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Annotation

Image object segmentation allows localising the region of interest in the im-
age (ROI) and separating the foreground from the background. Cell detec-
tion and segmentation are the primary and critical steps in microscopy im-
age analysis. Analysing microscopy images allows us to extract vital infor-
mation about the cells, including their morphology, size, and life cycle. On
the other hand, living cell segmentation is challenging due to the complex-
ity of these datasets. This research focused on developing Artificial Intelli-
gence/Machine Learning methods of single- and multi-class segmentation of
living cells. For this study, the Negroid cervical epithelioid carcinoma HeLa
line was chosen as the oldest, immortal, and most widely used model cell
line. Several time-lapse image series of living HeLa cells were captured using
a high-resolved wide-field transmitted/reflected light microscope (custom-
made for the Institute of Complex System, Nové Hrady, Czech Republic)
to observe micro-objects and cells. Employing a telecentric objective with a
high-resolution camera with a large sensor size allows us to achieve a high
level of detail and sharper borders in large microscopy images. The collected
time-lapse images were calibrated and denoised in the pre-processing step.
The data sets collected under the transmission microscope setup were ana-
lyzed using a simple U-Net, Attention U-Net, and Residual Attention U-Net
to achieve the best single-class semantic segmentation result. The data sets
collected under the reflection microscope setup were analyzed using hybrid
U-Net methods, including Vgg19-Unet, Inception-Unet, and ResNet34-Unet,
to achieve the most precise multi-class segmentation result.
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I want to give special thanks to Soňa Vodková, our institute assistant, who
helped me to solve all my issues in the Czech Republic and Petra Korcová,
who helped me to manage all my work in the study department.



v

My friends, who provided a much-needed form of escape from my studies
and created a nice and enjoyable time: Jan Procházka, Guillaume Dillenseger,
Meysam Aryafard, Mahyar Zare, Hassan Nazari, Vladyslav Bozhynov, Ganna
Platonova, Oleksandr Movchan, Dinara Bekkozhayeva and all other friends
who deserve thanks for making more enjoyable life with perfect and fantastic
memory in Budweis.
Last but not least, I would like to thank my family, especially my mother and
brothers, for their support throughout my life. I love all of you; thanks a lot!
Also, I would like to thank my father, who is no longer with us. I will never
forget you and all your memories. . .



vi

List of papers and author’s contribution included in the thesis:

• Ghaznavi, A., Rychtáriková, R., Saberioon, M., and Štys, D.: Cell seg-
mentation from telecentric bright-field transmitted light microscopic
images using a Residual Attention U-Net: a case study on HeLa line.
Computers in Biology and Medicine 147, 105805, 2022, IF = 6.69. DOI:
10.1016/j.compbiomed.2022.105805

Ali Ghaznavi developed the methods, analysed the data to obtain the
results, and wrote the first draft of the manuscript. Percentage of con-
tribution around 75%.

• Ghaznavi, A., Rychtáriková, R., Císař, P., Ziaei, M., and Štys, D.: Hy-
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1.1 OVERVIEW

In this thesis, the artificial intelligence (AI)-based segmentation of living cells
over wide-field light microscopy images is proposed and developed. Chap-
ter 1 describes the human HeLa living cells and the structure of the custom-
made wide-field microscope with light transmission and reflection setup used
for data collection. The last part of Introduction reviews the AI methods and
their usage in object detection and segmentation, namely, machine learning
(ML) and deep learning (DL) methods in cell segmentation. The knowledge
gap between these methods is highlighted. Chapter 2 introduces the newly
developed methods. Different variants of DL methods based on convolu-
tional neural network (CNN) were tested to achieve the best precise segmen-
tation result in our datasets. Chapter 3 contains all results in the form of
published papers. The last Chapter 4 summarises and concludes the results
presented in Chapter 3.

1.2 HeLa cell line

The HeLa cell line is the human epithelial cancer cell line derived from cervi-
cal epithelial carcinoma of an African-American woman, Henrietta Lacks, on
February 8, 1951 [11]. The cells were propagated by a famous cell biologist
George Otto Gey shortly before Lacks died of her cancer in 1951.

HeLa is the first human cell line that can be cultured rapidly. It is used
in medical (cancer, AIDS, toxicological, or gene mapping) research as a gold
standard. As the HeLa cells originate from aggressive cancer cells, they can
proliferate rapidly with a replication rate of up to two times in 24 h [12]. The
replication rate and the ubiquity in cell culture laboratories make HeLa an
efficient and appropriate living cell line for research, industrial, and medical
applications.

1.3 Wide-field microscopy

A wide-field microscope is a type of optical (light) microscope with the sim-
plest optical path and fast acquisition speed. The microscope principle pre-
dominantly utilizes visible light originating from a light source (lamp or
diode) and illuminating a large field of view of the sample to produce (Fig. 1.2)

1. a dark image with a bright background (in the transmission mode when
the light source is located opposite to the microscope objective and light
is passing through the specimen) or

2. a bright image with a dark background (in the reflection mode when
the light source and the microscope objective are located on the same
side and the light refracted or emitted from the specimen is analysed).

The interaction of light with the specimen under leads to a combination of
absorptive, diffractive, refractive, or fluorescence contrast in the image. An
image is seen through the digital camera or eyepiece. It is possible to modify
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FIGURE 1.1: Telecentric and standard objective mechanism [1].

the microscope objective and digital camera easily to achieve better observa-
tion with the naked eye or capturing high-detail digital images, depending
on the type of specimen.

The wide-field microscopes, mainly in the transmission mode, are help-
ful in education and many research fields from biology and medicine up to
material engineering. In biology, these microscopes can be used in the sim-
plest up to most advanced research, e.g., [13, 14] to understand intracellular
structures in animal and plant cells, to visualise prokaryotic and eukaryotic
microorganisms and parasitic organisms.

The specimens must be mostly stained to enable visualisation by negative,
Gram, or Papanicolaou staining [15]. These microscopes are appropriate for
observing fixed as well as living specimens.

During the measurement, the telecentric objective accepted the light rays
parallel to the optical axis. This makes telecentric lenses perfectly suited for
measurement applications, where perspective errors and changes in mag-
nification can lead to inconsistent measurements. During time-lapse experi-
ments, the telecentric measurement objective has no angular field or perspec-
tive. This objective resolves magnification changes due to object displace-
ment, image distortion, and uncertain object localisation problems. Combin-
ing the telecentric lens with a bigger camera chip sensor allows us to obtain
sharper images with a high level of detail around the cell borders. Figure 1.1
represents the mechanism of the telecentric and standard objective.

1.4 Cell segmentation methods

Digital image processing means applying computer algorithms to manipu-
late, enhance, or extract useful information from those images [16]. Detecting
and segmenting the objects over digital images into different classes provide
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FIGURE 1.2: Examples of unstained living cell data collected by
transmitted/reflected microscope with telecentric optics (ICS
Nové Hrady). An 8-bit visualisation of the 10-bit primary sig-

nal by LIL algorithm [2].
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vital information about the target object. The primary purpose of the seg-
mentation is to localise the target objects and their boundaries inside digital
images.

Living cell segmentation over time-lapse experiments is essential in analys-
ing microscopy images and provides crucial information about cell behaviour,
number, life cycle and dimensions. However, such image analysis is hard due
to the changing behaviour and morphology of each cell as well as the whole
cell population over time, challenging illumination conditions and optical
path inhomogeneities projected in the image.

In general, the segmentation methods can be categorised into three main
groups:

1. traditional, simplest methods applied in research during the last two
decades,

2. more advanced machine learning methods dealing with challenges and
difficulties, and

3. the most recent, advanced and accurate deep learning methods.

To fulfil the task of cell segmentation in image data sets, AI-based detection
and segmentation methods, including machine learning and deep learning
methods, have been rapidly developed (Fig. 1.3).

FIGURE 1.3: Visualization of the relationship between AI, ML,
and DL methods.

1.4.1 Traditional cell segmentation methods
Over the last two decades, traditional image segmentation methods have
been applied in research and often combined to achieve the best possible
output. Thus the classification of the relevant literature is not unambiguous.
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The number of papers dealing with traditional image processing techniques
in light microscopy reaches a few thousand. Here only a few of them is se-
lected.

Intensity thresholding Thresholding techniques are one of the oldest and
simplest foreground-background segmentation methods [17]. The threshold-
ing methods convert an image into a binary image by considering a level of
threshold (image intensity) that depends on the image condition.

Callau et al. [18] proposed a two-step, fast and simple, intensity-based
method to segment the breast cancer epithelial cell over microscopy grayscale
images. However, the output is not accurate as more advanced automated
methods.

Zhou et al. [19] applied adaptive thresholding with a watershed algorithm
for HeLa cell nuclei segmentation from time-lapse fluorescence image series.
In the next step, a method of fragment merging that combines two scoring
models based on trend and no trend features was applied. In the final step, a
Markov model identified phases of cell nuclei.

Morphological erosion-dilation Morphological dilation adds pixels to the
boundaries of imaged objects. In contrast, morphological erosion removes
pixels on the boundaries of objects. The number of pixels added or removed
depends on the size and shape of the structuring element in the image pro-
cessing.

Using iterative erosion, Schmitt and Hasse [20] separated the cell clumps
over bright-field grayscale images into different parts. Firstly, the enhanced
erosion operators detected specific cell markers within the eroded scales.
Next, an iterative dilation operation expands the markers and regenerates
the cell shape, avoiding merging markers. This method is independent of the
cell shape and fast but suffers from mis- and under-segmentation of dense
cell clumps.

Wang et al. [21] proposed precise single-cell segmentation combining itera-
tive morphological erosion and dilation for fluorescent images of three types
of bacteria, budding yeast, and human cells. The method suffered from over-
segmentation.

Watershed transform The watershed algorithm is the most well-known mor-
phological method for extracting the foreground from the background. The
exact boundary of the target object is extracted using any thresholding or
morphological operations as a marker with the watershed method. The im-
age is considered a topographic map where the intensity of each pixel repre-
sents its height, and the algorithm finds the lines that run along the tops of
ridges. This algorithm efficiently detects and segments touching and over-
lapping image objects and can be applied in post-processing [22].

Adiga et al. [23] presented a method to detect and segment breast cancer
cells over fluorescence images. The authors applied pre-processing steps of
image smoothing and thresholding to enhance cell nuclei’s edge or bound-
ary features for further watershed-based region-growing segmentation. This
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method delivers a more efficient segmentation result than thresholding meth-
ods but not ML methods.

Li et al. [24] proposed an automated detection, segmentation and tracking
method to analyse the HeLa cell cycle. The authors first binarised the images
using adaptive thresholding in the detection and segmentation step. Then,
they detected the centre of nuclei using intensity and shape information to
achieve seed points. The extracted seed points were used in the watershed
algorithm to reach the final segmentation result. The reported results showed
0.995 segmentation accuracy and 0.90 tracking accuracy.

Cheng and Rajapakse [25] introduced a segmentation method over fluo-
rescence images mostly focused on cells and nuclei overlapped in the mi-
gration phase. They first applied the active contours method to segment the
cells without clear borders and outer distance transform to generate mark-
ers. Then, a marker-controlled watershed algorithm with a marking function
was applied and achieved 0.95 accuracies of segmentation from the clusters.
However, the method suffered from over- and under-segmentation.

Zhou et al. [26] proposed a method to identify and segment the cell phe-
notypes of the RNAi genome. Firstly, the rough boundary of each cell was
extracted. Then, the centre and polygon of each cell were identified. Next, a
fuzzy C-means and a marker-controlled watershed extracted each cell. The
Voronoi diagrams were applied in the last step to enhance the overlapping
cell segmentation. The authors achieved an accuracy of 0.62–0.75 according
to the cell phenotype.

Hough transform The Hough transform (HT) is a widespread detection
and segmentation method for microscopy images due to the morphological
shapes of cells. This method is helpful to find features of any shape, espe-
cially straight lines, circles, or curves, in a target image by exploiting the
duality between the points on the curve and parameters of this curve [27].

Zhang et al. [28] segmented yeast cells in bright-field in-focus and out-
of-focus microscopy images. They first employed the "ilastik" pixel-based
classifier to detect the cell boundaries. Cell centre candidates were detected
using a Hough transform, and cell edge points were clustered using Integer
Linear Programming. Finally, the seeded watershed method was applied to
achieve the segmentation result. This method is robust to diverse imaging
conditions and out-of-focus images but sensitive to parameter tuning.

Filipczuk et al. [29] developed a method to segment breast cancer cells.
The Otsu thresholding was used to detect and extract nuclei masks. The
circular HT was applied to determine the nuclei. Afterwards, the circles were
filtered out and recognised as nuclei using the support vector machine (SVM)
learning method based on the texture features and size of the nuclei masks.
This method is robust to high noise levels and object irregularity but sensitive
to parameter values to optimise the SVM and the base thresholding step.

Laplacian of Gaussian filter The Laplacian of Gaussian (LoG) filter is a
morphological method suitable for identifying small blob objects such as nu-
clei, or cells [30].
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Peng et al. [31] proposed a method to segment the stem cells over mi-
croscopy images under different perturbations and conditions. The multi-
scale blob and curvilinear LoG filter were applied to detect stem cells’ struc-
ture and skeleton. Then, the extracted cell skeletons were refined using multi-
level sets methods to achieve complete and accurate segmentation of the
cell buddies. However, this method suffered from high under-detection and
under-segmentation.

Li et al. [32] described a segmentation method for cancer cell migration
studies from phase contrast images. The original images were filtered with
a series of LoG filters of different scales to separate the bright and dark re-
gions of cell bodies. Both detected regions were then concluded, and the cell
bodies were segmented by summarising these two regions. This method did
not deliver efficient performance for microscopy images with changing illu-
mination. The segmentation accuracy was not comparable with advanced
techniques.

Maximally stable extremal regions The maximally stable extremal region
(MSER) detector is a method to detect image blobs as areas characterised by
bright uniform intensities and their outer boundaries [33].

Zhi et al. [34] proposed the segmentation of nuclei and cells from clumps
of overlapping cervical cells. The MSER algorithm was applied to detect and
segment the not overlapped nuclei. The output images missed the cytoplasm
boundaries on some overlapping cells in poorly contrasted regions.

Arteta et al. [35] described a method to detect and segment H&E stained
cells over fluorescence and phase-contrast images. The MSER detector was
applied to find a broad number of candidate regions. Then, the SVM classi-
fier classified the extracted regions and scored each region for the detection
task. A subset of non-overlapping regions that match the model was selected
by maximising the total scores using dynamic programming. The authors
annotated a few images with a simple dot to train the model using the SVM
classifier. This method achieved a precision of 0.86 and an F1-score of 0.88.

Buggenthin et al. [36] proposed an automatic method for cell detection
in bright-field microscopy images. The cell borders were extracted using
the active contours method. Then, the MSER algorithm identified and sepa-
rated nearly all cell bodies. Eventually, a two-step marker-based watershed
approach was applied to splitting multiple cells segmented as single fore-
ground objects. The method achieved 0.82 cell detection accuracy (but was
insufficient for out-of-focus images) and efficient computation cost.

Thresholding methods [18, 19] are the easiest to separate the foreground and
background in the target image. On the other hand, they did not achieve
good segmentation results for images with complex intensity distributions,
such as microscopy and medical images. Edge-based methods [31, 32] deliver
efficient segmentation results for objects with sharp and prominent edges but
face the problem of multiple, smooth, and vanishing edges of overlapped
living cells in microscopy images. Region-based methods [25, 26, 35, 36] deal
more efficiently with the noisy images and vanishing borders of the target
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objects, especially in microscopy images. However, these methods require
specifying the seed points and suffer from over- and under-segmentation.

Due to the low performance of the traditional methods on microscopy
and medical images, machine learning methods have rapidly grown and ex-
panded in microscopy and medical research region.

1.4.2 Machine Learning methods
Machine learning is a subset of artificial intelligence (AI) in computer sci-
ence. It allows computers to learn from experience like humans using data
and algorithms and gradually improve their accuracy [37]. The ML methods
deliver higher performance facing complex and challenging data sets such
as microscopy and medical images. Generally, The ML methods could be
classified into two main categories:

1. supervised machine learning methods and
2. unsupervised machine learning methods.

Supervised methods

The supervised machine learning techniques use the target data sets and re-
lated corrected replies to teach the algorithm and generate the model [38].

Support vector machine One of the well-known supervised and kernel-
based learning methods is a support vector machine (SVM). The SVM analy-
ses data to achieve the optimal hyperplane for separation of the high dimen-
sional data with minimum errors in classification and regression tasks [39]
(Fig. 1.4).

FIGURE 1.4: The structure of SVM classifier [3].

Janssens et al. [40] used a multi-class SVM classifier to separate cells from
segmented clumps and connective tissue in H&E stained skeletal muscle cell
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images. The clumps were segmented using thresholding of the bright re-
gions. Afterwards, the SVM classified the segments into individual cells, cell
clumps, or remnant connective tissues. The method achieved a 0.62 F1 score
and suffered from over-segmentation of overlapping cells.

Cheng et al. [41] proposed an SVM classifier for microscopic cellular seg-
mentation. The image pixels were characterised according to their shape,
appearance, and context feature descriptors. Then, extracted features pooled
to form one vector for a superpixel. Finally, the SVM classifier achieved a seg-
mentation prediction for the input images and delivered a 0.75 pixel accuracy
based on the serial section Transmission Electron Microscopy (ssTEM) data
set. The method was sensitive to hyper-parameter tuning and showed a low
accuracy in detecting and segmenting the vanished mitochondria objects.

Tikkanen et al. [42] applied a histogram of oriented gradient (HOG) feature
extractor and SVM classifiers to classify pixels into cell or non-cell regions
over bright-field images. This method was sensitive to parameter tuning in
the training step to eliminate false positive detections.

Sommer et al. [43] developed a hierarchical supervised classification using
an SVM with a Gaussian kernel for automated mitosis detection and seg-
mentation of breast cancer cells over microscopy images. They further opti-
mised cost and gamma hyper-parameters in the classification process by the
grid-search parameters. This method suffered from extracting exact locali-
sation properties for small cells and objects and achieved a 0.70 area-under
precision-recall curve accuracy.

Lupica et al. [44] applied an SVM-based method to detect and segment
cells over bright-field microscope images. The edge boundaries of the tar-
get objects were identified using a Canny edge detector. Then, morpholog-
ical filters filled small gaps and holes to achieve morphological information
about the size and shape of the nuclei and cells. The compensatory iterative
sample selection algorithm (CISS) trained binary SVM classifiers with radial
basis function kernel. The trained model classified the trainset images with a
relatively high accuracy rate.

Random forest The random forest (Fig. 1.5) is a supervised classification
method that contains a large number of decision trees [45] operating as an
ensemble during the training phase. Each tree in the random forest spits
out a class prediction. The class with the highest number of votes (trees) is
considered the model prediction [46].

Mualla et al. [47] proposed a cell detection and segmentation method based
on the random forest over bright-field microscopy images. The representa-
tive features were extracted using a scale-invariant feature transform (SIFT).
Then, the balanced random forest was applied as a classifier to calculate and
classify the descriptive cell key points according to their similarity. Eventu-
ally, the key points were clustered with the agglomerative hierarchical algo-
rithm. The weighted mean of the key points was calculated to determine the
exact cell region. The SIFT descriptors were invariant to illumination condi-
tions, cell size, and orientation.
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FIGURE 1.5: The structure of Random Forest classifier [4].

Mah et al. [48] described a supervised ML technique to extract the intersti-
tial cells of Cajal networks from 3D confocal microscopy images. The fast ran-
dom forest classification using trainable Weka segmentation outperformed
the decision table and naïve Bayes classification methods in sensitivity, accu-
racy, and F-measure. However, the process had a higher computational cost
due to the structure of the fast random forest method.

Gall et al. [49] constructed random forests-based discriminative class code-
books to cast probabilistic votes within the Hough transform. This approach
was called the Hough forests object detection. Yao et al. [50] used the Hough
forests to detect and segment the mitotic cells in DIC images. This method
has a structure similar to the random forest generating discriminative class-
specific parts and achieving the probabilistic votes within the Hough trans-
form framework.

Other supervised methods Liimatainen et al. [51] proposed a supervised
method for cell counting in bright-field images using a logistic regression
classification with intensity values of 25 focal planes as features. The bi-
nary erosion with a large circular structuring element was applied as a post-
processing step. However, the method suffered from miss-segmentation and
a low recall rate.

Yin et al. [52] proposed pixel-wise segmentation over phase-contrast and
DIC images. The segmentation step was completed by classifying individual
pixels with an ensemble of Bayesian classifiers. Then, accurate cell bound-
aries were achieved by assigning each pixel with a posterior probability to
the cell or background pixel classes. This method showed a segmentation
problem with overlapped cells and might need further processing to split
touching cells or nuclei.

Fatakdawala et al. [53] proposed a method to detect and segment H&E
breast cancer cells over RGB medical images. They applied the Gaussian
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mixture model (GMM) to classify image regions into four pre-defined classes:
different cell regions and the background. The method did not need training
data sets that are difficult to define owing to variability across images. Due to
the absence of prior knowledge of nucleus shape, this method cannot guar-
antee accurate boundary delineation.

Unsupervised methods

The unsupervised ML methods work without supervision or training. The
unsupervised methods are trained with data that is neither labelled, classi-
fied, nor scored for training [54].

The best-known unsupervised methods are clustering methods. Cluster-
ing expresses grouping data points or objects into clusters according to their
similarities. Calculating this similarity is crucial in selecting the appropriate
similarity measure and achieving the best clustering result [55]. One such
algorithm is K-means (Fig. 1.6) [56].

Xin et al. [57] applied a self-supervised method together with an unsuper-
vised initial segmentation to segment white blood cells. Firstly, the K-means
clustering was applied to extract the overall foreground of coarse white blood
cells. The second module used the coarse segmentation results as automatic
labels to train an SVM classifier. The trained SVM classifier then classified
each image pixel and achieved a more accurate segmentation result. How-
ever, the unsupervised part of the method generates a rough segmentation
result. In the case of complex data sets, the supervised part of the method
cannot work efficiently due to fuzzy boundaries.

FIGURE 1.6: The scheme of K-means clustering [5].

Antal et al. [58] described unsupervised segmentation over microscope cell
images using the Markov Random Field. This method considers an image a
series of planes based on Bit Plane Slicing. The planes were used as initial
labelling for an ensemble of segmentations. The robust cell segmentation was
achieved with pixel-wise voting. However, this method was too sensitive to
the confidence threshold and unable to manage huge data sets.
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Mualla et al. [47] applied supervised and unsupervised methods together
and combined a SIFT to extract key points, a self-labelling, and two clustering
methods to segment unstained cells in bright-field micrographs. The compu-
tational cost and the achieved accuracy were acceptable, but the technique
was sensitive to the feature selection to eliminate the overfitting.

The machine learning methods rapidly expanded due to the low perfor-
mance of simple image processing methods to detect and segment cells in
complex medical and microscopy images. The ML methods have received
more attention than traditional methods [40, 42, 47, 49, 51], since they brought
more accurate detection and segmentation outputs. Nevertheless, the ML
methods are also problematic in aspects as follows:

1. sensitivity of the hyper-parameter tuning to achieve a high-performance
trained model [25, 42]

2. over- and under-segmentation in case of complex images of overlapped
cells and unstable lighting conditions [40, 43],

3. the high computational cost for model training and the disability to
analyse time series and huge data sets [48].

Deep learning (DL) methods have been developed to resolve these prob-
lems and achieve higher accuracy and performance.

1.4.3 Deep learning methods

Deep learning is a subset of machine learning methods that allow computers
to learn from experience and examples like the structure of the human brain’s
neural network. Neural networks try to learn and find a correlation pattern
between a set of data using a process that the human brain operates on [59].
Deep learning methods are widely used in many application fields, such as
speech recognition, visual object recognition, object detection and segmen-
tation and achieved results previously impossible with traditional and ML
methods. Many DL methods have been developed for image segmentation
tasks, especially for analysing complex microscopy and medical image.

Convolutional neural network Convolutional neural network (CNN) is an
artificial neural network (ANN) applied in various computer vision tasks,
including radiology and microscopy research. The CNN learns the spatial
features during the automatic and adaptive procedure through the back-
propagation mechanism. This mechanism is built with convolution layers,
including convolution filters, pooling layers for decreasing the extracted fea-
ture vector’s dimensions, and fully connected layers to merge the extracted
features in previous layers for classification [60].

According to the CNN structure, Sermanet et al. [61] developed and pro-
posed a new concept of CNN known as a fully convolutional network (FCN).
One of the most popular models for semantic segmentation is a fully con-
volutional network (FCN) architecture [6]. The FCN methods merge deep
semantic information with a shallow appearance to achieve satisfactory seg-
mentation results. The FCN involves the arbitrary size of input images in the
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training phase and produces an output of the corresponding size with effi-
cient inference and learning giving a semantic segmentation mask. The most
significant difference between CNNs and FCNs is in the last layers. The CNN
base methods use fully connected layers for mostly binary and multi-class
classification tasks. On the other hand, FCN methods use convolutional lay-
ers to generate and predict a segmentation result according to the extracted
features at the feature extraction step of the network.

