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1. Abstract

Duplex sequencing overcomes limitations of conventional next-generation sequencing by
tagging DNA molecules with double-stranded tags, which allows the detection of ultra-rare
mutations that occur in less than 1% of cells. This method creates single-stranded
consensus sequences (SSCSs) from the reads, which then form duplex consensus
sequences (DCSs) that requires a large sequence coverage. In addition, during consensus
assembly we are able to identify that a large part of the sequencing data is lost. We describe
a new approach for the analysis of duplex sequencing data that focuses on improving the
PE-reads/SSCS/DCS ratios and represents the data in a graphical way. First, we calculated
the Hamming distance between the tags to distinguish whether similar tags truly stem from
different molecules or occurred due to sequencing or PCR errors and, then we evaluated the
effect of mismatch correction in the tag. Additionally, we showed the distribution of family
sizes in order to identify any bias between forward and reverse strands during amplification,
that could contribute to wasted sequencing capacities. Moreover, we developed a new
approach for detecting chimeric reads, which are formed when two or more molecules are
joined together during PCR. Our results have shown that allowing mismatches in the tags
recovered a large amount of data and improved the SSCS/DCS ratio. Families that were only
split due to sequencing errors in their tags were grouped together. Furthermore, our tools
identified successfully chimeric reads (~28%) in the sequencing data. Fortunately, 80% of
them occurred as singletons and would be filtered out during further data analysis. Analysing
only those tags, which form DCSs, suggested that probably most of them originated from
different molecules and only few of them occurred as chimeras. Finally, we were able identify
different sources of read loss in the formation of DCSs and during trimming which has
allowed the recovery of some of the sequencing data. All introduced tools can be used from

the command line but can also be found in the Galaxy system.
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2. Introduction

Next-generation sequencing (NGS) has become now routine in sequencing millions of
nucleotides and in detecting mutations in a whole genome. These methods use data from
single-stranded DNA fragments, but the high error rate (one false base call in 100-1,000
nucleotides) limits the detection of rare mutations that occur in fewer than 5% of the cells.
Low frequency mutations, which are present in less than 1% of cells, can be identified with a
high read depth in the sequencing run, however, this makes it difficult to identify true
variations from false-positives. (Kennedy et al., 2014) Therefore, most human studies, limit
the genetic information only to a small fraction when using high-throughput sequencing. The
mutations may be present in these samples at lower frequencies than the error rate itself.
(Lou et al., 2013) To overcome these high error rates, molecular tagging of single-stranded
DNA before amplification allows the reduction of false-positives, but errors in the first rounds
of PCR cannot be corrected. (Kennedy et al., 2014; Schmitt et al., 2015) A highly sensitive
method, like droplet digital PCR, allows to check each polymorphic site at high sensitivity.
However, the disadvantage of such technology is, that the sequence information needs to be
known a priori since this technology does not retrieve sequence information. (Stoler,
Arbeithuber, Guiblet, Makova, & Nekrutenko, 2016)

2.1. Concept of duplex sequencing

Duplex sequencing helps to understand biological substructures and to identify generation of
mutations and rare variants, and this method plays also a major role in offering diagnostic
accuracy required in precision medicine. (Fox, Reid-Bayliss, Emond, & Loeb, 2014)
Limitations in sequencing single-stranded molecules can be overcome as DNA is double
stranded. Duplex sequencing can identify and correct sequencing errors because it
compares the sequence of tagged DNA fragments from one strand with the other part of the
double stranded DNA fragment. (Schmitt et al., 2012) Primary advantage of duplex
sequencing is the detection of single mutations among <107 sequenced nucleotides.
(Kennedy et al., 2014) In comparison, the probability of detecting a true mutation with NGS is
50% with an error rate of 102. Thus, duplex sequencing increases the power and precision of
high-throughput sequencing. (Fox et al., 2014) But due to its unique sensitivity, that detects
mutations at ultra-low frequencies, the method is very costly. Duplex sequencing requires a
much higher sequencing capacity than NGS to produce an appropriate sequencing

coverage. (Kennedy et al., 2014)
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This method uses unique tags to label each DNA fragment and can trace every PCR product
back to its original fragment. Before amplification, each fragment is tagged by a random
complementary dsDNA on both ends of the molecule. (Kennedy et al., 2014) Afterwards the
reads are sorted by their tag into families, which are then categorized by their direction
(forward and reverse reads) and grouped on the basis that the tags of two families match.
Next, the reads of a family are aligned to themselves, which results in single-stranded
consensus sequences (SSCSs). At this stage, sequence variants can be identified, because
they are present in all reads and came from a single molecule; whereas, sequencing and
amplification errors result as polymorphism within a family, since they are only to some
degree within a family.

