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ABSTRACT 
Perceptive systems in autonomous heavily researched topic these days 
and an essential part of making fully autonomous vehicles possible. First, we make 
a short summary of the development of such a system, then we explain different 
approaches to make these systems possible, and we focus on object detection, as 
this will be the main part of our own created perceptive system. A new model for 
object detection is implemented, and some additional parts like distance estimation 
and lane detection are added. 

ABSTRAKT 
Percepční systémy v autonomních vozech jsou v dnešní době intenzivně zkouma­
ným tématem a nezbytnou součástí potřebnou k vytvoření plně autonomních vozi­
del. Nejprve, stručně shrneme vývoj takových systémů, vysvětlíme si různé přístupy 
potřebné k vytvoření percepčních systémů a zaměříme se na detekci objektů, pro­
tože to bude naše hlavní část pro námi vytvořená systém. Nový model pro detekci 
objektů je implementován, spolu s několika dalšími částmi jako odhad vzdálenosti 
a detekce jízdních pruhů. 
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1 INTRODUCTION 
The automotive industry is one of the biggest industries in the world. As in many 
other industries, the process of trying to create automation systems, which would 
need minimal or no human intervention, has merged even to this field. Although 
there have been some attempts to create fully autonomous vehicles almost 100 years 
back, the first successful prototype was created in the 1980s. There were so many 
hard challenges yet to be solved that it seemed almost impossible to have even 
partially autonomous vehicles. But due to new innovative possibilities, we are ap­
proaching the phase, where it could be possible within a few years. 

Driving a vehicle seems for most people like an easy task, but for automation 
systems, it is an unsolvable task yet. Existing approaches to self-driving can be 
roughly categorized into modular pipelines and monolithic end-to-end learning ap­
proaches. Both approaches require different approaches and face different problems. 

The modular approach-based systems should be more reasonable, as they 
offer better safety. This means the problem of self-driving is broken down into 
several tasks, where each task is solved with a little bit different approach. Systems 
must have a great understanding of their surroundings and must be robust enough 
not to be dangerous for local places. This is done by leveraging machine learning, 
especially deep learning methods for computer vision tasks. 

The popular tasks solved by machine learning are object detection, tracking, 
semantic (instance) segmentation, reconstruction, motion estimation, and scene un­
derstanding techniques. Perception systems mainly based on object detection do 
not require additional complex solutions and could potentially be used in simple 
devices, providing additional safety for many drivers. 

Object detection has received significant attention in recent years. Original 
machine learning models do not come even close to the complexity and precision of 
models being used these days. 
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2 STATE OF T H E ART 

2.1 Brief History of Autonomous Driving 

The start of partially autonomous vehicles began in the 1920s when the inventor 
Francis Houdina demonstrated a radio-controlled car, which was able to drive on 
streets without anyone behind the steering wheel. He equipped a Chandler Model 
with a transmitting antenna on the cargo bed and operated the Chandler Model 
from another car. Transmitted radio waves controlled electric motors in the car 
[38]. 

This car was able to start the engine, shift gears and use the horn without 
the driver. This new technology was presented in New York City in 1925, where the 
autonomous car was driving through heavy traffic [38]. 

Fig. 1: The radio-operated automobile American Wonder [38]. 

Car manufacturers had a vision of creating self-driving cars before it was 
even possible. Several prototypes were created, such as the G M Firebird II in 1956, 
R C A Labs' wire controlled car in 1960 as well as a Citroen in 1970. However, these 
manufacturers never managed to make self-driving cars, which would not be wire 
controlled by people, and these prototypes were always limited to a specific use [7]. 

In the 1980s the Navlab was introduced, the first car which could be de­
scribed in today's terms as a self-driving car and not radio-controlled. Research on 
computer-controlled vehicles began at Carnegie Mellon in 1984 and production of 
the first vehicle began in 1986. The research team introduced an imitation learning 
approach, where a neural network was optimized to keep the vehicle on the road. 
The car achieved a major milestone in the self-driving world, when the Navlab was 
able to drive from Washington, D.C. to San Diego, C A autonomously for 98% of the 
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time. At this time neural networks approach started to overtake other models used 
and neural networks became the go-to option when it comes to self-driving [18]. 

In the early 1990s, Dean Pomerleau wrote a dissertation thesis describing, 
how neural networks could possibly control autonomous vehicles via image process­
ing in real-time. The paperwork presents the learning system A L V I N N (Autonomous 
Land Vehicle In a Neural Network), allowing to drive in single-lane paved and un-
paved roads, multilane lined, and obstacle-ridden environments [31]. 

T 

\ IIIL--
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Fig. 2: Learning system A L V I N N [31] 

In Fig: 2 A L V I N N learning system is shown. The input layer consists of 30x32 
units onto which an image from the video camera is projected. It is then presented 
to the neural network as the input layer. The architecture of the model is very 
simple, as there was very little compute power back then, so the model has only 
1 hidden layer consisting of 4 hidden units. The output of the layer is presented 
in 30 different units, which are then translated into the vehicle steering command 
[31]. Dean Pomerleau was not the only one using neural networks for self-driving 
cars. But his use of neural nets proved way more efficient than alternative attempts 
to manually divide images into "road" and "non-road" categories. In 1995 a more 
complete version of this car was developed, which managed to do 3 000 mile long 
ride. 

The self-driving car development looked very promising at the time and sev­
eral people thought, a fully self-driving car system could be developed within years. 
But many people were proved wrong in the early 2000s. Defense Advanced Research 
Projects Agency (DARPA) announced its first Grand Challenge in 2002 offering a 
$1 million prize to scientists from top research institutions if they could build an 
autonomous vehicle able to navigate a 240 km course through the Mojave Desert. 
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The challenge was held in 2004 and none of the 15 participants were able to complete 
the course [18]. 

In 2007, D A R P A organized the next race. This competition required vehicles 
to drive a 96 km route through a town at George Air Force Base while obeying traffic 
laws, avoiding obstacles, and merging into traffic. The C M U research team was able 
to finish first, this team relied upon a multi-beam L i D A R . Multi-beam Lidar showed 
the best promising results when it came to obtaining depth measurements of the 
obstacles [18]. 

In the early 2000s were developed commercially used parking systems using 
computer vision techniques, able to do automatic parallel parking or angle parking. 

