring significant benefits to retail businesses by streamlining operations, improving 

customer service, and increasing sales and revenue. By automating tasks such as inventory 

management, sales tracking, and customer data management, the database can free up 

workers' time and allow them to focus on more important tasks, such as customer service 

and sales. The use of triggers, views, and procedures can also help to ensure that data is 

accurate and consistent across different parts of the business, making it easier for retail 

workers to make informed decisions. To summarise, the database that has been developed 

through this thesis represents a powerful tool for retail businesses looking to stay ahead of 

the curve and succeed in an increasingly competitive industry. 

45 



8 References 

1. ACM (Association for Computer Machinery). ACM Awards A. M. Turing Award 

Laureate - Charles W. Bachman [online] 1973. 

https://amturing.acm.org/award winners/bachman 1896680.cfm. Accessed 30 

December 2022. 

2. DATE, Chris, 2003. An Introduction to Database Systems. Boston: Addison-

Wesley Longman. ISBN 9780321197849. 

3. SHELDON, Robert. MOES, Geoff, 2005. Beginning MySQL. Indianapolis, Wiley. 

ISBN 0764579509. 

4. LANGLOIS, Richard, 2002. Computers and semiconductors. Technological 

innovation and economic performance. Princeton: Princeton University Press, p. 

265-284. ISBN 0691090912. 

5. DANIEL, Eric, M E E , Denis, C L A R K , Mark, 1998. Magnetic Recording: The First 

100 Years. New York: IEEE Press. ISBN 978-0780347090. 

6. GROSVENOR, Edwin, WESSON, Morgan, 2016. Alexander Graham Bell. 

Boston: New Word City. ISBN 1612309844. 

7. KRAMER, Pieter. Reflective optical record carrier [online]. 26 November 1991. 

https://patents.google.com/patent/US5068846. Accessed 30 December 2022. 

8. BERG, Kristi, SEYMOUR, Tom, GOEL, Richa. History Of Databases. 

International Journal of Management & Information Systems (IJMIS). Volume 17, 

Issue 1, First Quarter 2013, p. 29-35. ISSN 1546-5748. 

9. ROWE, Lawrence. History of the Ingres Corporation. IEEE Annals of the History 

of Computing. Volume 34, Issue 4, October-December 2012, p. 58-70. ISSN 1058-

6180. 

10. ACM (Association for Computer Machinery). ACM Awards A. M. Turing Award 

Laureate - Edgar F. Codd [online]. 1981. 

https://amturing.acm.org/award winners/codd 1000892.cfm. Accessed 30 

December 2022. 

11. SCOTT, Harris, PRESTON, Curtis, 2007. Backup & Recovery: Inexpensive Backup 

Solutions for Open Systems. Sebastopol: O'Reilly, ISBN 978-0596102463. 

46 

https://amturing.acm.org/award
https://patents.google.com/patent/US5068846
https://amturing.acm.org/award


12. NANDI, Veena. Maintaining Database: Business Intelligence Tool for Competitive 

Advantage. Business Intelligence Journal. Volume 5, Issue 2, July 2012, p. 352-

357. ISSN 1918-2325. 

13. G A R B A, Musa. A Comparison of NoSQL and Relational Database Management 

Systems (RDBMS). Kasu Journal of Mathematical Sciences (KJMS). Volume 1, 

Issue 2, December 2020. ISSN 2734-3439. 

14. MongoDB. Supported SQL Functions and Operations [online]. 2022. 

https://www.mongodb.com/docs/bi-connector/current/supported-operations/. 

Accessed 30 December 2022. 

15. HARRINGTON, Jan, 2016. Relational Database Design and Implementation: 

Clearly Explained, Fourth Edition. Burlington: Morgan Kaufman. ISBN 978-

0128043998. 

16. HERNANDEZ, Michael, 2014. Database Design for Mere Mortals. Third Edition. 

Ann Arbor: Addison-Wesley Professional. ISBN 978-0-321-88449-7. 

8.1 Table references 

Cypress Semiconductor AN99111 - Parallel NOR Flash Memory: An Overview [online]. 

2017. https://www.infineon.com/dgdl/Infineon-

AN9911 l_Parallel_NOR_Flash_Memory_An_Overview-ApplicationNotes-v03_00- 

EN.pdf?fileId=8ac78c8c7cdc391c017d0742858b6597&utm source=cvpress&utm mediu  

m=referral&utm_campaign=20211 Oglobeenallintegration-files. Accessed 30 

December 2022. 

8.2 Image references 

Stack Overflow Developer Survey 2022 [online]. 2022. 

https://survey.stackoverflow.co/2022/#most-popular-technologies-database-prof Accessed 

30 December 2022. 

47 

https://www.mongodb.com/docs/bi-connector/current/supported-operations/
https://www.infineon.com/dgdl/Infineon-
https://survey.stackoverflow.co/2022/%23most-popular-technologies-database-prof