Afterwards, the SCSSs from the paired families are compared and a duplex consensus
sequence (DCS) is generated and aligned to the reference genome to call the mutations.
PCR errors from first rounds of amplification, which are still present in one of the SSCSs, can
be identified and removed because they do not appear in both SSCSs. Mutations are
considered as true mutations if they are present in both SSCSs; whereas, other sequence

variants are probably sequencing or PCR errors. (Stoler et al., 2016)
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Figure 1: Concept of Duplex Sequencing

(a) The duplex sequencing adapter consists of a random double-stranded tag. (b) The adapters are ligated
on both ends of the DNA fragment and the tagged DNA samples are amplified which gives two related, but
distinct PCR products. The reads are then sorted by their unique tags and grouped into a8 or Ba families. (c)
Next, each family is aligned and the SSCSs are formed and mutations (green dots), sequencing (blue or
purple dots) or PCR errors (brown dots) can be identified. In this step, only sequencing errors can be
removed, but not PCR errors. Finally, the SSCSs of both strands are grouped and the DCS is generated.
Only mutations, which are present in both SSCSs, remain until this final step, whereas PCR errors are
eliminated. (Kennedy et al., 2014)

Figure is adapted from (Kennedy, Salk, Schmitt, & Loeb, 2013)
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2.1. Problems of duplex sequencing data

Duplex sequencing aims to produce an equal ratio of 2:1 between SSCSs and DCS, but
more importantly to recover a substantial amount of DCSs from a certain number of reads.
However, in reality, it is nearly impossible to produce equal amounts of SSCSs and DCSs. It
could happen that not both strands of the molecule are amplified, but only forward or reverse
strand. Also, in the final step where the SSCSs are combined to DCSs, the number of useful
sequences is reduced. In theory, three reads per family are required to align them, but if
there is a mutation present in one of the tags within a family, the read will be discarded. Due
to this, it could happen that the family does not have enough reads and no SSCS is formed.
Hence, no DCS is formed and the ratio between SSCSs and DCSs will deteriorate. (Kennedy
etal, 2014)

Furthermore, a problem of duplex sequencing is the generation of chimeric products during
amplification. Chimeras may result in genetic mixing, which then produces diversities new to
the original sample and the detection of chimeric reads from real sequences remains a
widespread problem. Several studies indicate that 30% of PCR products might occur as
artificial chimeras. (Smyth et al., 2010) Highly similar sequences form most likely chimeras,

which are highly difficult to remove from the data. (Smyth et al., 2010)

These artifacts can be produced (Kanagawa, 2003)
* from an incomplete extended primer:
A chimeric product is being aborted amplification
created, when an incomplete aaaaaaaas)
extended molecule acts as a
primer and anneals to closely *

next cycle’s “primer”
related templates. This kind of

mechanism occurs during later

stages of PCR. Since the amount chimeric sequence *

of primers, which were for. rev.
incompletely extended, is too high u
and they can compete against the Figure 2: Chimeric reads formation

Chimeras are produced from fragments of various

original primer during annealing. templates. A molecule was not fully extended and

The frequency of chimeric reads will act as a primer for a different template, which
results in the formation of a chimeric read.
can be limited by reducing the Figure is adapted from (Fichot, 2013)

number of cycles during PCR.
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* by template switching:
During extension, the extended strand switches from the original template to a
sequence that has annealed toward the 3’ end of the DNA fragment and leads to the
formation of a chimeric read. When the extension of the primer gets close to the
binding site of the other template, the process may become less efficient in this
region and the primer switches the template. Higher temperatures during extension
and a higher amount of repeated sequences favours the creation of chimeric reads.
The binding of base pairs is less stable at higher temperatures and the 3’ end from

the extending strand becomes more easily free.

My Bachelor thesis focuses on these major problems of duplex sequencing by helping to
understand the sequencing data and to find possible solutions for improving the amplification
and sequencing protocol. We have developed new tools, that support the user to improve the
ratio between SSCSs and DCSs. The main approach was to infer information about the tags
by introducing a similarity measure. The Hamming distance quantifies similarity or
dissimilarity between two DNA sequences of equal length by calculating the number of

differences between them. (Wang, Kao, & Hsiao, 2015)

n
Di,j == Z[Xik :'tX]k]
k=0

so that D is the number of sites where X; match and X; do not match,
k is the index of a particular site from a total number of sites n.
(Pinheiro, de Souza Pinheiro, & Sen, 2005)

This analysis was also performed with various tag lengths and only with tags, that form
DCSs, to see if sequencing errors are filtered out during data analysis. In addition, the
calculation of the Hamming distance can also be used to identify chimeric reads from real
molecules. Since the loss of a huge amount of data is the main problem of duplex
sequencing, tags obtained during different stages of the analysis have been represented by
their family sizes. Finally, a graphic output was implemented to show the tag’s family sizes

and their Hamming distances.
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3. Materials

The data in this report was obtained during the project by Prof. Tiemann-Boege and her
research group at the Institute of Biophysics (Johannes-Kepler University, Linz), which
focuses on the detection of selfish mutations in human sperm cells using duplex sequencing.
Many mutations in humans are derived from transmissions of parents to their children. But
also many affected individuals arise in each generation by inheriting de novo mutations.
(Arnheim & Calabrese, 2009) Selfish mutations are de novo mutations, which have gain-of-
function properties, that are under positive selection which leads to the expansion of mutant
clones over time. These mutations are associated with paternal age effect (PAE) disorders,
which means that the incidence rate of the mutations in the children increases with the age of
the father. (Maher, Goriely, & Wilkie, 2014) Those mutations mostly originate in the father’s
germline, because there are more division after puberty in men than women. (Arnheim &
Calabrese, 2009) Some disorders caused by these selfish mutations are achondroplasia,
Apert, Noonan and Costello syndrome. The analysis of sperm DNA confirmed that these
paternal age effect mutations are present above the mutation rate in most men. Selfish
mutations from the male germline arise 1000-fold more frequently than the expected
mutation rate. The selfish mutation rate lies at ~10° which is still too low for conventional
NGS. (Maher et al., 2014)

