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1.  Abstract 

Duplex sequencing overcomes limitations of conventional next-generation sequencing by 

tagging DNA molecules with double-stranded tags, which allows the detection of ultra-rare 

mutations that occur in less than 1% of cells. This method creates single-stranded 

consensus sequences (SSCSs) from the reads, which then form duplex consensus 

sequences (DCSs) that requires a large sequence coverage. In addition, during consensus 

assembly we are able to identify that a large part of the sequencing data is lost. We describe 

a new approach for the analysis of duplex sequencing data that focuses on improving the 

PE-reads/SSCS/DCS ratios and represents the data in a graphical way. First, we calculated 

the Hamming distance between the tags to distinguish whether similar tags truly stem from 

different molecules or occurred due to sequencing or PCR errors and, then we evaluated the 

effect of mismatch correction in the tag. Additionally, we showed the distribution of family 

sizes in order to identify any bias between forward and reverse strands during amplification, 

that could contribute to wasted sequencing capacities. Moreover, we developed a new 

approach for detecting chimeric reads, which are formed when two or more molecules are 

joined together during PCR. Our results have shown that allowing mismatches in the tags 

recovered a large amount of data and improved the SSCS/DCS ratio. Families that were only 

split due to sequencing errors in their tags were grouped together. Furthermore, our tools 

identified successfully chimeric reads (~28%) in the sequencing data. Fortunately, 80% of 

them occurred as singletons and would be filtered out during further data analysis. Analysing 

only those tags, which form DCSs, suggested that probably most of them originated from 

different molecules and only few of them occurred as chimeras. Finally, we were able identify 

different sources of read loss in the formation of DCSs and during trimming which has 

allowed the recovery of some of the sequencing data. All introduced tools can be used from 

the command line but can also be found in the Galaxy system. 
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2.  Introduction 

Next-generation sequencing (NGS) has become now routine in sequencing millions of 

nucleotides and in detecting mutations in a whole genome. These methods use data from 

single-stranded DNA fragments, but the high error rate (one false base call in 100-1,000 

nucleotides) limits the detection of rare mutations that occur in fewer than 5% of the cells. 

Low frequency mutations, which are present in less than 1% of cells, can be identified with a 

high read depth in the sequencing run, however, this makes it difficult to identify true 

variations from false-positives. (Kennedy et al., 2014) Therefore, most human studies, limit 

the genetic information only to a small fraction when using high-throughput sequencing. The 

mutations may be present in these samples at lower frequencies than the error rate itself. 

(Lou et al., 2013) To overcome these high error rates, molecular tagging of single-stranded 

DNA before amplification allows the reduction of false-positives, but errors in the first rounds 

of PCR cannot be corrected. (Kennedy et al., 2014; Schmitt et al., 2015) A highly sensitive 

method, like droplet digital PCR, allows to check each polymorphic site at high sensitivity. 

However, the disadvantage of such technology is, that the sequence information needs to be 

known a priori since this technology does not retrieve sequence information. (Stoler, 

Arbeithuber, Guiblet, Makova, & Nekrutenko, 2016) 

2.1.  Concept of duplex sequencing  

Duplex sequencing helps to understand biological substructures and to identify generation of 

mutations and rare variants, and this method plays also a major role in offering diagnostic 

accuracy required in precision medicine. (Fox, Reid-Bayliss, Emond, & Loeb, 2014) 

Limitations in sequencing single-stranded molecules can be overcome as DNA is double 

stranded. Duplex sequencing can identify and correct sequencing errors because it 

compares the sequence of tagged DNA fragments from one strand with the other part of the 

double stranded DNA fragment. (Schmitt et al., 2012) Primary advantage of duplex 

sequencing is the detection of single mutations among <10-7 sequenced nucleotides. 

(Kennedy et al., 2014) In comparison, the probability of detecting a true mutation with NGS is 

50% with an error rate of 10-2. Thus, duplex sequencing increases the power and precision of 

high-throughput sequencing. (Fox et al., 2014) But due to its unique sensitivity, that detects 

mutations at ultra-low frequencies, the method is very costly. Duplex sequencing requires a 

much higher sequencing capacity than NGS to produce an appropriate sequencing 

coverage. (Kennedy et al., 2014) 
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This method uses unique tags to label each DNA fragment and can trace every PCR product 

back to its original fragment. Before amplification, each fragment is tagged by a random 

complementary dsDNA on both ends of the molecule. (Kennedy et al., 2014) Afterwards the 

reads are sorted by their tag into families, which are then categorized by their direction 

(forward and reverse reads) and grouped on the basis that the tags of two families match. 

Next, the reads of a family are aligned to themselves, which results in single-stranded 

consensus sequences (SSCSs). At this stage, sequence variants can be identified, because 

they are present in all reads and came from a single molecule; whereas, sequencing and 

amplification errors result as polymorphism within a family, since they are only to some 

degree within a family. 

Afterwards, the SCSSs from the paired families are compared and a duplex consensus 

sequence (DCS) is generated and aligned to the reference genome to call the mutations. 

PCR errors from first rounds of amplification, which are still present in one of the SSCSs, can 

be identified and removed because they do not appear in both SSCSs. Mutations are 

considered as true mutations if they are present in both SSCSs; whereas, other sequence 

variants are probably sequencing or PCR errors. (Stoler et al., 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Concept of Duplex Sequencing   
(a) The duplex sequencing adapter consists of a random double-stranded tag. (b) The adapters are ligated 
on both ends of the DNA fragment and the tagged DNA samples are amplified which gives two related, but 

distinct PCR products. The reads are then sorted by their unique tags and grouped into αβ or βα families. (c) 
Next, each family is aligned and the SSCSs are formed and mutations (green dots), sequencing (blue or 

purple dots) or PCR errors (brown dots) can be identified. In this step, only sequencing errors can be 
removed, but not PCR errors. Finally, the SSCSs of both strands are grouped and the DCS is generated. 

Only mutations, which are present in both SSCSs, remain until this final step, whereas PCR errors are 
eliminated. (Kennedy et al., 2014) 

Figure is adapted from (Kennedy, Salk, Schmitt, & Loeb, 2013) 
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2.1.  Problems of duplex sequencing data 

Duplex sequencing aims to produce an equal ratio of 2:1 between SSCSs and DCS, but 

more importantly to recover a substantial amount of DCSs from a certain number of reads. 

