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ABSTRACT

Perceptive systems in autonomous cars are a heavily researched topic these days
and an essential part of making fully autonomous vehicles possible. First, we make
a short summary of the development of such a system, then we explain different
approaches to make these systems possible, and we focus on object detection, as
this will be the main part of our own created perceptive system. A new model for
object detection is implemented, and some additional parts like distance estimation

and lane detection are added.

ABSTRAKT

Percepéni systémy v autonomnich vozech jsou v dnesni dobé intenzivné zkouma-
nym tématem a nezbytnou soucasti potrebnou k vytvoreni plné autonomnich vozi-
del. Nejprve, strucné shrneme vyvoj takovych systémi, vysvétlime si rizné pristupy
potfebné k vytvoreni percepénich systému a zamérime se na detekci objekti, pro-
toze to bude nase hlavni ¢ast pro nami vytvorena systém. Novy model pro detekci
objektl je implementovan, spolu s nékolika dalsimi ¢astmi jako odhad vzdalenosti

a detekce jizdnich pruht.
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1 INTRODUCTION

The automotive industry is one of the biggest industries in the world. As in many
other industries, the process of trying to create automation systems, which would
need minimal or no human intervention, has merged even to this field. Although
there have been some attempts to create fully autonomous vehicles almost 100 years
back, the first successful prototype was created in the 1980s. There were so many
hard challenges yet to be solved that it seemed almost impossible to have even
partially autonomous vehicles. But due to new innovative possibilities, we are ap-
proaching the phase, where it could be possible within a few years.

Driving a vehicle seems for most people like an easy task, but for automation
systems, it is an unsolvable task yet. Existing approaches to self-driving can be
roughly categorized into modular pipelines and monolithic end-to-end learning ap-
proaches. Both approaches require different approaches and face different problems.

The modular approach-based systems should be more reasonable, as they
offer better safety. This means the problem of self-driving is broken down into
several tasks, where each task is solved with a little bit different approach. Systems
must have a great understanding of their surroundings and must be robust enough
not to be dangerous for local places. This is done by leveraging machine learning,
especially deep learning methods for computer vision tasks.

The popular tasks solved by machine learning are object detection, tracking,
semantic (instance) segmentation, reconstruction, motion estimation, and scene un-
derstanding techniques. Perception systems mainly based on object detection do
not require additional complex solutions and could potentially be used in simple
devices, providing additional safety for many drivers.

Object detection has received significant attention in recent years. Original
machine learning models do not come even close to the complexity and precision of

models being used these days.
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2 STATE OF THE ART

2.1 Brief History of Autonomous Driving

The start of partially autonomous vehicles began in the 1920s when the inventor
Francis Houdina demonstrated a radio-controlled car, which was able to drive on
streets without anyone behind the steering wheel. He equipped a Chandler Model
with a transmitting antenna on the cargo bed and operated the Chandler Model
from another car. Transmitted radio waves controlled electric motors in the car
38].

This car was able to start the engine, shift gears and use the horn without
the driver. This new technology was presented in New York City in 1925, where the

autonomous car was driving through heavy traffic [38].

Fig. 1: The radio-operated automobile American Wonder [38].

Car manufacturers had a vision of creating self-driving cars before it was
even possible. Several prototypes were created, such as the GM Firebird II in 1956,
RCA Labs’ wire controlled car in 1960 as well as a Citroen in 1970. However, these
manufacturers never managed to make self-driving cars, which would not be wire
controlled by people, and these prototypes were always limited to a specific use [7].

In the 1980s the Navlab was introduced, the first car which could be de-
scribed in today’s terms as a self-driving car and not radio-controlled. Research on
computer-controlled vehicles began at Carnegie Mellon in 1984 and production of
the first vehicle began in 1986. The research team introduced an imitation learning
approach, where a neural network was optimized to keep the vehicle on the road.
The car achieved a major milestone in the self-driving world, when the Navlab was

able to drive from Washington, D.C. to San Diego, CA autonomously for 98% of the
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time. At this time neural networks approach started to overtake other models used
and neural networks became the go-to option when it comes to self-driving [18].

In the early 1990s, Dean Pomerleau wrote a dissertation thesis describing,
how neural networks could possibly control autonomous vehicles via image process-
ing in real-time. The paperwork presents the learning system ALVINN (Autonomous
Land Vehicle In a Neural Network), allowing to drive in single-lane paved and un-

paved roads, multilane lined, and obstacle-ridden environments [31].

J332 Sensar
Ll Rirfina

Fig. 2: Learning system ALVINN [31]

In Fig: 2 ALVINN learning system is shown. The input layer consists of 30x32
units onto which an image from the video camera is projected. It is then presented
to the neural network as the input layer. The architecture of the model is very
simple, as there was very little compute power back then, so the model has only
1 hidden layer consisting of 4 hidden units. The output of the layer is presented
in 30 different units, which are then translated into the vehicle steering command
[31]. Dean Pomerleau was not the only one using neural networks for self-driving
cars. But his use of neural nets proved way more efficient than alternative attempts
to manually divide images into “road” and “non-road” categories. In 1995 a more
complete version of this car was developed, which managed to do 3 000 mile long
ride.

The self-driving car development looked very promising at the time and sev-
eral people thought, a fully self-driving car system could be developed within years.
But many people were proved wrong in the early 2000s. Defense Advanced Research
Projects Agency (DARPA) announced its first Grand Challenge in 2002 offering a
$1 million prize to scientists from top research institutions if they could build an

autonomous vehicle able to navigate a 240 km course through the Mojave Desert.
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The challenge was held in 2004 and none of the 15 participants were able to complete
the course [18].

In 2007, DARPA organized the next race. This competition required vehicles
to drive a 96 km route through a town at George Air Force Base while obeying traffic
laws, avoiding obstacles, and merging into traffic. The CMU research team was able
to finish first, this team relied upon a multi-beam LiDAR. Multi-beam Lidar showed
the best promising results when it came to obtaining depth measurements of the
obstacles [18].

In the early 2000s were developed commercially used parking systems using
computer vision techniques, able to do automatic parallel parking or angle parking.

