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Annotation 

Image object segmentation a l l o w s local is ing the region of interest i n the i m ­
age (ROI) a n d separating the foreground f r o m the b a c k g r o u n d . C e l l detec­
t ion a n d segmentation are the p r i m a r y a n d cri t ical steps i n microscopy i m ­
age analysis. A n a l y s i n g microscopy images a l lows us to extract v i t a l infor­
m a t i o n about the cells, i n c l u d i n g their morphology , size, a n d life cycle. O n 
the other h a n d , l i v i n g cel l segmentation is chal lenging due to the complex­
i ty of these datasets. This research focused o n d e v e l o p i n g A r t i f i c i a l Intel l i ­
g e n c e / M a c h i n e L e a r n i n g methods of single- a n d mult i -c lass segmentation of 
l i v i n g cells. For this study, the N e g r o i d cervical ep i the l io id carc inoma H e L a 
l ine w a s chosen as the oldest, i m m o r t a l , a n d most w i d e l y used m o d e l cell 
l ine. Several t ime-lapse image series of l i v i n g H e L a cells were captured us ing 
a h igh-resolved w i d e - f i e l d transmitted/ref lected l ight microscope (custom-
made for the Institute of C o m p l e x System, Nové H r a d y , C z e c h Republic) 
to observe micro-objects a n d cells. E m p l o y i n g a telecentric objective w i t h a 
h igh-resolut ion camera w i t h a large sensor size a l lows us to achieve a h i g h 
level of detai l a n d sharper borders i n large microscopy images. The collected 
time-lapse images were cal ibrated a n d denoised i n the pre-processing step. 
The data sets collected under the t ransmiss ion microscope setup were ana­
l y z e d u s i n g a s imple U - N e t , A t t e n t i o n U - N e t , a n d R e s i d u a l A t t e n t i o n U - N e t 
to achieve the best single-class semantic segmentation result. The data sets 
collected under the reflection microscope setup were a n a l y z e d u s i n g h y b r i d 
U - N e t methods, i n c l u d i n g V g g l 9 - U n e t , Inception-Unet , a n d ResNet34-Unet, 
to achieve the most precise mult i -c lass segmentation result. 
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1.1 OVERVIEW 
In this thesis, the art i f ic ial intelligence (Al) -based segmentation of l i v i n g cells 
over w i d e - f i e l d l ight microscopy images is proposed a n d developed. C h a p ­
ter 1 describes the h u m a n H e L a l i v i n g cells a n d the structure of the custom-
made w i d e - f i e l d microscope w i t h l ight t ransmiss ion a n d reflection setup used 
for data collection. The last part of Introduct ion reviews the A I methods and 
their usage i n object detection a n d segmentation, namely, machine learning 
( M L ) a n d deep learning (DL) methods i n cel l segmentation. The k n o w l e d g e 
gap between these methods is h igh l ighted . Chapter 2 introduces the n e w l y 
deve loped methods. Different variants of D L methods based o n c o n v o l u -
t ional n e u r a l n e t w o r k ( C N N ) were tested to achieve the best precise segmen­
tation result i n our datasets. Chapter 3 contains a l l results i n the f o r m of 
p u b l i s h e d papers. The last Chapter 4 summarises a n d concludes the results 
presented i n Chapter 3. 

1.2 HeLa cell line 

The H e L a cel l l ine is the h u m a n epi thel ia l cancer cel l l ine d e r i v e d f r o m cervi ­
cal epi thel ia l carc inoma of a n A f r i c a n - A m e r i c a n w o m a n , Henriet ta Lacks , o n 
February 8, 1951 [11]. The cells were propagated b y a famous cel l biologist 
George Otto G e y shortly before Lacks d i e d of her cancer i n 1951. 

H e L a is the first h u m a n cel l l ine that can be cu l tured rapidly . It is used 
i n m e d i c a l (cancer, A I D S , toxicological , or gene m a p p i n g ) research as a g o l d 
standard. A s the H e L a cells originate f r o m aggressive cancer cells, they can 
proliferate r a p i d l y w i t h a repl icat ion rate of u p to t w o times i n 24 h [12]. The 
repl icat ion rate a n d the u b i q u i t y i n cel l culture laboratories make H e L a an 
efficient a n d appropriate l i v i n g cel l l ine for research, indus t r ia l , a n d medica l 
applications. 

1.3 Wide-field microscopy 

A w i d e - f i e l d microscope is a type of opt ica l (light) microscope w i t h the s i m ­
plest opt ica l p a t h a n d fast acquis i t ion speed. The microscope pr inc ip le pre­
d o m i n a n t l y ut i l izes vis ible l ight or ig inat ing f r o m a l ight source ( lamp or 
diode) a n d i l l u m i n a t i n g a large f ie ld of v i e w of the sample to produce (Fig. 1.2) 

1. a dark image w i t h a br ight b a c k g r o u n d (in the t ransmiss ion m o d e w h e n 
the l ight source is located opposite to the microscope objective a n d l ight 
is pass ing t h r o u g h the specimen) or 

2. a br ight image w i t h a dark b a c k g r o u n d (in the reflection m o d e w h e n 
the l ight source a n d the microscope objective are located o n the same 
side a n d the l ight refracted or emitted f r o m the spec imen is analysed). 

The interaction of l ight w i t h the specimen u n d e r leads to a combinat ion of 
absorptive, diffract ive, refractive, or fluorescence contrast i n the image. A n 
image is seen t h r o u g h the d i g i t a l camera or eyepiece. It is possible to m o d i f y 
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FIGURE 1.1: Telecentric and standard objective mechanism [1]. 

the microscope objective a n d dig i ta l camera easily to achieve better observa­
t ion w i t h the n a k e d eye or captur ing h igh-deta i l d ig i ta l images, d e p e n d i n g 
o n the type of specimen. 

The w i d e - f i e l d microscopes, m a i n l y i n the transmiss ion m o d e , are he lp­
f u l i n educat ion a n d m a n y research fields f r o m b i o l o g y a n d medic ine u p to 
mater ia l engineering. In biology, these microscopes can be used i n the s i m ­
plest u p to most advanced research, e.g., [13,14] to unders tand intracel lular 
structures i n a n i m a l a n d plant cells, to visual ise prokaryot ic a n d eukaryotic 
microorganisms a n d parasitic organisms. 

The specimens must be most ly stained to enable v isual i sa t ion b y negative, 
G r a m , or Papanico laou staining [15]. These microscopes are appropriate for 
observing f ixed as w e l l as l i v i n g specimens. 

D u r i n g the measurement, the telecentric objective accepted the l ight rays 
paral le l to the opt ica l axis. This makes telecentric lenses perfectly suited for 
measurement appl icat ions , where perspective errors a n d changes i n m a g ­
ni f icat ion can lead to inconsistent measurements. D u r i n g time-lapse experi ­
ments, the telecentric measurement objective has n o angular f ie ld or perspec­
tive. This objective resolves magni f icat ion changes due to object displace­
ment, image dis tort ion, a n d uncertain object local isat ion problems. C o m b i n ­
i n g the telecentric lens w i t h a bigger camera ch ip sensor a l l o w s us to obtain 
sharper images w i t h a h i g h level of detai l a r o u n d the cel l borders. F igure 1.1 
represents the mechanism of the telecentric a n d standard objective. 

1.4 Cell segmentation methods 

D i g i t a l image processing means a p p l y i n g computer a lgori thms to m a n i p u ­
late, enhance, or extract useful i n f o r m a t i o n f r o m those images [16]. Detect ing 
a n d segmenting the objects over d ig i ta l images into different classes p r o v i d e 
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Transmitted light microscope Reflected light microscope 
images images 

FIGURE 1.2: Examples of unstained l iving cell data collected by 
transmitted/reflected microscope with telecentric optics (ICS 
Nove Hrady). A n 8-bit visualisation of the 10-bit primary sig­

nal by LIL algorithm [2]. 
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v i t a l in format ion about the target object. The p r i m a r y purpose of the seg­
mentat ion is to localise the target objects a n d their boundar ies inside dig i ta l 
images. 

L i v i n g cel l segmentation over t ime-lapse experiments is essential i n analys­
i n g microscopy images a n d prov ides crucia l i n f o r m a t i o n about cel l behaviour, 
number , l ife cycle a n d dimensions . H o w e v e r , s u c h image analysis is h a r d due 
to the changing behaviour a n d m o r p h o l o g y of each cel l as w e l l as the w h o l e 
cel l p o p u l a t i o n over t ime, chal lenging i l l u m i n a t i o n condit ions a n d opt ical 
pa th inhomogeneit ies projected i n the image. 

In general , the segmentation methods can be categorised into three m a i n 
groups: 

1. traditional, s implest methods a p p l i e d i n research d u r i n g the last t w o 
decades, 

2. more advanced machine learning methods dea l ing w i t h challenges a n d 
diff icult ies , a n d 

3. the most recent, advanced a n d accurate deep learning methods. 

To f u l f i l the task of cel l segmentation i n image data sets, A l - b a s e d detection 
a n d segmentation methods, i n c l u d i n g machine learning a n d deep learning 
methods, have been r a p i d l y deve loped (Fig. 1.3). 

FIGURE 1.3: Visualization of the relationship between A I , M L , 
and D L methods. 

1.4.1 Traditional cell segmentation methods 
O v e r the last t w o decades, t radi t ional image segmentation methods have 
been a p p l i e d i n research a n d often c o m b i n e d to achieve the best possible 
output . Thus the classification of the relevant literature is not u n a m b i g u o u s . 
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The n u m b e r of papers dea l ing w i t h t radi t ional image processing techniques 
i n l ight microscopy reaches a few thousand. Here o n l y a few of them is se­
lected. 

Intensi ty t h r e s h o l d i n g T h r e s h o l d i n g techniques are one of the oldest a n d 
simplest foreground-background segmentation methods [17]. The threshold­
i n g methods convert a n image into a b inary image b y cons ider ing a leve l of 
threshold (image intensity) that depends o n the image condi t ion . 

C a l l a u et a l . [18] proposed a two-step, fast a n d s imple , intensity-based 
m e t h o d to segment the breast cancer epi thel ia l cel l over microscopy grayscale 
images. H o w e v e r , the output is not accurate as more advanced automated 
methods. 

Z h o u et a l . [19] a p p l i e d adaptive thresholding w i t h a watershed a l g o r i t h m 
for H e L a cel l n u c l e i segmentation f r o m time-lapse fluorescence image series. 
In the next step, a m e t h o d of fragment m e r g i n g that combines t w o scoring 
models based o n trend a n d n o trend features w a s a p p l i e d . In the f ina l step, a 
M a r k o v m o d e l ident i f ied phases of cel l nuc le i . 

M o r p h o l o g i c a l e r o s i o n - d i l a t i o n M o r p h o l o g i c a l d i l a t i o n adds pixels to the 
boundaries of i m a g e d objects. In contrast, m o r p h o l o g i c a l erosion removes 
pixels o n the boundar ies of objects. The n u m b e r of pixels a d d e d or removed 
depends o n the size a n d shape of the s tructur ing element i n the image p r o ­
cessing. 

U s i n g iterative erosion, Schmitt a n d Hasse [20] separated the cel l c l u m p s 
over br ight - f ie ld grayscale images into different parts. Firstly, the enhanced 
erosion operators detected specific cel l markers w i t h i n the eroded scales. 
N e x t , a n iterative d i l a t i o n operat ion expands the markers a n d regenerates 
the cel l shape, a v o i d i n g m e r g i n g markers . This m e t h o d is independent of the 
cell shape a n d fast but suffers f r o m m i s - a n d under-segmentat ion of dense 
cell c l u m p s . 

W a n g et a l . [21] proposed precise single-cel l segmentation c o m b i n i n g itera­
tive m o r p h o l o g i c a l erosion a n d d i l a t i o n for fluorescent images of three types 
of bacteria, b u d d i n g yeast, a n d h u m a n cells. The m e t h o d suffered f r o m over-
segmentation. 

Watershed t r a n s f o r m The watershed a l g o r i t h m is the most w e l l - k n o w n mor­
pholog ica l m e t h o d for extracting the foreground f r o m the b a c k g r o u n d . The 
exact b o u n d a r y of the target object is extracted u s i n g any thresholding or 
m o r p h o l o g i c a l operations as a marker w i t h the watershed method. The i m ­
age is considered a topographic m a p where the intensity of each p i x e l repre­
sents its height, a n d the a lgor i thm f inds the lines that r u n a long the tops of 
ridges. This a lgor i thm efficiently detects a n d segments touching a n d over­
l a p p i n g image objects a n d can be a p p l i e d i n post-processing [22]. 

A d i g a et a l . [23] presented a m e t h o d to detect a n d segment breast cancer 
cells over fluorescence images. The authors a p p l i e d pre-processing steps of 
image smooth ing a n d thresholding to enhance cel l nucle i ' s edge or b o u n d ­
ary features for further watershed-based reg ion-growing segmentation. This 
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m e t h o d del ivers a more efficient segmentation result than thresholding meth­
ods but not M L methods. 

L i et a l . [24] proposed a n automated detection, segmentation a n d tracking 
m e t h o d to analyse the H e L a cel l cycle. The authors first b inar ised the images 
u s i n g adaptive thresholding i n the detection a n d segmentation step. Then, 
they detected the centre of nuc le i u s i n g intensity a n d shape i n f o r m a t i o n to 
achieve seed points . The extracted seed points were used i n the watershed 
a lgor i thm to reach the f ina l segmentation result. The reported results s h o w e d 
0.995 segmentation accuracy a n d 0.90 t racking accuracy. 

C h e n g a n d Rajapakse [25] in t roduced a segmentation m e t h o d over f luo­
rescence images most ly focused o n cells a n d nuc le i o v e r l a p p e d i n the m i ­
grat ion phase. They first a p p l i e d the active contours m e t h o d to segment the 
cells w i t h o u t clear borders a n d outer distance t ransform to generate mark­
ers. T h e n , a marker-control led watershed a l g o r i t h m w i t h a m a r k i n g funct ion 
w a s a p p l i e d a n d achieved 0.95 accuracies of segmentation f r o m the clusters. 
H o w e v e r , the m e t h o d suffered f r o m over- a n d under-segmentation. 

Z h o u et a l . [26] proposed a m e t h o d to ident i fy a n d segment the cel l phe-
notypes of the R N A i genome. Firstly, the r o u g h b o u n d a r y of each cel l was 
extracted. Then , the centre a n d p o l y g o n of each cel l were ident i f ied. N e x t , a 
f u z z y C-means a n d a marker-control led watershed extracted each cell . The 
V o r o n o i d iagrams were a p p l i e d i n the last step to enhance the o v e r l a p p i n g 
cel l segmentation. The authors achieved a n accuracy of 0.62-0.75 according 
to the cel l phenotype. 

Hough transform The H o u g h transform (HT) is a w i d e s p r e a d detection 
a n d segmentation m e t h o d for microscopy images due to the m o r p h o l o g i c a l 
shapes of cells. This m e t h o d is h e l p f u l to f i n d features of any shape, espe­
c ia l ly straight l ines, circles, or curves, i n a target image b y explo i t ing the 
d u a l i t y between the points o n the curve a n d parameters of this curve [27]. 

Z h a n g et a l . [28] segmented yeast cells i n br ight - f ie ld in-focus a n d out-
of-focus microscopy images. They first e m p l o y e d the "ilastik" pixel-based 
classifier to detect the cel l boundaries . C e l l centre candidates were detected 
u s i n g a H o u g h transform, a n d cel l edge points were clustered u s i n g Integer 
L inear P r o g r a m m i n g . Final ly , the seeded watershed m e t h o d w a s a p p l i e d to 
achieve the segmentation result. This m e t h o d is robust to diverse i m a g i n g 
condit ions a n d out-of-focus images but sensitive to parameter tun ing . 

F i l i p c z u k et a l . [29] deve loped a m e t h o d to segment breast cancer cells. 
The O t s u thresholding w a s used to detect a n d extract nuc le i masks. The 
circular H T w a s a p p l i e d to determine the nucle i . A f t e r w a r d s , the circles were 
filtered out a n d recognised as n u c l e i u s i n g the support vector machine ( S V M ) 
learning m e t h o d based o n the texture features a n d size of the nuc le i masks. 
This m e t h o d is robust to h i g h noise levels a n d object i rregular i ty but sensitive 
to parameter values to opt imise the S V M a n d the base thresholding step. 

Laplacian of Gaussian filter The L a p l a c i a n of G a u s s i a n (LoG) filter is a 
m o r p h o l o g i c a l m e t h o d suitable for i d e n t i f y i n g s m a l l b lob objects such as n u ­
clei , or cells [30]. 
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P e n g et a l . [31] proposed a m e t h o d to segment the stem cells over m i ­
croscopy images under different perturbations a n d condit ions. The m u l t i -
scale blob a n d curvi l inear L o G filter were a p p l i e d to detect stem cells ' struc­
ture a n d skeleton. Then , the extracted cel l skeletons were ref ined u s i n g m u l t i ­
level sets methods to achieve complete a n d accurate segmentation of the 
cell buddies . H o w e v e r , this m e t h o d suffered f r o m h i g h under-detect ion and 
under-segmentation. 

L i et a l . [32] described a segmentation m e t h o d for cancer cel l m i g r a t i o n 
studies f r o m phase contrast images. The o r i g i n a l images were fi ltered w i t h 
a series of L o G filters of different scales to separate the br ight a n d dark re­
gions of cel l bodies . B o t h detected regions were then c o n c l u d e d , a n d the cell 
bodies were segmented b y s u m m a r i s i n g these t w o regions. This m e t h o d d i d 
not del iver efficient performance for microscopy images w i t h changing i l l u ­
minat ion . The segmentation accuracy w a s not comparable w i t h advanced 
techniques. 

Maximally stable extremal regions The m a x i m a l l y stable extremal region 
(MSER) detector is a m e t h o d to detect image blobs as areas characterised b y 
bright u n i f o r m intensities a n d their outer boundar ies [33]. 

Z h i et a l . [34] proposed the segmentation of nuc le i a n d cells f r o m c l u m p s 
of o v e r l a p p i n g cervical cells. The M S E R a l g o r i t h m w a s a p p l i e d to detect and 
segment the not o v e r l a p p e d nucle i . The output images missed the cy toplasm 
boundaries o n some o v e r l a p p i n g cells i n p o o r l y contrasted regions. 

Ar te ta et a l . [35] described a m e t h o d to detect a n d segment H & E stained 
cells over fluorescence a n d phase-contrast images. The M S E R detector w a s 
a p p l i e d to f i n d a b r o a d n u m b e r of candidate regions. Then , the S V M classi­
fier classified the extracted regions a n d scored each region for the detection 
task. A subset of n o n - o v e r l a p p i n g regions that match the m o d e l w a s selected 
b y m a x i m i s i n g the total scores u s i n g d y n a m i c p r o g r a m m i n g . The authors 
annotated a few images w i t h a s imple dot to t ra in the m o d e l u s i n g the S V M 
classifier. This m e t h o d achieved a prec is ion of 0.86 a n d a n F l -score of 0.88. 

Buggenth in et a l . [36] proposed a n automatic m e t h o d for cel l detection 
i n br ight - f ie ld microscopy images. The cel l borders were extracted us ing 
the active contours method . Then , the M S E R a l g o r i t h m ident i f ied a n d sepa­
rated near ly a l l cel l bodies . Eventual ly , a two-step marker-based watershed 
approach w a s a p p l i e d to spl i t t ing m u l t i p l e cells segmented as single fore­
g r o u n d objects. The m e t h o d achieved 0.82 cel l detection accuracy (but w a s 
insufficient for out-of-focus images) a n d efficient c o m p u t a t i o n cost. 

Thresholding methods [18,19] are the easiest to separate the foreground a n d 
b a c k g r o u n d i n the target image. O n the other h a n d , they d i d not achieve 
g o o d segmentation results for images w i t h complex intensity distr ibutions, 
such as microscopy a n d m e d i c a l images. Edge-based methods [31, 32] del iver 
efficient segmentation results for objects w i t h sharp a n d prominent edges but 
face the p r o b l e m of m u l t i p l e , smooth, a n d v a n i s h i n g edges of over lapped 
l i v i n g cells i n microscopy images. Region-based methods [25, 26, 35, 36] deal 
more efficiently w i t h the noisy images a n d v a n i s h i n g borders of the target 
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objects, especially i n microscopy images. H o w e v e r , these methods require 
speci fy ing the seed points a n d suffer f r o m over- a n d under-segmentation. 

D u e to the l o w performance of the t radi t ional methods o n microscopy 
a n d m e d i c a l images, machine learning methods have r a p i d l y g r o w n a n d ex­
p a n d e d i n microscopy a n d m e d i c a l research region. 

1.4.2 Machine Learning methods 

M a c h i n e learning is a subset of art i f ic ial intell igence (AI) i n computer sci­
ence. It a l l o w s computers to learn f r o m experience l ike h u m a n s u s i n g data 
a n d a lgor i thms a n d g r a d u a l l y i m p r o v e their accuracy [37]. The M L methods 
del iver higher performance facing complex a n d chal lenging data sets such 
as microscopy a n d m e d i c a l images. General ly, The M L methods c o u l d be 
classified into t w o m a i n categories: 

1. supervised machine learning methods a n d 
2. uns uperv i sed machine learning methods. 

S u p e r v i s e d methods 

The supervised machine learning techniques use the target data sets a n d re­
lated corrected replies to teach the a lgor i thm a n d generate the m o d e l [38]. 

Support vector m a c h i n e O n e of the w e l l - k n o w n supervised a n d kernel -
based learning methods is a support vector machine ( S V M ) . The S V M analy­
ses data to achieve the o p t i m a l hyperplane for separation of the h i g h d i m e n ­
s ional data w i t h m i n i m u m errors i n classification a n d regression tasks [39] 
(Fig. 1.4). 

Optimal hyperplane 

0 

FIGURE 1.4: The structure of S V M classifier [3]. 

Janssens et a l . [40] used a mult i -c lass S V M classifier to separate cells f r o m 
segmented c l u m p s a n d connective tissue i n H & E stained skeletal muscle cel l 
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images. The c l u m p s were segmented u s i n g thresholding of the br ight re­
gions. A f t e r w a r d s , the S V M classified the segments into i n d i v i d u a l cells, cell 
c l u m p s , or remnant connective tissues. The m e t h o d achieved a 0.62 F l score 
a n d suffered f r o m over-segmentation of o v e r l a p p i n g cells. 

C h e n g et a l . [41] proposed a n S V M classifier for microscopic cel lular seg­
mentation. The image pixels were characterised according to their shape, 
appearance, a n d context feature descriptors. T h e n , extracted features p o o l e d 
to f o r m one vector for a superpixel . F inal ly , the S V M classifier achieved a seg­
mentat ion predic t ion for the i n p u t images a n d del ivered a 0.75 p i x e l accuracy 
based o n the serial section Transmission Electron M i c r o s c o p y (ssTEM) data 
set. The m e t h o d w a s sensitive to hyper-parameter t u n i n g a n d s h o w e d a l o w 
accuracy i n detecting a n d segmenting the v a n i s h e d m i t o c h o n d r i a objects. 

T i k k a n e n et a l . [42] a p p l i e d a h is togram of oriented gradient ( H O G ) feature 
extractor a n d S V M classifiers to classify pixels into cel l or non-ce l l regions 
over br ight - f ie ld images. This m e t h o d w a s sensitive to parameter t u n i n g i n 
the t ra in ing step to el iminate false posi t ive detections. 

Sommer et a l . [43] deve loped a hierarchical supervised classification us ing 
an S V M w i t h a G a u s s i a n kernel for automated mitosis detection a n d seg­
mentat ion of breast cancer cells over microscopy images. They further opt i ­
m i s e d cost a n d g a m m a hyper-parameters i n the classification process b y the 
grid-search parameters. This m e t h o d suffered f r o m extracting exact local i ­
sation properties for s m a l l cells a n d objects a n d achieved a 0.70 area-under 
precision-recall curve accuracy. 

L u p i c a et a l . [44] a p p l i e d a n S V M - b a s e d m e t h o d to detect a n d segment 
cells over br ight - f ie ld microscope images. The edge boundar ies of the tar­
get objects were ident i f ied u s i n g a C a n n y edge detector. T h e n , m o r p h o l o g ­
ical filters f i l l ed s m a l l gaps a n d holes to achieve m o r p h o l o g i c a l in format ion 
about the size a n d shape of the nuc le i a n d cells. The compensatory iterative 
sample selection a l g o r i t h m (CISS) trained b inary S V M classifiers w i t h radia l 
basis func t ion kernel . The tra ined m o d e l classified the trainset images w i t h a 
relat ively h i g h accuracy rate. 

Random forest The r a n d o m forest (Fig. 1.5) is a supervised classification 
m e t h o d that contains a large n u m b e r of dec is ion trees [45] operat ing as an 
ensemble d u r i n g the t ra in ing phase. Each tree i n the r a n d o m forest spits 
out a class predic t ion . The class w i t h the highest n u m b e r of votes (trees) is 
considered the m o d e l pred ic t ion [46]. 

M u a l l a et a l . [47] proposed a cel l detection a n d segmentation m e t h o d based 
o n the r a n d o m forest over br ight - f ie ld microscopy images. The representa­
tive features were extracted u s i n g a scale-invariant feature transform (SIFT). 
Then , the balanced r a n d o m forest w a s a p p l i e d as a classifier to calculate a n d 
classify the descriptive cel l key points according to their s imilarity. E v e n t u ­
ally, the key points were clustered w i t h the agglomerative hierarchical algo­
r i t h m . The w e i g h t e d m e a n of the key points w a s calculated to determine the 
exact cel l region. The SIFT descriptors were invar iant to i l l u m i n a t i o n c o n d i ­
tions, cel l size, a n d orientation. 
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R a n d o m Forest Class i f ier 

TREE #1 TREE #2 TREE #3 TREE #4 

1 1 
C L A S S C C L A S S D C L A S S B C L A S S C 

MAJORITY VOTING 

FINAL CLASS 

FIGURE 1.5: The structure of Random Forest classifier [4]. 

M a h et a l . [48] described a supervised M L technique to extract the intersti­
t ia l cells of Ca ja l ne tworks f r o m 3 D confocal microscopy images. The fast ran­
d o m forest classification u s i n g trainable W e k a segmentation outper formed 
the dec is ion table a n d naive Bayes classification methods i n sensitivity, accu­
racy, a n d F-measure. H o w e v e r , the process h a d a higher computat ional cost 
due to the structure of the fast r a n d o m forest method . 

G a l l et a l . [49] constructed r a n d o m forests-based discr iminat ive class code-
books to cast probabil ist ic votes w i t h i n the H o u g h transform. This approach 
w a s cal led the H o u g h forests object detection. Yao et a l . [50] used the H o u g h 
forests to detect a n d segment the mitot ic cells i n D I C images. This method 
has a structure s imi lar to the r a n d o m forest generating discr iminat ive class-
specific parts a n d achieving the probabil is t ic votes w i t h i n the H o u g h trans­
f o r m f ramework . 

Other supervised methods L i i m a t a i n e n et a l . [51] proposed a supervised 
m e t h o d for cel l count ing i n br ight - f ie ld images u s i n g a logistic regression 
classification w i t h intensity values of 25 focal planes as features. The b i ­
nary erosion w i t h a large circular s tructuring element w a s a p p l i e d as a post­
processing step. H o w e v e r , the m e t h o d suffered f r o m miss-segmentation a n d 
a l o w recall rate. 

Y i n et a l . [52] proposed pixe l -wise segmentation over phase-contrast a n d 
D I C images. The segmentation step w a s completed b y c lass i fying i n d i v i d u a l 
pixels w i t h a n ensemble of Bayesian classifiers. T h e n , accurate cel l b o u n d ­
aries were achieved b y ass igning each p i x e l w i t h a posterior probabi l i ty to 
the cel l or b a c k g r o u n d p i x e l classes. This m e t h o d s h o w e d a segmentation 
p r o b l e m w i t h o v e r l a p p e d cells a n d m i g h t need further processing to split 
touching cells or nuc le i . 

Fa takdawala et a l . [53] proposed a m e t h o d to detect a n d segment H & E 
breast cancer cells over R G B m e d i c a l images. They a p p l i e d the Gauss ian 
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mixture m o d e l ( G M M ) to classify image regions into four pre-def ined classes: 
different cel l regions a n d the b a c k g r o u n d . The m e t h o d d i d not need tra ining 
data sets that are dif f icult to define o w i n g to var iab i l i ty across images. D u e to 
the absence of p r i o r k n o w l e d g e of nucleus shape, this m e t h o d cannot guar­
antee accurate b o u n d a r y del ineat ion. 

Unsupervised methods 

The unsuperv i sed M L methods w o r k w i t h o u t superv i s ion or t ra ining. The 
unsuperv i sed methods are trained w i t h data that is neither label led, classi­
f ied, nor scored for t ra in ing [54]. 