Google secretly launched its self-driving car program in 2009 by hiring top 
scientists participating in the Darpa Challenges. Their program included a new 
driving platform and affordable multi-beam L i D A R scanners. Later in 2013 claim­
ing, that they reached 300 000 miles of self-driving without a single accident. Many 
manufacturers were caught off guard by this result because Google was at this time 
way ahead of all competitors. By 2013 big manufacturers like G M , Ford, Mercedes, 
and B M W started working on self-driving technologies too. Nowadays Google's 
project is called Waymo and its system is based on multi-beam LIDAR, radar, and 
cameras [7] [6]. 

Fig. 3: Waymo driverless car [6]. 

In 2013 the S500 Intelligent Drive by Mercedes Benz was presented. Ob­
ject detection and free-space analysis were performed using radar and stereo vision. 
Monocular vision was used for traffic light detection and object classification. A 
combination of these two techniques showed a more robust solution when it came 
to self-driving in more complex areas like inner-city environments or bad weather 
conditions [14]. 
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Tesla announced the Tesla Autopilot, a driver-assistance system, in 2014. 
Initially, the goal was not to produce a production-ready system, which would offer 
a fully self-driving system, but rather the Autopilot would function as a complemen­
tary system to increase comfort and safety when conditions are clear. In November 
2016 Autopilot added a function to create a point cloud to improve navigation dur­
ing low visibility conditions. In February 2017 the Autopilot was able to navigate 
freeways, change lanes without driver input, transition from one freeway to another, 
and exit the freeway [39] [40]. 

In 2016 NVIDIA joined the competition, as their advanced G P U production 
and strong processing power came in very handy when it came to the development 
of the self-driving cars. The NVIDIA research team presented paperwork, where a 
single C N N model was able to mAP the pixels from a single front-facing camera 
directly to steering commands [3]. 

e Recorded 
steering 

wheel angle 

Left camera 

Center camera 

Right camera 

Adjust for shift 
and rotation 

Random shift 
and rotation 

Desired steering command 

CNN 

Back propagation 
weight adjustment 

Network 
computed 
steering 
command 

Error 

Fig. 4: End-to-end learning systems proposed by NVIDIA [3] 

Results showed that CNNs are able to learn the entire task of lane and road follow­
ing via imitation learning to predict vehicle control. There is no need for manual 
decomposition of the image, path planning, or semantic abstraction the model was 
able to learn directly from input images. This end-to-end approach proved to be 
surprisingly powerful [3]. 

NVIDIA with Volkswagen unveiled a new self-driving car chip, called Xavier, 
that incorporates artificial intelligence in 2018. The Volkswagen-NVIDIA collabo­
ration is the first to connect A.I . to production-ready hardware. It opens up the 
possibility for self-driving cars to perform better [6]. 

2.2 Classification of Autonomous Cars 

In 2014 classification system was introduced by S A E International (Society of Au­
tomotive Engineers). The system is based on six levels of autonomy. 
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1) Level 0 (No automation): Driver must take care of steering, throttle, braking, 
watch surroundings, and navigating through the world. There can be imple­
mented warning systems and such. The majority of cars today are on this 
level of automation. 

2) Level 1 (Driver assistance): Automated vehicles can handle the braking and 
basic turning for some circumstances, but the driver must still be ready to 
take over driving and the car cannot be left alone to drive itself. 

3) Level 2 (Partial assistance): The last stage where the driver is responsible for 
monitoring the surroundings, traffic, weather, and road conditions. 

4) Level 3 (Conditional assistance): Uses various driver assistance systems and 
artificial intelligence to make decisions based on changing driving situations 
around the vehicle. People inside the vehicle do not need to supervise the 
technology, which means they can engage in other activities. A human driver 
must be present. 

5) Level 4 (High Automation): The automatic vehicle can handle most environ­
ments except some extreme ones. 

6) Level 5 (Full Automation): The full performance of driving under all environ­
mental conditions can be managed by an automatic driver. Human interven­
tion is not needed at all [28]. 

2.3 Autonomous Drive learning 

The more information we can get from the world the better the autonomous system 
can be built. The basic pipeline could look like this: perception devices scan the 
scenery and get the data from the surroundings that we use for specific algorithms 
to analyze the sensory data. The system then makes predictions to plan trajec­
tory based on algorithms output and feeds the control. In the control module, the 
trajectory is then translated to the actuators [19]. 

These systems are usually complex systems made of numerous tasks like 
detection, segmentation, motion estimation, reconstruction, etc. There are two 
main approaches, to how autonomous driving systems are built. One is to consider 
autonomous driving as an end-to-end learning problem. That means one deep neural 
network is trying to learn tasks of perception, planning, and control directly from 
cameras to handle the steering. Another is to divide the whole learning process into 
subproblems, where they would take results from each component and then typically 
combine them in a planning module that feeds the control. [18]. 
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Fig. 5: Perception modules in autonomous car [19] 

2.4 Scene understanding 

The complex task of outdoor scene understanding involves several sub-tasks such as 
depth estimation, scene categorization, object detection and tracking, event catego­
rization, and more. The goal is to understand the surroundings and get a compact 
representation of it. In contrast to modeling these problems in 2D, 3D reasoning 
allows geometric scene understanding and results in a more informative representa­
tion of the scene in the form of 3D object models, layout elements, and occlusion 
[18]. There are several ways, how we can obtain information from the surround­
ings. Some approaches are based on more complex hardware, others are not. First 
approach which could potentially offer very precise results is end-to-end learning. 

End - to -End Learning for Autonomous D r i v i n g 
Autonomous driving as a whole could be divided into 3 parts: perception, planning, 
and control. The perception module gathers information from the surroundings. 
The planning module forecasts the intention of other road users and computes a 
trajectory. The output of the planning module is passed to the control module, 
which finally calculates the final control output. Today, most autonomous cars use 
this paradigm, it enables the decomposition of a problem into simpler sub-problems 
[19]. 

However, in more complex scenarios this approach can become very limited. 
The perception provides the planning module with just limited info on detected cars, 
pedestrians, etc. While other information about this difficult scenario is lost [19]. 
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End-to-end driving attempts to deal with such difficult scenarios. This ap­
proach maps raw input from all the sensors directly to the neural network, which 
takes control of other control systems like throttle, brake, and steering angle. Com­
plex situations with detailed information can be encoded in high-dimensional feature 
space and preserved while being passed through the neural network. Moreover, the 
development of such a system is less difficult, because there is no need for hand­
written rules, the whole network is learning end-to-end. This end-to-end learning 
could be divided into 3 different techniques: 

Imi ta t ion learning- The goal of this technique is to clone the human driver by 
leveraging driving data in unsupervised learning [18]. In this approach, information 
from drivers' actions like throttle, brake, and steering is recorded at each step, 
so there is no need for any annotations. We are able to collect large amounts of 
training data at a low cost, by this type of data collection. Generally, there is one 
big disadvantage associated with this approach. Usually, to let the neural network 
perform well, we need datasets to be distributed equally. Better drivers will always 
face fewer failures. Therefore, self-driving systems will have a lack trained failure 
scenarios, in which systems could act accordingly [19]. 