Google secretly launched its self-driving car program in 2009 by hiring top
scientists participating in the Darpa Challenges. Their program included a new
driving platform and affordable multi-beam LiDAR scanners. Later in 2013 claim-
ing, that they reached 300 000 miles of self-driving without a single accident. Many
manufacturers were caught off guard by this result because Google was at this time
way ahead of all competitors. By 2013 big manufacturers like GM, Ford, Mercedes,
and BMW started working on self-driving technologies too. Nowadays Google’s
project is called Waymo and its system is based on multi-beam LIDAR, radar, and

cameras [7] [6].

Fig. 3: Waymo driverless car [6].

In 2013 the S500 Intelligent Drive by Mercedes Benz was presented. Ob-
ject detection and free-space analysis were performed using radar and stereo vision.
Monocular vision was used for traffic light detection and object classification. A
combination of these two techniques showed a more robust solution when it came
to self-driving in more complex areas like inner-city environments or bad weather

conditions [14].
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Tesla announced the Tesla Autopilot, a driver-assistance system, in 2014.
Initially, the goal was not to produce a production-ready system, which would offer
a fully self-driving system, but rather the Autopilot would function as a complemen-
tary system to increase comfort and safety when conditions are clear. In November
2016 Autopilot added a function to create a point cloud to improve navigation dur-
ing low visibility conditions. In February 2017 the Autopilot was able to navigate
freeways, change lanes without driver input, transition from one freeway to another,
and exit the freeway [39][40].

In 2016 NVIDIA joined the competition, as their advanced GPU production
and strong processing power came in very handy when it came to the development
of the self-driving cars. The NVIDIA research team presented paperwork, where a
single CNN model was able to mAP the pixels from a single front-facing camera

directly to steering commands [3].

Recorded
steering
wheel angle Adijust for shift Desired steering command
and rotation

Network
i steering
Random shift - command
Right camera +
Back propagation
weight adjustment

Fig. 4: End-to-end learning systems proposed by NVIDIA [3]

Results showed that CNNs are able to learn the entire task of lane and road follow-
ing via imitation learning to predict vehicle control. There is no need for manual
decomposition of the image, path planning, or semantic abstraction the model was
able to learn directly from input images. This end-to-end approach proved to be
surprisingly powerful [3].

NVIDIA with Volkswagen unveiled a new self-driving car chip, called Xavier,
that incorporates artificial intelligence in 2018. The Volkswagen-NVIDIA collabo-
ration is the first to connect A.lL. to production-ready hardware. It opens up the

possibility for self-driving cars to perform better [6].

2.2 Classification of Autonomous Cars

In 2014 classification system was introduced by SAE International (Society of Au-

tomotive Engineers). The system is based on six levels of autonomy.
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1) Level 0 (No automation): Driver must take care of steering, throttle, braking,
watch surroundings, and navigating through the world. There can be imple-
mented warning systems and such. The majority of cars today are on this
level of automation.

2) Level 1 (Driver assistance): Automated vehicles can handle the braking and
basic turning for some circumstances, but the driver must still be ready to
take over driving and the car cannot be left alone to drive itself.

3) Level 2 (Partial assistance): The last stage where the driver is responsible for
monitoring the surroundings, traffic, weather, and road conditions.

4) Level 3 (Conditional assistance): Uses various driver assistance systems and
artificial intelligence to make decisions based on changing driving situations
around the vehicle. People inside the vehicle do not need to supervise the
technology, which means they can engage in other activities. A human driver
must be present.

5) Level 4 (High Automation): The automatic vehicle can handle most environ-
ments except some extreme ones.

6) Level 5 (Full Automation): The full performance of driving under all environ-
mental conditions can be managed by an automatic driver. Human interven-

tion is not needed at all [28].

2.3 Autonomous Drive learning

The more information we can get from the world the better the autonomous system
can be built. The basic pipeline could look like this: perception devices scan the
scenery and get the data from the surroundings that we use for specific algorithms
to analyze the sensory data. The system then makes predictions to plan trajec-
tory based on algorithms output and feeds the control. In the control module, the
trajectory is then translated to the actuators [19].

These systems are usually complex systems made of numerous tasks like
detection, segmentation, motion estimation, reconstruction, etc. There are two
main approaches, to how autonomous driving systems are built. One is to consider
autonomous driving as an end-to-end learning problem. That means one deep neural
network is trying to learn tasks of perception, planning, and control directly from
cameras to handle the steering. Another is to divide the whole learning process into
subproblems, where they would take results from each component and then typically

combine them in a planning module that feeds the control. [18].
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Collision
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M Long-Range Radar
M LIDAR

I Camera
M Short-/Medium-Range Radar

Fig. 5: Perception modules in autonomous car [19]

2.4 Scene understanding

The complex task of outdoor scene understanding involves several sub-tasks such as
depth estimation, scene categorization, object detection and tracking, event catego-
rization, and more. The goal is to understand the surroundings and get a compact
representation of it. In contrast to modeling these problems in 2D, 3D reasoning
allows geometric scene understanding and results in a more informative representa-
tion of the scene in the form of 3D object models, layout elements, and occlusion
[18]. There are several ways, how we can obtain information from the surround-
ings. Some approaches are based on more complex hardware, others are not. First

approach which could potentially offer very precise results is end-to-end learning.

End-to-End Learning for Autonomous Driving
Autonomous driving as a whole could be divided into 3 parts: perception, planning,
and control. The perception module gathers information from the surroundings.
The planning module forecasts the intention of other road users and computes a
trajectory. The output of the planning module is passed to the control module,
which finally calculates the final control output. Today, most autonomous cars use
this paradigm, it enables the decomposition of a problem into simpler sub-problems
[19].

However, in more complex scenarios this approach can become very limited.
The perception provides the planning module with just limited info on detected cars,

pedestrians, etc. While other information about this difficult scenario is lost [19].