FIGURE 1.7: The FCN architecture [6].

Sadafi et al. [62] proposed a deep learning method to segment red blood
cells. The technique used the manual labelled ground truth masks to train the
neural network based on FCN structure. The network was trained on small
images to decrease the computational cost. The method achieved an accuracy
of 0.9 and showed false negative predictions due to the out-of-focus cells.

Lin et al. [63] combined a mask RCNN with a shape-aware loss to achieve
HeLa segmentation over DIC and phase-contrast images with a 0.91 IoU ac-
curacy.

Ciresan et al. [64] proposed a DCNN to detect and segment breast can-
cer cells over histology images. The max-pooling CNN network provided a
probability map by classifying each image pixel. The achieved probability
map was smoothed with a disk kernel in post-processing. The final centroid
was detected with non-maxima suppression.

Song et al. [65] applied the multiscale convolutional network (MSCN) to
extract scale-invariant features and segment regions centred at each pixel.
Coarse segmentation was completed by an automated graph partitioning
method based on the pre-trained features. The Dice metric and standard
deviation were significantly improved compared with similar methods.

Liu and Yang [66] combined ML and DL algorithms. The LoG, MSER, and
iterative voting learning methods were used to find the candidates for the
cell regions. Then, a seven-layer DCNN was used to train the model, assign
a score for each extracted candidate, and find the best candidate region. The
method achieved 0.90 Dice metric accuracy but is sensitive to parameter opti-
misation in the supervised ML step to achieve the best detection result using
DCNN.
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Xie et al. [67] proposed a method to detect and segment the nucleus cen-
troids over bright-field images. The DCNN was applied to learn the voting
offset vectors and voting confidence jointly achieved by the Hough voting.
Then, the nucleus centroids were localised and detected using heavy cluster-
ing and morphological variations. The method reached 0.85 and 0.81 preci-
sion and Dice accuracy, respectively. However, the computational cost was
high, and the outputs were less satisfying than in other algorithms.

Chang et al. [68] proposed a CNN to detect and segment induced pluripo-
tent human stem cells over bright-field images. The regions of various cell
differentiation phases were represented as probability images. The CNN
classifier trained the multi-class classification model with multiple types of
image patches, including individual types of cells. The five-layer CNN clas-
sifier included max-poling and activation function steps and three fully con-
nected layers. The method showed misclassification when the classes were
very similar.

Thi et al. [69] introduced a convolutional blur attention (CBA) network
containing down- and upsampling procedures for nuclei segmentation in
standard challenge datasets [70, 71]. The network assigns deterministic la-
bels to the pixels through the features of input images. The authors achieved
a 0.92 F1 score accuracy. The number of trainable parameters lower than in
other DCNNs decreased the computational cost.

Jingru et al. [72] developed a CNN for an attentive instance cell detection
and segmentation. The algorithm accurately predicts the bounding box and
segmentation mask of each cell. The authors first employed a single shot
multi-box detector (SSD) [73] to detect neural cells in the input image. Var-
ious FCNs that shared the backbone layers with SSD were employed in the
segmentation phase. The skip connections in the FCN generate semantics
from the deep into the shallow layers. The attention mechanism suppressed
noise and highlighted regions with a 0.775–0.779 mean-IoU accuracy.

Wan et al. [74] proposed a DCNN detection-segmentation framework for
overlapping cells in digital cytological images. The ROIs identified in the first
– cell detection – phase were used as training samples for the subsequent cy-
toplasm segmentation phase. The TernausNet model was trained and used
as a modified FCN as a segmentation neural network. The method could
deal with low-quality (poor-contrast, ambiguous foreground/background
regions) images.

The U-Net is a convolutional network architecture for fast and precise im-
age segmentation. For the first time, the U-Net was introduced for biomedi-
cal image segmentation [7]. The name of this network comes from its shape,
which is similar to the letter "U". This network was designed as an extended
FCN working with fewer training images but with more precise output.

The U-Net architecture is symmetric (Fig. 1.8). Its left part – the encoder
section – extracts the representative features from image regions at different
levels of the network convolution operations and hidden layers to reach the
network’s bottom. The right part – the decoder section – uses the feature
representation extracted in the encoder to generate a semantic segmentation
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FIGURE 1.8: The default U-Net by [7].

map. The U-Net benefits the concatenation step from the encoder to the de-
coder merging shallow and deep feature maps and achieving more precise
localisation information.

Long et al. [75] modified the U-Net to a light-weighted U-Net (U-Net+)
with a customised encoded section to reduce the computational cost for lim-
ited computational resources. Due to a weaker feature extraction structure,
the method did not deliver higher mean-IoU accuracy in nuclei segmentation
over bright-field, dark-field, and fluorescence images.

Bagyaraj et al. [76] proposed two automatic deep learning networks: U-
Net-based deep convolution network and U-Net with a dense convolutional
network (DenseNet) for detection and segmentation of brain tumour cells.
The authors achieved remarkable results with the DenseNet.

Shibuya et al. [77] proposed a Feedback U-Net using the convolutional
Long Short-Term Memory (LSTM) network, working on Drosophila and mouse
cell image data sets. This method showed a low level of accuracy, depend-
ing on the segmented class (cytoplasm, cell membrane, mitochondria, and
synapses).

Chen et al. [8] proposed a Bridged U-Net (Fig. 1.9) with two different U-
Nets to segment prostate cancer over medical images. The method objective
was to use the skip connection bridging two U-Net networks as a feature
fusion step. The Bridged U-Net was used for feedforward processing from
the lower to the upper layer. Using two U-Net architectures leads to more
trainable parameters and higher computational costs. The method achieved
a 0.881 Dice accuracy which was no significant improvement compared to
similar works.
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FIGURE 1.9: The bridge U-Net architecture by [8].

Alom et al. [9] proposed a Recurrent Residual CNN (R2U-Net, Fig. 1.10)
based on the U-Net for medical image segmentation. The method objective
was to improve the performance of the reference U-Net by implementing
the recurrent and residual mechanism into each convolutional layer. The
method successfully overcame the gradient vanishing problem by continu-
ously updating the gradient values in this very deep neural network architec-
ture. The R2U-Net achieved 0.87, 0.81, and 0.79 F1 scores for DRIVE, STARE,
and CHASE medical data sets. Applying recurrent and residual mechanisms
together increased the number of trainable parameters and computational
costs.

FIGURE 1.10: The R2U-Net architecture by [9].

Pereira et al. [78] proposed a CNN with the 3× 3 kernel size to segment the
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brain tumour over MRI images. The small kernel made the CNN deeper and
mitigated the overfitting by assigning a lower weight value. The data was
augmented and normalised in the pre-processing phase. The method perfor-
mance evaluated on the BRATS 2013 dataset reached 0.78, 0.65, and 0.75 Dice
coefficients for the complete, core, and enhancing regions, respectively.

Stawiaski et al. [79] proposed semantic segmentation based on a DenseNet
to segment brain tumour regions over medical images. The method used the
U-Net as a backbone, utilising dense connections between the layers through
dense blocks. The method reached the Dice metric values of 0.79 and 0.85.

Sunny et al. [80] proposed a multi-class cell segmentation in fluorescence
images using a hybrid DL method. The authors combined a modified U-
Net with the ResNet34 deep encoder network as a feature extraction part
to enhance the multi-class segmentation result. Applying the ResNet34 with
residual mechanism overcame the gradient vanishing (often occurring in deep
neural networks) and gave more representative features to generate the seg-
mentation masks. The ResNet34-Unet achieved a 0.79 IoU accuracy on the
SNA-1 SEC data set.

Bakir and Yalim Keles [81] developed a two-step U-Net segmentation over
a DIC-C2DH-HeLa data set. The first U-Net was responsible for localising
the HeLa cells. The output of the first U-Net served as prior information for
the second U-Net to train the model and obtain the exact cell boundaries.
The method showed a 0.85 segmentation accuracy. However, the number of
trainable parameters and computational costs increased dramatically.

Piotrowski et al. [82] developed a fully automated DL-based multi-class
cell state recognition and segmentation over phase-contrast images. The
method was based on a U-Net and segmented different classes (colonies, sin-
gle, differentiated, and dead) of human induced pluripotent stem cells from
each other. This method obtained an overall 0.777 IoU metric accuracy, and
0.918 and 0.653 IoU values for the class of colonies and the class of dead cells,
respectively, as the best and worst results.

Yu et al. [83] proposed a semi-supervised DL algorithm – MultiHeadGAN
– with an encoder and two separate decoders to segment low-contrast retinal
pigment epithelium cells over fluorescent microscopy images. The designed
Multi-Head structure could train the model with a small scale of annotated
data. The method showed segmentation accuracy of 0.873 and 0.801 as the
precision and recall metric respectively.

Zhao et al. [84] developed a semantic segmentation for abnormal cells in
cervical cytology images. This lightweight feature attention network (LFANet)
method combines a feature extraction approach with the attention module to
extract abundant representative features from different parts of images of
various image resolutions for the training phase. The trained model seg-
mented the nucleus and cytoplasm regions over the cervical images. The
method achieved a 0.8760 Jaccard metric value.

Khamene et al. [10] proposed a modified U-Net-based method (Fig. 1.11)
to segment membranes over microscopy images to evaluate human epider-
mal growth factor receptor 2 (HER2) proteins. The method consists of three
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FIGURE 1.11: The modified U-Net-based architecture by [10].

main phases. Firstly, a superpixel SVM feature classifier was used to clas-
sify epithelial and stromal regions from the slide image. In the second step,
the CNN segmented the membrane regions from the classified epithelial re-
gions. In the last step, the overall score of each slide was obtained by merging
and evaluating the divided tiles. The method showed a 0.93 accuracy metric
value.

Eschweiler et al. [85] developed a CNN-based multi-class instance cell
segmentation method for 3D confocal images. This method integrated the
U-Net method with watershed segmentation to benefit both techniques. The
proposed CNNs achieved accurate performance in segmentation tasks, even
in deeper tissue layers with vanishing fluorosphore responses. The method
reached a 0.870 Jaccard index accuracy.

Khan and Mir [86] segmented white blood cells (WBC) from red blood cells
and platelets over microscopy images using a U-Net variant with a bigger in-
put image size to obtain the segmentation masks with a 0.687 overall Jaccard
metric accuracy. The segmented WBCs regions were then classified into five
categories according to the extracted shape and texture features by applying
an SVM classifier.

Tran et al. [87] segmented and identified red and white blood cells over
microscopy peripheral blood cells images using DL SegNet encoder-decoder
architecture with a 0.89 IoU metric value.
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1.5 Our research objectives

As described above, traditional image processing [19, 25, 31, 35] and ML
methods [40, 42, 43, 48] did not deliver sufficient detection and segmenta-
tion outcomes facing difficulties (e.g., background complexity, cell overlap-
ping and vanishing cell borders or large time-lapse and 3D datasets) in bi-
ological and medical micrographs. However, compared with ML methods,
some CNN methods demand huge computational costs and many manu-
ally labelled data to achieve accurate training and high-performance models
[6, 88].

The main objective of this PhD thesis is to develop and propose the most
accurate and computationally reasonable optimisable AI approaches based
on deep learning methods to segment the HeLa cells over transmitted and
reflected wide-field microscopy images.

The U-Net-based architecture has been chosen and applied to the trans-
mitted wide-field microscopy images to obtain the single-class semantic seg-
mentation in the first project. The U-Net has been selected since it is a well-
known semantic segmentation method with a promising outcome and the
ability to work with a reasonable amount of trainable data [7]. Variants of
the U-Net architecture – an Attention and a Residual Attention U-Net – have
been assembled and examined to find the best architecture for our telecentric
bright-field microscopy dataset.

The main objective of the second project was to develop a hybrid deep-
learning method for multi-class cell segmentation to classify living cells ac-
cording to the life cycle phases over unique telecentric wide-field reflected
light microscopy images. We replaced the encoder part of the U-Net with
VGG19, Inception, and ResNet34 encoder architecture. These CNN variants
were examined to enhance the feature extraction step and find the most ef-
ficient multi-class segmentation architecture to classify living HeLa cells ac-
cording to morphological shape in their lifetime.

In this research, a microscope in two light source arrangements (transmis-
sion vs reflection) was used to collect time-lapse series of HeLa cells (Fig.
1.2) as raw data with a theoretical pixel size (size of the object projected onto
the camera pixel) of 113 nm. This microscope was designed by the Institute
of Complex Systems (ICS, Nové Hrady, Czech Republic) and built by Optax
(Prague, Czech Republic) and ImageCode (Brloh, Czech Republic) in 2021.
The microscope was equipped with the telecentric measurement objective
TO4.5/43.4-48-F-WN (Vision & Control GmbH, Shul, Germany) [89] and an
AR1820HS 1/2.3-inch 10-bit RGB digital camera (ArduCam Technology CO.,
Ltd., Kowloon, Hong Kong) with a chip of 4912×3684 pixel resolution. The
custom-made software controlled capturing the primary signal with a cam-
era exposure of 2.75 and 998 ms for transmission and reflection, respectively.
(Jena, Germany). In the first project of single-class semantic segmentation,
we used two light-emitting diodes CL-41 (Optika Microscopes, Ponteran-
ica, Italy) [90] in the transmission arrangement. In the second project on
the multi-class living cell segmentation, a light source Schott VisiLED S80-25
LED Brightfield Ringlight [91] in the reflection position was used.
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CHAPTER 2

Data collection and methodology
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2.1 Overview

Deep learning methods were widely used in many research fields, including
medicine and microscopy, for object detection and segmentation. Due to the
promising outcome in living cell segmentation, we developed and applied
different variants of DL methods to our transmitted and reflected wide-field
microscopy image datasets.

We will first describe sample preparation and data collection steps in Sec-
tion 2.2. Section 2.3 describes the data acquisition and pre-processing steps
for both projects. Section 2.4 describes the single-class cell segmentation
methods based on transmitted wide-field light microscopy images. The last
Section 2.5 describes the hybrid DL methods for multi-class living cell seg-
mentation in detail.

2.2 Sample preparation and data collection

The cell line chosen for both single and multi-class segmentation was HeLa
line (Section 1.2). This cell line was provided by (European Collection of Cell
Cultures, Cat. No. 93021013) in frozen shape with dry ice. The cells were
cultivated to low optical density at 37◦C, 5% CO2, and 90% relative humid-
ity overnight. The nutrient solution consisted of Dulbecco’s modified Eagle
medium (87.7%) with high glucose (>1 g L−1), fetal bovine serum (10%), an-
tibiotics and antimycotics (1%), L-glutamine (1%), and gentamicin (0.3%; all
purchased from Biowest, Nuaille, France). The HeLa cells were maintained
in a Petri dish with a cover glass bottom and lid at room temperature of 37◦C.

2.3 Data acquisition and pre-processing

Time-lapse experiments with different time intervals were performed to cap-
ture raw data series of living HeLa cells on the glass Petri dishes using the
custom-made microscope in a transmitted and reflected setup. The complete
description of both transmitted and reflected wide-field light microscope was
written in Section 1.3. The obtained raw image series were calibrated by the
algorithm proposed in [92] implemented in the microscope control software
to minimize the noise and image background inhomogeneities.

After the image calibration, the raw 16-bit time-lapse data were transferred
into the quarter-resolved 8-bit colour (RGB) images by the method intro-
duced in [93]. Each pair of green camera filter pixels’ intensities were av-
eraged to the green image channel. The red and blue camera filter pixels
were assigned to the relevant image channel. Then, images were rescaled to
8 bits after creating the image series intensity histogram and omitting unoc-
cupied intensity levels. This bit reduction ensured the maximal information
preservation and mutual comparability of the images through the time-lapse
series.

All 8-bit RGB images were denoised by the method proposed in [94] to
decrease the background noise to the minimum level and keep the maximum
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FIGURE 2.1: Examples of collected and manually labelled data
in light transmission telecentric microscope.
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texture details. Then, the image series were cropped to the 1024 × 1024 pixel
size for further analysis.

In the way described above, we obtained 500 light transmission images
for training the single-class cell segmentation model and 650 light reflection
images for the multi-class cell segmentation model.

In the single-class segmentation project, the images of living cells have
been marked manually with human eyes in MATLAB (MathWorks Inc., Nat-
ick, Massachusetts, USA) as the Ground-Truth (GT) single-class masks. Fig-
ure 2.4 represents a sample of the single-class segmentation data with the
corresponding GT.

In the multi-class segmentation project, each cell was manually labelled in
the Apper platform and assigned to the cell class according to its morpholog-
ical shape and life cycle. We distinguished three image region classes:

1. a cell-free background class,
2. a class with cells of larger morphological shapes without cell borders,

where the cells are migrating or dividing,
3. a class with roundish cells with sharper borders, where the cells are in

their early life-cycle state without division state yet.

Figure 2.5 shows the sample of the multi-class images and ground-truth mask
classes.

For both single and multi-class projects, 80% of the labelled images (512 ×
512 pixels) were used for model training and remained 20% of the data sets
were used for testing and model evaluation. 20% of the training sets were
used for the model validation during the training of the neural network ar-
chitectures.

2.4 Single-class cell segmentation

Three different U-Net architectures were implemented to examine single-
class cell segmentation of light transmission microscopy data set to achieve
the most accurate semantic segmentation result.

2.4.1 Simple U-Net Model
The U-Net is one of the promising neural network architectures for semantic
segmentation [7]. The U-Net was based on the FCN architecture consisting of
encoder-decoder layers. This architecture includes various feature channels
to merge shallow and deep features. The extracted deep features are utilised
for positioning and the shallow features are used for precise segmentation.
The architecture of the U-Net chosen for single-class segmentation is repre-
sented in Fig. 2.3.

The input layer accepts the RGB colour images as a training set. Each level
of the U-Net structure includes two 3×3 convolutions. Batch normalization
follows each convolution, and "LeakyReLU" activation functions follow a
rectified linear unit. In the encoder part of the network (Fig. 2.3, left part),
each "level" consists of a 2 × 2 max pooling operation with the stride of two
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FIGURE 2.2: Examples of light reflection telecentric data and
corresponding GT. The green and red class represents the
roundish sharp cells and the migrating vanish cells, respec-

tively.
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FIGURE 2.3: Architecture of the simple U-Net architecture.
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to find the maximal value in the 2 × 2 area. By completing down-sampling
in each level of the encoder part, convolutions will double the number of
feature channels.

The height and width of the existing feature map were doubled in each
level of the decoder section (Fig. 2.3, right part) from bottom to top. In the
next phase, the deep semantic and shallow extracted features were combined
and concatenated with the feature maps from the encoder section. After con-
catenation, the output feature maps have channels twice the size of the input
feature maps. The output of the last decoder layer at the top was achieved by
1× 1 convolution size and predicts the probability of each pixel. The padding
in the convolution process allowed us to obtain the same sizes of input and
output layers.

2.4.2 Attention U-Net Model
In the U-Net architecture, the encoder and decoder sections were connected
to each other using bridge connections to combine the down-sampling path
with the up-sampling path and achieve spatial information. However, this
concatenation process brings many irrelevant feature representations from
the initial layers. The Attention U-Net architecture [95] showing improve-
ment in medical imaging performance was implemented (Fig. 2.4 A) to avoid
transferring irrelevant feature representations and improve segmentation re-
sults achieved by a standard U-Net.

The attention gate at the skip connections between the encoder and de-
coder layers highlights the remarkable features and suppresses activations
in the irrelevant regions. In conclusion, the attention gate improves model
sensitivity and performance without any complicated computational costs
and requirements.

The proposed attention gate (Fig. 2.4B) accept two inputs – x and g. Input x
is achieved by the skip connection from the encoder layers. Coming from the
early layers, this input contains better spatial information. A gating signal
input g comes from the deeper network layer and includes a better feature
representation. The attention part weights different parts of the images. This
process adds the weights to the pixels based on their relevance in the training
step. The relevant parts of the image get large weights than the less relevant
parts. The achieved weights are also trained in the training process and make
the trained model more attentive to the relevant regions.

2.4.3 Residual attention U-Net Model

The residual mechanism was initially implemented into the U-Net architec-
ture for nuclei segmentation [9]). The architecture was named the Residual
U-Net. The simple U-Net architecture was built of repetitive convolutional
blocks at each level (Fig. 2.5B). On the other hand, very deep convolutional
networks suffer from vanishing gradients at deeper levels. The residual step
was developed to continuously and incrementally update the weights in each
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FIGURE 2.4: A) The Attention U-Net architecture, B) the
attentive module mechanism. The size of each feature map is
H × W × D, where H, W, and D indicate height, width, and

number of channels, respectively.
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FIGURE 2.5: A) The Residual Attention U-Net architecture. B)
A U-Net layer structure. C) The sample of residual block

progress. BN refers to Batch Normalization.

convolutional block (Fig. 1.6C) to improve the network performance and re-
solve the vanishing gradient problems.

The mechanism of neural networks is a continuous process in which each
convolutional block feeds the next block. A problem in deep convolutional
neural networks (DCNN) when stacking convolutional layers is that the gen-
eralisation ability of the trained model can be affected by the deeper net-
work’s structure. The skip connections–the residual blocks–resolve this prob-
lem and improve the network performance, with each layer feeding the next
layer and layers about two or three steps apart (Fig. 1.6C). The Residual and
Attention U-Net architectures were connected to model our data sets more
effectively and further improve segmentation results.

The computational results combined with the Binary Focal Loss function
become the energy function of the proposed U-Net-based methods.
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After obtaining the most accurate semantic segmentation result in the Resi-
dual Attention U-Net, the morphological reconstruction by the watershed
algorithm [96] was applied to achieve instance segmentation of each cell.
The watershed segmentation further helped us solve the over- and under-
segmented regions and specify each separated cell by, e.g., cell diameters,
solidity, or mean intensity.

2.5 Multi-class cell segmentation

The simple U-Net, VGG19-U-Net, Inception-U-Net, and ResNet32-U-Net ar-
chitectures were developed and implemented to achieve the most accurate
multi-class semantic segmentation result in reflected wide-field light microscopy
image series.

2.5.1 Simple U-Net Model

The U-Net [7] is a well-known deep neural network architecture for semantic
segmentation based on encode-decoder layers. In this research, a simple –
five-"level" – U-Net neural network architecture was implemented as the first
method for multi-class segmentation purposes. The architecture of this U-
Net (Fig. 2.6) is similar to the simple U-Net proposed in Section 2.4.1. The
main difference relies on the last – output – decoder layer.

The top output decoder layer with a 1 × 1 convolution size predicts the
probability of each pixel that the pixel belongs to one of three classes using
the "softmax" activation function. Padding in the convolution process al-
lowed us to achieve the same sizes of the input and output layers. Each pixel
was assigned to one certain class according to the highest probability values
achieved among different classes using the "argmax" operation in the final
step.

2.5.2 The VGG19-U-Net
The U-Net is a famous architecture for semantic segmentation tasks. How-
ever, the complexity of the U-Net in terms of the number of trainable param-
eters and weaker feature extraction structures in multi-class segmentation
over complex microscopy images affect the trained model’s performance.
The VGG-Net architecture replaced the U-Net encoder path. In this way,
we combined two powerful architectures and improved the categorical seg-
mentation of our unique microscopy data set. The VGG-Net was introduced
by Simonian and Zisserman from Oxford’s Visual Geometry Group (VGG)
in 2015 [97].

The VGG is a popular image recognition architecture, designed to reduce
the number of parameters in the convolutional layers and improve training
time. The VGG-19 comprises a network with a deeper topology and smaller
convolution kernels to simulate a perceptual field of view. Figure 2.7 repre-
sents the VGG19-U-Net proposed in this study. The left side of the network
(Fig. 2.7A) shows the architecture of the VGG-19 encoder section with 16
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FIGURE 2.6: The simple U-Net model architecture. A) The en-
coder section. B) The decoder section.

convolution layers, three fully connected layers, and 5 MaxPool layers in five
blocks.

The right side of the network (Fig. 2.7B) represents the decoder part with
five blocks. The concatenation step between each VGG-19 encoder layer and
U-Net decoder layer (Fig. 2.7) combines the feature maps from the encoder
part with the high-resolution deep semantic and shallow features from the
decoder part. The last decoder layer has a convolution size of 1×1 and pre-
dicts the probability values for each pixel and each of the three classes using
the "softmax" activation function.

2.5.3 The Inception-U-Net
Analysing microscopy images with fixed kernel size in all convolution layers
can make extracting the feature descriptors of different sizes difficult. The
bigger kernel can extract a global feature representation over a large image
area, and the smaller kernel is suitable for detecting area-specific features.
Google’s inception deep learning method [98], known as the Inception archi-
tecture, was selected to build a hybrid Inception-U-Net architecture (Fig. 2.8)
further to improve multi-class segmentation in our data sets.

The inception modules were developed to reduce computational costs by
integrating different sizes of convolutions. The inception module applies ker-
nels of various sizes within the same architecture layer and becomes wider
(instead of deeper) with the layers (Fig. 1.6A).
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FIGURE 2.7: The hybrid VGG19-U-Net architecture. A) The
VGG-19 encoder part. B) The U-Net decoder part

The convolution layers were replaced with an inception module (Fig. 1.6B)
in all five levels of the encoder and decoder sections of the original U-Net
structure. Each inception module is built of multiple sets of 3×3 and 1×1
convolutions, 3×3 max-pooling, and cascaded 3×3 convolutions.