However, in reality, it is nearly impossible to produce equal amounts of SSCSs and DCSs. It 

could happen that not both strands of the molecule are amplified, but only forward or reverse 

strand. Also, in the final step where the SSCSs are combined to DCSs, the number of useful 

sequences is reduced. In theory, three reads per family are required to align them, but if 

there is a mutation present in one of the tags within a family, the read will be discarded. Due 

to this, it could happen that the family does not have enough reads and no SSCS is formed. 

Hence, no DCS is formed and the ratio between SSCSs and DCSs will deteriorate. (Kennedy 

et al., 2014) 

Furthermore, a problem of duplex sequencing is the generation of chimeric products during 

amplification. Chimeras may result in genetic mixing, which then produces diversities new to 

the original sample and the detection of chimeric reads from real sequences remains a 

widespread problem. Several studies indicate that 30% of PCR products might occur as 

artificial chimeras. (Smyth et al., 2010) Highly similar sequences form most likely chimeras, 

which are highly difficult to remove from the data. (Smyth et al., 2010)  

 

These artifacts can be produced (Kanagawa, 2003) 

§ from an incomplete extended primer:  
A chimeric product is being 

created, when an incomplete 

extended molecule acts as a 

primer and anneals to closely 

related templates. This kind of 

mechanism occurs during later 

stages of PCR. Since the amount 

of primers, which were 

incompletely extended, is too high 

and they can compete against the 

original primer during annealing. 

The frequency of chimeric reads 

can be limited by reducing the 

number of cycles during PCR.  

 

 

 

 
 

 

Figure 2: Chimeric reads formation 
Chimeras are produced from fragments of various 
templates. A molecule was not fully extended and 
will act as a primer for a different template, which 

results in the formation of a chimeric read. 
Figure is adapted from (Fichot, 2013) 
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§ by template switching: 
During extension, the extended strand switches from the original template to a 

sequence that has annealed toward the 3’ end of the DNA fragment and leads to the 

formation of a chimeric read. When the extension of the primer gets close to the 

binding site of the other template, the process may become less efficient in this 

region and the primer switches the template. Higher temperatures during extension 

and a higher amount of repeated sequences favours the creation of chimeric reads. 

The binding of base pairs is less stable at higher temperatures and the 3’ end from 

the extending strand becomes more easily free.  

 

My Bachelor thesis focuses on these major problems of duplex sequencing by helping to 

understand the sequencing data and to find possible solutions for improving the amplification 

and sequencing protocol. We have developed new tools, that support the user to improve the 

ratio between SSCSs and DCSs. The main approach was to infer information about the tags 

by introducing a similarity measure. The Hamming distance quantifies similarity or 

dissimilarity between two DNA sequences of equal length by calculating the number of 

differences between them. (Wang, Kao, & Hsiao, 2015)  

 

!",$ = 	'()"* 	≠ )$*,	
-

*./

 

so that Di,j is the number of sites where Xi match and Xj do not match, 

k is the index of a particular site from a total number of sites n. 

(Pinheiro, de Souza Pinheiro, & Sen, 2005) 

 

This analysis was also performed with various tag lengths and only with tags, that form 

DCSs, to see if sequencing errors are filtered out during data analysis. In addition, the 

calculation of the Hamming distance can also be used to identify chimeric reads from real 

molecules. Since the loss of a huge amount of data is the main problem of duplex 

sequencing, tags obtained during different stages of the analysis have been represented by 

their family sizes. Finally, a graphic output was implemented to show the tag’s family sizes 

and their Hamming distances. 
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3.  Materials 

The data in this report was obtained during the project by Prof. Tiemann-Boege and her 

research group at the Institute of Biophysics (Johannes-Kepler University, Linz), which 

focuses on the detection of selfish mutations in human sperm cells using duplex sequencing. 

Many mutations in humans are derived from transmissions of parents to their children. But 

also many affected individuals arise in each generation by inheriting de novo mutations. 

(Arnheim & Calabrese, 2009) Selfish mutations are de novo mutations, which have gain-of-

function properties, that are under positive selection which leads to the expansion of mutant 

clones over time. These mutations are associated with paternal age effect (PAE) disorders, 

which means that the incidence rate of the mutations in the children increases with the age of 

the father. (Maher, Goriely, & Wilkie, 2014) Those mutations mostly originate in the father’s 

germline, because there are more division after puberty in men than women. (Arnheim & 

Calabrese, 2009) Some disorders caused by these selfish mutations are achondroplasia, 

Apert, Noonan and Costello syndrome. The analysis of sperm DNA confirmed that these 

paternal age effect mutations are present above the mutation rate in most men. Selfish 

mutations from the male germline arise 1000-fold more frequently than the expected 

mutation rate. The selfish mutation rate lies at ~10-5 which is still too low for conventional 

NGS. (Maher et al., 2014)  

 

This thesis includes the analysis of one library with tags labelling the sequencing reads for 

demonstrating the results of our developed algorithms. The tools expect the sequencing data 

with all tags before the alignment to the SSCSs. The input data should be in tabular format 

with information about family sizes, the tags itself and directions of the strands in which PCR 

was performed (ab = forward or ba = reverse strands). For analysing the read loss during 

data analysis, an additional text file with all tags, that were aligned to the reference genome 

and the regions of the reference genome, and FASTA files with tags after the formation of 

DCSs and after trimming are required.  

 

 

 

 

 

 

 

 



 

May 23, 2018 Heinzl Monika  10/38 

4.  Methods 

4.1.  Distribution of family sizes 

At the beginning of the analysis of the sequencing data, the family sizes, which specify the 

number of reads per family, were graphically represented in a histogram. This family size 

distribution gives information about three important features of the sequencing data: 

§ Since by default three reads per family are required for the alignment to SSCSs, 

families with less than three members are ignored during the formation of the DCSs 

and useful sequencing data is lost during the data analysis. We show the number of 

singletons (=families with only one member), which gives an idea of how much data 

might be lost at the beginning of the analysis.  

§ Next, the existence of any bias during the formation of the reverse and forward 

strands and the amount of possible DCSs have been obtained by splitting the tags 

into three groups:  

¨ tags of forward reads (ab) with no partner,  

¨ tags of reverse reads (ba) with no partner and  

¨ tags of reads which form a DCS.  

§ Finally, the quantities of large families have been investigated, because they cause a 

waste of sequencing capacities. Families with too many reads form only few SSCSs 

and therefore less DCSs are created.  