Reinforcement learning- This approach is based on self-supervised learning. There 
is an agent, which tries to learn by itself via interaction with the environment. This 
is obviously a very dangerous and costly approach, so reinforcement learning is done 
via computer simulations most of the time. Learning is based on rewards instead 
of labels, where the goal is to maximize the reward accumulated over time. The 
agent could be rewarded for keeping in lanes where it is supposed to be or mak­
ing turn maneuvers. Simultaneously the agent is penalized for bad behavior. This 
could happen when a car departs from the correct lane, crashes, or other dangerous 
scenarios. R L can prevent distribution mismatch (directly learns to drive by itself 
without the need for an expert) between the situations encountered during training 
and test. So when an agent encounters bad behavior in the real world, it is more 
likely to act on it. Reinforcement learning, in general, has the problem of long 
training time, because rewards are weaker and sparser learning signals than explicit 
labels in supervised learning. Usually, stimulating environments are not complex 
enough to match the real-world scenarios [18] [19]. 

Direc t perception - Finally, direct perception represents a hybrid approach of 
these two. The neural network tries to learn an intermediate interpretable repre­
sentation. The network could directly predict the distance to the vehicle ahead and 
feed it to the controller. This additional information could improve the whole model, 
which is still based on a rule-based controller [19]. 

Now let us take a look at approaches, which try to deal with self-driving 
problems by processing the input data. Let us start with a more complex one. 
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Fig. 6: Reinforcement learning [19] 

Fusing sparse depth and dense R G B 

Fusing sparse depth and dense R G B uses multi-modal inputs. In particular, the com­
bination of camera and L i D A R which have a much higher resolution than radar and 
ultrasonic sensors. The L i D A R actively measures surroundings with laser beams, 
producing a sparse 3D point cloud. The camera is there to capture scenes and gain 
dense 2D image information. 3D data are projected into the 2D image space using 
extrinsic and intrinsic calibration. 

sparse depth map 

Fig. 7: Dense depth map fusion [12] 

This is done in Fig: 7 by assigning the corresponding depth value to each projected 
2D pixel. The neural network then completes missing points in sparse data from 
learned appearance priors [12]. 

For this kind of problem U-Net architecture is used [36]. The model consists of 
an encoder (downsampling part) and a decoder (upsampling part). Skip connec­
tions between encoder and decoder are realized by copying and concatenating the 
downsampled encoder features to the upsampled decoder features. Due to a large 
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receptive field, the network allows the incorporation of context­aware depth predic­

tions, which is particularly helpful in low­density regions [19]. 

Ha 1 Gcgmcnl£iiian 
map 

111 

i - J : 

i , f , | | 
c o i w 3 x 3 . HeL U 

r e p y Find c r o p 

f m r a p o o l 2 x 2 

I up-c r jnv 2 * 2 

a- r;r;rv '_x[ 

Fig. 8: Unet architecture [36] 

Semantic segmentation 

The goal of semantic image segmentation is to label each pixel of an image with 
a corresponding class of what is being represented. When we are trying to make 
predictions on a pixel level, this task is commonly referred to as dense prediction. 
The purpose is to do segmentation of images into regions that are typically found 
in street scenes (cars, pedestrians, or roads), which helps in the understanding of 
the surroundings to improve the self­driving car. The task could be difficult based 
on the complexity of the scene. Deep learning is found to be great for this task, 
especially their U­net type architectures [37]. 

Fig. 9: Image segmentation [18] 
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Object detection 

Object detection is an important computer vision task that deals with detecting 
instances of visual objects of a certain class. The research of object detection is 
usually done in two ways: 

1) General object detection: explores different methods used for detecting differ­
ent types of objects to simulate human vision. 

2) Real-life applications: explores detection under application scenarios (pedes­
trian detection, face detection, text detection) [45]. 

Fig. 10: Object detection [10] 

Approaches based on end-to-end learning or L i D A R hardware are hard to 
replicate due to the additional complex setup needed. Additionally, segmentation 
tasks are more computational-heavy tasks when it comes to real-time systems and 
usually, pixel-level prediction is not needed for these tasks when object detection 
is precise enough. Due to this reasoning, I have chosen to build a neural network 
that could be implemented in an object detection-based system for a simple video 
camera, that can be found on everyone's cell phone. This is why this thesis will 
focus solely on object detection problems and models. 

2.5 Object detection 

Object detection is one of the most crucial requirements to realize autonomous driv­
ing. As there can be many other traffic participants like cars, pedestrians, animals, 
and other objects, it is necessary especially in urban areas to have awareness of these 
objects. The process of detecting pedestrians is particularly difficult because of their 
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complex, highly varying motion, a large variety of appearances due to different cloth­
ing and articulated poses, and the interactions between pedestrians with each other 
and the world. Other problems can occur due to the nature of changing weather 
conditions. Older algorithms had problems with speed and generalization. But due 
to robust deep learning algorithms, new object detection systems were developed 
[45]. 

Difficulties and Challenges in Object Detect ion 

Even though different detection tasks may have different challenges and may vary 
from each other, there are usually very common problems for most of them. 

Object localization - determining object position is a major challenge in ob­
ject detection. Researchers often use a multi-task loss function to cover both 
misclassifications and errors in localization. 
Viewpoint variation - Since most models are trained and tested in ideal sce­
narios, it is a difficult task for detectors to recognize objects from different 
viewpoints. 
Multiple aspect ratios and spatial sizes - The objects vary in terms of aspect 
ratio and sizes. Algorithms should be robust enough to catch these changes. 
Deformation - Objects can be found in a different position from the one they 
were represented in the dataset. 

5) Occlusion - objects occur partially in images. 
6) Lighting - Illumination of the object plays a huge role, in how an object will 

be represented on a pixel level. 
Cluttered or textured background - If the background of an image is clut­
tered or textured, there's a risk of the objects of interest blending into the 
background. 
Intra-class variation - Objects within the same class could have completely 
different shapes and sizes. 
Real-time detection speed - Algorithms should be close to real-time processing 
as it is possible. 

10) Limited data - Detection datasets remain substantially smaller in scale and 
vocabulary than image classification datasets [26]. 