The last layer in the decoder section, a 1×1 convolution layer, and the "soft-
max" activation function generate three segmentation classes of the feature
maps for each pixel of the given input image. Each pixel is assigned to the
class according to the highest probability value among the classes.

2.5.4 The ResNet34-U-Net
The Residual Convolutional Neural Network (ResNet) [99] replaced the fea-
ture extraction part of the standard U-net architecture to improve multi-class
segmentation further. Deeper neural networks are more effective for com-
plex classification and segmentation tasks. On the other hand, the vanishing
gradient problem appears in very deep CNNs during the training process.
Also, employing a high number of CNN layers makes the training process
slower, and the obtained value of the back-propagation derivative becomes
insignificant in training. As a result, the model’s accuracy is not improved,
and the generalisation ability of the trained model is not satisfactory. To over-
come this problem, skip connections are employed in the CNN to bypass one
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FIGURE 2.8: A) The Inception-U-Net architecture. B) The inter-
nal architecture of one inception module.
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FIGURE 2.9: The hybrid ResNet-34-U-Net architecture.

or more layers and update the gradient values from one or more previous
layers into the following layers.

The ResNet-34-U-Net architecture was implemented and applied in our
research (Fig. 2.9). The proposed architecture has 34 layers and four residual
convolution steps with a total of 16 residual blocks (red and purple arrows).
The first convolution layer has 64 filters with a kernel size of 7×7, followed
by a max-pooling layer. Each residual block consists of two 3×3 convolu-
tion layers followed by the ReLU activation function and batch normalisation
with the identity shortcut connection.

The decoder section has the same structure as the simple U-Net architec-
ture. The "softmax" activation function was applied to achieve the probabil-
ity map across three different classes for each pixel of the input images.



38

2.6 Model training and evaluation

The implementation platform for cell segmentation was based on Python 3.9.
The deep learning framework was Keras with the backend of Tensorflow
[100]. The data sets were divided into training (80%) and testing (20%). A
part (20%) of the training set was used for model validation in the training
process to avoid over-fitting and achieve higher performance.

All data sets were resized to 512×512 pixels, the input image size for train-
ing models in the proposed CNNs. The optimised hyperparameter values
for single- and multi-class segmentation (Tab. 2.1) were achieved and re-
ported after training the most stable CNN models. The activation function in
single- and multi-class segmentation was "LeakyReLU" and "ReLU", respec-
tively. The early stopping hyperparameters were used to avoid over-fitting
during the model’s training. The patient value was 15 and 30 for training
the single- and multi-class model, respectively. The batch size was set to the
maximal value of 8 due to the complexity of the CNN structures and GPU-
VRAM limitation. The Adam algorithm was chosen to optimise all neural
networks. The learning rate was set to 10−3 for all CNN models.

TABLE 2.1: Hyperparameters setting for training the models.

Hyperparameter Single-class Multi-class
Activation function LeakyReLU ReLU
Learning rate 10−3 10−3

Number of classes 1 3
Batch size 8 8
Epochs number 100 200
Early stop 15 30
Optimizer Adam Adam
γ for loss function 2 2
Step per epoch 100 52

Image segmentation categorises pixels as either the background or cell
classes. The Dice loss was used to compare the segmented cell image with
the GT and minimise the difference between them as much as possible in the
training process. The "binary focal loss" and "categorical focal loss" was used
as the loss function for the single- and multi-class segmentation, respectively.

The segmentation models were evaluated by different metrics (Eqs. 2.1–
2.5), where TP, FP, FN, and TN are true positive, false positive, false negative,
and true negative metrics, respectively [101]. The metrics were computed for
all test sets and explained as mean values.

Overall pixel accuracy (Acc) represents a per cent of image pixels belong-
ing to the correctly segmented cells:

Acc =
Correctly Predicted Pixels

Total Number of Image Pixels
=

TP + TN
TP + FP + FN + TN

(2.1)
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Precision (Pre) is a proportion of the cell pixels in the segmentation results
that match the GT:

Pre =
Correctly Predicted Cell Pixels

Total Number of Predicted Cell Pixels
=

TP
TP + FP

(2.2)

The Recall (Recl) represents the proportion of cell pixels in the GT correctly
identified through the segmentation process:

Recl =
Correctly Predicted Cell Pixels

Total Number of Actual Cell Pixels
=

TP
TP + FN

(2.3)

The F1-score or Dice similarity coefficient states how the predicted seg-
mented region matches the GT in location and level of details and considers
each class’s false alarm and missed value. This metric determines the accu-
racy of the segmentation boundaries [102] and has a higher priority than the
Acc:

Dice =
2 × Pre × Recl

Pre + Recl
=

2 × TP
2 × TP + FP + FN

(2.4)

Another essential evaluation metric for semantic image segmentation is
the Jaccard similarity index known as Intersection over Union (IoU). This
metric is a correlation among the prediction and GT [6, 103], and represents
the overlap and union area ratio for the predicted and GT segmentation:

IoU =
| yt ∩ yp |

| yt | + | yp | − | yt ∩ yp | =
TP

TP + FP + FN
(2.5)
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CHAPTER 3

Results and summary
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3.1 Single-class segmentation results

The single-class segmentation models were well-trained and converged after
100 epochs, as evaluated by the training/validation loss and Jaccard plots per
epoch. The best hyperparameter values reported in Table 2.1 were consid-
ered to train the model for the best training performance and stability. Then,
the test data sets were used to evaluate the achieved models. All trained
models were assessed (Tab. 3.2) using the metrics in Eqs. 2.1–2.5.

TABLE 3.1: Numbers of trainable parameters and the run time
for single-class segmentation models.

Network Run time Training parameter
U-Net 3:42’:18” 31,402,501
Attention U-Net 4:04’:23” 34,334,665
Residual Att U-Net 4:11’:24” 39,090,377

Model training of the simple U-Net took the shortest run time with the
fewest trainable parameters (Tab. 3.1). However, the difference in run time
between the Attention U-Net and the Residual Attention U-Net is not huge
in increasing trainable parameters. The computational costs also did not in-
crease dramatically compared with the acceptable improvement in the model
performance.

The simple U-Net segmentation results suffer from mis-segmentation of
some unclear cell borders (Fig. 3.1A, black circle). The Attention U-Net
(Fig. 3.1B) detected cells with unclear borders more efficiently than the sim-
ple U-Net. However, the Attention U-Net segmentation suffers from under-
segmentation in some regions (visualised by the yellow circle). The outcome
from the Residual Attention U-Net (Fig. 3.1C, red circle) achieved more accu-
rate segmentation of the unclear cell borders. The watershed binary segmen-
tation after the Residual Attention U-Net separated and identified the cells
with the highest performance (Fig. 3.1).

According to the mean-IoU, mean-Dice, and accuracy metrics (Tab. 3.2),
the Attention U-Net model showed better segmentation performance than
the simple U-Net model in the same situation. The segmentation results were
further slightly improved after applying the residual step into the Attention
U-Net.

TABLE 3.2: Evaluation of the single-class segmentation models.

Network Accuracy Precision Recall m-IoU m-Dice
U-Net 0.957418 0.988269 0.961264 0.950501 0.974481
Attention U-Net 0.959448 0.985663 0.965736 0.952471 0.975511
Residual Att U-Net 0.960010 0.986510 0.965574 0.953085 0.975840
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3.2 Multi-class segmentation results

Multi-class segmentation models were trained well and converged after 200
epochs by observing and evaluating training/validation loss and Jaccard
plots. The hyperparameter values listed in Table 2.1 were used to achieve
the best training performance and stability. Then, the performances of the
trained models were assessed and evaluated using the test data sets and the
metrics in Eqs. 2.1–2.5 (Tab. 3.4).

TABLE 3.3: Number of the trainable parameters and the run
time for the multi-class models.

Network Run time Training parameter
U-Net 3:33’:29” 31,402,639
VGG19-U-Net 1:44’:38” 31,172,163
Inception-U-Net 1:05’:47” 18,083,535
ResNet34-U-Net 0:56’:22” 24,456,444

One of the critical factors in training high-performance models is optimis-
ing the computational costs. As presented in Table 3.3, the four methods had
significantly different runtimes, the number of trainable parameters, and net-
work structures. Training the simple U-Net took the longest runtime with the
most training parameters. The VGG19-U-Net was trained well in a signifi-
cantly shorter time due to the network structure; the number of training pa-
rameters was slightly lower than in the simple U-Net. The Inception-U-Net
runtime was even faster than the previous two methods. This runtime reduc-
tion led to a further significant decrease in the number of trainable param-
eters and higher segmentation performance. The ResNet34-U-Net achieved
the shortest computational costs with the best segmentation performance.

The results of the multi-class segmentation are shown in Figure 3.2. The
simple U-Net obtained a lower categorical segmentation performance in the
evaluation phase than the other models. The simple U-Net was inefficient
in classifying the cell pixels into the right classes and suffers from wrongly
segmented cells into the wrong classes (Fig. 3.2, yellow circle). The VGG19-
U-Net showed better categorical segmentation regarding the evaluation met-
rics (Tab. 3.4). The cells wrongly segmented by the simple U-Net were caught
slightly, but the wrong classifications still occurred (Fig. 3.2, purple circle).
The Inception-U-Net applied to our data sets as the third hybrid CNN im-
proved the multi-class segmentation results significantly in terms of evalua-
tion metrics (Tab. 3.4). However, this method suffered from over-segmentation
in all classes (Fig. 3.2, black circle). The hybrid ResNet34-U-Net obtained the
best results in the segmentation and classification into all classes (Tab. 3.4).
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TABLE 3.4: Evaluation of the U-Net models for multi-class seg-
mentation.

Network Accuracy Precision Recall m-IoU m-Dice
U-Net 0.9869 0.7897 0.8833 0.7062 0.8104
VGG19-Net 0.9865 0.8051 0.8614 0.7178 0.8218
Inception-Net 0.9904 0.8684 0.8905 0.7907 0.8762
ResNet 34-Net 0.9909 0.8795 0.8975 0.8067 0.8873

FIGURE 3.2: Test image, ground truth, prediction, and 8-bit vi-
sualisation of the segmentation results for the U-Net, VGG19-
U-Net, Inception-U-Net, and ResNet34-U-Net. The yellow and
white circles highlight the wrongly classified and segmented
cells. The black circle highlights a different, smoother segmen-
tation result achieved by the ResNet34-U-Net. The image size

is 512 × 512.
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3.3 Summary and conclusion

The main objective of single-class living HeLa cell segmentation research was
to develop the most accurate and computationally reasonable method to clas-
sify image pixels into either cell or background region in light microscopy
images. The image data sets were collected using a custom-made wide-field
transmitted light microscope. Microscopy image analysis via deep learning
methods was a convenient solution due to the complexity and variability of
this data.

Different U-Net deep learning architectures were involved in this research:
the simple U-Net, the Attention U-Net, and the Residual Attention U-Net.
The simple U-Net showed the fastest training time. On the other hand, the
Residual Attention U-Net achieved the best segmentation performance with
a run time slightly higher than the other two U-Net models.

The second paper focuses on developing an efficient algorithm to detect
and segment living HeLa cells and classify them according to their shapes
and life-cycle stages. The time-lapse image series for this research were col-
lected with the reflected setup of our unique wide-filed microscope. This re-
search involved variants of hybrid U-Net-based CNN architecture: a simple
U-Net, VGG19-U-Net, Inception-U-Net, and ResNet34-U-net.

The simple U-Net has the longest training time, the highest number of
trainable parameters, and the lowest categorical segmentation performance.
In contrast, the hybrid ResNet34-U-Net achieved the best categorical seg-
mentation performance with a run time significantly lower than the other
models. The Residual Convolutional Neural Network (ResNet) was applied
as a hybrid with the U-Net to overcome the gradient vanishing and improve
the generalisation ability during training. Using a series of residual blocks
with skip connections in each level of the ResNet34-U-Net network resulted
in better categorical segmentation.

In conclusion, DL-based methods to analyze microscopy images deliver
accurate and promising outcomes for cell segmentation purposes. The pro-
posed single- and multi-class cell segmentation methods successfully seg-
mented living cells and classified them into categories with a high level of
accuracy.

According to our best knowledge, not many similar researches on trans-
mitted and reflected wide-field microscopy data have been done before. How-
ever, the achieved segmentation results were compared with other types of
microscopy and medical research outcomes and show remarkable differences
in segmentation results as reported in papers in Chapter 4. The proposed sin-
gle and multi-class segmentation methods have general utilization for hyper-
parameters tuning and model training of different microscopy, medical or,
even, remote sensing datasets.
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A B S T R A C T

Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity
and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular
in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main
objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the
HeLa line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets,
a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture.

The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant
image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score
for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net,
respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics
by applying the residual and attention mechanisms together. The watershed method applied to this best –
Residual Attention – semantic segmentation result gave the segmentation with the specific information for
each cell.

1. Introduction

Image object detection and segmentation can be defined as a proce-
dure to localize a region of interest (ROI) in an image and separate an
image foreground from its background using image processing and/or
machine learning approaches. Cell detection and segmentation are
the primary and critical steps in microscopy image analysis. These
processes play an important role in estimating the number of the cells,
initializing cell segmentation, tracking, and extracting features neces-
sary for further analysis. In the text below, the segmentation methods
were categorized as (1) traditional, feature- and machine learning
(ML)-based methods and (2) deep learning (DL)-based methods.

1.1. Traditional cell segmentation methods

Traditional segmentation methods have achieved impressive re-
sults in cell boundary detection and segmentation, with an efficient
processing time [1,2]. These methods include low-level pixel process-
ing approaches. The region-based methods are more robust than the

∗ Corresponding author.
E-mail addresses: ghaznavi@frov.jcu.cz (A. Ghaznavi), rrychtarikova@frov.jcu.cz (R. Rychtáriková), saberioon@gfz-potsdam.de (M. Saberioon),

stys@frov.jcu.cz (D. Štys).

threshold-based segmentation methods [2]. However, in low-contrast
images, cells placed close together or flat cell regions can be segmented
as blobs. Rojas-Moraleda et al. [1] proposed a region-based method
on the principles of persistent homology with an overall accuracy of
94.5%. The iterative morphological and Ultimate Erosion [3,4] suffer
from poor segment performance when facing small and low-contrast
objects. Guan et al. [5] detected rough circular cell boundaries using
the Hough transform and the exact cell boundaries using fuzzy curve
tracing. Compared with the watershed-based method [6], this method
was more robust to the noise and the uneven brightness in the cells.
Winter et al. [7] combined the image Euclidean distance transforma-
tion with the Gaussian mixture model to detect elliptical cells. This
method requires solid objects for computing the distance transform.
The target objects’ large holes or extreme internal irregularities make
the distance transform unreliable and reduce the method performance.
Buggenthin et al. [8] identified nearly all cell bodies and segmented
multiple cells instantly in bright-field time-lapse microscopy images by
a fast, automatic method combining the Maximally Stable Extremal

https://doi.org/10.1016/j.compbiomed.2022.105805
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Regions (MSER) with the watershed method. The main challenges for
this method remain the oversegmentation and poor performance for
out-of-focus images.

The machine learning methods have expanded due to the mi-
croscopy images’ complexity and the previous methods’ low perfor-
mance to detect and segment cells. The ML methods can be classified
into two groups: supervised vs unsupervised. The supervised methods
produce a mathematical function or model from the training data to
map a new data sample [9]. Mualla et al. [10] utilized the Scale
Invariant Feature Transform (SIFT) as a feature extractor and the
Balanced Random Forest as a classifier to calculate the descriptive
cell keypoints. The SIFT descriptors were invariant to illumination
conditions, cell size, and orientation. Tikkanen et al. [11] developed
a method based on the Histogram of Oriented Gradients (HOG) and
the Support Vector Machine (SVM) to extract feature descriptors and
classify them as a cell or a non-cell in bright-field microscopy data.
The proposed method is susceptible to the number of iterations in the
training process as a crucial step to eliminating false positive detections.

The unsupervised ML algorithms require no pre-assigned labels or
scores for the training data [12]. The best known unsupervised methods
are clustering methods. Mualla et al. [13] segmented unstained cells
in bright-field micrographs using a combination of a SIFT to extract
key points, a self-labelling, and two clustering methods. This method
is fast and accurate but sensitive to the feature selection step to avoid
overfitting.

1.2. Deep learning cell segmentation methods

In the last decade, Deep Learning has emerged as a new area of
machine learning. The DL methods contain a class of ML techniques
that exploit many layers of non-linear information processing for super-
vised or unsupervised feature extraction and transformation for pattern
analysis and classification. The Deep Convolutional Networks exhibited
impressive performance in many visual recognition tasks [14]. Song
et al. [15] used a multiscale convolutional network (MSCN) to extract
scale-invariant features and graph-partitioning method for accurate
segmentation of cervical cytoplasm and nuclei. This method signifi-
cantly improved the Dice metric and standard deviation compared with
similar methods. Shibuya et al. [16] proposed the Feedback U-Net using
the convolutional Long Short-Term Memory (LSTM) network for cell
image segmentation, working on four classes of Drosophila cell image
dataset. However, the proposed method suffered from a low accuracy
rate depending on the segmented class. Thi et al. [17] proposed a
convolutional blur attention (CBA) network. The network consists of
down- and upsampling procedures for nuclei segmentation in standard
challenge datasets [18,19]. The authors achieved a good value of the
aggregated Jaccard index. The reduced number of trainable parameters
led to a reasonable decrease in the computational cost. Xing et al. [20]
also proposed an automated nucleus segmentation method based on a
deep convolutional neural network (DCNN) to generate a probability
map. However, the proposed mitosis counting remains laborious and
subjective to the observer.

One of the most popular models for semantic segmentation is Fully
Convolutional Network (FCN) architectures. The FCN combines deep
semantic information with a shallow appearance to achieve satisfactory
segmentation results. The convolutional networks can take the arbitrary
size of input images to train end-to-end, pixel-to-pixel, and produce an
output of the corresponding size with efficient inference and learning
to achieve semantic segmentation in complex images, including mi-
croscopy and medical images [21,22]. Ronneberger et al. [23] proposed
a training strategy that relies on the strong use of data augmentation
by applying U-Net Neural Network, contracting the path to capture
context, and expanding the path symmetrically to achieve a precise
localization. This method was optimized with a low amount of training
labelled samples and efficiently performed electron microscopy image
segmentation. Long et al. [24] proposed an enhanced U-Net-based

architecture called light-weighted U-Net (U-Net+) with a modified en-
coded branch for potential low-resources computing of nuclei segmen-
tation in bright-field, dark-field, and fluorescence microscopy images.
However, the proposed method did not achieve higher accuracy in the
Mean-IoU metric. Bagyaraj et al. [25] proposed two automatic deep
learning networks called U-Net-based deep convolution network and
U-Net with a dense convolutional network (DenseNet) for segmentation
and detection of brain tumour cells. The authors achieved remarkable
results by applying the DenseNet architecture.

As described above, traditional ML methods are not much efficient
to segment cells in a microscopy image with a complex background,
particularly bright-field microscopy tiny cells [8,11,13]. These methods
cannot build sufficient models for big datasets. On the other hand,
some Convolution Neural Networks (CNNs) require a vast number of
manually labelled training datasets and higher computational costs
compared with the ML methods [21,26].

Deep learning-based methods have delivered better outcomes in
segmentation tasks than other methods. Therefore, the main objective
of this research is to propose a highly accurate and reasonably computa-
tionally cost deep learning-based method to segment human HeLa cells
in unique telecentric bright-field transmitted light microscopy images.
The U-Net was chosen since it is one of the most promising methods
used in semantic segmentation [23]. Different U-Net architectures such
as Attention and Residual Attention U-Net were examined to find the
most suitable architecture for our datasets.

Human Negroid cervical epithelioid carcinoma line HeLa [27] was
chosen as a testing cell line for described microscopy image segmen-
tation. The reason for choosing is that HeLa is the oldest, immortal,
and most used model cell line ever. HeLa is cultivated in almost all
tissue and cell laboratories worldwide and utilized in many fields of
medical research, such as research on carcinoma or testing the material
biocompatibility.

The processed microscopy data are specific to high-pixel resolution
in rgb mode and requires preprocessing to suppress optical vignetting
and camera noise. The data shows unlabelled living cells in their phys-
iological state. The cells are shown in-focused and out-of-focus. Thus,
the obtained segmentation method is applicable in a 3D visualization
of the cell.

2. Materials and methods

2.1. Cell preparation and microscope specification

Human HeLa cell line (European Collection of Cell Cultures, Cat. No.
93021013) was cultivated to low optical density overnight at 37 ◦C,
5% CO2, and 90% relative humidity. The nutrient solution consisted
of Dulbecco’s modified Eagle medium (87.7%) with high glucose (>1
g L−1), fetal bovine serum (10%), antibiotics and antimycotics (1%),
L-glutamine (1%), and gentamicin (0.3%; all purchased from Biowest,
Nuaille, France). The HeLa cells were maintained in a Petri dish with
a cover glass bottom and lid at room temperature of 37 ◦C.

Time-lapse image series of living human HeLa cells on the glass Petri
dish were captured using a high-resolved bright-field light microscope
for observation of microscopic objects and cells. This microscope was
designed by the Institute of Complex System (ICS, Nové Hrady, Czech
Republic) and built by Optax (Prague, Czech Republic) and Image-
Code (Brloh, Czech Republic) in 2021. The microscope has a simple
construction of the optical path. The light from two light-emitting
diods CL-41 (Optika Microscopes, Ponteranica, Italy) passes through
a sample to reach a telecentric measurement objective TO4.5/43.4-
48-F-WN (Vision & Control GmbH, Shul, Germany) and an Arducam
AR1820HS 1/2.3-inch 10-bit RGB camera with a chip of 4912 × 3684
pixel resolution. The images were captured as a primary (raw) signal
with theoretical pixel size (size of the object projected onto the camera
pixel) of 113 nm. The software (developed by the ICS) controls the
capture of the primary signal with the camera exposure of 2.75 ms.
All these experiments were performed in time-lapse to observe cells’
behaviour over time.

65



Computers in Biology and Medicine 147 (2022) 105805

3

A. Ghaznavi et al.

2.2. Data acquisition

Different time-lapse experiments on the HeLa cells were completed
under the bright-field microscope (Section 2.1). The algorithm pro-
posed in [28] was fully automated and implemented in the microscope
control software to calibrate the microscope optical path and correct all
image series to avoid image background inhomogeneities and noise.

After the image calibration, we converted the raw image represen-
tations to 8-bit colour (rgb) images of resolution (number of pixels)
quarter of the original raw images. We employed quadruplets of Bayer
mask pixels [29]: Red and blue camera filter pixels were adopted
into the relevant image channel and each pair of green camera filter
pixels’ intensities were averaged to create the green image channel.
Then, images were rescaled to 8-bits after creating the image series
intensity histogram and omitting unoccupied intensity levels. This bit
reduction ensured the maximal information preservation and mutual
comparability of the images through the time-lapse series.

The means denoising method [30] minimized the background noise
in the constructed RGB images at preserving the texture details. After-
wards, the image series were cropped to the 1024 × 1024 pixel size.
The steps described above gave us 500 images from different time-lapse
experiments. The image dataset is accessible at the Dryad [31].

The cells in the images were labelled manually by MATLAB (Math-
Works Inc., Natick, Massachusetts, USA) as Ground-Truth (GT) single
class masks with the dimension of 1024 × 1024 (Fig. 1). The labelled
images (512 × 512 pixels) were used as training (80%), testing (20%),
and evaluation (20% of the training set) sets in the proposed U-Net
networks.

2.3. U-Net model architectures

The U-Net [23] is a semantic segmentation method proposed on
the FCN architecture. The FCN consists of a typical encoder–decoder
convolutional network. This architecture includes several feature chan-
nels to combine shallow and deep features. The deep features are used
for positioning, whereas the shallow features are utilized for precise
segmentation. The architecture of the simple U-Net was chosen (Fig. 2)
for training the model with the specific size of input images.

The first layer of the encoder part consists of the input layer,
which accepts RGB images with the size 512 × 512. Each level in the
five-‘‘level’’ U-Net structure includes two 3 × 3 convolutions. Batch
normalization follows each convolution, and ‘‘LeakyReLu’’ activation
functions follow a rectified linear unit. In the down-sampling (encoder)
part (Fig. 2, left part), each ‘‘level’’ in the encoder consists of a 2 × 2
max pooling operation with the stride of two. The max-pooling process
extracts the maximal value in the 2 × 2 area. By completing down-
sampling in each level of the encoder part, convolutions will double
the number of feature channels.

In the up-sampling (decoder) section (Fig. 2, right part), the height
and width of the existing feature maps are doubled in each level from
bottom to top. Then, the high-resolution deep semantic and shallow
features were combined and concatenated with the feature maps from
the encoder section. After concatenation, the output feature maps have
channels twice the size of the input feature maps. The output decoder
layer at the top with a 1 × 1 convolution size predicts the probabilities
of pixels. Padding in the convolution process allowed to achieve the
same input and output layers size. The computational result, combined
with the Binary Focal Loss function, becomes the energy function of the
U-Net.