4.2.  Calculation of Hamming distances 

The second approach of my thesis includes the distinction, whether tags came from different 

molecules or from the same molecule but with sequencing errors or PCR errors in the tag, by 

calculating the Hamming distance. Since the whole dataset contained more than one million 

tags, the comparison of all tags would be computationally too demanding and would take a 

couple of days. Therefore, we parallelized the algorithms and sampled 1,000 tags and then 

compared them to the whole dataset to estimate the minimum Hamming distance between 

tags. We were able to verify that a sample of 1,000 tags gives an estimate for the whole 

dataset by calculating the Hamming distance for a sample of 10,000 and ~130,000 tags 

(supplementary material figure 1). We know that one duplex tag consists of 24 nucleotides, 

which gives 424 unique tags for labelling the molecules (figure 2). Since we have more 

possible tags than molecules, it is very unlikely that multiple molecules will share the same 

tags. Therefore, small Hamming distances occur very unlikely per chance and indicate 

sequencing or PCR errors.  
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Results
To improve the sensitivity of variant detection by next-generation
DNA sequencing, we designed an alternative approach to library
preparation and analysis that we term Duplex Sequencing. The
method entails tagging both strands of duplexDNAwith a random,
yet complementary double-stranded nucleotide sequence, which
we refer to as a Duplex Tag. Double-stranded tag sequences are
incorporated into standard Illumina sequencing adapters by first
introducing a single-stranded randomized nucleotide sequence into
one adapter strand and then extending the opposite strand with
a DNA polymerase to yield a complementary, double-stranded tag
(Fig. 1A). Following ligation of tagged adapters to sheared DNA,
the individually labeled strands are PCR amplified from asym-
metric primer sites on the adapter tails (Fig. 1B) and subjected to
paired-end sequencing. Every PCR duplicate that arises from
a single strand of DNAwill carry the original strand’s tag sequence.
Owing to the complementary nature of the Duplex Tags on the two
strands, each strand in a DNA duplex pair generates a distinct, yet
related, population of PCR duplicates. Comparing the sequence
obtained from each of the two strands in a duplex facilitates dif-
ferentiation of sequencing errors from true mutations: when an
apparentmutation is, in fact, due to a PCR or sequencing error, the
substitution will only be seen on a single strand. In contrast, with
a true DNAmutation, complementary substitutions will be present
on both strands.
During the PCR amplification step after tagging, many duplicate

“families” of molecules are created, each of which arose from
a single strand of an individual DNA molecule. After sequencing,
members of each PCR family are identified and grouped by virtue

of sharing an identical tag sequence (Fig. 1C). The sequences of
uniquely tagged PCR duplicates are then compared to create
a PCR consensus sequence. Only PCR families consisting of at
least three duplicates and yielding the same sequence in at least
90% of the members at a given position are used to create the
consensus sequence. This step filters out random errors introduced
during sequencing or PCR to yield a set of sequences, each of which
derives from an individual molecule of single-stranded DNA. We
refer to these as single strand consensus sequences (SSCSs).
Next, sequences belonging to the two complementary strands of

each DNA duplex are identified by searching for complementary
tag sequences among SSCS reads. Specifically, a 24-nucleotide tag
sequence consists of two 12-nucleotide sequences at each end of
the molecule that can be designated α and β. For a tag of form αβ
in read 1, the opposite strand’s tag will be of form βα in read 2.
Following partnering of the two strands, the sequences of the
strands are compared. A sequence base at a given position is kept
only if the read data from each of the two strands matches per-
fectly. A detailed illustration of the approach is provided in SI
Materials and Methods. Comparing the sequences obtained from
both strands eliminates errors introduced during the first round of
PCR where an artifactual mutation may be propagated to all PCR
duplicates of one strand and would not be removed by SSCS fil-
tering alone. We refer to the resulting high-confidence sequences
of individual DNA duplex molecules as duplex consensus
sequences (DCSs).

Duplex Sequencing of M13 DNA. To establish the sensitivity of
Duplex Sequencing, we first applied the method to M13mp2
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Fig. 1. Overview of Duplex Sequencing. (A) Adapter synthesis. A double-stranded, randomized Duplex Tag sequence is appended to a sequencing adapter by
copying a degenerate sequence in one strand of the adapter with DNA polymerase. Complete adapter A-tailing is ensured by extended incubation with
polymerase and dATP. (B) Duplex Sequencing workflow. Sheared, T-tailed double-stranded DNA is ligated to A-tailed adapters. Because every adapter contains
a Duplex Tag on each end, every DNA fragment becomes labeled with two distinct tag sequences (arbitrarily designated α and β in the single fragment shown).
PCR amplificationwith primers containing Illuminaflow-cell–compatible tails is carried out to generate families of PCR duplicates. Two types of PCR products are
produced from each DNA fragment. Those derived from one strand will have the α tag sequence adjacent to flow cell sequence 1 and the β tag sequence
adjacent to flow cell sequence 2. PCR products originating from the complementary strand are labeled reciprocally. (C) Error correction. (i–iii) Sequence reads
sharing a unique set of tags are grouped into paired families with members having strand identifiers in either the αβ or βα orientation. Each family pair reflects
the amplification of one double-stranded DNA fragment. (i) Mutations (colored spots) present in only one or a few family members represent sequencing
mistakes or PCR-introduced errors occurring late in amplification. (ii) Mutations occurring in many or all members of one family in a pair arise from PCR errors
during the first round of amplification such as might occur when copying across sites of mutagenic DNA damage. (iii) True mutations (green) present on both
strands of a DNA fragment appear in all members of a family pair. Whereas artifactual mutations may co-occur in a family pair with a true mutation, all except
those arising during the first round of PCR amplification can be independently identified and discounted when producing (iv) an error-corrected single-strand
consensus sequence (SSCS). The sequences obtained from each of the two strands of an individual DNA duplex can then be compared to obtain (v) the duplex
consensus sequence (DCS), which eliminates remaining errors that occurred during the first round of PCR.
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4.2.1.  Analysis of shorter tag lengths 

The effect of shorter tags on the Hamming distance was tested by splitting the tags from its 

original length in half and shortening the halves to the desired length. The flanking regions 

may contain many repetitions, therefore the nucleotides at the end of each adapter (‘a’ and 

‘b’) were skipped until the specified length of the tag was reached (figure 4). In this analysis 

we have used tag lengths of 13nt+13nt, 12nt+12nt, 10nt+10nt, 8nt+8nt and 6nt+6nt.  