Mode l s used i n Object Detect ion 

The pipeline for classical video camera object detection is usually very similar. It 
consists of steps like preprocessing, region of interest extraction (ROI), object clas­
sification, and verification or refinement. Older techniques usually used a sliding 
window approach, which was very computationally demanding. Later, as object 
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detection became more important in several tasks, newer proposed techniques for 
reducing the search space were developed [45]. 

We will list some of the most known models that are used in object detection: 

Viola-Jones detector 

The Viola-Jones object detection framework is an object detection framework pro­
posed in 2001 by Paul Viola and Michael Jones. The model combines the concepts 
of Haar-like Features, Integral Images, the AdaBoost Algorithm to create a system 
for object detection that is fast and accurate. The detector was hundreds of times 
faster than any other algorithms at that time when it came to comparable detection 
accuracy [21]. 

Haar features: are extracted from input images. A Haar-like feature consists 
of dark regions and light regions. It produces a single value by taking the sum of the 
intensities of the light regions and subtracting that from the sum of the intensities 
of dark regions. Instead of using a set of manually selected Haar basis filters, the 
authors used the Adaboost algorithm [21]. 

Fig. 11: Haar-like features [25] 

A n Integral Image: is an intermediate representation of an image where the value 
for location x, y on the integral image equals the sum of the pixels above and 
to the left of the x, y location. So instead of calculating by looping through all 
pixels 1 by 1, it can be calculated in constant time, by multiplying the rectangular 
regions above and left. Since Viola-Jone's algorithm involves calculating the sum of 
dark/light rectangular regions, while extracting Haar-like features, this intermediate 
representation allows for fast calculation of rectangular regions. 
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Original Integral 

5 2 3 4 1 5 7 10 14 15 
1 5 4 2 6 13 20 26 30 
2 2 1 3 4 S 17 25 34 42 
3 5 6 4 5 11 25 39 52 65 
4 1 3 2 6 15 30 47 62 81 

5 + 2 + 3 + 1 + 5 + 4 = 20 

Original 

5 2 3 4 
1 5 4 2 3 
2 1 3 4 
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2 + 1 + 3 = 17 

Integral 

7 10 14 15 
6 13 20 26 30 
8 17 25 34 42 
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i 

34-14-8 + 5 = 17 

Fig. 12: The integral image calculation [43] 

The AdaBoost algorithm: is a machine learning algorithm made up of linear combi­
nations of weak classifiers for selecting the best subset of features among all available 
features. The output of the algorithm is a strong classifier. The technique counts 
occurrences of gradient orientation in the localized portion of an image. It performs 
better than any other edge descriptor as it computes the magnitude as well as the 
angle of the gradient to compute features [21]. 

I Trainer \ 

Classifier 

Fig. 13: The AdaBoost algorithm [21] 

In 2012, the world witnessed the rebirth of convolutional neural networks [20]. R. 
Girshick took the lead in state-of-the-art models by proposing the R C N N in 2014. 
Since then deep learning models took the lead and object detection models started 
to evolve at an unprecedented speed. The new deep learning models can be divided 
into two groups: one-stage detector and two-stage detector. These state-of-the-art 
models for object detection have evolved over time and are now considered a strong 
foundation for much more powerful networks existing today [45]. 
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R - C N N 
The first model, R - C N N , which stands for region-based convolutional neural net­
work, consists of three modules. The key concept is region proposals, which are 
created by a selective search algorithm. These region proposals are then used to 
localize objects within an image. 

Selective search: 
1) Generate many candidate regions. 
2) The greedy algorithm will recursively combine similar regions into larger ones. 
3) Generated regions will be used to produce final candidate region proposals. 

The selective search considers four types of similarities when combining the initial 
small segmentation into larger ones. 

1) Color Similarity - The histogram of each channel of R G B image is generated. 
Similarity computed by: 

n 
Scoiorin, r-j) = J2 cj) 

k=l 

(1) 

where Ci , Cj is k value of the histogram bin of region r i and r, respectively. 
2) Texture Similarity: calculated using generated 8 Gaussian derivatives of the 

image and extracting the histogram with 10 bins for each color channel. Then 
we get 10 x 8 x 3 = 240 dimensional vectors for each region. 

n 
Stexture{ri-irj) = ^2m^n(^i jtj) (2) 

k=l 

where ti, tj is k t h value of the texture histogram bin of region r̂  and r, respec­
tively. 

3) Size Similarity : The idea is to make smaller regions merge more easily. Oth­
erwise larger regions would keep merging with larger regions. 

SSize(ri,rj) = 1 - (size(ri) + size(r/1 size(img) (3) 

where size(rj), size(rj) and size(img) are sizes of regions r i ; r, and the image 
the respectively in pixels. 

4) Fi l l Similarity : Measures how well two regions fit with each other. If they fit, 
they will be merged. 

Sfui{n,fj) = 1 - (size(BBij) + size(ri) - size(rj)) /' size(img) (4) 

where size(BBy) is the size of the bounding box around i and j [29] [41]. 

30 



Ústav automatizace a informatiky, FSI V U T v Brně, 2022 

Inpjt Image After Initial AfteHew After many 
Segmentation Iterations iterations 

Fig. 14: Selective search [29] 

The first module of R - C N N generates category-independent region propos­
als by using a selective search algorithm. These 2000 candidate region proposals 
are rescaled into a square and fed into the next module. The second module is 
a convolutional neural network, which acts as a feature extractor, and produces 
4096-dimensional features from the region as output. And the third module, called 
the S V M classifier [42], is used to predict the presence of objects in that candidate 
region. In addition to predicting the presence of an object, S V M also predicts four 
values which are offset values to obtain better precision of the bounding box. For 
example, if there is the presence of just a part of the object in the image, offset 
values help in adjusting the bounding box [11]. 

1. Input 
image 

r í 
3 warped region ^ aeroplane? J 

B M P 
ij 

J7 

2. Extract region 
proposals (-2k) 

Unperson? yes. 
CNN: S 

3. Compute 
CNN features 

tvmonilor? no. 
4. Classify 

regions 

Fig. 15: The R - C N N model [11] 

R - C N N architecture was revolutionary at that time, but the redundant fea­
ture computation of the overlapping proposals took too long to be usable in self-
driving systems [45]. 

Fast R - C N N 
As for the next generation, the same author solved some of the drawbacks. This 
new updated model was named Fast R - C N N . The model comes with a new idea, 
where the image is fed to the C N N just once, to generate convolutional feature maps, 
which are fed to a Region of Interest (Rol) pooling layer. The proposed new Rol 
layer extracts equal-length feature vectors from all proposals in the same image. So 
these feature vectors can be fed into a fully connected layer. From the Rol feature 
vector, we use a softmax layer to predict the class of the proposed region and also the 
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offset values for the bounding box. By this procedure, we can avoid the classification 
of 2000 region proposals, instead, convolution is done once per image, and a feature 
map is generated [9]. 