Between each Encoder–Decoder layer in the simple U-Net (Fig. 2),
there is a connection combining the down-sampling path with the up-
sampling path to achieve the spatial information. Nevertheless, at the
same time, this process brings also many irrelevant feature represen-
tations from the initial layers. The self-attention U-Net architecture
(Fig. 3-𝐴) with an impressive performance in medical imaging [32] was
applied to prevent this problem and improve semantic segmentation

result achieved by standard U-Net. As an extension to the standard
U-Net model architecture, the attention gate at the skip connections
between encoder and decoder layers highlights the remarkable features
and suppresses activations in the irrelevant regions. The advanced func-
tion of an attention mechanism is to map a set of key–value pairs and a
query to an output. The key, query, values, and outputs are vectors. The
compatibility function of the query, together with the corresponding
key, is computed to be assigned by weights. Then, weighted sums of the
values are computed and generate the output. The weights represent
the relative importance of the inputs (the keys) for a particular output
(the query) [33]. In this way, the attention gate improves the model
sensitivity and performance without requiring complicated heuristics.

The attention gate (Fig. 3-𝐵) has two inputs: 𝑥𝑙 and 𝑔. Input 𝑥𝑙
comes from the skip connection from the encoder layers. Since coming
from the early layers, input 𝑥𝑙 contains better spatial information.
Providing 𝑥𝑙 is an output from layer 𝑙, a feature activation can be
formulated as

𝑥𝑙𝑖 = 𝜎1(
∑
𝑐′∈𝐹1

𝑥𝑙−1𝑐′ ⊛ 𝑘𝑐′ ,𝑐 ), (1)

by applying a rectified linear unit 𝜎1(𝑥𝑙𝑖,𝑐 ) = max(0, 𝑥𝑙𝑖,𝑐 ) repeatedly,
where 𝑖 and 𝑐 correspond to spacial and channel dimensions, respec-
tively, and 𝐹1 denotes the number of feature maps in layer 𝑙 and ⊛
indicates the convolution operation.

Input 𝑔 – a gating signal – comes from a deeper network layer
and contains a better feature representation and contextual information
to determining the focus region. Attention coefficients 𝛼 ∈ [0, 1]
determine, extract, and preserve the valuable features corresponding
to the important part of the image regions. The attention part weights
different images’ parts. This process will add the weights to the pixels
based on their relevance in the training steps. The image’s relevant
parts will get higher weights than the less relevant parts. The output
of the attention gate is the multiplication of the input feature maps 𝑥𝑙𝑖,𝑐
and the achieved attention coefficient 𝛼:

p𝐼𝑎𝑡𝑡 = 𝜓𝑇 (𝜎1(𝑊 𝑇
𝑥 𝑥

𝐼
𝑖 +𝑊

𝑇
𝑔 𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜓 , (2)

𝛼𝐼𝑖 = 𝜎2(𝑝𝐼𝑎𝑡𝑡(𝑥
𝐼
𝑖 , 𝑔𝑖;𝛩𝑎𝑡𝑡)), (3)

where parameter 𝜎2 represents the sigmoid activation function and
𝛩𝑎𝑡𝑡 contains parameters including linear transformations 𝑊𝑥 and 𝑊𝑔 ,
function 𝜓 and bias terms 𝑏𝜓 and 𝑏𝑔 [32]. The achieved weights are
also trained in the training process and make the trained model more
attentive to the relevant regions.

Another architecture used in this study and developed based on the
U-Net models (originally for nuclei segmentation [34]) is the Residual
U-Net. The simple U-Net architecture was built based on repetitive
Convolutional blocks in each level (Fig. 4-𝐵). Each of these Convo-
lutional blocks consists of the input, two steps of the convolution
operation followed by the activation function and the output. On the
other hand, we face the vanishing gradient problem when dealing
with very deep convolutional networks. The residual step was applied
to update the weights in each convolutional block incrementally and
continuously (Fig. 4-𝐶) to enhance the U-Net architecture performance
by overcoming the vanishing gradient problems.

In the traditional neural networks, each convolutional blocks feed
the next blocks. The other problem in a DCNN-based network, such
as stacking convolutional layers, is that a deeper structure of these
kind of networks will affect generalization ability. To overtake this
problem, the skip connections – the residual blocks – improve the
network performance, with each layer feeding the next layer and layers
about two or three steps apart (Fig. 4–𝐶). The Residual and Atten-
tion U-Net architecture were connected to build more effective and
high-performance models from our datasets and improve segmentation
results.

The watershed algorithm based on morphological reconstruction
[35] was applied after completion of the semantic segmentation by
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Fig. 1. Examples of the train sets and their ground truths. The image size is 512 × 512.

U-Net methods described above. The U-Net semantic segmentation
results were first transformed into a binary image using the Otsu
method [36]. After that, the background was determined using ten
iterations of binary dilation. The simple Euclidean distance transform
defined the foreground of eroded cell regions. The unknown region

was achieved by subtraction of the particular foreground region from
the background. The watershed method applied to the unknown re-
gions separated the cell borders. The watershed segmentation further
helped to solve the over- and under-segmented regions and specify each
separated cell by, e.g., cell diameters, solidity, or mean intensity. The
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Fig. 2. Architecture of the proposed simple U-Net model.

Table 1
Number of the trainable parameters and the run time for each U-Net model.

Network Run time Training parameter

U-Net 3:42’:18’’ 31,402,501
Attention U-Net 4:04’:23’’ 34,334,665
Residual Att U-Net 4:11’:24’’ 39,090,377

segmentation results were optimized using the marked images. Wrongly
detected residual connections between different cell regions were cut
off, which improved the method accuracy. Fig. 5 presents a general
diagram of the proposed U-Net based methods. The U-Net models are
hosted on the GitHub [37].

2.4. Training models

The computation was implemented in Python 3.7. The framework
for deep learning was Keras, and the backend was Tensorflow [38].
The whole method, including the Deep Learning framework, was trans-
ferred and executed on the Google Colab Pro account with P100 and
T4 GPU, 24 Gb of RAM, and 2 vCPU [39]. After data preprocessing
(Section 2.2), The primary dataset was divided into training (80%)
and test (20%). A part (20%) of the training set was used for model
validation in the training process to avoid over-fitting and achieve
higher performance. Among a 500-image dataset of the mixture of
under-, over-, and focused images, 320 images were randomly selected
to train the model, and 80 images were chosen randomly to validate the

process. The rest of the 100 dataset images were considered for testing
and evaluating the model after training.

Before the training, the images were normalized: the pixel values
were rescaled in the range from 0 to 1. Since all designed network
architectures work with a specific input image size, all datasets were
resized to 512 × 512 pixel size. Data augmentation parameters were
also applied in training all three U-Net architectures. The optimized
values of the hyperparameters used in the training process are written
in Table 2. The ‘‘rotation range’’ represents an angle of the random
rotation, ‘‘width shift range’’ represents an amplitude of the random
horizontal offset, ‘‘height shift range’’ corresponds to an amplitude of
the random vertical offset, ‘‘shear range’’ is a degree of the random
shear transformation, ‘‘zoom range’’ represents a magnitude of the
random scaling of the image. Early stopping hyperparameters were
applied to avoid over-fitting during the model training. The patient
value was considered as 15. The activation function was set to the
LeakyRelu, and the Batch size was set to 8. To optimize the network,
we chose the Adam optimizer and set the learning rate to 10−3.

Semantic image segmentation can be considered as a pixel classifi-
cation as either the cell or background class. The Dice loss was used
to compare the segmented cell image with the GT and minimize the
difference between them as much as possible in the training process.
One of the famous loss functions used for semantic segmentation is the
Binary Focal Loss (Eq. (4)) [40]:

Focal Loss = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡), (4)

where 𝑝𝑡 ∈ [0, 1] is the model’s estimated probability for the GT class
with label 𝑦 = 1; a weighting factor 𝛼𝑡 ∈ [0, 1] for class 1 and 1 − 𝛼𝑡 for
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Fig. 3. (𝐴) Architecture of the proposed Attention U-Net model, (𝐵) the attentive module mechanism. The size of each feature map is shown in 𝐻 ×𝑊 ×𝐷, where 𝐻 , 𝑊 , and 𝐷
indicate height, width, and number of channels, respectively.

class −1; 𝛾 ≥ 0 is a tunable focusing parameter. The focal loss can be
enhanced by the contribution of hardly segmented regions (e.g., cells
with vanished borders) and distinguish parts between the background
and the cells with unclear borders. The second benefit of the focal loss
is that it controls and limits the contribution of the easily segmented
pixel regions (e.g., sharp and apparent cells) in the image at the loss
of the model. In the final step, updating the gradient direction is under
the control of the model algorithm, dependent on the loss of the model.

2.5. Evaluation metrics

The proposed semantic segmentation models were evaluated by
different metrics (Eqs. (5)–(9)), where TP, FP, FN, and TN are true
positive, false positive, false negative, and true negative metrics, respec-
tively [41]. The metrics were computed for all test sets and explained
as mean values ( Table 3).
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Fig. 4. (𝐴) Architecture of the Residual Attention U-Net model. (𝐵) Each U-Net layer structure. (𝐶) The sample of residual block progress. 𝐵𝑁 refers to Batch Normalization.

Table 2
Hyperparameters setting for all three U-Net models.

Parameter name Value

Activation function LeakyRelu
Learning rate 10−3

Batch size 8
Epochs number 100
Early stop 15
Step per epoch 100
Rotation range 90
Width shift range 0.3
Height shift range 0.3
Shear range 0.5
Zoom range 0.3

Overall pixel accuracy (Acc) represents a per cent of image pixels
belonging to the correctly segmented cells. Precision (Pre) is a propor-
tion of the cell pixels in the segmentation results that match the GT. The
Recall (Recl) represents the proportion of cell pixels in the GT correctly

identified through the segmentation process. The F1-score or Dice sim-
ilarity coefficient states how the predicted segmented region matches
the GT in location and level of details and considers each class’s false
alarm and missed value. This metric determines the accuracy of the
segmentation boundaries [42] and have a higher priority than the Acc.
Another essential evaluation metric for semantic image segmentation
is the Jaccard similarity index known as Intersection over Union (IoU).
This metric is a correlation among the prediction and GT [21,43], and
represents the overlap and union area ratio for the predicted and GT
segmentation.

Acc =
Correctly Predicted Pixels

Total Number of Image Pixels = TP + TN
TP + FP + FN + TN (5)

Pre =
Correctly Predicted Cell Pixels

Total Number of Predicted Cell Pixels = TP
TP + FP (6)

Recl =
Correctly Predicted Cell Pixels

Total Number of Actual Cell Pixels = TP
TP + FN (7)

Dice = 2 × Pre × Recl
Pre + Recl = 2 × TP

2 × TP + FP + FN (8)

70



Computers in Biology and Medicine 147 (2022) 105805

8

A. Ghaznavi et al.

Fig. 5. Flowchart of methodology applied in this study.

IoU =
∣ 𝑦𝑡 ∩ 𝑦𝑝 ∣

∣ 𝑦𝑡 ∣ + ∣ 𝑦𝑝 ∣ − ∣ 𝑦𝑡 ∩ 𝑦𝑝 ∣
= TP

TP + FP + FN (9)

3. Results

All three models were well trained and converged after running
100 epochs based on training/validation loss and Jaccard plots per
epochs (Fig. 6). The hyperparameter values listed in Table 2 were
selected to tune for the best training performance and stability. Then,
the test datasets were used to evaluating the achieved models. All
trained models were assessed (Table 3) using the metrics in Eqs. (5)
and (9).

Training the model with the simple U-Net method took the shortest
run time with the lowest trainable number of parameters (Table 1).
Compared with the Attention U-Net and Residual Attention U-Net,
the run time difference is not huge in terms of increasing trainable
parameters. The computational cost also did not increase dramatically
compared with the acceptable improvement in the model performance.
Fig. 7 presents the segmentation results achieved by three different U-
Net models. The simple U-Net segmentation result did not distinguish
some vanished cell borders (Fig. 7–𝐴, black circle). The Attention U-Net
(Fig. 7–𝐵) detected cells with the vanish borders more efficiently than
the simple U-Net. However, the Attention U-Net segmentation suffers
from under-segmentation in some regions (visualized by the yellow
circle). The outcome of the Residual Attention U-Net method (Fig. 7–
𝐶, red circle) achieved more accurate segmentation of the vanished
cell borders. The watershed binary segmentation after the Residual
Attention U-Net networks separated and identified the cells with the
highest performance (Fig. 7).

As seen in Mean-IoU, Mean-Dice, and Accuracy metrics (Table 3),
the Attention U-Net model showed better segmentation performance
than the simple U-Net model in the same situation. The segmentation
results were further slightly improved after applying the residual step
into the Attention U-Net.

4. Discussion

The analysis of bright-field microscopy image sequences is chal-
lenging due to living cells’ complexity and temporal behaviour. We
have to face (1) irregular shapes of the cells, (2) very different sizes
of the cells, (3) noise blobs and artefacts, and (4) vast sizes of the
time-lapse datasets. Traditional machine learning methods, including
random forests and support vector machines, cannot deal with some of
these difficulties in terms of higher computational cost and longer run
time for huge time-lapse datasets. The traditional methods suffer from
low performance in vanishing and tight cell detection and segmentation
and are sensitive to training steps [11,44]. The DL methods have been
rapidly developed to overcome these problems. The U-Net is one of
the most effective semantic segmentation methods for microscopy and
biomedical images [23]. This method is based on the FCN architecture
and consists of encoder and decoder parts with many convolution
layers.

The image data used to train the Residual Attention model are
specific in the way of acquisition. Firstly, the optical path was cali-
brated to obtain the number of photons that reaches each camera pixel
with increasing illumination light intensity. This gave a calibration
curve (image pixel intensity vs the number of photons reaching the
relevant camera pixel) to correct the digital image pixel intensity.
This step ensured homogeneity in digital image intensities to improve
the quality of cell segmentation by the neural networks. We work
with the low-compressed telecentric transmitted light bright-field high-
pixel microscopy images. The bright-field light microscope allows us
to observe living cells in their most natural state. Due to the object-
sided telecentric objective, the final digital raw image of the observed
cells is high-resolved and low-distorted, with no light interference halos
around objects.

The procedure compressed the raw colour images to ensure the
least information loss at the quarter-pixel-resolution decrease of the
image. The final pixel resolution of the images inputting into the neural
network is higher (512 × 512) than in the case of any other neural
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Fig. 6. Training/validation plots for Simple U-Net (left column), Attention U-Net (middle column), and Residual Attention U-Net (right column).

Fig. 7. Segmentation results for (𝐴) the simple U-Net (the black circle highlights the non-segmented, vanished cell borders), (𝐵) Attention U-Net (the yellow circle highlights the
undersegmentation problem), and (𝐶) the Residual Attention U-Net (red circle shows the successful segmentation of the cell borders). The image size is 512 × 512.
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Table 3
Results for metrics evaluating the U-Net Models. Green values represent the highest segmentation accuracy for the
related metric.
Network Accuracy Precision Recall m-IoU m-Dice

U-Net 0.957418 0.988269 0.961264 0.950501 0.974481
Attention U-Net 0.959448 0.985663 0.965736 0.952471 0.975511
Residual Att U-Net 0.960010 0.986510 0.965574 0.953085 0.975840

Table 4
Performances of the proposed networks and other networks proposed for microscopy
and medical applications. Green highlighted value represent the highest segmentation
accuracy in term of mentioned metric.
Models IoU Dice Acc

proposed U-Net 0.9505 0.9744 0.9574
proposed Att U-Net 0.9524 0.9755 0.9594
proposed ResAtt U-Net 0.9530 0.9758 0.9600
U-Net [23] 0.9203 0.9019 0.9554
U-Net [45] 0.7608 - 0.9235
U-Net+ [24] 0.567 - -
DenseNet [25] - 0.911 -
SegNet [45] 0.7540 - 0.9225
Attention U-Net [32] - 0.840 0.9734
Residual Attention U-Net
[46]

- 0.9081 0.9557

Residual U-Net [47] - 0.8366 -
Residual Attention U-Net
[48]

- 0.9655 0.9887

network datasets. By preserving high image resolution as much as
possible, the demands on the neural network’s computational memory
and performance parameters were increased.

As our microscope and acquired microscopy data are unique, and
were not used before in similar research, it is hard to compare the
results with other works. Despite this, the performances of the pro-
posed U-Net-based models were compared with similar microscopy and
medical works (Table 4). Our first model was based on a simple U-
Net structure and achieved the Mean-IoU score of 0.9505. We assume
that better value of the Mean-IoU will be achieved after the hyper-
parameter optimization (Table 2). Ronneberger et al. [23] achieved
0.920 and 0.775 Mean-IoU scores for U373 cell line in phase-contrast
microscopy and HeLa cell line in Nomarski contrast, respectively. Pan
et al. [45] segmented nuclei from medical, pathological MOD datasets
with 0.7608 segmentation IoU accuracy score using the U-Net.

We further implemented an attention gate into the U-Net structure
(so-called Attention U-Net) to further improve the U-Net model per-
formance by weighing the relevant part of the image pixels containing
the target object. In this way, the Mean-IoU metric was improved to
0.9524. The achieved IoU score represents a noticeable improvement
in the trained model performance compared with the simple U-Net
model. To the best of our knowledge, not many researchers have
applied the Attention U-Net to microscopy datasets, but recent papers
are prevalently about its application to medical datasets. Microscopy
and medical datasets have their complexity and structure, complicating
the comparison of the method performances. Applying the Attention
U-Net, pancreas [32] and liver tumour [46] medical datasets showed
0.840 and 0.948 Dice metric segmentation accuracy, respectively.

The proposed model performance were improved by one step and
obtained the Residual Attention U-Net to overcome the vanishing gra-
dient problem and generalization ability. As a result, the segmentation
accuracy was slightly improved by reaching the Mean-IoU of 0.953.
The Residual Attention U-Net showed the Dice coefficient of 0.9655 in
the testing phase of medical image segmentation [48]. The Recurrent
Residual U-Net (R2U-Net) achieved the Dice coefficient of 0.9215 in
the testing phase of nuclei segmentation [34]. Patel et al. [47] applied
the Residual U-Net to bright-field absorbance image and achieved the
Mean-Dice coefficient score of 0.8366. Long et al. [24] applied the
enhanced U-Net (U-Net+) to bright-field, dark-field, and fluorescence

microscopy images and achieved the Mean-IoU score of 0.567. The
U-Net with a dense convolutional network (DenseNet) was applied to
detect and segment brain tumour cells [25] with the Dice score of 0.911
and the Jaccard index of 0.839.

5. Conclusion

Microscopy image analysis via deep learning methods can be a
convenient solution due to the complexity and variability of this kind
of data. This research aimed to detect and segment living human HeLa
cells in images acquired using an original custom-made bright-field
transmitted light microscope. Three types of deep learning U-Net ar-
chitectures were involved in this research: the simple U-Net, Attention
U-Net, and Residual Attention U-Net. The simple U-Net (Table 1) has
the fastest training time. On the other hand, the Residual Attention U-
Net architecture achieved the best segmentation performance (Table 3)
with a run time slightly higher than the other two U-Net models.

The Attention U-Net is a method to highlight only the relevant ac-
tivations during the training process. This method can reduce the com-
putational resource waste on irrelevant activations to generate more
efficient models. The best segmentation performance was achieved
due to the integration of the residual learning structure (to overcome
the gradient vanishing) together with the attention gate mechanism
(to integrate a low and high-level feature representation) into the U-
Net architecture. After extracting semantic segmentation binary results
(Table 3), the watershed segmentation method was applied to separate
the cells from each other, avoid over-segmentation, label the cells
individually, and extract vital information about the cells (e.g., the total
number of the segmented cells, cell equivalent diameter, mean intensity
and solidity). Nevertheless, future works are still essential to expand
the knowledge on multi-class semantic segmentation with different and
efficient CNN’s architecture and combine the constructed CNN models
in the prediction process to achieve the most accurate segmentation
result.
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Abstract

Multi-class segmentation of unlabelled living cells in time-lapse light mi-

croscopy images is challenging due to the temporal behaviour and changes in cell

life cycles and the complexity of images of this kind. The deep learning-based

methods achieved promising outcomes and remarkable success in single- and

multi-class medical and microscopy image segmentation. The main objective of

this study is to develop a hybrid deep learning-based categorical segmentation

and classification method for living HeLa cells in reflected light microscopy im-

ages. Different hybrid convolution neural networks – a simple U-Net, VGG19-

U-Net, Inception-U-Net, and ResNet34-U-Net architectures – were proposed

and mutually compared to find the most suitable architecture for multi-class

segmentation of our datasets.

The inception module in the Inception-U-Net contained kernels with differ-

ent sizes within the same layer to extract all feature descriptors. The series of

residual blocks with the skip connections in each ResNet34-U-Net’s level alle-

viated the gradient vanishing problem and improved the generalisation ability.

The m-IoU scores of multi-class segmentation for our datasets reached 0.7062,

0.7178, 0.7907, and 0.8067 for the simple U-Net, VGG19-U-Net, Inception-U-
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Net, and ResNet34-U-Net, respectively. For each class and the mean value across

all classes, the most accurate multi-class semantic segmentation was achieved

using the ResNet34-U-Net architecture (evaluated as the m-IoU and Dice met-

rics).