22



Ustav automatizace a informatiky, FSI VUT v Brng, 2022 m

End-to-end driving attempts to deal with such difficult scenarios. This ap-
proach maps raw input from all the sensors directly to the neural network, which
takes control of other control systems like throttle, brake, and steering angle. Com-
plex situations with detailed information can be encoded in high-dimensional feature
space and preserved while being passed through the neural network. Moreover, the
development of such a system is less difficult, because there is no need for hand-
written rules, the whole network is learning end-to-end. This end-to-end learning

could be divided into 3 different techniques:

Imitation learning- The goal of this technique is to clone the human driver by
leveraging driving data in unsupervised learning [18]. In this approach, information
from drivers’ actions like throttle, brake, and steering is recorded at each step,
so there is no need for any annotations. We are able to collect large amounts of
training data at a low cost, by this type of data collection. Generally, there is one
big disadvantage associated with this approach. Usually, to let the neural network
perform well, we need datasets to be distributed equally. Better drivers will always
face fewer failures. Therefore, self-driving systems will have a lack trained failure

scenarios, in which systems could act accordingly [19].

Reinforcement learning- This approach is based on self-supervised learning. There
is an agent, which tries to learn by itself via interaction with the environment. This
is obviously a very dangerous and costly approach, so reinforcement learning is done
via computer simulations most of the time. Learning is based on rewards instead
of labels, where the goal is to maximize the reward accumulated over time. The
agent could be rewarded for keeping in lanes where it is supposed to be or mak-
ing turn maneuvers. Simultaneously the agent is penalized for bad behavior. This
could happen when a car departs from the correct lane, crashes, or other dangerous
scenarios. RL can prevent distribution mismatch (directly learns to drive by itself
without the need for an expert) between the situations encountered during training
and test. So when an agent encounters bad behavior in the real world, it is more
likely to act on it. Reinforcement learning, in general, has the problem of long
training time, because rewards are weaker and sparser learning signals than explicit
labels in supervised learning. Usually, stimulating environments are not complex

enough to match the real-world scenarios [18][19].

Direct perception - Finally, direct perception represents a hybrid approach of
these two. The neural network tries to learn an intermediate interpretable repre-
sentation. The network could directly predict the distance to the vehicle ahead and
feed it to the controller. This additional information could improve the whole model,
which is still based on a rule-based controller [19].

Now let us take a look at approaches, which try to deal with self-driving

problems by processing the input data. Let us start with a more complex one.
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Fig. 6: Reinforcement learning [19]

Fusing sparse depth and dense RGB

Fusing sparse depth and dense RGB uses multi-modal inputs. In particular, the com-
bination of camera and LiDAR which have a much higher resolution than radar and
ultrasonic sensors. The LiDAR actively measures surroundings with laser beams,
producing a sparse 3D point cloud. The camera is there to capture scenes and gain
dense 2D image information. 3D data are projected into the 2D image space using

extrinsic and intrinsic calibration.

sparse depth map

= === =— Ppredct dense depth map

. -

g R
d ..“".‘5"' il s

HE

Fig. 7: Dense depth map fusion [12]

This is done in Fig: 7 by assigning the corresponding depth value to each projected
2D pixel. The neural network then completes missing points in sparse data from

learned appearance priors [12].

For this kind of problem U-Net architecture is used [36]. The model consists of
an encoder (downsampling part) and a decoder (upsampling part). Skip connec-
tions between encoder and decoder are realized by copying and concatenating the

downsampled encoder features to the upsampled decoder features. Due to a large
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receptive field, the network allows the incorporation of context-aware depth predic-

tions, which is particularly helpful in low-density regions [19].
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Fig. 8: Unet architecture [36]

Semantic segmentation

The goal of semantic image segmentation is to label each pixel of an image with
a corresponding class of what is being represented. When we are trying to make
predictions on a pixel level, this task is commonly referred to as dense prediction.
The purpose is to do segmentation of images into regions that are typically found
in street scenes (cars, pedestrians, or roads), which helps in the understanding of
the surroundings to improve the self-driving car. The task could be difficult based
on the complexity of the scene. Deep learning is found to be great for this task,

especially their U-net type architectures [37].

Road  Sidewalk Car Pole Building Sign Fence
Tram Vegetation Static Sky Wall Dynamic  Person

Fig. 9: Image segmentation [18]
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Object detection

Object detection is an important computer vision task that deals with detecting
instances of visual objects of a certain class. The research of object detection is
usually done in two ways:
1) General object detection: explores different methods used for detecting differ-
ent types of objects to simulate human vision.
2) Real-life applications: explores detection under application scenarios (pedes-

trian detection, face detection, text detection) [45].

Fig. 10: Object detection [10]

Approaches based on end-to-end learning or LiDAR hardware are hard to
replicate due to the additional complex setup needed. Additionally, segmentation
tasks are more computational-heavy tasks when it comes to real-time systems and
usually, pixel-level prediction is not needed for these tasks when object detection
is precise enough. Due to this reasoning, I have chosen to build a neural network
that could be implemented in an object detection-based system for a simple video
camera, that can be found on everyone’s cell phone. This is why this thesis will

focus solely on object detection problems and models.

2.5 Object detection

Object detection is one of the most crucial requirements to realize autonomous driv-
ing. As there can be many other traffic participants like cars, pedestrians, animals,
and other objects, it is necessary especially in urban areas to have awareness of these

objects. The process of detecting pedestrians is particularly difficult because of their
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complex, highly varying motion, a large variety of appearances due to different cloth-
ing and articulated poses, and the interactions between pedestrians with each other
and the world. Other problems can occur due to the nature of changing weather
conditions. Older algorithms had problems with speed and generalization. But due
to robust deep learning algorithms, new object detection systems were developed
[45].

Difficulties and Challenges in Object Detection

Even though different detection tasks may have different challenges and may vary
from each other, there are usually very common problems for most of them.

1) Object localization - determining object position is a major challenge in ob-
ject detection. Researchers often use a multi-task loss function to cover both
misclassifications and errors in localization.

2) Viewpoint variation - Since most models are trained and tested in ideal sce-
narios, it is a difficult task for detectors to recognize objects from different
viewpoints.

3) Multiple aspect ratios and spatial sizes - The objects vary in terms of aspect
ratio and sizes. Algorithms should be robust enough to catch these changes.

4) Deformation - Objects can be found in a different position from the one they
were represented in the dataset.

5) Occlusion - objects occur partially in images.

6) Lighting - Illumination of the object plays a huge role, in how an object will
be represented on a pixel level.

7) Cluttered or textured background - If the background of an image is clut-
tered or textured, there’s a risk of the objects of interest blending into the
background.