The b e s t - k n o w n unsuperv i sed methods are c luster ing methods. Cluster­
i n g expresses g r o u p i n g data points or objects into clusters according to their 
s imilarit ies . C a l c u l a t i n g this s imi lar i ty is crucia l i n selecting the appropriate 
s imi lar i ty measure a n d achieving the best c luster ing result [55]. O n e such 
a lgor i thm is K-means (Fig. 1.6) [56]. 

X i n et a l . [57] a p p l i e d a self-supervised m e t h o d together w i t h an unsuper­
v i sed i n i t i a l segmentation to segment whi te b l o o d cells. Firstly, the K-means 
clustering w a s a p p l i e d to extract the overa l l foreground of coarse whi te b l o o d 
cells. The second m o d u l e used the coarse segmentation results as automatic 
labels to t ra in a n S V M classifier. The trained S V M classifier then classified 
each image p i x e l a n d achieved a more accurate segmentation result. H o w ­
ever, the unsup erv i sed part of the m e t h o d generates a r o u g h segmentation 
result. In the case of complex data sets, the supervised part of the m e t h o d 
cannot w o r k efficiently due to f u z z y boundaries . 

A n t a l et a l . [58] described unsuperv i sed segmentation over microscope cell 
images u s i n g the M a r k o v R a n d o m F i e l d . This m e t h o d considers a n image a 
series of planes based o n Bit Plane S l ic ing . The planes were used as in i t ia l 
labe l l ing for a n ensemble of segmentations. The robust cel l segmentation w a s 
achieved w i t h p ixe l -wise v o t i n g . H o w e v e r , this m e t h o d w a s too sensitive to 
the confidence threshold a n d unable to manage huge data sets. 

FIGURE 1.6: The scheme of K-means clustering [5]. 
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M u a l l a et a l . [47] a p p l i e d supervised a n d unsuperv i sed methods together 
a n d c o m b i n e d a SIFT to extract key points , a self- label l ing, a n d t w o clustering 
methods to segment unstained cells i n br ight - f ie ld micrographs . The c o m p u ­
tational cost a n d the achieved accuracy were acceptable, but the technique 
w a s sensitive to the feature selection to el iminate the overf i t t ing. 

The machine learning methods r a p i d l y expanded due to the l o w perfor­
mance of s imple image processing methods to detect a n d segment cells i n 
complex m e d i c a l a n d microscopy images. The M L methods have received 
more attention than tradi t ional methods [40,42,47,49,51], since they brought 
more accurate detection a n d segmentation outputs . Nevertheless , the M L 
methods are also problematic i n aspects as fo l lows : 

1. sensit ivity of the hyper-parameter t u n i n g to achieve a high-performance 
trained m o d e l [25,42] 

2. over- a n d under-segmentat ion i n case of complex images of over lapped 
cells a n d unstable l i g h t i n g condit ions [40,43], 

3. the h i g h computat ional cost for m o d e l t ra in ing a n d the disabi l i ty to 
analyse t ime series a n d huge data sets [48]. 

Deep learning (DL) methods have been deve loped to resolve these prob­
lems a n d achieve higher accuracy a n d performance. 

1.4.3 Deep learning methods 

Deep learning is a subset of machine learning methods that a l l o w computers 
to learn f r o m experience a n d examples l ike the structure of the h u m a n brain 's 
neura l network . N e u r a l ne tworks try to learn a n d f i n d a correlat ion pattern 
between a set of data u s i n g a process that the h u m a n b r a i n operates o n [59]. 
Deep learning methods are w i d e l y used i n m a n y appl i ca t ion f ields, s u c h as 
speech recognit ion, v i s u a l object recognit ion, object detection a n d segmen­
tation a n d achieved results p r e v i o u s l y imposs ib le w i t h t radi t ional a n d M L 
methods. M a n y D L methods have been deve loped for image segmentation 
tasks, especially for ana lys ing complex microscopy a n d m e d i c a l image. 

Convolutional neural network C o n v o l u t i o n a l n e u r a l n e t w o r k ( C N N ) is an 
art i f icial neura l n e t w o r k ( A N N ) a p p l i e d i n var ious computer v i s i o n tasks, 
i n c l u d i n g rad io logy a n d microscopy research. The C N N learns the spatial 
features d u r i n g the automatic a n d adaptive procedure t h r o u g h the back-
propagat ion mechanism. This mechanism is b u i l t w i t h c o n v o l u t i o n layers, 
i n c l u d i n g c o n v o l u t i o n filters, p o o l i n g layers for decreasing the extracted fea­
ture vector 's d imensions , a n d f u l l y connected layers to merge the extracted 
features i n previous layers for classification [60]. 

A c c o r d i n g to the C N N structure, Sermanet et a l . [61] deve loped a n d p r o ­
posed a n e w concept of C N N k n o w n as a f u l l y co n v o lu t io n a l ne twork ( F C N ) . 
O n e of the most p o p u l a r models for semantic segmentation is a f u l l y con­
v o l u t i o n a l ne twork ( F C N ) architecture [6]. The F C N methods merge deep 
semantic in format ion w i t h a sha l low appearance to achieve satisfactory seg­
mentat ion results. The F C N involves the arbitrary size of i n p u t images i n the 
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t ra ining phase a n d produces a n output of the corresponding size w i t h effi­
cient inference a n d learning g i v i n g a semantic segmentation mask. The most 
significant difference between C N N s a n d F C N s is i n the last layers. The C N N 
base methods use f u l l y connected layers for most ly b i n a r y a n d mult i -c lass 
classification tasks. O n the other h a n d , F C N methods use convolut iona l lay­
ers to generate a n d predict a segmentation result according to the extracted 
features at the feature extraction step of the network . 

21 

FIGURE 1.7: The F C N architecture [6]. 

Sadafi et a l . [62] proposed a deep learning m e t h o d to segment red b l o o d 
cells. The technique used the m a n u a l label led g r o u n d t ruth masks to t ra in the 
neura l ne twork based o n F C N structure. The n e t w o r k w a s trained o n smal l 
images to decrease the computat ional cost. The m e t h o d achieved a n accuracy 
of 0.9 a n d s h o w e d false negative predict ions due to the out-of-focus cells. 

L i n et a l . [63] c o m b i n e d a mask R C N N w i t h a shape-aware loss to achieve 
H e L a segmentation over D I C a n d phase-contrast images w i t h a 0.91 I o U ac­
curacy. 

C i re san et a l . [64] proposed a D C N N to detect a n d segment breast can­
cer cells over h is to logy images. The m a x - p o o l i n g C N N network p r o v i d e d a 
probabi l i ty m a p b y c lass i fying each image p i x e l . The achieved probabi l i ty 
m a p w a s smoothed w i t h a d isk kernel i n post-processing. The f ina l centroid 
was detected w i t h n o n - m a x i m a suppression. 

Song et a l . [65] a p p l i e d the mult iscale convolut iona l ne twork ( M S C N ) to 
extract scale-invariant features a n d segment regions centred at each p i x e l . 
Coarse segmentation w a s completed b y a n automated g r a p h par t i t ioning 
m e t h o d based o n the pre-trained features. The Dice metric a n d standard 
devia t ion were s ignif icantly i m p r o v e d compared w i t h s imi lar methods. 

L i u a n d Yang [66] c o m b i n e d M L a n d D L algori thms. The L o G , M S E R , and 
iterative v o t i n g learning methods were used to f i n d the candidates for the 
cell regions. Then , a seven-layer D C N N w a s used to t ra in the m o d e l , assign 
a score for each extracted candidate, a n d f i n d the best candidate region. The 
m e t h o d achieved 0.90 Dice metric accuracy but is sensitive to parameter opt i ­
misa t ion i n the superv ised M L step to achieve the best detection result us ing 
D C N N . 
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Xie et a l . [67] proposed a m e t h o d to detect a n d segment the nucleus cen-
troids over br ight - f ie ld images. The D C N N w a s a p p l i e d to learn the v o t i n g 
offset vectors a n d v o t i n g confidence jo int ly achieved b y the H o u g h v o t i n g . 
Then , the nucleus centroids were local ised a n d detected u s i n g heavy cluster­
i n g a n d m o r p h o l o g i c a l variat ions. The m e t h o d reached 0.85 a n d 0.81 preci ­
s ion a n d Dice accuracy, respectively. H o w e v e r , the computat iona l cost was 
h i g h , a n d the outputs were less sat isfying than i n other a lgori thms. 

C h a n g et a l . [68] proposed a C N N to detect a n d segment i n d u c e d p l u r i p o -
tent h u m a n stem cells over br ight - f ie ld images. The regions of var ious cel l 
differentiation phases were represented as probabi l i ty images. The C N N 
classifier t rained the mult i -c lass classification m o d e l w i t h m u l t i p l e types of 
image patches, i n c l u d i n g i n d i v i d u a l types of cells. The f ive-layer C N N clas­
sifier i n c l u d e d m a x - p o l i n g a n d act ivat ion funct ion steps a n d three f u l l y con­
nected layers. The m e t h o d s h o w e d misclassif icat ion w h e n the classes were 
very similar. 

T h i et a l . [69] in t roduced a convolut iona l b l u r attention ( C B A ) n e t w o r k 
containing d o w n - a n d u p s a m p l i n g procedures for nuc le i segmentation i n 
standard challenge datasets [70, 71]. The n e t w o r k assigns determinist ic l a ­
bels to the pixels t h r o u g h the features of i n p u t images. The authors achieved 
a 0.92 F l score accuracy. The n u m b e r of trainable parameters l o w e r than i n 
other D C N N s decreased the computat ional cost. 

J ingru et a l . [72] deve loped a C N N for a n attentive instance cel l detection 
a n d segmentation. The a l g o r i t h m accurately predicts the b o u n d i n g box a n d 
segmentation mask of each cell . The authors first e m p l o y e d a single shot 
m u l t i - b o x detector (SSD) [73] to detect neura l cells i n the i n p u t image. Var­
ious F C N s that shared the backbone layers w i t h SSD were e m p l o y e d i n the 
segmentation phase. The sk ip connections i n the F C N generate semantics 
f r o m the deep into the sha l low layers. The attention mechanism suppressed 
noise a n d h i g h l i g h t e d regions w i t h a 0.775-0.779 m e a n - I o U accuracy. 

W a n et a l . [74] proposed a D C N N detection-segmentation f r a m e w o r k for 
o v e r l a p p i n g cells i n d ig i ta l cytological images. The ROIs ident i f ied i n the first 
- cel l detection - phase were used as t ra in ing samples for the subsequent cy­
toplasm segmentation phase. The TernausNet m o d e l w a s trained a n d used 
as a m o d i f i e d F C N as a segmentation neura l network . The m e t h o d c o u l d 
deal w i t h l o w - q u a l i t y (poor-contrast, a m b i g u o u s f o r e g r o u n d / b a c k g r o u n d 
regions) images. 

The U - N e t is a convolut iona l ne twork architecture for fast a n d precise i m ­
age segmentation. For the first t ime, the U - N e t w a s in t roduced for b i o m e d i ­
cal image segmentation [7]. The name of this ne twork comes f r o m its shape, 
w h i c h is s imi lar to the letter " U " . This ne twork w a s designed as a n extended 
F C N w o r k i n g w i t h fewer t ra in ing images but w i t h more precise output . 

The U - N e t architecture is symmetr ic (Fig. 1.8). Its left part - the encoder 
section - extracts the representative features f r o m image regions at different 
levels of the ne twork c o n v o l u t i o n operations a n d h i d d e n layers to reach the 
network ' s bot tom. The r ight part - the decoder section - uses the feature 
representation extracted i n the encoder to generate a semantic segmentation 
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FIGURE 1.8: The default U - N e t b y [7]. 

m a p . The U - N e t benefits the concatenation step f r o m the encoder to the de­
coder m e r g i n g sha l low a n d deep feature maps a n d achieving more precise 
local isat ion informat ion . 

L o n g et a l . [75] m o d i f i e d the U - N e t to a l ight -weighted U - N e t (U-Net+) 
w i t h a customised encoded section to reduce the computat ional cost for l i m ­
i ted computat ional resources. D u e to a weaker feature extraction structure, 
the m e t h o d d i d not del iver higher m e a n - I o U accuracy i n n u c l e i segmentation 
over br ight - f ie ld , dark- f i e ld , a n d fluorescence images. 

Bagyaraj et a l . [76] proposed t w o automatic deep learning networks : U -
Net-based deep c o n v o l u t i o n ne twork a n d U - N e t w i t h a dense convolut iona l 
ne twork (DenseNet) for detection a n d segmentation of b r a i n t u m o u r cells. 
The authors achieved remarkable results w i t h the DenseNet . 

Sh ibuya et a l . [77] proposed a Feedback U - N e t u s i n g the convolut iona l 
L o n g Short-Term M e m o r y ( L S T M ) network , w o r k i n g o n Drosophila a n d mouse 
cell image data sets. This m e t h o d s h o w e d a l o w level of accuracy, depend­
i n g o n the segmented class (cytoplasm, cel l membrane , m i t o c h o n d r i a , and 
synapses). 

C h e n et a l . [8] proposed a B r i d g e d U - N e t (Fig. 1.9) w i t h t w o different U -
Nets to segment prostate cancer over m e d i c a l images. The m e t h o d objective 
was to use the sk ip connect ion b r i d g i n g t w o U - N e t ne tworks as a feature 
fus ion step. The B r i d g e d U - N e t w a s used for feedforward processing f r o m 
the l o w e r to the u p p e r layer. U s i n g t w o U - N e t architectures leads to more 
trainable parameters a n d higher computat ional costs. The m e t h o d achieved 
a 0.881 Dice accuracy w h i c h w a s n o significant i m p r o v e m e n t compared to 
s imi lar w o r k s . 
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FIGURE 1.9: The bridge U-Net architecture by [8]. 

A l o m et a l . [9] proposed a Recurrent R e s i d u a l C N N (R2U-Net , F i g . 1.10) 
based o n the U - N e t for m e d i c a l image segmentation. The m e t h o d objective 
w a s to i m p r o v e the performance of the reference U - N e t b y i m p l e m e n t i n g 
the recurrent a n d res idual m e c h a n i s m into each convolut iona l layer. The 
m e t h o d successfully overcame the gradient v a n i s h i n g p r o b l e m b y cont inu­
ous ly u p d a t i n g the gradient values i n this very deep neura l n e t w o r k architec­
ture. The R 2 U - N e t achieved 0.87,0.81, a n d 0.79 F l scores for D R I V E , S T A R E , 
a n d C H A S E m e d i c a l data sets. A p p l y i n g recurrent a n d res idual mechanisms 
together increased the n u m b e r of trainable parameters a n d computat ional 
costs. 

FIGURE 1.10: The R2U-Net architecture by [9]. 

Pereira et a l . [78] proposed a C N N w i t h the 3 x 3 kernel size to segment the 
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b r a i n t u m o u r over M R I images. The s m a l l kerne l made the C N N deeper and 
mit igated the overf i t t ing b y ass igning a l o w e r w e i g h t va lue . The data w a s 
augmented a n d n o r m a l i s e d i n the pre-processing phase. The m e t h o d perfor­
mance evaluated o n the B R A T S 2013 dataset reached 0.78,0.65, a n d 0.75 Dice 
coefficients for the complete, core, a n d enhancing regions, respectively. 

S tawiaski et a l . [79] proposed semantic segmentation based o n a DenseNet 
to segment b r a i n t u m o u r regions over m e d i c a l images. The m e t h o d used the 
U - N e t as a backbone, u t i l i s i n g dense connections between the layers through 
dense blocks. The m e t h o d reached the Dice metric values of 0.79 a n d 0.85. 

S u n n y et a l . [80] proposed a mult i -c lass cel l segmentation i n fluorescence 
images u s i n g a h y b r i d D L method . The authors c o m b i n e d a m o d i f i e d U -
N e t w i t h the ResNet34 deep encoder ne twork as a feature extraction part 
to enhance the mult i -c lass segmentation result. A p p l y i n g the ResNet34 w i t h 
res idual mechanism overcame the gradient v a n i s h i n g (often occurr ing i n deep 
neura l networks) a n d gave more representative features to generate the seg­
mentat ion masks. The ResNet34-Unet achieved a 0.79 I o U accuracy o n the 
S N A - 1 S E C data set. 

Baki r a n d Y a l i m Keles [81] deve loped a two-step U - N e t segmentation over 
a D I C - C 2 D H - H e L a data set. The first U - N e t w a s responsible for local is ing 
the H e L a cells. The output of the first U - N e t served as p r i o r in format ion for 
the second U - N e t to t ra in the m o d e l a n d obta in the exact cel l boundaries . 
The m e t h o d s h o w e d a 0.85 segmentation accuracy. H o w e v e r , the n u m b e r of 
trainable parameters a n d computat ional costs increased dramatical ly. 

P i o t r o w s k i et a l . [82] deve loped a f u l l y automated D L - b a s e d mult i -c lass 
cell state recognit ion a n d segmentation over phase-contrast images. The 
m e t h o d w a s based o n a U - N e t a n d segmented different classes (colonies, s in ­
gle, differentiated, a n d dead) of h u m a n i n d u c e d p lur ipotent stem cells f r o m 
each other. This m e t h o d obtained an overa l l 0.777 I o U metric accuracy, a n d 
0.918 a n d 0.653 I o U values for the class of colonies a n d the class of dead cells, 
respectively, as the best a n d wors t results. 

Y u et a l . [83] proposed a semi-supervised D L a l g o r i t h m - M u l t i H e a d G A N 
- w i t h a n encoder a n d t w o separate decoders to segment low-contrast retinal 
p igment e p i t h e l i u m cells over fluorescent microscopy images. The designed 
M u l t i - H e a d structure c o u l d t ra in the m o d e l w i t h a s m a l l scale of annotated 
data. The m e t h o d s h o w e d segmentation accuracy of 0.873 a n d 0.801 as the 
prec is ion a n d recall metric respectively. 

Z h a o et a l . [84] deve loped a semantic segmentation for a b n o r m a l cells i n 
cervical cytology images. This l ightweight feature attention n e t w o r k ( L E A N e t ) 
m e t h o d combines a feature extraction approach w i t h the attention m o d u l e to 
extract abundant representative features f r o m different parts of images of 
var ious image resolutions for the t ra in ing phase. The trained m o d e l seg­
mented the nucleus a n d cytoplasm regions over the cervical images. The 
m e t h o d achieved a 0.8760 Jaccard metric value . 

K h a m e n e et a l . [10] proposed a m o d i f i e d U - N e t - b a s e d m e t h o d (Fig. 1.11) 
to segment membranes over microscopy images to evaluate h u m a n epider­
m a l g r o w t h factor receptor 2 (HER2) proteins. The m e t h o d consists of three 



20 

FIGURE 1.11: The modified U-Net-based architecture by [10]. 

m a i n phases. Firstly, a superpixe l S V M feature classifier w a s used to clas­
sify epi thel ia l a n d stromal regions f r o m the sl ide image. In the second step, 
the C N N segmented the membrane regions f r o m the classified epithel ia l re­
gions. In the last step, the overa l l score of each sl ide w a s obtained b y m e r g i n g 
a n d evaluat ing the d i v i d e d tiles. The m e t h o d s h o w e d a 0.93 accuracy metric 
value . 

Eschwei ler et a l . [85] deve loped a C N N - b a s e d mult i -c lass instance cell 
segmentation m e t h o d for 3 D confocal images. This m e t h o d integrated the 
U - N e t m e t h o d w i t h watershed segmentation to benefit b o t h techniques. The 
proposed C N N s achieved accurate performance i n segmentation tasks, even 
i n deeper tissue layers w i t h v a n i s h i n g f luorosphore responses. The method 
reached a 0.870 Jaccard index accuracy. 

K h a n a n d M i r [86] segmented w h i t e b l o o d cells ( W B C ) f r o m red b l o o d cells 
a n d platelets over microscopy images u s i n g a U - N e t var iant w i t h a bigger i n ­
p u t image size to obta in the segmentation masks w i t h a 0.687 overa l l Jaccard 
metric accuracy. The segmented W B C s regions were then classified into f ive 
categories according to the extracted shape a n d texture features b y a p p l y i n g 
an S V M classifier. 

Tran et a l . [87] segmented a n d ident i f ied red a n d whi te b l o o d cells over 
microscopy per iphera l b l o o d cells images u s i n g D L SegNet encoder-decoder 
architecture w i t h a 0.89 I o U metric va lue . 
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1.5 Our research objectives 
A s described above, t radi t ional image processing [19, 25, 31, 35] a n d M L 
methods [40, 42, 43, 48] d i d not del iver sufficient detection a n d segmenta­
t ion outcomes facing diff icult ies (e.g., b a c k g r o u n d complexity, cel l over lap­
p i n g a n d v a n i s h i n g cel l borders or large time-lapse a n d 3 D datasets) i n b i ­
ological a n d m e d i c a l micrographs. H o w e v e r , compared w i t h M L methods, 
some C N N methods d e m a n d huge computat ional costs a n d m a n y m a n u ­
al ly label led data to achieve accurate t ra in ing a n d high-performance models 
[6,88]. 

The m a i n objective of this P h D thesis is to develop a n d propose the most 
accurate a n d computat ional ly reasonable optimisable A I approaches based 
o n deep learning methods to segment the H e L a cells over transmitted and 
reflected w i d e - f i e l d microscopy images. 

The U - N e t - b a s e d architecture has been chosen a n d a p p l i e d to the trans­
mit ted w i d e - f i e l d microscopy images to obtain the single-class semantic seg­
mentat ion i n the first project. The U - N e t has been selected since it is a w e l l -
k n o w n semantic segmentation m e t h o d w i t h a p r o m i s i n g outcome a n d the 
abi l i ty to w o r k w i t h a reasonable amount of trainable data [7]. Variants of 
the U - N e t architecture - a n A t t e n t i o n a n d a R e s i d u a l A t t e n t i o n U - N e t - have 
been assembled a n d examined to f i n d the best architecture for our telecentric 
br ight- f ie ld microscopy dataset. 

The m a i n objective of the second project w a s to develop a h y b r i d deep-
learning m e t h o d for mult i -c lass cel l segmentation to classify l i v i n g cells ac­
cord ing to the life cycle phases over unique telecentric w i d e - f i e l d reflected 
l ight microscopy images. We replaced the encoder part of the U - N e t w i t h 
V G G 1 9 , Inception, a n d ResNet34 encoder architecture. These C N N variants 
were examined to enhance the feature extraction step a n d f i n d the most ef­
ficient mult i -c lass segmentation architecture to classify l i v i n g H e L a cells ac­
cord ing to m o r p h o l o g i c a l shape i n their l i fet ime. 

In this research, a microscope i n t w o l ight source arrangements (transmis­
s ion vs reflection) w a s used to collect t ime-lapse series of H e L a cells (Fig. 
1.2) as r a w data w i t h a theoretical p i x e l size (size of the object projected onto 
the camera pixel) of 113 n m . This microscope w a s des igned b y the Institute 
of C o m p l e x Systems (ICS, Nové H r a d y , C z e c h Republ ic) a n d b u i l t b y Optax 
(Prague, C z e c h Republic) a n d ImageCode (Brloh, C z e c h Republic) i n 2021. 
The microscope w a s e q u i p p e d w i t h the telecentric measurement objective 
TO4.5/43.4-48-F-WN (Vis ion & C o n t r o l G m b H , S h u l , G e r m a n y ) [89] a n d an 
A R 1 8 2 0 H S 1/2.3- inch 10-bit R G B dig i ta l camera ( A r d u C a m Technology C O . , 
L t d . , K o w l o o n , H o n g K o n g ) w i t h a ch ip of 4912x3684 p i x e l resolution. The 
custom-made software control led captur ing the p r i m a r y s ignal w i t h a cam­
era exposure of 2.75 a n d 998 ms for t ransmiss ion a n d reflection, respectively. 
(Jena, G e r m a n y ) . In the first project of single-class semantic segmentation, 
w e used t w o l ight -emit t ing diodes C L - 4 1 (Opt ika Microscopes , Ponteran-
ica, Italy) [90] i n the t ransmiss ion arrangement. In the second project o n 
the mult i -c lass l i v i n g cel l segmentation, a l ight source Schott V i s i L E D S80-25 
L E D Br ight f ie ld R i n g l i g h t [91] i n the reflection p o s i t i o n w a s used. 
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CHAPTER 2 

Data collection and methodology 
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2.1 Overview 
Deep learning methods were w i d e l y used i n m a n y research f ields, i n c l u d i n g 
medic ine a n d microscopy, for object detection a n d segmentation. D u e to the 
p r o m i s i n g outcome i n l i v i n g cel l segmentation, w e deve loped a n d a p p l i e d 
different variants of D L methods to our transmitted a n d reflected w i d e - f i e l d 
microscopy image datasets. 

We w i l l first describe sample preparat ion a n d data col lect ion steps i n Sec­
t ion 2.2. Section 2.3 describes the data acquis i t ion a n d pre-processing steps 
for b o t h projects. Section 2.4 describes the single-class cel l segmentation 
methods based o n transmitted w i d e - f i e l d l ight microscopy images. The last 
Section 2.5 describes the h y b r i d D L methods for mult i -c lass l i v i n g cel l seg­
mentat ion i n detail . 

2.2 Sample preparation and data collection 

The cel l l ine chosen for b o t h single a n d mult i -c lass segmentation w a s H e L a 
l ine (Section 1.2). This cel l l ine w a s p r o v i d e d b y (European C o l l e c t i o n of C e l l 
Cul tures , Cat . N o . 93021013) i n f rozen shape w i t h d r y ice. The cells were 
cult ivated to l o w opt ica l density at 37° C , 5% C O 2 , a n d 90% relative h u m i d ­
i ty overnight . The nutr ient so lut ion consisted of Dulbecco 's m o d i f i e d Eagle 
m e d i u m (87.7%) w i t h h i g h glucose (>1 g L _ 1 ) , fetal bovine serum (10%), an­
tibiotics a n d antimycotics (1%), L -g lu tamine (1%), a n d gentamic in (0.3%; a l l 
purchased f r o m Biowest , N u a i l l e , France). The H e L a cells were mainta ined 
i n a Petr i d i s h w i t h a cover glass bo t tom a n d l i d at r o o m temperature of 37° C . 

2.3 Data acquisition and pre-processing 

Time-lapse experiments w i t h different t ime intervals were p e r f o r m e d to cap­
ture r a w data series of l i v i n g H e L a cells o n the glass Petr i dishes u s i n g the 
custom-made microscope i n a transmitted a n d reflected setup. The complete 
descr ipt ion of bo th transmitted a n d reflected w i d e - f i e l d l ight microscope w a s 
wr i t t en i n Section 1.3. The obtained r a w image series were calibrated b y the 
a lgor i thm proposed i n [92] i m p l e m e n t e d i n the microscope control software 
to m i n i m i z e the noise a n d image b a c k g r o u n d inhomogeneit ies . 

A f t e r the image cal ibrat ion, the r a w 16-bit t ime-lapse data were transferred 
into the quarter-resolved 8-bit colour (RGB) images b y the m e t h o d intro­
d u c e d i n [93]. E a c h pa i r of green camera filter p ixe ls ' intensities were av­
eraged to the green image channel . The red a n d blue camera filter pixels 
were assigned to the relevant image channel . T h e n , images were rescaled to 
8 bits after creating the image series intensity h is togram a n d o m i t t i n g unoc­
c u p i e d intensity levels. This bi t reduct ion ensured the m a x i m a l in format ion 
preservat ion a n d m u t u a l comparabi l i ty of the images t h r o u g h the time-lapse 
series. 

A l l 8-bit R G B images were denoised b y the m e t h o d proposed i n [94] to 
decrease the b a c k g r o u n d noise to the m i n i m u m level a n d keep the m a x i m u m 



FIGURE 2.1: Examples of collected and manually labelled data 
i n light transmission telecentric microscope. 
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texture details. Then , the image series were c r o p p e d to the 1024 x 1024 p i x e l 
size for further analysis. 

In the w a y described above, w e obtained 500 l ight t ransmiss ion images 
for t ra in ing the single-class cel l segmentation m o d e l a n d 650 l ight reflection 
images for the mult i -c lass cel l segmentation m o d e l . 

In the single-class segmentation project, the images of l i v i n g cells have 
been m a r k e d m a n u a l l y w i t h h u m a n eyes i n M A T L A B ( M a t h W o r k s Inc., N a t -
ick, Massachusetts, U S A ) as the G r o u n d - T r u t h (GT) single-class masks. F i g ­
ure 2.4 represents a sample of the single-class segmentation data w i t h the 
corresponding GT. 

In the mult i -c lass segmentation project, each cel l w a s m a n u a l l y label led i n 
the A p p e r p l a t f o r m a n d assigned to the cel l class according to its m o r p h o l o g ­
ical shape a n d life cycle. We dis t inguished three image region classes: 

1. a cell-free b a c k g r o u n d class, 
2. a class w i t h cells of larger m o r p h o l o g i c a l shapes w i t h o u t cel l borders, 

where the cells are m i g r a t i n g or d i v i d i n g , 
3. a class w i t h r o u n d i s h cells w i t h sharper borders , where the cells are i n 

their early life-cycle state w i t h o u t d i v i s i o n state yet. 