This thesis includes the analysis of one library with tags labelling the sequencing reads for
demonstrating the results of our developed algorithms. The tools expect the sequencing data
with all tags before the alignment to the SSCSs. The input data should be in tabular format
with information about family sizes, the tags itself and directions of the strands in which PCR
was performed (ab = forward or ba = reverse strands). For analysing the read loss during
data analysis, an additional text file with all tags, that were aligned to the reference genome
and the regions of the reference genome, and FASTA files with tags after the formation of

DCSs and after trimming are required.
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4. Methods

4.1. Distribution of family sizes

At the beginning of the analysis of the sequencing data, the family sizes, which specify the
number of reads per family, were graphically represented in a histogram. This family size
distribution gives information about three important features of the sequencing data:

» Since by default three reads per family are required for the alignment to SSCSs,
families with less than three members are ignored during the formation of the DCSs
and useful sequencing data is lost during the data analysis. We show the number of
singletons (=families with only one member), which gives an idea of how much data
might be lost at the beginning of the analysis.

= Next, the existence of any bias during the formation of the reverse and forward
strands and the amount of possible DCSs have been obtained by splitting the tags
into three groups:

o tags of forward reads (ab) with no partner,
o tags of reverse reads (ba) with no partner and
o tags of reads which form a DCS.

» Finally, the quantities of large families have been investigated, because they cause a

waste of sequencing capacities. Families with too many reads form only few SSCSs

and therefore less DCSs are created.
4.2. Calculation of Hamming distances

The second approach of my thesis includes the distinction, whether tags came from different
molecules or from the same molecule but with sequencing errors or PCR errors in the tag, by
calculating the Hamming distance. Since the whole dataset contained more than one million
tags, the comparison of all tags would be computationally too demanding and would take a
couple of days. Therefore, we parallelized the algorithms and sampled 1,000 tags and then
compared them to the whole dataset to estimate the minimum Hamming distance between
tags. We were able to verify that a sample of 1,000 tags gives an estimate for the whole
dataset by calculating the Hamming distance for a sample of 10,000 and ~130,000 tags
(supplementary material figure 1). We know that one duplex tag consists of 24 nucleotides,
which gives 4%* unique tags for labelling the molecules (figure 2). Since we have more
possible tags than molecules, it is very unlikely that multiple molecules will share the same
tags. Therefore, small Hamming distances occur very unlikely per chance and indicate

sequencing or PCR errors.
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Figure 3: Schematic of a DNA fragment with ligated adapters

The adapters consist of a fixed number of nucleotides and are ligated
to the DNA fragment on both ends. In our data, adapters with a length
of 12 nucleotides were used, which should result in 42 unique tags to
characterize ~1 million DNA fragments.
Figure is adapted from (Schmitt et al., 2012)

Analysis of shorter tag lengths

The effect of shorter tags on the Hamming distance was tested by splitting the tags from its

original length in half and shortening the halves to the desired length. The flanking regions

may contain many repetitions, therefore the nucleotides at the end of each adapter (‘a’ and

‘b’) were skipped until the specified length of the tag was reached (figure 4). In this analysis
we have used tag lengths of 13nt+13nt, 12nt+12nt, 10nt+10nt, 8nt+8nt and 6nt+6nt.

May 23, 2018
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Figure 4: Workflow for shortening the tags

This is an example for shortening a tag with 24 nucleotides to 16
nucleotides. The tags were split into 2 halves (a and b) and the flanking
regions of both halves will be skipped until the desired length for the
whole tag is reached. Only the part of the tag, which is highlighted in
yellow, is kept in the analysis.
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4.2.1. Detection of chimeric reads

For identifying chimeric reads in the dataset, the Hamming distances of both halves of the
tag were calculated. We have developed a method which is looking at the minimum
Hamming distances of the individual parts of the tag and not at the minimum Hamming
distance of the whole tag. First, each tag was split into its halves (‘a’ and ‘b’) and then we
calculated the Hamming distance for the first part of the tag (‘a’) and looked for the minimum
value afterwards. Since one tag can have multiple tags with the same Hamming distance in
the dataset, the resulting sample size is much larger than initially selected. The Hamming
distance for the second part of the tag (‘b’) was calculated by comparing the ‘b’ part of the
sample to all tags with the same minimum Hamming distance of the first part. Finally, the
same process was repeated starting with the second part of the tag to identify all possible

chimeras.

Chimeric reads have normally very different Hamming distances within the tag and therefore,
we suspected, that the absolute difference between those Hamming distances should be
very large, which would make it possible to identify chimeras from real molecules. But at this
point, we cannot tell for sure if the identified molecules are true chimeras, because we do not
know whether the difference originates due to a low and a very large Hamming distance in
both parts or one part of the tag is completely identical (HD=0) to a second molecule, which
would represent a chimera. Therefore, we calculated the relative difference (=relative delta)

by dividing the absolute difference by the sum of the Hamming distances of both halves.

Finally, the data can be grouped into three categories:

I.  In theory, a low relative delta means that larger total Hamming distances were almost
equal split up into partial Hamming distances. This case would be expected, if all tags
have originated from different molecules (figure 5a).

II.  Higher relative differences occurred either by a low total Hamming distance, which
identifies tags that originated due to sequencing errors, and/or large absolute
differences, that detects possible artificially introduced chimeras. (figure 5b).