8) Intra-class variation - Objects within the same class could have completely
different shapes and sizes.

9) Real-time detection speed - Algorithms should be close to real-time processing
as it is possible.

10) Limited data - Detection datasets remain substantially smaller in scale and

vocabulary than image classification datasets [26].

Models used in Object Detection

The pipeline for classical video camera object detection is usually very similar. It
consists of steps like preprocessing, region of interest extraction (ROI), object clas-
sification, and verification or refinement. Older techniques usually used a sliding

window approach, which was very computationally demanding. Later, as object
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detection became more important in several tasks, newer proposed techniques for

reducing the search space were developed [45].
We will list some of the most known models that are used in object detection:

Viola-Jones detector

The Viola-Jones object detection framework is an object detection framework pro-
posed in 2001 by Paul Viola and Michael Jones. The model combines the concepts
of Haar-like Features, Integral Images, the AdaBoost Algorithm to create a system
for object detection that is fast and accurate. The detector was hundreds of times
faster than any other algorithms at that time when it came to comparable detection
accuracy [21].

Haar features: are extracted from input images. A Haar-like feature consists
of dark regions and light regions. It produces a single value by taking the sum of the
intensities of the light regions and subtracting that from the sum of the intensities
of dark regions. Instead of using a set of manually selected Haar basis filters, the
authors used the Adaboost algorithm [21].

Fig. 11: Haar-like features [25]

An Integral Image: is an intermediate representation of an image where the value

for location x, y on the integral image equals the sum of the pixels above and
to the left of the x, y location. So instead of calculating by looping through all
pixels 1 by 1, it can be calculated in constant time, by multiplying the rectangular
regions above and left. Since Viola-Jone’s algorithm involves calculating the sum of
dark/light rectangular regions, while extracting Haar-like features, this intermediate

representation allows for fast calculation of rectangular regions.
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Fig. 12: The integral image calculation [43]

The AdaBoost algorithm: is a machine learning algorithm made up of linear combi-

nations of weak classifiers for selecting the best subset of features among all available

features. The output of the algorithm is a strong classifier. The technique counts

occurrences of gradient orientation in the localized portion of an image. It performs

better than any other edge descriptor as it computes the magnitude as well as the

angle of the gradient to compute features [21].
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Fig. 13: The AdaBoost algorithm [21]

In 2012, the world witnessed the rebirth of convolutional neural networks [20]. R.
Girshick took the lead in state-of-the-art models by proposing the RCNN in 2014.

Since then deep learning models took the lead and object detection models started

to evolve at an unprecedented speed. The new deep learning models can be divided

into two groups: one-stage detector and two-stage detector. These state-of-the-art

models for object detection have evolved over time and are now considered a strong

foundation for much more powerful networks existing today [45].
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R-CNN

The first model, R-CNN, which stands for region-based convolutional neural net-
work, consists of three modules. The key concept is region proposals, which are
created by a selective search algorithm. These region proposals are then used to

localize objects within an image.

Selective search:
1) Generate many candidate regions.
2) The greedy algorithm will recursively combine similar regions into larger ones.

3) Generated regions will be used to produce final candidate region proposals.

The selective search considers four types of similarities when combining the initial

small segmentation into larger ones.

1) Color Similarity - The histogram of each channel of RGB image is generated.
Similarity computed by:

Scolor Tza Tg Z mm m J

where ¢, ¢; is k™ value of the histogram bin of region r; and r; respectively.
2) Texture Similarity: calculated using generated 8 Gaussian derivatives of the
image and extracting the histogram with 10 bins for each color channel. Then

we get 10 x 8 x 3 = 240 dimensional vectors for each region.
Stexture (T, T'j) Z min tf,tf (2)

where t;, t; is k'™ value of the texture histogram bin of region r; and rj respec-
tively.
3) Size Similarity : The idea is to make smaller regions merge more easily. Oth-

erwise larger regions would keep merging with larger regions.
Ssize(Ti, 1) = 1 — (size(r;) + size(r;))/size(img) (3)

where size(r;), size(r;) and size(img) are sizes of regions 1;, r; and the image
the respectively in pixels.

4) Fill Similarity : Measures how well two regions fit with each other. If they fit,
they will be merged.

Srin(ri,r;) =1 — (size(BBj) + size(r;) — size(r;))/size(img) (4)

where size(BBj;) is the size of the bounding box around i and j [29] [41].
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Fig. 14: Selective search [29]

The first module of R-CNN generates category-independent region propos-
als by using a selective search algorithm. These 2000 candidate region proposals
are rescaled into a square and fed into the next module. The second module is
a convolutional neural network, which acts as a feature extractor, and produces
4096-dimensional features from the region as output. And the third module, called
the SVM classifier [42], is used to predict the presence of objects in that candidate
region. In addition to predicting the presence of an object, SVM also predicts four
values which are offset values to obtain better precision of the bounding box. For
example, if there is the presence of just a part of the object in the image, offset

values help in adjusting the bounding box [11].

' -
CNNN, :

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Fig. 15: The R-CNN model [11]

R-CNN architecture was revolutionary at that time, but the redundant fea-
ture computation of the overlapping proposals took too long to be usable in self-

driving systems [45].

Fast R-CNN

As for the next generation, the same author solved some of the drawbacks. This
new updated model was named Fast R-CNN. The model comes with a new idea,
where the image is fed to the CNN just once, to generate convolutional feature maps,
which are fed to a Region of Interest (Rol) pooling layer. The proposed new Rol
layer extracts equal-length feature vectors from all proposals in the same image. So
these feature vectors can be fed into a fully connected layer. From the Rol feature

vector, we use a softmax layer to predict the class of the proposed region and also the
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offset values for the bounding box. By this procedure, we can avoid the classification
of 2000 region proposals, instead, convolution is done once per image, and a feature

map is generated [9].

Fast R-CNN got rid of the SVM classifier and instead used Softmax [27]. Fast RCNN
enables us to simultaneously train a detector and a bounding box regressor under

the same network configurations [45].

Outputs: bbox
softmax regressor

Rol
pooling
layer

Rol feature
vector

For eoch Rol

Fig. 16: The Fast R-CNN model [9]

Faster R-CNN

It is the first near-real-time deep learning detector. That is due to the introduction
of the Region Proposal Network, which generates proposals with various scales and
aspect ratios. The concept of anchor boxes is firstly introduced. An anchor box is
a reference box of a specific scale and aspect ratio [9].