Figure 2.5 shows the sample of the mult i -c lass images a n d g r ound- t r u th mask 
classes. 

For b o t h single a n d mult i -c lass projects, 80% of the label led images (512 x 
512 pixels) were used for m o d e l t ra in ing a n d remained 20% of the data sets 
were used for testing a n d m o d e l evaluat ion. 20% of the t ra in ing sets were 
used for the m o d e l v a l i d a t i o n d u r i n g the t ra in ing of the neura l ne twork ar­
chitectures. 

2.4 Single-class cell segmentation 

Three different U - N e t architectures were i m p l e m e n t e d to examine single-
class cel l segmentation of l ight t ransmiss ion microscopy data set to achieve 
the most accurate semantic segmentation result. 

2.4.1 Simple U-Net Model 

The U - N e t is one of the p r o m i s i n g neura l ne twork architectures for semantic 
segmentation [7]. The U - N e t w a s based o n the F C N architecture consist ing of 
encoder-decoder layers. This architecture inc ludes var ious feature channels 
to merge sha l low a n d deep features. The extracted deep features are ut i l i sed 
for p o s i t i o n i n g a n d the s h a l l o w features are used for precise segmentation. 
The architecture of the U - N e t chosen for single-class segmentation is repre­
sented i n F i g . 2.3. 

The i n p u t layer accepts the R G B colour images as a t ra in ing set. E a c h level 
of the U - N e t structure inc ludes t w o 3 x 3 convolut ions . Batch n o r m a l i z a t i o n 
fo l lows each c o n v o l u t i o n , a n d " L e a k y R e L U " act ivat ion functions f o l l o w a 
rectified l inear unit . In the encoder part of the n e t w o r k (Fig. 2.3, left part), 
each " level" consists of a 2 x 2 m a x p o o l i n g operat ion w i t h the stride of t w o 
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Reflected microscope images Multi class corresponded 
Ground Truth 

FIGURE 2.2: Examples of light reflection telecentric data and 
corresponding GT. The green and red class represents the 
roundish sharp cells and the migrating vanish cells, respec­

tively. 
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to f i n d the m a x i m a l value i n the 2 x 2 area. B y comple t ing d o w n - s a m p l i n g 
i n each level of the encoder part , convolut ions w i l l double the n u m b e r of 
feature channels. 

The height a n d w i d t h of the exist ing feature m a p were d o u b l e d i n each 
level of the decoder section (Fig. 2.3, r ight part) f r o m bot tom to top. In the 
next phase, the deep semantic a n d sha l low extracted features were combined 
a n d concatenated w i t h the feature maps f r o m the encoder section. Af te r con­
catenation, the output feature maps have channels twice the size of the input 
feature maps. The output of the last decoder layer at the top w a s achieved b y 
l x l c o n v o l u t i o n size a n d predicts the probabi l i ty of each p i x e l . The p a d d i n g 
i n the c o n v o l u t i o n process a l l o w e d us to obta in the same sizes of i n p u t a n d 
output layers. 

2.4.2 Attention U-Net Model 

In the U - N e t architecture, the encoder a n d decoder sections were connected 
to each other u s i n g br idge connections to combine the d o w n - s a m p l i n g path 
w i t h the u p - s a m p l i n g p a t h a n d achieve spat ial in format ion . H o w e v e r , this 
concatenation process br ings m a n y irrelevant feature representations f r o m 
the i n i t i a l layers. The A t t e n t i o n U - N e t architecture [95] s h o w i n g i m p r o v e ­
ment i n m e d i c a l i m a g i n g performance w a s i m p l e m e n t e d (Fig. 2.4 A ) to a v o i d 
transferring irrelevant feature representations a n d i m p r o v e segmentation re­
sults achieved b y a standard U - N e t . 

The attention gate at the sk ip connections between the encoder a n d de­
coder layers h ighl ights the remarkable features a n d suppresses activations 
i n the irrelevant regions. In conclus ion, the attention gate improves m o d e l 
sensit ivity a n d performance w i t h o u t any compl icated computat iona l costs 
a n d requirements. 

The proposed attention gate (Fig. 2.4B) accept t w o inputs - x a n d g. Input x 
is achieved b y the sk ip connect ion f r o m the encoder layers. C o m i n g f r o m the 
early layers, this i n p u t contains better spatial in format ion . A gat ing s ignal 
i n p u t g comes f r o m the deeper n e t w o r k layer a n d inc ludes a better feature 
representation. The attention part weights different parts of the images. This 
process adds the weights to the pixels based o n their relevance i n the t ra in ing 
step. The relevant parts of the image get large weights than the less relevant 
parts. The achieved weights are also trained i n the t ra in ing process a n d make 
the trained m o d e l more attentive to the relevant regions. 

2.4.3 Residual attention U-Net Model 

The res idual m e c h a n i s m w a s in i t i a l ly i m p l e m e n t e d into the U - N e t architec­
ture for nuc le i segmentation [9]). The architecture w a s n a m e d the Res idua l 
U - N e t . The s imple U - N e t architecture w a s bui l t of repetitive convolut iona l 
blocks at each level (Fig. 2.5B). O n the other h a n d , v e r y deep convolut iona l 
networks suffer f r o m v a n i s h i n g gradients at deeper levels. The res idual step 
w a s deve loped to cont inuous ly a n d incremental ly update the weights i n each 
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progress. BN refers to Batch Normalization. 

convolut iona l b lock (Fig. 1.6C) to i m p r o v e the ne twork performance a n d re­
solve the v a n i s h i n g gradient problems. 

The mechanism of neura l ne tworks is a cont inuous process i n w h i c h each 
convolut iona l b lock feeds the next block. A p r o b l e m i n deep convolut iona l 
neura l ne tworks ( D C N N ) w h e n stacking convolut iona l layers is that the gen­
eralisation abi l i ty of the trained m o d e l can be affected b y the deeper net­
w o r k ' s structure. The sk ip connections-the res idual b locks-resolve this prob­
l e m a n d i m p r o v e the n e t w o r k performance, w i t h each layer feeding the next 
layer a n d layers about t w o or three steps apart (Fig. 1.6C). The R e s i d u a l a n d 
A t t e n t i o n U - N e t architectures were connected to m o d e l our data sets more 
effectively a n d further i m p r o v e segmentation results. 

The computat ional results c o m b i n e d w i t h the B i n a r y Focal Loss funct ion 
become the energy funct ion of the proposed U - N e t - b a s e d methods. 
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A f t e r obta ining the most accurate semantic segmentation result i n the Resi­
d u a l A t t e n t i o n U - N e t , the m o r p h o l o g i c a l reconstruction b y the watershed 
a lgor i thm [96] w a s a p p l i e d to achieve instance segmentation of each cell . 
The watershed segmentation further h e l p e d us solve the over- a n d under-
segmented regions a n d specify each separated cel l by, e.g., cel l diameters, 
solidity, or m e a n intensity. 

2.5 Multi-class cell segmentation 

The s imple U - N e t , V G G 1 9 - U - N e t , Incept ion-U-Net , a n d ResNet32-U-Net ar­
chitectures were deve loped a n d i m p l e m e n t e d to achieve the most accurate 
mult i -c lass semantic segmentation result i n reflected w i d e - f i e l d l ight microscopy 
image series. 

2.5.1 Simple U-Net Model 

The U - N e t [7] is a w e l l - k n o w n deep neura l n e t w o r k architecture for semantic 
segmentation based o n encode-decoder layers. In this research, a s imple -
f ive-" level" - U - N e t neura l ne twork architecture w a s i m p l e m e n t e d as the first 
m e t h o d for mult i -c lass segmentation purposes . The architecture of this U -
N e t (Fig. 2.6) is s imi lar to the s imple U - N e t proposed i n Section 2.4.1. The 
m a i n difference relies o n the last - output - decoder layer. 

The top output decoder layer w i t h a 1 x 1 c o n v o l u t i o n size predicts the 
probabi l i ty of each p i x e l that the p i x e l belongs to one of three classes us ing 
the "softmax" act ivat ion funct ion. P a d d i n g i n the c o n v o l u t i o n process a l ­
l o w e d us to achieve the same sizes of the i n p u t a n d output layers. Each p i x e l 
was assigned to one certain class according to the highest probabi l i ty values 
achieved a m o n g different classes u s i n g the "argmax" operat ion i n the f inal 
step. 

2.5.2 The VGG19-U-Net 

The U - N e t is a famous architecture for semantic segmentation tasks. H o w ­
ever, the complex i ty of the U - N e t i n terms of the n u m b e r of trainable p a r a m ­
eters a n d weaker feature extraction structures i n mult i -c lass segmentation 
over complex microscopy images affect the trained model ' s performance. 
The V G G - N e t architecture replaced the U - N e t encoder path . In this way, 
w e c o m b i n e d t w o p o w e r f u l architectures a n d i m p r o v e d the categorical seg­
mentat ion of our unique microscopy data set. The V G G - N e t w a s in t roduced 
b y S i m o n i a n a n d Z i s s e r m a n f r o m O x f o r d ' s V i s u a l Geometry G r o u p ( V G G ) 
i n 2015 [97]. 

The V G G is a p o p u l a r image recognit ion architecture, designed to reduce 
the n u m b e r of parameters i n the con volu t ion a l layers a n d i m p r o v e t ra ining 
time. The V G G - 1 9 comprises a n e t w o r k w i t h a deeper topology a n d smaller 
c o n v o l u t i o n kernels to simulate a perceptual f ie ld of v iew. Figure 2.7 repre­
sents the V G G 1 9 - U - N e t proposed i n this study. The left side of the ne twork 
(Fig. 2.7A) shows the architecture of the V G G - 1 9 encoder section w i t h 16 
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FIGURE 2.6: The simple U-Net model architecture. A) The en­
coder section. B) The decoder section. 

c o n v o l u t i o n layers, three f u l l y connected layers, a n d 5 M a x P o o l layers i n f ive 
blocks. 

The r ight side of the ne twork (Fig. 2.7B) represents the decoder part w i t h 
five blocks. The concatenation step between each V G G - 1 9 encoder layer a n d 
U - N e t decoder layer (Fig. 2.7) combines the feature maps f r o m the encoder 
part w i t h the h igh-resolut ion deep semantic a n d s h a l l o w features f r o m the 
decoder part. The last decoder layer has a c o n v o l u t i o n size of 1 x 1 a n d pre­
dicts the probabi l i ty values for each p i x e l a n d each of the three classes u s i n g 
the "softmax" act ivat ion funct ion. 

2.5.3 The Inception-U-Net 
A n a l y s i n g microscopy images w i t h f ixed kernel size i n a l l c o n v o l u t i o n layers 
can make extracting the feature descriptors of different sizes diff icult . The 
bigger kernel can extract a g loba l feature representation over a large image 
area, a n d the smaller kernel is suitable for detecting area-specific features. 
Google ' s incept ion deep learning m e t h o d [98], k n o w n as the Inception archi­
tecture, w a s selected to b u i l d a h y b r i d Incept ion-U-Net architecture (Fig. 2.8) 
further to i m p r o v e mult i -c lass segmentation i n our data sets. 

The incept ion m o d u l e s were deve loped to reduce computat ional costs b y 
integrat ing different sizes of convolut ions . The incept ion m o d u l e appl ies ker­
nels of var ious sizes w i t h i n the same architecture layer a n d becomes w i d e r 
(instead of deeper) w i t h the layers (Fig. 1.6A). 
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The c o n v o l u t i o n layers were replaced w i t h a n incept ion m o d u l e (Fig. 1.6B) 
i n a l l f ive levels of the encoder a n d decoder sections of the o r i g i n a l U - N e t 
structure. Each incept ion m o d u l e is b u i l t of m u l t i p l e sets of 3 x 3 a n d l x l 
convolut ions , 3 x 3 m a x - p o o l i n g , a n d cascaded 3 x 3 convolut ions . 

The last layer i n the decoder section, a l x l c o n v o l u t i o n layer, a n d the "soft-
max" act ivat ion funct ion generate three segmentation classes of the feature 
maps for each p i x e l of the g i v e n i n p u t image. Each p i x e l is assigned to the 
class according to the highest probabi l i ty value a m o n g the classes. 

2.5.4 The ResNet34-U-Net 

The R e s i d u a l C o n v o l u t i o n a l N e u r a l N e t w o r k (ResNet) [99] replaced the fea­
ture extraction part of the standard U-net architecture to i m p r o v e mult i -c lass 
segmentation further. Deeper neura l ne tworks are more effective for c o m ­
plex classification a n d segmentation tasks. O n the other h a n d , the v a n i s h i n g 
gradient p r o b l e m appears i n v e r y deep C N N s d u r i n g the t ra in ing process. 
A l s o , e m p l o y i n g a h i g h n u m b e r of C N N layers makes the t ra in ing process 
slower, a n d the obtained value of the back-propagat ion derivat ive becomes 
insignif icant i n t ra ining. A s a result, the model ' s accuracy is not i m p r o v e d , 
a n d the generalisation abi l i ty of the trained m o d e l is not satisfactory. To over­
come this p r o b l e m , sk ip connections are e m p l o y e d i n the C N N to bypass one 
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FIGURE 2.8: A) The Inception-U-Net architecture. B) The inter­
nal architecture of one inception module. 
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or more layers a n d update the gradient values f r o m one or more previous 
layers into the f o l l o w i n g layers. 

The ResNet -34-U-Net architecture w a s i m p l e m e n t e d a n d a p p l i e d i n our 
research (Fig. 2.9). The proposed architecture has 34 layers a n d four res idual 
c o n v o l u t i o n steps w i t h a total of 16 res idual b locks (red a n d p u r p l e arrows). 
The first c o n v o l u t i o n layer has 64 filters w i t h a kernel size of 7 x 7 , f o l l o w e d 
b y a m a x - p o o l i n g layer. E a c h res idual b lock consists of t w o 3 x 3 c o n v o l u ­
t ion layers f o l l o w e d b y the R e L U act ivat ion funct ion a n d batch normal i sa t ion 
w i t h the ident i ty shortcut connection. 

The decoder section has the same structure as the s imple U - N e t architec­
ture. The "softmax" act ivat ion funct ion w a s a p p l i e d to achieve the probabi l ­
i ty m a p across three different classes for each p i x e l of the i n p u t images. 
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2.6 Model training and evaluation 
The implementa t ion p l a t f o r m for cel l segmentation w a s based o n P y t h o n 3.9. 
The deep learning f r a m e w o r k w a s Keras w i t h the backend of Tensorf low 
[100]. The data sets were d i v i d e d into t ra in ing (80%) a n d testing (20%). A 
part (20%) of the t ra in ing set w a s used for m o d e l v a l i d a t i o n i n the t ra in ing 
process to a v o i d over-f i t t ing a n d achieve higher performance. 

A l l data sets were resized to 512 x 512 pixels , the i n p u t image size for tra in­
i n g models i n the proposed C N N s . The o p t i m i s e d hyperparameter values 
for single- a n d mult i -c lass segmentation (Tab. 2.1) were achieved a n d re­
por ted after t ra in ing the most stable C N N models . The act ivat ion funct ion i n 
single- a n d mult i -c lass segmentation w a s " L e a k y R e L U " a n d " R e L U " , respec­
tively. The early s topping hyperparameters were used to a v o i d over-f i t t ing 
d u r i n g the model ' s t ra ining. The patient value w a s 15 a n d 30 for t ra in ing 
the single- a n d mult i -c lass m o d e l , respectively. The batch size w a s set to the 
m a x i m a l va lue of 8 due to the complex i ty of the C N N structures a n d G P U -
V R A M l imi ta t ion . The A d a m a lgor i thm w a s chosen to opt imise a l l neura l 
networks . The learning rate w a s set to 1 0 - 3 for a l l C N N models . 

T A B L E 2.1: Hyperparameters setting for training the models. 

Hyperparameter Single-class Multi-class 
Activation function L e a k y R e L U R e L U 
Learning rate 10~ 3 1 0 " 3 

Number of classes 1 3 
Batch size 8 8 
Epochs number 100 200 
Early stop 15 30 
Optimizer A d a m A d a m 
7 for loss function 2 2 
Step per epoch 100 52 

Image segmentation categorises pixels as either the b a c k g r o u n d or cel l 
classes. The Dice loss w a s used to compare the segmented cel l image w i t h 
the G T a n d m i n i m i s e the difference between them as m u c h as possible i n the 
t ra in ing process. The "binary focal loss" a n d "categorical focal loss" w a s used 
as the loss funct ion for the single- a n d mult i -c lass segmentation, respectively. 

The segmentation models were evaluated b y different metrics (Eqs. 2 .1 -
2.5), where TP, FP, F N , a n d T N are true pos i t ive , false posi t ive , false negative, 
a n d true negative metrics, respectively [101]. The metrics were c o m p u t e d for 
a l l test sets a n d expla ined as m e a n values. 

O v e r a l l p i x e l accuracy (Acc) represents a per cent of image pixels be long­
i n g to the correctly segmented cells: 

Correct ly Predicted Pixels T P + T N 
C C ~~ Total N u m b e r of Image Pixels ~~ T P + F P + F N + T N ' 
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Prec is ion (Pre) is a p r o p o r t i o n of the cel l pixels i n the segmentation results 
that match the GT: 

„ Correct ly Predicted C e l l Pixels T P 
Pre = = (2.2) 

Total N u m b e r of Predicted C e l l Pixels T P + F P v ' 

The Recal l (Reel) represents the p r o p o r t i o n of cel l pixels i n the G T correctly 
ident i f ied t h r o u g h the segmentation process: 

^ j Correct ly Predicted C e l l Pixels T P 
6 C ~~ Total N u m b e r of A c t u a l C e l l Pixels ~~ T P + F N ' 

The F l -score or Dice s imi lar i ty coefficient states h o w the predicted seg­
mented region matches the G T i n locat ion a n d level of details a n d considers 
each class's false a l a r m a n d missed value . This metric determines the accu­
racy of the segmentation boundar ies [102] a n d has a higher p r i o r i t y than the 
A c c : 

2 x Pre x Reel 2 x T P 
Dice = = (2.4) 

Pre + Reel 2 x T P + F P + F N v ' 

A n o t h e r essential eva luat ion metric for semantic image segmentation is 
the Jaccard s imi lar i ty index k n o w n as Intersection over U n i o n (IoU). This 
metric is a correlat ion a m o n g the predic t ion a n d G T [6,103], a n d represents 
the over lap a n d u n i o n area ratio for the predicted a n d G T segmentation: 

yt nyp T P 

1 yt 1 +1 Vv 1 - 1 ytnyp 1 T P + F P + F N I o U = 1 :
 J

- I

 J V

 r = — — ^ T (2.5) 
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CHAPTER 3 

Results and summary 
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3.1 Single-class segmentation results 
The single-class segmentation models were wel l - t ra ined a n d converged after 
100 epochs, as evaluated b y the t r a i n i n g / v a l i d a t i o n loss a n d Jaccard plots per 
epoch. The best hyperparameter values reported i n Table 2.1 were cons id­
ered to t ra in the m o d e l for the best t ra in ing performance a n d stability. Then, 
the test data sets were used to evaluate the achieved models . A l l t ra ined 
models were assessed (Tab. 3.2) u s i n g the metrics i n Eqs. 2.1-2.5. 

T A B L E 3.1: Numbers of trainable parameters and the run time 
for single-class segmentation models. 

Network Run time Training parameter 
U-Net 3:42':18" 31,402,501 
Attention U-Net 4:04':23" 34,334,665 
Residual Att U-Net 4:11':24" 39,090,377 

M o d e l t ra in ing of the s imple U - N e t took the shortest r u n t ime w i t h the 
fewest trainable parameters (Tab. 3.1). H o w e v e r , the difference i n r u n t ime 
between the A t t e n t i o n U - N e t a n d the R e s i d u a l A t t e n t i o n U - N e t is not huge 
i n increasing trainable parameters. The computat ional costs also d i d not i n ­
crease dramat ica l ly compared w i t h the acceptable i m p r o v e m e n t i n the m o d e l 
performance. 

The s imple U - N e t segmentation results suffer f r o m mis-segmentat ion of 
some unclear cel l borders (Fig. 3 .1A, black circle). The A t t e n t i o n U - N e t 
(Fig. 3.IB) detected cells w i t h unclear borders more efficiently than the s i m ­
ple U - N e t . H o w e v e r , the A t t e n t i o n U - N e t segmentation suffers f r o m under-
segmentation i n some regions (visual ised b y the y e l l o w circle). The outcome 
f r o m the R e s i d u a l A t t e n t i o n U - N e t (Fig. 3.1C, red circle) achieved more accu­
rate segmentation of the unclear cel l borders. The watershed b i n a r y segmen­
tation after the R e s i d u a l A t t e n t i o n U - N e t separated a n d ident i f ied the cells 
w i t h the highest performance (Fig. 3.1). 

A c c o r d i n g to the mean- IoU, mean-Dice , a n d accuracy metrics (Tab. 3.2), 
the A t t e n t i o n U - N e t m o d e l s h o w e d better segmentation performance than 
the s imple U - N e t m o d e l i n the same situation. The segmentation results were 
further s l ight ly i m p r o v e d after a p p l y i n g the res idual step into the A t t e n t i o n 
U - N e t . 

T A B L E 3.2: Evaluation of the single-class segmentation models. 

Network Accuracy Precision Recall m-IoU m-Dice 
U-Net 0.957418 0.988269 0.961264 0.950501 0.974481 
Attention U-Net 0.959448 0.985663 0.965736 0.952471 0.975511 
Residual Att U-Net 0.960010 0.986510 0.965574 0.953085 0.975840 



Test Image Ground Truth Prediction Segmentation Visualized Segmentation Result 

F I G U R E 3.1: Segmentation results for A) the simple U-Net (the black circle highlights the non-segmented, unclear cell 
borders), B) Attention U-Net (the yellow circle highlights the under-segmentation problem), and C) the Residual 

Attention U-Net (red circle shows the successful segmentation of the cell borders. The image size is 512 x 512. 
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3.2 Multi-class segmentation results 
Mult i - c lass segmentation models were t ra ined w e l l a n d converged after 200 
epochs b y observing a n d evaluat ing t r a i n i n g / v a l i d a t i o n loss a n d Jaccard 
plots. The hyperparameter values l isted i n Table 2.1 were used to achieve 
the best t ra in ing performance a n d stability. Then , the performances of the 
trained models were assessed a n d evaluated u s i n g the test data sets a n d the 
metrics i n Eqs. 2.1-2.5 (Tab. 3.4). 

T A B L E 3.3: Number of the trainable parameters and the run 
time for the multi-class models. 

Network Run time Training parameter 
U-Net 3:33':29" 31,402,639 
VGG19-U-Net 1:44':38" 31,172,163 
Inception-U-Net 1:05':47" 18,083,535 
ResNet34-U-Net 0:56':22" 24,456,444 

O n e of the cri t ical factors i n t ra in ing high-performance models is opt imis ­
i n g the computat iona l costs. A s presented i n Table 3.3, the four methods h a d 
signif icantly different runt imes , the n u m b e r of trainable parameters, a n d net­
w o r k structures. Tra in ing the s imple U - N e t took the longest runt ime w i t h the 
most t ra in ing parameters. The V G G 1 9 - U - N e t w a s trained w e l l i n a s igni f i ­
cantly shorter t ime due to the n e t w o r k structure; the n u m b e r of t ra in ing p a ­
rameters w a s s l ight ly l o w e r than i n the s imple U - N e t . The Incept ion-U-Net 
runt ime w a s even faster than the previous t w o methods. This runt ime reduc­
t ion l ed to a further significant decrease i n the n u m b e r of trainable p a r a m ­
eters a n d higher segmentation performance. The ResNet34-U-Net achieved 
the shortest computat ional costs w i t h the best segmentation performance. 

The results of the mult i -c lass segmentation are s h o w n i n Figure 3.2. The 
s imple U - N e t obtained a l o w e r categorical segmentation performance i n the 
evaluat ion phase than the other models . The s imple U - N e t w a s inefficient 
i n c lass i fying the cel l pixels into the r ight classes a n d suffers f r o m w r o n g l y 
segmented cells into the w r o n g classes (Fig. 3.2, y e l l o w circle). The V G G 1 9 -
U - N e t s h o w e d better categorical segmentation regarding the eva luat ion met­
rics (Tab. 3.4). The cells w r o n g l y segmented b y the s imple U - N e t were caught 
slightly, but the w r o n g classifications s t i l l occurred (Fig. 3.2, p u r p l e circle). 
The Incept ion-U-Net a p p l i e d to o u r data sets as the t h i r d h y b r i d C N N i m ­
p r o v e d the mult i -c lass segmentation results s ignif icantly i n terms of evalua­
t ion metrics (Tab. 3.4). H o w e v e r , this m e t h o d suffered f r o m over-segmentation 
i n a l l classes (Fig. 3.2, black circle). The h y b r i d ResNet34-U-Net obtained the 
best results i n the segmentation a n d classification into a l l classes (Tab. 3.4). 



T A B L E 3.4: Evaluation of the U - N e t models for multi-class seg­
mentation. 

Network Accuracy Precision Recall m-IoU m-Dice 
U-Net 0.9869 0.7897 0.8833 0.7062 0.8104 
VGG19-Net 0.9865 0.8051 0.8614 0.7178 0.8218 
Inception-Net 0.9904 0.8684 0.8905 0.7907 0.8762 
ResNet 34-Net 0.9909 0.8795 0.8975 0.8067 0.8873 
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F I G U R E 3.2: Test image, ground truth, prediction, and 8-bit v i ­
sualisation of the segmentation results for the U-Net, VGG19-
U-Net, Inception-U-Net, and ResNet34-U-Net. The yellow and 
white circles highlight the wrongly classified and segmented 
cells. The black circle highlights a different, smoother segmen­
tation result achieved by the ResNet34-U-Net. The image size 

is 512x512. 
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3.3 Summary and conclusion 
The m a i n objective of single-class l i v i n g H e L a cel l segmentation research w a s 
to develop the most accurate a n d computat ional ly reasonable m e t h o d to clas­
sify image pixels into either cel l or b a c k g r o u n d region i n l ight microscopy 
images. The image data sets were collected u s i n g a custom-made w i d e - f i e l d 
transmitted l ight microscope. M i c r o s c o p y image analysis v i a deep learning 
methods w a s a convenient so lut ion due to the complex i ty a n d var iab i l i ty of 
this data. 

Different U - N e t deep learning architectures were i n v o l v e d i n this research: 
the s imple U - N e t , the A t t e n t i o n U - N e t , a n d the R e s i d u a l A t t e n t i o n U - N e t . 
The s imple U - N e t s h o w e d the fastest t ra in ing time. O n the other h a n d , the 
R e s i d u a l A t t e n t i o n U - N e t achieved the best segmentation performance w i t h 
a r u n time s l ight ly higher than the other t w o U - N e t models . 

The second paper focuses o n d e v e l o p i n g an efficient a l g o r i t h m to detect 
a n d segment l i v i n g H e L a cells a n d classify them according to their shapes 
a n d life-cycle stages. The time-lapse image series for this research were col ­
lected w i t h the reflected setup of o u r un ique w i d e - f i l e d microscope. This re­
search i n v o l v e d variants of h y b r i d U - N e t - b a s e d C N N architecture: a s imple 
U - N e t , V G G 1 9 - U - N e t , Incept ion-U-Net , a n d ResNet34-U-net. 

The s imple U - N e t has the longest t ra in ing t ime, the highest n u m b e r of 
trainable parameters, a n d the lowest categorical segmentation performance. 
In contrast, the h y b r i d ResNet34-U-Net achieved the best categorical seg­
mentat ion performance w i t h a r u n t ime signif icantly l o w e r than the other 
models . The R e s i d u a l C o n v o l u t i o n a l N e u r a l N e t w o r k (ResNet) w a s a p p l i e d 
as a h y b r i d w i t h the U - N e t to overcome the gradient v a n i s h i n g a n d i m p r o v e 
the generalisation abi l i ty d u r i n g t ra in ing. U s i n g a series of res idual blocks 
w i t h sk ip connections i n each level of the ResNet34-U-Net ne twork resulted 
i n better categorical segmentation. 

In conclus ion, D L - b a s e d methods to analyze microscopy images del iver 
accurate a n d p r o m i s i n g outcomes for cel l segmentation purposes . The p r o ­
posed single- a n d mult i -c lass cel l segmentation methods successfully seg­
mented l i v i n g cells a n d classified them into categories w i t h a h i g h level of 
accuracy. 