 

     a    b 

 

   AA AAAGGTTT CA  TG ATTAACGT TT 
 
 
 

          12 nt           12 nt 

 
 
 
 
 
 
 
 
 
 

Figure 3: Schematic of a DNA fragment with ligated adapters  
The adapters consist of a fixed number of nucleotides and are ligated 
to the DNA fragment on both ends. In our data, adapters with a length 
of 12 nucleotides were used, which should result in 424 unique tags to 

characterize ~1 million DNA fragments.  
Figure is adapted from (Schmitt et al., 2012) 

Figure 4: Workflow for shortening the tags 
This is an example for shortening a tag with 24 nucleotides to 16 

nucleotides. The tags were split into 2 halves (a and b) and the flanking 
regions of both halves will be skipped until the desired length for the 
whole tag is reached. Only the part of the tag, which is highlighted in 

yellow, is kept in the analysis. 
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4.2.1.  Detection of chimeric reads 

For identifying chimeric reads in the dataset, the Hamming distances of both halves of the 

tag were calculated. We have developed a method which is looking at the minimum 

Hamming distances of the individual parts of the tag and not at the minimum Hamming 

distance of the whole tag. First, each tag was split into its halves (‘a’ and ‘b’) and then we 

calculated the Hamming distance for the first part of the tag (‘a’) and looked for the minimum 

value afterwards. Since one tag can have multiple tags with the same Hamming distance in 

the dataset, the resulting sample size is much larger than initially selected. The Hamming 

distance for the second part of the tag (‘b’) was calculated by comparing the ‘b’ part of the 

sample to all tags with the same minimum Hamming distance of the first part. Finally, the 

same process was repeated starting with the second part of the tag to identify all possible 

chimeras.  

 

Chimeric reads have normally very different Hamming distances within the tag and therefore, 

we suspected, that the absolute difference between those Hamming distances should be 

very large, which would make it possible to identify chimeras from real molecules. But at this 

point, we cannot tell for sure if the identified molecules are true chimeras, because we do not 

know whether the difference originates due to a low and a very large Hamming distance in 

both parts or one part of the tag is completely identical (HD=0) to a second molecule, which 

would represent a chimera. Therefore, we calculated the relative difference (=relative delta) 

by dividing the absolute difference by the sum of the Hamming distances of both halves.  

 

Finally, the data can be grouped into three categories: 

I. In theory, a low relative delta means that larger total Hamming distances were almost 

equal split up into partial Hamming distances. This case would be expected, if all tags 

have originated from different molecules (figure 5a).  

II. Higher relative differences occurred either by a low total Hamming distance, which 

identifies tags that originated due to sequencing errors, and/or large absolute 

differences, that detects possible artificially introduced chimeras. (figure 5b).  

III. Finally, true chimeric reads can be distinguished from true molecules since one of the 

parts is identical to another half, which occurs very unlikely per chance (figure 5c) 
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        a small relative delta <= 0.5: 01233	24053678	98372
32:;8	75723	<=

≤ 0.5  

     B
C
= 0.2      molecule  

     e.g. HDa = 3 and HDb = 5 in the tag 

 

        b large relative delta > 0.5: 01233	24053678	98372
01233		75723	<=

> 0.5  

     F
G
= 0.67  

e.g. HDa = 1 and HDb = 4 in the tag  molecule 

or  

     32:;8	24053678	98372
32:;8	75723	<=

> 0.5    chimera

    

     J/
JK
= 0.71 

e.g. HDa  = 2 and HDb = 12 in the tag 

 

        c relative delta = 1  2M053678	98372
	75723	<=

= 1  

     JB
JB
= 1      chimera 

e.g. HDa = 12 and HDb = 0 in the tag 

 
 
 
 
 
 
 

4.4 Analysis of tags forming DCSs 

The Hamming distance analysis can also be applied only on tags, which form DCSs later. 

The tags were filtered and only those tags, which occur twice in the dataset and have at least 

a family size of three, were kept. We were able to infer whether the DCSs originated from 

different molecules or were split into multiple families due to sequencing errors or PCR 

errors. Furthermore, we wanted to analyze where DCSs are lost during the bioinformatic 

mutation detection with the duNovo pipeline which was described here 

https://github.com/galaxyproject/dunovo/wiki.  
 

 

 

Figure 5: Formula for calculating the relative difference between the Hamming distances 
The delta difference is estimated by dividing the absolute difference (=delta) between the HDs by the sum of 
the partial HDs. A small relative delta (<=0.5) indicates an equal distribution of the total Hamming distance 

between both parts of the tag, whereas a high relative delta (>0.5) might show chimeras formed during 
amplification or true molecules. Chimeras can be very likely detected if one half of the tag is identical with 
another half, but the second half is very different to the rest. This kind of tags can be identified when the 

relative delta equals exactly to 1.   
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4.5 Detection of read loss during data analysis 

We have stated in the beginning, that a lot of tags are lost during data analysis, but until now 

we were not able to see in which step of the analysis this happens. Possible reasons for data 

loss are small family sizes, reads with bad quality scores or too short read lengths after 

trimming. However, it is possible to fetch the data with the tags from various stages of the 

analysis and those datasets can be plotted in histogram with the read’s family sizes. The 

different datasets were selected from the duNovo Galaxy pipeline which is used for reference 

free mutation calling of duplex sequencing data and includes the alignment of tags to SSCS, 

formation of DCSs and the actual mutation calling process. (Stoler et al., 2016) The most 

important steps, in which a lot of tags might be lost, are the alignment to SSCSs, the 

alignment to DCSs, trimming and the alignment to the reference genome. 
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5.  Results 

5.1.  Representation of family sizes  

In figure 6, the original tags of all SSCSs were grouped by their read family sizes and colored 

by their direction in which the strands were produced during PCR. We used this kind of 

distribution to see the grouping of reads into families and if there is any bias between the 

strands. 