Keywords: Categorical segmentation, Neural network, Cell

detection, Microscopy image segmentation, U-Net, Tissue

segmentation, Semantic segmentation, Bright-Field Microscopy cell

segmentation, Cell analysis

1. Introduction1

Cell detection and segmentation is a fundamental process in microscopy cell2

image analysis. This is also a challenging task due to the complexity of these3

images. On the other hand, the information from the segmented living cells4

can play an essential role in further analysis, such as observing and estimat-5

ing cell behaviour, their number and dimensions. Recently developed artificial6

intelligence (AI) methods have achieved promising outcomes in this field. The7

segmentation methods for analysing cell cultures can be categorised as machine8

learning (ML) or deep learning (DL).9

1.1. Cell culture segmentation with machine learning methods10

The number of cell detection-segmentation ML methods has grown rapidly11

as a result of the low performance of simple techniques such as threshold-based12

[1], region-based [2], or morphological approaches [3, 4] when processing such13

complex images. The ML methods can be further classified as supervised or14

unsupervised.15

The supervised methods generate a mathematical function or a model from16

the training data to map a new data sample [5]. Trained and optimised param-17

eters using the graph-based Supervised Normalized Cut Segmentation (SNCS)18

with loosely annotated images separate overlapping and curved cells better than19

the traditional image processing methods [6]. The Fast Random Forest (FRF)20

2
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classification using Trainable WEKA Segmentation outperformed the Decision21

Table and Näıve Bayes classification methods in sensitivity, accuracy, and F-22

measure when extracting the Interstitial cells of Cajal networks from 3D con-23

focal microscopy images. However, the method showed higher computational24

costs due to the FRF’s structure [7]. A method combining the Histogram of25

Oriented Gradients and the Support Vector Machine (SVM) extracted and clas-26

sified the feature descriptors as cells or non-cells in bright-field microscopy data.27

The method was susceptible to the number of iterations in the training process,28

which is a crucial step to eliminate false positive detections [8]. A Logistic29

Regression classification with intensity values of 25 focal planes as features, fol-30

lowed by the binary erosion with a large circular structuring element, counted31

the cells in bright-field microscopy images. However, the method showed miss-32

segmentation and a low recall rate [9].33

The unsupervised ML algorithms require no pre-assigned labels or scores for34

the training data [10]. Unsupervised segmentation using the Markov Random35

Field considered an image as a series of planes based on Bit Plane Slicing. The36

planes were used as initial labelling for an ensemble of segmentations. The37

robust cell segmentation was achieved with pixel-wise voting. However, this38

method was too sensitive to the confidence threshold [11]. A combination of a39

Scale-Invariant Feature Transform, a self-labelling, and two clustering methods40

segmented unstained cells in bright-field micrographs. The method was fast and41

accurate but sensitive to the feature selection to avoid overfitting [12]. A self-42

supervised (i.e., a kind of unsupervised) learning approach combined unsuper-43

vised initial coarse segmentation (K-means clustering) followed by supervised44

segmentation refinement (SVM pixel classifier) to separate white blood cells.45

However, the unsupervised part of the method generates a rough segmentation46

result. In the case of complex datasets, the supervised part of the method47

cannot work efficiently due to fuzzy boundaries [13].48
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1.2. Cell culture segmentation with deep learning methods49

In recent years, a subset of new machine learning techniques – deep learning50

(DL) methods – has been developed to solve cell segmentation problems with51

higher accuracy and performance. The deep neural networks have integrated52

low/medium/high-level features and classifiers into a comprehensive multi-layer53

structure. The depth of the network, or the number of layers stacked, determines54

the ”levels” of features [14].55

Mask RCNN with a Shape-Aware Loss generated the HeLa cell’s segmen-56

tation masks with a good performance [15]. A Convolutional Blur Attention57

(CBA) network consisted of down- and up-sampling procedures for nuclei seg-58

mentation in standard challenge datasets [16, 17], with a good value of the59

aggregated Jaccard index. The reduced number of trainable parameters led to60

a reasonable decrease in the computational cost [18]. The size of input images of61

a convolutional network can be of different custom sizes so that it can be trained62

end-to-end, pixel-to-pixel, and produce an output of the appropriate size. Ef-63

fective inference and learning can achieve successful semantic segmentation in64

complex microscopic and medical images [19, 20].65

A U-Net architecture containing a contracting path to capture context and a66

symmetric expanding path for precise localisation showed strong data augmen-67

tation in the training process. It was optimised when applied to small datasets68

and performed efficiently in semantic segmentation of photon microscopy (phase69

contrast and DIC) images [21]. A Feedback U-Net with the convolutional Long70

Short-Term Memory network, working on Drosophila cell image dataset and71

mouse cell image dataset, generally showed a low level of accuracy, depend-72

ing on the segmented class (cytoplasm, cell membrane, mitochondria, synapses)73

[22]. A Residual Attention U-Net-based method segmented living HeLa cells in74

bright-field light microscopy data with a high IoU metric. The method combined75

the self-attention mechanism to highlight the remarkable features and suppress76

activations in the irrelevant image regions, and the residual mechanism to over-77

come with vanishing gradient problem [23]. Multi-class cell segmentation in78

fluorescence images combining U-Net (a deeper network) with ResNet-34 (a79
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residual mechanism) achieved a good value of IoU score [24]. A two-step U-Net80

method segmented HeLa cells in microscopy images. The first U-Net localised81

the position of each cell. The second U-Net was trained with the first U-Net to82

determine the cell boundaries [25]. A fully automated U-Net-based algorithm83

recognised different classes (colonies, single, differentiated, and dead) of human84

pluripotent stem cells from each other with a satisfying m-IoU value in phase85

contrast images [26].86

1.3. Our motivation for a new image segmentation method87

In segmentation, especially of tiny cells, the traditional ML methods struggle88

with microscopy images with complex backgrounds. [8, 7]. The ML methods89

were also not very efficient in training the multi-class segmentation models in90

large time-lapse image series. Compared with the ML methods, some Convo-91

lution Neural Networks (CNNs) architectures require many manually labelled92

training datasets and higher computational costs [19]. Deep learning methods93

have shown better results in segmentation tasks than other methods.94

The main goal of our research is to develop and compare variants of a fully95

convolutional network as the encoder part of the original U-Net architecture96

and find the most accurate categorical segmentation algorithm. The U-Net97

was chosen since it is one of the most promising methods for semantic segmen-98

tation [21]. Later, the encoder part of the U-Net architecture was modified99

and replaced with a VGG-19, Inception, and ResNet34 encoder architecture100

and was examined to find the most suitable architecture for multi-class seg-101

mentation. We used unique telecentric bright-field reflected light microscopy102

multi-class labelled images of the cells to be automatically classified according103

to their morphological shapes to predict their cell cycle phases.104

We captured image series of HeLa cells to test the algorithms. The HeLa is105

a cell line of human Negroid cervical epithelioid carcinoma that is used in tissue106

culture laboratories as the gold standard. Each image contains HeLa cells in107

different cell cycle states. The raw microscopy data is specific for its high pixel108

resolution in rgb mode and requires pre-processing steps to suppress optical109
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vignetting and camera noise. The data shows unlabelled in-focused and out-of-110

focus living cells in their physiological state. Thus, the obtained segmentation111

method is applicable to observing and predicting cell behaviour in time-lapse112

experiments during their life cycles and 3D visualisation of the cell.113

2. Materials and methods114

2.1. Cell preparation and microscope specification115

The cells were prepared as written in [23], Section 2.1. Human HeLa cell line116

(European Collection of Cell Cultures, Cat. No. 93021013) was prepared and117

cultivated to low optical density overnight at 37◦C, 5% CO2, and 90% relative118

humidity. The nutrient solution consisted of Dulbecco’s modified Eagle medium119

(87.7%) with high glucose (>1 g L−1), fetal bovine serum (10%), antibiotics and120

antimycotics (1%), L-glutamine (1%), and gentamicin (0.3%; all purchased from121

Biowest, Nuaille, France). The HeLa cells were maintained in a Petri dish with122

a cover glass bottom and lid at room temperature of 37◦C.123

The data was collected by running several time-lapse image series experi-124

ments of living human HeLa cells on a glass Petri dish using a high-resolved125

reflected light microscope to observe the microscopic objects and cells. This mi-126

croscope was designed by the Institute of Complex System (ICS, Nové Hrady,127

Czech Republic) and built by Optax (Prague, Czech Republic) and ImageCode128

(Brloh, Czech Republic) in 2021. The microscope has a simple construction129

of the optical path. The light from a Schott VisiLED S80-25 LED Brightfield130

Ringlight was reflected from a sample to reach a telecentric measurement ob-131

jective TO4.5/43.4-48-F-WN (Vision & Control GmbH, Shul, Germany) and an132

Arducam AR1820HS 1/2.3-inch 10-bit RGB camera with a chip of 4912×3684133

pixel resolution. The images were captured as a primary (raw) signal with a134

theoretical pixel size (size of the object projected onto the camera pixel) of 113135

nm. The software (developed by the ICS) controls the capture of the primary136

signal with a camera exposure of 998 ms. All these experiments were performed137

in time-lapse to observe cells’ behaviour over time.138
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2.2. Data preparation and pre-processing139

Several time-lapse experiments were completed with HeLa cells using a re-140

flected bright-field microscope (Sect. 2.1). The microscope control software cal-141

ibrated the microscope optical path and corrected all image series using the al-142

gorithm proposed in [27] to avoid image background inhomogeneities and noise.143

After the calibration step, the raw image representations were converted to144

8-bit colour (rgb) images of resolution (number of pixels) quarter of the original145

raw images. The Bayer mask pixels quadruplets [28] were merged as follows:146

each pair of green camera filter pixels’ intensities were averaged as the green147

image channel. The red and blue camera filter pixels were adopted into the148

relevant image channel. Then, images were rescaled to 8 bits after creating149

the image series intensity histogram and omitting unoccupied intensity levels.150

This bit reduction ensured the maximal information preservation and mutual151

comparability of the images through the time-lapse series.152

After generating 8-bit images, the denoising method [29] was applied to153

minimise the background noise in the constructed rgb images at preserving the154

texture details. Afterwards, the image series from different time-lapse experi-155

ments were cropped into the 1024 × 1024 pixel size to achieve 650 images as156

the main dataset. The image dataset is accessible at the Dryad data publishing157

platform [30].158

For multi-class segmentation, one of three cell states was assigned to each159

cell manually using Apeer platform [31]: (1) a background class containing160

no cells, (2) a cell class containing larger dilated adhered or migrating cells161

with unclear borders by which we anticipate they are growing, and (3) a cell162

class including roundish cells with sharper borders when the cells are assumed163

in their early stage of the life cycle, having no division state yet, or at the164

beginning of the division. The detection of the ratio of cells in mitosis plays165

an important role in many biomedical activities, such as biological research and166

medical diagnosis [32]. Figure 1 depicts a sample of the resized dataset and167

relevant generated mask classes as ground truth of the size of 512× 512 pixels.168

The labelled images were used as training (80%), testing (20%), and evaluation169
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Figure 1: Examples of the train sets and their ground truths. The image size is 512× 512.

The green and red class represents the roundish sharp cells and the migrating unclear cells,

respectively.
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(20% of the training set) sets in the proposed neural network architectures.170

2.3. The Neural Network Model Architectures171

2.3.1. U-Net172

The U-Net [21] is well-known as a deep neural network for semantic image173

segmentation. The U-Net architecture is based on encoder-decoder layers. The174

U-Net combines many shallow and deep feature channels. In this research,175

a five-”level” simple U-Net was implemented as the first method for multi-176

class segmentation purposes. The extracted deep features served for object177

localisation, whereas the shallow features were used for precise segmentation.178

Figure 2: The simple U-Net model architecture. A) The encoder section. B) The decoder

section.

The first input layer accepts rgb 512×512-sized training set images. Each179

level of the proposed U-Net includes two 3×3 convolutions. Batch normalisation180

follows each convolution, and ”ReLU” is used as an activation function. In181
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the down-sampling (encoder) part (Fig. 2A), each encoder ”level” consists of182

a 2×2 max-pooling operation with a stride of two. The max-pooling process183

extracts the maximal value in the 2×2 area. By completing the down-sampling184

in each level of the encoder part, convolutions will double the number of feature185

channels.186

In each level (from bottom to top) of the up-sampling (decoder) section187

(Fig. 2B), the height and width of the existing feature maps are doubled. In the188

concatenation step, the high-resolution deep semantic and shallow features were189

combined with the feature maps from the encoder section. After concatenation,190

the output feature maps have channels twice the size of the input feature maps.191

The ”softmax” activation function in the top, 1×1 convolution-sized, output192

decoder layer predicts the occurrence of each pixel in each of the three classes.193

Padding in the convolution process allowed us to achieve the same input and194

output layers size. Each of those classes, achieved by the softmax activation,195

represents the probability of belonging each pixel into each class. In the final196

step, the ”argmax” operation assigned each pixel to the class, where the highest197

probability value was achieved. This computational result, combined with the198

Categorical Focal Loss function, becomes the energy function of the U-Net.199

2.3.2. The VGG19-U-Net200

Many modified artificial neural networks, such as AlexNet [33], ZFNet [14],201

and VGG [34], have been developed as hybrids with the U-Net to simplify U-202

Net. In this study, a VGG-Net architecture replaced the U-Net encoder path.203

In this way, we combined two powerful architectures to improve the categorical204

segmentation of our unique microscopy dataset. The VGG-Net was proposed by205

Simonyan and Zisserman [34] from Oxford’s Visual Geometry Group (VGG). A206

VGG-16 proved to be one of the most efficient classification networks. However,207

a VGG-19 performed even more effectively than VGG-16 [35]. The VGG-19208

comprises a network with a deeper topology and smaller convolution kernels209

to simulate a perceptual field of view. This architecture is designed to reduce210

the number of trainable parameters and decrease computational costs compared211
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with the simple U-Net. Figure 3 represents the VGG19-U-Net proposed in this212

study. The left side of the network (Fig. 3A) shows the architecture of the VGG-213

19 encoder section with 16 convolution layers, three fully connected layers, and 5214

MaxPool layers in 5 blocks. The convolution blocks at each level are followed by215

a 2×2 max-pooling operation with the stride of two to extract the maximal value216

in the 2×2 area. The first layer of the VGG network has 64 channels, and each217

subsequent layer is doubled up to 512 channels. The right side of the network218

(Fig. 3B) is a schema of the decoder part with five blocks. A concatenation219

step between each VGG-19 encoder layer and each U-Net decoder layer (Fig. 3)220

combines the feature maps from the encoder part with the high-resolution deep221

semantic and shallow features from the decoder part. The last decoder layer222

has a convolution size of 1×1 and predicts the probability values for each pixel223

and each of the three classes using the ”softmax” activation function.224

Figure 3: The hybrid VGG19-U-Net architecture. A) The VGG-19 encoder part. B) The

U-Net decoder part.
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2.3.3. The Inception-U-Net225

The complexity of the U-Net network about the number of trainable param-226

eters leads to higher runtime and computational costs (Tab. 4). On the other227

hand, in image analysis, applying fixed kernel size in all convolution layers can228

make it difficult to extract all feature descriptors of different sizes. For example,229

in microscopy image analysis, some (tiny) features are at the local level, and230

some (larger) are at the global level. The network cannot extract the represen-231

tative features for big objects when the small kernel is selected in convolution232

operations. If the kernel size is big, the network will miss extracting the features233

representative at the pixel level. In other words, the larger kernel can extract234

a global feature representation over a large image area, and the smaller kernel235

has been considered for detecting area-specific features. Google’s inception deep236

learning method [36], known as the Inception architecture, was selected to build237

a hybrid Inception-U-Net architecture (Fig. 4) to improve segmentation results238

in our datasets further.239

The inception module is well known for its computational efficiency by inte-240

grating different sizes of convolutions. The inception module applies kernels of241

different sizes within the same architecture layer and becomes wider (instead of242

deeper) with the layers (Fig. 4B). The convolution layers were replaced with an243

inception module (Fig. 4A) in all five levels of the encoder and decoder sections244

of the original U-Net structure. The inception module consists of multiple sets245

of 3×3 convolutions, 1×1 convolutions, 3×3 max-pooling, and cascaded 3×3246

convolutions. The number of filters at each convolution layer was doubled on247

the encoder side. The size of the output feature map (height and width) was248

halved on the last encoder layer.249

The up-sampling (decoder) architecture section (Fig. 4A, left side) was also250

equipped with an inception module at each level. The skip connection connected251

the encoder and decoder parts to produce a finer prediction. The spatial feature252

maps from the encoder are concatenated with the decoder feature maps. The253

rectified linear unit (ReLU) was selected as an activation function for each254
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layer and performed batch normalisation in each inception module. At the last255

layer, a 1×1 convolution layer together with the ”softmax” activation function256

generated three segmentation classes of the feature maps for the given input257

image. Each pixel was assigned to one class according to the highest probability258

value achieved among the classes. The Categorical Focal Loss function has been259

considered an energy function for this Inception-U-Net.260

Figure 4: A) The Inception-U-Net architecture. B) The internal architecture of one

inception module.
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2.3.4. The ResNet34-U-Net261

To further improve the categorical segmentation of our datasets, the Resid-262

ual Convolutional Neural Network (ResNet) [37] was joint to the U-net. Neural263

networks with deeper architecture are more effective for complex classification264

and segmentation tasks. However, during the training process, the vanishing265

gradient problem appears in the very deep CNN. Moreover, a high number266

of CNN layers makes the training process slower, and the calculated value of267

the backpropagation derivative becomes increasingly insignificant. Thus, the268

model’s accuracy gets saturated and rapidly declines instead of improving. The269

series of residual blocks with the skip connections were implemented into the270

CNN to alleviate the gradient vanishing and improve the network’s generalisa-271

tion ability during the training process. The skip connections were added to272

the deep neural networks to bypass one or more layers and update the gradient273

values from one or more previous layers into the following layers.274

The ResNet-34-U-Net architecture used in our study (Fig. 5) has 34 layers275

and four residual convolution steps with a total of 16 residual blocks (red and276

purple arrows). The first convolution layer has 64 filters with a kernel size277

of 7×7, followed by a max-pooling layer. Each residual block consists of two278

3×3 convolution layers followed by the ReLU activation function and batch279

normalisation with the identity shortcut connection.280

After the first 7×7 convolution layer, the feature map size halved to 256×256.281

At the first residual level, three residual convolution blocks were applied to the282

achieved feature maps, and the output size of the feature maps was halved to283

128×128. Four residual convolution blocks in the second residual step decreased284

the size of the output feature maps to 64×64. Six residual convolution blocks285

in the third residual step gave a feature map size of 32×32. The last residual286

step consists of three residual convolution blocks to achieve a feature map with287

a size of 16×16.288

The up-sampling section of the network (Fig. 5B) gets the input with the289

feature map size of 16×16 with 512 channels and a 2×2 up-convolution step with290
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Figure 5: The hybrid ResNet-34-U-Net architecture.

a stride of two. The decoder section has the same structure as the simple U-Net291

architecture. After passing the U-Net decoder part, the ”softmax” activation292

function was employed to achieve the probability map across three different293

classes for each pixel of the input images. Afterwards, each pixel was assigned294

to a certain class according to the highest probability value selected by the295

”argmax” function.296

With the usage of the ResNet-34, the number of trainable parameters de-297
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creased significantly compared with the VGG-Net and the simple U-Net. Thus,298

the runtime for training the model was shortened.299

2.4. Training Models300

The implementation platform for this research was based on Python 3.9. The301

deep learning framework was Keras with the backend of Tensorflow [38]. All302

CNN architectures were first developed and completed on a personal computer303

and then transferred to the Google Colab Pro+ premium cluster account to304

train the most stable models. The Google Colab Pro+ cluster is equipped with305

an NVIDIA Tesla T4 or the NVIDIA Tesla P100 GPU with 16 GB of GPU306

VRAM, 52 GB of RAM, and two vCPUs [39].307

The basic dataset included 650 images from different time-lapse experiments308

and consisted of under-, over-, and focused images. As a trainset, 416 images309

(64%) were randomly selected to train the model, and 104 images (16%) were310

chosen randomly to validate the process to avoid over-fitting. The rest of the311

130 dataset images (20%) were considered for testing and evaluating the model312

after training.313

Table 1: Number of the trainable parameters and the run time for the U-Net models.

Network Run time Training parameter

U-Net 3:33’:29” 31,402,639

VGG19-U-Net 1:44’:38” 31,172,163

Inception-U-Net 1:05’:47” 18,083,535

ResNet34-U-Net 0:56’:22” 24,456,444

All images were normalised (see the pre-processing step in Sect. 2.2) and314

resized to 512×512 pixels suitable for inputting the designed neural networks.315

The optimised hyperparameter values (Tab. 2) correspond to training the most316

stable CNN models. The ReLU was selected as the activation function for317

all architecture. The early stopping hyperparameter was employed to avoid318

over-fitting during the model training. The patient value was considered 30.319

The batch size was set to the maximal value of eight due to the complexity320

of the CNN structures and GPU-VRAM limitation. The Adam algorithm was321
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chosen to optimise the neural networks. The learning rate was set to 10−3 for322

all proposed CNN models. The suitable number of object classes was set as 3323

(Sect. 2.2). The best number-of-steps-per-epoch value equals 52 (achieved after324

dividing the length of the trainset of value 416 by the batch size of value 8).325

The number of epochs when all CNN models converged and were well-trained326

was 200.327

Table 2: Hyperparameters setting for training all proposed models.

Hyperparameters name Value

Activation function ReLU

Learning rate 10−3

Number of classes 3

Batch size 8

Epochs number 200

Early stop 30

Step per epoch 52

γ for loss function 2

Categorical image segmentation is a pixel classification into either one of the328

cell classes or the background class. During training progress, all segmented cell329

images were compared to the GT to minimise the difference between these two330

as much as possible by using the Dice loss. One of the well-known loss functions331

used for categorical segmentation, which is an extension of the cross entropy332

loss, is the Categorical Focal Loss [40].333

The Categorical Focal Loss is more efficient for the multi-class classification334

of imbalanced datasets, when some classes are classified easily and others are335

not. During training progress, the loss function down-weights easy classes and336

focuses training on hard-to-classify classes. Thus, the focal loss reduces the loss337

value for ”well-classified” examples (e.g., roundish sharp cells) and increases338

the loss for hard-to-classify objects (e.g., migrated vanish cells) by tuning the339

right value of the focusing parameter γ in the categorical focal loss function.340

In summary, the categorical focal loss turns the model’s attention towards the341

difficult-to-classify pixels to achieve more precise classification results.342
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2.5. Evaluation metrics343

All categorical semantic segmentation models were evaluated using the com-344

mon metrics (Eqs. 1–5). The TP, FP, FN, and TN correspond to the true345

positive, false positive, false negative, and true negative metric, respectively346

[41]. The metrics were computed for all test sets in each class and explained as347

mean values for all classes (Tab. 4).348

Overall pixel accuracy (Acc) represents a per cent of image pixels belonging349

to the correctly segmented cells.350

Acc =
Pixels Predicted Correctly

Total Number of Image Pixels
=

TP + TN

TP + FP + FN + TN
(1)

Precision (Pre) is a proportion of the cell pixels in the segmentation results351

that match the GT. The Pre, known as a positive predictive value, is a valuable352

segmentation performance metric due to its sensitivity to over-segmentation.353

Pre =
Correctly Predicted Cell Pixels

Total Number of Predicted Cell Pixels
=

TP

TP + FP
(2)

The Recall (Recl) represents the proportion of cell pixels in the GT correctly354

identified through the segmentation process. This metric says what proportion355

of the objects annotated in the GT was captured as a positive prediction.356

Recl =
Correctly Predicted Cell Pixels

Total Number of Actual Cell Pixels
=

TP

TP + FN
(3)

The Pre and Recl together give another important metric–F1 score–to eval-357

uate the segmentation result. The F1-score or Dice similarity coefficient states358

how the predicted segmented region matches the GT in location and level of359

details and considers each class’s false alarm and missed value. This metric360

determines the accuracy of the segmentation boundaries [42] and has a higher361

priority than the Acc.362

Dice =
2 × Pre × Recl

Pre + Recl
=

2 × TP

2 × TP + FP + FN
(4)
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Another essential evaluation metric for semantic image segmentation is the363

Jaccard similarity index, known as Intersection over Union (IoU). This metric is364

a correlation among the prediction and GT [19, 43], and represents the overlap365

and union area ratio for the predicted and GT segmentation.366

IoU =
| yt ∩ yp |

| yt | + | yp | − | yt ∩ yp |
=

TP

TP + FP + FN
(5)

3. Results367

The models were trained well and converged after running 200 epochs (eval-368

uated as training/validation loss and Jaccard criterion vs epochs, Fig. 6). The369

hyperparameter values listed in Table 2 were used to achieve the best train-370

ing performance and stability. Then, the performances of the trained models371

were assessed and evaluated using the test datasets and the metrics in Eqs. 1–5372

(Tab. 4).373

The computational cost is one of the critical factors in training high-performance374

models based on the lowest computational resources. The four described meth-375

ods differ significantly in runtime, the number of trainable parameters, and376

network structures (Tab. 1). Training the simple U-Net took the longest run-377

time with the highest number of training parameters. The VGG19-U-Net was378

trained well in a significantly shorter time due to the network structure; the379

number of training parameters was slightly lower than in the simple U-Net.380

The Inception-U-Net runtime was even faster than the previous two methods.381

This runtime reduction was followed by a further significant decrease in the382

number of trainable parameters and higher segmentation performance. The383

last – ResNet34-U-Net method – achieved the shortest computational cost with384

the best segmentation performance.385

Figure 7 presents the segmentation results for the U-Net-based models pro-386

posed in this paper. At the same conditions, the simple U-Net achieved a lower387

categorical segmentation performance than the other models (when the evalu-388

ation metrics are compared). The simple U-Net was inefficient in classifying389
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Figure 6: Training/validation plots for the loss criterion (left) and the Jaccard criterion

(right) for the simple U-Net (1st row), Vgg19-U-Net (2nd row), Inception-U-Net (3rd row),

and ResNet34-U-Net (4th row).

Table 3: m-IoU values for the classes. C1 – background, C2 – divided and unclear cells, C3 –

roundish and sharp cells, green – the highest m-IoU value for the relevant class.

Network m-IoU C1 m-IoU C2 m-IoU C3 m-IoU

U-Net 0.9894 0.4839 0.6452 0.7062

VGG19-Net 0.9885 0.5489 0.6160 0.7178

Inception-Net 0.9915 0.6614 0.7194 0.7907

ResNet 34-Net 0.9911 0.6911 0.7378 0.8067

20

97



Figure 7: Test image, ground truth, prediction, and 8-bit visualisation of the segmentation

results for the U-Net, VGG19-U-Net, Inception-U-Net, and ResNet34-U-Net. The yellow

and white circles highlight the wrongly classified and segmented cells. The black circle

highlights a different, smoother segmentation result achieved by the ResNet34-U-Net. The

image size is 512 × 512.
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the cell pixels into the suitable classes and suffered from wrongly segmented390

cells into the wrong classes (Fig. 7, yellow circle). Applying the VGG19-U-Net391

improved the categorical segmentation performance in terms of the evaluation392

metrics (Tab. 3–4). The cells segmented wrongly by the simple U-Net were393

improved slightly, but wrong classifications still occurred (Fig. 7, purple cir-394

cle). The Inception-U-Net was applied to our datasets as the third hybrid CNN395

method. It leads to significant improvement of the multi-class segmentation396

results in terms of evaluation metrics (Tab. 3–4). However, this method suf-397

fers from over-segmentation in all classes (Fig. 7, black circle). The hybrid398

ResNet34-U-Net was employed to improve further the object segmentation and399

classification (Tab. 3–4).400

Table 3 shows the mean value of the IoU metric for all combinations of class401

and method. Achieving a higher IoU value for the class of divided unclear cells402

(C2) was challenging for all methods. The ResNet34-U-Net achieved the highest403

m-IoU value in all classes.404

Table 4: Results for metrics evaluating the U-Net models. Green values represent the

highest segmentation accuracy for the related metric.