Fast R - C N N got rid of the S V M classifier and instead used Softmax [27]. Fast R C N N 
enables us to simultaneously train a detector and a bounding box regressor under 
the same network configurations [45]. 

Faster R - C N N 
It is the first near-real-time deep learning detector. That is due to the introduction 
of the Region Proposal Network, which generates proposals with various scales and 
aspect ratios. The concept of anchor boxes is firstly introduced. A n anchor box is 
a reference box of a specific scale and aspect ratio [9]. 

The input image is resized into 600 x 1000 pixels. The VGG-16 was used 
as the backbone, achieving the state-of-the-art object detection accuracy [34]. The 
network has to learn whether an object is present in the input image at its cor­
responding location and estimate its size. For each location on the output of the 
feature map, sets of 9 anchors are placed. These anchors indicate possible objects 
of various sizes and aspect ratios at this location. 

512 feature maps are obtained from the backbone part. The next layer is the 3 
x 3 convolution layer, which divides the output into 2 branches. The first one is 
a 1 x 1 convolution layer creating 36 feature maps for bounding box regression. 
The outputs are 4 regression coefficients for each anchor, which are used to improve 
the coordinates of the anchors that contain objects. The second branch outputs 18 
feature maps for classification. This output is used to give probabilities of whether 
or not each point in the backbone feature map contains an object in all 9 anchor 
boxes [9] [34]. 
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Fig. 17: Faster R - C N N model [2] 

The proposals are generated using a network, which can be trained end-to-end to 
be customized for the detection task. It produces better region proposals compared 
to generic methods like Selective Search 

S S D 
SSD consists of two components: the backbone part and the SSD head. For the 
backbone, the pre-trained neural network is usually used, which works as a feature 
extractor. The last convolution layer divides the image into 38 x 38 grid, where each 
grid cell is responsible for detecting objects in that region of the image. For each 
cell, it makes 4 object predictions. Each prediction consists of a boundary box and 
21 scores for each class (20 classes + 1 non-object class), where the class with the 
highest score is picked. As C N N reduces the feature layer dimension, the resolution 
of the feature maps also decreases, so the model is able to make predictions faster 
[22]. 

SSD was proposed in 2015. The main advantage of SSD is the introduction 
of the multi-resolution detection technique, due to which, the detection accuracy of 
one-stage detectors was improved. 
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Y O L O 
Y O L O was proposed in 2015 by the Facebook AI Research team. The network only 
looks at the image once to detect multiple objects. Thus, it is called You Only 
Look Once. By being able to make predictions when looking at an image only 
once, the detection can be done in real-time. At that time it was a state-of-the-art 
deep learning object detection approach. Y O L O combines a single neural network to 
perform both classification and prediction of bounding boxes for detected objects. It 
is highly optimized for detection performance and can run much faster than running 
two separate neural networks to detect and classify objects separately [32]. 
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Fig. 19: The Y O L O model [32] 

The input image is divided into a 7x7 grid, where each grid cell is responsible 
for detecting the object if it contains the center of that object. Each cell predicts 
2 bounding boxes and estimates scores for those boxes. The confidence score rep­
resents how sure the model is, that the box contains an object. Bounding boxes 
contain 5 values. The first 2 values represent the coordinates of the center of the 
box relative to the bounds of the grid cell, third and fourth values represent width 
and height. The last value represents confidence between the predicted box and 
ground truth box [32]. 
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3 MODEL IMPLEMENTATION 

3.1 Model architecture 

The main inspiration for our model was taken from the YOLO-v3 architecture [33]. 
YOLO-v3 comes from the very famous Y O L O series, and this particular model 
offered the best precision/speed trade-off in 2018 for object detection. The model 
created in this thesis, further just called MyModel, could be divided into 3 main 
parts. These 3 main parts will be called the backbone, the neck, and the head. 
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Fig. 20: MyModel architecture 

Before explaining the whole architecture, let us talk about one main problem, 
which can occur, when creating a new architecture. 

Bias and variance trade-off problem: The goal of any supervised machine learning 
model is to best estimate a function f for the output y given the input data x. These 
supervised models are often not able to perfectly fit function f. The difference 
between f(x) and y is called prediction error, which could be further divided into 
bias error and variance error. Bias is the simplifying assumption made by a model 
to make the target function easier to learn. The variance is the amount that the 
estimate of the target function will change if different training data was used. Good 
prediction performance by the model should be achieved by keeping low bias and 
low variance for the model. Basically, we are trying to create a model large enough 
to be able to learn most of the dataset, but not large enough to overfit the dataset. 

The input 

Input mages in our model are in the shape of Bx3x416x416. The images are repre­
sented as a four-dimensional tensor, where B is the batch size, 3 is the number of 
channels (RGB in this case), and the last two dimensions are the width and height 
of the image. 
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Fig. 21: Bias-variance trade-off [16] 

The backbone 

This is the main part of the MyModel, where most of the upgrades to the official 
version happened. The backbone part here refers to the feature extraction part and 
starts with two convolutional blocks (2D convolution + 2D Batch Normalization 
+ Mish) followed by ConvNeXt Block, which is introduced in ' A ConvNet for the 
2020s' paperwork [23]. 

The backbone has 4 layers in total, where each layer is made of a ConvNeXt block 
followed by one convolution layer. The number of input feature layers is doubled 
every subsequent layer, so we can obtain more additional information from the 
convolution layers. 

The ConvNeXt block has an inverted bottleneck structure. The hidden part 
of the block is four times wider than the input dimension. The ConvNeXt block 
also introduces a 7x7 kernel, which was often not used in older architectures, as it 
made the model more computationally expensive. But newer SOTA architectures are 
known to have larger receptive fields, so models with larger kernel sizes could possibly 
benefit from that. The 7x7 kernel size is followed by Batch Normalization. Point-
wise l x l convolution is here done by linear layer, followed by Mish function. The 
hidden size of the ConvNeXt block is converted back to its previous size by a linear 
layer. ConvNeXt block also uses grouped convolutions, multiple kernels per layer, 
resulting in multiple channel outputs per layer. This leads to wider networks that 
help a network learn a varied set of low-level and high-level features [10]. For my type 
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of task, The ConvNeXt block was found to work better with batch normalization 
and Mish function. 