The input image is resized into 600 x 1000 pixels. The VGG-16 was used
as the backbone, achieving the state-of-the-art object detection accuracy [34]. The
network has to learn whether an object is present in the input image at its cor-
responding location and estimate its size. For each location on the output of the
feature map, sets of 9 anchors are placed. These anchors indicate possible objects

of various sizes and aspect ratios at this location.

512 feature maps are obtained from the backbone part. The next layer is the 3
x 3 convolution layer, which divides the output into 2 branches. The first one is
a 1 x 1 convolution layer creating 36 feature maps for bounding box regression.
The outputs are 4 regression coefficients for each anchor, which are used to improve
the coordinates of the anchors that contain objects. The second branch outputs 18
feature maps for classification. This output is used to give probabilities of whether
or not each point in the backbone feature map contains an object in all 9 anchor
boxes [9] [34].
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Fig. 17: Faster R-CNN model [2]

The proposals are generated using a network, which can be trained end-to-end to
be customized for the detection task. It produces better region proposals compared

to generic methods like Selective Search

SSD
SSD consists of two components: the backbone part and the SSD head. For the
backbone, the pre-trained neural network is usually used, which works as a feature
extractor. The last convolution layer divides the image into 38 x 38 grid, where each
grid cell is responsible for detecting objects in that region of the image. For each
cell, it makes 4 object predictions. Each prediction consists of a boundary box and
21 scores for each class (20 classes + 1 non-object class), where the class with the
highest score is picked. As CNN reduces the feature layer dimension, the resolution
of the feature maps also decreases, so the model is able to make predictions faster
22].

SSD was proposed in 2015. The main advantage of SSD is the introduction
of the multi-resolution detection technique, due to which, the detection accuracy of

one-stage detectors was improved.
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Fig. 18: SSD model model [22]

YOLO

YOLO was proposed in 2015 by the Facebook AI Research team. The network only
looks at the image once to detect multiple objects. Thus, it is called You Only
Look Once. By being able to make predictions when looking at an image only
once, the detection can be done in real-time. At that time it was a state-of-the-art
deep learning object detection approach. YOLO combines a single neural network to
perform both classification and prediction of bounding boxes for detected objects. It
is highly optimized for detection performance and can run much faster than running

two separate neural networks to detect and classify objects separately [32].
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Fig. 19: The YOLO model [32]

The input image is divided into a 7x7 grid, where each grid cell is responsible
for detecting the object if it contains the center of that object. Each cell predicts
2 bounding boxes and estimates scores for those boxes. The confidence score rep-
resents how sure the model is, that the box contains an object. Bounding boxes
contain 5 values. The first 2 values represent the coordinates of the center of the
box relative to the bounds of the grid cell, third and fourth values represent width
and height. The last value represents confidence between the predicted box and
ground truth box [32].
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3 MODEL IMPLEMENTATION

3.1 Model architecture

The main inspiration for our model was taken from the YOLO-v3 architecture [33].
YOLO-v3 comes from the very famous YOLO series, and this particular model
offered the best precision/speed trade-off in 2018 for object detection. The model
created in this thesis, further just called MyModel, could be divided into 3 main
parts. These 3 main parts will be called the backbone, the neck, and the head.

INPUT BACKBONE MECK — HEAD

AR BRI

Fig. 20: MyModel architecture

Before explaining the whole architecture, let us talk about one main problem,

which can occur, when creating a new architecture.

Bias and variance trade-off problem: The goal of any supervised machine learning

model is to best estimate a function f for the output y given the input data x. These
supervised models are often not able to perfectly fit function f. The difference
between f(x) and y is called prediction error, which could be further divided into
bias error and variance error. Bias is the simplifying assumption made by a model
to make the target function easier to learn. The variance is the amount that the
estimate of the target function will change if different training data was used. Good
prediction performance by the model should be achieved by keeping low bias and
low variance for the model. Basically, we are trying to create a model large enough

to be able to learn most of the dataset, but not large enough to overfit the dataset.

The input

Input mages in our model are in the shape of Bx3x416x416. The images are repre-
sented as a four-dimensional tensor, where B is the batch size, 3 is the number of
channels (RGB in this case), and the last two dimensions are the width and height

of the image.
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Fig. 21: Bias-variance trade-off [16]

The backbone

This is the main part of the MyModel, where most of the upgrades to the official
version happened. The backbone part here refers to the feature extraction part and
starts with two convolutional blocks (2D convolution + 2D Batch Normalization
+ Mish) followed by ConvNeXt Block, which is introduced in A ConvNet for the
2020s’ paperwork [23].

The backbone has 4 layers in total, where each layer is made of a ConvNeXt block
followed by one convolution layer. The number of input feature layers is doubled
every subsequent layer, so we can obtain more additional information from the
convolution layers.

The ConvNeXt block has an inverted bottleneck structure. The hidden part
of the block is four times wider than the input dimension. The ConvNeXt block
also introduces a 7x7 kernel, which was often not used in older architectures, as it
made the model more computationally expensive. But newer SOTA architectures are
known to have larger receptive fields, so models with larger kernel sizes could possibly
benefit from that. The 7x7 kernel size is followed by Batch Normalization. Point-
wise 1x1 convolution is here done by linear layer, followed by Mish function. The
hidden size of the ConvNeXt block is converted back to its previous size by a linear
layer. ConvNeXt block also uses grouped convolutions, multiple kernels per layer,
resulting in multiple channel outputs per layer. This leads to wider networks that

help a network learn a varied set of low-level and high-level features [10]. For my type
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of task, The ConvNeXt block was found to work better with batch normalization

and Mish function.