[ll.  Finally, true chimeric reads can be distinguished from true molecules since one of the

parts is identical to another half, which occurs very unlikely per chance (figure 5c)
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Figure 5: Formula for calculating the relative difference between the Hamming distances

The delta difference is estimated by dividing the absolute difference (=delta) between the HDs by the sum of
the partial HDs. A small relative delta (<=0.5) indicates an equal distribution of the total Hamming distance
between both parts of the tag, whereas a high relative delta (>0.5) might show chimeras formed during
amplification or true molecules. Chimeras can be very likely detected if one half of the tag is identical with
another half, but the second half is very different to the rest. This kind of tags can be identified when the
relative delta equals exactly to 1.

4.4 Analysis of tags forming DCSs

The Hamming distance analysis can also be applied only on tags, which form DCSs later.
The tags were filtered and only those tags, which occur twice in the dataset and have at least
a family size of three, were kept. We were able to infer whether the DCSs originated from
different molecules or were split into multiple families due to sequencing errors or PCR
errors. Furthermore, we wanted to analyze where DCSs are lost during the bioinformatic
mutation detection with the duNovo pipeline which was described here

https://github.com/galaxyproject/dunovo/wiki.
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4.5 Detection of read loss during data analysis

We have stated in the beginning, that a lot of tags are lost during data analysis, but until now
we were not able to see in which step of the analysis this happens. Possible reasons for data
loss are small family sizes, reads with bad quality scores or too short read lengths after
trimming. However, it is possible to fetch the data with the tags from various stages of the
analysis and those datasets can be plotted in histogram with the read’s family sizes. The
different datasets were selected from the duNovo Galaxy pipeline which is used for reference
free mutation calling of duplex sequencing data and includes the alignment of tags to SSCS,
formation of DCSs and the actual mutation calling process. (Stoler et al., 2016) The most
important steps, in which a lot of tags might be lost, are the alignment to SSCSs, the

alignment to DCSs, trimming and the alignment to the reference genome.
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5. Results

5.1. Representation of family sizes

In figure 6, the original tags of all SSCSs were grouped by their read family sizes and colored
by their direction in which the strands were produced during PCR. We used this kind of

distribution to see the grouping of reads into families and if there is any bias between the

strands.
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506,492 0.387 18,555 0.014

0 mismatches

Figure 6: Family size distribution

The family sizes were separated after families that have only a forward (ab), reverse (ba) or both strands
(duplex = DCS). Similar amounts of forward and reverse strands were recovered, which means that there was
no strand bias in the formation of the SSCSs. In addition, families with large sizes (>20) contributed very little
to the data. In theory, high amounts of SSCSs and DCSs should be produced. But in reality, only a small part
of SSCSs formed DCSs (~9%) and most of the families are singletons (40%), which will cause a huge loss of

useful sequencing data.

The plot suggests, that forward and reverse strands were almost equally amplified across all
family sizes. The maximum number of reads within a family was very high (FS=206), but the
family size distribution has shown, that the amount of families with more than 20 reads has

contributed very little to our data (1.4%). The strands were separated after their direction and
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formation to DCS, which was expressed in total percentages and unique percentages. Since
we were calculating the total numbers by counting both strands of the DCS and the unique
numbers consist only of a single forward or reverse strand of the DCS, the percentages of
the unique numbers are lower than the total numbers. But in the best case, only 9% of the
SSCSs were present in both directions, which represent the DCSs (red part of the bars), and
single forward and reverse strands contribute each with ~45% to all tags. As shown below,
allowing mismatches in the tags can recover some singletons and merge them with their

original family.
5.1. Calculation of Hamming distance of the tags

Next, we calculated the Hamming distance to measure the similarity between the tag of the
dataset. First, we verified, that a sample of 1,000 tags is a representative sample for all tags
of the data (supplementary material figure 7). Then the Hamming distance between 1,000
tags and the whole dataset was calculated to analyze the tags in detail. The minimum
Hamming distances for each tag were graphically represented either as a histogram

categorized after the family sizes or in a family size distribution separated by the Hamming

distances.
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Figure 7: Hamming distance analysis of tags

The Hamming distance was calculated for a subset of 1,000 randomly selected tags vs. all tags in the dataset.
Afterwards the minimum value for each tag in the sample was calculated. The figure shows two possible ways to
represent the Hamming distances: (a) Histogram with the Hamming distance, that is separated after the family
sizes. 29.5% of the tags differ only by one nucleotide from the rest, which is very unlikely and, therefore,
originated due to sequencing errors within the tags. Whereas high Hamming distances indicate, that the tags
truly came from different molecules. (b) Family size distribution separated after the Hamming distances. Not only
small Hamming distances contribute to the singletons, which can be recovered by mismatch correction, but also
high Hamming distances (up to 8 mismatches), which indicate that the tags came from different molecules and
are not different due to sequencing errors.
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Most of our tags differed with at least five to eight nucleotides to the rest, but a big
percentage of the tags differed by only one nucleotide (figure 7a). In addition, about half of
the singletons differed by one to three mismatches, whereas larger family sizes consist of
tags with bigger Hamming distances (figure 7b). Smaller Hamming distances are indicative of
sequencing or PCR errors in the tags that cause families to be split up. These reads can be
put into their original families by mismatch correction, which is described in detail in the next

section.
5.1.1. Mismatch correction recovers tags with small family sizes

Mismatch correction recovers some of these reads by allowing mismatches in the tags and
places the reads in other families, which in turn increases the sizes of some families, but
reduces the number of different tags / families in the whole dataset.