 

The plot suggests, that forward and reverse strands were almost equally amplified across all 

family sizes. The maximum number of reads within a family was very high (FS=206), but the 

family size distribution has shown, that the amount of families with more than 20 reads has 

contributed very little to our data (1.4%). The strands were separated after their direction and 

Figure 6: Family size distribution  
The family sizes were separated after families that have only a forward (ab), reverse (ba) or both strands 

(duplex = DCS). Similar amounts of forward and reverse strands were recovered, which means that there was 
no strand bias in the formation of the SSCSs. In addition, families with large sizes (>20) contributed very little 
to the data. In theory, high amounts of SSCSs and DCSs should be produced. But in reality, only a small part 
of SSCSs formed DCSs (~9%) and most of the families are singletons (40%), which will cause a huge loss of 

useful sequencing data. 
 

0 mismatches 
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a b

formation to DCS, which was expressed in total percentages and unique percentages. Since 

we were calculating the total numbers by counting both strands of the DCS and the unique 

numbers consist only of a single forward or reverse strand of the DCS, the percentages of 

the unique numbers are lower than the total numbers. But in the best case, only 9% of the 

SSCSs were present in both directions, which represent the DCSs (red part of the bars), and 

single forward and reverse strands contribute each with ~45% to all tags. As shown below, 

allowing mismatches in the tags can recover some singletons and merge them with their 

original family.  

5.1.  Calculation of Hamming distance of the tags 

Next, we calculated the Hamming distance to measure the similarity between the tag of the 

dataset. First, we verified, that a sample of 1,000 tags is a representative sample for all tags 

of the data (supplementary material figure 1). Then the Hamming distance between 1,000 

tags and the whole dataset was calculated to analyze the tags in detail. The minimum 

Hamming distances for each tag were graphically represented either as a histogram 

categorized after the family sizes or in a family size distribution separated by the Hamming 

distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Hamming distance analysis of tags 
The Hamming distance was calculated for a subset of 1,000 randomly selected tags vs. all tags in the dataset. 

Afterwards the minimum value for each tag in the sample was calculated. The figure shows two possible ways to 
represent the Hamming distances: (a) Histogram with the Hamming distance, that is separated after the family 

sizes. 29.5% of the tags differ only by one nucleotide from the rest, which is very unlikely and, therefore, 
originated due to sequencing errors within the tags. Whereas high Hamming distances indicate, that the tags 

truly came from different molecules. (b) Family size distribution separated after the Hamming distances. Not only 
small Hamming distances contribute to the singletons, which can be recovered by mismatch correction, but also 
high Hamming distances (up to 8 mismatches), which indicate that the tags came from different molecules and 

are not different due to sequencing errors. 
 



 

May 23, 2018 Heinzl Monika  17/38 

Most of our tags differed with at least five to eight nucleotides to the rest, but a big 

percentage of the tags differed by only one nucleotide (figure 7a). In addition, about half of 

the singletons differed by one to three mismatches, whereas larger family sizes consist of 

tags with bigger Hamming distances (figure 7b). Smaller Hamming distances are indicative of 

sequencing or PCR errors in the tags that cause families to be split up. These reads can be 

put into their original families by mismatch correction, which is described in detail in the next 

section.  

5.1.1.  Mismatch correction recovers tags with small family sizes 

Mismatch correction recovers some of these reads by allowing mismatches in the tags and 

places the reads in other families, which in turn increases the sizes of some families, but 

reduces the number of different tags / families in the whole dataset.  

In the protocol used for the data, one, two or three mismatches were allowed in the tags and 

the effects of mismatch correction can be observed in figure 9 on the Hamming distances of 

a sample of 1,000 and in figure 8 on the whole dataset. Allowing mismatches in the tag has 

reduced the number of singletons that would be lost in further steps of the analysis and has 

placed them mostly into families with at least seven and more members. The fraction of 

singletons has dropped over 10 percent, when comparing the dataset before mismatch 

correction (~39%) with after mismatch correction, where three mismatches have been 

allowed (~27%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Family size distribution of the whole dataset with mismatch correction  
The figure shows the family sizes of the whole dataset with no, one, two or three mismatches allowed in the 

tags. Allowing mismatches reduced the number of small families, especially the singletons (FS=1, from 
38.7% to 26.7%), but increased the number of larger families with at least 7 members (FS>=7).  
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Overview of DCSs and SSCSs in the data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Overview of DCSs and SSCSs in the data 

In this table, the fractions of SSCSs with no partner sequence in both direction of amplification and the DCSs are 
shown. Before mismatch correction only 9.2% of the data formed DCSs, whereas after allowing three mismatches 

the DCSs have raised to 14.4%.  

The numbers in table 1 and table 2 allow all family sizes in the SSCSs, because we wanted 

to estimate the highest possible amount of DCSs without filtering the SSCSs after their family 

sizes. Since the number of singletons decreased with mismatch correction, the ratios 

between SSCSs and DCSs has improved too, when allowing all family sizes (FS>=1) in the 

alignment. Before mismatch correction only 9.2% of the strands formed DCSs, but if we 

would allow one, two or three mismatches in the tag, 14% of the SSCSs could form duplex 

sequences.  

 

 

 

 

DCS (FS >= 1) 

 nr. of duplex rel. frequency 

without MM correction 110,149 9.2% 

1 MM 116,091 11.6% 

2 MMs 124,293 12.7% 

3 MMs 

 

136,240 14.4% 

 

SSCS without partner (FS >= 1) 

 nr. of ab strands rel. frequency 

without MM correction 548,245 45.7% 

1 MM 446,798 44.6% 

2 MMs 429,128 44% 

3 MMs 410,785 43.2% 

 nr. of ba strands rel. frequency 

without MM correction 541,439 45.1% 

1 MM 439,808 43.9% 

2 MMs 422,018 43.3% 

3 MMs 403,377 42.4% 
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Ratios between SSCSs and DCSs 

Without mismatch correction, the ratios between SSCSs and DCSs were far too high (~12). 

After allowing three mismatches the ratios decreased from 12 to 8, but still they were four 

times higher than the optimal ratio (table 2).  

 

5.1.1.  Effect of tag length on Hamming distance 

Usually, tags with a length of 2*12 nucleotides are used in duplex sequencing. Here, we 

have tested the effect of shorter and longer lengths of tags on the Hamming distance (figure 

10). The following tag lengths were tested: 2*6nt, 2*8nt, 2*10nt, 2*12nt and 2*13nt resulting 

in a total length of 12nt, 16nt, 20nt, 24nt, 26nt, respectively. The data did not allow any 

mismatch in the tag, since this experiment was simulated only in silico by selecting a subset 

from the whole tag and mismatch correction is usually performed on the whole tag. 