BN
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Y
[ 1x1,64 ]
O
v

Fig. 22: Modified ConvNeXt block

Micro Design explained

Activation function: the purpose of activating a function is to add nonlinearity to

a neural network, allowing the network to learn complex patterns in the data. The
Rectified Linear Unit (ReLLU) function was used in CNN models for many years and
became the most used option for most architectures. This is not surprising because
ReLU offers many advantages:
1) ReLU takes less time to learn and is computationally less expensive than other
common activation functions like tanh, sigmoid.
2) ReLU involves simpler mathematical operations than most of the other acti-
vation functions.
3) It can solve the problem with vanishing gradient, where gradients shrink dras-

tically in backpropagation.
But there is one problem with this activation function, called the dying ReLLU prob-

lem. The dying ReLLU problem refers to the scenario when many neurons have
negative values, so the activation function will have the value 0, which potentially
worsens the network. When most of these neurons return zero output, the gradients
do not flow during backpropagation, and the weights are not updated. So some

parts of the network become dead and it is likely to remain unrecoverable.
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This is where the Mish activation function comes in, solving the problem, by assign-
ing non-linear output of the activation function for negative input values. in negative

values. This activation function is now widely used in some modern architectures.

5 -
— relu

—— mish
4 B

Fig. 23: The ReLU vs. Mish activation function [15]

Normalization: is used to normalize the output of neurons. This speeds up the

convergence of the training process. There are two main types of normalization
widely used these days. The first is batch normalization, which is often used in
CNNs and was also used in the original YOLOv3, and the second is called layer
normalization, used mostly for NLP tasks.

Batch normalization was chosen as it was found to work better for this type

of problem.
Batch Norm
A
Merged Spatial
Dimensions (H,W)
Channels C
>
Mini-Batch Samples N
Fig. 24: Batch normalization [1]
The neck

The purpose of the neck block is to add additional layers between the backbone and
the head. Therefore, the head’s input will contain spatial rich information. The neck

part is a pooling layer, called spatial pyramid pooling. The spatial pyramid pooling
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maintains spatial information in local spatial bins. In each spatial bin, responses
of each filter are pooled. The Spatial Pyramid Pooling can generate a fixed-length

representation regardless of image size [13].
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Fig. 25: The SPP block in MyModel [13]

A maximum pool is applied to a sliding kernel of size 5x5, 9x9, 13x13. The
spatial dimension is preserved. The feature maps of different kernel sizes are then

concatenated as output.

The head

Finally comes to the last layer to fully understand the whole structure This layer
is called the head, it is responsible for making predictions. This part is unchanged
from the official version of YOLO-v3.

The goal of the head’s part is to output the bounding box coordinates (x,y,w,h) and
the confidence score for each class. This is done on 3 different scales, so the best

fitting bounding box could be chosen.

Model detection

We have explained all the important parts of a model architecture, now we can
combine them and explain how object detection is done.

The input image is in shape Bx3x416x416. This goes through a few convo-
lution layers and to the backbone layer. As was mentioned above, the backbone

acts as a feature extractor and outputs feature images of 3 different shapes. The

39



MICHAL, Lecbych. Do zahlavi pfilis dlouhy nazev prace zkratime a zakoncime vypustkou. . .

final shape is dependent on the dataset. Six numbers represent each bounding box
(pc, bx, by, bh, bw, ¢). Because MyModel is trained on the PASCAL VOC dataset,
which contains 20 classes, the output is a list of bounding boxes along with the 20
recognized classes. Totally we have (I x (5 + ¢)) entries in the feature map shape.
Where I is a number of scales, 5 represent class probability score, 2 coordinates,
width, height, and ¢ 20 classes. This makes it 3 x (5 + 20) = 75 entries on the
feature map.

The backbone’s outputs are in the shape [B, 75, 13, 13|, [B, 75, 26, 26|, [B, 75,
52, 52]. Where B is the number of batches on which it will be trained. 75 feature
layers, which will be converted to the required shape, and the last two numbers

represent the number of cells, in which the image will be divided.

52 x 52

Fig. 26: Three different scale predictions [33]

These features are combined through the neck part to get the best possible
result and sent to the head part. The output of head layer is in shape [B, 52,
52, 3, 25], [B, 26, 26, 3, 25|, [B, 13, 13, 3, 25|. This is because the shape of 75
features was divided for each scale, so every cell in the image can predict objects
of 3 different sizes. These features produced by the convolutional layers are passed
onto a classifier, which makes the detection prediction, so each cell can predict a
fixed number of bounding boxes.

Each cell predicts 3 bounding boxes using 3 given anchors for each scale, making
the total number of anchors used 9.

The concept of anchor boxes: Trying to predict the width and height of the bound-

ing box right from the neural net could be done, but that usually leads to unstable
gradients during training [24]. Here the concept of anchor boxes, which was intro-
duced in faster R-CNN, is used. So instead of predicting width and height, most
modern object detectors predict offsets to pre-defined default bounding boxes called
anchors. Then a transformation of these anchor boxes is provided to make the best
fit to the ground truth box (the label).
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Anchor boxes are k-Means centroids [44] with IoU as the similarity metric .
They are obtained by using clustering algorithm onto the dataset, because we are
using very popular dataset for object detection, there is no need to do the same
exact job. The anchor boxes were taken from the official source.

The following formula describes how to obtain predictions of the bounding

box from the coordiantes:

by =0(ty) + cu
by =o(t,) + ¢,
by = Puw * etw

b, = pp * etn

Tx, ty, tw, th is what the network outputs. We are running our center coordinates
prediction through a sigmoid function, so the values are rescaled into the interval
0, 1] (prediction must happend within the cell, otherwise neighbour cell would make
prediction). The values ¢, and c, are the top-left coordinates of the grid. Py, and
pn are anchors dimensions of the box. By, by, by, by are the x, y center coordinates,
width, and height.

The object score and class confidences: The object score represents the probability

that an object is contained inside a bounding box. The object score is then passed
through a sigmoid function and the output is interpreted as probability. The class
confidence score should define a score for every class in the dataset, so the best class

for the detected object can be chosen.
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Fig. 28: The anchor boxes [33]
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The YOLOvV3 loss function was used, it consists of 5 expressions:

1) The x and y coordinates are parametrized to be offsets of a particular grid cell
location. The sum of square error is estimated only when there is an object
inside the cell.

2) The width and height of the bounding box are normalized by the width and
the height of the image so that they fall between the values 0 and 1. The sum
of square error is again estimated only when there is an object. Square roots
are used because deviations in large boxes matter less than in small boxes.