A c c o r d i n g to our best k n o w l e d g e , not m a n y s imi lar researches o n trans­
mit ted a n d reflected w i d e - f i e l d microscopy data have been done before. H o w ­
ever, the achieved segmentation results were compared w i t h other types of 
microscopy a n d m e d i c a l research outcomes a n d s h o w remarkable differences 
i n segmentation results as reported i n papers i n Chapter 4. The proposed s in­
gle a n d mult i -c lass segmentation methods have general u t i l i za t ion for hyper-
parameters t u n i n g a n d m o d e l t ra in ing of different microscopy, m e d i c a l or, 
even, remote sensing datasets. 
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Watershed segmentation 

Living cell segmentation from bright-field light microscopy images is challenging due to the image complexity 
and temporal changes in the living cells. Recently developed deep learning (DL)-based methods became popular 
in medical and microscopy image segmentation tasks due to their success and promising outcomes. The main 
objective of this paper is to develop a deep learning, U-Net-based method to segment the living cells of the 
HeLa line in bright-field transmitted light microscopy. To find the most suitable architecture for our datasets, 
a residual attention U-Net was proposed and compared with an attention and a simple U-Net architecture. 

The attention mechanism highlights the remarkable features and suppresses activations in the irrelevant 
image regions. The residual mechanism overcomes with vanishing gradient problem. The Mean-IoU score 
for our datasets reaches 0.9505, 0.9524, and 0.9530 for the simple, attention, and residual attention U-Net, 
respectively. The most accurate semantic segmentation results was achieved in the Mean-IoU and Dice metrics 
by applying the residual and attention mechanisms together. The watershed method applied to this best -
Residual Attention - semantic segmentation result gave the segmentation with the specific information for 
each cell. 

1. Introduction 

Image object detection and segmentation can be defined as a proce­
dure to localize a region of interest (ROI) in an image and separate an 
image foreground from its background using image processing and/or 
machine learning approaches. Cell detection and segmentation are 
the primary and critical steps in microscopy image analysis. These 
processes play an important role in estimating the number of the cells, 
initializing cell segmentation, tracking, and extracting features neces­
sary for further analysis. In the text below, the segmentation methods 
were categorized as (1) traditional, feature- and machine learning 
(ML)-based methods and (2) deep learning (DL)-based methods. 

1.1. Traditional cell segmentation methods 

Traditional segmentation methods have achieved impressive re­
sults in cell boundary detection and segmentation, with an efficient 
processing time [1,2]. These methods include low-level pixel process­
ing approaches. The region-based methods are more robust than the 

threshold-based segmentation methods [2]. However, in low-contrast 

images, cells placed close together or flat cell regions can be segmented 

as blobs. Rojas-Moraleda et al. [1] proposed a region-based method 

on the principles of persistent homology with an overall accuracy of 

94.5%. The iterative morphological and Ultimate Erosion [3,4] suffer 

from poor segment performance when facing small and low-contrast 

objects. Guan et a l . [5] detected rough circular cell boundaries using 

the Hough transform and the exact cell boundaries using fuzzy curve 

tracing. Compared with the watershed-based method [6], this method 

was more robust to the noise and the uneven brightness in the cells. 

Winter et al. [7] combined the image Euclidean distance transforma­

tion with the Gaussian mixture model to detect elliptical cells. This 

method requires solid objects for computing the distance transform. 

The target objects' large holes or extreme internal irregularities make 

the distance transform unreliable and reduce the method performance. 

Buggenthin et a l . [8] identified nearly all cell bodies and segmented 

multiple cells instantly in bright-field time-lapse microscopy images by 

a fast, automatic method combining the Maximally Stable Extremal 
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Regions (MSER) with the watershed method. The main challenges for 
this method remain the oversegmentation and poor performance for 
out-of-focus images. 

The machine learning methods have expanded due to the mi­
croscopy images' complexity and the previous methods' low perfor­
mance to detect and segment cells. The M L methods can be classified 
into two groups: supervised vs unsupervised. The supervised methods 
produce a mathematical function or model from the training data to 
map a new data sample [9]. Mualla et al. [10] utilized the Scale 
Invariant Feature Transform (SIFT) as a feature extractor and the 
Balanced Random Forest as a classifier to calculate the descriptive 
cell keypoints. The SIFT descriptors were invariant to illumination 
conditions, cell size, and orientation. Tikkanen et al. [11] developed 
a method based on the Histogram of Oriented Gradients (HOG) and 
the Support Vector Machine (SVM) to extract feature descriptors and 
classify them as a cell or a non-cell in bright-field microscopy data. 
The proposed method is susceptible to the number of iterations in the 
training process as a crucial step to eliminating false positive detections. 

The unsupervised ML algorithms require no pre-assigned labels or 
scores for the training data [12]. The best known unsupervised methods 
are clustering methods. Mualla et al. [13] segmented unstained cells 
in bright-field micrographs using a combination of a SIFT to extract 
key points, a self-labelling, and two clustering methods. This method 
is fast and accurate but sensitive to the feature selection step to avoid 
overfitting. 

1.2. Deep learning cell segmentation methods 

In the last decade, Deep Learning has emerged as a new area of 
machine learning. The DL methods contain a class of M L techniques 
that exploit many layers of non-linear information processing for super­
vised or unsupervised feature extraction and transformation for pattern 
analysis and classification. The Deep Convolutional Networks exhibited 
impressive performance in many visual recognition tasks [14]. Song 
et a l . [15] used a multiscale convolutional network (MSCN) to extract 
scale-invariant features and graph-partitioning method for accurate 
segmentation of cervical cytoplasm and nuclei. This method signifi­
cantly improved the Dice metric and standard deviation compared with 
similar methods. Shibuya et al. [16] proposed the Feedback U-Net using 
the convolutional Long Short-Term Memory (LSTM) network for cell 
image segmentation, working on four classes of Drosophila cell image 
dataset. However, the proposed method suffered from a low accuracy 
rate depending on the segmented class. Thi et al. [17] proposed a 
convolutional blur attention (CBA) network. The network consists of 
down- and upsampling procedures for nuclei segmentation in standard 
challenge datasets [18,19]. The authors achieved a good value of the 
aggregated Jaccard index. The reduced number of trainable parameters 
led to a reasonable decrease in the computational cost. Xing et al. [20] 
also proposed an automated nucleus segmentation method based on a 
deep convolutional neural network (DCNN) to generate a probability 
map. However, the proposed mitosis counting remains laborious and 
subjective to the observer. 

One of the most popular models for semantic segmentation is Fully 
Convolutional Network (FCN) architectures. The FCN combines deep 
semantic information with a shallow appearance to achieve satisfactory 
segmentation results. The convolutional networks can take the arbitrary 
size of input images to train end-to-end, pixel-to-pixel, and produce an 
output of the corresponding size with efficient inference and learning 
to achieve semantic segmentation in complex images, including mi­
croscopy and medical images [21,22]. Ronneberger et al. [23] proposed 
a training strategy that relies on the strong use of data augmentation 
by applying U-Net Neural Network, contracting the path to capture 
context, and expanding the path symmetrically to achieve a precise 
localization. This method was optimized with a low amount of training 
labelled samples and efficientiy performed electron microscopy image 
segmentation. Long et a l . [24] proposed an enhanced U-Net-based 
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architecture called light-weighted U-Net (U-Net+) with a modified en­
coded branch for potential low-resources computing of nuclei segmen­
tation in bright-field, dark-field, and fluorescence microscopy images. 
However, the proposed method did not achieve higher accuracy in the 
Mean-IoU metric. Bagyaraj et al. [25] proposed two automatic deep 
learning networks called U-Net-based deep convolution network and 
U-Net with a dense convolutional network (DenseNet) for segmentation 
and detection of brain tumour cells. The authors achieved remarkable 
results by applying the DenseNet architecture. 

As described above, traditional ML methods are not much efficient 
to segment cells in a microscopy image with a complex background, 
particularly bright-field microscopy tiny cells [8,11,13]. These methods 
cannot build sufficient models for big datasets. On the other hand, 
some Convolution Neural Networks (CNNs) require a vast number of 
manually labelled training datasets and higher computational costs 
compared with the ML methods [21,26]. 

Deep learning-based methods have delivered better outcomes in 
segmentation tasks than other methods. Therefore, the main objective 
of this research is to propose a highly accurate and reasonably computa­
tionally cost deep learning-based method to segment human HeLa cells 
in unique telecentric bright-field transmitted light microscopy images. 
The U-Net was chosen since it is one of the most promising methods 
used in semantic segmentation [23]. Different U-Net architectures such 
as Attention and Residual Attention U-Net were examined to find the 
most suitable architecture for our datasets. 

Human Negroid cervical epithelioid carcinoma line HeLa [27] was 
chosen as a testing cell line for described microscopy image segmen­
tation. The reason for choosing is that HeLa is the oldest, immortal, 
and most used model cell line ever. HeLa is cultivated in almost all 
tissue and cell laboratories worldwide and utilized in many fields of 
medical research, such as research on carcinoma or testing the material 
biocompatibility. 

The processed microscopy data are specific to high-pixel resolution 
in rgb mode and requires preprocessing to suppress optical vignetting 
and camera noise. The data shows unlabelled living cells in their phys­
iological state. The cells are shown in-focused and out-of-focus. Thus, 
the obtained segmentation method is applicable in a 3D visualization 
of the cell. 

2. Materials and methods 

2.1. Cell preparation and microscope specification 

Human HeLa cell line (European Collection of Cell Cultures, Cat. No. 
93021013) was cultivated to low optical density overnight at 37 °C, 
5% C 0 2 , and 90% relative humidity. The nutrient solution consisted 
of Dulbecco's modified Eagle medium (87.7%) with high glucose (>1 
g L " 1 ) , fetal bovine serum (10%), antibiotics and antimycotics (1%), 
L-glutamine (1%), and gentamicin (0.3%; all purchased from Biowest, 
Nuaille, France). The HeLa cells were maintained in a Petri dish with 
a cover glass bottom and lid at room temperature of 37 ° G 

Time-lapse image series of living human HeLa cells on the glass Petri 
dish were captured using a high-resolved bright-field light microscope 
for observation of microscopic objects and cells. This microscope was 
designed by the Institute of Complex System (ICS, Nové Hrady, Czech 
Republic) and built by Optax (Prague, Czech Republic) and Image-
Code (Brloh, Czech Republic) in 2021. The microscope has a simple 
construction of the optical path. The light from two light-emitting 
diods CL-41 (Optika Microscopes, Ponteranica, Italy) passes through 
a sample to reach a telecentric measurement objective T04.5/43.4-
48-F-WN (Vision & Control GmbH, Shul, Germany) and an Arducam 
AR1820HS 1/2.3-inch 10-bit RGB camera with a chip of 4912 x 3684 
pixel resolution. The images were captured as a primary (raw) signal 
with theoretical pixel size (size of the object projected onto the camera 
pixel) of 113 nm. The software (developed by the ICS) controls the 
capture of the primary signal with the camera exposure of 2.75 ms. 
All these experiments were performed in time-lapse to observe cells' 
behaviour over time. 

2 
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2.2. Data acquisition 

Different time-lapse experiments on the HeLa cells were completed 
under the bright-field microscope (Section 2.1). The algorithm pro­
posed in [28] was fully automated and implemented in the microscope 
control software to calibrate the microscope optical path and correct all 
image series to avoid image background inhomogeneities and noise. 

After the image calibration, we converted the raw image represen­
tations to 8-bit colour (rgb) images of resolution (number of pixels) 
quarter of the original raw images. We employed quadruplets of Bayer 
mask pixels [29]: Red and blue camera filter pixels were adopted 
into the relevant image channel and each pair of green camera filter 
pixels' intensities were averaged to create the green image channel. 
Then, images were rescaled to 8-bits after creating the image series 
intensity histogram and omitting unoccupied intensity levels. This bit 
reduction ensured the maximal information preservation and mutual 
comparability of the images through the time-lapse series. 

The means denoising method [30] minimized the background noise 
in the constructed RGB images at preserving the texture details. After­
wards, the image series were cropped to the 1024 x 1024 pixel size. 
The steps described above gave us 500 images from different time-lapse 
experiments. The image dataset is accessible at the Dryad [31]. 

The cells in the images were labelled manually by M A T L A B (Math-
Works Inc., Natick, Massachusetts, USA) as Ground-Truth (GT) single 
class masks with the dimension of 1024 x 1024 (Fig. 1). The labelled 
images (512 x 512 pixels) were used as training (80%), testing (20%), 
and evaluation (20% of the training set) sets in the proposed U-Net 
networks. 

2.3. U-Net model architectures 

The U-Net [23] is a semantic segmentation method proposed on 
the FCN architecture. The FCN consists of a typical encoder-decoder 
convolutional network. This architecture includes several feature chan­
nels to combine shallow and deep features. The deep features are used 
for positioning, whereas the shallow features are utilized for precise 
segmentation. The architecture of the simple U-Net was chosen (Fig. 2) 
for training the model with the specific size of input images. 

The first layer of the encoder part consists of the input layer, 
which accepts RGB images with the size 512 x 512. Each level in the 
five-"level" U-Net structure includes two 3 x 3 convolutions. Batch 
normalization follows each convolution, and "LeakyReLu" activation 
functions follow a rectified linear unit. In the down-sampling (encoder) 
part (Fig. 2, left part), each "level" in the encoder consists of a 2 x 2 
max pooling operation with the stride of two. The max-pooling process 
extracts the maximal value in the 2 x 2 area. By completing down-
sampling in each level of the encoder part, convolutions will double 
the number of feature channels. 

In the up-sampling (decoder) section (Fig. 2, right part), the height 
and width of the existing feature maps are doubled in each level from 
bottom to top. Then, the high-resolution deep semantic and shallow 
features were combined and concatenated with the feature maps from 
the encoder section. After concatenation, the output feature maps have 
channels twice the size of the input feature maps. The output decoder 
layer at the top with a 1 x 1 convolution size predicts the probabilities 
of pixels. Padding in the convolution process allowed to achieve the 
same input and output layers size. The computational result, combined 
with the Binary Focal Loss function, becomes the energy function of the 
U-Net. 

Between each Encoder-Decoder layer in the simple U-Net (Fig. 2), 
there is a connection combining the down-sampling path with the up-
sampling path to achieve the spatial information. Nevertheless, at the 
same time, this process brings also many irrelevant feature represen­
tations from the initial layers. The self-attention U-Net architecture 
(Fig. 3-A) with an impressive performance in medical imaging [32] was 
applied to prevent this problem and improve semantic segmentation 
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result achieved by standard U-Net. As an extension to the standard 
U-Net model architecture, the attention gate at the skip connections 
between encoder and decoder layers highlights the remarkable features 
and suppresses activations in the irrelevant regions. The advanced func­
tion of an attention mechanism is to map a set of key-value pairs and a 
query to an output. The key, query, values, and outputs are vectors. The 
compatibility function of the query, together with the corresponding 
key, is computed to be assigned by weights. Then, weighted sums of the 
values are computed and generate the output. The weights represent 
the relative importance of the inputs (the keys) for a particular output 
(the query) [33]. In this way, the attention gate improves the model 
sensitivity and performance without requiring complicated heuristics. 

The attention gate (Fig. 3-B) has two inputs: x' and g. Input x1 

comes from the skip connection from the encoder layers. Since coming 
from the early layers, input x' contains better spatial information. 
Providing x1 is an output from layer /, a feature activation can be 
formulated as 

by applying a rectified linear unit CTI(X( ) = max(0, x't ) repeatedly, 
where i and c correspond to spacial and channel dimensions, respec­
tively, and F] denotes the number of feature maps in layer / and © 
indicates the convolution operation. 

Input g - a gating signal - comes from a deeper network layer 
and contains a better feature representation and contextual information 
to determining the focus region. Attention coefficients a e [0,1] 
determine, extract, and preserve the valuable features corresponding 
to the important part of the image regions. The attention part weights 
different images' parts. This process will add the weights to the pixels 
based on their relevance in the training steps. The image's relevant 
parts will get higher weights than the less relevant parts. The output 
of the attention gate is the multiplication of the input feature maps xi 
and the achieved attention coefficient a: 

«,' = * í ( ( » ' s ; " J ) - C3) 

where parameter a2 represents the sigmoid activation function and 
0M contains parameters including linear transformations Wx and Wg, 
function y/ and bias terms b and bg [32]. The achieved weights are 
also trained in the training process and make the trained model more 
attentive to the relevant regions. 

Another architecture used in this study and developed based on the 
U-Net models (originally for nuclei segmentation [34]) is the Residual 
U-Net. The simple U-Net architecture was built based on repetitive 
Convolutional blocks in each level (Fig. 4-B). Each of these Convo­
lutional blocks consists of the input, two steps of the convolution 
operation followed by the activation function and the output. On the 
other hand, we face the vanishing gradient problem when dealing 
with very deep convolutional networks. The residual step was applied 
to update the weights in each convolutional block incrementally and 
continuously (Fig. 4-C) to enhance the U-Net architecture performance 
by overcoming the vanishing gradient problems. 

In the traditional neural networks, each convolutional blocks feed 
the next blocks. The other problem in a DCNN-based network, such 
as stacking convolutional layers, is that a deeper structure of these 
kind of networks will affect generalization ability. To overtake this 
problem, the skip connections - the residual blocks - improve the 
network performance, with each layer feeding the next layer and layers 
about two or three steps apart (Fig. 4-C) . The Residual and Atten­
tion U-Net architecture were connected to build more effective and 
high-performance models from our datasets and improve segmentation 
results. 

The watershed algorithm based on morphological reconstruction 
[35] was applied after completion of the semantic segmentation by 
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Train Image 

Fig. 1. Examples of the train sets and their 

U-Net methods described above. The U-Net semantic segmentation 

results were first transformed into a binary image using the Otsu 

method [36]. After that, the background was determined using ten 

iterations of binary dilation. The simple Euclidean distance transform 

defined the foreground of eroded cell regions. The unknown region 
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Ground Truth 

ground truths. The image size is 512 x 512. 

was achieved by subtraction of the particular foreground region from 

the background. The watershed method applied to the unknown re­

gions separated the cell borders. The watershed segmentation further 

helped to solve the over- and under-segmented regions and specify each 

separated cell by, e.g., cell diameters, solidity, or mean intensity. The 
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Fig. 2. Architecture of the proposed simple U-Net model. 

Table 1 
Number of the trainable parameters and the run time for each U-Net model. 

Network Run time Training parameter 

U-Net 3:42':18" 31,402,501 
Attention U-Net 4:04':23" 34,334,665 
Residual Att U-Net 4:11':24" 39,090,377 

segmentation results were optimized using the marked images. Wrongly 
detected residual connections between different cell regions were cut 
off, which improved the method accuracy. Fig. 5 presents a general 
diagram of the proposed U-Net based methods. The U-Net models are 
hosted on the GitHub [37]. 

2.4. Training modek 

The computation was implemented in Python 3.7. The framework 
for deep learning was Keras, and the backend was Tensorflow [38]. 
The whole method, including the Deep Learning framework, was trans­
ferred and executed on the Google Colab Pro account with P100 and 
T4 GPU, 24 Gb of R A M , and 2 vCPU [39]. After data preprocessing 
(Section 2.2), The primary dataset was divided into training (80%) 
and test (20%). A part (20%) of the training set was used for model 
validation in the training process to avoid over-fitting and achieve 
higher performance. Among a 500-image dataset of the mixture of 
under-, over-, and focused images, 320 images were randomly selected 
to train the model, and 80 images were chosen randomly to validate the 

process. The rest of the 100 dataset images were considered for testing 
and evaluating the model after training. 

Before the training, the images were normalized: the pixel values 
were rescaled in the range from 0 to 1. Since all designed network 
architectures work with a specific input image size, all datasets were 
resized to 512 x 512 pixel size. Data augmentation parameters were 
also applied in training all three U-Net architectures. The optimized 
values of the hyperparameters used in the training process are written 
in Table 2. The "rotation range" represents an angle of the random 
rotation, "width shift range" represents an amplitude of the random 
horizontal offset, "height shift range" corresponds to an amplitude of 
the random vertical offset, "shear range" is a degree of the random 
shear transformation, "zoom range" represents a magnitude of the 
random scaling of the image. Early stopping hyperparameters were 
applied to avoid over-fitting during the model training. The patient 
value was considered as 15. The activation function was set to the 
LeakyRelu, and the Batch size was set to 8. To optimize the network, 
we chose the Adam optimizer and set the learning rate to 10" 3 . 

Semantic image segmentation can be considered as a pixel classifi­
cation as either the cell or background class. The Dice loss was used 
to compare the segmented cell image with the GT and minimize the 
difference between them as much as possible in the training process. 
One of the famous loss functions used for semantic segmentation is the 
Binary Focal Loss (Eq. (4)) [40] : 

Focal Loss = -ct,(l - p,Y log(p(), (4) 

where pt e [0,1] is the model's estimated probability for the GT class 
with label y = 1; a weighting factor a, e [0,1] for class 1 and 1 - a, for 
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Fig. 3. (A) Architecture of the proposed Attention U-Net model, (B) the attentive module mechanism. The size of each feature map is shown in H x\V xD, where H, W, and D 
indicate height, width, and number of channels, respectively. 

class - 1 ; y > 0 is a tunable focusing parameter. The focal loss can be 

enhanced by the contribution of hardly segmented regions (e.g., cells 

with vanished borders) and distinguish parts between the background 

and the cells with unclear borders. The second benefit of the focal loss 

is that it controls and limits the contribution of the easily segmented 

pixel regions (e.g., sharp and apparent cells) in the image at the loss 

of the model. In the final step, updating the gradient direction is under 

the control of the model algorithm, dependent on the loss of the model. 

2.5. Evaluation metrics 

The proposed semantic segmentation models were evaluated by 

different metrics (Eqs. (5)-(9)), where TP, FP, FN, and T N are true 

positive, false positive, false negative, and true negative metrics, respec­

tively [41]. The metrics were computed for all test sets and explained 

as mean values ( Table 3). 
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Table 2 
Hyperparameters setting for all three U-Net models. 

Parameter name Value 

Activation function LeakyRelu 
Learning rate 10"3 

Batch size 8 
Epochs number 100 
Early stop 15 
Step per epoch 100 
Rotation range 90 
Width shift range 0.3 
Height shift range 0.3 
Shear range 0.5 
Zoom range 0.3 

Overall pixel accuracy (Acc) represents a per cent of image pixels 

belonging to the correctly segmented cells. Precision (Pre) is a propor­

tion of the cell pixels in the segmentation results that match the GT. The 

Recall (Reel) represents the proportion of cell pixels in the GT correctiy 

identified through the segmentation process. The Fl-score or Dice sim­
ilarity coefficient states how the predicted segmented region matches 
the GT in location and level of details and considers each class's false 
alarm and missed value. This metric determines the accuracy of the 
segmentation boundaries [42] and have a higher priority than the Acc. 
Another essential evaluation metric for semantic image segmentation 
is the Jaccard similarity index known as Intersection over Union (IoU). 
This metric is a correlation among the prediction and GT [21,43], and 
represents the overlap and union area ratio for the predicted and GT 
segmentation. 

Correctly Predicted Pixels 
A c c : 

Pre : 

Reel 

Dice 

_ TP + T N  
Total Number of Image Pixels ~ TP + FP + F N + T N 

Correctly Predicted Cell Pixels TP 

Total Number of Predicted Cell Pixels 

Correctly Predicted Cell Pixels 

Total Number of Actual Cell Pixels 

2 x Pre x Reel 2 x TP 

TP + FP 

TP 
TP + FN 

Pre + Reel 2 x TP + FP + FN 

(5) 

(6) 

(7) 

(8) 
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IoU = 
\ytny,\ TP 

\y,\ + \yp\-\y,r>yp\ TP + FP + FN 
(9) 

3. Results 

All three models were well trained and converged after running 
100 epochs based on training/validation loss and Jaccard plots per 
epochs (Fig. 6). The hyperparameter values listed in Table 2 were 
selected to tune for the best training performance and stability. Then, 
the test datasets were used to evaluating the achieved models. Al l 
trained models were assessed (Table 3) using the metrics in Eqs. (5} 
and (9). 

Training the model with the simple U-Net method took the shortest 
run time with the lowest trainable number of parameters (Table 1). 
Compared with the Attention U-Net and Residual Attention U-Net, 
the run time difference is not huge in terms of increasing trainable 
parameters. The computational cost also did not increase dramatically 
compared with the acceptable improvement in the model performance. 
Fig. 7 presents the segmentation results achieved by three different U-
Net models. The simple U-Net segmentation result did not distinguish 
some vanished cell borders (Fig. 7-A, black circle). The Attention U-Net 
(Fig. 7-2?) detected cells with the vanish borders more efficiently than 
the simple U-Net. However, the Attention U-Net segmentation suffers 
from under-segmentation in some regions (visualized by the yellow 
circle). The outcome of the Residual Attention U-Net method (Fig. 7-
C, red circle) achieved more accurate segmentation of the vanished 
cell borders. The watershed binary segmentation after the Residual 
Attention U-Net networks separated and identified the cells with the 
highest performance (Fig. 7). 

As seen in Mean-IoU, Mean-Dice, and Accuracy metrics (Table 3), 
the Attention U-Net model showed better segmentation performance 
than the simple U-Net model in the same situation. The segmentation 
results were further slightiy improved after applying the residual step 
into the Attention U-Net. 

4. Discussion 

The analysis of bright-field microscopy image sequences is chal­
lenging due to living cells' complexity and temporal behaviour. We 
have to face (1) irregular shapes of the cells, (2) very different sizes 
of the cells, (3) noise blobs and artefacts, and (4) vast sizes of the 
time-lapse datasets. Traditional machine learning methods, including 
random forests and support vector machines, cannot deal with some of 
these difficulties in terms of higher computational cost and longer run 
time for huge time-lapse datasets. The traditional methods suffer from 
low performance in vanishing and tight cell detection and segmentation 
and are sensitive to training steps [11,44]. The DL methods have been 
rapidly developed to overcome these problems. The U-Net is one of 
the most effective semantic segmentation methods for microscopy and 
biomedical images [23]. This method is based on the FCN architecture 
and consists of encoder and decoder parts with many convolution 
layers. 

The image data used to train the Residual Attention model are 
specific in the way of acquisition. Firstiy, the optical path was cali­
brated to obtain the number of photons that reaches each camera pixel 
with increasing illumination light intensity. This gave a calibration 
curve (image pixel intensity vs the number of photons reaching the 
relevant camera pixel) to correct the digital image pixel intensity. 
This step ensured homogeneity in digital image intensities to improve 
the quality of cell segmentation by the neural networks. We work 
with the low-compressed telecentric transmitted light bright-field high-
pixel microscopy images. The bright-field light microscope allows us 
to observe living cells in their most natural state. Due to the object-
sided telecentric objective, the final digital raw image of the observed 
cells is high-resolved and low-distorted, with no light interference halos 
around objects. 

The procedure compressed the raw colour images to ensure the 
least information loss at the quarter-pixel-resolution decrease of the 
image. The final pixel resolution of the images inputting into the neural 
network is higher (512 x 512) than in the case of any other neural 
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Visualized Segmentation Result 

B 

Fig. 7. Segmentation results for (A) the simple U-Net (the black circle highlights the non-segmented, vanished cell borders), (B) Attention U-Net (the yellow circle highlights the 
undersegmentation problem), and (C) the Residual Attention U-Net (red circle shows the successful segmentation of the cell borders). The image size is 512 x 512. 

9 



73 

A Ghaznavi et al Computers in Biology and Medicine 147 (2022) 105805 

Table 3 
Results for metrics evaluating the U-Net Models. Green values represent the highest segmentation accuracy for the 
related metric. 

Network Accuracy Precision Recall m-IoU m-Dice 

U-Net 
Attention U-Net 
Residual Att U-Net 

0.957418 
0.959448 
0.960010 

0.988269 
0.985663 
0.986510 

0.961264 
0.965736 
0.965574 

0.950501 
0.952471 
0.953085 

0.974481 
0.975511 
0.975840 

Table 4 
Performances of the proposed networks and other networks proposed for microscopy 
and medical applications. Green highlighted value represent the highest segmentation 
accuracy in term of mentioned metric. 

Models IoU Dice Acc 

proposed U-Net 0.9505 0.9744 0.9574 
proposed Att U-Net 0.9524 0.9755 0.9594 
proposed ResAtt U-Net 0.9530 0.9758 0.9600 
U-Net [23] 0.9203 0.9019 0.9554 
U-Net [45] 0.7608 0.9235 
U-Net+ [24] 0.567 
DenseNet [25] 0.911 
SegNet [45] 0.7540 0.9225 
Attention U-Net [32] 0.840 0.9734 
Residual Attention U-Net 0.9081 0.9557 
[46] 
Residual U-Net [47] 0.8366 
Residual Attention U-Net 0.9655 0.9887 
[ J 

network datasets. By preserving high image resolution as much as 
possible, the demands on the neural network's computational memory 
and performance parameters were increased. 

As our microscope and acquired microscopy data are unique, and 
were not used before in similar research, it is hard to compare the 
results with other works. Despite this, the performances of the pro­
posed U-Net-based models were compared with similar microscopy and 
medical works (Table 4). Our first model was based on a simple U-
Net structure and achieved the Mean-IoU score of 0.9505. We assume 
that better value of the Mean-IoU will be achieved after the hyper-
parameter optimization (Table 2). Ronneberger et al. [23] achieved 
0.920 and 0.775 Mean-IoU scores for U373 cell line in phase-contrast 
microscopy and HeLa cell line in Nomarski contrast, respectively. Pan 
et al. [45] segmented nuclei from medical, pathological M O D datasets 
with 0.7608 segmentation IoU accuracy score using the U-Net. 