In the protocol used for the data, one, two or three mismatches were allowed in the tags and
the effects of mismatch correction can be observed in figure 9 on the Hamming distances of
a sample of 1,000 and in figure 8 on the whole dataset. Allowing mismatches in the tag has
reduced the number of singletons that would be lost in further steps of the analysis and has
placed them mostly into families with at least seven and more members. The fraction of
singletons has dropped over 10 percent, when comparing the dataset before mismatch
correction (~39%) with after mismatch correction, where three mismatches have been
allowed (~27%).

600000
I 0 mismatches
(| 1 mismatch P
500000} , . .
B 2 mismatches |
[ 3 mismatches |
400000 - e |

Absolute Frequency

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >20
No. of Family Members

singletons: family size > 20:
absolute nr. rel. freq absolute nr. rel. freq total nr. of families
0 mismatches 506,492 0.387 18,555 0.014 1,309,982
1 mismatch 323,913 0.290 21,629 0.019 1,118,788
2 mismatches 304,054 0.276 21,856 0.020 1,099,732
3 mismatches 289,912 0.267 22,072 0.020 1,086,642

Figure 8: Family size distribution of the whole dataset with mismatch correction

The figure shows the family sizes of the whole dataset with no, one, two or three mismatches allowed in the
tags. Allowing mismatches reduced the number of small families, especially the singletons (FS=1, from
38.7% to 26.7%), but increased the number of larger families with at least 7 members (FS>=7).
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Overview of DCSs and SSCSs in the data

DCS (FS >=1)
nr. of duplex rel. frequency
without MM correction 110,149 9.2%
1 MM 116,091 11.6%
2 MMs 124,293 12.7%
3 MMs 136,240 14.4%

SSCS without partner (FS >= 1)

nr. of ab strands rel. frequency
without MM correction 548,245 45.7%
1 MM 446,798 44.6%
2 MMs 429,128 44%
3 MMs 410,785 43.2%
nr. of ba strands rel. frequency
without MM correction 541,439 45.1%
1 MM 439,808 43.9%
2 MMs 422,018 43.3%
3 MMs 403,377 42.4%

Table 1: Overview of DCSs and SSCSs in the data

In this table, the fractions of SSCSs with no partner sequence in both direction of amplification and the DCSs are
shown. Before mismatch correction only 9.2% of the data formed DCSs, whereas after allowing three mismatches
the DCSs have raised to 14.4%.

The numbers in table 1 and table 2 allow all family sizes in the SSCSs, because we wanted
to estimate the highest possible amount of DCSs without filtering the SSCSs after their family
sizes. Since the number of singletons decreased with mismatch correction, the ratios
between SSCSs and DCSs has improved too, when allowing all family sizes (FS>=1) in the
alignment. Before mismatch correction only 9.2% of the strands formed DCSs, but if we
would allow one, two or three mismatches in the tag, 14% of the SSCSs could form duplex

sequences.
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Ratios between SSCSs and DCSs

DCS*2 SSCS Ratio SSCS/DCS
without MM correction 220,298 1,089,684 11.9
1 MM 232,182 886,606 9.6
2 MMs 248,586 851,147 8.8
3 MMs 272,480 814,162 8
optimum 1 2 2

Table 2: Ratios between SSCSs and DCSs

The ratios in this table were estimated by dividing the SSCSs through the DCSs. The ratio should be around 2 but
can only be achieved in a sequencing run with no errors in the tag and successful amplification of both strands.
After mismatch correction, the ratio of our data was reduced from 11.9 to 8, but still exceeds the optimal ratio.

Without mismatch correction, the ratios between SSCSs and DCSs were far too high (~12).
After allowing three mismatches the ratios decreased from 12 to 8, but still they were four

times higher than the optimal ratio (table 2).

5.1.1. Effect of tag length on Hamming distance

Usually, tags with a length of 2*12 nucleotides are used in duplex sequencing. Here, we
have tested the effect of shorter and longer lengths of tags on the Hamming distance (figure
10). The following tag lengths were tested: 2*6nt, 2*8nt, 2*10nt, 2*12nt and 2*13nt resulting
in a total length of 12nt, 16nt, 20nt, 24nt, 26nt, respectively. The data did not allow any
mismatch in the tag, since this experiment was simulated only in silico by selecting a subset
from the whole tag and mismatch correction is usually performed on the whole tag.
Therefore, we are not interested in the effect of mismatch correction on a shorter tag length.
The experiment for testing the tags with 26nt was obtained from the laboratory, therefore, the

sizes of the datasets might vary.

The results showed that a shorter tag length (length=12nt, length=16nt, length=20nt) resulted
in @ much smaller minimal Hamming distance (HD=1-2, HD=4-5, figure 10). Whereas bigger
Hamming distances (HD=6-7, HD=6-8) were estimated from the experiments with longer
tags (length=24nt, length=26nt, figure 10). Very short tags with a total length of 12
nucleotides have Hamming distances of one or two (HD=1-2). Therefore, tags with small
Hamming distances in one of its halves (if tag length is 2*12nt) are not unusual and can arise

by chance.
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5.1.2. Analysis of chimeric reads