Network Accuracy Precision Recall m-IoU m-Dice

U-Net 0.9869 0.7897 0.8833 0.7062 0.8104

VGG19-Net 0.9865 0.8051 0.8614 0.7178 0.8218

Inception-Net 0.9904 0.8684 0.8905 0.7907 0.8762

ResNet 34-Net 0.9909 0.8795 0.8975 0.8067 0.8873

4. Discussion405

The light microscope enables observing living cells in their most natural pos-406

sible states. However, analysing live cell behaviour in an ordinary light trans-407

mission (bright-field) microscope over time is difficult for these technical and408

biological reasons: (1) The cell morphology and position change significantly409

depending on the life cycle. (2) Illumination conditions are unstable over image410

and time. (3) The field of view is small to ensure sufficient statistics on cell411
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behaviour. (4) The images of observed cells are insufficiently spatially resolved412

and distorted by microscope optics. (5) The traditional image processing meth-413

ods, including machine learning approaches, were sensitive to the number of414

iterations in the training process, showed mis-segmentation, low computational415

and runtime performance and recall rate.416

Therefore we enhanced the method described in [23] and developed a mi-417

croscopic technique with a connecting deep-learning multi-class image segmen-418

tation to obviate these complications: (1) Locating the object-sided telecentric419

objective on the side of the light source (reflection mode) enables us to capture420

”simple”, high-resolved and low-distorted images on a black background (similar421

to fluorescence images). (2) Calibrating the microscope optical path balanced422

the intensities in the whole images for following processing by the CNNs. (3)423

The larger field of view provides a satisfactory number of cells per snapshot424

for the evaluation of cell behaviour. (4) The images of individual cells were425

segmented and categorised according to their current physiological state.426

One of the most well-known efficient semantic segmentation methods for mi-427

croscopy and biomedical images is U-Net [21]. The U-Net consists of encoder428

and decoder parts with many convolution layers. The encoder part of the net-429

work was replaced with other different and more effective architecture as the430

hybrid architecture of the U-Net for more challenging segmentation purposes431

like categorical segmentation over microscopy images.432

The microscope and relevant image data used in this study are unique. No433

similar research on categorical segmentation of light reflection microscopy data434

has ever been performed before. Thus, comparing the results achieved in this435

study with the literature is hard. Despite this, the performances of the proposed436

hybrid U-Net-based models were compared with similar microscopy and medical437

works (Tab. 5). The first proposed model was based on a simple U-Net structure438

and achieved the m-IoU score of 0.7062 as the mean value of all classes for439

categorical segmentation purposes. We assume that a better value of the m-IoU440

will be achieved after the hyperparameter optimization (Tab. 2).441

Sugimoto et al. [44] achieved a m-Dice score of 0.799 for multi-class segmen-442
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tation of cancer and non-cancer cells over the medical PD-L1 dataset. Nishimura443

et al. [45] applied a U-Net-based weakly supervised method on various mi-444

croscopy datasets and reached a m-Dice segmentation score of 0.618 as an av-445

erage over all datasets. Piotrowski et al. [26] applied a U-Net-based multi-446

class segmentation method over human induced pluripotent stem cell images447

and achieved segmentation IoU and Dice accuracy scores of 0.777 and 0.753,448

respectively. Long [46] applied the enhanced U-Net (U-Net+) to bright-field,449

dark-field, and fluorescence microscopy images and achieved the m-IoU score of450

0.567 for single class semantic segmentation.451

Table 5: Values of the evaluation metrics of the CNNs designed for microscopy and medical

applications. Comparison with the literature. Green highlights the highest segmentation

accuracy value for each metric.

Models IoU Dice Acc

prop. U-Net 0.7062 0.8104 0.9869

prop. VGG19-U-Net 0.7178 0.8218 0.9865

prop. Inception-U-Net 0.7907 0.8762 0.9904

prop. ResNet34-U-Net 0.8067 0.8873 0.9909

Self-Attention U-Net [44] - 0.799 -

U-Net [26] 0.777 0.753 -

U-Net [45] - 0.618 -

U-Net+ [46] 0.567 - -

VGG16-U-Net [47] - - 0.961

VGG19-U-Net [48] - 0.8715 0.8764

Inception-U-Net [49] - 0.887 -

Inception-U-Net [24] - 0.95 -

ResNet34-U-Net [50] 0.6915 - -

SMANet [51] 0.665 0.769 -

DMMN-M3 [52] 0.706 - 0.870 - -

The U-Net encoder part was replaced with the VGG-19 architecture to im-452

prove the multi-class segmentation result. The final VGG19-U-Net was op-453

timized for our dataset to reduce the number of trainable parameters in the454

convolution layers and improve the computational costs and segmentation per-455

formance using a dipper network topology and a smaller convolution kernel. In456

this way, the categorical segmentation accuracy increased to 0.7178 for the m-457

IoU score in the testing phase. Pravitasari et al. [47] applied a VGG16-U-Net458
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with transfer learning to single-class semantic segmentation of brain tumours in459

magnetic resonance images and achieved an accuracy of 0.961. Nillmani et al.460

[48] applied a VGG19-U-Net to X-ray images for single-class segmentation of461

Covid-19 infections and achieved accuracy and Dice scores of 0.8764 and 0.8715,462

respectively.463

In the next step, we replaced Google’s inception architecture for the U-Net464

encoder and made a hybrid Inception-U-Net network. The inception module465

contained kernels of various sizes in the same layer to make the network topol-466

ogy wider instead of deeper and extract more representative features. The m-467

IoU metric for categorical segmentation increased significantly to 0.7907. The468

number of trainable parameters was reduced. The computational costs were469

improved efficiently. Haichun et al. [49] proposed an Inception-U-Net for single-470

class segmentation of brain tumours and achieved the m-Dice score of 0.887 in471

the testing phase. Sunny et al. [24] applied an Inception-U-Net to categorical472

segmentation of fluorescence microscopy datasets and achieved the average Dice473

metric over all segmentation classes of 0.95.474

The model performance was further improved using a hybrid ResNet34-U-475

Net architecture. The series of residual blocks with the skip connection was476

implemented into the CNN architecture during the training process to over-477

come the vanishing gradient and generalisation ability in very deep neural net-478

works. It increased the m-IoU to 0.8067 after the multi-class segmentation.479

Sunny et al. [24] built up a ResNet34-U-Net which showed the m-IoU of 0.6915480

in the cross-validation phase of fluorescence microscopy multi-class image seg-481

mentation. Gao et al. [51] applied a selected Multi-Scale Attention Network482

(SMANet) for multi-class segmentation in pancreatic pathological images and483

achieved m-Dice and m-IoU scores of 0.769 and 0.665. Ho et al. [52] proposed484

Multi-Encoder Multi-Decoder Multi-Concatenation (DMMN-M3) deep CNN for485

multi-class segmentation in two different image sets of breast cancer and reached486

m-IoU of 0.870 and 0.706.487
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5. Conclusion488

The main objective of this research was to develop an efficient algorithm489

to detect and segment living human HeLa cells and classify them according490

to their shapes and life cycles stages. Deep learning approaches to reflected491

light microscopy data analysis delivered efficient and promising outcomes. This492

research involved variants of hybrid U-Net-based CNN architecture: a simple493

U-Net, VGG19-U-Net, Inception-U-Net, and ResNet34-U-net.494

The simple U-Net (Tab. 1) has the longest training time, the biggest number495

of trainable parameters, and the lowest categorical segmentation performance.496

On the other hand, the hybrid ResNet34-U-Net achieved the best categorical497

segmentation performance (Tab. 4) with a run time significantly lower than the498

other proposed models. The computational cost and the number of trainable499

parameters of the inception network are lower than in the U-Net. Thus, the500

inception networks are better utilisable for bigger datasets. However, running501

the inception network requires a higher computational GPU memory.502

The Residual Convolutional Neural Network (ResNet) was applied as a hy-503

brid with the U-Net to overcome the gradient vanishing and improve the gen-504

eralisation ability during training. Using a series of residual blocks with skip505

connection in each level of the ResNet34-U-Net network resulted in better cat-506

egorical segmentation. The skip connections in each level of the deep neural507

networks bypass one or more layers and continuously update the gradient val-508

ues from one or more previous layers into the layers ahead.509

The categorical segmentation gradually improves from simple U-Net to ResNet34-510

U-Net (as evaluated using performance metrics, Tab. 4). The ResNet34 encoder511

network achieved the best categorical segmentation by integrating the residual512

learning structure to overcome the gradient vanishing with the U-Net as a hy-513

brid ResNet34-U-Net method. Nevertheless, future works are still essential to514

expand the knowledge on multi-class semantic segmentation using the weakly515

supervised method to generate the ground truth for huge datasets independently516

and apply ensemble learning steps to combine different and efficient CNN ar-517
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chitectures in prediction to achieve the most accurate segmentation result.518
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Abstract

Inland water bodies play a vital role at all scales in the terrestrial water

balance and Earth’s climate variability. Thus, an inventory of inland waters

is crucially important for hydrologic and ecological studies and management.

Therefore, the main aim of this study was to develop a new method for invento-

rying and mapping inland water bodies using high-resolution satellite imagery

automatically and accurately. Three different deep learning, U-Net-based algo-

rithms were used to segment inland waters, including simple U-Net, Residual

Attention U-Net, and VGG16–U–Net. All three algorithms were trained us-

ing a combination of Sentinel-2 visible bands (Red [B04; 665nm ], Green[B03;

560nm], and Blue[B02; 490 nm]) in 10-meter spatial resolution. VGG16-U-Net

provided the best segmentation results with 0.9850 in terms of mean-IoU score,

which improved slightly compared to other proposed U-Net base architecture.

Although the accuracy of the model based on VGG16-U-Net doesn’t make a

difference from Residual Attention U-Net, the computation costs for training

VGG16-U-Net were dramatically lower than Residual Attention U-Net.
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1. Introduction1

Inland waters (i.e., rivers, streams, lakes, reservoirs, wetlands, and flood2

plains) significantly impact hydrological and biogeochemical cycles. They play3

a vital role at all scales in the terrestrial water balance and Earth’s climate4

variability[1, 2]. Furthermore, inland waters provide vital resources for humans5

and are the sole habitat for an extraordinarily rich, endemic, and sensitive6

biota. However, like many other ecosystems over the past century, humans’ high7

demands on freshwater, continuous demographic pressure, and climate change8

have threatened the existence of inland water resources and biodiversity around9

the world[3]. Consequently, tracking and quantifying human and climate change10

influence on global inland water is essential, particularly for small water bodies,11

and delineating them is a prerequisite for further monitoring, modeling, and12

management.13

Since the 1970s, remote sensing techniques have become increasingly popu-14

lar for detecting and mapping inland waters regionally and globally[4, 5]. Since15

the launch of Sentinel-2, this trend has increased as Sentinel-2 is continuously16

acquiring high-resolution images from the land surface. Therefore, the scientific17

community and public and private sectors have used Sentinel-2 data extensively18

for land cover/use monitoring, including water bodies detection[6, 7]. Many19

former studies using methods like spectral indices [8, 9], single band density20

slicing [10], or supervised classification [11, 12] for detecting and mapping wa-21

ter bodies as water bodies appear dark in optical remote sensing due to high22

absorbance of irradiance in the near-infrared (NIR) spectrum. However, these23

methods have limitations, and some times challenging to inventory the inland24

waters with satisfactory accuracy. For instance, because of variations in the25

physical environment over space and time, it is often not straightforward to26

establish a constant threshold value [13]. In water body classification, shad-27

ows produced by mountains, trees, buildings, and river banks can contaminate28

2
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satellite imagery classification of water bodies [14]. Therefore, a new method29

is still desirable for detecting and mapping inland waters where high-resolution30

orbital remote sensing data automatically and accurately.31

Deep learning algorithms, particularly deep learning-based semantic segmen-32

tation algorithms, are widely used in the classification of remote sensing images33

[15, 16]. Although recently, several studies have shown that U-Net-based algo-34

rithms have better results; for instance, however, Zhang et al. [17] used and35

compared six different deep learning-based algorithms, including the network36

using architecture shape like ‘U’ well known as (U-Net), fully convolutional37

DenseNet (FC-DenseNet), full-resolution residual network (FRRN), bilateral38

segmentation network (BiSeNet), DeepLab version 3 plus (DeepLabV3+), and39

pyramid scene parsing network (PSPNet) for classification of land covers for40

medium resolution remote sensing data. They have found that the architecture41

based on encoder–decoder mechanism, including U-Net, is the most competi-42

tive network with the appropriate outcome to detect and map land covers of43

medium-resolution images. An et al. [18] proposed new architecture based44

on U-net where the convolution layer in U-Net was replaced with a bottleneck45

structure for water bodies extraction. They found that their proposed architec-46

ture can accurately (98.13%) segment water bodies and greatly reduce the size47

of the model and prediction time.48

It is still necessary to continue studying U-Net-based models with different49

architectures for the segmentation of different scenarios or types of features.50

Therefore, the main objective of this research was to develop and implement51

an accurate deep learning segmentation method with reasonable computational52

cost to detect and segment inland water bodies from high spatial resolution53

remote sensing images. We choose the U-Net for our research cause it is one of54

the methods with strong outcomes in semantic segmentation tasks. In addition,55

two other U-Net architectures, Residual Attention U-Net, and VGG16-U-Net56

were also investigated to achieve the best architecture for automated inland57

water detection based on the accuracy and computation cost.58
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2. Materials and Pre-Processing59

2.1. Data preparation and pre-processing60

This study acquired the raw images using the sentinel-2 Harmonized dataset61

archived on the Google Earth Engine javascript platform (GEE). The southern62

part of the Czech Republic, including the South Bohemian region, was selected63

as the region of interest (Fig. 1). This part of czech republic were considered to64

train the model because of the more water bodies in and artificial lakes existing65

in this region of the country. Including images with more related RoI regions66

were helpful to train more efficient models to predict the water bodies. Sentinel-67

2 images acquired during summer 2022 with less than 10% of cloud covering were68

considered as datasets for training and testing algorithms.69

In this study, the combination of visible bands of sentinel-2 (Red [B04; 665nm70

], Green[B03; 560nm], and Blue[B02; 490 nm]) were considered and used to ob-71

tain true color images for segmentation purpose. The reason of considering72

RGB bands is because the more bands used, the more complex and computa-73

tionally expensive the segmentation model. In other words, increasing model74

development and deploy the model requires more time and computation power.75

Additionally, not all bands may provide useful information for segmenting of76

water bodies, so it’s often more efficient to select a relevant subset of bands.77

Therefore, using only the RGB bands, which produce true color images, was78

a reasonable choice, given their sufficiency in achieving good accuracy in seg-79

menting water bodies. Using fewer bands can also help reduce overfitting, which80

occurs when a model becomes too complex and fits the training data too closely,81

resulting in poor generalization to new data. By using a simpler model with82

fewer input features, the risk of overfitting can be reduced and the generalization83

performance of the segmentation model can be improved.84

To achieve RGB images and render the image as a true-color composite,85

The Earth Engine visualization parameters and specific bands are configured86

as ’B4’(665nm), ’B3’ (560 nm), and ’B2’ (490nm) for red, green, and blue color87

channels with 10-meter spatial resolution, respectively. The ”min” and ”max”88

4

117



values in visualization parameters are suitable for displaying reflectance from89

typical Earth surface targets. The min value was set to zero, the max value90

was considered equal to 4000, and the Gamma correction factor was set to 1.4.91

After collecting the raw images from the Google Earth Engine (GEE) javascript92

platform, Raw images were downloaded and transferred into the QGIS software93

for further processing.94

Figure 1: The map of the study area. The red region represented the area selected for the

data collection phase.

After transferring the raw image data into the QGIS, the specific parts of the95

south bohemian region (Fig 1, The red region) was selected as the main dataset.96

On the other hand, the labeled data from Czech Republic inland waters provided97

by ZABAGED [19] were imported into the QGIS to generate the shape file of98

the inland water for all parts of the Czech Republic. Then, the same specific99

coordination from the GEE image and the labeled data were exported as ”Tiff”100

file with a big size of 46K × 46K pixel resolution.101

In the next step, the image and mask in big size were patchified into smaller102

parts (Fig 2). That process generated the main dataset for further analysis. The103

patchifing step splits images into small patches by given patch cell size [20] (ie.104

like cropping image in big size into the small parts). Images were patchified and105
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masked into the 2048×2048 pixel resolution to achieve suitable region of interest106

(ROI) area and avoid pixelating and blurring problems in the smaller size of the107

images. The patchifying step helped us to convert the image in big size into108

the images in smaller size to use in training step. After patchifying the image109

and mask into smaller parts, we achieved 504 images as the main dataset. The110

main dataset was split into three parts: (1) train set by randomly considering111

322 images (80% of the main dataset), (2) test set by randomly considering 101112

images (20% of the main dataset), (3) for model validation progress, 20% of the113

train set randomly selected (81 images) to prevent over-fitting problem during114

training progress and reach more stable performance for generated models.115

2.2. Neural network architecture116

2.2.1. Simple U-Net117

Deep neural network methods delivered promising outcomes in classification118

and segmentation tasks in terms of accuracy when dealing with a large dataset.119

One of the promising neural network architectures for semantic segmentation is120

U-Net. The U-Net based methods deliver promissing outcome in different sense-121

tive research fields including medical and microscopy regions [21, 22]. The U-Net122

was proposed and created for semantic segmentation based on the convolutional123

neural network (CNN) architecture and comprised of an encoder-decoder con-124

volutional network topology. The encoder and decoder blocked in each level125

were connected to each other via a bridge to combine features from the encoder126

part with extracted features from the decode section. The feature representa-127

tion extracted by the decoder part is useful for positioning, whereas encoder128

part features are efficient in achieving accurate segmentation. The proposed129

architecture for the simple U-Net method applied in this research is displayed130

in Fig. 3.131

The first layer of the encoder part (fig. 3, Part A) accepts images with the132

size 512 × 512 with three color channel (RGB) mode as input. The proposed133

U-Net structure has five levels. Each level consists of two 3×3 convolutions134

followed by Batch normalization for each convolution layer and applying a rec-135
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Figure 2: Train set images and corresponded ground truth images. The size of image is

512× 512.

tified linear unit ”ReLu” as activation functions. In each level of the encoder136

part (down-sampling), The image size was halved by applying 2×2 max pooling137

7
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operation, and the number of feature channels was doubled using convolutions.138

The maximum value was selected in the 2 × 2 area with the stride of two by139

max pooling operation. The encoder part of the network extracts the features140

and learns an abstract representation of the input image through a sequence of141

the encoder blocks.142

In the decoder or up-sampling section (Fig. 3, Part B), the dimension of the143

feature maps in each level was doubled from the layer at the bottom to the top144

layer till achieved the exact same size as the input images. The bridge connection145

combined the extracted features from the encoder part into the decoder section.146

As a result of the concatenation step, the channels of the output feature maps147

will be twice as big as the size of the input features. The Concatenation step148

of feature maps in U-Net gives us better localization information. The output149

of the last decoder layer at the top includes 1 × 1 convolution with Sigmoid150

activation to predict the probabilities value of pixels for classification purposes.151

The size of the feature map at the output layer was achieved the exactly as152

same size as the input layer by applying Padding in the convolution process.153

The decoder part of the network used extracted abstract representation from154

the encoder part and generated a semantic segmentation mask. The Binary155

Focal Loss was used as loss function of the U-Net.156

2.2.2. Residual Attention U-Net157

The architecture of U-Net consists of encoder and decoder blocks that are158

connected via a bridge at each level (Fig. 3). The bridge connections are respon-159

sible for merging the down-sampling and up-sampling paths together to reach160

spatial information. On the other hand, the concatenation step may transfer161

many unimportant and useless feature representations from the encoder part162

during the combination process. The attention mechanism implemented based163

on U-Net architecture (Fig. 4, part D) was proposed by Oktay et al. [23] with a164

promising outcome in medical imaging. The soft attention mechanism was im-165

plemented to keep and highlight the most representative features and enhance166

achieved segmentation results by simple U-Net. The soft attention mechanism167

8
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Figure 3: The simple U-Net Architecture. Part A represent the encoder section and part B

represent decoder section

remark the important features and represses activations in the unrelated re-168

gions. As a result, model sensitivity and performance were slightly improved by169

employing the attention gate without requiring complicated and heavy compu-170

tational costs [22].171

The employed soft attention gate (Fig. 4, part D) getting two inputs, x and172

g. The input x was achieved by the concatenation bridges from the early layers173

of the encoder part and includes better spatial information. Input g comes from174

the deeper layers of the network known as the gating signal, which includes175

more efficient feature representation and contextual information to identify the176

focus region and gives weight to the different parts of the images. The attention177

coefficients α ∈ [0, 1] identify, extract, and assign weights to the features belong178

to the important part of the image regions in our case the water bodies. The179

attention mechanism progress, getting the weights to the pixels according to180

9
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Figure 4: The proposed architecture for Residual attention U-Net. Part A represents the

encoder section, and part B represents the decoder section. Part C represents the residual

mechanism. Part D represent the soft Attention mechanism. Each feature map has size as

H ×W ×D, which H, W , and D represent height, width, and number of channels.

their relevance in training steps [23]. The more relevant part of the image will181

get weights bigger than the less relevant parts. So, by applying the achieved182
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weights in the training process, we trained model that is more attentive to the183

relevant image parts. The multiplication of the input feature maps xl and the184

achieved attention coefficient α generate the output of the attention gate:185

qIatt = ψT (σ1(W
T
x x

I
i +WT

g gi + bg)) + bψ, (1)

αIi = σ2(p
I
att(x

I
i , gi; Θatt)), (2)

whereas the σ1 and σ2 parameters correspond to the relu and sigmoid acti-186

vation functions and Θatt indicate different parameters including linear trans-187

formations Wx and Wg, function ψ and bias terms bψ and bg [23].188

Deeper neural networks deliver more effective performance in complex clas-189

sification and segmentation tasks [24]. Each level of the proposed U-Net-based190

architectures consists of many convolutional blocks (Fig. 4). The input value191

enters into the Convolutional blocks, the convolution operation, and the acti-192

vation function applied in the input value and generates the output. In neural193

networks, the output of each convolutional block is the input of the next con-194

volutional block. So, by making the neural network architecture deeper, the195

calculated gradient value from one block to another will be smaller because of196

the gradient vanishing effect, and the accuracy of the trained model will degrade197

rapidly instead of improving. The gradient vanishing problem appeared during198

the training procedure and affected the model’s generalization ability. To miti-199

gate this problem, the residual mechanism was implemented and applied to the200

proposed method to continuously update the calculated gradient values in each201

convolutional block and improve the performance of trained models [25]. The202

proposed residual blocks, known as skip connections, will bypass one or more203

layers and update the gradient values from one or more previous layers into the204

layer step ahead. By combining the soft attention mechanism with the residual205

mechanism, we will get the weights into the important part of the image and206

overcome the gradient vanishing problem during training progress.207
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2.2.3. VGG16-U-Net208

Different CNN architectures have been proposed to be combined with the U-209

Net architecture for improving the trained model accuracy and computational210

cost of the U-Net and reducing the number of trainable parameters in compari-211

son to the original U-Net. The VGG is the basis of CNN architecture proposed212

by Simoniyan et al. [26] and developed by the Visual Geometry Group from Ox-213

ford university. The VGG was developed and proposed to reduce the number214

of trainable parameters in the Convolutional layers and improve the training215

time because of the structure of the developed architecture proposed by [26].216

The VGG architecture has many different variants depending on the number of217

layers from VGG11 to VGG19. The VGG16 efficiently performed many object218

detection and image classification tasks [27, 28]. Due to this, in this research,219

the hybrid VGG16-U-Net architecture was chosen and implemented to compare220

with two other methods and improve the semantic segmentation results in term221

of performance and computational costs. To implement the proposed hybrid222

network, the encoder part of the U-Net, which is responsible for extracting223

the feature representation, was completely replaced with the VGG16 structure224

(Fig. 5, part B). The VGG16 architecture at the encoder part (Fig. 5, part225

A) consists of sixteen layers, including thirteen convolutional layers and three226

dense layers. The 3 fully connected layers of Vgg16 (Fig, 5, part A, green227

rectangles) were replaced with architecture that resembled the decoding part228

of U-Net, which formed the expanding path with convolution layers and up-229

sampling layers (Fig. 5, part B). Hence, the VGG16 without the final 3 fully230

connected layers was retained as the contracting path [29].231

The first layer of the encoder section takes the input image with the size of232

512 × 512 in RGB color mode and has 64 channels. Each convolutional blocks233

in each level have max pooling progress with the size of 2 × 2 and a stride of234

two to extract the maximal value. In each level of the encoder section, the size235

of the image was half, and the size of feature channels was doubled from 64 to a236

maximum of 512. The right side of the network (Fig 6, Part B) represents the237
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Figure 5: Architecture of the VGG16 and its variants. A) represent the VGG16 network

architectur. B) represent VGG16–U–Net architecture.