We further implemented an attention gate into the U-Net structure 
(so-called Attention U-Net) to further improve the U-Net model per­
formance by weighing the relevant part of the image pixels containing 
the target object. In this way, the Mean-IoU metric was improved to 
0.9524. The achieved IoU score represents a noticeable improvement 
in the trained model performance compared with the simple U-Net 
model. To the best of our knowledge, not many researchers have 
applied the Attention U-Net to microscopy datasets, but recent papers 
are prevalentiy about its application to medical datasets. Microscopy 
and medical datasets have their complexity and structure, complicating 
the comparison of the method performances. Applying the Attention 
U-Net, pancreas [32] and liver tumour [46] medical datasets showed 
0.840 and 0.948 Dice metric segmentation accuracy, respectively. 

The proposed model performance were improved by one step and 
obtained the Residual Attention U-Net to overcome the vanishing gra­
dient problem and generalization ability. As a result, the segmentation 
accuracy was slightly improved by reaching the Mean-IoU of 0.953. 
The Residual Attention U-Net showed the Dice coefficient of 0.9655 in 
the testing phase of medical image segmentation [48]. The Recurrent 
Residual U-Net (R2U-Net) achieved the Dice coefficient of 0.9215 in 
the testing phase of nuclei segmentation [34]. Patel et al. [47] applied 
the Residual U-Net to bright-field absorbance image and achieved the 
Mean-Dice coefficient score of 0.8366. Long et al. [24] applied the 
enhanced U-Net (U-Net+) to bright-field, dark-field, and fluorescence 

microscopy images and achieved the Mean-IoU score of 0.567. The 
U-Net with a dense convolutional network (DenseNet) was applied to 
detect and segment brain tumour cells [25] with the Dice score of 0.911 
and the Jaccard index of 0.839. 

5. Conclusion 

Microscopy image analysis via deep learning methods can be a 
convenient solution due to the complexity and variability of this kind 
of data. This research aimed to detect and segment living human HeLa 
cells in images acquired using an original custom-made bright-field 
transmitted light microscope. Three types of deep learning U-Net ar­
chitectures were involved in this research: the simple U-Net, Attention 
U-Net, and Residual Attention U-Net. The simple U-Net (Table 1) has 
the fastest training time. On the other hand, the Residual Attention U-
Net architecture achieved the best segmentation performance (Table 3) 
with a run time slightly higher than the other two U-Net models. 

The Attention U-Net is a method to highlight only the relevant ac­
tivations during the training process. This method can reduce the com­
putational resource waste on irrelevant activations to generate more 
efficient models. The best segmentation performance was achieved 
due to the integration of the residual learning structure (to overcome 
the gradient vanishing) together with the attention gate mechanism 
(to integrate a low and high-level feature representation) into the U-
Net architecture. After extracting semantic segmentation binary results 
(Table 3), the watershed segmentation method was applied to separate 
the cells from each other, avoid over-segmentation, label the cells 
individually, and extract vital information about the cells (e.g., the total 
number of the segmented cells, cell equivalent diameter, mean intensity 
and solidity). Nevertheless, future works are still essential to expand 
the knowledge on multi-class semantic segmentation with different and 
efficient CNN's architecture and combine the constructed C N N models 
in the prediction process to achieve the most accurate segmentation 
result. 
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A b s t r a c t 

Multi-class segmentation of unlabelled living cells in time-lapse light mi­

croscopy images is challenging due to the temporal behaviour and changes in cell 

life cycles and the complexity of images of this kind. The deep learning-based 

methods achieved promising outcomes and remarkable success in single- and 

multi-class medical and microscopy image segmentation. The main objective of 

this study is to develop a hybrid deep learning-based categorical segmentation 

and classification method for living HeLa cells in reflected light microscopy im­

ages. Different hybrid convolution neural networks - a simple U-Net, VGG19-

U-Net, Inception-U-Net, and ResNet34-U-Net architectures - were proposed 

and mutually compared to find the most suitable architecture for multi-class 

segmentation of our datasets. 

The inception module in the Inception-U-Net contained kernels with differ­

ent sizes within the same layer to extract all feature descriptors. The series of 

residual blocks with the skip connections in each ResNet34-U-Net's level alle­

viated the gradient vanishing problem and improved the generalisation ability. 

The m-IoU scores of multi-class segmentation for our datasets reached 0.7062, 

0.7178, 0.7907, and 0.8067 for the simple U-Net, VGG19-U-Net, Inception-U-
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Email address: g h a z n a v i @ f r o v . j c u . c z ( A l i Ghaznavi) 

Preprint submitted to Biomedical Signal Processing and Control June 2, 2023 

mailto:ghaznavi@frov.jcu.cz


79 

Net, and ResNet34-U-Net, respectively. For each class and the mean value across 

all classes, the most accurate multi-class semantic segmentation was achieved 

using the ResNet34-U-Net architecture (evaluated as the m-IoU and Dice met­

rics) . 

Keywords: C a t e g o r i c a l s e g m e n t a t i o n , N e u r a l ne twork , C e l l 

d e t e c t i o n , M i c r o s c o p y image s e g m e n t a t i o n , U -Ne t , T i s s u e 

s e g m e n t a t i o n , Semant i c s e g m e n t a t i o n , B r i g h t - F i e l d M i c r o s c o p y c e l l 

s e g m e n t a t i o n , C e l l a n a l y s i s 

1 1. I n t r o d u c t i o n 

2 Cell detection and segmentation is a fundamental process in microscopy cell 

3 image analysis. This is also a challenging task due to the complexity of these 

4 images. On the other hand, the information from the segmented living cells 

5 can play an essential role in further analysis, such as observing and estimat-

6 ing cell behaviour, their number and dimensions. Recently developed artificial 

7 intelligence (AI) methods have achieved promising outcomes in this field. The 

8 segmentation methods for analysing cell cultures can be categorised as machine 

9 learning (ML) or deep learning (DL). 

10 1.1. Cell culture segmentation with machine learning methods 

11 The number of cell detection-segmentation M L methods has grown rapidly 

12 as a result of the low performance of simple techniques such as threshold-based 

13 [1], region-based [2], or morphological approaches [3, 4] when processing such 

14 complex images. The M L methods can be further classified as supervised or 

15 unsupervised. 

16 The supervised methods generate a mathematical function or a model from 

17 the training data to map a new data sample [5]. Trained and optimised param-

18 eters using the graph-based Supervised Normalized Cut Segmentation (SNCS) 

19 with loosely annotated images separate overlapping and curved cells better than 

20 the traditional image processing methods [6]. The Fast Random Forest (FRF) 

2 
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21 classification using Trainable W E K A Segmentation outperformed the Decision 

22 Table and Naive Bayes classification methods in sensitivity, accuracy, and F-

23 measure when extracting the Interstitial cells of Cajal networks from 3D con-

24 focal microscopy images. However, the method showed higher computational 

25 costs due to the F R F ' s structure [7]. A method combining the Histogram of 

26 Oriented Gradients and the Support Vector Machine (SVM) extracted and clas-

27 sified the feature descriptors as cells or non-cells in bright-field microscopy data. 

28 The method was susceptible to the number of iterations in the training process, 

29 which is a crucial step to eliminate false positive detections [8]. A Logistic 

30 Regression classification with intensity values of 25 focal planes as features, fol-

31 lowed by the binary erosion with a large circular structuring element, counted 

32 the cells in bright-field microscopy images. However, the method showed miss-

33 segmentation and a low recall rate [9]. 

34 The unsupervised M L algorithms require no pre-assigned labels or scores for 

35 the training data [10]. Unsupervised segmentation using the Markov Random 

36 Field considered an image as a series of planes based on Bit Plane Slicing. The 

37 planes were used as initial labelling for an ensemble of segmentations. The 

38 robust cell segmentation was achieved with pixel-wise voting. However, this 

39 method was too sensitive to the confidence threshold [11]. A combination of a 

40 Scale-Invariant Feature Transform, a self-labelling, and two clustering methods 

41 segmented unstained cells in bright-field micrographs. The method was fast and 

42 accurate but sensitive to the feature selection to avoid overfitting [12]. A self-

43 supervised (i.e., a kind of unsupervised) learning approach combined unsuper-

44 vised initial coarse segmentation (K-means clustering) followed by supervised 

45 segmentation refinement (SVM pixel classifier) to separate white blood cells. 

46 However, the unsupervised part of the method generates a rough segmentation 

47 result. In the case of complex datasets, the supervised part of the method 

48 cannot work efficiently due to fuzzy boundaries [13]. 
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49 1.2. Cell culture segmentation with deep learning methods 

50 I n r e c e n t y e a r s , a s u b s e t o f n e w m a c h i n e l e a r n i n g t e c h n i q u e s - d e e p l e a r n i n g 

51 ( D L ) m e t h o d s - h a s b e e n d e v e l o p e d t o s o l v e c e l l s e g m e n t a t i o n p r o b l e m s w i t h 

52 h i g h e r a c c u r a c y a n d p e r f o r m a n c e . T h e d e e p n e u r a l n e t w o r k s h a v e i n t e g r a t e d 

53 l o w / m e d i u m / h i g h - l e v e l f e a t u r e s a n d c l a s s i f i e r s i n t o a c o m p r e h e n s i v e m u l t i - l a y e r 

54 s t r u c t u r e . T h e d e p t h o f t h e n e t w o r k , o r t h e n u m b e r o f l a y e r s s t a c k e d , d e t e r m i n e s 

55 t h e " l e v e l s " o f f e a t u r e s [ 1 4 ] . 

56 M a s k R C N N w i t h a S h a p e - A w a r e L o s s g e n e r a t e d t h e H e L a c e l l ' s s e g m e n -

57 t a t i o n m a s k s w i t h a g o o d p e r f o r m a n c e [ 1 5 ] . A C o n v o l u t i o n a l B l u r A t t e n t i o n 

58 ( C B A ) n e t w o r k c o n s i s t e d o f d o w n - a n d u p - s a m p l i n g p r o c e d u r e s f o r n u c l e i s e g -

59 m e n t a t i o n i n s t a n d a r d c h a l l e n g e d a t a s e t s [ 1 6 , 1 7 ] , w i t h a g o o d v a l u e o f t h e 

60 a g g r e g a t e d J a c c a r d i n d e x . T h e r e d u c e d n u m b e r o f t r a i n a b l e p a r a m e t e r s l e d t o 

61 a r e a s o n a b l e d e c r e a s e i n t h e c o m p u t a t i o n a l c o s t [ 1 8 ] . T h e s i z e o f i n p u t i m a g e s o f 

62 a c o n v o l u t i o n a l n e t w o r k c a n b e o f d i f f e r e n t c u s t o m s i z e s s o t h a t i t c a n b e t r a i n e d 

63 e n d - t o - e n d , p i x e l - t o - p i x e l , a n d p r o d u c e a n o u t p u t o f t h e a p p r o p r i a t e s i z e . E f -

64 f e c t i v e i n f e r e n c e a n d l e a r n i n g c a n a c h i e v e s u c c e s s f u l s e m a n t i c s e g m e n t a t i o n i n 

65 c o m p l e x m i c r o s c o p i c a n d m e d i c a l i m a g e s [ 1 9 , 2 0 ] . 

66 A U - N e t a r c h i t e c t u r e c o n t a i n i n g a c o n t r a c t i n g p a t h t o c a p t u r e c o n t e x t a n d a 

67 s y m m e t r i c e x p a n d i n g p a t h f o r p r e c i s e l o c a l i s a t i o n s h o w e d s t r o n g d a t a a u g m e n -

es t a t i o n i n t h e t r a i n i n g p r o c e s s . I t w a s o p t i m i s e d w h e n a p p l i e d t o s m a l l d a t a s e t s 

69 a n d p e r f o r m e d e f f i c i e n t l y i n s e m a n t i c s e g m e n t a t i o n o f p h o t o n m i c r o s c o p y ( p h a s e 

70 c o n t r a s t a n d D I C ) i m a g e s [ 2 1 ] . A F e e d b a c k U - N e t w i t h t h e c o n v o l u t i o n a l L o n g 

71 S h o r t - T e r m M e m o r y n e t w o r k , w o r k i n g o n Drosophila c e l l i m a g e d a t a s e t a n d 

72 m o u s e c e l l i m a g e d a t a s e t , g e n e r a l l y s h o w e d a l o w l e v e l o f a c c u r a c y , d e p e n d -

73 i n g o n t h e s e g m e n t e d c l a s s ( c y t o p l a s m , c e l l m e m b r a n e , m i t o c h o n d r i a , s y n a p s e s ) 

74 [ 2 2 ] . A R e s i d u a l A t t e n t i o n U - N e t - b a s e d m e t h o d s e g m e n t e d l i v i n g H e L a c e l l s i n 

75 b r i g h t - f i e l d l i g h t m i c r o s c o p y d a t a w i t h a h i g h I o U m e t r i c . T h e m e t h o d c o m b i n e d 

76 t h e s e l f - a t t e n t i o n m e c h a n i s m t o h i g h l i g h t t h e r e m a r k a b l e f e a t u r e s a n d s u p p r e s s 

77 a c t i v a t i o n s i n t h e i r r e l e v a n t i m a g e r e g i o n s , a n d t h e r e s i d u a l m e c h a n i s m t o o v e r -

78 c o m e w i t h v a n i s h i n g g r a d i e n t p r o b l e m [ 2 3 ] . M u l t i - c l a s s c e l l s e g m e n t a t i o n i n 

79 fluorescence i m a g e s c o m b i n i n g U - N e t ( a d e e p e r n e t w o r k ) w i t h R e s N e t - 3 4 ( a 

4 
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so residual mechanism) achieved a good value of IoU score [24]. A two-step U-Net 

s i method segmented HeLa cells in microscopy images. The first U-Net localised 

82 the position of each cell. The second U-Net was trained with the first U-Net to 

83 determine the cell boundaries [25]. A fully automated U-Net-based algorithm 

84 recognised different classes (colonies, single, differentiated, and dead) of human 

85 pluripotent stem cells from each other with a satisfying m-IoU value in phase 

86 contrast images [26]. 

87 1.3. Our motivation for a new image segmentation method 

88 In segmentation, especially of tiny cells, the traditional M L methods struggle 

89 with microscopy images with complex backgrounds. [8, 7]. The M L methods 

90 were also not very efficient in training the multi-class segmentation models in 

91 large time-lapse image series. Compared with the M L methods, some Convo-

92 lution Neural Networks (CNNs) architectures require many manually labelled 

93 training datasets and higher computational costs [19]. Deep learning methods 

94 have shown better results in segmentation tasks than other methods. 

95 The main goal of our research is to develop and compare variants of a fully 

96 convolutional network as the encoder part of the original U-Net architecture 

97 and find the most accurate categorical segmentation algorithm. The U-Net 

98 was chosen since it is one of the most promising methods for semantic segmen-

99 tation [21]. Later, the encoder part of the U-Net architecture was modified 

wo and replaced with a VGG-19, Inception, and ResNet34 encoder architecture 

101 and was examined to find the most suitable architecture for multi-class seg-

102 mentation. We used unique telecentric bright-field reflected light microscopy 

103 multi-class labelled images of the cells to be automatically classified according 

TO to their morphological shapes to predict their cell cycle phases. 

105 We captured image series of HeLa cells to test the algorithms. The HeLa is 

106 a cell line of human Negroid cervical epithelioid carcinoma that is used in tissue 

107 culture laboratories as the gold standard. Each image contains HeLa cells in 

108 different cell cycle states. The raw microscopy data is specific for its high pixel 

109 resolution in rgb mode and requires pre-processing steps to suppress optical 

5 
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n o vignetting and camera noise. The data shows unlabelled in-focused and out-of-

m focus living cells in their physiological state. Thus, the obtained segmentation 

112 method is applicable to observing and predicting cell behaviour in time-lapse 

113 experiments during their life cycles and 3D visualisation of the cell. 

114 2 . M a t e r i a l s a n d m e t h o d s 

u s 2.1. Cell preparation and microscope specification 

116 The cells were prepared as written in [23], Section 2.1. Human HeLa cell line 

117 (European Collection of Cell Cultures, Cat. No. 93021013) was prepared and 

u s cultivated to low optical density overnight at 37°C, 5% CO2, and 90% relative 

119 humidity. The nutrient solution consisted of Dulbecco's modified Eagle medium 

120 (87.7%) with high glucose (>1 g L _ 1 ) , fetal bovine serum (10%), antibiotics and 

121 antimycotics (1%), L-glutamine (1%), and gentamicin (0.3%; all purchased from 

122 Biowest, Nuaille, France). The HeLa cells were maintained in a Petri dish with 

123 a cover glass bottom and lid at room temperature of 37°C. 

124 The data was collected by running several time-lapse image series experi-

125 ments of living human HeLa cells on a glass Petri dish using a high-resolved 

126 reflected light microscope to observe the microscopic objects and cells. This mi-

127 croscope was designed by the Institute of Complex System (ICS, Nové Hrady, 

128 Czech Republic) and built by Optax (Prague, Czech Republic) and ImageCode 

129 (Brloh, Czech Republic) in 2021. The microscope has a simple construction 

130 of the optical path. The light from a Schott V i s iLED S80-25 L E D Brightfield 

131 Ringlight was reflected from a sample to reach a telecentric measurement ob-

132 jective T04.5/43.4-48-F-WN (Vision & Control GmbH, Shul, Germany) and an 

133 Arducam AR1820HS 1/2.3-inch 10-bit R G B camera with a chip of 4912x3684 

134 pixel resolution. The images were captured as a primary (raw) signal with a 

135 theoretical pixel size (size of the object projected onto the camera pixel) of 113 

136 nm. The software (developed by the ICS) controls the capture of the primary 

137 signal with a camera exposure of 998 ms. A l l these experiments were performed 

138 in time-lapse to observe cells' behaviour over time. 

6 
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139 2.2. Data preparation and pre-processing 

140 Several time-lapse experiments were completed with HeLa cells using a re-

141 fleeted bright-field microscope (Sect. 2.1). The microscope control software cal-

142 ibrated the microscope optical path and corrected all image series using the al-

143 gorithm proposed in [27] to avoid image background inhomogeneities and noise. 

144 After the calibration step, the raw image representations were converted to 

145 8-bit colour (rgb) images of resolution (number of pixels) quarter of the original 

w6 raw images. The Bayer mask pixels quadruplets [28] were merged as follows: 

147 each pair of green camera filter pixels' intensities were averaged as the green 

u s image channel. The red and blue camera filter pixels were adopted into the 

149 relevant image channel. Then, images were rescaled to 8 bits after creating 

150 the image series intensity histogram and omitting unoccupied intensity levels. 

151 This bit reduction ensured the maximal information preservation and mutual 

152 comparability of the images through the time-lapse series. 

153 After generating 8-bit images, the denoising method [29] was applied to 

154 minimise the background noise in the constructed rgb images at preserving the 

155 texture details. Afterwards, the image series from different time-lapse experi-

156 ments were cropped into the 1024 x 1024 pixel size to achieve 650 images as 

157 the main dataset. The image dataset is accessible at the Dryad data publishing 

158 platform [30]. 

159 For multi-class segmentation, one of three cell states was assigned to each 

160 cell manually using Apeer platform [31]: (1) a background class containing 

161 no cells, (2) a cell class containing larger dilated adhered or migrating cells 

162 with unclear borders by which we anticipate they are growing, and (3) a cell 

163 class including roundish cells with sharper borders when the cells are assumed 

164 in their early stage of the life cycle, having no division state yet, or at the 

165 beginning of the division. The detection of the ratio of cells in mitosis plays 

166 an important role in many biomedical activities, such as biological research and 

167 medical diagnosis [32]. Figure 1 depicts a sample of the resized dataset and 

168 relevant generated mask classes as ground truth of the size of 512 x 512 pixels. 

169 The labelled images were used as training (80%), testing (20%), and evaluation 

7 
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T r a i n Image G r o u n d T r u t h 

Figure 1: Examples of the train sets and their ground truths. T h e image size is 512 x 512. 

T h e green and red class represents the roundish sharp cells and the migrating unclear cells. 

respectively. 

8 
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170 (20% of the training set) sets in the proposed neural network architectures. 

171 2.3. The Neural Network Model Architectures 

m 2.3.1. U-Net 

173 The U-Net [21] is well-known as a deep neural network for semantic image 

174 segmentation. The U-Net architecture is based on encoder-decoder layers. The 

175 U-Net combines many shallow and deep feature channels. In this research, 

176 a five-" level" simple U-Net was implemented as the first method for multi-

177 class segmentation purposes. The extracted deep features served for object 

178 localisation, whereas the shallow features were used for precise segmentation. 

64 64 64 64 3 

C o n v 3 x 3 , R e L u 

•=> C o p y & C r o p 

^ M a x P o o l 2 x 2 

- J " U p - C o n v 2 x 2 

<=$ C o n v 1 x 1 

Figure 2: T h e simple U - N e t model architecture. A ) T h e encoder section. B) T h e decoder 

section. 

179 The first input layer accepts rgb 512x512-sized training set images. Each 

180 level of the proposed U-Net includes two 3x3 convolutions. Batch normalisation 

181 follows each convolution, and " R e L U " is used as an activation function. In 
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182 the down-sampling (encoder) part (Fig. 2A), each encoder "level" consists of 

183 a 2x2 max-pooling operation with a stride of two. The max-pooling process 

184 extracts the maximal value in the 2x2 area. By completing the down-sampling 

185 in each level of the encoder part, convolutions will double the number of feature 

186 channels. 

187 In each level (from bottom to top) of the up-sampling (decoder) section 

188 (Fig. 2B), the height and width of the existing feature maps are doubled. In the 

189 concatenation step, the high-resolution deep semantic and shallow features were 

190 combined with the feature maps from the encoder section. After concatenation, 

191 the output feature maps have channels twice the size of the input feature maps. 

192 The "softmax" activation function in the top, l x l convolution-sized, output 

193 decoder layer predicts the occurrence of each pixel in each of the three classes. 

194 Padding in the convolution process allowed us to achieve the same input and 

195 output layers size. Each of those classes, achieved by the softmax activation, 

196 represents the probability of belonging each pixel into each class. In the final 

197 step, the "argmax" operation assigned each pixel to the class, where the highest 

198 probability value was achieved. This computational result, combined with the 

199 Categorical Focal Loss function, becomes the energy function of the U-Net. 

200 2.3.2. The VGG19- U-Net 

201 Many modified artificial neural networks, such as AlexNet [33], ZFNet [14], 

202 and V G G [34], have been developed as hybrids with the U-Net to simplify U -

203 Net. In this study, a VGG-Net architecture replaced the U-Net encoder path. 

204 In this way, we combined two powerful architectures to improve the categorical 

205 segmentation of our unique microscopy dataset. The VGG-Net was proposed by 

206 Simonyan and Zisserman [34] from Oxford's Visual Geometry Group (VGG). A 

207 VGG-16 proved to be one of the most efficient classification networks. However, 

208 a VGG-19 performed even more effectively than VGG-16 [35]. The VGG-19 

209 comprises a network with a deeper topology and smaller convolution kernels 

210 to simulate a perceptual field of view. This architecture is designed to reduce 

211 the number of trainable parameters and decrease computational costs compared 

10 



with the simple U-Net. Figure 3 represents the VGG19-U-Net proposed in this 

study. The left side of the network (Fig. 3A) shows the architecture of the V G G -

19 encoder section with 16 convolution layers, three fully connected layers, and 5 

MaxPool layers in 5 blocks. The convolution blocks at each level are followed by 

a 2 x 2 max-pooling operation with the stride of two to extract the maximal value 

in the 2x2 area. The first layer of the V G G network has 64 channels, and each 

subsequent layer is doubled up to 512 channels. The right side of the network 

(Fig. 3B) is a schema of the decoder part with five blocks. A concatenation 

step between each VGG-19 encoder layer and each U-Net decoder layer (Fig. 3) 

combines the feature maps from the encoder part with the high-resolution deep 

semantic and shallow features from the decoder part. The last decoder layer 

has a convolution size of 1 x 1 and predicts the probability values for each pixel 

and each of the three classes using the "softmax" activation function. 

64 64 64 64 3 

512 512 512 512 512 512 512 512 

f T 
W 512 512 512 512 

C o n v 3 x 3 , R e L u 

C o p y & C r o p 

M a x P o o l 2 x 2 

-t U p - C o n v 2 x 2 

C o n v 1 x 1 

Figure 3: T h e hybrid V G G 1 9 - U - N e t architecture. A ) T h e V G G - 1 9 encoder part. B) T h e 

U-Net decoder part. 
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225 2.3.3. The Inception-U-Net 

226 The complexity of the U-Net network about the number of trainable param-

227 eters leads to higher runtime and computational costs (Tab. 4). On the other 

228 hand, in image analysis, applying fixed kernel size in all convolution layers can 

229 make it difficult to extract all feature descriptors of different sizes. For example, 

230 in microscopy image analysis, some (tiny) features are at the local level, and 

231 some (larger) are at the global level. The network cannot extract the represen-

232 tative features for big objects when the small kernel is selected in convolution 

233 operations. If the kernel size is big, the network will miss extracting the features 

234 representative at the pixel level. In other words, the larger kernel can extract 

235 a global feature representation over a large image area, and the smaller kernel 

236 has been considered for detecting area-specific features. Google's inception deep 

237 learning method [36], known as the Inception architecture, was selected to build 

238 a hybrid Inception-U-Net architecture (Fig. 4) to improve segmentation results 

239 in our datasets further. 

240 The inception module is well known for its computational efficiency by inte-

241 grating different sizes of convolutions. The inception module applies kernels of 

242 different sizes within the same architecture layer and becomes wider (instead of 

243 deeper) with the layers (Fig. 4B). The convolution layers were replaced with an 

244 inception module (Fig. 4A) in all five levels of the encoder and decoder sections 

245 of the original U-Net structure. The inception module consists of multiple sets 

246 of 3 x 3 convolutions, l x l convolutions, 3x3 max-pooling, and cascaded 3x3 

247 convolutions. The number of filters at each convolution layer was doubled on 

248 the encoder side. The size of the output feature map (height and width) was 

249 halved on the last encoder layer. 

250 The up-sampling (decoder) architecture section (Fig. 4A, left side) was also 

251 equipped with an inception module at each level. The skip connection connected 

252 the encoder and decoder parts to produce a finer prediction. The spatial feature 

253 maps from the encoder are concatenated with the decoder feature maps. The 

254 rectified linear unit (ReLU) was selected as an activation function for each 

12 
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255 layer and performed batch normalisation in each inception module. At the last 

256 layer, a 1 x 1 convolution layer together with the " softmax" activation function 

257 generated three segmentation classes of the feature maps for the given input 

258 image. Each pixel was assigned to one class according to the highest probability 

259 value achieved among the classes. The Categorical Focal Loss function has been 

260 considered an energy function for this Inception-U-Net. 

r 

i O > 
— • C o n v 3 x 3 , ReLu 

— • C o p y & Crop 

JJ^ Max Pool 2 x 2 

"J- U p - C o n v 2 x 2 

C o n v 1 x 1 

Inception Module 

£30 « 0 « D 

• Concatenate ( j^^B 

1 T 
™ ' I v 512 

OS 

B 

Figure 4 : A ) T h e Inception-U-Net architecture. B) T h e internal architecture of one 

inception module. 
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261 2.3.4- The ResNet34-U-Net 

262 To further improve the categorical segmentation of our datasets, the Resid-

263 ual Convolutional Neural Network (ResNet) [37] was joint to the U-net. Neural 

264 networks with deeper architecture are more effective for complex classification 

265 and segmentation tasks. However, during the training process, the vanishing 

266 gradient problem appears in the very deep C N N . Moreover, a high number 

267 of C N N layers makes the training process slower, and the calculated value of 

268 the backpropagation derivative becomes increasingly insignificant. Thus, the 

269 model's accuracy gets saturated and rapidly declines instead of improving. The 

270 series of residual blocks with the skip connections were implemented into the 

271 C N N to alleviate the gradient vanishing and improve the network's generalisa-

272 tion ability during the training process. The skip connections were added to 

273 the deep neural networks to bypass one or more layers and update the gradient 

274 values from one or more previous layers into the following layers. 

275 The ResNet-34-U-Net architecture used in our study (Fig. 5) has 34 layers 

276 and four residual convolution steps with a total of 16 residual blocks (red and 

277 purple arrows). The first convolution layer has 64 filters with a kernel size 

278 of 7x7, followed by a max-pooling layer. Each residual block consists of two 

279 3x3 convolution layers followed by the ReLU activation function and batch 

280 normalisation with the identity shortcut connection. 

281 After the first 7x7 convolution layer, the feature map size halved to 256 x 256. 

282 At the first residual level, three residual convolution blocks were applied to the 

283 achieved feature maps, and the output size of the feature maps was halved to 

284 128 x 128. Four residual convolution blocks in the second residual step decreased 

285 the size of the output feature maps to 64x64. Six residual convolution blocks 

286 in the third residual step gave a feature map size of 32x32. The last residual 

287 step consists of three residual convolution blocks to achieve a feature map with 

288 a size of 16x16. 