64 

d7x7. 64 

EíľV 

1x1, 256 
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- é 

Fig. 22: Modified ConvNeXt block 

M i c r o Design explained 

Activation function: the purpose of activating a function is to add nonlinearity to 
a neural network, allowing the network to learn complex patterns in the data. The 
Rectified Linear Unit (ReLU) function was used in C N N models for many years and 
became the most used option for most architectures. This is not surprising because 
ReLU offers many advantages: 

1) ReLU takes less time to learn and is computationally less expensive than other 
common activation functions like tanh, sigmoid. 

2) ReLU involves simpler mathematical operations than most of the other acti­
vation functions. 

3) It can solve the problem with vanishing gradient, where gradients shrink dras­
tically in backpropagation. 

But there is one problem with this activation function, called the dying ReLU prob­
lem. The dying ReLU problem refers to the scenario when many neurons have 
negative values, so the activation function will have the value 0, which potentially 
worsens the network. When most of these neurons return zero output, the gradients 
do not flow during backpropagation, and the weights are not updated. So some 
parts of the network become dead and it is likely to remain unrecoverable. 
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This is where the Mish activation function comes in, solving the problem, by assign­
ing non-linear output of the activation function for negative input values, in negative 
values. This activation function is now widely used in some modern architectures. 

5 -

relu 
mish 

4 -

3 -

2 -

1 -
-6 -4 =2 -^il 2 4 6 

-1 -

Fig. 23: The ReLU vs. Mish activation function [15] 

Normalization: is used to normalize the output of neurons. This speeds up the 
convergence of the training process. There are two main types of normalization 
widely used these days. The first is batch normalization, which is often used in 
CNNs and was also used in the original YOLOv3 , and the second is called layer 
normalization, used mostly for N L P tasks. 

Batch normalization was chosen as it was found to work better for this type 
of problem. 

Merged Spatial 
Dimensions (H,W) 

Mini-Batch Samples N 

Fig. 24: Batch normalization [1] 

The neck 

The purpose of the neck block is to add additional layers between the backbone and 
the head. Therefore, the head's input will contain spatial rich information. The neck 
part is a pooling layer, called spatial pyramid pooling. The spatial pyramid pooling 
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maintains spatial information in local spatial bins. In each spatial bin, responses 
of each filter are pooled. The Spatial Pyramid Pooling can generate a fixed-length 
representation regardless of image size [13]. 
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Fig. 25: The SPP block in MyModel [13] 

A maximum pool is applied to a sliding kernel of size 5x5, 9x9, 13x13. The 
spatial dimension is preserved. The feature maps of different kernel sizes are then 
concatenated as output. 

The head 

Finally comes to the last layer to fully understand the whole structure This layer 
is called the head, it is responsible for making predictions. This part is unchanged 
from the official version of YOLO-v3. 

The goal of the head's part is to output the bounding box coordinates (x,y,w,h) and 
the confidence score for each class. This is done on 3 different scales, so the best 
fitting bounding box could be chosen. 

M o d e l detection 

We have explained all the important parts of a model architecture, now we can 
combine them and explain how object detection is done. 

The input image is in shape Bx3x416x416. This goes through a few convo­
lution layers and to the backbone layer. As was mentioned above, the backbone 
acts as a feature extractor and outputs feature images of 3 different shapes. The 
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final shape is dependent on the dataset. Six numbers represent each bounding box 
(pc, bx, by, bh, bw, c). Because MyModel is trained on the P A S C A L V O C dataset, 
which contains 20 classes, the output is a list of bounding boxes along with the 20 
recognized classes. Totally we have (I x (5 + c)) entries in the feature map shape. 
Where I is a number of scales, 5 represent class probability score, 2 coordinates, 
width, height, and c 20 classes. This makes it 3 x (5 + 20) = 75 entries on the 
feature map. 

The backbone's outputs are in the shape [B, 75, 13, 13], [B, 75, 26, 26], [B, 75, 
52, 52]. Where B is the number of batches on which it will be trained. 75 feature 
layers, which will be converted to the required shape, and the last two numbers 
represent the number of cells, in which the image will be divided. 

These features are combined through the neck part to get the best possible 
result and sent to the head part. The output of head layer is in shape [B, 52, 
52, 3, 25], [B, 26, 26, 3, 25], [B, 13, 13, 3, 25]. This is because the shape of 75 
features was divided for each scale, so every cell in the image can predict objects 
of 3 different sizes. These features produced by the convolutional layers are passed 
onto a classifier, which makes the detection prediction, so each cell can predict a 
fixed number of bounding boxes. 

Each cell predicts 3 bounding boxes using 3 given anchors for each scale, making 
the total number of anchors used 9. 

The concept of anchor boxes: Trying to predict the width and height of the bound­
ing box right from the neural net could be done, but that usually leads to unstable 
gradients during training [24]. Here the concept of anchor boxes, which was intro­
duced in faster R - C N N , is used. So instead of predicting width and height, most 
modern object detectors predict offsets to pre-defined default bounding boxes called 
anchors. Then a transformation of these anchor boxes is provided to make the best 
fit to the ground truth box (the label). 
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Fig. 27: The Model prediction shape [33] 

Anchor boxes are k-Means centroids [44] with IoU as the similarity metric . 
They are obtained by using clustering algorithm onto the dataset, because we are 
using very popular dataset for object detection, there is no need to do the same 
exact job. The anchor boxes were taken from the official source. 

The following formula describes how to obtain predictions of the bounding 
box from the coordiantes: 

bx = <?{tx) + cx 

by = a(ty) + Cy 

bw = Pw * 6 ™ 

bh=Ph* eth 

Tx, ty, tw, th is what the network outputs. We are running our center coordinates 
prediction through a sigmoid function, so the values are rescaled into the interval 
[0,1] (prediction must happend within the cell, otherwise neighbour cell would make 
prediction). The values c x and c y are the top-left coordinates of the grid. P w and 
Ph are anchors dimensions of the box. B x , b y , b w , bh are the x, y center coordinates, 
width, and height. 

The object score and class confidences: The object score represents the probability 
that an object is contained inside a bounding box. The object score is then passed 
through a sigmoid function and the output is interpreted as probability. The class 
confidence score should define a score for every class in the dataset, so the best class 
for the detected object can be chosen. 

41 



M I C H A L , Lečbych. Do záhlaví příliš dlouhý název práce zkrátíme a zakončíme výpustkou. 