The halves of the tags in the test data consisted of 12nt, therefore, we expected the same
results as in section 5.1.1, where we used a total tag length of 2*6nt. Reasons for differences
between the results are caused due to amplification errors, sequencing errors or the
formation of chimeric reads. We developed algorithms for detecting tags of chimeric reads in
the data by using the Hamming distance of both halves in the tag (figure 11). More tags
(n=12,474 and n=13,840) than specified in the beginning (n=1000) resulted from this
analysis, because each tag in the sample can have multiple tags with the minimum Hamming

distance in the whole dataset.
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Figure 11: Hamming distances of both parts of the tag
The left plot does not include any mismatch correction, whereas the right plot allows three mismatches. The
sample sizes (n=12,474 and n=13,904) are much larger than specified in the beginning (n=1,000), since one tag
can have multiple tags with the same minimum Hamming distance. The Hamming distances of the halves (each
with 12 nucleotides) of the tags were calculated (blue and orange). One half has a much smaller Hamming
distance than the other half, because we were looking for minimum Hamming distance of the half, that we had
started the analysis with.
The grey bars (‘a’ + ‘b’ halves) in the plot indicate the sum of Hamming distances from both
halves of the tag, whereas orange (part ‘a’) and blue (part ‘b’) bars show the Hamming
distances of the halves. The tags were selected based on the minimum Hamming distance of
the individual halves, which in turn gives much smaller Hamming distances (HD=0-2) in one
part and very high Hamming distances in the second half (HD=8-10). In other words, the blue
bars with the smaller Hamming distance and the red bars with the larger Hamming distances
form one whole tag with an overall Hamming distance and vice versa. The results showed
that without mismatch correction a lot of tags with Hamming distances of zero in one half
resulted from the analysis. Whereas the plots with mismatch correction suggested that the
number of halves with zero Hamming distance was reduced but Hamming distances of two

and larger was increased in both halves.
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Figure 12: Absolute difference between the Hamming distances within the tag
The histograms contain the absolute differences between the Hamming distances of both halves of the tag. The

sample sizes (n=12,474 and n=13,904) are much larger than specified in the beginning (n=1,000), since one tag
can have multiple tags with the same minimum Hamming distance. Large differences indicate an unequal
splitting of the whole Hamming distance. Differences of 12 are very unlikely to occur per chance and therefore,
might be a sign for chimeric reads produced during PCR.
Next, the difference between the Hamming distance of both halves was -calculated
(=absolute delta HD). In figure 12, we can already see, that most of our tags were composed
of very different halves (delta=7-9 with 0 and 3 mismatches). We suspect, that tags with
differences of 11 or 12 were artificially introduced by the means of chimeric reads. Very large
differences indicated completely different halves within one tag. However, this measure was
not very informative regarding the distribution of the Hamming distances within the tag. Thus,
we calculated the relative difference (relative delta Hamming distance) by dividing the
absolute difference by the sum of Hamming distances of both halves (=total Hamming

distance).
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Figure 13: Relative difference between the Hamming distances within the tag

(a) Histogram of the relative differences between the Hamming distances. Differences greater or equal than 0.5
might indicate chimeric reads but can also be true molecules. Whereas a relative difference of 1 are very likely
chimeric reads. In those tags one half is identical to another half (HD=0) and the other part is completely different

to the rest.

(b) Family size distribution separated by the relative difference: Most of the singletons have a high relative
difference and might indicate chimeric reads, but fortunately they will be filtered out of the dataset later.
The sample sizes (n=12,474 and n=13,904) are much larger than specified in the beginning (n=1,000), since one
tag can have multiple tags with the same minimum Hamming distance.
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Most of our tags in our sample had a very large relative difference (delta=0.6-0.8). About
28% of our tags without mismatch correction were composed of one completely identical half
(HD=0) and one completely different half resulting in a relative difference of one. After
allowing three mismatches this percentage drops to ~21% (figure 13). In both cases, the
singletons, which are skipped later when forming the DCSs, contributed most to the tags with
a relative difference of more than 0.5. But still some families with larger sizes have a high

relative difference (>0.5).

Finally, we analyzed those tags with a relative difference of one in figure 14 in more detail by
calculating the Hamming distance of the non-identical half, which will represent the total

Hamming distance of the whole tag.
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Figure 14: Hamming distances of the chimeric reads

The tags in these plots represent the fraction of tags, where the relative difference is one (OMMs: nr of
tag=3,450, 3MMs: nr. of tags=2,775). Tags, which indicate chimeric reads, have one identical half (HD=0),
whereas the other half is completely different to the rest (HD=8-11). Mismatch correction reduces the fraction
of tags which occurred due to sequencing errors in the tag. Especially the tags with 0-3 mismatches
completely vanished from the dataset.

Without mismatch correction a lot of tags had very small Hamming distances (HD=1 in 16.7%
of tags with one identical half), which will explain the high fraction of tags with a Hamming
distance of one in the data, where we analyzed the whole tag. But still most of the tags had
very large Hamming distances. In other words, one half had a Hamming distance of zero
whereas the other half had a very large Hamming distance (HD=8-10). Most of those tags
(~83%) with one identical half had a family size of one (figure 15) and therefore, do not

contribute to DCSs when at least three reads per family are required.
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Figure 15: Family size distribution of chimeric reads

The family sizes of the chimeric reads are represented in a histogram. Most of the chimeras are singletons,
which are filtered out of the dataset, when forming the SSCSs, because at least tags with family sizes of 3
reads are required by default.