Figure 6: Architecture of the proposed Hybrid VGG16-U-Net model. A) represent the

encoder part of VGG16 architecture, B) represent the decoder part of U-Net respectively.
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decoder part with five levels. The structure of the decoder section remained the238

same as we applied in the simple U-Net method. Each level of the encoder and239

decoder parts was connected via a concatenation bridge. The concatenation step240

combines features extracted from the encoder section with the decoder section,241

and this concatenation step is important for achieving localization information.242

The last encoder layer has 1 × 1 convolutional size to predict the probability243

value of each pixel and generate the semantic segmentation by applying the244

”Sigmoid” activation function.245

2.3. Training Models246

The computational platform used for implementing all methods is Python247

3.9. All deep learning frameworks were implemented using Keras with the back-248

end of Tensorflow [30] to train the best stable models. After developing methods249

and completing of implementation phase for all CNN architectures, the complete250

method was transferred and compiled on the Google Collab Pro + cluster ac-251

count. The google clusters are equipped with two vCPU as processors, 24 Gb252

of RAM as memory, and P100 and T4 graphical processor unit (GPU) [31].253

By the completion of the data pre-processing step (Sect. 2), 80% of the main254

dataset was chosen randomly as a train set (322 images), and the rest of 20%255

was considered randomly as a test set (101 images) for testing and evaluating256

the generated models’ performance. Meanwhile, 20% of the training set was257

chosen randomly as the validation set (81 images) to validate the model and258

prevent over-fitting problems during the training process.259

The input image size used in proposed CNN architectures was 512 × 512260

px. All dataset images were resized from 2048 × 2048 px into 512 × 512 px as261

proper and specific input image size for proposed CNN’s. We employed data262

augmentation variables during model training for all three CNN methods. The263

best-achieved values for each hyperparameter were reported in Tab. 1. The264

early stopping parameters are useful to prevent the over-fitting problem in the265

training phase. The threshold for patient value is set equal to 20. The ”Relu”266

was selected as an activation function, and the Batch size value was considered267
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8. As a description of data Augmentation parameters, the ”rotation range”268

means randomly rotating images between [-90,90] degrees. The ”width shift269

range” shift the image to the left or right (horizontal shifts), and the ”height270

shift range” parameter shifts the image vertically (up or down). The ”shear271

range” parameter shows a distorted image along an axis to create or rectify the272

perception angle. The random zoom for the training images was obtained by the273

”zoom range” parameter. For optimizing the network, we choose the ’Adam’274

optimizer. The learning rate value was considered to 10−3.275

Table 1: The value of Hyperparameters used for all CNN models.

Hyperparameter Value

Activation function Relu

Learning rate 10−3

Size of the Bach 8

Number of the Epochs 70

Early stopping 20

Number of steps in each epochs 100

Rotation range 90

Width shift 0.3

Height shift 0.3

Shear range 0.5

Zoom range 0.3

Semantic segmentation progress could be defined as a classification task at276

the pixel level to classify those pixels into water bodies or other classes. The277

segmented water bodies’ images with the ground truth (GT) were compared to278

minimize the difference between them during the training using the Dice loss.279

The Binary Focal Loss was used as a loss function for semantic segmentation280

(Eq. 3) [32]:281

Focal Loss = −αt(1− pt)
γ log(pt), (3)

Which pt ∈ [0, 1] represents the predicted probability value achieved by the282

model for the ground truth class with label y = 1; αt ∈ [0, 1] corresponding283

to the weighting factor for class 1 and 1 − αt for class 0; and γ ≥ 0 represent-284
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ing tunable focusing parameter. Applying focal loss efficiently achieved better285

segmentation performance in regions of images that are challenging to segment286

(e.g., narrow inland water bodies or inland bodies with a similar texture to for-287

est) and separate sensitive inland water bodies from the background. On the288

other hand, the focal loss as loss function manages and reduces the participa-289

tion of the pixels belonging to the specific region that can be segmented easier290

(e.g., big and visible inland waters) over the image region in the model training291

progress. The model has the responsibility of updating the gradient direction.292

This progress depends on the loss of the model.293

2.4. Evaluation metrics294

To evaluate segmentation models generated by CNN’s, different evaluation295

metrics were used (Eqs. 4–8). The TP represents a true positive, FP indicates296

a false positive, FN corresponds to a false negative, and TN represents true297

negative values, respectively [33]. The generated models were evaluated with298

the test sets using described metrics, and mean values of each metric were299

reported in table 3.300

The accuracy (Acc) metric indicates the percentage of the pixels which seg-301

mented correctly from water bodies. The Precision (Pre) metric represents a302

ratio of the pixels segmented as water bodies that exactly match the masks303

(GT). The Recall metric indicates the ratio of pixels belonging to the water304

bodies in the mask (GT), which is detected properly over the segmentation305

process. The Dice coefficient, known as F1-score, indicates if the segmented306

area is equal to the mask of the image (GT) in terms of location and level of307

detail. The F1-score represents ascertaining how accurate is the segmentation308

result in boundary regions[34] and is more important than the ACC metric for309

evaluating model performance. The most important metric for segmentation310

model evaluation is Intersection over Union (IoU), also known as the Jaccard311

similarity index. The mentioned metric represents the correlation between the312

prediction of the model and mask (GT) [35, 36], and indicates the overlap and313

union area proportion for the model predicted and mask (GT).314
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Acc =
TP + TN

TP + FP + FN + TN
(4)

Pre =
TP

TP + FP
(5)

Recl =
TP

TP + FN
(6)

Dice =
2 × Pre × Recl

Pre + Recl
=

2 × TP

2 × TP + FP + FN
(7)

IoU =
| yt ∩ yp |

| yt | + | yp | − | yt ∩ yp |
=

TP

TP + FP + FN
(8)

3. Results and discussion315

The proposed neural network models were well trained by processing 70316

epochs according to the training/validation loss and accuracy plots (Fig. 7).317

To achieve the best training performance and stability, we assume all models318

were trained well according to the best-optimized hyperparameter values listed319

in Table 1. The best hyperparameter values were achieved by training several320

models based on different values of hyperparameters to achieve the best model321

performance and training stability. The trained models were evaluated using322

a test dataset to assess the performance of the proposed models based on the323

metrics written in Eqs. 4–8.324

The simple U-Net model had an average computational cost in compari-325

son with the Residual attention and VGG16-U-Net architecture. However, the326

number of the trainable parameters in the Residual attention U-net increased327

dramatically because of soft attention and residual mechanism, which cause the328

highest computational cost by this architecture. On the other hand, VGG16-329

U-Net had the lowest number of trainable parameters and, as a result, the330

shortest run time because of the structure of this architecture and achieved the331

best performance compared with the other two proposed methods (Tab. 2).332
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Figure 7: The training loss and accuracy plots for U-Net (first raw), Residual Attention

U-Net (second raw), and VGG16-U-Net (third raw).

Figure 8 shows the segmentation results achieved by different proposed CNN333

architectures. The result of segmentation accomplished by U-Net did not man-334

age to segment all the water bodies over the test set image and suffered from a335

miss segmentation problem (Fig. 8, red circle). The Residual Attention U-Net336

segmented the borders of water bodies in complete shape, and the segmenta-337

tion result was improved in comparison with the simple U-Net. Nevertheless,338

the result achieved by Residual Attention U-Net faced the under-segmentation339

problems in some water bodies regions to detect and segment some edges as vi-340

sualized in Fig. 8, green circle. The best performance of the segmentation was341

achieved by the VGG16-U-Net method. The result represents a more precise342

and accurate segmentation of the water bodies’ borders, especially in the edge343

region and sensitive areas (Fig. 8, light blue circle).344

Table 3 displays the evaluation of different U-Net-based proposed models345

with different evaluation metrics using (Eqs. 4–8) as the mean value for all346
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Table 2: CNN’s architecture trainable parameters and runtimes.

Network name Training time Trainable parameters

U-Net 3:01’:47” 31,402,501

Residual Attention U-Net 4:17’:23” 39,090,377

VGG16-U-Net 2:53’:19” 25,862,337

the metrics. The simple U-Net achieved the lowest segmentation performance347

according to the value of Mean-IoU and other evaluation metrics. The Resid-348

ual Attention U-Net model represents a more improved segmentation result in349

comparison with the U-Net model in terms of the same test set image and350

evaluation metric values. In one more step, the segmentation result was fur-351

ther improved after applying the VGG16 encoder architecture with U-Net as a352

hybrid VGG16-U-Net method.353

Table 3: The performance of the CNN Models evaluated by the different metrics. Green

highlighted values indicate the best performance of segmentation according to the reported

metrics.

Network Accuracy Precision Recall m-IoU m-Dice

U-Net 0.9710 0.9997 0.9709 0.9707 0.9849

Residual Attention U-Net 0.9852 0.9986 0.9861 0.9848 0.9923

VGG16-U-Net 0.9855 0.9981 0.9869 0.9850 0.9924

The original U-Net architecture is one of the promising semantic segmen-354

tation methods which have been used in different research fields. The original355

U-Net have been selected as first method to implement and apply in our study.356

As next phase, we slightly improved the obtained result by modifying the orig-357

inal U-Net architecture by adding the residual mechanism together with soft358

attention mechanism as extension into the original U-Net. At the last step, we359

replaced the encoder (feature extraction) part of the U-Net with more powerful360

VGG16 architecture to build hybrid CNN architecture with more efficient fea-361

ture extraction section and compare the obtained result with previous methods362

in term of performance and computational costs.363

To the best knowledge, there is no similar research that has been done be-364

19

132



Figure 8: Result of Segmentation for the U-Net (the red circle visualises the

miss-segmentation of water bodies), Residual Attention U-Net (the green circle visualises the

under-segmentation issue), and the VGG16-U-Net (light blue circle visualises the accurate

segmentation of the water bodies. The size of images is 512× 512.

fore based on the proposed methods for detecting and segmenting inland water.365

However, Some researchers applied different deep learning algorithms to detect366

and segment the inland waters. Table 4 represent the comparison of the similar367

literature with the proposed methods in this study. Zhong et al. [37] proposed a368

noise-cancelling transformer network (NT-Net) for the automatic extraction of369

lake water bodies from remote sensing images and resolve the over-segmentation370

problem obtained by other literature. The proposed method obtained a 0.862371

accuracy value in terms of the IoU metric. Zhang et al. [38] proposed a modi-372

fied feature extraction network and a modified encoder-decoder network based373

on depth-wise separable convolution for segmenting the water bodies. The pro-374

posed method achieved 0.984 IoU metric accuracy. The authors in [39] proposed375

a dense pyramid pooling module (DensePPM) to extract global prior knowledge376
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with a dense scale distribution for Segmenting Water Bodies From Aerial Im-377

ages. The proposed method obtained a 0.842 metric value in terms of the IoU378

metric. Chang et al [40] proposed modified U-Net with residual mechanism and379

attention mechanism in encoder section based on PMS1 remote sensing data380

of GF2 satellite. The authors achieved good result (i.e., IoU =0.9270). Ch et381

al. [41] used Sentinel-2 image with two Band3 (Sentinel-2 Green Channel) and382

Band8 (Sentinel-2 Infrared Channel) and combined these two channel by follow-383

ing ”NWDI” formula (as described in original paper) to achieve dataset images384

and then applied original U-Net architecture to analyse them. The authors385

achieved 0.89 of Mean IoU score based on suggested method.386

Table 4: comparision of the proposed CNNs with other similar literature. The highlighted

Green value represent the highest segmentation accuracy achieved by proposed methods.

Models IoU Dice Acc

prop. U-Net 0.9707 0.9849 0.9710

prop. Residual Attention-U-Net 0.9848 0.9923 0.9852

prop. VGG16-U-Net 0.9850 0.9924 0.9855

NT-U-Net [37] 0.862 - -

Modified Encoder-Decoder [38] 0.984 - -

DensePPM [39] 0.842 - -

Res2U-Net [40] 0.9270 - -

ResNet50 [18] 0.9781 - -

U-Net [41] 0.89 - -

4. Conclusions387

The efficiency and quality of the segmentation of orbital remote sensing im-388

ages are the fundamental elements influencing the application of remote sensing389

for land cover/use mapping. Image semantic segmentation methods based on390

deep learning remarkably eliminated conventional segmentation methods’ short-391

comings (e.g., no distinct segmentation due to complex image background or392

many target instances in one image). This paper analyzed and compared three393

different deep learning, U-Net-based methods, including simple U-Net, Residual394

Attention U-Net, and VGG16-U-Net, to detect and segment inland water bodies395
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using high-resolution satellite images. The results of this study indicate that the396

U-Net-based algorithms can be employed to inventory inland water bodies fast,397

accurately, and inexpensively in terms of computation cost. The results of this398

study can pave the way for implementing precision land cover mapping based399

on high-resolution satellite imagery by providing an objective, fast, accurate400

algorithm for inventorying land covers globally. Therefore, this study can be401

extended further to investigate other state-of-the-art deep learning algorithms402

also to evaluate them for other types of land cover/use mapping. The code403

used in this study is publicly available on our Gitlab repository (https://git.gfz-404

potsdam.de/ali/remotesensing-hida).405
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(TAČR) for funding in the frame of the collaborative international consortium416

AIHABs financed under the ERA-NET AquaticPollutants Joint Transnational417

Call (GA Nº 869178). This ERA-NET is an integral part of the activities de-418

veloped by the Water, Oceans, and AMR Joint Programming Initiatives. Fur-419

thermore, the authors appreciate the Helmholtz information and data science420

academy (HiDA) funding in the frame of the Helmholtz Visiting Researcher421

Grant. The authors would like to thank the European Regional Development422

22

135



Fund in the frame of the project ImageHeadstart (ATCZ215) in the Interreg423

V-A Austria–Czech Republic programme and the project GAJU 114/2022/Z.424

DECLARATION OF COMPETITING INTEREST425

The authors declare no conflict of interest, or known competing financial426

interests, or personal relationships that could have appeared to influence the427

work reported in this paper.428

References429

[1] S. Zhang, S. Foerster, P. Medeiros, J. C. d. Araújo, Z. Duan, A. Bronstert,430
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Abstract In video-records, objects moving in intracellular regions are often hardly detectable and iden-
tifiable. To squeeze the information on the intracellular flows, we propose an automatic method of recon-
struction of intracellular flow velocity fields based only on a recorded video of an unstained cell. The
basis of the method is detection of speeded-up robust features (SURF) and assembling them into trajec-
tories. Two components of motion—direct and Brownian—are separated by an original method based on
minimum covariance estimation. The Brownian component gives a spatially resolved diffusion coefficient.
The directed component yields a velocity field, and after fitting the vorticity equation, estimation of the
spatially distributed effective viscosity. The method was applied to videos of a human osteoblast and a
hepatocyte. The obtained parameters are in agreement with the literature data.

1 Introduction

A typical bright-field microscopy experiment is time-
lapse recording of a sequence of images. In case of living
unstained samples, it is little known about structure of
the observed objects. It is usually possible to discrimi-
nate a cell from its background, find its nucleus, but not
more [1]. However, the microscopy image is much more
complicated and one can see motion of some intracellu-
lar structures and movement of small ’particles’ inside
the cell. These objects are extremely diverse in texture
and shape, frequently do not have sharp boundaries,
and are mostly too small for identification.

In this article, we aim to investigate cell rheolog-
ical and microfluidic properties without any a priori
information about cell structure or composition. There
are approaches aimed specifically at investigation cell
flows, e.g., [2], but they require fluorescent labeling and
a mathematical model of the studied cell. There are
model-free approaches as well. These are based on cor-
relation computations, e.g., [3], have a solid mathemat-
ical background, and at good conditions and for well-
behaved objects, can deliver good results. But these
correlation methods suffer from the fact that they can-
not distinguish the points and rely on proximity based
assignment. As a result, these methods inevitably suf-
fer from error propagation during tracking. Another
way is to segment some sufficiently large objects and

a e-mail: lonhus@jcu.cz
b e-mail: rrychtarikova@frov.jcu.cz (corresponding

author)

then track them until they are overlapping, e.g., [4].
These methods do not suffer from the error propaga-
tion so much, but require segmentable entities in the cell
image. Even then, the count of followed objects can be
too small for flow reconstruction. Moreover, all meth-
ods described above do not address the fact that small
particles can be susceptible to the Brownian motion.
All the methods also often assume that the random
component of motion can be safely neglected.

The main idea of the method proposed here is track-
ing of identifiable spots inside a cell followed by recon-
struction of local properties of media and fields of veloc-
ities. This approach is similar to two well-known model-
free approaches to the velocity reconstruction such as
the Particle Image Velocimetry (PIV) [5] and the Par-
ticle Tracking Velocimetry (PVT) [6]. After that, the
nonlinear optimization of minimum covariance, alter-
nating likelihood fitting, enables us to separate the
observed motion to components of the Brownian and
direct flow, respectively, yielding both rectified flows
and local media properties.

2 Materials and methods

To show capacity of the method, we applied it to micro-
scopic image data from time-lapse experiments on live
human cells of lines MG63 and HepG2.
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2.1 Cell sample preparation

A MG63 (human osteosarcoma, Sigma-Aldrich, cat. No.
86051601) and a HepG2 (human hepatocellular carci-
noma, Sigma-Aldrich, cat. No. 85011430) cell lines were
grown at low optical density overnight at 37 ◦C, 5%
CO2, and 90% RH. The nutrient solution consisted of
DMEM (87.7%) with high glucose (> 1 g L−1), fetal
bovine serum (10%), antibiotics and antimycotics (1%),
L-glutamine (1%), and gentamicin (0.3%; all purchased
from Biowest, Nuaillé, France).

During the microscopy experiments, the MG63 cells
were maintained in a Petri dish with a cover glass bot-
tom and lid at room temperature of 37 ◦C. The HepG2
cells were cultivated in a Bioptechs FCS2 Closed Cham-
ber System at 37 ◦C (Table 1).

2.2 Bright-field wide-field video-enhanced
microscopy

The living cells were captured using a custom-made
inverted high-resolved bright-field wide-field light micro-
scopes enabling observation of sub-microscopic objects
(ICS FFPW, Nové Hrady, Czech Republic): The HepG2
line was captured by an older type of microscope (so-
called nanoscope, built 2011), whereas the MG63 cell
line was scanned using a newer type of microscope (so-
called superscope, built 2020).

The optical path of the both microscopes is very
simple and starts by a light emitting diode(s) which
illuminate(s) the sample by series of light flashes (syn-
chronized with a microscope digital camera exposure
and image saving speed) in a gentle mode and enable
the video enhancement [4]. In the case maybe, a light
filter is applied to protect the sample from undesir-
able intensities. After passing through a sample, light
reaches a Nikon objective. In the nanoscope, a Mitutoyo
tube lens magnifies and projects the image on a high-
resolved rgb digital camera. At this total magnification,
the size of the object projected on the camera pixel is
under the Abbe diffraction limit, i.e., 32 and 23 nm,
respectively. The process of capturing the primary sig-
nal was controlled by a custom-made control software.
In both cases, we performed a time-lapse experiment
from a compromise focal plane of the cell. The micro-
scope setups differ as written in Table 1.

2.3 Image preprocessing

To suppress the image distortions, the microscope opti-
cal path and camera chip was calibrated and the
obtained time-lapse micrographs were corrected by a
radiometric approach described in detail in [7].

The raw images were recorded in the color preserv-
ing RGB mode when three intensity values (in the red,
green, and blue image channel) are assigned to each
image point (pixel). In this color-preserving image rep-
resentation, four camera pixels are always merged in
a way that the resulting number of the RGB image
pixels is a quarter (see [8] for details). In other words,

the resulting pixel size is doubled, i.e., 64 nm and 46
nm, respectively (cf. Table 1). Since all examined fea-
ture detectors work on single-channel images, the RGB
images were converted to grayscale in the standard
way (0.2989·R + 0.5870·G + 0.1140·B, where R, G,
and B are intensities of pixels in the red, green, and
blue raw image channel, respectively) [9]. To eliminate
subtle changes in illumination, the images were robustly
rescaled to [0..1], after saturating 1% of both the dark-
est and the brightest pixels simultaneously.

Prior to any tracking, the objects of interest (live
cells) have to be robustly detected and segmented from
image background. Therefore, we annotated a few (usu-
ally 1%) images from the sequence visually to interpo-
late contours of the observed cell in the unannotated
images. For interpolation of the contours, we used a
weighted mean of strings [10]. After contours were inter-
polated, we applied a non-parametric image deforma-
tion registration [11]. The obtained displacement field
was employed to compensate position shift between the
images.

3 Estimation of intracellular flows

The algorithm for the estimation of the flows and rhe-
ological parameters in the intracellular environment of
the unstained cells is showed in Fig. 1 and described in
detail in the following subsections. The Matlab codes
and the input and output data are available at the
Dryad data depository [12].

3.1 Feature extraction and tracking

There are numerous methods, e.g., [13,14], for track-
ing local image features, i.e., feature vectors describing
special, well-distinguishable image points. These meth-
ods are usually designed to match the same object from
different views. Our problem is opposite—to match dif-
ferent (but similar) objects from the same view. We
tested BRISK [15], ORB [16], MSERF [17], KAZE [18],
MinEig [19], and SURF [20] image features to estimate
their efficacy (Fig. 2b; see Sect. 3.2 for determination
of the error in separation of the direct motion from the
random walk). The SURF performs the best, followed
by the MinEig. The further analysis showed that the
SURF output is much more robust to small changes in
the image. The SURF method is based on calculation of
the Hessian matrix for each pixel of the smoothed (via
approximated Gaussian smoothing; a box filter with
kernel 9×9 px and σ = 1.2) image separately. The pixels
whose matrix determinants were maximal were treated
as the ’points’. An image pyramid with 3 scales was
further used. The descriptors themselves were oriented
Haar wavelets [20].

The next step was to track a point through con-
secutive frames. To avoid a computationally intensive
O(n2) point match (where n is a number of points in an
image), we used a heuristic approach—the same points
in consecutive frames should be nearby. A small, ran-
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Table 1 Bright-field wide-field microscopy constructions and setups

Microscope (cell) Nanoscope (HepG2) Superscope (MG63)

LEDs 2 × Luminus CSM-360, 4500 mA
(59.625 W)

1 × Luminus CFT-90-W, 40% of
max. intensity

Light pattern Light 226.1 ms–dark 96.9 ms light 0.2 ms-dark 199.8 ms
Light filters Edmund optics, i.r. 775 nm

short-pass, u.v. 450 nm long-pass
No

Objective Nikon LWD 40 ×, Ph1 ADL, 1/1.2,
N.A. 0.55, W.D. 2.1 mm

Nikon CFI Achromat 60 ×, N.A.
0.80, W.D. 0.30 mm

Tube lens Mitutoyo, 4 × No
Camera JAI, rgb Kodak KAI-16000 chip,

4872 × 3248 px
Ximea MX500-CG-CM-X4 G2-FL
rgb, 7920 × 6004 px

Camera Bayer mask GBRG BGGR
Camera exposure 293.6 ms (gain 0, offset 300) 0.2 ms
Pixel size 32 nm 23 nm
Scanning frequency 0.2 fps 5 fps
Experiment length 2446.869 s 83.2 s
Cell cultivation Bioptechs FCS2 closed chamber

system
Ibidi µ-dish 35 mm, high glass
bottom, DIC lid

No. of px per cell (2.137 ± 0.048) × 106 (5.623 ± 0.084) × 105

No. of images 473 416

Fig. 1 Algorithm of the method for calculation of the viscosity map and diffusion map of the intracellular environment

dom, subset of (∼ 10) pairs of consecutive images was
used to estimate the maximal point displacement in
two images: For each pair of the consecutive frames, we
found a median of the minimal distances between each
two points. Then, the resulted effective displacement
ED was calculated as a mean from all medians of the
minimal distances. Finally, we assume that the match
between the points is possible if the distance is smaller
than 3 · ED. In this way, each point obtained typically
10–15 possible candidates for tracking in the following
image, and thus, we effectively reduced feature match-
ing complexity to O(n) and eliminated the long-range
matching error.

The tracking process itself is iterative. At each step
we classified all detections into two sets: assigned and
unassigned. To be assigned, a detection in any track had
to fulfill two criteria—to be spatially close (closer than
3 average offsets) and feature-wise close (the Euclidean
distance between the last and the current vector of
the track has to be smaller than 1). The unassigned
detection created new tracks. The tracks which were
not assigned for a longer period than K frames were
removed. Since the influence of K on quality of the
final result has not been investigated, we used the safest
choice of K = 1.

3.2 Decomposition to direct and Brownian motion

The segmented trajectories are sets of points in R2,
usually 10–300 points. We assume that the trajectories
exhibit two simultaneous types of motion—Brownian
and direct. As widely accepted (the Einstein model),
the Brownian motion of small particles can be described
as a Gaussian process with zero mean. To separate the
components of motion, we used the minimization of a
maximum differential entropy, which for a multivariate
normal distribution follows h(x) ≤ 1

2 log det cov(X). In
this way we proposed a formulation of the separation
problem as

Vd = min
V∈R2

log |cov(Pn − nV)|, (1)

where Pn is a position of the tracked point in time step
n and Vd is the searched velocity. Equation 1 can be
also viewed as direct usage of the minimum covariance
approach.

This optimization also gives a corrected (with a com-
pensated drift) set of points from which ’normal’ covari-
ance and mean value can be estimated. We chose a
nonlinear optimization—sequential-quadratic program-
ming [21]—which, in the vicinity of a current point,
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Fig. 2 a Relative error of
velocity determination as a
function of number of
points in trajectory and
ratio between standard
deviation σ and norm of
the velocity V . b Relative
error of quality of features
for feature extraction
methods

iteratively approximates a nonlinear problem by a
quadratic one and solves this simpler problem by a QR
decomposition. This method is not global and relies on
the initial guess. We used the safest guess—the zero
velocity—which coincides with the null hypothesis.