Therefore, we are not interested in the effect of mismatch correction on a shorter tag length. 

The experiment for testing the tags with 26nt was obtained from the laboratory, therefore, the 

sizes of the datasets might vary.  

 

The results showed that a shorter tag length (length=12nt, length=16nt, length=20nt) resulted 

in a much smaller minimal Hamming distance (HD=1-2, HD=4-5, figure 10). Whereas bigger 

Hamming distances (HD=6-7, HD=6-8) were estimated from the experiments with longer 

tags (length=24nt, length=26nt, figure 10). Very short tags with a total length of 12 

nucleotides have Hamming distances of one or two (HD=1-2). Therefore, tags with small 

Hamming distances in one of its halves (if tag length is 2*12nt) are not unusual and can arise 

by chance.  

 DCS*2 SSCS Ratio SSCS/DCS 

without MM correction 220,298 1,089,684 11.9 

1 MM 232,182 886,606 9.6 

2 MMs 248,586 851,147 8.8 

3 MMs 272,480 814,162 8 

optimum 1 2 2 

Table 2: Ratios between SSCSs and DCSs 

The ratios in this table were estimated by dividing the SSCSs through the DCSs. The ratio should be around 2 but 
can only be achieved in a sequencing run with no errors in the tag and successful amplification of both strands. 
After mismatch correction, the ratio of our data was reduced from 11.9 to 8, but still exceeds the optimal ratio.  
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5.1.2.  Analysis of chimeric reads 

The halves of the tags in the test data consisted of 12nt, therefore, we expected the same 

results as in section 5.1.1, where we used a total tag length of 2*6nt. Reasons for differences 

between the results are caused due to amplification errors, sequencing errors or the 

formation of chimeric reads. We developed algorithms for detecting tags of chimeric reads in 

the data by using the Hamming distance of both halves in the tag (figure 11). More tags 

(n=12,474 and n=13,840) than specified in the beginning (n=1000) resulted from this 

analysis, because each tag in the sample can have multiple tags with the minimum Hamming 

distance in the whole dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The grey bars (‘a’ + ‘b’ halves) in the plot indicate the sum of Hamming distances from both 

halves of the tag, whereas orange (part ‘a’) and blue (part ‘b’) bars show the Hamming 

distances of the halves. The tags were selected based on the minimum Hamming distance of 

the individual halves, which in turn gives much smaller Hamming distances (HD=0-2) in one 

part and very high Hamming distances in the second half (HD=8-10). In other words, the blue 

bars with the smaller Hamming distance and the red bars with the larger Hamming distances 

form one whole tag with an overall Hamming distance and vice versa. The results showed 

that without mismatch correction a lot of tags with Hamming distances of zero in one half 

resulted from the analysis. Whereas the plots with mismatch correction suggested that the 

number of halves with zero Hamming distance was reduced but Hamming distances of two 

and larger was increased in both halves. 

 

0 mismatches 3 mismatches

Figure 11: Hamming distances of both parts of the tag 
The left plot does not include any mismatch correction, whereas the right plot allows three mismatches. The 

sample sizes (n=12,474 and n=13,904) are much larger than specified in the beginning (n=1,000), since one tag 
can have multiple tags with the same minimum Hamming distance. The Hamming distances of the halves (each 

with 12 nucleotides) of the tags were calculated (blue and orange). One half has a much smaller Hamming 
distance than the other half, because we were looking for minimum Hamming distance of the half, that we had 

started the analysis with.  
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Next, the difference between the Hamming distance of both halves was calculated 

(=absolute delta HD). In figure 12, we can already see, that most of our tags were composed 

of very different halves (delta=7-9 with 0 and 3 mismatches). We suspect, that tags with 

differences of 11 or 12 were artificially introduced by the means of chimeric reads. Very large 

differences indicated completely different halves within one tag. However, this measure was 

not very informative regarding the distribution of the Hamming distances within the tag. Thus, 

we calculated the relative difference (relative delta Hamming distance) by dividing the 

absolute difference by the sum of Hamming distances of both halves (=total Hamming 

distance).    

 

 

 

 

 

 

 

 

 

 

Figure 12: Absolute difference between the Hamming distances within the tag 
The histograms contain the absolute differences between the Hamming distances of both halves of the tag. The 
sample sizes (n=12,474 and n=13,904) are much larger than specified in the beginning (n=1,000), since one tag 

can have multiple tags with the same minimum Hamming distance. Large differences indicate an unequal 
splitting of the whole Hamming distance. Differences of 12 are very unlikely to occur per chance and therefore, 

might be a sign for chimeric reads produced during PCR. 

0 mismatches 3 mismatches
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Figure 13: Relative difference between the Hamming distances within the tag 
(a) Histogram of the relative differences between the Hamming distances. Differences greater or equal than 0.5 
might indicate chimeric reads but can also be true molecules. Whereas a relative difference of 1 are very likely 

chimeric reads. In those tags one half is identical to another half (HD=0) and the other part is completely different 
to the rest.  

(b) Family size distribution separated by the relative difference: Most of the singletons have a high relative 
difference and might indicate chimeric reads, but fortunately they will be filtered out of the dataset later. 

The sample sizes (n=12,474 and n=13,904) are much larger than specified in the beginning (n=1,000), since one 
tag can have multiple tags with the same minimum Hamming distance. 

 

0 mismatches 3 mismatches

a
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0 mismatches 3 mismatches

Most of our tags in our sample had a very large relative difference (delta=0.6-0.8). About 

28% of our tags without mismatch correction were composed of one completely identical half 

(HD=0) and one completely different half resulting in a relative difference of one. After 

allowing three mismatches this percentage drops to ~21% (figure 13). In both cases, the 

singletons, which are skipped later when forming the DCSs, contributed most to the tags with 

a relative difference of more than 0.5. But still some families with larger sizes have a high 

relative difference (>0.5). 

 

Finally, we analyzed those tags with a relative difference of one in figure 14 in more detail by 

calculating the Hamming distance of the non-identical half, which will represent the total 

Hamming distance of the whole tag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Without mismatch correction a lot of tags had very small Hamming distances (HD=1 in 16.7% 

of tags with one identical half), which will explain the high fraction of tags with a Hamming 

distance of one in the data, where we analyzed the whole tag. But still most of the tags had 

very large Hamming distances. In other words, one half had a Hamming distance of zero 

whereas the other half had a very large Hamming distance (HD=8-10). Most of those tags 

(~83%) with one identical half had a family size of one (figure 15) and therefore, do not 

contribute to DCSs when at least three reads per family are required. 