5.3 Analysis of tags forming DCSs

Usually, DCSs are comprised of two identical tags from a forward and reverse strand with a
family size of at least three reads. In order to find out whether the errors mentioned above
are also present in the final DCSs, we performed the Hamming distance analysis for the
whole tag (24nt), its family size distribution and the Hamming distance of the individual
halves within the tags only for those tags that can form DCSs. Figures 16-18 contain the
forward and reverse strands of the DCSs. Both strands have equal Hamming distances,
since the tag is the same, but the family sizes can differ between the strands. Mismatch
correction for three mismatches produced the best results for the whole dataset, therefore

the analysis was performed on the dataset, where three mismatches have been allowed.
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Figure 16: Hamming distance analysis of DCSs

Only tags (n=67,786), which form DCSs, were used for this analysis and were compared against all of them
(n=67,786).
(a) The Hamming distances are mostly between 7 and 9, they very likely originated from different molecules and
are not different due to errors in the tag. (b) Since by default a minimal family size of 3 is required, smaller
family sizes cannot be observed.

All families with less than three members are not part of the analysis, but most of the tags
had family sizes larger than five (figure 16b) and the sample tags differed with around seven
to nine nucleotides to the rest (HD=7-9, figure 16a). Therefore, most of the erroneous tags
were filtered out during data analysis and the remaining tags of the DCSs stem from different

molecules. Additionally, we were interested if there is still a problem with chimeric reads.
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Figure 17: Hamming distances within the tags of DCSs

The Hamming distances of both halves of the tag were individually calculated (blue and orange). The total number
of tags (n=576,524) in this analysis is much higher than initially specified (n=67,786), since one tag can have
multiple tags with the same minimum Hamming distance. The grey bars represent the sum of the Hamming
distances of both halves. Hamming distances of zero are very rare in DCSs. But still, there are a lot of tags with
small Hamming distances (HD=1-3) in only one part of the half.
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The Hamming distances for both parts of the tags were calculated. Compared to the whole
dataset, very few halves of the tag were identical to each other (HD=0), but rather differed
with two to three nucleotides (HD=2-3) in one half and eight to ten nucleotides (HD=8-10) in
the other part. As expected, the sum of the partial Hamming distances in the figure 17 shifted

to much higher values than the total minimum Hamming distance of the whole tag (figure 7a).
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Figure 18: Absolute and relative differences of tags of DCSs

The total number of tags (n=576,524) in this analysis is much higher than initially specified (n=67,786), since one
tag can have multiple tags with the same minimum Hamming distance. a) Absolute differences between the
halves of tags of DCSs: Differences of 11-12, which might indicate chimeric reads, occur very rarely in DCSs.

(b) For verifying the chimeric reads, the relative differences were calculated. Only 0.2% of the DCSs are
chimeric reads, because they have a relative difference of 1, which means one half of the tag has a Hamming
distance of zero.

The left plot (figure 18a) shows the absolute differences between the Hamming distances of
both halves of the tag. We can already see very large differences (HD=11-12), which are a
typical sign for chimeric reads, almost disappeared from the data with tags of DCSs. For
verifying the identity of chimeric reads, the right plot (figure 18b) shows the relative

differences where the fraction of chimeras has dropped to 0.2% of the data.
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5.4 Analysis of read loss during the Galaxy pipeline

The distribution of family sizes contains all original tags before the alignment to the SSCSs,
after the alignment to the DCS, after trimming and after the alignment to the reference
genome. The reads were trimmed at their 3’ end and based on the frequency of filter bases,
which were defined in the experimental protocol. Reads with less than 200 nucleotides were
omitted from the further analysis and only kept if both strands of the DCS reached the
specified read length. Figure 19 contains the data, where three mismatches have been
allowed, and both family sizes of reverse and forward strand, whereas the total numbers

below the plot indicate the single counts of the DCS.
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total nr. of reads (SSCS) 5,764,559 after trimming: 41,460
after alignment to reference genome: 41,267

Figure 19: Analysis of read loss

Family size distribution with various stages of the analysis with correction for 3 mismatches: The datasets were
obtained before the alignment to SSCSs, after the alignment to DCSs, after trimming and after the alignment to
the reference genome. The plot contains both counts of forward and reverse strand, whereas the numbers
below represent the single count of the DCS. Most of data has been filtered out during the formation of DCSs
and during trimming.

The numbers before alignment to SSCSs have been calculated by our programs, which
search for all tags that have a duplicate in the dataset and have at least a family size of
three. If we compare these values to the numbers obtained after the alignment to the DCSs,
then, as expected, both counts agree. However, the numbers of the tags aligned to the
reference genome was reduced to ~41,000 tags, which means that 26,519 tags were lost

during the trimming step.
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Therefore, we adapted the minimal read length parameter of the duNovo Galaxy pipeline

(Stoler et al., 2016) to reduce the number of filtered reads.

Comparison of trimming parameters

read length = 200 read length = 36
total nr. of tags 950,402 950,402
before alignment to SSCSs with FS>=3 67,786 67,786
make DCS 67,786 67,786
after trimming 41,460 67,282
after alignment to reference genome 41,267 67,002

Table 3: Effect of various trimming parameters on data loss

The read length specified during trimming were changed from 200nt to 36nt. Stringent filtering with long reads
leads to read loss of ~20,000 families. If we also allow shorter reads in our data, more data can be recovered. The
family size distribution with the new trimming parameters can be found in the Supplementary Material Figure 2.

As table 3 shows, many reads were lost due to a short read length after trimming. When
setting the minimal read length to 36nt, only 504 tags were filtered out. In sum, approximately
784 tags instead of more than 26,519 tags were lost during data analysis with the new
trimming parameters. However, if we compare the original numbers of tags (~950,000 tags)
to the final number of tags, which were aligned to reference genome, only approx. 7% of the

tags (~67,000 tags) could be recovered throughout the analysis.
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6. Discussion

The calculation of the Hamming distances between the tags which label the DNA fragments
and the distribution of their family sizes give various insights into the duplex sequencing data.
At first, were able to see in the distribution of family sizes that there was no bias towards any
direction of the reads during amplification. Furthermore, the frequency of large families is
small enough, so that we do not waste a lot of sequencing capacities.