289 The up-sampling section of the network (Fig. 5B) gets the input with the 

290 feature map size of 16 x 16 with 512 channels and a 2 x 2 up-convolution step with 
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Figure 5: T h e hybrid ResNet-34-U-Net architecture. 

291 a stride of two. The decoder section has the same structure as the simple U-Net 

292 architecture. After passing the U-Net decoder part, the "softmax" activation 

293 function was employed to achieve the probability map across three different 

294 classes for each pixel of the input images. Afterwards, each pixel was assigned 

295 to a certain class according to the highest probability value selected by the 

296 "argmax" function. 

297 Wi th the usage of the ResNet-34, the number of trainable parameters de-
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298 creased significantly compared with the VGG-Net and the simple U-Net. Thus, 

299 the runtime for training the model was shortened. 

300 2.4. Training Models 

301 The implementation platform for this research was based on Python 3.9. The 

302 deep learning framework was Keras with the backend of Tensorflow [38]. A l l 

303 C N N architectures were first developed and completed on a personal computer 

304 and then transferred to the Google Colab Pro+ premium cluster account to 

305 train the most stable models. The Google Colab Pro+ cluster is equipped with 

306 an NVIDIA Tesla T4 or the NVIDIA Tesla P100 G P U with 16 G B of G P U 

307 V R A M , 52 G B of R A M , and two vCPUs [39]. 

308 The basic dataset included 650 images from different time-lapse experiments 

309 and consisted of under-, over-, and focused images. As a trainset, 416 images 

310 (64%) were randomly selected to train the model, and 104 images (16%) were 

311 chosen randomly to validate the process to avoid over-fitting. The rest of the 

312 130 dataset images (20%) were considered for testing and evaluating the model 

313 after training. 

Table 1: Number of the trainable parameters and the run time for the U - N e t models. 

N e t w o r k R u n t ime T r a i n i n g parameter 

U - N e t 3:33' :29" 31,402,639 

V G G 1 9 - U - N e t 1:44':38" 31,172,163 

Incept i o n - U - N e t 1:05':47' : 18,083,535 

R e s N e t 3 4 - U - N e t 0:56':22' : 24,456,444 

314 A l l images were normalised (see the pre-processing step in Sect. 2.2) and 

315 resized to 512x512 pixels suitable for inputting the designed neural networks. 

316 The optimised hyperparameter values (Tab. 2) correspond to training the most 

317 stable C N N models. The ReLU was selected as the activation function for 

318 all architecture. The early stopping hyperparameter was employed to avoid 

319 over-fitting during the model training. The patient value was considered 30. 

320 The batch size was set to the maximal value of eight due to the complexity 

321 of the C N N structures and G P U - V R A M limitation. The Adam algorithm was 
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322 chosen to optimise the neural networks. The learning rate was set to 1 0 - 3 for 

323 all proposed C N N models. The suitable number of object classes was set as 3 

324 (Sect. 2.2). The best number-of-steps-per-epoch value equals 52 (achieved after 

325 dividing the length of the trainset of value 416 by the batch size of value 8). 

326 The number of epochs when all C N N models converged and were well-trained 

327 was 200. 

Table 2: Hyperparameters setting for training all proposed models. 

H y p e r p a r a m e t e r s name V a l u e 

A c t i v a t i o n f u n c t i o n R e L U 

L e a r n i n g rate 1 0 " 3 

N u m b e r of classes 3 

B a t c h size 8 

E p o c h s n u m b e r 200 

E a r l y s top 30 

Step per epoch 52 

7 for loss f u n c t i o n 2 

328 Categorical image segmentation is a pixel classification into either one of the 

329 cell classes or the background class. During training progress, all segmented cell 

330 images were compared to the G T to minimise the difference between these two 

331 as much as possible by using the Dice loss. One of the well-known loss functions 

332 used for categorical segmentation, which is an extension of the cross entropy 

333 loss, is the Categorical Focal Loss [40]. 

334 The Categorical Focal Loss is more efficient for the multi-class classification 

335 of imbalanced datasets, when some classes are classified easily and others are 

336 not. During training progress, the loss function down-weights easy classes and 

337 focuses training on hard-to-classify classes. Thus, the focal loss reduces the loss 

338 value for "well-classified" examples (e.g., roundish sharp cells) and increases 

339 the loss for hard-to-classify objects (e.g., migrated vanish cells) by tuning the 

340 right value of the focusing parameter 7 in the categorical focal loss function. 

341 In summary, the categorical focal loss turns the model's attention towards the 

342 difficult-to-classify pixels to achieve more precise classification results. 
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343 2.5. Evaluation metrics 

344 A l l categorical semantic segmentation models were evaluated using the com-

345 mon metrics (Eqs. 1-5). The TP, FP, F N , and T N correspond to the true 

346 positive, false positive, false negative, and true negative metric, respectively 

347 [41]. The metrics were computed for all test sets in each class and explained as 

348 mean values for all classes (Tab. 4). 

349 Overall pixel accuracy (Ace) represents a per cent of image pixels belonging 

350 to the correctly segmented cells. 

_ Pixels Predicted Correctly _ T P + T N 
C C ~ Total Number of Image Pixels ~ T P + F P + F N + T N ^ ' 

351 Precision (Pre) is a proportion of the cell pixels in the segmentation results 

352 that match the G T . The Pre, known as a positive predictive value, is a valuable 

segmentation performance metric due to its sensitivity to over-segmentation. 353 

15b 

Correctly Predicted Cell Pixels T P 
Pre = = 2 

Total Number of Predicted Cell Pixels T P + F P w 

The Recall (Reel) represents the proportion of cell pixels in the G T correctly 

identified through the segmentation process. This metric says what proportion 

of the objects annotated in the G T was captured as a positive prediction. 

R e c l _ Correctly Predicted Cell Pixels T P 
6 0 ~ Total Number of Actual Cell Pixels ~ T P + F N ^ ' 

The Pre and Reel together give another important metr ic-Fl score-to eval­

uate the segmentation result. The Fl-score or Dice similarity coefficient states 

how the predicted segmented region matches the G T in location and level of 

details and considers each class's false alarm and missed value. This metric 

determines the accuracy of the segmentation boundaries [42] and has a higher 

priority than the Acc. 

2 x Pre x Reel 2 x T P 
Dice = = Í41 

Pre + Reel 2 x T P + F P + F N v ' 
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363 Another essential evaluation metric for semantic image segmentation is the 

364 Jaccard similarity index, known as Intersection over Union (IoU). This metric is 

365 a correlation among the prediction and G T [19, 43], and represents the overlap 

366 and union area ratio for the predicted and G T segmentation. 

I o U = I * " " ' ' = ^ (5) 
\Vt I + \VP I - \ y t n y p | T P + F P + F N { ) 

367 3 . R e s u l t s 

368 The models were trained well and converged after running 200 epochs (eval-

369 uated as training/validation loss and Jaccard criterion vs epochs, Fig. 6). The 

370 hyperparameter values listed in Table 2 were used to achieve the best train-

371 ing performance and stability. Then, the performances of the trained models 

372 were assessed and evaluated using the test datasets and the metrics in Eqs. 1-5 

373 (Tab. 4). 

374 The computational cost is one of the critical factors in training high-performance 

375 models based on the lowest computational resources. The four described meth-

376 ods differ significantly in runtime, the number of trainable parameters, and 

377 network structures (Tab. 1). Training the simple U-Net took the longest run-

378 time with the highest number of training parameters. The VGG19-U-Net was 

379 trained well in a significantly shorter time due to the network structure; the 

380 number of training parameters was slightly lower than in the simple U-Net. 

381 The Inception-U-Net runtime was even faster than the previous two methods. 

382 This runtime reduction was followed by a further significant decrease in the 

383 number of trainable parameters and higher segmentation performance. The 

384 last - ResNet34-U-Net method - achieved the shortest computational cost with 

385 the best segmentation performance. 

386 Figure 7 presents the segmentation results for the U-Net-based models pro-

387 posed in this paper. At the same conditions, the simple U-Net achieved a lower 

388 categorical segmentation performance than the other models (when the evalu-

389 ation metrics are compared). The simple U-Net was inefficient in classifying 
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Figure 6: Training/validation plots for the loss criterion (left) and the Jaccard criterion 

(right) for the simple U - N e t (1st row), V g g l 9 - U - N e t (2nd row), Inception-U-Net (3rd row), 

and ResNet34-U-Net (4th row). 

Table 3: m-IoU values for the classes. C I - background, C 2 - divided and unclear cells, C 3 -

roundish and sharp cells, green - the highest m-IoU value for the relevant class. 

N e t w o r k m - I o U C I m - I o U C 2 m - I o U C 3 m - I o U 

U - N e t 0.9894 0.4839 0.6452 0.7062 

V G G 1 9 - N e t 0.9885 0.5489 0.6160 0.7178 

I n c e p t i o n - N e t 0.9915 0.6614 0.7194 0.7907 

R e s N e t 3 4 - N e t 0.9911 0.6911 0.7378 0.8067 

20 



98 

Visualized 
Test image Ground Truth Prediction Segmentation Result 

Figure 7: Test image, ground truth, prediction, and 8-bit visualisation of the segmentation 

results for the U-Net , V G G 1 9 - U - N e t , Inception-U-Net, and ResNet34-U-Net. T h e yellow 

and white circles highlight the wrongly classified and segmented cells. T h e black circle 

highlights a different, smoother segmentation result achieved by the ResNet34-U-Net. T h e 

image size is 512 x 512. 
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3 » the cell pixels into the suitable classes and suffered from wrongly segmented 

391 cells into the wrong classes (Fig. 7, yellow circle). Applying the VGG19-U-Net 

392 improved the categorical segmentation performance in terms of the evaluation 

393 metrics (Tab. 3-4). The cells segmented wrongly by the simple U-Net were 

394 improved slightly, but wrong classifications still occurred (Fig. 7, purple cir-

395 cle). The Inception-U-Net was applied to our datasets as the third hybrid C N N 

396 method. It leads to significant improvement of the multi-class segmentation 

397 results in terms of evaluation metrics (Tab. 3-4). However, this method suf-

398 fers from over-segmentation in all classes (Fig. 7, black circle). The hybrid 

399 ResNet34-U-Net was employed to improve further the object segmentation and 

400 classification (Tab. 3-4). 

401 Table 3 shows the mean value of the IoU metric for all combinations of class 

402 and method. Achieving a higher IoU value for the class of divided unclear cells 

403 (C2) was challenging for all methods. The ResNet34-U-Net achieved the highest 

404 m-IoU value in all classes. 

Table 4 : Results for metrics evaluating the U - N e t models. Green values represent the 

highest segmentation accuracy for the related metric. 

N e t w o r k A c c u r a c y P r e c i s i o n R e c a l l m - I o U m - D i c e 

U - N e t 0.9869 0.7897 0.8833 0.7062 0.8104 

V G G 1 9 - N e t 0.9865 0.8051 0.8614 0.7178 0.8218 

I n c e p t i o n - N e t 0.9904 0.8684 0.8905 0.7907 0.8762 

R e s N e t 3 4 - N e t 0.9909 0.8795 0.8975 0.8067 0.8873 

405 4 . D i s c u s s i o n 

406 The light microscope enables observing living cells in their most natural pos-

407 sible states. However, analysing live cell behaviour in an ordinary light trans-

408 mission (bright-field) microscope over time is difficult for these technical and 

409 biological reasons: (1) The cell morphology and position change significantly 

410 depending on the life cycle. (2) Illumination conditions are unstable over image 

411 and time. (3) The field of view is small to ensure sufficient statistics on cell 
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412 behaviour. (4) The images of observed cells are insufficiently spatially resolved 

413 and distorted by microscope optics. (5) The traditional image processing meth-

4 « ods, including machine learning approaches, were sensitive to the number of 

415 iterations in the training process, showed mis-segmentation, low computational 

416 and runtime performance and recall rate. 

417 Therefore we enhanced the method described in [23] and developed a mi-

418 croscopic technique with a connecting deep-learning multi-class image segmen-

419 tation to obviate these complications: (1) Locating the object-sided telecentric 

420 objective on the side of the light source (reflection mode) enables us to capture 

421 "simple", high-resolved and low-distorted images on a black background (similar 

422 to fluorescence images). (2) Calibrating the microscope optical path balanced 

423 the intensities in the whole images for following processing by the CNNs. (3) 

424 The larger field of view provides a satisfactory number of cells per snapshot 

425 for the evaluation of cell behaviour. (4) The images of individual cells were 

426 segmented and categorised according to their current physiological state. 

427 One of the most well-known efficient semantic segmentation methods for mi-

428 croscopy and biomedical images is U-Net [21]. The U-Net consists of encoder 

429 and decoder parts with many convolution layers. The encoder part of the net-

430 work was replaced with other different and more effective architecture as the 

431 hybrid architecture of the U-Net for more challenging segmentation purposes 

432 like categorical segmentation over microscopy images. 

433 The microscope and relevant image data used in this study are unique. No 

434 similar research on categorical segmentation of light reflection microscopy data 

435 has ever been performed before. Thus, comparing the results achieved in this 

436 study with the literature is hard. Despite this, the performances of the proposed 

437 hybrid U-Net-based models were compared with similar microscopy and medical 

438 works (Tab. 5). The first proposed model was based on a simple U-Net structure 

439 and achieved the m-IoU score of 0.7062 as the mean value of all classes for 

440 categorical segmentation purposes. We assume that a better value of the m-IoU 

441 will be achieved after the hyperparameter optimization (Tab. 2). 

442 Sugimoto et al. [44] achieved a m-Dice score of 0.799 for multi-class segmen-
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443 tation of cancer and non-cancer cells over the medical PD-L1 dataset. Nishimura 

444 et al. [45] applied a U-Net-based weakly supervised method on various mi-

445 croscopy datasets and reached a m-Dice segmentation score of 0.618 as an av-

446 erage over all datasets. Piotrowski et al. [26] applied a U-Net-based multi-

447 class segmentation method over human induced pluripotent stem cell images 

448 and achieved segmentation IoU and Dice accuracy scores of 0.777 and 0.753, 

449 respectively. Long [46] applied the enhanced U-Net (U-Net+) to bright-field, 

450 dark-field, and fluorescence microscopy images and achieved the m-IoU score of 

451 0.567 for single class semantic segmentation. 

Table 5: Values of the evaluation metrics of the C N N s designed for microscopy and medical 

applications. Comparison with the literature. Green highlights the highest segmentation 

accuracy value for each metric. 

M o d e l s I o U D i c e A c c 

p r o p . U - N e t 0.7062 0.8104 0.9869 

p r o p . V G G 1 9 - U - N e t 0.7178 0.8218 0.9865 

p r o p . I n c e p t i o n - U - N e t 0.7907 0.8762 0.9904 

p r o p . R e s N e t 3 4 - U - N e t 0.8067 0.8873 0.9909 

S e l f - A t t e n t i o n U - N e t [44] - 0.799 -
U - N e t [26] 0.777 0.753 -

U - N e t [45] - 0.618 -

U - N e t + [46] 0.567 - -

V G G 1 6 - U - N e t [47] - - 0.961 

V G G 1 9 - U - N e t [48] - 0.8715 0.8764 

I n c e p t i o n - U - N e t [49] - 0.887 -

I n c e p t i o n - U - N e t [24] - 0.95 -

R e s N e t 3 4 - U - N e t [50] 0.6915 - -

S M A N e t [51] 0.665 0.769 -

D M M N - M 3 [52] 0.706 - 0.870 - -

452 The U-Net encoder part was replaced with the VGG-19 architecture to im-

453 prove the multi-class segmentation result. The final VGG19-U-Net was op-

454 timized for our dataset to reduce the number of trainable parameters in the 

455 convolution layers and improve the computational costs and segmentation per-

456 formance using a dipper network topology and a smaller convolution kernel. In 

457 this way, the categorical segmentation accuracy increased to 0.7178 for the m-

458 IoU score in the testing phase. Pravitasari et al. [47] applied a VGG16-U-Net 
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459 with transfer learning to single-class semantic segmentation of brain tumours in 

460 magnetic resonance images and achieved an accuracy of 0.961. Nillmani et al. 

461 [48] applied a VGG19-U-Net to X-ray images for single-class segmentation of 

462 Covid-19 infections and achieved accuracy and Dice scores of 0.8764 and 0.8715, 

463 respectively. 

464 In the next step, we replaced Google's inception architecture for the U-Net 

465 encoder and made a hybrid Inception-U-Net network. The inception module 

466 contained kernels of various sizes in the same layer to make the network topol-

467 ogy wider instead of deeper and extract more representative features. The m-

468 IoU metric for categorical segmentation increased significantly to 0.7907. The 

469 number of trainable parameters was reduced. The computational costs were 

470 improved efficiently. Haichun et al. [49] proposed an Inception-U-Net for single-

471 class segmentation of brain tumours and achieved the m-Dice score of 0.887 in 

472 the testing phase. Sunny et al. [24] applied an Inception-U-Net to categorical 

473 segmentation of fluorescence microscopy datasets and achieved the average Dice 

474 metric over all segmentation classes of 0.95. 

475 The model performance was further improved using a hybrid ResNet34-U-

476 Net architecture. The series of residual blocks with the skip connection was 

477 implemented into the C N N architecture during the training process to over-

478 come the vanishing gradient and generalisation ability in very deep neural net-

479 works. It increased the m-IoU to 0.8067 after the multi-class segmentation. 

480 Sunny et al. [24] built up a ResNet34-U-Net which showed the m-IoU of 0.6915 

481 in the cross-validation phase of fluorescence microscopy multi-class image seg-

482 mentation. Gao et al. [51] applied a selected Multi-Scale Attention Network 

483 (SMANet) for multi-class segmentation in pancreatic pathological images and 

484 achieved m-Dice and m-IoU scores of 0.769 and 0.665. Ho et al. [52] proposed 

485 Multi-Encoder Multi-Decoder Multi-Concatenation (DMMN-M3) deep C N N for 

486 multi-class segmentation in two different image sets of breast cancer and reached 

487 m-IoU of 0.870 and 0.706. 
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488 5. Conclusion 

489 The main objective of this research was to develop an efficient algorithm 

490 to detect and segment living human HeLa cells and classify them according 

491 to their shapes and life cycles stages. Deep learning approaches to reflected 

492 light microscopy data analysis delivered efficient and promising outcomes. This 

493 research involved variants of hybrid U-Net-based C N N architecture: a simple 

494 U-Net, VGG19-U-Net, Inception-U-Net, and ResNet34-U-net. 

495 The simple U-Net (Tab. 1) has the longest training time, the biggest number 

496 of trainable parameters, and the lowest categorical segmentation performance. 

497 On the other hand, the hybrid ResNet34-U-Net achieved the best categorical 

498 segmentation performance (Tab. 4) with a run time significantly lower than the 

499 other proposed models. The computational cost and the number of trainable 

500 parameters of the inception network are lower than in the U-Net. Thus, the 

501 inception networks are better utilisable for bigger datasets. However, running 

502 the inception network requires a higher computational G P U memory. 

503 The Residual Convolutional Neural Network (ResNet) was applied as a hy-

504 brid with the U-Net to overcome the gradient vanishing and improve the gen-

505 eralisation ability during training. Using a series of residual blocks with skip 

506 connection in each level of the ResNet34-U-Net network resulted in better cat-

507 egorical segmentation. The skip connections in each level of the deep neural 

508 networks bypass one or more layers and continuously update the gradient val-

509 ues from one or more previous layers into the layers ahead. 

510 The categorical segmentation gradually improves from simple U-Net to ResNet34-

511 U-Net (as evaluated using performance metrics, Tab. 4). The ResNet34 encoder 

512 network achieved the best categorical segmentation by integrating the residual 

513 learning structure to overcome the gradient vanishing with the U-Net as a hy-

5 « brid ResNet34-U-Net method. Nevertheless, future works are still essential to 

515 expand the knowledge on multi-class semantic segmentation using the weakly 

516 supervised method to generate the ground truth for huge datasets independently 

517 and apply ensemble learning steps to combine different and efficient C N N ar-
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518 chitectures in prediction to achieve the most accurate segmentation result. 
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A b s t r a c t 

Inland water bodies play a vital role at all scales in the terrestrial water 

balance and Earth's climate variability. Thus, an inventory of inland waters 

is crucially important for hydrologic and ecological studies and management. 

Therefore, the main aim of this study was to develop a new method for invento­

rying and mapping inland water bodies using high-resolution satellite imagery 

automatically and accurately. Three different deep learning, U-Net-based algo­

rithms were used to segment inland waters, including simple U-Net, Residual 

Attention U-Net, and VGG16-U-Net . A l l three algorithms were trained us­

ing a combination of Sentinel-2 visible bands (Red [B04; 665nm ], Green[B03: 

560nm], and Blue[B02; 490 nm]) in 10-meter spatial resolution. VGG16-U-Net 

provided the best segmentation results with 0.9850 in terms of mean-IoU score, 

which improved slightly compared to other proposed U-Net base architecture. 

Although the accuracy of the model based on VGG16-U-Net doesn't make a 

difference from Residual Attention U-Net, the computation costs for training 

VGG16-U-Net were dramatically lower than Residual Attention U-Net. 
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imagery , S e g m e n t a t i o n , Water b o d i e s 

1 1. I n t r o d u c t i o n 

2 Inland waters (i.e., rivers, streams, lakes, reservoirs, wetlands, and flood 

3 plains) significantly impact hydrological and biogeocliemical cycles. They play 

4 a vital role at all scales in the terrestrial water balance and Earth's climate 

5 variability[1, 2]. Furthermore, inland waters provide vital resources for humans 

6 and are the sole habitat for an extraordinarily rich, endemic, and sensitive 

7 biota. However, like many other ecosystems over the past century, humans' high 

8 demands on freshwater, continuous demographic pressure, and climate change 

9 have threatened the existence of inland water resources and biodiversity around 

10 the world [3]. Consequently, tracking and quantifying human and climate change 

11 influence on global inland water is essential, particularly for small water bodies, 

12 and delineating them is a prerequisite for further monitoring, modeling, and 

13 management. 

14 Since the 1970s, remote sensing techniques have become increasingly popu-

15 lar for detecting and mapping inland waters regionally and globally[4, 5]. Since 

16 the launch of Sentinel-2, this trend has increased as Sentinel-2 is continuously 

17 acquiring high-resolution images from the land surface. Therefore, the scientific 

i s community and public and private sectors have used Sentinel-2 data extensively 

19 for land cover/use monitoring, including water bodies detection[6, 7]. Many 

20 former studies using methods like spectral indices [8, 9], single band density 

21 slicing [10], or supervised classification [11, 12] for detecting and mapping wa-

22 ter bodies as water bodies appear dark in optical remote sensing due to high 

23 absorbance of irradiance in the near-infrared (NIR) spectrum. However, these 

24 methods have limitations, and some times challenging to inventory the inland 

25 waters with satisfactory accuracy. For instance, because of variations in the 

26 physical environment over space and time, it is often not straightforward to 

27 establish a constant threshold value [13]. In water body classification, shad-

28 ows produced by mountains, trees, buildings, and river banks can contaminate 

2 
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29 satellite imagery classification of water bodies [14]. Therefore, a new method 

30 is still desirable for detecting and mapping inland waters where high-resolution 

31 orbital remote sensing data automatically and accurately. 

32 Deep learning algorithms, particularly deep learning-based semantic segmen-

33 tation algorithms, are widely used in the classification of remote sensing images 

34 [15, 16]. Although recently, several studies have shown that U-Net-based algo-

35 rithms have better results; for instance, however, Zhang et al. [17] used and 

36 compared six different deep learning-based algorithms, including the network 

37 using architecture shape like ' U ' well known as (U-Net), fully convolutional 

38 DenseNet (FC-DenseNet), full-resolution residual network (FRRN), bilateral 

39 segmentation network (BiSeNet), DeepLab version 3 plus (DeepLabV3+), and 

40 pyramid scene parsing network (PSPNet) for classification of land covers for 

41 medium resolution remote sensing data. They have found that the architecture 

42 based on encoder-decoder mechanism, including U-Net, is the most competi-

43 tive network with the appropriate outcome to detect and map land covers of 

44 medium-resolution images. A n et al. [18] proposed new architecture based 

45 on U-net where the convolution layer in U-Net was replaced with a bottleneck 

46 structure for water bodies extraction. They found that their proposed architec-

47 ture can accurately (98.13%) segment water bodies and greatly reduce the size 

48 of the model and prediction time. 

49 It is still necessary to continue studying U-Net-based models with different 

so architectures for the segmentation of different scenarios or types of features. 

51 Therefore, the main objective of this research was to develop and implement 

52 an accurate deep learning segmentation method with reasonable computational 

53 cost to detect and segment inland water bodies from high spatial resolution 

54 remote sensing images. We choose the U-Net for our research cause it is one of 

55 the methods with strong outcomes in semantic segmentation tasks. In addition, 

56 two other U-Net architectures, Residual Attention U-Net, and VGG16-U-Net 

57 were also investigated to achieve the best architecture for automated inland 

58 water detection based on the accuracy and computation cost. 
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59 2 . M a t e r i a l s a n d P r e - P r o c e s s i n g 

60 2.1. Data preparation and pre-processing 

61 This study acquired the raw images using the sentinel-2 Harmonized dataset 

62 archived on the Google Earth Engine javascript platform (GEE). The southern 

63 part of the Czech Republic, including the South Bohemian region, was selected 

64 as the region of interest (Fig. 1). This part of czech republic were considered to 

65 train the model because of the more water bodies in and artificial lakes existing 

66 in this region of the country. Including images with more related Ro l regions 

67 were helpful to train more efficient models to predict the water bodies. Sentinel-

68 2 images acquired during summer 2022 with less than 10% of cloud covering were 

69 considered as datasets for training and testing algorithms. 

70 In this study, the combination of visible bands of sentinel-2 (Red [B04; 665nm 

71 ], Green[B03; 560nm], and Blue[B02; 490 nm]) were considered and used to ob-

72 tain true color images for segmentation purpose. The reason of considering 

73 R G B bands is because the more bands used, the more complex and computa-

74 tionally expensive the segmentation model. In other words, increasing model 

75 development and deploy the model requires more time and computation power. 

76 Additionally, not all bands may provide useful information for segmenting of 

77 water bodies, so it's often more efficient to select a relevant subset of bands. 

78 Therefore, using only the R G B bands, which produce true color images, was 

79 a reasonable choice, given their sufficiency in achieving good accuracy in seg-

80 menting water bodies. Using fewer bands can also help reduce overfitting, which 

s i occurs when a model becomes too complex and fits the training data too closely, 

82 resulting in poor generalization to new data. By using a simpler model with 

83 fewer input features, the risk of overfitting can be reduced and the generalization 

84 performance of the segmentation model can be improved. 

85 To achieve R G B images and render the image as a true-color composite, 

86 The Earth Engine visualization parameters and specific bands are configured 

87 as 'B4'(665nm), 'B3' (560 nm), and 'B2' (490nm) for red, green, and blue color 

88 channels with 10-meter spatial resolution, respectively. The "min" and "max" 
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89 values in visualization parameters are suitable for displaying reflectance from 

90 typical Earth surface targets. The min value was set to zero, the max value 

91 was considered equal to 4000, and the Gamma correction factor was set to 1.4. 

92 After collecting the raw images from the Google Earth Engine (GEE) javascript 

93 platform, Raw images were downloaded and transferred into the QGIS software 

94 for further processing. 

Figure 1: T h e map of the study area. T h e red region represented the area selected for the 

data collection phase. 

95 After transferring the raw image data into the QGIS, the specific parts of the 

96 south bohemian region (Fig 1, The red region) was selected as the main dataset. 

97 On the other hand, the labeled data from Czech Republic inland waters provided 

98 by Z A B A G E D [19] were imported into the QGIS to generate the shape file of 

99 the inland water for all parts of the Czech Republic. Then, the same specific 

wo coordination from the G E E image and the labeled data were exported as "TifP 

101 file with a big size of A6K x A6K pixel resolution. 

102 In the next step, the image and mask in big size were patchified into smaller 

103 parts (Fig 2). That process generated the main dataset for further analysis. The 

TO patchifing step splits images into small patches by given patch cell size [20] (ie. 

105 like cropping image in big size into the small parts). Images were patchified and 
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w6 masked into the 2048 x 2048 pixel resolution to achieve suitable region of interest 

107 (ROI) area and avoid pixelating and blurring problems in the smaller size of the 

108 images. The patchifying step helped us to convert the image in big size into 

109 the images in smaller size to use in training step. After patchifying the image 

n o and mask into smaller parts, we achieved 504 images as the main dataset. The 

m main dataset was split into three parts: (1) train set by randomly considering 

n 2 322 images (80% of the main dataset), (2) test set by randomly considering 101 

n 3 images (20% of the main dataset), (3) for model validation progress, 20% of the 

n 4 train set randomly selected (81 images) to prevent over-fitting problem during 

u s training progress and reach more stable performance for generated models. 

n 6 2.2. Neural network architecture 

n 7 2.2.1. Simple U-Net 

u s Deep neural network methods delivered promising outcomes in classification 

n 9 and segmentation tasks in terms of accuracy when dealing with a large dataset. 