 

Figure 14: Hamming distances of the chimeric reads 
The tags in these plots represent the fraction of tags, where the relative difference is one (0MMs: nr of 

tag=3,450, 3MMs: nr. of tags=2,775). Tags, which indicate chimeric reads, have one identical half (HD=0), 
whereas the other half is completely different to the rest (HD=8-11). Mismatch correction reduces the fraction 

of tags which occurred due to sequencing errors in the tag. Especially the tags with 0-3 mismatches 
completely vanished from the dataset.  
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0 mismatches 3 mismatches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.3 Analysis of tags forming DCSs 

Usually, DCSs are comprised of two identical tags from a forward and reverse strand with a 

family size of at least three reads. In order to find out whether the errors mentioned above 

are also present in the final DCSs, we performed the Hamming distance analysis for the 

whole tag (24nt), its family size distribution and the Hamming distance of the individual 

halves within the tags only for those tags that can form DCSs. Figures 16-18 contain the 

forward and reverse strands of the DCSs. Both strands have equal Hamming distances, 

since the tag is the same, but the family sizes can differ between the strands. Mismatch 

correction for three mismatches produced the best results for the whole dataset, therefore 

the analysis was performed on the dataset, where three mismatches have been allowed. 

 

 

 

 

 

 

 

 

 

  

Figure 15: Family size distribution of chimeric reads 
The family sizes of the chimeric reads are represented in a histogram. Most of the chimeras are singletons, 
which are filtered out of the dataset, when forming the SSCSs, because at least tags with family sizes of 3 

reads are required by default.  
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All families with less than three members are not part of the analysis, but most of the tags 

had family sizes larger than five (figure 16b) and the sample tags differed with around seven 

to nine nucleotides to the rest (HD=7-9, figure 16a). Therefore, most of the erroneous tags 

were filtered out during data analysis and the remaining tags of the DCSs stem from different 

molecules. Additionally, we were interested if there is still a problem with chimeric reads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Hamming distance analysis of DCSs 
Only tags (n=67,786), which form DCSs, were used for this analysis and were compared against all of them 

(n=67,786).  
(a) The Hamming distances are mostly between 7 and 9, they very likely originated from different molecules and 

are not different due to errors in the tag. (b) Since by default a minimal family size of 3 is required, smaller 
family sizes cannot be observed. 

Figure 17: Hamming distances within the tags of DCSs 
The Hamming distances of both halves of the tag were individually calculated (blue and orange). The total number 

of tags (n=576,524) in this analysis is much higher than initially specified (n=67,786), since one tag can have 
multiple tags with the same minimum Hamming distance. The grey bars represent the sum of the Hamming 

distances of both halves. Hamming distances of zero are very rare in DCSs. But still, there are a lot of tags with 
small Hamming distances (HD=1-3) in only one part of the half. 
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The Hamming distances for both parts of the tags were calculated. Compared to the whole 

dataset, very few halves of the tag were identical to each other (HD=0), but rather differed 

with two to three nucleotides (HD=2-3) in one half and eight to ten nucleotides (HD=8-10) in 

the other part. As expected, the sum of the partial Hamming distances in the figure 17 shifted 

to much higher values than the total minimum Hamming distance of the whole tag (figure 7a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The left plot (figure 18a) shows the absolute differences between the Hamming distances of 

both halves of the tag. We can already see very large differences (HD=11-12), which are a 

typical sign for chimeric reads, almost disappeared from the data with tags of DCSs. For 

verifying the identity of chimeric reads, the right plot (figure 18b) shows the relative 

differences where the fraction of chimeras has dropped to 0.2% of the data.  

 

 

 

 

 

 

 

Figure 18: Absolute and relative differences of tags of DCSs 
The total number of tags (n=576,524) in this analysis is much higher than initially specified (n=67,786), since one 

tag can have multiple tags with the same minimum Hamming distance. a) Absolute differences between the 
halves of tags of DCSs: Differences of 11-12, which might indicate chimeric reads, occur very rarely in DCSs.  

(b) For verifying the chimeric reads, the relative differences were calculated. Only 0.2% of the DCSs are 
chimeric reads, because they have a relative difference of 1, which means one half of the tag has a Hamming 

distance of zero. 
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5.4 Analysis of read loss during the Galaxy pipeline 

The distribution of family sizes contains all original tags before the alignment to the SSCSs, 

after the alignment to the DCS, after trimming and after the alignment to the reference 

genome. The reads were trimmed at their 3’ end and based on the frequency of filter bases, 

which were defined in the experimental protocol. Reads with less than 200 nucleotides were 

omitted from the further analysis and only kept if both strands of the DCS reached the 

specified read length. Figure 19 contains the data, where three mismatches have been 

allowed, and both family sizes of reverse and forward strand, whereas the total numbers 

below the plot indicate the single counts of the DCS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The numbers before alignment to SSCSs have been calculated by our programs, which 

search for all tags that have a duplicate in the dataset and have at least a family size of 

three. If we compare these values to the numbers obtained after the alignment to the DCSs, 

then, as expected, both counts agree. However, the numbers of the tags aligned to the 

reference genome was reduced to ~41,000 tags, which means that 26,519 tags were lost 

during the trimming step. 

 

 

Figure 19: Analysis of read loss 
Family size distribution with various stages of the analysis with correction for 3 mismatches: The datasets were 
obtained before the alignment to SSCSs, after the alignment to DCSs, after trimming and after the alignment to 

the reference genome. The plot contains both counts of forward and reverse strand, whereas the numbers 
below represent the single count of the DCS. Most of data has been filtered out during the formation of DCSs 

and during trimming. 
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Therefore, we adapted the minimal read length parameter of the duNovo Galaxy pipeline 

(Stoler et al., 2016) to reduce the number of filtered reads. 

 

Comparison of trimming parameters 

 
Table 3: Effect of various trimming parameters on data loss 

The read length specified during trimming were changed from 200nt to 36nt. Stringent filtering with long reads 
leads to read loss of ~20,000 families. If we also allow shorter reads in our data, more data can be recovered. The 

family size distribution with the new trimming parameters can be found in the Supplementary Material Figure 2.  
 