Fig. 28: The anchor boxes [33] 
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The YOLOv3 loss function was used, it consists of 5 expressions: 
1) The x and y coordinates are parametrized to be offsets of a particular grid cell 

location. The sum of square error is estimated only when there is an object 
inside the cell. 

2) The width and height of the bounding box are normalized by the width and 
the height of the image so that they fall between the values 0 and 1. The sum 
of square error is again estimated only when there is an object. Square roots 
are used because deviations in large boxes matter less than in small boxes. 

3) Confidence predictions for boxes that contain objects 
4) Confidence predictions for boxes that do not contain objects. Most grid cells 

do not contain any object, which pushes confidence scores towards zero, over-
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powering confidence of grids, which contain objects. To make training more 
stable, confidence predictions for boxes that do not contain objects are de­
creased by \noobj = 0, 5. 

5) Class Probabilities when there is an object 

Evaluat ion 

We want to use a metric during training, which would tell the model how well the 
boundary box fits the label (ground truth box). There is one popular technique 
used to measure how precise the bounding box is fitting, and that metric is called 
mean Average Precision (mAP). The mean of average precision values is calculated 
over recall values (see 3.1) from 0 to 1. It is based on several basic principles, which 
will be firstly introduced. 
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Fig. 29: The confusion matrix [8] 

In statistical classification, a confusion matrix is a specific table that allows 
visualization of the performance of an algorithm. 

1) True Positives (TP): The model predicted a label and matches correctly ac­
cording to the ground truth. 

2) True Negatives (TN): The model does not predict the label and is actually not 
part of the ground truth. 

3) False Positives (FP): The model predicted a label, but it is not part of the 
ground truth (Type I error). 

4) False Negatives (FN): The model does not predict a label, while it is a part of 
the ground truth. (Type II error). 
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Precision and recall: 

false negatives true negatives 

selected elerrtents 

Fig. 30: Precision recall evaluation [35] 

Precision measures how well you can find true positives (TP) out of all positive 
predictions (TP + FP) . Recall measures how well you can find true positives (TP) 
out of all predictions (TP + FN). 

The value may vary depending on the model's IoU (Intersection over Union) confi­
dence threshold. 

Average Precision: A P is calculated as the weighted mean of precision at each thresh­
old, the weight is the increase in recall from the prior threshold. 

Mean Average Precision: mAP is the average A P of each class. In the P A S C A L 
V O C 2007 challenge, A P for one class of objects was calculated for an IoU threshold 
of 0.5. So the mAP was averaged over all object classes. 

N 
mAP = l/N($2APi) (6) 

i=l 

The total output of the model for our 416 x 416 image is ((52 x 52) + (26 x 26) + 
13 x 13)) x 3 = 10647 bounding boxes. This is quite a large number to do for every 
frame and still have real-time processing power. This is where non-max supression 
(NMS) pre-processing comes in. 

NMS processing: As said above, every bounding box is a vector of 25 values for 
our dataset (20 classes). Bounding boxes with low objectness score can be left out 
because the box is not very confident about detecting a class. This helps us filter 
out most of the boxes. After this filtering, there are a few boxes left, which meet 
the objectness score threshold condition. Now comes the second filter, called NMS, 
which is based on IoU to select the best bounding box. 

IoU: Intersection over union is a metric that tells how precise the bounding box is 
by measuring the area of overlap of the boundary box and the ground truth box. 
We can say an IoU > 0.5 is decent, > 0.7 pretty good and > 0.9 almost perfect. 
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loU-0.92 loU=0.71 loU-0.39 

Excellent Good Poor 

Fig. 31: Intersection over Union [5] 

Now, to implement non-max suppression, the key steps are: 
1) Select the box that has the highest score; 
2) Compute its overlap with all other boxes, and remove boxes that overlap it 

more than IoU threshold x 
3) Go back to step 1 and iterate until there are no more boxes with a lower score 

than the selected box. 
Finally, the whole process of obtaining the best bounding box by model is done. 
Now it can be displayed on an image. 

Before non-max suppression After non-max suppression 

Fig. 32: Non Maximal Suppression NMS [17] 

Results 

The MyModel neural network is a larger neural network consisting of 70 million 
learnable parameters. This neural network was trained from scratch on P A S C A L 
V O C dataset. This dataset was chosen, as it often occurs in object detection algo­
rithms, so our model could be easily compared with other models. Deep learning 
models are trained on GPUs, as it offers much faster learning time. But the problem 
with C N N models is that it usually requires a large amount of G P U R A M , as we are 
working with quite large images. The model was trained in Google Colab on a P100 
G P U , which offers 16GB R A M . The training time for the P A S C A L V O C dataset 
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was 36 hours on 16,000 images for the training dataset. M A P was measured on a 
test dataset consisting of 4000 images. The initial learning rate was 3"4 and after 10 
epochs it was reduced to 3"5. 

M A P 
M I M A P 

0 10 2D 30 4(] M 

Fig. 33: M A P 

Blue lines represent MyModel net and green official implementation of YOLOv3. 
Both models were further trained, but because none of them showed better im­
provements, only this part is included. For MyModel highest reached mAP was 
0.445 and for official implementation almost 0.42. 
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4 DISTANCE ESTIMATION 
For the object detection system, it is useful to add distance estimation for some 
objects as it can provide additional information. For systems which are not fully 
autonomous (all of the current ones), this could help the driver to have more aware­
ness of the surroundings. And if the object were too close, the driving systems could 
potentially warn the driver, which would provide more safety for the entire crew. 

The KITTI dataset provides annotated dataset, which was produced by a 
single camera mounted on the front of a car. This dataset consists of training images, 
test images, and annotations in the form of a CSV file: filename, xmin, ymin, xmax, 
ymax, zloc, and some additional informations, which are not needed. Here, xmin, 
ymin, xmax, and ymax are bounding box coordinates, zloc is the distance. 

Because the model for estimating the bounding boxes was already built. This 
dataset could be used for another model, to make distance estimations on the last 
model, which provides bounding box estimation. 

xmin ymin xmax ymax square zloc 

Fig. 35: Feed forward network 

There was suspected some relationship between distance and square area of 
the bounding box. So, a new column called square was created for enhancing more 
precise results. This is shown in the correlation matrix Fig: 35, where the correlation 
between square area and distance is -0.65. 
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A model with inputs xmin, ymin, xmax, ymax, and square was trained on 25 822 
labels (10% validation data), the test set contained 2 922 labels. The best model 
was found to have 4 hidden layers in the form of 6-10-5-2 hidden neurons and 1 
output that predicted the distance. For this regression task, a mean squared error 
function had been chosen. 

epochJoss 
tag: epochjoss 

0 200 400 600 800 Ik 1.2k 1.4k 

Fig. 37: Mean squared error 

The red line in Fig: 37 maps the error function for training data and the 
green line for the validation data. The model was tested on test data afterward, 
where M S E = 0,21. 
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5 LANE DETECTION 

There are many ways in which a lane detection system can be built. Many of those 
are based on segmentation tasks with deep neural networks like Unet, which provides 
one of the best results. As most of our computer resources and G P U R A M were 
used for object detection and distance estimation, because it is the main part of 
our self-driving system, the lane detection system was built based on the OpenCV 
library. Opencv enables fast image post-processing with very little G P U usage. The 
lane detection system consists of several steps which are applied to the image taken 
from the display. 