120 One of the promising neural network architectures for semantic segmentation is 

121 U-Net. The U-Net based methods deliver promissing outcome in different sense-

122 tive research fields including medical and microscopy regions [21, 22]. The U-Net 

123 was proposed and created for semantic segmentation based on the convolutional 

124 neural network (CNN) architecture and comprised of an encoder-decoder con-

125 volutional network topology. The encoder and decoder blocked in each level 

126 were connected to each other via a bridge to combine features from the encoder 

127 part with extracted features from the decode section. The feature representa-

128 tion extracted by the decoder part is useful for positioning, whereas encoder 

129 part features are efficient in achieving accurate segmentation. The proposed 

130 architecture for the simple U-Net method applied in this research is displayed 

131 in Fig. 3. 

132 The first layer of the encoder part (fig. 3, Part A) accepts images with the 

133 size 512 x 512 with three color channel (RGB) mode as input. The proposed 

134 U-Net structure has five levels. Each level consists of two 3 x 3 convolutions 

135 followed by Batch normalization for each convolution layer and applying a rec-
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Train Image Ground Truth 

100 200 300 400 SOO 100 200 300 « 0 500 

Figure 2: Tra in set images and corresponded ground truth images. T h e size of image is 

512 x 512. 

136 tified linear unit "ReLu" as activation functions. In each level of the encoder 

137 part (down-sampling), The image size was halved by applying 2 x 2 max pooling 
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138 operation, and the number of feature channels was doubled using convolutions. 

139 The maximum value was selected in the 2 x 2 area with the stride of two by 

wo max pooling operation. The encoder part of the network extracts the features 

141 and learns an abstract representation of the input image through a sequence of 

142 the encoder blocks. 

143 In the decoder or up-sampling section (Fig. 3, Part B), the dimension of the 

144 feature maps in each level was doubled from the layer at the bottom to the top 

145 layer til l achieved the exact same size as the input images. The bridge connection 

w6 combined the extracted features from the encoder part into the decoder section. 

147 As a result of the concatenation step, the channels of the output feature maps 

u s will be twice as big as the size of the input features. The Concatenation step 

149 of feature maps in U-Net gives us better localization information. The output 

150 of the last decoder layer at the top includes l x l convolution with Sigmoid 

151 activation to predict the probabilities value of pixels for classification purposes. 

152 The size of the feature map at the output layer was achieved the exactly as 

153 same size as the input layer by applying Padding in the convolution process. 

154 The decoder part of the network used extracted abstract representation from 

155 the encoder part and generated a semantic segmentation mask. The Binary 

156 Focal Loss was used as loss function of the U-Net. 

157 2.2.2. Residual Attention U-Net 

158 The architecture of U-Net consists of encoder and decoder blocks that are 

159 connected via a bridge at each level (Fig. 3). The bridge connections are respon-

160 sible for merging the down-sampling and up-sampling paths together to reach 

161 spatial information. On the other hand, the concatenation step may transfer 

162 many unimportant and useless feature representations from the encoder part 

163 during the combination process. The attention mechanism implemented based 

164 on U-Net architecture (Fig. 4, part D) was proposed by Oktay et al. [23] with a 

165 promising outcome in medical imaging. The soft attention mechanism was im-

166 plemented to keep and highlight the most representative features and enhance 

167 achieved segmentation results by simple U-Net. The soft attention mechanism 
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Figure 3: T h e simple U - N e t Architecture. Part A represent the encoder section and part B 

represent decoder section 

168 remark the important features and represses activations in the unrelated re-

169 gions. As a result, model sensitivity and performance were slightly improved by 

170 employing the attention gate without requiring complicated and heavy compu-

171 tational costs [22]. 

172 The employed soft attention gate (Fig. 4, part D) getting two inputs, x and 

173 g. The input x was achieved by the concatenation bridges from the early layers 

174 of the encoder part and includes better spatial information. Input g comes from 

175 the deeper layers of the network known as the gating signal, which includes 

176 more efficient feature representation and contextual information to identify the 

177 focus region and gives weight to the different parts of the images. The attention 

178 coefficients a £ [0,1] identify, extract, and assign weights to the features belong 

179 to the important part of the image regions in our case the water bodies. The 

lso attention mechanism progress, getting the weights to the pixels according to 
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(ĵ ) Attention Gate 

c 
Residual Block 

D 
Soft Attention Gate 

From Deeper Layei 

From Encoder Layer 

Sigmoid (o?) Resampler 

Figure 4 : T h e proposed architecture for Residual attention U - N e t . Part A represents the 

encoder section, and part B represents the decoder section. Part C represents the residual 

mechanism. Part D represent the soft Attention mechanism. E a c h feature map has size as 

H X W X D, which H, W, and D represent height, width, and number of channels. 

their relevance in training steps [23]. The more relevant part of the image will 

get weights bigger than the less relevant parts. So, by applying the achieved 
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183 weights in the training process, we trained model that is more attentive to the 

184 relevant image parts. The multiplication of the input feature maps xl and the 

185 achieved attention coefficient a generate the output of the attention gate: 

qitt = ^T{ox{Wlx\ + Wj9i + bg)) + fy, (1) 

" i = <T2(p'att(xi>9i;®att)), (2) 

186 whereas the o~\ and o-i parameters correspond to the relu and sigmoid acti-

187 vation functions and Qatt indicate different parameters including linear trans-

188 formations Wx and Wg, function ip and bias terms b^ and bg [23]. 

189 Deeper neural networks deliver more effective performance in complex clas-

190 sification and segmentation tasks [24]. Each level of the proposed U-Net-based 

191 architectures consists of many convolutional blocks (Fig. 4). The input value 

192 enters into the Convolutional blocks, the convolution operation, and the acti-

193 vation function applied in the input value and generates the output. In neural 

194 networks, the output of each convolutional block is the input of the next con-

195 volutional block. So, by making the neural network architecture deeper, the 

196 calculated gradient value from one block to another will be smaller because of 

197 the gradient vanishing effect, and the accuracy of the trained model will degrade 

198 rapidly instead of improving. The gradient vanishing problem appeared during 

199 the training procedure and affected the model's generalization ability. To miti-

200 gate this problem, the residual mechanism was implemented and applied to the 

201 proposed method to continuously update the calculated gradient values in each 

202 convolutional block and improve the performance of trained models [25]. The 

203 proposed residual blocks, known as skip connections, will bypass one or more 

204 layers and update the gradient values from one or more previous layers into the 

205 layer step ahead. By combining the soft attention mechanism with the residual 

206 mechanism, we will get the weights into the important part of the image and 

207 overcome the gradient vanishing problem during training progress. 

11 
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208 2.2.3. VGG16-U-Net 

209 Different C N N architectures have been proposed to be combined with the U -

210 Net architecture for improving the trained model accuracy and computational 

211 cost of the U-Net and reducing the number of trainable parameters in compari-

212 son to the original U-Net. The V G G is the basis of C N N architecture proposed 

213 by Simoniyan et al. [26] and developed by the Visual Geometry Group from Ox-

2 « ford university. The V G G was developed and proposed to reduce the number 

215 of trainable parameters in the Convolutional layers and improve the training 

216 time because of the structure of the developed architecture proposed by [26]. 

217 The V G G architecture has many different variants depending on the number of 

218 layers from VGG11 to VGG19. The VGG16 efficiently performed many object 

219 detection and image classification tasks [27, 28]. Due to this, in this research, 

220 the hybrid VGG16-U-Net architecture was chosen and implemented to compare 

221 with two other methods and improve the semantic segmentation results in term 

222 of performance and computational costs. To implement the proposed hybrid 

223 network, the encoder part of the U-Net, which is responsible for extracting 

224 the feature representation, was completely replaced with the VGG16 structure 

225 (Fig. 5, part B). The VGG16 architecture at the encoder part (Fig. 5, part 

226 A) consists of sixteen layers, including thirteen convolutional layers and three 

227 dense layers. The 3 fully connected layers of Vggl6 (Fig, 5, part A , green 

228 rectangles) were replaced with architecture that resembled the decoding part 

229 of U-Net, which formed the expanding path with convolution layers and up-

230 sampling layers (Fig. 5, part B). Hence, the VGG16 without the final 3 fully 

231 connected layers was retained as the contracting path [29]. 

232 The first layer of the encoder section takes the input image with the size of 

233 512 x 512 in R G B color mode and has 64 channels. Each convolutional blocks 

234 in each level have max pooling progress with the size of 2 x 2 and a stride of 

235 two to extract the maximal value. In each level of the encoder section, the size 

236 of the image was half, and the size of feature channels was doubled from 64 to a 

237 maximum of 512. The right side of the network (Fig 6, Part B) represents the 
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Figure 5: Architecture of the V G G 1 6 and its variants. A) represent the V G G 1 6 network 

architectur. B) represent V G G 1 6 - U - N e t architecture. 

Figure 6: Architecture of the proposed H y b r i d V G G 1 6 - U - N e t model. A) represent the 

encoder part of V G G 1 6 architecture, B) represent the decoder part of U - N e t respectively. 
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238 decoder part with five levels. The structure of the decoder section remained the 

239 same as we applied in the simple U-Net method. Each level of the encoder and 

2 « decoder parts was connected via a concatenation bridge. The concatenation step 

241 combines features extracted from the encoder section with the decoder section, 

242 and this concatenation step is important for achieving localization information. 

243 The last encoder layer has l x l convolutional size to predict the probability 

244 value of each pixel and generate the semantic segmentation by applying the 

245 "Sigmoid" activation function. 

246 2.3. Training Models 

247 The computational platform used for implementing all methods is Python 

248 3.9. A l l deep learning frameworks were implemented using Keras with the back-

249 end of Tensorflow [30] to train the best stable models. After developing methods 

250 and completing of implementation phase for all C N N architectures, the complete 

251 method was transferred and compiled on the Google Collab Pro + cluster ac-

252 count. The google clusters are equipped with two v C P U as processors, 24 Gb 

253 of R A M as memory, and P100 and T4 graphical processor unit (GPU) [31]. 

254 By the completion of the data pre-processing step (Sect. 2), 80% of the main 

255 dataset was chosen randomly as a train set (322 images), and the rest of 20% 

256 was considered randomly as a test set (101 images) for testing and evaluating 

257 the generated models' performance. Meanwhile, 20% of the training set was 

258 chosen randomly as the validation set (81 images) to validate the model and 

259 prevent over-fitting problems during the training process. 

260 The input image size used in proposed C N N architectures was 512 x 512 

261 px. A l l dataset images were resized from 2048 x 2048 px into 512 x 512 px as 

262 proper and specific input image size for proposed CNN's . We employed data 

263 augmentation variables during model training for all three C N N methods. The 

264 best-achieved values for each hyperparameter were reported in Tab. 1. The 

265 early stopping parameters are useful to prevent the over-fitting problem in the 

266 training phase. The threshold for patient value is set equal to 20. The "Relu" 

267 was selected as an activation function, and the Batch size value was considered 
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268 8. As a description of data Augmentation parameters, the "rotation range" 

269 means randomly rotating images between [-90,90] degrees. The "width shift 

270 range" shift the image to the left or right (horizontal shifts), and the "height 

271 shift range" parameter shifts the image vertically (up or down). The "shear 

272 range" parameter shows a distorted image along an axis to create or rectify the 

273 perception angle. The random zoom for the training images was obtained by the 

274 "zoom range" parameter. For optimizing the network, we choose the 'Adam' 

275 optimizer. The learning rate value was considered to 1 0 - 3 . 

Table 1: T h e value of Hyperparameters used for all C N N models. 

H y p e r p a r a m e t e r V a l u e 

A c t i v a t i o n f u n c t i o n R e l u 

L e a r n i n g rate 1 0 — 3 

Size of the B a c h 8 

N u m b e r of the E p o c h s 70 

E a r l y s t o p p i n g 20 

N u m b e r of steps i n each epochs 100 

R o t a t i o n range 90 

W i d t h shift 0.3 

Height shift 0.3 

Shear range 0.5 

Z o o m range 0.3 

276 Semantic segmentation progress could be defined as a classification task at 

277 the pixel level to classify those pixels into water bodies or other classes. The 

278 segmented water bodies' images with the ground truth (GT) were compared to 

279 minimize the difference between them during the training using the Dice loss. 

280 The Binary Focal Loss was used as a loss function for semantic segmentation 

281 (Eq. 3) [32]: 

Focal Loss = -at(l - pt)1 log(p t), (3) 

282 Which pt £ [0,1] represents the predicted probability value achieved by the 

283 model for the ground truth class with label y = 1; at £ [0,1] corresponding 

284 to the weighting factor for class 1 and 1 — at for class 0; and 7 > 0 represent-
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285 ing tunable focusing parameter. Applying focal loss efficiently achieved better 

286 segmentation performance in regions of images that are challenging to segment 

287 (e.g., narrow inland water bodies or inland bodies with a similar texture to for-

288 est) and separate sensitive inland water bodies from the background. On the 

289 other hand, the focal loss as loss function manages and reduces the participa-

290 tion of the pixels belonging to the specific region that can be segmented easier 

291 (e.g., big and visible inland waters) over the image region in the model training 

292 progress. The model has the responsibility of updating the gradient direction. 

293 This progress depends on the loss of the model. 

294 2.4. Evaluation metrics 

295 To evaluate segmentation models generated by CNN's, different evaluation 

296 metrics were used (Eqs. 4-8). The T P represents a true positive, F P indicates 

297 a false positive, F N corresponds to a false negative, and T N represents true 

298 negative values, respectively [33]. The generated models were evaluated with 

299 the test sets using described metrics, and mean values of each metric were 

300 reported in table 3. 

301 The accuracy (Acc) metric indicates the percentage of the pixels which seg-

302 mented correctly from water bodies. The Precision (Pre) metric represents a 

303 ratio of the pixels segmented as water bodies that exactly match the masks 

304 (GT). The Recall metric indicates the ratio of pixels belonging to the water 

305 bodies in the mask (GT), which is detected properly over the segmentation 

306 process. The Dice coefficient, known as Fl-score, indicates if the segmented 

307 area is equal to the mask of the image (GT) in terms of location and level of 

308 detail. The Fl-score represents ascertaining how accurate is the segmentation 

309 result in boundary regions [34] and is more important than the A C C metric for 

310 evaluating model performance. The most important metric for segmentation 

311 model evaluation is Intersection over Union (IoU), also known as the Jaccard 

312 similarity index. The mentioned metric represents the correlation between the 

313 prediction of the model and mask (GT) [35, 36], and indicates the overlap and 

314 union area proportion for the model predicted and mask (GT). 
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315 3 . R e s u l t s a n d d i s c u s s i o n 

316 The proposed neural network models were well trained by processing 70 

317 epochs according to the training/validation loss and accuracy plots (Fig. 7). 

318 To achieve the best training performance and stability, we assume all models 

319 were trained well according to the best-optimized hyperparameter values listed 

320 in Table 1. The best hyperparameter values were achieved by training several 

321 models based on different values of hyperparameters to achieve the best model 

322 performance and training stability. The trained models were evaluated using 

323 a test dataset to assess the performance of the proposed models based on the 

324 metrics written in Eqs. 4-8. 

325 The simple U-Net model had an average computational cost in compari-

326 son with the Residual attention and VGG16-U-Net architecture. However, the 

327 number of the trainable parameters in the Residual attention U-net increased 

328 dramatically because of soft attention and residual mechanism, which cause the 

329 highest computational cost by this architecture. On the other hand, VGG16-

330 U-Net had the lowest number of trainable parameters and, as a result, the 

331 shortest run time because of the structure of this architecture and achieved the 

332 best performance compared with the other two proposed methods (Tab. 2). 
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Figure 7: T h e training loss and accuracy plots for U - N e t (first raw), Residual Attention 

U-Net (second raw), and V G G 1 6 - U - N e t (third raw). 

333 Figure 8 shows the segmentation results achieved by different proposed C N N 

334 architectures. The result of segmentation accomplished by U-Net did not man-

335 age to segment all the water bodies over the test set image and suffered from a 

336 miss segmentation problem (Fig. 8, red circle). The Residual Attention U-Net 

337 segmented the borders of water bodies in complete shape, and the segmenta-

338 tion result was improved in comparison with the simple U-Net. Nevertheless, 

339 the result achieved by Residual Attention U-Net faced the under-segmentation 

340 problems in some water bodies regions to detect and segment some edges as vi-

341 sualized in Fig. 8, green circle. The best performance of the segmentation was 

342 achieved by the VGG16-U-Net method. The result represents a more precise 

343 and accurate segmentation of the water bodies' borders, especially in the edge 

344 region and sensitive areas (Fig. 8, light blue circle). 

345 Table 3 displays the evaluation of different U-Net-based proposed models 

346 with different evaluation metrics using (Eqs. 4-8) as the mean value for all 
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Table 2: C N N ' s architecture trainable parameters and runtimes. 

N e t w o r k name T r a i n i n g t ime T r a i n a b l e parameters 

U - N e t 3:01':47" 31,402,501 

R e s i d u a l A t t e n t i o n U - N e t 4:17':23" 39,090,377 

V G G 1 6 - U - N e t 2:53':19" 25,862,337 

347 the metrics. The simple U-Net achieved the lowest segmentation performance 

348 according to the value of Mean-IoU and other evaluation metrics. The Resid-

349 ual Attention U-Net model represents a more improved segmentation result in 

350 comparison with the U-Net model in terms of the same test set image and 

351 evaluation metric values. In one more step, the segmentation result was fur-

352 ther improved after applying the VGG16 encoder architecture with U-Net as a 

353 hybrid VGG16-U-Net method. 

Table 3: T h e performance of the C N N Models evaluated by the different metrics. Green 

highlighted values indicate the best performance of segmentation according to the reported 

metrics. 

N e t w o r k A c c u r a c y P r e c i s i o n R e c a l l m - I o U m - D i c e 

U - N e t 0.9710 0.9997 0.9709 0.9707 0.9849 

R e s i d u a l A t t e n t i o n U - N e t 0.9852 0.9986 0.9861 0.9848 0.9923 

V G G 1 6 - U - N e t 0.9855 0.9981 0.9869 0.9850 0.9924 

354 The original U-Net architecture is one of the promising semantic segmen-

355 tation methods which have been used in different research fields. The original 

356 U-Net have been selected as first method to implement and apply in our study. 

357 As next phase, we slightly improved the obtained result by modifying the orig-

358 inal U-Net architecture by adding the residual mechanism together with soft 

359 attention mechanism as extension into the original U-Net. At the last step, we 

360 replaced the encoder (feature extraction) part of the U-Net with more powerful 

361 VGG16 architecture to build hybrid C N N architecture with more efficient fea-

362 ture extraction section and compare the obtained result with previous methods 

363 in term of performance and computational costs. 

364 To the best knowledge, there is no similar research that has been done be-
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Figure 8: Result of Segmentation for the U - N e t (the red circle visualises the 

miss-segmentation of water bodies), Residual Attention U - N e t (the green circle visualises the 

under-segmentation issue), and the V G G 1 6 - U - N e t (light blue circle visualises the accurate 

segmentation of the water bodies. T h e size of images is 512 x 512. 

365 fore based on the proposed methods for detecting and segmenting inland water. 

366 However, Some researchers applied different deep learning algorithms to detect 

367 and segment the inland waters. Table 4 represent the comparison of the similar 

368 literature with the proposed methods in this study. Zhong et al. [37] proposed a 

369 noise-cancelling transformer network (NT-Net) for the automatic extraction of 

370 lake water bodies from remote sensing images and resolve the over-segmentation 

371 problem obtained by other literature. The proposed method obtained a 0.862 

372 accuracy value in terms of the IoU metric. Zhang et al. [38] proposed a modi-

373 fied feature extraction network and a modified encoder-decoder network based 

374 on depth-wise separable convolution for segmenting the water bodies. The pro-

375 posed method achieved 0.984 IoU metric accuracy. The authors in [39] proposed 

376 a dense pyramid pooling module (DensePPM) to extract global prior knowledge 
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377 with a dense scale distribution for Segmenting Water Bodies From Aerial Im-

378 ages. The proposed method obtained a 0.842 metric value in terms of the IoU 

379 metric. Chang et al [40] proposed modified U-Net with residual mechanism and 

380 attention mechanism in encoder section based on PMS1 remote sensing data 

381 of GF2 satellite. The authors achieved good result (i.e., IoU =0.9270). Ch et 

382 al. [41] used Sentinel-2 image with two Band3 (Sentinel-2 Green Channel) and 

383 Band8 (Sentinel-2 Infrared Channel) and combined these two channel by follow-

384 ing " N W D I " formula (as described in original paper) to achieve dataset images 

385 and then applied original U-Net architecture to analyse them. The authors 

386 achieved 0.89 of Mean IoU score based on suggested method. 

Table 4 : comparision of the proposed C N N s with other similar literature. T h e highlighted 

Green value represent the highest segmentation accuracy achieved by proposed methods. 

M o d e l s I o U D i c e A c c 

p r o p . U - N e t 0.9707 0.9849 0.9710 

p r o p . R e s i d u a l A t t e n t i o n - U - N e t 0.9848 0.9923 0.9852 

p r o p . V G G 1 6 - U - N e t 0.9850 0.9924 0.9855 

N T - U - N e t [37] 0.862 - -
M o d i f i e d E n c o d e r - D e c o d e r [38] 0.984 - -

D e n s e P P M [39] 0.842 - -

R e s 2 U - N e t [40] 0.9270 - -

R e s N e t 5 0 [18] 0.9781 - -

U - N e t [41] 0.89 - -

387 4 . C o n c l u s i o n s 

388 The efficiency and quality of the segmentation of orbital remote sensing im-

389 ages are the fundamental elements influencing the application of remote sensing 

390 for land cover/use mapping. Image semantic segmentation methods based on 

391 deep learning remarkably eliminated conventional segmentation methods' short-

392 comings (e.g., no distinct segmentation due to complex image background or 

393 many target instances in one image). This paper analyzed and compared three 

394 different deep learning, U-Net-based methods, including simple U-Net, Residual 

395 Attention U-Net, and VGG16-U-Net, to detect and segment inland water bodies 
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396 using high-resolution satellite images. The results of this study indicate that the 

397 U-Net-based algorithms can be employed to inventory inland water bodies fast, 

398 accurately, and inexpensively in terms of computation cost. The results of this 

399 study can pave the way for implementing precision land cover mapping based 

400 on high-resolution satellite imagery by providing an objective, fast, accurate 

401 algorithm for inventorying land covers globally. Therefore, this study can be 

402 extended further to investigate other state-of-the-art deep learning algorithms 

403 also to evaluate them for other types of land cover/use mapping. The code 

404 used in this study is publicly available on our Gitlab repository (https://git.gfz-

405 potsdam.de/ali/remotesensing-hida). 
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Abstract In video-records, objects moving in intracellular regions are often hardly detectable and iden­
tifiable. T o squeeze the information on the intracellular flows, we propose an automatic method of recon­
struction of intracellular flow velocity fields based only on a recorded video of an unstained cell. T h e 
basis of the method is detection of speeded-up robust features ( S U R F ) and assembling them into trajec­
tories. T w o components of motion—direct and Brownian—are separated by an original method based on 
m i n i m u m covariance estimation. T h e Brownian component gives a spatially resolved diffusion coefficient. 
T h e directed component yields a velocity field, and after fitting the vorticity equation, estimation of the 
spatially distributed effective viscosity. T h e method was applied to videos of a human osteoblast and a 
hepatocyte. T h e obtained parameters are i n agreement with the literature data. 

1 Introduction 

A typical bright-field microscopy experiment is time-
lapse recording of a sequence of images. In case of living 
unstained samples, it is little known about structure of 
the observed objects. It is usually possible to discrimi­
nate a cell from its background, find its nucleus, but not 
more [1]. However, the microscopy image is much more 
complicated and one can see motion of some intracellu­
lar structures and movement of small 'particles' inside 
the cell. These objects are extremely diverse in texture 
and shape, frequently do not have sharp boundaries, 
and are mostly too small for identification. 

In this article, we aim to investigate cell rheolog­
ical and microfluidic properties without any a priori 
information about cell structure or composition. There 
are approaches aimed specifically at investigation cell 
flows, e.g., [2], but they require fluorescent labeling and 
a mathematical model of the studied cell. There are 
model-free approaches as well. These are based on cor­
relation computations, e.g., [3], have a solid mathemat­
ical background, and at good conditions and for well-
behaved objects, can deliver good results. But these 
correlation methods suffer from the fact that they can­
not distinguish the points and rely on proximity based 
assignment. As a result, these methods inevitably suf­
fer from error propagation during tracking. Another 
way is to segment some sufficiently large objects and 

a e-mail: lonhus@jcu.cz 
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then track them until they are overlapping, e.g., [4]. 
These methods do not suffer from the error propaga­
tion so much, but require segmentable entities in the cell 
image. Even then, the count of followed objects can be 
too small for flow reconstruction. Moreover, all meth­
ods described above do not address the fact that small 
particles can be susceptible to the Brownian motion. 
All the methods also often assume that the random 
component of motion can be safely neglected. 

The main idea of the method proposed here is track­
ing of identifiable spots inside a cell followed by recon­
struction of local properties of media and fields of veloc­
ities. This approach is similar to two well-known model-
free approaches to the velocity reconstruction such as 
the Particle Image Velocimetry (PIV) [5] and the Par­
ticle Tracking Velocimetry (PVT) [6]. After that, the 
nonlinear optimization of minimum covariance, alter­
nating likelihood fitting, enables us to separate the 
observed motion to components of the Brownian and 
direct flow, respectively, yielding both rectified flows 
and local media properties. 

2 Materials and methods 

To show capacity of the method, we applied it to micro­
scopic image data from time-lapse experiments on live 
human cells of lines MG63 and HepG2. 
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2.1 Cell sample preparation 

A M G 6 3 (human osteosarcoma, Sigma-Aldrich, cat. No. 
86051601) and a HepG2 (human hepatocellular carci­
noma, Sigma-Aldrich, cat. No. 85011430) cell lines were 
grown at low optical density overnight at 37 °C, 5% 
CO2, and 90% R H . The nutrient solution consisted of 
D M E M (87.7%) with high glucose (> 1 g L _ 1 ) , fetal 
bovine serum (10%), antibiotics and antimycotics (1%), 
L-glutamine (1%), and gentamicin (0.3%; all purchased 
from Biowest, Nuaille, France). 

During the microscopy experiments, the M G 6 3 cells 
were maintained in a Petri dish with a cover glass bot­
tom and l id at room temperature of 37 °C. The HepG2 
cells were cultivated in a Bioptechs FCS2 Closed Cham­
ber System at 37 °C (Table 1). 

2.2 Bright-field wide-field video-enhanced 
microscopy 

The living cells were captured using a custom-made 
inverted high-resolved bright-field wide-field light micro­
scopes enabling observation of sub-microscopic objects 
(ICS F F P W , Nove Hrady, Czech Republic): The HepG2 
line was captured by an older type of microscope (so-
called nanoscope, built 2011), whereas the M G 6 3 cell 
line was scanned using a newer type of microscope (so-
called superscope, built 2020). 

The optical path of the both microscopes is very 
simple and starts by a light emitting diode (s) which 
illuminate(s) the sample by series of light flashes (syn­
chronized with a microscope digital camera exposure 
and image saving speed) in a gentle mode and enable 
the video enhancement [4]. In the case maybe, a light 
filter is applied to protect the sample from undesir­
able intensities. After passing through a sample, light 
reaches a Nikon objective. In the nanoscope, a Mitutoyo 
tube lens magnifies and projects the image on a high-
resolved rgb digital camera. A t this total magnification, 
the size of the object projected on the camera pixel is 
under the Abbe diffraction limit, i.e., 32 and 23 nm, 
respectively. The process of capturing the primary sig­
nal was controlled by a custom-made control software. 
In both cases, we performed a time-lapse experiment 
from a compromise focal plane of the cell. The micro­
scope setups differ as written in Table 1. 

2.3 Image preprocessing 

To suppress the image distortions, the microscope opti­
cal path and camera chip was calibrated and the 
obtained time-lapse micrographs were corrected by a 
radiometric approach described in detail in [7]. 

The raw images were recorded in the color preserv­
ing R G B mode when three intensity values (in the red, 
green, and blue image channel) are assigned to each 
image point (pixel). In this color-preserving image rep­
resentation, four camera pixels are always merged in 
a way that the resulting number of the R G B image 
pixels is a quarter (see [8] for details). In other words, 

E u r . Phys . J . Spec. T o p . (2021) 230:1105-1112 

the resulting pixel size is doubled, i.e., 64 nm and 46 
nm, respectively (cf. Table 1). Since all examined fea­
ture detectors work on single-channel images, the R G B 
images were converted to grayscale in the standard 
way (0.2989-i? + 0.5870-G + 0.1140-B, where R, G, 
and B are intensities of pixels in the red, green, and 
blue raw image channel, respectively) [9]. To eliminate 
subtle changes in illumination, the images were robustly 
rescaled to [0..1], after saturating 1% of both the dark­
est and the brightest pixels simultaneously. 