As table 3 shows, many reads were lost due to a short read length after trimming. When 

setting the minimal read length to 36nt, only 504 tags were filtered out. In sum, approximately 

784 tags instead of more than 26,519 tags were lost during data analysis with the new 

trimming parameters. However, if we compare the original numbers of tags (~950,000 tags) 

to the final number of tags, which were aligned to reference genome, only approx. 7% of the 

tags (~67,000 tags) could be recovered throughout the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 read length = 200 read length = 36 

total nr. of tags 950,402 950,402 

before alignment to SSCSs with FS>= 3 67,786 67,786 

make DCS 67,786 67,786 

after trimming 41,460 67,282 

after alignment to reference genome 41,267 67,002 
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6.   Discussion 

The calculation of the Hamming distances between the tags which label the DNA fragments 

and the distribution of their family sizes give various insights into the duplex sequencing data.  

At first, were able to see in the distribution of family sizes that there was no bias towards any 

direction of the reads during amplification. Furthermore, the frequency of large families is 

small enough, so that we do not waste a lot of sequencing capacities. 

The family size distribution showed that the majority of read families are singletons. Since by 

default three reads per family are required to form SSCSs and later on DCSs, a lot of data is 

lost. In addition to the singletons, unique SSCSs are ignored in the further analysis, because 

they cannot form a DCS. (Stoler et al., 2016) The optimal ratio between SSCSs and DCSs is 

2:1 but in our data we achieved only a 12:1 ratio. This ratio is an indication that a huge 

amount of data is lost during data analysis because many SSCSs are only present in either 

forward or reverse direction and therefore cannot form DCSs. We suspect that these unique 

SSCSs were introduced either due to errors in the tags or failure to amplify the other strand.  

 

Second, we analysed the tags in more detail by calculating the Hamming distances between 

the tags. Since we have far more unique tags than molecules to label for, it is expected that 

the tags differ with multiple nucleotides to each other if they originated from different 

molecules. The Hamming distance analysis verified this conclusion, since mainly larger 

Hamming distances (HD=5-7) occurred in the sequencing data. But also, about 30% of the 

data differed by only nucleotide to the rest. We expect that these are due to sequencing 

errors or PCR errors, therefore mismatch correction for up to three mismatches should be 

save and can be applied on further data analyses. However, mismatch correction with four or 

more mismatches should be avoided, because they might already represent different 

molecules.  

The distribution of family sizes has shown that many singletons differed by only one 

nucleotide but allowing up to three mismatches in the tag moved small families with up to 

three members into larger families. Although mismatch correction reduced the number of 

singletons, not all of them have been recovered but we were able to decrease the ratio 

between SSCSs and DCSs to 8:1. 

 

Third, we investigated the effect of the tag length on the Hamming distance. Shorter tags 

(2*6nt, 2*8nt) resulted in smaller Hamming distances than longer tags. Therefore, for shorter 

tags we cannot be sure whether tags with small Hamming distances have originated from 

sequencing errors in the tags. Although longer tags achieved higher Hamming distances, 

typically tags with a length of 2*12 nucleotides are used in order to limit expenses.  
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The formation of chimeric reads is a known problem in sequencing millions of DNA 

fragments. For detecting chimeric reads, the fourth analysis comprised calculating the 

Hamming distance in both halves of the tags separately. The Hamming distances showed 

that many tags differ only in one half to other tags, but the second half is identical, which is 

very unlikely to occur by chance. Sources for these tags are either chimeric reads or 

sequencing error in one part of the tag. The data after mismatch correction suggested that 

only few of those tags have been corrected by allowing three mismatches in the tag because 

they are a result of artificially produced chimeras. Those chimeric reads usually have tags 

with very large differences (up to 11 or 12 nucleotides) between the partial Hamming 

distances. Relative differences of one between the partial Hamming distances indicate that 

almost 28% of the tags are very likely chimeric reads. This effect was probably introduced 

due to errors during adapter synthesis or jumping PCR. Additionally, there were a lot of tags 

with a high relative difference, which indicates tags, where the total Hamming distance was 

not split up equally into partial Hamming distances. Our analysis of shorter tags showed that 

minimal Hamming distance of one or two is common for tags with a length of 12 nucleotides. 

Therefore, we cannot identify those tags as chimeras, because they still might originate from 

different molecules. However, most of the chimeras in the data were singletons, which might 

explain the high fraction of singletons in the whole sample.  

 

The original analysis was based on a sample of the whole dataset, not regarding whether the 

families would finally end up in DCSs. Our results of the fifth analysis showed tags that are 

part of a DCS have only high Hamming distances which indicates that they all stem from 

different molecules and were not split up due to sequencing or PCR errors in the tags. In 

addition, the DCSs were composed of only 0.2% artificially produced chimeras.  

 

Due to high amounts of singletons in the duplex sequencing data, a huge number of SSCSs, 

which might represent potential sequences for the DCSs, are lost. However, the final 

analysis showed that also in later stages in the data analysis like trimming or alignment to the 

reference genome many more tags are filtered out due to low quality reads or too short read 

lengths. By adapting the trimming parameters, we were able to recover ~26,000 tags which 

means that 2.8 % more DCSs that can be used for the final mutation detection. From this 

point of view, we cannot recover more tags of the dataset bioinformatically and the 

experimental protocol should be revised and adapted accordingly. 

 

Finally, all developed programs were made accessible through the Galaxy system to provide 

the tools for a high number of potential users, but they can also be used via the command 

line (https://github.com/monikaheinzl/galaxyProject).  
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7.  Conclusion   

Duplex sequencing allows the identification of ultra-low frequency mutations, but this method 

produces a lot of families with only one read. These singletons will not be used in the 

formation of DCSs and a huge amount of useful data is lost during the analysis. Our 

developed tools introduce an effective approach for analysing duplex sequencing data. The 

calculation of the Hamming distance allowed us to identify tags which were produced due to 

sequencing errors. Although mismatch correction reduced the errors in the tags and 

increased the tag’s family sizes, not all of the tags were recovered. Our new approaches can 

also be used to identify chimeric reads in the data, which have been introduced due to PCR 

errors. Fortunately, most of these tags were filtered out during data analysis, therefore 

probably no sequencing errors and very few chimeric reads might be aligned to DCSs. Our 

methods helped to identify where the data might be lost in the process of data analysis, 

which in turn helps to improve the conditions of data analysis. All tools, that have been used 

in this thesis, can be found in the Galaxy system but can also be used from the command 

line. 
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