The family size distribution showed that the majority of read families are singletons. Since by
default three reads per family are required to form SSCSs and later on DCSs, a lot of data is
lost. In addition to the singletons, unique SSCSs are ignored in the further analysis, because
they cannot form a DCS. (Stoler et al., 2016) The optimal ratio between SSCSs and DCSs is
2:1 but in our data we achieved only a 12:1 ratio. This ratio is an indication that a huge
amount of data is lost during data analysis because many SSCSs are only present in either
forward or reverse direction and therefore cannot form DCSs. We suspect that these unique

SSCSs were introduced either due to errors in the tags or failure to amplify the other strand.

Second, we analysed the tags in more detail by calculating the Hamming distances between
the tags. Since we have far more unique tags than molecules to label for, it is expected that
the tags differ with multiple nucleotides to each other if they originated from different
molecules. The Hamming distance analysis verified this conclusion, since mainly larger
Hamming distances (HD=5-7) occurred in the sequencing data. But also, about 30% of the
data differed by only nucleotide to the rest. We expect that these are due to sequencing
errors or PCR errors, therefore mismatch correction for up to three mismatches should be
save and can be applied on further data analyses. However, mismatch correction with four or
more mismatches should be avoided, because they might already represent different
molecules.

The distribution of family sizes has shown that many singletons differed by only one
nucleotide but allowing up to three mismatches in the tag moved small families with up to
three members into larger families. Although mismatch correction reduced the number of
singletons, not all of them have been recovered but we were able to decrease the ratio
between SSCSs and DCSs to 8:1.

Third, we investigated the effect of the tag length on the Hamming distance. Shorter tags
(2*6nt, 2*8nt) resulted in smaller Hamming distances than longer tags. Therefore, for shorter
tags we cannot be sure whether tags with small Hamming distances have originated from
sequencing errors in the tags. Although longer tags achieved higher Hamming distances,

typically tags with a length of 2*12 nucleotides are used in order to limit expenses.
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The formation of chimeric reads is a known problem in sequencing millions of DNA
fragments. For detecting chimeric reads, the fourth analysis comprised calculating the
Hamming distance in both halves of the tags separately. The Hamming distances showed
that many tags differ only in one half to other tags, but the second half is identical, which is
very unlikely to occur by chance. Sources for these tags are either chimeric reads or
sequencing error in one part of the tag. The data after mismatch correction suggested that
only few of those tags have been corrected by allowing three mismatches in the tag because
they are a result of artificially produced chimeras. Those chimeric reads usually have tags
with very large differences (up to 11 or 12 nucleotides) between the partial Hamming
distances. Relative differences of one between the partial Hamming distances indicate that
almost 28% of the tags are very likely chimeric reads. This effect was probably introduced
due to errors during adapter synthesis or jumping PCR. Additionally, there were a lot of tags
with a high relative difference, which indicates tags, where the total Hamming distance was
not split up equally into partial Hamming distances. Our analysis of shorter tags showed that
minimal Hamming distance of one or two is common for tags with a length of 12 nucleotides.
Therefore, we cannot identify those tags as chimeras, because they still might originate from
different molecules. However, most of the chimeras in the data were singletons, which might

explain the high fraction of singletons in the whole sample.

The original analysis was based on a sample of the whole dataset, not regarding whether the
families would finally end up in DCSs. Our results of the fifth analysis showed tags that are
part of a DCS have only high Hamming distances which indicates that they all stem from
different molecules and were not split up due to sequencing or PCR errors in the tags. In

addition, the DCSs were composed of only 0.2% artificially produced chimeras.

Due to high amounts of singletons in the duplex sequencing data, a huge number of SSCSs,
which might represent potential sequences for the DCSs, are lost. However, the final
analysis showed that also in later stages in the data analysis like timming or alignment to the
reference genome many more tags are filtered out due to low quality reads or too short read
lengths. By adapting the trimming parameters, we were able to recover ~26,000 tags which
means that 2.8 % more DCSs that can be used for the final mutation detection. From this
point of view, we cannot recover more tags of the dataset bioinformatically and the

experimental protocol should be revised and adapted accordingly.
Finally, all developed programs were made accessible through the Galaxy system to provide

the tools for a high number of potential users, but they can also be used via the command

line (https://github.com/monikaheinzl/galaxyProject).
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7. Conclusion

Duplex sequencing allows the identification of ultra-low frequency mutations, but this method
produces a lot of families with only one read. These singletons will not be used in the
formation of DCSs and a huge amount of useful data is lost during the analysis. Our
developed tools introduce an effective approach for analysing duplex sequencing data. The
calculation of the Hamming distance allowed us to identify tags which were produced due to
sequencing errors. Although mismatch correction reduced the errors in the tags and
increased the tag’s family sizes, not all of the tags were recovered. Our new approaches can
also be used to identify chimeric reads in the data, which have been introduced due to PCR
errors. Fortunately, most of these tags were filtered out during data analysis, therefore
probably no sequencing errors and very few chimeric reads might be aligned to DCSs. Our
methods helped to identify where the data might be lost in the process of data analysis,
which in turn helps to improve the conditions of data analysis. All tools, that have been used
in this thesis, can be found in the Galaxy system but can also be used from the command

line.
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