Prior to any tracking, the objects of interest (live 
cells) have to be robustly detected and segmented from 
image background. Therefore, we annotated a few (usu­
ally 1%) images from the sequence visually to interpo­
late contours of the observed cell in the unannotated 
images. For interpolation of the contours, we used a 
weighted mean of strings [10]. After contours were inter­
polated, we applied a non-parametric image deforma­
tion registration [11]. The obtained displacement field 
was employed to compensate position shift between the 
images. 

3 Estimation of intracellular flows 

The algorithm for the estimation of the flows and rhe-
ological parameters in the intracellular environment of 
the unstained cells is showed in Fig. 1 and described in 
detail in the following subsections. The Matlab codes 
and the input and output data are available at the 
Dryad data depository [12]. 

3.1 Feature extraction and tracking 

There are numerous methods, e.g., [13,14], for track­
ing local image features, i.e., feature vectors describing 
special, well-distinguishable image points. These meth­
ods are usually designed to match the same object from 
different views. Our problem is opposite—to match dif­
ferent (but similar) objects from the same view. We 
tested B R I S K [15], O R B [16], M S E R F [17], K A Z E [18], 
M i n E i g [19], and S U R F [20] image features to estimate 
their efficacy (Fig. 2b; see Sect. 3.2 for determination 
of the error in separation of the direct motion from the 
random walk). The S U R F performs the best, followed 
by the M i n E i g . The further analysis showed that the 
S U R F output is much more robust to small changes in 
the image. The S U R F method is based on calculation of 
the Hessian matrix for each pixel of the smoothed (via 
approximated Gaussian smoothing; a box filter with 
kernel 9x9 px and a = 1.2) image separately. The pixels 
whose matrix determinants were maximal were treated 
as the 'points'. A n image pyramid with 3 scales was 
further used. The descriptors themselves were oriented 
Haar wavelets [20]. 

The next step was to track a point through con­
secutive frames. To avoid a computationally intensive 
0(n2) point match (where n is a number of points in an 
image), we used a heuristic approach—the same points 
in consecutive frames should be nearby. A small, ran-
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Table 1 Bright-field wide-field microscopy constructions and setups 

Microscope (cell) Nanoscope (HepG2) Superscope (MG63) 

L E D s 2 x Luminus CSM-360 , 4500 m A 1 x Luminus C F T - 9 0 - W , 40% of 
(59.625 W ) max. intensity 

Light pattern Light 226.1 ms-dark 96.9 ms light 0.2 ms-dark 199.8 ms 
Light filters E d m u n d optics, i . r . 775 nm No 

short-pass, u.v. 450 n m long-pass 
Objective N i k o n L W D 40 x , P h i A D L , 1/1.2. N i k o n C F I Achromat 60 x , N . A . 

N . A . 0.55, W . D . 2.1 m m 0.80, W . D . 0.30 m m 
Tube lens Mitutoyo, 4 X No 
Camera J A I , rgb K o d a k KAI-16000 chip, X imea M X 5 0 0 - C G - C M - X 4 G 2 - F L 

4872 x 3248 px rgb, 7920 x 6004 px 
Camera Bayer mask G B R G B G G R 
Camera exposure 293.6 ms (gain 0, offset 300) 0.2 ms 
P i x e l size 32 nm 23 nm 
Scanning frequency 0.2 fps 5 fps 
Experiment length 2446.869 s 83.2 s 
Cel l cultivation Bioptechs F C S 2 closed chamber Ibidi Li-dish 35 m m , high glass 

system bottom, D I C l id 
N o . of px per cell (2.137 ± 0.048) x 10 6 (5.623 ± 0.084) x 10 5 

N o . of images 473 416 

Image Tracking 

Contrast 
enhancement 

Feature 
detection 

Track 
separation 

Pre-calculated 
error map 

Directed 
motion 

(velocity) 

Random 
motion 

(dispersion) 

^ Velocity fields ^/^/iscosity map 
reconstruction 

_^ Diffusion map 
reconstruction 

calculation 

Results 

F ig . 1 A l g o r i t h m of the method for calculation of the viscosity map and diffusion map of the intracellular environment 

dom, subset of (~ 10) pairs of consecutive images was 
used to estimate the maximal point displacement in 
two images: For each pair of the consecutive frames, we 
found a median of the minimal distances between each 
two points. Then, the resulted effective displacement 
ED was calculated as a mean from all medians of the 
minimal distances. Finally, we assume that the match 
between the points is possible if the distance is smaller 
than 3 • ED. In this way, each point obtained typically 
10-15 possible candidates for tracking in the following 
image, and thus, we effectively reduced feature match­
ing complexity to 0(n) and eliminated the long-range 
matching error. 

The tracking process itself is iterative. At each step 
we classified all detections into two sets: assigned and 
unassigned. To be assigned, a detection in any track had 
to fulfill two criteria—to be spatially close (closer than 
3 average offsets) and feature-wise close (the Euclidean 
distance between the last and the current vector of 
the track has to be smaller than 1). The unassigned 
detection created new tracks. The tracks which were 
not assigned for a longer period than K frames were 
removed. Since the influence of K on quality of the 
final result has not been investigated, we used the safest 
choice of K = 1. 

3.2 Decomposition to direct and Brownian motion 

The segmented trajectories are sets of points in R 2 , 
usually 10-300 points. We assume that the trajectories 
exhibit two simultaneous types of motion—Brownian 
and direct. As widely accepted (the Einstein model), 
the Brownian motion of small particles can be described 
as a Gaussian process with zero mean. To separate the 
components of motion, we used the minimization of a 
maximum differential entropy, which for a multivariate 
normal distribution follows h(x) < \ log det cov(X). In 
this way we proposed a formulation of the separation 
problem as 

Vd = min log |cov(Pn - n V ) | , (1) 
veR2 

where P n is a position of the tracked point in time step 
n and is the searched velocity. Equation 1 can be 
also viewed as direct usage of the minimum covariance 
approach. 

This optimization also gives a corrected (with a com­
pensated drift) set of points from which 'normal' covari­
ance and mean value can be estimated. We chose a 
nonlinear optimization—sequential-quadratic program­
ming [21]—which, in the vicinity of a current point, 
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Fig . 2 a Relative error of 
velocity determination as a 
function of number of 
points i n trajectory and 
ratio between standard 
deviation a and norm of 
the velocity V. b Relative 
error of quality of features 
for feature extraction 
methods 

Relative error of velocity determination Relative error of quality of features 

300 

brisk orb mserf kaze eig 
Fnzziness 

iteratively approximates a nonlinear problem by a 
quadratic one and solves this simpler problem by a QR 
decomposition. This method is not global and relies on 
the initial guess. We used the safest guess—the zero 
velocity—which coincides with the null hypothesis. 

To verify this approach, we performed the following 
numerical experiment (simulation): the most straight­
forward way how to mimic the Brownian motion is the 
random walk, where the steps are drawn from the Gaus­
sian distribution. The simulation itself has two main 
parameters: a number of points JV in a track and fuzzi-
ness y§j, where a is a standard deviation of the Gaus­
sian process N and V is a drift velocity vector. Then, 
the position of the tracked point in time step (n + 1) is 

n + l Pn+V+N(0,a). (2) 

After that, for any random walk with drift, it is pos­
sible to apply the resulted components of the method 
of separation of the direct motion from a random walk 
and evaluate the error Err = ^ j v p ' where R and V is 
the reconstructed and real velocity, respectively. 

Using Eq . 2, we simulated numerous tracks varying 
in the number of time steps (from 8 to 300) and in the 
fuzziness (from 0.01 to 10 discretized into 500 steps). 
The data along all 500 trials were averaged and saved as 
a table (Fig. 2a). B y a 2D bilinear interpolation, it was 
allowed to calculate the error of velocity extraction Err 
from a non-synthetic data. It requires that the velocity 
is both spatially and temporarily constant (along the 
given track) and the observed random motion obeys 
the Gaussian distribution. 

If the data variation is not too high (<t/|V| < 0.1), 
we can carry out a reliable (relative error Err < 0.01) 
extraction of the drift velocity from sets of down to 10 
points. For a higher number of points, the drift velocity 
extraction gives a quite reliable estimation even if the 
standard deviation is much greater than the norm of 
the drift velocity vector. 

Due to absence of the ground truth, there is no way 
how to evaluate quality of the reconstructed flows. But 
quality of the tracks can be evaluated as the mean sepa­
ration error of the tracks. In this way, we compared the 
different feature detectors, defining that a lower recon­

struction error means a better detector (Fig. 2b, more 
above in Sect. 3.1). 

3.3 Reconstruction and analysis of intracellular flows 

The velocities were defined for the most of the tracks. 
Some of the tracks were excluded from the future anal­
ysis due to a high separation error (the threshold value 
was chosen 1). There was no way how to attribute the 
given velocity to the specific position, because we esti­
mated the drift for the whole trajectory. We assumed 
that the drift is constant along the observed positions 
in the trajectory. A l l tracks' velocities were imprinted 
in a single global image of the cell. 

The particles passing through the same point (in 2D 
projection) at the same time can exhibit completely 
different velocities. These velocities have to be sepa­
rated. Since we calculate velocities along the time win­
dow, for each pixel we obtain as many estimations of 
velocities as length of the time window. From these 
different estimations of velocities, we can calculate the 
error of velocity separation Err (see Sect. 3.2). In fol­
lowing statistical analysis, we wil l assign weights to the 
velocities estimated in this time window. Each of this 
weight is complementary to the error of separation, i.e., 
weight = 1 — Err . 

The resulted vector field is sparse. To reconstruct it, 
we used robust splines [22] which minimize the Gener­
alized Cross-Validation ( G C V ) score. This method was 
designed to handle the PIV-type data specifically [23]. 

Eventually, this part of the algorithm produces a 
global velocity field through the whole image series. In 
view of the fact that it is not possible to do any real 
time series analysis, we carried out a quasi-stationary 
window analysis. The reconstruction was performed on 
subsets of frames defined by the time window of the size 
wsize sliding along the whole image sequence. The time 
window is usually too short to give a reliable reconstruc­
tion, and thus, the global flows are used as a guess (with 
dampened weights) proportional to the ratio between 
the window size and the total number of images in the 
series. The resulted velocity field (as a function of the 
sliding window size) is the closest form how we can 
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approximate the real time dependence of the velocity 
field. 

We applied the method to two types of objects—a 
human osteoblast and human hepatocyte observed with 
bright-field microscopy (see Sect. 2). The main output 
of the method is a velocity field and distribution of 
flow speeds (Fig. 3). It is predictable that the intracel­
lular flows in the hepatocyte (a cell with high metabolic 
activity) are much more intense than in the osteoblast. 

3.4 Diffusion and viscosity estimation 

The velocity is informative enough, but it does not char­
acterize the intracellular medium itself. To character­
ize the structure and composition of the medium, some 
hydromechanical constants, namely space-resolved dif­
fusion coefficient and viscosity, must be extracted. 

The separation procedure resulted in the drift-
compensated trajectory (see Sect. 3.2). The most 
straightforward way how to estimate the diffusion coef­
ficient is to use the covariance of derivatives in the ran­
dom walk: 

D = ^ d i a g c o v ^ , (3) 

where T is the time interval between consecutive 
images. Due to presence of derivative in Eq. 3, the dif­
fusion coefficient is invariant to the drift velocity as 
it was supposed to. These diffusion coefficients were 
computed for all eligible (Err < 1) tracks. The field 
of diffusion coefficients was reconstructed in the same 
way as the velocity field, i.e., by a spline minimizing 
the GCV score. The reconstructed diffusion fields and 
distributions can be seen in Fig. 4b, c, f. The values 
of diffusion coefficients are relatively high, presumably 
because both the active and passive diffusion happen 
in the same time and are mutually indistinguishable. 
Essentially, we deal with effective diffusion, and thus, 
the comparison with classical molecular diffusion coeffi­
cients should be done with caution. Since we work with 
a 2D slice of a 3D volume, the value of the derived 
diffusion coefficient should be accurate, assuming its 
isotropy. No additional smoothing of the final data was 
used, except removing 5% of points with the least and 
most intensities, respectively, before reconstruction (to 
eliminate possible influential errors). 

Estimation of the viscosity coefficient is less model-
free and based solely on the quasi-stationary velocity 
field. The kinematic viscosity [24] can be found from 
the vorticity equation for an incompressible, isotropic, 
Stokesian fluid in 2D as 

where u = V x V is the vorticity of the velocity field. 
One issue of this approach is a high, namely the 3rd, 
order of derivatives in the spatial domain. This leads 
to the fact that the calculations will be thus over-
susceptible to small errors. The second issue is pres-
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ence of the time derivative that is absent in the results 
because the analysis is quasi-stationary and the intra­
cellular flows thus depend on the time window. The 
window, which we used in the analysis and was the 
closest to zero, was 7. With decreasing size of the time 
window, the absolute error is increasing due to less rich 
statistics. For all windows from 7 to 71 images (only 
odd numbers are valid as the window size), we calcu­
lated the mean velocity field and mean time deriva­
tive. The distances between windows [w, w+wsize] and 
[w + 1, w + wsize + 1] were assumed 1 frame. But this 
is strictly true only for wsize = 0 and diverges with 
increasing size of wsize. Thus, Eq. 4 was applied to 
each window and then extrapolated to wsize = 0. Due 
to the higher-derivative noise, the ordinary linear fitting 
was not sufficient for the extrapolation. Therefore, we 
had to apply a robust linear fitting [25] with bi-square 
weights, which gave stable results without necessity of 
any additional data smoothing (Fig. 4a, d, e). 
The obtained values of viscosity are in agreement with 
some literature data [26]. Nevertheless, some literature 
sources report much lower viscosities [27]. It can be 
explained by the fact that the definitions of viscosity 
at the microlevel are very vague, the relevant values 
of viscosity then depend frequently on the method of 
their acquisition, and thus, the real values of viscosity 
can vary. Again, we work with a single plane of a 3D 
object, and thus, diffusion and convection along the z 
axis is neglected. Therefore, it is more correct to call 
the variable derived here as effective viscosity. 

4 Discussion 

In this paper, we deal with the total, complex, evalua­
tion of the intracellular flows but the origin of the intra­
cellular flows remains an open question. We can observe 
visually that these flows do not coincide with specific 
object motions. In most cases, it is nearly shapeless dis­
turbance in the intracellular medium which is moving, 
sometimes we deal with small particles or vesicles. We 
do not speculate nature of these objects or nature of 
their motion and rather try to analyze it. 

The main assumption for the flow analysis is that the 
tracked entities are driven by two forces—the Brown-
ian and direct motion—which are related to both some 
global intracellular flow (if exists) and a specific locomo­
tion. The reconstructed flows seem not to be any con­
sequence of the changes in the cell borders but rather 
some intrinsic phenomena. In an effort to interpret the 
results from the biological point of view, we chose two 
very mutually different kinds of cells—osteoblast (bone 
cell, low mobility, and low metabolism) and hepatocyte 
(liver cell, medium mobility, and intense metabolism). 

There are no literature data about such intracel­
lular velocities but, at least, their distributions fol­
low a general meaning of cell physiology—more intense 
metabolism coincides with a higher mean and median 
of the velocity (Fig. 3). To compare the results of the 
described method with other methods, we estimated 
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F ig . 3 T h e reconstructed 
global velocity field for a 
hepatocyte (a) and 
osteoblast (c). The 
corresponding velocity 
frequency histograms are 
shown i n panel (b) 

F ig . 4 T h e maps of 
intracellular effective 
diffusion and viscosity 
coefficients for a 
hepatocyte (c, d) and 
osteoblast (a, b). The 
relevant frequency 
histograms of the viscosity 
and diffusion coefficients 
are i n panels (e, f) 
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the hydromechanical parameters of the intracellular 
medium. The proposed separation procedure yields a 
local standard deviation of the random walk-like pro­
cess, which can be naturally converted to a effective 
diffusion coefficient (Fig. 4b, c). But any comparison 
with other results is complicated, because most of the 
diffusion coefficients are determined for molecules but 
we presumably observe motion of larger intracellular 
structures. 

The obtained effective diffusion coefficients are in the 
range 10~ 1 0-10~ 8 m 2 s _ 1 and correspond to values for 
particles in liquids [28]. The resulted coefficients may be 
related to both active and passive diffusion. Namely, the 
diffusion map of the osteoblast is very inhomogeneous 
but this has no relation to the velocity distribution (cf. 
hepatocyte in Figs. 3b and 4f). In the osteoblast's inte­
rior, there are two sites with very high diffusion coeffi­
cients (likely active diffusion) and the central region of 
low diffusion. This central region roughly corresponds 
to the position of nucleus (as guessed from the typical 
structure of osteoblasts; in the raw images, nucleus is 

not observed at all, because the microscope was focused 
on the cell surface). 

The kinematic viscosities for both cells are in the 
range 5-50 cSt, which is comparable with palm oil and 
other viscous substances. The dispersion of viscosity for 
the osteoblast is much higher, but there is no much 
explanation for this. The resulted viscosity fields are 
quite noisy, since the numerical estimation of the 3rd 
derivative is a quite sensitive process. Surprisingly, the 
values are meaningful even without advanced smooth­
ing. However, for in-depth analysis of the maps, we 
definitely need a more sophisticated processing. How­
ever, we observe only a planar slice of a 3D system 
and the equations here were derived for 2D. Thus, the 
obtained viscosity is rather effective than true, physi­
cal. Nevertheless, it is possible to compare the values 
of this quasi-viscosity between similar experiments; or 
do extensive validation and find a correction factor to 
obtain real kinematic viscosity and conditions, where 
such a explicit continuous mapping exists. Despite all 
the facts, a single plane derived viscosity has a reason-
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able scaling, and thus, may be compared with other 
viscosities, but with caution. 

The main advantage of the intracellular rheology 
estimation method described in this paper is its sim­
plicity. As seen in this paper, the algorithm works 
with time-lapse image series of unstained living cells 
in any bright-field microscope (we show independent 
results for time-lapse series from two different bright-
field microscopes, see Sect. 2). Nevertheless, let us note 
that this method can be applied in analysis of fluo­
rescent image data. If applied, the complete analysis of 
flows in the stained living cells would be simplified com­
pared to the bright-field data (due to a lower number 
of the possibly detected and tracked points and their 
identification). However, the biological relevance of such 
results is debatable, since the fluorophores can be cyto­
toxic and can completely change cell metabolism and 
dynamics. Thus, only autofluorescence plays an impor­
tant and obvious role in interpretation of the intracel­
lular dynamics. 

In addition, the algorithm described here does not 
require any a priori given constant or assumptions 
about processes in the sample. Moreover, we have 
studied only one semi-tomographic slice of an active, 
unstained, 3D object, which can make the biologically 
relevant interpretation even more tricky. At least we 
know that the described values are sufficiently stable, 
and therefore, can be used for cell characterization. 
The conducted experiments are rather illustrative than 
explorative. We have not so far dealt with linking the 
results to biology but, compared with the literature, 
e.g., [27,29,30], they seem to be promising. 

5 Conclusions 

Better understanding of a cell behavior is one of the 
major task of modern biology and key to very impor­
tant technologies such as growing artificial tissues and 
organs, or fighting against cancer. In such challenging 
tasks, biologists will need as many reinforcements as 
possible. In addition, this method, among others, is 
aimed to bring physicists, data scientists, and mathe­
maticians to life sciences; and make a shortcut between 
classical, wet, biology and formidable machinery of 
modern data explanatory analysis and machine learn­
ing. Therefore, the approach is quite minimalistic. For 
application, one needs only a video with living cells and 
knowledge of a camera sensor geometrical size. The out­
puts of the method are physically understandable and 
interpretable parameters. But the origin of such flows 
and the overall cell fluid dynamics is a different story, 
and hopefully, will be solved in the meantime. 
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AI i GHAZNAVI 
Artificial Intelligence Engineer, Data Scientist 

% www.linkedin.com/in/ali-ghaznavi-727297145/ 
D +420 775 698 858 @ a.ghaznavi@outlook.com 
9 798/19, Studentská 20, Ceske Budějovice, Czech Republic 
O github.com/AliGhaznavil986 Gf Researchgate 

mm 

Data scientist and computer programmer, with a various experience in predictive modelling and data analysis in business and scien­
tific domain. I have leverage knowledge in image analytic based on my PhD research and studies in Al. Highly skilled in in different 
disciplines including deep neural network, machine learning, image processing, remote sensing and data visualization. Very eagerto 
expand my knowledge in artificial intelligence fields to pursue my professional career by researching and working in this interesting 
fields. 

1 8 * E D U C A T I O N 

2019-2023 PhD student in Biophysics, University of South Bohemia, Czech Republic - Will graduate till 26 of June 
2023 
Thesis Title : Cell segmentation from wide-field light microscopy images using different variant of CNNs. 
Supervisor: Prof. Daliborstys 

2013-2016 M.Sc. in Artificial Intelligence, Azad Qazvin University, Qazvin, Iran 
Total GPA: 15.60 /20 
Thesis Title : Image object retrieval based on optimized representation extracted from region base visual 
and textual feature - Grade : 17.5 /20 
Supervisor: Dr. Amir Masoud Eftekhari 

2006-2012 B.Sc. in Computer Software Engineering, Payam Noor University, Parand, Iran, 
Total GPA: 16.74 /20 
Thesis Title : Research based on RFID systems - Grade : 20 /20 
Supervisor: Dr. Mostafa Kishani 

111 P R O F E S S I O N A L E X P E R I E N C E 

May 2022 
February 2022 

December 2022 

September 2022 

Data analysis, B O S C H C O M P A N Y , Ceske Budejocie, Czech Republic 
> Data analysis with regression methods 
> Binary classification 
> Applied deep learning methods for regression and classification model training 
> Develop and implement algorithms based on Python platform with Keras and Tensorflow 

Machine learning |[ Deep learning l [A l | ( logistic regression]] TensorFlow ](lKeras )[Scikit- learn ][ data transforming ] 

Visiting Researcher under HiDA data science fellowship program, GFZ G E R M A N R E S E A R C H C E N T R E FOR 

G E O S C I E N C E S , P O T S D A M , Germany 
> Satellite data analysis 
> Remote Sensing data validation 
> Applied Machine/hybrid deep learning methods for mapping global inland waters studies 
> Develop and implement algorithms based on Python platform with Keras and Tensorflow 

Image processing Machine learning Deep learning CNN Al Inland Water detection and segmentat ion TensorFlow 

[ Keras ](~Scikit-learn j f O p e n C V ][~SQr|( Google Earth engine ] 

January 2022 
October 2021 

PhD Internship as Researcher, GFZ G E R M A N R E S E A R C H C E N T R E FOR G E O S C I E N C E S , P O T S D A M , Germany 
> Principal Investigator in EJP-STEROPES 
> Remote sensing data analysis 
> Quantification of soil organic carbon using stacked auto-encoderfeatu re extraction and deep learning 

techniques 
> Develop and implement algorithms based on Python platform with Keras and Tensorflow 

Signal processing Soi l Organic Carbon Monitor ing Machine learning Deep learning Al TensorFlow Keras FCN 

Auto Encoders ! C N N )( svm ][ random fores t ' 
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Present 

February 2019 

Research assistant and lab technician - part time | Institute of Complex systems, UNIVERSITY OF 

S O U T H B O H E M I A IN C E S K E B U D E J O V I C E , Czech Republic 
> Application of image processing and machine learning in transmitted bright-field microscopy images 
> Cell and tissue detection and semantic segmentation 
> Applied Deep learning methods in bright field microscopy images 
> Unique bright field microscopy dataset labeling and preparation 
> Develop and implement method for single class semantic and instance Hela living cell segmentation 

from transmitted bright-field microscopy images 
Image processing Machine learning Deep learning Model deve lopment U-Net Data handl ing 

Residual Attention U-Net TensorFlow Keras Google Colab 

July 2022 

May 2022 

Summer School supervisor | Institute of Complex systems, UNIVERSITY O F S O U T H B O H E M I A IN C E S K E 

B U D Ě J O V I C E , Czech Republic 
> application of Deep learning methods in reflective bright-field microscopy images 
> Categorical cell segmentation 
> Multi class data set labeling and preparation 
> Develop and implement deep learning method for Multi class MG63 living cell segmentation from 

reflective bright-field microscopy images 
Machine learning Deep learning Model deve lopment Data handl ing ResNet U-Net Vgg l9 Inception Python 

Keras TensorFlow 

October 2018 
September 2016 

Data Specialist, M A N D O C O M P A N Y , Tehran, Iran 
> Classifying and analysing datasets related with Auto Industry companies with Machine Learning; 

Data Mining Modeling, Regression and Classification methods. 
Data Mining Regression Machine learning Data handl ing SPSS Matlab 

and 

Januaray 2016 
Januaray 2013 

Computer Software Engineer | Paliz Sanat Pars Company, T E H R A N , A L B O R Z , Iran 
> Collaborating with senior engineers to establish projects goal and deadlines. 
> Programming solution, troubleshooting and developing and debugging the scripts based on the Py­

thon and MATLAB programming language 
Image processing Matlab Programming Supervise and unsupervise learning Data mining IBM SPSS 

S P U B L I C A T I O N S 

2022 Ghaznavi, A., Rychtariková, R.,Saberioon, M., Stys, D.:Cell segmentation from telecentric bright-field trans­
mitted light microscopic images using a Residual Attention U-Net: a case study on HeLa line. Computers 
in Biology and Medicine. D? 10.1016/j.compbiomed.2022.105805 

2020 Lonhus, K., Rychtariková, R., Ghaznavi, A., Stys, D: Estimation of rheological para meters for unstained living 
cells. The European physical journal special topics - 2021. C 10.1140/epjs/sll734-021-00084-2 

Per-Review Ghaznavi, A, Rychtariková, R., Cisar P., Ziaei M.M., Stys, D .:Hybrid deep-learning multi-class segmenta­
tion of HeLa cells in reflected light microscopy images. Under review at Biomedical Signal Processing and 
Control. 

Per-Review Ghaznavi, A, Saberioon, M, Brom j, Itzerott, S .:Comparative Performance Ana lysis of simple U-Net, Residual 
Attention U-Net, and VGG16-U-Netfor Inventory Inland Water Bodies. In review at Remote Sensing, MDPI. 

Per-Review Mohammadmehdi Saberioon, Asa Gholizadeh, Ali Ghaznavi, Sabine ChabriHat, Kathrin J. Ward,:Soil or­
ganic carbon modeling using open-access soil spectroscopy libraries and machine learning algorithms. 
Under review at Computers and Electronics in Agriculture. 

Publication D? Researchgate 
available: 
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L A N G U A G E S </> P R O G R A M M I N G L A N G U A G E S 

Persian > Python (Since 2019) 

Turkish • • • • • > MATLAB (Since 2014) 
English • • • • o > IBM SPSS (Since 2015) 

Czech • o o o o > Shell (Since 2022) 
German • o o o o 

</> R E S E A R C H INTERESTS </> S K I L L S A N D P A C K A G E 

> Machine learning 
> Deep Neural Networks (DNN) 
> ComputerVision 
> Object detection and segmentation 
> Remote Sensing data analysis 
> Data Visualization 
> Fuzzy Systems 
> Statistical Data analysis 
> Big Data Analytics 
> Information and Image Retrieval 
> IBM Bioinformatics 
> google map engine 

> Python 
> Matlab 
> TensorFlow-Keras 
> Scikit-learn 
> OpenCv 
> Pandas 
> SciPy 
> Google Colab 
> PyTourch 
> AWS 
> Git 
> Big Data 

¥ H O N O R S A N D A W A R D S 

2022 

2021 

2016 
2013 

Recipient of HiDAdata science Helm holtz Visiting Researcher fellowship grant from Helm holtz Centre Pots­
dam - GFZ German Research Centre for Geosciences, Germany 
Recipient of fellowship for PhD internship from Helmholtz Centre Potsdam - GFZ German Research Centre 
for Geosciences, Germany 
Outstanding student research from Azad Qazvin University (QIAU), Iran 
Rank 2 6 t h among 2400 in university entrance exam for Master Degree program, Qazvin Azad University 
(QIAU), Iran 

DATASET 

2022 Ghaznavi A., Rychtarikova R., Saberioon M., Stys D. Telecentric bright-field transmitted light microscopic 
dataset. 
12? datadryad Repo. 

£ 6 R E F E R E N C E S 

Prof. RNDr. Dalibor stys, CSc. 
University of South Bohemia, 

@ stys@frov.jcu.cz 
V. +420 38 777 3843 

Dr. Mohammadmehdi Saberioon 
GFZ German Research Centre for Geosciences, 

@ mohammadmehdi.saberioon@gfz-potsdam.de 
V. +49 331 288-27539 
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