To verify this approach, we performed the following
numerical experiment (simulation): the most straight-
forward way how to mimic the Brownian motion is the
random walk, where the steps are drawn from the Gaus-
sian distribution. The simulation itself has two main
parameters: a number of points N in a track and fuzzi-
ness σ

|V| , where σ is a standard deviation of the Gaus-

sian process N and V is a drift velocity vector. Then,
the position of the tracked point in time step (n+1) is

Pn+1 = Pn + V + N (0, σ). (2)

After that, for any random walk with drift, it is pos-
sible to apply the resulted components of the method
of separation of the direct motion from a random walk

and evaluate the error Err = |R−V|
|V| , where R and V is

the reconstructed and real velocity, respectively.
Using Eq. 2, we simulated numerous tracks varying

in the number of time steps (from 8 to 300) and in the
fuzziness (from 0.01 to 10 discretized into 500 steps).
The data along all 500 trials were averaged and saved as
a table (Fig. 2a). By a 2D bilinear interpolation, it was
allowed to calculate the error of velocity extraction Err
from a non-synthetic data. It requires that the velocity
is both spatially and temporarily constant (along the
given track) and the observed random motion obeys
the Gaussian distribution.

If the data variation is not too high (σ/|V| < 0.1),
we can carry out a reliable (relative error Err < 0.01)
extraction of the drift velocity from sets of down to 10
points. For a higher number of points, the drift velocity
extraction gives a quite reliable estimation even if the
standard deviation is much greater than the norm of
the drift velocity vector.

Due to absence of the ground truth, there is no way
how to evaluate quality of the reconstructed flows. But
quality of the tracks can be evaluated as the mean sepa-
ration error of the tracks. In this way, we compared the
different feature detectors, defining that a lower recon-

struction error means a better detector (Fig. 2b, more
above in Sect. 3.1).

3.3 Reconstruction and analysis of intracellular flows

The velocities were defined for the most of the tracks.
Some of the tracks were excluded from the future anal-
ysis due to a high separation error (the threshold value
was chosen 1). There was no way how to attribute the
given velocity to the specific position, because we esti-
mated the drift for the whole trajectory. We assumed
that the drift is constant along the observed positions
in the trajectory. All tracks’ velocities were imprinted
in a single global image of the cell.

The particles passing through the same point (in 2D
projection) at the same time can exhibit completely
different velocities. These velocities have to be sepa-
rated. Since we calculate velocities along the time win-
dow, for each pixel we obtain as many estimations of
velocities as length of the time window. From these
different estimations of velocities, we can calculate the
error of velocity separation Err (see Sect. 3.2). In fol-
lowing statistical analysis, we will assign weights to the
velocities estimated in this time window. Each of this
weight is complementary to the error of separation, i.e.,
weight = 1 − Err.

The resulted vector field is sparse. To reconstruct it,
we used robust splines [22] which minimize the Gener-
alized Cross-Validation (GCV) score. This method was
designed to handle the PIV-type data specifically [23].

Eventually, this part of the algorithm produces a
global velocity field through the whole image series. In
view of the fact that it is not possible to do any real
time series analysis, we carried out a quasi-stationary
window analysis. The reconstruction was performed on
subsets of frames defined by the time window of the size
wsize sliding along the whole image sequence. The time
window is usually too short to give a reliable reconstruc-
tion, and thus, the global flows are used as a guess (with
dampened weights) proportional to the ratio between
the window size and the total number of images in the
series. The resulted velocity field (as a function of the
sliding window size) is the closest form how we can
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approximate the real time dependence of the velocity
field.

We applied the method to two types of objects—a
human osteoblast and human hepatocyte observed with
bright-field microscopy (see Sect. 2). The main output
of the method is a velocity field and distribution of
flow speeds (Fig. 3). It is predictable that the intracel-
lular flows in the hepatocyte (a cell with high metabolic
activity) are much more intense than in the osteoblast.

3.4 Diffusion and viscosity estimation

The velocity is informative enough, but it does not char-
acterize the intracellular medium itself. To character-
ize the structure and composition of the medium, some
hydromechanical constants, namely space-resolved dif-
fusion coefficient and viscosity, must be extracted.

The separation procedure resulted in the drift-
compensated trajectory (see Sect. 3.2). The most
straightforward way how to estimate the diffusion coef-
ficient is to use the covariance of derivatives in the ran-
dom walk:

D =
1

4T

〈
diag cov

dPn

dn

〉
, (3)

where T is the time interval between consecutive
images. Due to presence of derivative in Eq. 3, the dif-
fusion coefficient is invariant to the drift velocity as
it was supposed to. These diffusion coefficients were
computed for all eligible (Err < 1) tracks. The field
of diffusion coefficients was reconstructed in the same
way as the velocity field, i.e., by a spline minimizing
the GCV score. The reconstructed diffusion fields and
distributions can be seen in Fig. 4b, c, f. The values
of diffusion coefficients are relatively high, presumably
because both the active and passive diffusion happen
in the same time and are mutually indistinguishable.
Essentially, we deal with effective diffusion, and thus,
the comparison with classical molecular diffusion coeffi-
cients should be done with caution. Since we work with
a 2D slice of a 3D volume, the value of the derived
diffusion coefficient should be accurate, assuming its
isotropy. No additional smoothing of the final data was
used, except removing 5% of points with the least and
most intensities, respectively, before reconstruction (to
eliminate possible influential errors).

Estimation of the viscosity coefficient is less model-
free and based solely on the quasi-stationary velocity
field. The kinematic viscosity [24] can be found from
the vorticity equation for an incompressible, isotropic,
Stokesian fluid in 2D as

ν =
dω

dt
· 1

∇2ω
, (4)

where ω = ∇ × V is the vorticity of the velocity field.
One issue of this approach is a high, namely the 3rd,
order of derivatives in the spatial domain. This leads
to the fact that the calculations will be thus over-
susceptible to small errors. The second issue is pres-

ence of the time derivative that is absent in the results
because the analysis is quasi-stationary and the intra-
cellular flows thus depend on the time window. The
window, which we used in the analysis and was the
closest to zero, was 7. With decreasing size of the time
window, the absolute error is increasing due to less rich
statistics. For all windows from 7 to 71 images (only
odd numbers are valid as the window size), we calcu-
lated the mean velocity field and mean time deriva-
tive. The distances between windows [w,w+wsize] and
[w + 1, w + wsize + 1] were assumed 1 frame. But this
is strictly true only for wsize = 0 and diverges with
increasing size of wsize. Thus, Eq. 4 was applied to
each window and then extrapolated to wsize = 0. Due
to the higher-derivative noise, the ordinary linear fitting
was not sufficient for the extrapolation. Therefore, we
had to apply a robust linear fitting [25] with bi-square
weights, which gave stable results without necessity of
any additional data smoothing (Fig. 4a, d, e).
The obtained values of viscosity are in agreement with
some literature data [26]. Nevertheless, some literature
sources report much lower viscosities [27]. It can be
explained by the fact that the definitions of viscosity
at the microlevel are very vague, the relevant values
of viscosity then depend frequently on the method of
their acquisition, and thus, the real values of viscosity
can vary. Again, we work with a single plane of a 3D
object, and thus, diffusion and convection along the z
axis is neglected. Therefore, it is more correct to call
the variable derived here as effective viscosity.

4 Discussion

In this paper, we deal with the total, complex, evalua-
tion of the intracellular flows but the origin of the intra-
cellular flows remains an open question. We can observe
visually that these flows do not coincide with specific
object motions. In most cases, it is nearly shapeless dis-
turbance in the intracellular medium which is moving,
sometimes we deal with small particles or vesicles. We
do not speculate nature of these objects or nature of
their motion and rather try to analyze it.

The main assumption for the flow analysis is that the
tracked entities are driven by two forces—the Brown-
ian and direct motion—which are related to both some
global intracellular flow (if exists) and a specific locomo-
tion. The reconstructed flows seem not to be any con-
sequence of the changes in the cell borders but rather
some intrinsic phenomena. In an effort to interpret the
results from the biological point of view, we chose two
very mutually different kinds of cells—osteoblast (bone
cell, low mobility, and low metabolism) and hepatocyte
(liver cell, medium mobility, and intense metabolism).

There are no literature data about such intracel-
lular velocities but, at least, their distributions fol-
low a general meaning of cell physiology—more intense
metabolism coincides with a higher mean and median
of the velocity (Fig. 3). To compare the results of the
described method with other methods, we estimated
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Fig. 3 The reconstructed
global velocity field for a
hepatocyte (a) and
osteoblast (c). The
corresponding velocity
frequency histograms are
shown in panel (b)

Fig. 4 The maps of
intracellular effective
diffusion and viscosity
coefficients for a
hepatocyte (c, d) and
osteoblast (a, b). The
relevant frequency
histograms of the viscosity
and diffusion coefficients
are in panels (e, f)

the hydromechanical parameters of the intracellular
medium. The proposed separation procedure yields a
local standard deviation of the random walk-like pro-
cess, which can be naturally converted to a effective
diffusion coefficient (Fig. 4b, c). But any comparison
with other results is complicated, because most of the
diffusion coefficients are determined for molecules but
we presumably observe motion of larger intracellular
structures.

The obtained effective diffusion coefficients are in the
range 10−10–10−8 m2 s−1 and correspond to values for
particles in liquids [28]. The resulted coefficients may be
related to both active and passive diffusion. Namely, the
diffusion map of the osteoblast is very inhomogeneous
but this has no relation to the velocity distribution (cf.
hepatocyte in Figs. 3b and 4f). In the osteoblast’s inte-
rior, there are two sites with very high diffusion coeffi-
cients (likely active diffusion) and the central region of
low diffusion. This central region roughly corresponds
to the position of nucleus (as guessed from the typical
structure of osteoblasts; in the raw images, nucleus is

not observed at all, because the microscope was focused
on the cell surface).

The kinematic viscosities for both cells are in the
range 5–50 cSt, which is comparable with palm oil and
other viscous substances. The dispersion of viscosity for
the osteoblast is much higher, but there is no much
explanation for this. The resulted viscosity fields are
quite noisy, since the numerical estimation of the 3rd
derivative is a quite sensitive process. Surprisingly, the
values are meaningful even without advanced smooth-
ing. However, for in-depth analysis of the maps, we
definitely need a more sophisticated processing. How-
ever, we observe only a planar slice of a 3D system
and the equations here were derived for 2D. Thus, the
obtained viscosity is rather effective than true, physi-
cal. Nevertheless, it is possible to compare the values
of this quasi-viscosity between similar experiments; or
do extensive validation and find a correction factor to
obtain real kinematic viscosity and conditions, where
such a explicit continuous mapping exists. Despite all
the facts, a single plane derived viscosity has a reason-
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able scaling, and thus, may be compared with other
viscosities, but with caution.

The main advantage of the intracellular rheology
estimation method described in this paper is its sim-
plicity. As seen in this paper, the algorithm works
with time-lapse image series of unstained living cells
in any bright-field microscope (we show independent
results for time-lapse series from two different bright-
field microscopes, see Sect. 2). Nevertheless, let us note
that this method can be applied in analysis of fluo-
rescent image data. If applied, the complete analysis of
flows in the stained living cells would be simplified com-
pared to the bright-field data (due to a lower number
of the possibly detected and tracked points and their
identification). However, the biological relevance of such
results is debatable, since the fluorophores can be cyto-
toxic and can completely change cell metabolism and
dynamics. Thus, only autofluorescence plays an impor-
tant and obvious role in interpretation of the intracel-
lular dynamics.

In addition, the algorithm described here does not
require any a priori given constant or assumptions
about processes in the sample. Moreover, we have
studied only one semi-tomographic slice of an active,
unstained, 3D object, which can make the biologically
relevant interpretation even more tricky. At least we
know that the described values are sufficiently stable,
and therefore, can be used for cell characterization.
The conducted experiments are rather illustrative than
explorative. We have not so far dealt with linking the
results to biology but, compared with the literature,
e.g., [27,29,30], they seem to be promising.

5 Conclusions

Better understanding of a cell behavior is one of the
major task of modern biology and key to very impor-
tant technologies such as growing artificial tissues and
organs, or fighting against cancer. In such challenging
tasks, biologists will need as many reinforcements as
possible. In addition, this method, among others, is
aimed to bring physicists, data scientists, and mathe-
maticians to life sciences; and make a shortcut between
classical, wet, biology and formidable machinery of
modern data explanatory analysis and machine learn-
ing. Therefore, the approach is quite minimalistic. For
application, one needs only a video with living cells and
knowledge of a camera sensor geometrical size. The out-
puts of the method are physically understandable and
interpretable parameters. But the origin of such flows
and the overall cell fluid dynamics is a different story,
and hopefully, will be solved in the meantime.
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Saberioon, Least Information Loss (LIL) conversion of
digital images and lessons learned for scientific image
inspection, in Bioinformatics and Biomedical Engineer-
ing (IWBBIO 2016) (Springer International Publishing,
2016), pp. 527–536

9. Recommendation ITU-R BT.601-7 (2/2011): Stu-
dio encoding parameters of digital television for
standard 4:3 and wide-screen 16:9 aspect ratios
(2017). https://www.itu.int/dms_pubrec/itu-r/rec/bt/
R-REC-BT.601-7-201103-I!!PDFE.pdf

10. X. Jiang, H. Bunke, K. Abegglen, A. Kandel, Curve
morphing by weighted mean of strings, in Object recog-
nition supported by user interaction for service robots,
vol. 4 (2002), pp. 192–195

11. J.P. Thirion, Med. Image Anal. 2, 243 (1998)

123

150



1112 Eur. Phys. J. Spec. Top. (2021) 230:1105–1112

12. Matlab code and image data to ”Estimation of rhe-
ological parameters for unstained living cells” (2020).
https://doi.org/10.5061/dryad.v15dv41t8

13. J. Li, N. Allinson, Neurocomputing 71, 1771 (2008)
14. A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N.I.

Ratyal, B. Zafar, S.H. Dar, M. Sajid, T. Khalil, Math.
Probl. Eng. 2019, 1 (2019)

15. S. Leutenegger, M. Chli, R.Y. Siegwart, BRISK: Binary
Robust invariant scalable keypoints, in 2011 Interna-
tional Conference on Computer Vision (IEEE, 2011)

16. E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB:
An efficient alternative to SIFT or SURF, in 2011 Inter-
national Conference on Computer Vision (IEEE, 2011)

17. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisser-
man, J. Matas, F. Schaffalitzky, T. Kadir, L.V. Gool,
Int. J. Comput. Vis. 65, 43 (2005)

18. P.F. Alcantarilla, A. Bartoli, A.J. Davison, Com-
puter Vision—ECCV 2012 (Springer, Berlin Heidel-
berg, 2012), pp. 214–227

19. J. Shi, Tomasi, Good features to track, in Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition CVPR-94 (Press, IEEE Comput. Soc, 1994)

20. H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Comput. Vis.
Image Underst. 110, 346 (2008)

21. J.V. Burke, S.P. Han, Math. Program. 43, 277 (1989)
22. D. Garcia, Comput. Stat. Data Anal. 54, 1167 (2010)
23. D. Garcia, Exp. Fluids 50, 1247 (2010)
24. E. Rossi, A. Colagrossi, G. Graziani, Comput. Math.

Appl. 69, 1484 (2015)
25. P.W. Holland, R.E. Welsch, Commun. Stat. Theory

Methods 6, 813 (1977)
26. M.K. Kuimova, S.W. Botchway, A.W. Parker, M. Balaz,

H.A. Collins, H.L. Anderson, K. Suhling, P.R. Ogilby,
Nat. Chem. 1, 69 (2009)

27. W.C. Parker, N. Chakraborty, R. Vrikkis, G. Elliott, S.
Smith, P.J. Moyer, Opt. Express 18, 16607 (2010)

28. M. He, S. Zhang, Y. Zhang, S.G. Peng, Opt. Express
23, 10884 (2015)

29. E.O. Puchkov, Biochem. (Mosc.) Suppl. Ser. A Membr.
Cell Biol. 7, 270 (2013)

30. J. Dench, N. Morgan, J.S.S. Wong, Tribol. Lett. 65, 25
(2016)

123

151



152



153

CHAPTER 5

Curriculum vitae



154



Ali GHAZNAVI
Artificial Intelligence Engineer, Data Scientist

� www.linkedin.com/in/ali-ghaznavi-727297145/
� +420 775 698 858 � a.ghaznavi@outlook.com
� 798/19, Studentska 20, Ceske Budejovice, Czech Republic
� github.com/AliGhaznavi1986 � Researchgate

Data scientist and computer programmer, with a various experience in predictive modelling and data analysis in business and scien-
tific domain. I have leverage knowledge in image analytic based on my PhD research and studies in AI. Highly skilled in in different
disciplines including deep neural network, machine learning, image processing, remote sensing and data visualization. Very eager to
expand my knowledge in artificial intelligence fields to pursue my professional career by researching and working in this interesting
fields.

� EDUCATION
2019–2023 PhD student in Biophysics, University of South Bohemia, Czech Republic – Will graduate till 26 of June

2023
Thesis Title : Cell segmentation from wide-field light microscopy images using different variant of CNNs.
Supervisor : Prof. Dalibor stys

2013–2016 M.Sc. in Artificial Intelligence, Azad Qazvin University, Qazvin, Iran
Total GPA : 15.60 /20
Thesis Title : Image object retrieval based on optimized representation extracted from region base visual
and textual feature – Grade : 17.5 /20
Supervisor : Dr. Amir Masoud Eftekhari

2006–2012 B.Sc. in Computer Software Engineering, Payam Noor University, Parand, Iran,
Total GPA : 16.74 /20
Thesis Title : Research based on RFID systems – Grade : 20 /20
Supervisor : Dr. Mostafa Kishani

� PROFESSIONAL EXPERIENCE

May 2022 Data analysis, BOSCH COMPANY, Ceske Budejocie, Czech Republic
February 2022 ∠ Data analysis with regression methods

∠ Binary classification
∠ Applied deep learning methods for regression and classification model training
∠ Develop and implement algorithms based on Python platform with Keras and Tensorflow

Machine learning Deep learning AI logistic regression TensorFlow Keras Scikit-learn data transforming

December 2022 Visiting Researcher under HiDA data science fellowship program, GFZ GERMAN RESEARCH CENTRE FOR
GEOSCIENCES, POTSDAM, Germany

September 2022 ∠ Satellite data analysis
∠ Remote Sensing data validation
∠ Applied Machine/hybrid deep learning methods for mapping global inland waters studies
∠ Develop and implement algorithms based on Python platform with Keras and Tensorflow

Image processing Machine learning Deep learning CNN AI Inland Water detection and segmentation TensorFlow
Keras Scikit-learn OpenCV SQL Google Earth engine

January 2022 PhD Internship as Researcher, GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES, POTSDAM, Germany
October 2021 ∠ Principal Investigator in EJP-STEROPES

∠ Remote sensing data analysis
∠ Quantificationof soil organic carbonusing stackedauto-encoder feature extractionanddeep learning
techniques

∠ Develop and implement algorithms based on Python platform with Keras and Tensorflow
Signal processing Soil Organic Carbon Monitoring Machine learning Deep learning AI TensorFlow Keras FCN
Auto Encoder CNN svm random forest

ALI GHAZNAVI - CV 1

155



Present Research assistant and lab technician – part time | Institute of Complex systems , UNIVERSITY OF
SOUTH BOHEMIA IN CESKE BUDEJOVICE, Czech Republic

February 2019 ∠ Application of image processing andmachine learning in transmitted bright–fieldmicroscopy images
∠ Cell and tissue detection and semantic segmentation
∠ Applied Deep learning methods in bright field microscopy images
∠ Unique bright field microscopy dataset labeling and preparation
∠ Develop and implement method for single class semantic and instance Hela living cell segmentation
from transmitted bright–field microscopy images

Image processing Machine learning Deep learning Model development U-Net Data handling
Residual Attention U-Net TensorFlow Keras Google Colab

July 2022 Summer School supervisor | Institute of Complex systems , UNIVERSITY OF SOUTH BOHEMIA IN CESKE
BUDEJOVICE, Czech Republic

May 2022 ∠ application of Deep learning methods in reflective bright–field microscopy images
∠ Categorical cell segmentation
∠ Multi class data set labeling and preparation
∠ Develop and implement deep learning method for Multi class MG63 living cell segmentation from
reflective bright–field microscopy images

Machine learning Deep learning Model development Data handling ResNet U-Net Vgg19 Inception Python
Keras TensorFlow

October 2018 Data Specialist, MANDO COMPANY, Tehran, Iran
September 2016 ∠ Classifying and analysing datasets related with Auto Industry companies with Machine Learning and

Data Mining Modeling, Regression and Classification methods.
Data Mining Regression Machine learning Data handling SPSS Matlab

Januaray 2016 Computer Software Engineer | Paliz Sanat Pars Company, TEHRAN, ALBORZ, Iran
Januaray 2013 ∠ Collaborating with senior engineers to establish projects goal and deadlines.

∠ Programming solution, troubleshooting and developing and debugging the scripts based on the Py-
thon and MATLAB programming language

Image processing Matlab Programming Supervise and unsupervise learning Data mining IBM SPSS

� PUBLICATIONS
2022 Ghaznavi, A., Rycht́ariková, R.,Saberioon, M., Stys, D.:Cell segmentation from telecentric bright-field trans-

mitted light microscopic images using a Residual Attention U-Net : a case study on HeLa line. Computers
in Biology and Medicine.� 10.1016/j.compbiomed.2022.105805

2020 Lonhus, K., Rychtáriková, R.,Ghaznavi, A., Stys, D : Estimationof rheological parameters for unstained living
cells. The European physical journal special topics – 2021.� 10.1140/epjs/s11734-021-00084-2

Per-Review Ghaznavi, A, Rycht́ariková, R., Cisar P., Ziaei M.M., Stys, D .:Hybrid deep-learning multi-class segmenta-
tion of HeLa cells in reflected light microscopy images. Under review at Biomedical Signal Processing and
Control.

Per-Review Ghaznavi, A, Saberioon,M, Brom j, Itzerott, S .:ComparativePerformanceAnalysis of simpleU-Net, Residual
Attention U-Net, and VGG16-U-Net for Inventory Inland Water Bodies. In review at Remote Sensing, MDPI.

Per-Review Mohammadmehdi Saberioon, Asa Gholizadeh, Ali Ghaznavi, Sabine Chabrillat, Kathrin J. Ward,:Soil or-
ganic carbon modeling using open-access soil spectroscopy libraries and machine learning algorithms.
Under review at Computers and Electronics in Agriculture.

Publication
available :

� Researchgate

ALI GHAZNAVI - CV 2

156



� LANGUAGES

Persian ○ ○ ○ ○ ○
Turkish ○ ○ ○ ○ ○
English ○ ○ ○ ○ �
Czech ○ � � � �

German ○ � � � �

� PROGRAMMING LANGUAGES

∠ Python (Since 2019)
∠ MATLAB (Since 2014)
∠ IBM SPSS (Since 2015)
∠ Shell (Since 2022)

� RESEARCH INTERESTS
∠ Machine learning
∠ Deep Neural Networks (DNN)
∠ Computer Vision
∠ Object detection and segmentation
∠ Remote Sensing data analysis
∠ Data Visualization
∠ Fuzzy Systems
∠ Statistical Data analysis
∠ Big Data Analytics
∠ Information and Image Retrieval
∠ IBM Bioinformatics
∠ google map engine

� SKILLS AND PACKAGE

∠ Python
∠ Matlab
∠ TensorFlow–Keras
∠ Scikit-learn
∠ OpenCv
∠ Pandas
∠ SciPy
∠ Google Colab
∠ PyTourch
∠ AWS
∠ Git
∠ Big Data

� HONORS AND AWARDS
2022 Recipient of HiDAdata scienceHelmholtz Visiting Researcher fellowship grant fromHelmholtz Centre Pots-

dam – GFZ German Research Centre for Geosciences, Germany
2021 Recipient of fellowship for PhD internship fromHelmholtz Centre Potsdam - GFZ German Research Centre

for Geosciences, Germany
2016 Outstanding student research from Azad Qazvin University (QIAU), Iran
2013 Rank 26th among 2400 in university entrance exam for Master Degree program, Qazvin Azad University

(QIAU), Iran

� DATASET
2022 Ghaznavi A., Rychtáriková R., Saberioon M., Štys D. Telecentric bright-field transmitted light microscopic

dataset.
� datadryad Repo.

� REFERENCES
Prof. RNDr. Dalibor stys, CSc.
University of South Bohemia,

� stys@frov.jcu.cz
� +420 38 777 3843

Dr. Mohammadmehdi Saberioon
GFZ German Research Centre for Geosciences,

� mohammadmehdi.saberioon@gfz-potsdam.de
� +49 331 288-27539

ALI GHAZNAVI - CV 3

157



© for non-published parts Ali Ghaznavi
ghaznavi@jcu.cz

Title: Cell segmentation from wide-field light microscopy images using
CNNs.

Ph.D. Thesis Series, 2023, No. 7.

All rights reserved
For non-commercial use only
Printed in the Czech Republic by Typodesign
Edition of 10 copies

University of South Bohemia in České Budějovice
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