3) Confidence predictions for boxes that contain objects

4) Confidence predictions for boxes that do not contain objects. Most grid cells

do not contain any object, which pushes confidence scores towards zero, over-
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powering confidence of grids, which contain objects. To make training more
stable, confidence predictions for boxes that do not contain objects are de-
creased by A\o0p; = 0, 5.

5) Class Probabilities when there is an object

Evaluation

We want to use a metric during training, which would tell the model how well the
boundary box fits the label (ground truth box). There is one popular technique
used to measure how precise the bounding box is fitting, and that metric is called
mean Average Precision (mAP). The mean of average precision values is calculated
over recall values (see 3.1) from 0 to 1. It is based on several basic principles, which

will be firstly introduced.

Confusion Matrix:

Actually Actually
Positive (1) | Negative (0)
Predicted Tr.’u_e Fgl;o
Positive (1) Positives Positives
(TPs) (FPs)
Fal Ti
Predicted Nengiies Neg::ifes
Negative (0) (FNs) (TNs)

Fig. 29: The confusion matrix [8]

In statistical classification, a confusion matrix is a specific table that allows

visualization of the performance of an algorithm.

1) True Positives (TP): The model predicted a label and matches correctly ac-
cording to the ground truth.

2) True Negatives (TN): The model does not predict the label and is actually not
part of the ground truth.

3) False Positives (FP): The model predicted a label, but it is not part of the
ground truth (Type I error).

4) False Negatives (FN): The model does not predict a label, while it is a part of
the ground truth. (Type II error).
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Fig. 30: Precision recall evaluation [35]

Precision measures how well you can find true positives (TP) out of all positive
predictions (TP + FP). Recall measures how well you can find true positives (TP)
out of all predictions (TP + FN).

The value may vary depending on the model’s IoU (Intersection over Union) confi-
dence threshold.

Average Precision: AP is calculated as the weighted mean of precision at each thresh-

old, the weight is the increase in recall from the prior threshold.

Mean Average Precision: mAP is the average AP of each class. In the PASCAL
VOC 2007 challenge, AP for one class of objects was calculated for an IoU threshold

of 0.5. So the mAP was averaged over all object classes.

mAP = 1/N(3 AP) (©)

i=1
The total output of the model for our 416 x 416 image is ((52 x 52) + (26 x 26) +
13 x 13)) x 3 = 10647 bounding boxes. This is quite a large number to do for every
frame and still have real-time processing power. This is where non-max supression

(NMS) pre-processing comes in.

NMS processing: As said above, every bounding box is a vector of 25 values for

our dataset (20 classes). Bounding boxes with low objectness score can be left out
because the box is not very confident about detecting a class. This helps us filter
out most of the boxes. After this filtering, there are a few boxes left, which meet
the objectness score threshold condition. Now comes the second filter, called NMS,

which is based on IoU to select the best bounding box.

[oU: Intersection over union is a metric that tells how precise the bounding box is
by measuring the area of overlap of the boundary box and the ground truth box.

We can say an IoU > 0.5 is decent, > 0.7 pretty good and > 0.9 almost perfect.
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Fig. 31: Intersection over Union [5]

Now, to implement non-max suppression, the key steps are:
1) Select the box that has the highest score;
2) Compute its overlap with all other boxes, and remove boxes that overlap it
more than IoU threshold x
3) Go back to step 1 and iterate until there are no more boxes with a lower score
than the selected box.
Finally, the whole process of obtaining the best bounding box by model is done.

Now it can be displayed on an image.

Before non-max suppression

After non-max suppression
P pE B B s

o, | ".. J4

Non-Max
Suppression

Fig. 32: Non Maximal Suppression NMS [17]

Results

The MyModel neural network is a larger neural network consisting of 70 million
learnable parameters. This neural network was trained from scratch on PASCAL
VOC dataset. This dataset was chosen, as it often occurs in object detection algo-
rithms, so our model could be easily compared with other models. Deep learning
models are trained on GPUs, as it offers much faster learning time. But the problem
with CNN models is that it usually requires a large amount of GPU RAM, as we are
working with quite large images. The model was trained in Google Colab on a P100
GPU, which offers 16GB RAM. The training time for the PASCAL VOC dataset
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was 36 hours on 16,000 images for the training dataset. MAP was measured on a
test dataset consisting of 4000 images. The initial learning rate was 34 and after 10

epochs it was reduced to 3.
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Fig. 33: MAP
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Fig. 34: Total loss

Blue lines represent MyModel net and green official implementation of YOLOv3.
Both models were further trained, but because none of them showed better im-
provements, only this part is included. For MyModel highest reached mAP was

0.445 and for official implementation almost 0.42.
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4 DISTANCE ESTIMATION

For the object detection system, it is useful to add distance estimation for some
objects as it can provide additional information. For systems which are not fully
autonomous (all of the current ones), this could help the driver to have more aware-
ness of the surroundings. And if the object were too close, the driving systems could
potentially warn the driver, which would provide more safety for the entire crew.
The KITTI dataset provides annotated dataset, which was produced by a
single camera mounted on the front of a car. This dataset consists of training images,
test images, and annotations in the form of a CSV file: filename, xmin, ymin, xmax,
ymax, zloc, and some additional informations, which are not needed. Here, xmin,
ymin, xmax, and ymax are bounding box coordinates, zloc is the distance.
Because the model for estimating the bounding boxes was already built. This
dataset could be used for another model, to make distance estimations on the last

model, which provides bounding box estimation.
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Fig. 35: Feed forward network

There was suspected some relationship between distance and square area of
the bounding box. So, a new column called square was created for enhancing more
precise results. This is shown in the correlation matrix Fig: 35, where the correlation

between square area and distance is -0.65.
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Fig. 36: Feed forward network

A model with inputs xmin, ymin, xmax, ymax, and square was trained on 25 822
labels (10% validation data), the test set contained 2 922 labels. The best model
was found to have 4 hidden layers in the form of 6-10-5-2 hidden neurons and 1
output that predicted the distance. For this regression task, a mean squared error
function had been chosen.
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Fig. 37: Mean squared error

The red line in Fig: 37 maps the error function for training data and the
green line for the validation data. The model was tested on test data afterward,
where MSE = 0,21.
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Fig. 38: Distance estimation of cars

Fig. 39: Distance estimation of cars
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5 LANE DETECTION

There are many ways in which a lane detection system can be built. Many of those
are based on segmentation tasks with deep neural networks like Unet, which provides
one of the best results. As most of our computer resources and GPU RAM were
used for object detection and distance estimation, because it is the main part of
our self-driving system, the lane detection system was built based on the OpenCV
library. Opencv enables fast image post-processing with very little GPU usage. The
lane detection system consists of several steps which are applied to the image taken

from the display.