Fig. 40: The input image 

The original image was converted to grayscale. This reduces the dimension of the 
image from 3D to ID, which should speed up the process. Together with grayscale 
conversion, Gaussian blur was applied. Gaussian blurring is highly effective in re­
moving Gaussian noise from an image. 

G(x,y) 
2%a2 (7) 

The values of this distribution are used to build a convolution matrix that is applied 
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Fig. 41: Grayscale and Gaussian blur 

Canny edge detection is applied. It consists of several phases: 
1) Noise reduction - A 5x5 Gaussian filter is applied because edge detection is 

susceptible to noise 
2) Intensity gradient - A Sobel kernel is applied to get the first derivative in the 

horizontal direction G x and in the vertical direction G y . Then we can get an 
edge gradient and direction. 

EdgeGradient(G) = \JG2

X + G2, 
G 

Angle(a) = t a n - 1 —-
Gx 

The gradient direction is always perpendicular to the edges. 
3) Non-maximum suppression - A full scan of the image is done to remove any 

unwanted pixels. Every pixel is checked to see if it is a local maximum in its 
neighborhood in the direction of the gradient. The result is a binary image 
with "thin edges". 

4) Hysteresis Thresholding - This stage decides which set of pixels are edges 
and which are not. Edges with an intensity gradient more than maxVal are 
marked as edges and those below minVal are marked as non-edges. Those who 
lie between these two thresholds are classified as edges or non-edges based on 
their connectivity. If they are connected to pixels marked as edges, they are 
classified as edges; otherwise, they are classified as non-edges. The result is 
seen in image Fig: 42 
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Fig. 42: Canny edge detector 

The region of interest is selected, such that, most of the unwanted edges are left out. 

Fig. 43: Image masked 

Later, when edges are obtained, they are used in HoughLinesP algorithm. The 
Hough transform takes a binary edge mAP as input and locates edges's place on 
straight lines [4]. The HoughLinesP algorithm is a more efficient implementation of 
the previous algorithm using a probabilistic approach. The output of HoughLinesP 
is the endpoints of the detected lines (x 0, yo, x i , yi) . 
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Fig. 44: Straight lanes found by the HoughLinesP algorithm 

Detected straight lines are then grouped together by having negative slope or positive 
slope. Now the averaged position and slope of each group are found to represent a 
road lane. 

Fig. 45: The final lines are displayed. 

This was the last part of the lane detection system to make the task possible. The 
final detection is shown in Fig.45, where green lines represent the boundary of the 
self-driving car path. 
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6 PERCEPTION SYSTEM 
A mobile phone's camera was mounted on the rear-view mirror parallel to the road 
to capture the scenery in front of the car. The camera must be high enough not 
to see any parts of the car, as it could distort the predictions (we are trying to be 
close to the training dataset as much as possible). The image is sent to a computing 
device (in my case a laptop), where the captured image from a mobile phone is 
displayed on the monitor. Then OpenCV library reads a display window of size 416 
x 416 in the left upper corner and every frame is processed by the perception system 
built in this thesis. 

MyModel was trained on the P A S C A L V O C dataset because it is a widespread 
dataset for object detection, which works as a good benchmark for other models. 
So they can be easily compared to each other. This is why it was a good choice for 
the evaluation part, but not all classes in the dataset are needed for the perceptive 
system of self-driving cars. Most of the classes for object detection were disabled 
and only object detection for bicycles, buses, cars, and motorbikes were left. The 
distance estimation dataset only included classes for cars, so it would not make sense 
to do it for other bounding boxes and only this one class is estimated. 

The lane detection system is computationally very light and offers high fps, 
which was the main reason why this approach was taken, as most of the G P U 
resources were taken by a custom object detection model. But as this approach is 
based on straight lines, making very sharp turns make this detection imprecise. 

Images taken during the drive: 

Fig. 46: Images during good conditions 
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7 CONCLUSION 
A n introduction to autonomous systems was described in the first part of this work. 
This summary includes the history and development of self-driving cars, the basic 
classification of how advanced these self-driving cars can be, some techniques used 
for learning such a system, and the last part is focused on object detection. 

Object detection was the primary focus of this work, where the most well-known 
algorithms were described. During the object detection era a variety of models were 
built using many different techniques. But, as it turns out, the best models right 
now are based on deep learning, which is a special field of machine learning using 
neural networks. 

In the implementation part, a basic autonomous system was built, which could be 
used in a self-driving car. This system is based on the detection of objects that 
can be found on the road. A totally new deep learning model was built, which 
was based on YOLO-v3. However, using more modern approaches, the model was 
properly evaluated and used in such a system for object detection. 

The problem came up during the training part, as both of the models stopped 
converging around the 60th epoch. This could be due to several reasons. The first 
is, that the implementation could be wrong, but this seems unlikely, as, before the 
final training part, both of the models were over-fitted on 500 images, where both 
had over 90 mAP. Another reason could be the batch size, where 8 could be too 
small as most of these networks are usually learned on 64 or more, when learning 
from scratch. But this problem would require more than 16 GB of R A M , which was 
not possible for me. 

To have a more complete version of that autonomous system, a distance estimation 
was built. Where prediction is done by a feed-forward neural network pre-trained 
on K I T T I dataset containing distances for every bounding box. 

The last part of the system was the detection of the road lane. There had to be 
several compromises, as there was not enough computing power for a more robust 
solution. This is why most of this part is done in OpenCV library. 

The whole model performs quite well during certain conditions as it is shown in 
the last part. Ideally, the system could be used on nearly straight roads with well-
defined lanes. However, the model had a much higher number of false positive boxes 
(FPs) when the images included bad weather conditions, poor illumination, or a lot 
of shadows. Therefore, I can say that more research is needed in that direction. 
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9 APPENDIX A 

Source code on: https://github.com/LecbychMichal/Master-s-Thesis 
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