Fig. 40: The input image

The original image was converted to grayscale. This reduces the dimension of the
image from 3D to 1D, which should speed up the process. Together with grayscale
conversion, Gaussian blur was applied. Gaussian blurring is highly effective in re-

moving Gaussian noise from an image.

1 —(2244?)

Glr,y) = 5——e =7 (7)

2mo?

The values of this distribution are used to build a convolution matrix that is applied
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to the original image.

Fig. 41: Grayscale and Gaussian blur

Canny edge detection is applied. It consists of several phases:

)

2)

52

Noise reduction - A 5x5 Gaussian filter is applied because edge detection is
susceptible to noise

Intensity gradient - A Sobel kernel is applied to get the first derivative in the
horizontal direction Gy and in the vertical direction Gy. Then we can get an

edge gradient and direction.

EdgeGradient(G) = /G2 + G2

1y

A -
ngle(o) = tan G

The gradient direction is always perpendicular to the edges.

Non-maximum suppression - A full scan of the image is done to remove any
unwanted pixels. Every pixel is checked to see if it is a local maximum in its
neighborhood in the direction of the gradient. The result is a binary image
with "thin edges".

Hysteresis Thresholding - This stage decides which set of pixels are edges
and which are not. Edges with an intensity gradient more than maxVal are
marked as edges and those below minVal are marked as non-edges. Those who
lie between these two thresholds are classified as edges or non-edges based on
their connectivity. If they are connected to pixels marked as edges, they are
classified as edges; otherwise, they are classified as non-edges. The result is

seen in image Fig: 42
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Fig. 42: Canny edge detector

The region of interest is selected, such that, most of the unwanted edges are left out.

Fig. 43: Image masked

Later, when edges are obtained, they are used in HoughLinesP algorithm. The
Hough transform takes a binary edge mAP as input and locates edges’s place on
straight lines [4]. The HoughLinesP algorithm is a more efficient implementation of
the previous algorithm using a probabilistic approach. The output of HoughLinesP
is the endpoints of the detected lines (xq, yo, X1, y1)-
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Fig. 44: Straight lanes found by the HoughLinesP algorithm

Detected straight lines are then grouped together by having negative slope or positive
slope. Now the averaged position and slope of each group are found to represent a

road lane.

Fig. 45: The final lines are displayed.

This was the last part of the lane detection system to make the task possible. The
final detection is shown in Fig.45, where green lines represent the boundary of the

self-driving car path.
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6 PERCEPTION SYSTEM

A mobile phone’s camera was mounted on the rear-view mirror parallel to the road
to capture the scenery in front of the car. The camera must be high enough not
to see any parts of the car, as it could distort the predictions (we are trying to be
close to the training dataset as much as possible). The image is sent to a computing
device (in my case a laptop), where the captured image from a mobile phone is
displayed on the monitor. Then OpenCV library reads a display window of size 416
x 416 in the left upper corner and every frame is processed by the perception system
built in this thesis.

MyModel was trained on the PASCAL VOC dataset because it is a widespread
dataset for object detection, which works as a good benchmark for other models.
So they can be easily compared to each other. This is why it was a good choice for
the evaluation part, but not all classes in the dataset are needed for the perceptive
system of self-driving cars. Most of the classes for object detection were disabled
and only object detection for bicycles, buses, cars, and motorbikes were left. The
distance estimation dataset only included classes for cars, so it would not make sense
to do it for other bounding boxes and only this one class is estimated.

The lane detection system is computationally very light and offers high fps,
which was the main reason why this approach was taken, as most of the GPU
resources were taken by a custom object detection model. But as this approach is
based on straight lines, making very sharp turns make this detection imprecise.

Images taken during the drive:

Fig. 46: Images during good conditions
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Fig. 47: Images during good conditions

Fig. 48: Images during worse or more difficult conditions

Fig. 49: Images during worse or more difficult conditions
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7 CONCLUSION

An introduction to autonomous systems was described in the first part of this work.
This summary includes the history and development of self-driving cars, the basic
classification of how advanced these self-driving cars can be, some techniques used

for learning such a system, and the last part is focused on object detection.

Object detection was the primary focus of this work, where the most well-known
algorithms were described. During the object detection era a variety of models were
built using many different techniques. But, as it turns out, the best models right
now are based on deep learning, which is a special field of machine learning using

neural networks.

In the implementation part, a basic autonomous system was built, which could be
used in a self-driving car. This system is based on the detection of objects that
can be found on the road. A totally new deep learning model was built, which
was based on YOLO-v3. However, using more modern approaches, the model was

properly evaluated and used in such a system for object detection.

The problem came up during the training part, as both of the models stopped
converging around the 60th epoch. This could be due to several reasons. The first
is, that the implementation could be wrong, but this seems unlikely, as, before the
final training part, both of the models were over-fitted on 500 images, where both
had over 90 mAP. Another reason could be the batch size, where 8 could be too
small as most of these networks are usually learned on 64 or more, when learning
from scratch. But this problem would require more than 16 GB of RAM, which was

not possible for me.

To have a more complete version of that autonomous system, a distance estimation
was built. Where prediction is done by a feed-forward neural network pre-trained

on KITTI dataset containing distances for every bounding box.

The last part of the system was the detection of the road lane. There had to be
several compromises, as there was not enough computing power for a more robust
solution. This is why most of this part is done in OpenCV library.

The whole model performs quite well during certain conditions as it is shown in
the last part. Ideally, the system could be used on nearly straight roads with well-
defined lanes. However, the model had a much higher number of false positive boxes
(FPs) when the images included bad weather conditions, poor illumination, or a lot

of shadows. Therefore, I can say that more research is needed in that direction.
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9 APPENDIX A

Source code on: https://github.com/LecbychMichal/Master-s-Thesis
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